48 research outputs found

    An application of the whale optimization algorithm with Levy flight strategy for clustering of medical datasets

    Get PDF
    Clustering, which is handled by many researchers, is separating data into clusters without supervision. In clustering, the data are grouped using similarities or differences between them. Many traditional and heuristic algorithms are used in clustering problems and new techniques continue to be developed today. In this study, a new and effective clustering algorithm was developed by using the Whale Optimization Algorithm (WOA) and Levy flight (LF) strategy that imitates the hunting behavior of whales. With the developed WOA-LF algorithm, clustering was performed using ten medical datasets taken from the UCI Machine Learning Repository database. The clustering performance of the WOA-LF was compared with the performance of k-means, k-medoids, fuzzy c-means and the original WOA clustering algorithms. Application results showed that WOA-LF has more successful clustering performance in general and can be used as an alternative algorithm in clustering problems

    Nature-inspired optimization algorithms for text document clustering—a comprehensive analysis

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Text clustering is one of the efficient unsupervised learning techniques used to partition a huge number of text documents into a subset of clusters. In which, each cluster contains similar documents and the clusters contain dissimilar text documents. Nature-inspired optimization algorithms have been successfully used to solve various optimization problems, including text document clustering problems. In this paper, a comprehensive review is presented to show the most related nature-inspired algorithms that have been used in solving the text clustering problem. Moreover, comprehensive experiments are conducted and analyzed to show the performance of the common well-know nature-inspired optimization algorithms in solving the text document clustering problems including Harmony Search (HS) Algorithm, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) Algorithm, Ant Colony Optimization (ACO), Krill Herd Algorithm (KHA), Cuckoo Search (CS) Algorithm, Gray Wolf Optimizer (GWO), and Bat-inspired Algorithm (BA). Seven text benchmark datasets are used to validate the performance of the tested algorithms. The results showed that the performance of the well-known nurture-inspired optimization algorithms almost the same with slight differences. For improvement purposes, new modified versions of the tested algorithms can be proposed and tested to tackle the text clustering problems

    Context-Aware Clustering and the Optimized Whale Optimization Algorithm: An Effective Predictive Model for the Smart Grid

    Get PDF
    For customers to participate in key peak pricing, period-of-use fees, and individualized responsiveness to demand programmes taken from multi-dimensional data flows, energy use projection and analysis must be done well. However, it is a difficult study topic to ascertain the knowledge of use of electricity as recorded in the electricity records' Multi-Dimensional Data Streams (MDDS). Context-Aware Clustering (CAC) and the Optimized Whale Optimization Algorithm were suggested by researchers as a fresh power usage knowledge finding model from the multi-dimensional data streams (MDDS) to resolve issue (OWOA). The proposed CAC-OWOA framework first performs the data cleaning to handle the noisy and null elements. The predictive features are extracted from the novel context-aware group formation algorithm using the statistical context parameters from the pre-processed MDDS electricity logs. To perform the energy consumption prediction, researchers have proposed the novel Artificial Neural Network (ANN) predictive algorithm using the bio-inspired optimization algorithm called OWOA. The OWOA is the modified algorithm of the existing WOA to overcome the problems of slow convergence speed and easily falling into the local optimal solutions. The ANN training method is used in conjunction with the suggested bio-inspired OWOA algorithm to lower error rates and boost overall prediction accuracy. The efficiency of the CAC-OWOA framework is evaluated using the publicly available smart grid electricity consumption logs. The experimental results demonstrate the effectiveness of the CAC-OWOA framework in terms of forecasting accuracy, precision, recall, and duration when compared to underlying approaches

    Enhancing Medical Imaging with Swarm Intelligence Algorithms

    Get PDF
    Medical imaging serves as an indispensable tool for the diagnosis and continuous monitoring of a diverse array of health conditions. A recent and exciting development in this field is the integration of Swarm Intelligence (SI) algorithms, which draw inspiration from the collective behaviors observed in social insects. This collaborative effort between nature and technology is progressively transforming medical image analysis, elevating both its quality and efficiency. In this book chapter we have presented various SI optimization algorithms like ACO, BCO, FA, FSA and WOA in detail. By exploring these algorithms, we aim to provide an in-depth understanding of their respective benefits and limitations when applied to medical image analysis. This knowledge empowers practitioners to choose the most appropriate algorithm for specific tasks, ensuring optimal outcomes. Furthermore, we shed light on SI-Based Segmentation methodologies, elucidating the advantages and constraints associated with these approaches. The ability of SI algorithms to innovate in the realms of image segmentation, feature extraction, and classification is emphasized, with a focus on their potential to enhance diagnostic accuracy and elevate the quality of patient care. One of the most exciting prospects on the horizon is the amalgamation of SI with cutting-edge technologies like deep learning and big data analytics. This union has the potential to revolutionize medical imaging by providing solutions that are not only more accurate and efficient but also highly clinically relevant. As these developments continue to unfold, the synergy between SI and emerging technologies promises to reshape the medical imaging landscape, ultimately enhancing patient care and improving healthcare outcomes in unprecedented way

    A Hybrid COVID-19 Detection Model Using an Improved Marine Predators Algorithm and a Ranking-Based Diversity Reduction Strategy

    Get PDF
    Many countries are challenged by the medical resources required for COVID-19 detection which necessitates the development of a low-cost, rapid tool to detect and diagnose the virus effectively for a large numbers of tests. Although a chest X-Ray scan is a useful candidate tool the images generated by the scans must be analyzed accurately and quickly if large numbers of tests are to be processed. COVID-19 causes bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, sometimes with a rounded morphology and a peripheral lung distribution. In this work, we aim to extract rapidly from chest X-Ray images the similar small regions that may contain the identifying features of COVID-19. This paper therefore proposes a hybrid COVID-19 detection model based on an improved marine predators algorithm (IMPA) for X-Ray image segmentation. The ranking-based diversity reduction (RDR) strategy is used to enhance the performance of the IMPA to reach better solutions in fewer iterations. RDR works on finding the particles that couldn't find better solutions within a consecutive number of iterations, and then moving those particles towards the best solutions so far. The performance of IMPA has been validated on nine chest X-Ray images with threshold levels between 10 and 100 and compared with five state-of-art algorithms: equilibrium optimizer (EO), whale optimization algorithm (WOA), sine cosine algorithm (SCA), Harris-hawks algorithm (HHA), and salp swarm algorithms (SSA). The experimental results demonstrate that the proposed hybrid model outperforms all other algorithms for a range of metrics. In addition, the performance of our proposed model was convergent on all numbers of thresholds level in the Structured Similarity Index Metric (SSIM) and Universal Quality Index (UQI) metrics.</p

    A Hybrid Chimp Optimization Algorithm and Generalized Normal Distribution Algorithm with Opposition-Based Learning Strategy for Solving Data Clustering Problems

    Full text link
    This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups. Although classical clustering algorithms such as K-means are efficient techniques, they often trap in local optima and have a slow convergence rate in solving high-dimensional problems. To address these issues, many successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time. They are designed to escape from a local optimum problem by allowing flexible movements or random behaviors. In this study, we attempt to conceptualize a powerful approach using the three main components: Chimp Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and Opposition-Based Learning (OBL) method. Firstly, two versions of ChOA with two different independent groups' strategies and seven chaotic maps, entitled ChOA(I) and ChOA(II), are presented to achieve the best possible result for data clustering purposes. Secondly, a novel combination of ChOA and GNDA algorithms with the OBL strategy is devised to solve the major shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method is a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be used to tackle large and complex real-world optimization problems, particularly data clustering applications. The results are evaluated against seven popular meta-heuristic optimization algorithms and eight recent state-of-the-art clustering techniques. Experimental results illustrate that the proposed work significantly outperforms other existing methods in terms of the achievement in minimizing the Sum of Intra-Cluster Distances (SICD), obtaining the lowest Error Rate (ER), accelerating the convergence speed, and finding the optimal cluster centers.Comment: 48 pages, 14 Tables, 12 Figure

    Air pollution forecasts: An overview

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies

    HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

    Get PDF
    Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics
    corecore