1,400 research outputs found

    Hybrid Tractable Classes of Binary Quantified Constraint Satisfaction Problems

    Full text link
    In this paper, we investigate the hybrid tractability of binary Quantified Constraint Satisfaction Problems (QCSPs). First, a basic tractable class of binary QCSPs is identified by using the broken-triangle property. In this class, the variable ordering for the broken-triangle property must be same as that in the prefix of the QCSP. Second, we break this restriction to allow that existentially quantified variables can be shifted within or out of their blocks, and thus identify some novel tractable classes by introducing the broken-angle property. Finally, we identify a more generalized tractable class, i.e., the min-of-max extendable class for QCSPs

    Tractability in Constraint Satisfaction Problems: A Survey

    Get PDF
    International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP

    Generalized Majority-Minority Operations are Tractable

    Full text link
    Generalized majority-minority (GMM) operations are introduced as a common generalization of near unanimity operations and Mal'tsev operations on finite sets. We show that every instance of the constraint satisfaction problem (CSP), where all constraint relations are invariant under a (fixed) GMM operation, is solvable in polynomial time. This constitutes one of the largest tractable cases of the CSP

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Variable and value elimination in binary constraint satisfaction via forbidden patterns

    Get PDF
    Variable or value elimination in a constraint satisfaction problem (CSP) can be used in preprocessing or during search to reduce search space size. A variable elimination rule (value elimination rule) allows the polynomial-time identification of certain variables (domain elements) whose elimination, without the introduction of extra compensatory constraints, does not affect the satisfiability of an instance. We show that there are essentially just four variable elimination rules and three value elimination rules defined by forbidding generic sub-instances, known as irreducible existential patterns, in arc-consistent CSP instances. One of the variable elimination rules is the already-known Broken Triangle Property, whereas the other three are novel. The three value elimination rules can all be seen as strict generalisations of neighbourhood substitution.Comment: A full version of an IJCAI'13 paper to appear in Journal of Computer and System Sciences (JCSS

    A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

    Get PDF
    Conjunctive queries are basic and heavily studied database queries; in relational algebra, they are the select-project-join queries. In this article, we study the fundamental problem of counting, given a conjunctive query and a relational database, the number of answers to the query on the database. In particular, we study the complexity of this problem relative to sets of conjunctive queries. We present a trichotomy theorem, which shows essentially that this problem on a set of conjunctive queries is either tractable, equivalent to the parameterized CLIQUE problem, or as hard as the parameterized counting CLIQUE problem; the criteria describing which of these situations occurs is simply stated, in terms of graph-theoretic conditions

    Broken triangles: From value merging to a tractable class of general-arity constraint satisfaction problems

    Get PDF
    International audienceA binary CSP instance satisfying the broken-triangle property (BTP) can be solved in polynomial time. Unfortunately, in practice, few instances satisfy the BTP. We show that a local version of the BTP allows the merging of domain values in arbitrary instances of binary CSP, thus providing a novel polynomial-time reduction operation. Extensive experimental trials on benchmark instances demonstrate a significant decrease in instance size for certain classes of problems. We show that BTP-merging can be generalised to instances with constraints of arbitrary arity and we investigate the theoretical relationship with resolution in SAT. A directional version of general-arity BTP-merging then allows us to extend the BTP tractable class previously defined only for binary CSP. We investigate the complexity of several related problems including the recognition problem for the general-arity BTP class when the variable order is unknown, finding an optimal order in which to apply BTP merges and detecting BTP-merges in the presence of global constraints such as AllDifferent

    The Complexity of Satisfiability for Sub-Boolean Fragments of ALC

    Full text link
    The standard reasoning problem, concept satisfiability, in the basic description logic ALC is PSPACE-complete, and it is EXPTIME-complete in the presence of unrestricted axioms. Several fragments of ALC, notably logics in the FL, EL, and DL-Lite family, have an easier satisfiability problem; sometimes it is even tractable. All these fragments restrict the use of Boolean operators in one way or another. We look at systematic and more general restrictions of the Boolean operators and establish the complexity of the concept satisfiability problem in the presence of axioms. We separate tractable from intractable cases.Comment: 17 pages, accepted (in short version) to Description Logic Workshop 201
    • …
    corecore