211 research outputs found

    Smart operators: How Industry 4.0 is affecting the worker's performance in manufacturing contexts

    Get PDF
    Abstract The fourth industrial revolution is affecting the workforce at strategical, tactical, and operational levels and it is leading to the development of new careers with precise and specific skills and competence. The implementation of enabling technologies in the industrial context involves new types of interactions between operators and machines, interactions that transform the industrial workforce and have significant implications for the nature of the work. The incoming generation of Smart Operators 4.0 is characterised by intelligent and qualified operators who perform the work with the support of machines, interact with collaborative robots and advanced systems, use technologies such as wearable devices and augmented and virtual reality. The correct interaction between the workforce and the various enabling technologies of the 4.0 paradigm represents a crucial aspect of the success of the smart factory. However, this interaction is affected by the variability of human behaviour and its reliability, which can strongly influence the quality, safety, and productivity standards. For this reason, this paper aims to provide a clear and complete analysis of the different types of smart operators and the impact of 4.0 enabling technologies on the performance of operators, evaluating the stakeholders involved, the type of interaction, the changes required for operators in terms of added and removed work, and the new performance achieved by workers

    Co-creating Knowledge with Robots: System, Synthesis, and Symbiosis

    Get PDF
    In the contemporary robotizing knowledge economy, robots take increasing responsibility for accomplishing knowledge-related tasks that so far have been in the human domain. This profoundly changes the knowledge-creation processes that are at the core of the knowledge economy. Knowledge creation is an interactive spatial process through which ideas are transformed into new and justified outcomes, such as novel knowledge and innovations. However, knowledge-creation processes have rarely been studied in the context of human–robot co-creation. In this article, we take the perspective of key actors who create the future of robotics, namely, robotics-related students and researchers. Their thoughts and actions construct the knowledge co-creation processes that emerge between humans and robots. We ask whether robots can have and create knowledge, what kind of knowledge, and what kind of spatialities connect to interactive human–robot knowledge-creation processes. The article’s empirical material consists of interviews with 34 robotics-related researchers and students at universities in Finland and Singapore as well as observations of human–robot interactions there. Robots and humans form top-down systems, interactive syntheses, and integrated symbioses in spatial knowledge co-creation processes. Most interviewees considered that robots can have knowledge. Some perceived robots as machines and passive agents with rational knowledge created in hierarchical systems. Others saw robots as active actors and learning co-workers having constructionist knowledge created in syntheses. Symbioses integrated humans and robots and allowed robots and human–robot cyborgs access to embodied knowledge.© The Author(s) 2022. Published by Springer. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.fi=vertaisarvioitu|en=peerReviewed

    Smart working technologies in industry 4.0 : contributions to different manufacturing activities and workers’ skills

    Get PDF
    A Indústria 4.0 é considerada a quarta revolução industrial porque utiliza uma ampla integração de tecnologias de informação e de operação na fabricação industrial. Apesar dessa perspectiva tecnológica, diversos estudos vêm evidenciando a importância de considerar o fator humano para o desenvolvimento de um sistema de manufatura inteligente. Nesse sentido, a dimensão denominada como Smart Working precisa ser melhor investigada, uma vez que entender como as tecnologias afetam os trabalhadores e as habilidades desses são cruciais para o bom desempenho das fábricas. Em razão disso, o objetivo desta dissertação foi entender como as Smart Working Technologies (SWT) podem contribuir para as atividades e as habilidades dos trabalhadores da manufatura. Para tanto, primeiramente foi realizada uma análise abrangente da literatura para identificar as SWT e seus impactos nas capacidades dos trabalhadores em suas atividades de manufatura. Deste modo, foram analisados 80 artigos que relacionam as SWT em oito atividades de manufatura. Posteriormente, foi selecionada uma das SWT mais relevantes conforme a literatura, os robôs colaborativos, para identificar os efeitos das tecnologias nas habilidades dos trabalhadores. Deste modo, foram analisados 138 casos de aplicação reportados por uma das empresas fornecedoras líderes mundiais, bem como três entrevistas com empresas adotantes da tecnologia. Os resultados apontam que existem 15 SWT que podem ser implementadas nas atividades de manufatura e relacionadas às capacidades dos trabalhadores. Além disso, os resultados também apontam que podem existir quatro efeitos das SWT nas habilidades dos trabalhadores. Estes achados demonstram que de acordo com a estratégia da empresa uma SWT pode impactar de diferentes formas os trabalhadores.Industry 4.0 is considered the fourth industrial revolution because it uses a broad integration of information and operating technologies in industrial manufacturing. Despite this technological perspective, several studies have highlighted the importance of considering the human factor to develop a smart manufacturing system. In this sense, the Smart Working dimension needs to be further investigated since understanding how technologies affect workers and their skills are crucial for factories' good performance. Therefore, the objective of this dissertation was to understand how Smart Working Technologies (SWT) can contribute to the activities and skills of manufacturing workers. To this end, firstly a systematic literature review was carried out to identify SWTs and their impacts on workers' capabilities in their manufacturing activities. Thus, 80 articles relating to SWT in eight manufacturing activities were analyzed. Subsequently, one of the most relevant SWTs according to the literature, collaborative robots, was selected to identify the effects of technologies on workers' skills. In this way, 138 application cases reported by one of the world's leading supplier companies were analyzed, as well as three interviews with companies that adopted the technology. The results show that there are 15 SWT that can be implemented in manufacturing activities and related to workers' capabilities. In addition, the results also point out that there may be four effects of SWT on workers' skills. According to the company's strategy, these findings demonstrate that an SWT can impact workers in different ways

    Model-based myoelectric control of robots for assistance and rehabilitation

    Get PDF
    The first anthropomorphic robots and exoskeletons were developed with the idea of combining man and machine into an intimate symbiotic unit that can perform as one joint system. A human-robot interface consists of processes of two different nature: (1) the physical interaction (pHRI) between the device and its user and (2) the exchange of cognitive information (cHRI) between the human and the robot. To achieve the symbiosis between the two actors, both need to be optimized. The evolution of mechanical design and the introduction of new materials pushed pHRI to new frontiers on ergonomics and assistance performance. However, cHRI still lacks on this direction because is more complicated: it requires communication from the cognitive processes occuring in the human agent to the robot, e.g. intention detection; but also from the robot to the human agent, e.g. feedback modalities such as haptic cues. A possible innovation is the inclusion of the electromyographic signal, the command signal from our brain to the musculoskeletal system for the movement, in the robot control loop. The aim of this thesis was to develop a real-time control framework for an assistive device that can generate the same force produced by the muscles. To do this, I incorporated in the robot control loop a detailed musculoskeletal model that estimates the net torque at the joint level by taking as inputs the electromyography signals and kinematic data. This module is called myoprocessor. Here I present two applications of this control approach: the first was implemented on a soft wearable arm exosuit in order to evaluate the adaptation of the controller on different motion and loads. The second one, was a generation of myoprocessor-driven force field on a planar robot manipulandum in order to study the modularity changes of the musculoskeletal system. Both applications showed that the device controlled by myoprocessor works symbiotically with the user, by reducing the muscular activity and preserving the motor performance. The ability of seamlessly combining musculoskeletal force estimators with assistive devices opens new avenues for assisting human movement both in healthy and impaired individuals

    Homecare Robotic Systems for Healthcare 4.0: Visions and Enabling Technologies

    Get PDF
    Powered by the technologies that have originated from manufacturing, the fourth revolution of healthcare technologies is happening (Healthcare 4.0). As an example of such revolution, new generation homecare robotic systems (HRS) based on the cyber-physical systems (CPS) with higher speed and more intelligent execution are emerging. In this article, the new visions and features of the CPS-based HRS are proposed. The latest progress in related enabling technologies is reviewed, including artificial intelligence, sensing fundamentals, materials and machines, cloud computing and communication, as well as motion capture and mapping. Finally, the future perspectives of the CPS-based HRS and the technical challenges faced in each technical area are discussed

    A multilevel framework to measure, model, promote, and enhance the symbiotic cooperation between humans and robotic devices

    Get PDF
    In the latest decades, the common perception about the role of robotic devices in the modern society dramatically changed. In the early stages of robotics, temporally located in the years of the economic boom, the development of new devices was driven by the industrial need of producing more while reducing production time and costs. The demand was, therefore, for robotic devices capable of substituting the humans in performing simple and repetitive activities. The execution of predefined basic activities in the shortest amount of time, inside carefully engineered and confined environments, was the mission of robotic devices. Beside the results obtained in the industrial sector, a progressive widening of the fields interested in robotics – such as rehabilitation, elderly care, and medicine – led to the current vision of the device role. Indeed, these challenging fields require the robot to be a partner, which works side-by-side with the human. Therefore, the device needs to be capable of actively and efficiently interacting with humans, to provide support and overcome their limits in the execution of shared activities, even in highly unpredictable everyday environments. Highly complex and advanced robots, such as surgical robots, rehabilitation devices, flexible manipulators, and service and companion robots, have been recently introduced into the market; despite their complexity, however, they are still tools to be used to perform, better or faster, very specific tasks. The current open challenge is, therefore, to develop a new generation of symbiotically cooperative robotic partners, adding to the devices the capability to detect, understand, and adapt to the real intentions, capabilities, and needs of the humans. To achieve this goal, a bidirectional information channel shall be built to connect the human and the device. In one direction, the device requires to be informed about the state of its user; in the other direction, the human needs to be informed about the state of the whole interacting system. This work reports the research activities that I conducted during my PhD studies in this research direction. Those activities led to the design, development, and assessment on a real application of an innovative multilevel framework to close the cooperation loop between a human and a robotic device, thus promoting and enhancing their symbiotic interaction. Three main levels have been identified as core elements to close this loop: the measure level, the model level, and the extract/synthesize level. The former aims at collecting experimental measures from the whole interacting system; the second aims at estimating and predicting its dynamic behavior; the last aims at providing quantitative information to both the human and the device about their performances and about how to modify their behavior to improve their interaction symbiosis. Within the measure level, the focus has been concentrated on investigating, critically comparing, and selecting the most suitable and advanced technologies to measure kinematics and dynamics quantities in a portable and minimally intrusive way. Particular attention has been paid to new emerging technologies; moreover, useful protocols and pipelines already recognized as de-facto in other fields have been successfully adapted to fit the needs of the man-machine interaction context. Finally, the design of a new sensor has been started to overcome the lack of tools capable of effectively measuring human-device interaction forces. To implement the model level, a common platform to perform integrated multilevel simulations – i.e. simulations where the device and the human are considered together as interacting entities – has been selected and extensively validated. Furthermore, critical aspects characterizing the modeling of the device, the human, and their interactions have been studied and possible solutions have been proposed. For example, modeling the mechanics and the control within the selected software platform allowed accurate estimations of their behavior. To estimate human behavior, new methodologies and approaches based on anatomical neuromusculoskeletal models have been developed, validated, and released as open-source tools for the community, to allow accurate estimates of both kinematics and dynamics at run-time – i.e. at the same time that the movements are performed. An inverse kinematics approach has been developed and validated to estimate human joint angles from the orientation measurements provided by wearable inertial systems. Additionally, a state of the art neuromusculoskeletal modeling toolbox has been improved and interfaced with the other tools of the multilevel framework, to accurately predict human muscle forces, joint moments, and muscle and joint stiffness from electromyographic and kinematic measures. To estimate and predict the interactions, contact models, parameters optimization procedures, and high-level cooperation strategies have been investigated, developed, and applied. Within the extract/synthesize level, the information provided by the other levels has been combined together to develop informative feedbacks for both the device and the human. In one direction, the device has been provided with control signals defining how to adjust the provided support to comply with the task goals and with the human current capabilities and needs. In the other direction, quantitative feedbacks have been developed to inform the human about task execution performances, task targets, and support provided by the device. This information has been provided to the user as visual feedbacks designed to be both exhaustively informative and minimally distractive, to prevent possible loss of focus. Moreover, additional feedbacks have been devised to help external observers – therapists in the rehabilitation contexts or task planners and ergonomists in the industrial field – in the design and refinement of effective personalized tasks and long-term goals. The integration of all the hardware and software tools of each level in a modular, flexible, and reliable software framework, based on a well known robotic middleware, has been fundamental to handle the communication and information exchange processes. The developed general framework has been finally specialized to face the specific needs of robotic-aided gait rehabilitation. In this context, indeed, the final aim of promoting the symbiotic cooperation is translatable in maximizing treatment effectiveness for the patients by actively supporting their changing needs and capabilities while keeping them engaged during the whole rehabilitation process. The proposed multilevel framework specialization has been successfully used, as valuable answer to those needs, within the context of the Biomot European project. It has been, indeed, fundamental to face the challenges of closing the informative loop between the user and the device, and providing valuable quantitative information to the external observers. Within this research project, we developed an innovative compliant wearable exoskeleton prototype for gait rehabilitation capable of adjusting, at run-time, the provided support according to different cooperation strategies and to user needs and capabilities. At the same time, the wearer is also engaged in the rehabilitation process by intuitive visual feedbacks about his performances in the achievement of the rehabilitation targets and about the exoskeleton support. Both researchers and clinical experts evaluating the final rehabilitation application of the multilevel framework provided enthusiastic feedbacks about the proposed solutions and the obtained results. To conclude, the modular and generic multilevel framework developed in this thesis has the potential to push forward the current state of the art in the applications where a symbiotic cooperation between robotic devices and humans is required. Indeed, it effectively endorses the development of a new generation of robotic devices capable to perform challenging cooperative tasks in highly unpredictable environments while complying with the current needs, intentions, and capabilities of the human

    Anthropocentric perspective of production before and within Industry 4.0

    Get PDF
    Abstract This paper presents a systematic literature review (SLR) of the anthropocentric perspective of production before and after (or, better, within) Industry 4.0. We identify central research clusters regarding traditional Anthropocentric Production Systems (APS) and Anthropocentric Cyber Physical Production Systems. By comparing the two perspectives, we are able to analyse new emerging paradigms in anthropocentric production caused by Industry 4.0. We further make prediction of the future role of the human operator, his needed knowledge and capabilities and how assistance systems support the Operator 4.0. Our paper gives a brief outlook of current and needed future research. It builds grounds for further scholarly discussion on the role of humans in the factory of the future

    Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation

    Get PDF
    The upper limb rehabilitation robots have made it possible to improve the motor recovery in stroke survivors while reducing the burden on physical therapists. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. To be aligned with the most biomechanically complex joint of human body, the shoulder, specific considerations have to be made in the design of robotic shoulder exoskeletons. It is important to assist all shoulder degrees-of-freedom (DOFs) when implementing robotic exoskeletons for rehabilitation purposes to increase the range of motion (ROM) and avoid any joint axes misalignments between the robot and human’s shoulder that cause undesirable interaction forces and discomfort to the user. The main objective of this work is to design a safe and a robotic exoskeleton for shoulder rehabilitation with physiologically correct movements, lightweight modules, self-alignment characteristics and large workspace. To achieve this goal a comprehensive review of the existing shoulder rehabilitation exoskeletons is conducted first to outline their main advantages and disadvantages, drawbacks and limitations. The research has then focused on biomechanics of the human shoulder which is studied in detail using robotic analysis techniques, i.e. the human shoulder is modelled as a mechanism. The coupled constrained structure of the robotic exoskeleton connected to a human shoulder is considered as a hybrid human-robot mechanism to solve the problem of joint axes misalignments. Finally, a real-scale prototype of the robotic shoulder rehabilitation exoskeleton was built to test its operation and its ability for shoulder rehabilitation
    • …
    corecore