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Abstract
In the contemporary robotizing knowledge economy, robots take increasing 
responsibility for accomplishing knowledge-related tasks that so far have been 
in the human domain. This profoundly changes the knowledge-creation pro-
cesses that are at the core of the knowledge economy. Knowledge creation is 
an interactive spatial process through which ideas are transformed into new and  
justified outcomes, such as novel knowledge and innovations. However, knowledge- 
creation processes have rarely been studied in the context of human–robot  
co-creation. In this article, we take the perspective of key actors who create 
the future of robotics, namely, robotics-related students and researchers. Their 
thoughts and actions construct the knowledge co-creation processes that emerge 
between humans and robots. We ask whether robots can have and create knowl-
edge, what kind of knowledge, and what kind of spatialities connect to interac-
tive human–robot knowledge-creation processes. The article’s empirical mate-
rial consists of interviews with 34 robotics-related researchers and students at 
universities in Finland and Singapore as well as observations of human–robot 
interactions there. Robots and humans form top-down systems, interactive syn-
theses, and integrated symbioses in spatial knowledge co-creation processes. 
Most interviewees considered that robots can have knowledge. Some perceived 
robots as machines and passive agents with rational knowledge created in hier-
archical systems. Others saw robots as active actors and learning co-workers 
having constructionist knowledge created in syntheses. Symbioses integrated 
humans and robots and allowed robots and human–robot cyborgs access to 
embodied knowledge.
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Introduction

Currently, robotization is sweeping globally through the knowledge economy,  
appearing in an increasing number of industries and across various cultures and places  
(Bauer, 2017; Bissell & Del Casino, 2017). Robots are both material and social, and 
shape society as people and society shape robots (Šabanović, 2010). Many robots are 
involved in standardized and repetitive mechanical actions. Some perform complex 
tasks independently and in interaction with humans in the constitutive entanglement 
of social and material in everyday lives (Orlikowski, 2007). A core example in the 
robotizing knowledge economy is knowledge-creation processes. There, ideas are 
transformed into new, valuable, justified, and trustworthy outcomes, such as novel 
knowledge and innovative products and services.

Today, various robots are involved in the knowledge-creation processes in var-
ied spaces, which is why knowledge creation is no longer an exclusively human 
domain. There are many kinds of robots, including industrial arms; vacuum 
cleaners; autonomous vehicles and other mobile robots on land, air, and water; 
service robots; humanoids; soft robotics such as robotics in fabric; robotics (tem-
porally) integrated with a human body like exoskeletons and bionic limbs; and 
swarms of small robot agents (Ricotti et al., 2017; Marasco et al., 2021). These 
robots exist in many environments. For long, robots have been present inside con-
trolled spaces such as laboratories and factories, but now they exist also in the 
general population’s everyday environments (Anthes, 2017). Recent advances in 
cognitive robotics focus on improving robots with self-learning abilities, mak-
ing robots’ learning procedural, higher in complexity, and more demanding than 
declarative knowledge (Zhang et  al., 2021). New human–robot interactions are 
emerging and influencing knowledge co-creation processes (Meckin, 2019). 
Therefore, in the era of robotizing knowledge economy, the anthropocentric 
understanding of knowledge needs to be elaborated further.

In this article, we contribute to three specific research needs in the context of 
robots and knowledge-creation. First, there is a need to understand the changing 
knowledge co-creation processes in a robotizing knowledge economy (Carayannis  
et al., 2021). Very limited research exists thus far that combines robots and knowledge 
creation (excluding Lin et al., 2013; Hautala, 2021). To respond to this need, we take  
the perspective of the next generation of robotics engineers: robotics’ students and 
researchers creating the future of robotics. They develop robots, co-create knowledge 
with robots, and accomplish this with understandings of knowledge and relations 
between humans, robots, and knowledge. Therefore, robotics students and researchers 
are among the key actors in constructing the robotizing knowledge economy. To grasp 
such constructions, we analyze knowledge-creation processes at the micro-level of  
individuals in the next generation of robotics. This has been identified important in  
advancing the theory of knowledge creation (Bolade & Sindakis, 2020).

Second, to understand the emerging human–robot knowledge co-creation pro-
cesses requires both conceptual and empirical research. In this article, we elab-
orate what a knowledgeable robot is (or could be) and focus on different types 
of human–robot interactions and related spatial aspects in knowledge-creation 
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processes. According to the International Organization for Standardization (ISO 
2.6, 8373, 2012), a robot is an “actuated mechanism programmable in two or 
more axes with a degree of autonomy, moving within its environment, to perform 
intended tasks.” We let the robotics’ students and researchers describe what they 
consider as robots. Most conceptualize robots as physically embodied, but a few 
accept robots also as digital autonomous systems such as chatbots (see also Blut 
et al., 2021; Fox & Gambino, 2021).

Third, there is a need to understand robots’ agency as well as the changing agency 
of humans who work with robots (Rose, 2017), in particular regarding knowledge- 
creation processes. Empirical research is needed on what a robot does in conjunction 
with humans in knowledge-creation processes. As mentioned, by their definition, robots  
are spatial actors (Hayles, 2017) moving within the environment and manipulating it 
in interactions with people. Therefore, understanding the connections among humans, 
robots, and space is critical (Lynch & Del Casino, 2020). There is a need to study 
human–robot interaction in the spaces of work in which knowledge and robots are 
developed simultaneously (Bryson, 2019; Del Casino, 2016; Del Casino et al., 2020; 
Lynch & Del Casino, 2020).

To answer these needs, we apply spatial and processual approaches to knowledge crea-
tion (e.g., Ibert et al., 2015). We consider robots as spatial actors creating knowledge through 
various human–robot interactions. This knowledge creation takes place in both controlled 
code/spaces of factories of which existence derives from a code as well as in more flexible 
places in which a code may be important but not fundamental (Kitchin & Dodge, 2011).

The research questions are as follows: (a) Can robots possess knowledge, and if 
so, what kind? (b) What are the relationships that humans and robots share in knowl-
edge creation? (c) How does spatiality connect to the knowledge co-creation pro-
cesses between robots and humans? The results are drawn from gathering and ana-
lyzing 34 interviews with robotics students and researchers as well as observations 
of human–robot interactions in lectures, seminars, and laboratory robot construction 
in one university in Finland and two universities in Singapore. Both countries are 
highly developed technologically and have advanced expertise in robotics. Thematic 
qualitative content analysis was applied to the material. Questions (a) and (b) are first 
answered conceptually by elaborating on various perspectives of knowledge, and sec-
ond, empirically by analyzing human–robot interaction in knowledge-creation pro-
cesses, including ways in which robots’ human developers discuss robots. Question (c) 
elaborates on the knowledge-creation theory further by analyzing spatiality’s role in 
knowledge co-creation processes between robots and humans. The article advances the 
current understanding of knowledge creation by introducing robots in it and the spatial 
dimension in human–robot knowledge co-creation.

Robots: From Passive Agents to Active Actors in Knowledge‑creation 
Processes

Humans and robots are actors in knowledge-creation processes. To elaborate the 
role of a robot, we apply Hayles’s (2017, pp. 31–32) differentiation among non-
humans. Agents or non-cognizers are material forces and artifacts (e.g., pens) that  
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cannot act independently toward goals, although they might be needed in knowledge- 
creation processes such as writing ideas down on paper. Instead, actors or  
cognizers can make decisions. They include animals and devices (e.g., robots) 
that can act autonomously toward a goal. However, robots are fragile actors 
depending on electricity and batteries, and can be turned off and withdrawn from 
an agent position.

To discuss the role of robots in knowledge-creation processes, first knowl-
edge must be defined, then whether and how a robot can have knowledge can 
be considered, and finally the role of robots in knowledge-creation processes can 
be explored. In terms of knowledge, robots’ agency is quite limited compared to 
that of humans. Knowledge is formed by tacit and explicit dimensions as well as 
of subjective and objective elements (Dodd et al., 2005; Sanzogni et al., 2017). 
Humans are active actors who “know more than we can tell” (Polanyi, 1983, p. 
4). This refers to tacit elements of knowledge that are contextual, connected to 
individual experiences, values, and beliefs. Such elements of knowledge are sub-
jective: a person is self-aware of their knowledge (Dodd et al., 2005). These ele-
ments in knowledge are embodied in a person’s practices as well as in cogni-
tive and emotional processes. In fact, all human knowledge is connected to tacit 
knowing that can be embodied in the individual (somatic), located in a commu-
nity (collective), or located in interactions (relational; Collins, 2010). Codified 
and objective elements of knowledge—messages, models, programs, and texts—
can exist “outside” humans (Dodd et al., 2005; Nonaka & Takeuchi, 1995); thus, 
these are accessible for robots (Li et al., 2016). Robots can access explicit dimen-
sions of knowledge, which can be beneficial in simple tasks. For example, when 
parking a car in a small space, a robot does not get nervous or think about previ-
ous experiences (Li et al., 2016). Tacit and explicit elements blend into a contin-
uum and entity of knowledge through associations, argumentation chains, bodily 
practices, and experiences—“so that it is impossible to use one without the other” 
(Sanzogni et al., 2017, p. 38).

From a conceptual viewpoint, knowledge can be defined from rational, con-
structionist, and posthuman perspectives. Sanzogni et  al. (2017) apply similar 
perspectives of knowledge to developing artificial intelligence. From the rational 
perspective, knowledge is “simple, certain, constructed by authority” (Muis et al., 
2018, p. 167), objectivistic (Sanzogni et  al., 2017), and empirically observable 
and measurable. It is extractable from humans into explicit codes, (mathematical) 
models, and databases (Forsythe, 1993; Hautala & Höyssä, 2017). Here, problems 
are identified and solved; thus knowledge is generated. Humans can distribute such 
explicit and objective knowledge elements and memory to devices, such as robots 
(Breazeal & Scassellati, 2002, p. 843; Li et al., 2016; Rose, 2017). In knowledge 
creation, human–robot interaction is hierarchical: humans control the robot and 
can reprogram it (Goodrich & Schultz, 2008, p. 2010; Sheridan, 2016) based on 
codified knowledge but robots can also assist humans in creating knowledge.

From the constructionist perspective (e.g., Knorr Cetina, 1999; Wenger, 1999), 
knowledge is “complex, tentative, actively constructed, and critically evaluated” 
(Muis et  al., 2018, p. 167). Here, knowledge is based on subjective interpretation 
(Dodd et al., 2005; Sanzogni et al., 2017), and exists in people and their practices, 
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networks, interactions, and epistemic cultures. Thus, humans and robots can form 
interactive collaborative teams (Azhar & Sklar, 2017). Information is exchanged 
from human to robot and from robot to human as indicated in “dynamic interaction” 
in human–nonhuman collaborative teams (Goodrich & Schultz, 2008, pp. 210, 231). 
This also considers tacit elements of knowledge creation.

In the post- and transhumanist perspective, knowledge is embodied and created 
in integrated humans–nonhumans and their practices (Hayles, 2017; Sanzogni et al., 
2017; Watson & Huntington, 2008; Wolfe, 2010), for example, in actor networks 
(Latour, 2005). Technology is increasingly integrated into the human body unify-
ing human and robot into a cyborg. One of the field’s key scholars, Rodney Brooks 
(2008), claimed he is a robot:

“while we become more robotic, our robots will become more biological, with 
parts made of artificial and yet organic materials. In the future, we might share 
some parts with our robots. A collection of technologies will emerge, mature, 
and enter our environments and bodies.”

Such a cyborg learns and knows as a cyborg (Haraway, 2006). A robot embodied 
in the human body becomes part of the human experience of tacit and subjective 
elements of knowledge. Here, intelligence emerges and operates within and across 
human–nonhuman relations and networks. Hayles (2017) calls this “neurodiver-
sity,” indicating how knowing is entangled with cyborgs’ embodied cognition and 
consciousness that stretch beyond purely human and nonhuman. This perspective 
accepts that intelligence is a nonbinary process of knowledge production and con-
sumption (Lynch & Del Casino, 2020).

The above-mentioned tripartite knowledge needs to be empirically elaborated in 
the current emerging robotics contexts. On the one hand, some scholars argue robots 
are agents without consciousness, thus they cannot know as humans do (Hayles, 
2017), or enter directly an emotional and creative dialogue with a human (Jones, 
2017). However, robots may enter such dialogue indirectly via human imagination:  
People may imagine robots as conscious and emotional beings (Jones, 2016, p. 
7). For instance, people can express feelings such as love and trust toward robots  
(Turkle, 2006). In particular, the anthropomorphic appearance or behavior (e.g., 
human-like face, body, mobility, or using language) of social robots may prompt 
human users to treat them in human-like ways (Fox & Gambino, 2021). The ways in 
which humans can consider robots as coworkers can provide relevant knowledge in 
the knowledge-creation processes.

On the other hand, various scholars involved in robotics consider robots as 
active actors that can know. Engineering scholarship commonly states that the 
“robot knows,” but often without elaborating in depth upon what this knowing is. 
A robot’s knowledge is spatial: connected to environment, location, and mobility.  
Robots know about their physical, measurable environment through their information- 
collecting sensors (Rusu et  al., 2009). To move properly to the intended des-
tination, robots need to know locations (Cruz et  al., 2019), directions, and speed  
(Das et al., 2007). Robots may need to communicate between each other or access 
each other’s information (Miao et al., 2018) to accomplish their tasks. Furthermore, 
robots can recognize humans and other robots’ gestures and facial expressions, and 
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thus “know” about humans’ emotional messages and react accordingly to them (Luo 
et al., 2015, p. 535). Through such a “knowledge base,” robots can convince people 
to make particular decisions (Cheng et al., 2017, p. 336). This understanding of a 
robot’s knowledge is rational, considering knowledge as merely necessary informa-
tion to achieve a goal.

A common approach among engineers has been to develop artificial intelligence 
by extracting from humans’ explicit elements of knowledge into codes. This codi-
fied and objective knowledge is then transferred to machines that use it for expected 
repeatable outcomes (Forsythe, 1993; Li et  al., 2016; Carayannis et  al.,  2021). In 
knowledge-creation processes, tacit elements of knowledge are “sticky” and diffi-
cult to share between people (Bathelt et al., 2004). Sometimes such sharing is pos-
sible through long-term face-to-face interaction, learning-by-doing, and socializa-
tion into a community (Collins, 2001; Nonaka & Takeuchi, 1995). Even though 
general human–human relationship theories cannot be applied directly to examine 
contemporary human–robot relationships (Fox & Gambino, 2021), the roles and 
possibilities of robots in knowledge-creation processes are limited when considering  
knowledge as the continuum of tacit and explicit, or subjective and objective elements. 
However, robots are developed to overcome these limitations or enter knowledge- 
creation processes in other ways. For example, social robots can compensate  
for human shortcomings or even exceed human capacity (Fox & Gambino, 2021). 
Robots’ ability to read humans’ intentions creates trust and meaningful cooperation 
between humans and robots, which enhances the likelihood of a positive task out-
come (Vinanzi et al., 2021).

To include robots in the study of knowledge creation requires seeing robots from the 
posthuman perspective that acknowledges robots as active actors. Following the actor-
network theory, nonhuman objects (e.g., robots) can progress human thinking and allow, 
afford, or block human action (Latour, 2005, p. 72); can provide empirical evidence; 
back up argumentation; respond through error reports; learn; and move (Ahn, 2016;  
Dewey, 1997; Jensen & Blok, 2013; Jones, 2017; Kubo, 2013; Sele & Grand, 2016). A 
passive robot agent temporally can become an active actor in the knowledge-creation  
process if a human decides to interact with it. More advanced robots have “intentionality  
and potentionality” (Ash, 2018, p. 15), thus, such robots can become actors even if a 
human does not decide to initiate interaction (Hannibal, 2016; Skågeby, 2018). These 
robots include programs that apply machine learning, deep neural networks, and other 
forms of artificial intelligence that enable them to learn and enhance their actions on the 
go (Wu et al., 2013). Such reactivity allows robots, such as service robots and industrial 
arms, to work side-by-side with humans and to communicate with humans. This is done 
through movement, written codes, spoken language, facial expressions (Luo et al., 2015), 
imitation, surprises, and uncertainty—elements commonly referred to as “social learning”  
(Breazeal & Scassellati, 2002, pp. 484 − 485).

Processual and Spatial Perspective on Knowledge Creation

In the knowledge-creation processes, robots differ from humans and simple objects. 
For humans, learning “is a part of all activity” and humans flexibly adjust their 
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knowledge to different situations (Thomaz & Breazeal, 2008, p. 93). Robots lack 
such contextual flexibility, and without consciousness, robots are not able to know as 
humans do (Hayles, 2017). Even when using the best deep neural networks, robots 
“are locked into particular input and goal patterns” (Lake et al., 2017, p. 9). Enhanc-
ing the development of robots reduces such gaps. For example, robots are currently 
developed to recognize, simulate, react to, and extend humans’ emotions (Yan et al., 
2021).

This article adopts a spatial processual perspective on knowledge creation when 
considering human–robot relations. Accordingly, knowledge is a process toward jus-
tified, interpreted, new, trustworthy, and valuable outcomes in the context in which 
knowledge’s novelty and relevance appear. The outcomes can be of many kinds: a 
peer-reviewed scientific article about robots, a new tool for a robot such as a hand, 
or a robot successfully completing a new task. Knowledge as a process is always 
becoming, tested, contested, and temporal—at times intensive, and at times on hold 
(Ibert et al., 2015; Langley et al., 2013).

Knowledge-creation processes are inherently spatial as the space that evolves in 
these processes shapes them. Spatial actors (mobile humans and nonhumans, e.g., 
robots) create knowledge in particular places (Livingstone, 2003). Current robot-
ics research has concentrated on controlled spaces, such as laboratories, factories, 
and production lines (Hannibal, 2016; Tiddi et al., 2019). These spaces have vari-
ous rules, regulations, and restrictions to ensure robots’ functionality, safety, and 
progress. However, space is not often considered in robotics research (Kitchin & 
Dodge, 2011, p. 13; Ash et al., 2018) despite robots are spatial actors by definition 
(ISO 2.6, 8373; 2012). They move in an environment while performing intended 
tasks. Even digital robots have an environment—a digital one. Many robots’ activi-
ties are about spatial cognition based on collecting, organizing, and analyzing data 
about an environment and interpreting this information within the contexts that con-
nect it with meaning (Hayles, 2017; Lynch & Del Casino, 2020). Robots combine 
software as their brains and hardware as their bodies in material and digital spatial 
dimensions (Del Casino et al., 2020, p. 607).

The spatiality of human–robot knowledge-creation processes can be concep-
tualized by the terms “code/space” and “coded spaces” (Kitchin & Dodge, 2011). 
Robots and humans create code/space where “the software and the spatiality of eve-
ryday life become […] produced through one another” (Kitchin & Dodge, 2011, p. 
16; see also Pink & Fors, 2017, p. 221). Here, space is produced through the written 
code woven into sociospatial relations and practices between humans and robots. 
For example, a robotized automotive factory is organized spatially and temporally 
through material and digital interactions to build a car step-by-step in the interaction 
between robots and humans. Such space emerges when the code is implemented. 
There, robots have clearly defined functional roles aimed at keeping unexpected 
events and actors outside. If this code fails, robots stop working, the functional fac-
tory (as a code/space) ceases, and eventually also this space. Therefore, the code/
space and the environment in which robots act are often controlled spaces with well-
organized hierarchical knowledge-creation processes.

In coded spaces, code is used to produce that space; however, that space’s func-
tioning and existence does not depend on this code. Code facilitates that space’s 
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functionality or efficiency; however, that code can be conveyed temporally without 
ceasing spatial functions (Kitchin & Dodge, 2011). For example, aiming to enter a 
restaurant, the staff can check physically the person’s digital COVID-19 certificate 
and identification card even if the digital device for it ceases to function. Therefore, 
even if the code designed for this space disappears, this functional space remains, 
even if in an altered form. Considering the knowledge co-creation process between 
humans and robots, the moments of interaction require interfaces to distribute mean-
ing between humans, software, and hardware (Rose, 2017). Such moments create 
space through code/spaces (i.e., a code in a digital space is significant for a mate-
rial space’s emergence). However, because humans are not dependent on robots (and 
codes) in the knowledge-creation processes, a shift from code/space to coded space 
does not prevent people from carrying on knowledge-creation processes.

Material and Methods

This empirical study was conducted in Finland and Singapore. In Finland, the field-
work took place at the University of Tampere from September 2018 to January 
2019, and in Singapore at two universities from May to July 2019. All of these uni-
versities were advanced in robotics as academic fields. The University of Tampere 
was the first in the country to launch a major program in robotics, in 2017. In some 
Singaporean universities, robotics is a major subject, and in others, it is incorporated 
with other (engineering) subjects.

The empirical materials included thematic interviews with eight researchers and 
26 students in robotics, observations of human–robot interactions, and a field diary 
the first author kept. The research received ethical approval by the university Ethics 
Committee  in Finland (Statement 2/2019). All of the interviewees were contacted 
via an e-mail with information attached about the research and a privacy notice. The 
interviews were organized only with the participants who were willing to partici-
pate, and all of the participants were given the opportunity to read and comment on 
the manuscript before its submission for publication.

Each interview took about 30 − 60 min. The topics included human–robot inter-
actions and knowledge dimensions related to robots. Two important notions were 
considered throughout the analysis (Table  1). First, the interviewees in Tampere 
included proportionally more students (84%) than in Singapore (67%), where stu-
dents were more difficult to contact due to the visit occurring in summer. There-
fore, the interviewees in Singapore were more experienced in working with robots. 
Second, only three women were interviewed. Robotics is generally a field that men 
dominate (Shi, 2018), which was also the case in the studied universities.

In addition to the interviews, the first author visited the University of Tampere six 
times for 11 total days to observe two robotics courses (September 2018 − January 2019). 
The author participated in lectures, demonstrations, and seminars and observed students 
working in two robotics labs. In the first course, students formed project teams to design, 
build, and program a robot to deliver a task. They enhanced or combined existing robots 
in the lab. The students worked both independently and with the help of supervisors in 
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the lab. The class frequently gathered with the teachers to discuss their progress and 
challenges. The second course combined lectures and lab work to program robots in  
teams. In Singapore, the first author received a tour of two robotics laboratories.

The interviews were held in English or Finnish and transcribed verbatim into text 
for analysis through qualitative content analysis (Hsieh & Shannon, 2005). Accord-
ing to Krippendorff (2018, p. 1), content analysis is an “empirically grounded 
method, exploratory in process, and predictive or inferential in intent.” The anal-
ysis included three stages. First, the relevant themes were identified and summa-
rized in a table (rows: interviewees; columns: research questions, e.g., “What is a 
robot like?”). Second, new columns were added to summarize the content as key 
concepts (e.g., robots are material) that were used to construct the general catego-
ries (e.g., robots as only machines). Third, the diary was applied to compare the 
observation and interview findings and elaborate on the reasons for similarities and 
dissimilarities.

Results

Robots as only Machines and Learning Co‑workers

In general, the majority of the interviewees considered robots as physical objects, 
and most did not consider the digital robots that were without a physical body to be 
robots. This might have been due to the interviewees’ experience of working mainly 
with physical industrial robots, which was especially the case among the Finland-
based students. According to two-thirds (21/34) of all interviewees, a robot can 
possess knowledge. Eight participants believed that robots could not possess knowl-
edge, while five referred to knowledge very generally.

When looking at the interviewees’ views on robots and robots’ abilities to possess 
knowledge more closely, two perspectives are visible. First is to see robots as only 
(stupid) machines that can possess knowledge from the rationalist perspective (16 
interviewees). In this view, robots were defined as material devices that manipulate 
tangible objects and move in physical spaces. A robot was “a stupid device created 
by human beings” (Student 16/Tampere) and a “separate thing from a nonphysical 
artificial intelligence since it ‘must’ exist” (Student 17/Tampere). Robots have sen-
sors (they can collect data about the physical space), control systems (they can ana-
lyze data through their software), and move physically as one of their outcomes:

Table 1  Interviewees in Finland 
and Singapore

Interviewees Academic levels Gender

Tampere 19 Student 16
Researcher 3

Men 17
Women 2

Singapore 15 Student 10
Researcher 5

Men 14
Women 1
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[Robots are a] combination of motors, sensors, and code that is based on the 
data they produce. That [code] creates physical movement as the final out-
come. (Student 4/Tampere)
[An] electronic device […] can move […][it has] some sensors and actuators. 
It need[s] to have something to take information and it need[s] to be able to do 
something with that information. (Student 8/Tampere)

In this group, 10 (of 16) interviewees believed that robots can have knowl-
edge. Four thought that robots could not know “like we do” (Student 15/Singa-
pore) because their “engineering is not that developed yet” (Student 14/Singapore). 
Robots cannot justify their knowledge or “explain why [their chosen] action is the 
best” (Researcher 2/Tampere). Such an understanding of robots’ knowledge (and its 
lack) is rational and similar to the view among artificial intelligence engineers in the 
1990s (Forsythe, 1993). The knowledge robots hold is objective, explicit, possible 
to code, repeatable, domain specific, and bounded in a database and concerns the 
material-physical space:

Like what is the environment […] a human can know the alphabets, or know 
that this thing in here is a cupboard, […] [a] robot can know these kinds of 
things, too. (Student 6/Tampere)
If the robot has been taught that pike is a fish, it knows that a pike is a fish. 
(Student 17/Tampere)
Information experience about their environment […] will happen if A, B, C, 
and D are true. (Researcher 2/Singapore)

From this perspective, the human–robot relationship was hierarchical and unidi-
rectional: humans control robots and their knowledge. Either a human collects infor-
mation, creates a database, and transfers this to a robot, or the robot collects and 
analyzes the database on its own, but through code that a human has designed. A 
human sets the boundaries for the robot’s knowledge: “it has knowledge to the extent 
of […] what one [human] has defined it can have, not more than that” (Student 4/
Tampere). Furthermore, knowledge was seen as separate, extractable, and transfer-
able from the humans’ and robots’ bodies.

The second perspective was to consider the robots from a more collaborative 
view: as active actors or co-workers that could learn (17 interviewees). Knowl-
edge in this group was considered from constructive perspective. Robots often 
were defined in relation to humans via comparison or co-evolution. These inter-
viewees recognized robots and humans as becoming more like each other: “Robot-
ics is understanding how we (humans) perform, behave, and think” (Student 15/
Tampere). Robots’ (as only machines) simple materiality and physical motion were 
contested, and a few students accepted also purely digital robots as robots (Student 
5/Tampere; Students 5, 10, 11, 13/Singapore, Researcher 14/Singapore). Robot’s 
digital immaterial “brains” were considered as an entity that could be (temporally) 
inserted into a material form: “We can treat them all as robots […] the computer is 
a robot. If we just grab electronic arms and legs and put them together, it’s a robot” 
(Student 10/Singapore). The machines’ “brains” could form an actor network and 
collectively act upon the physical space (Ahn, 2016): 
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To be a robotic system, it doesn’t really need to have motion per se, but it 
needs to do something. And that something doesn’t have to be a physical 
motion. It can be when you enter a building, it’s dark, then the lights turn on 
by [themselves]. (Researcher 4/Singapore)

In this group, 11 (of 17) interviewees thought that robots could have knowl-
edge. Four thought they could not for similar reasons as those who considered 
robots as only machines. One aspect consisted of the explicit elements of knowl-
edge, here in comparison to humans:

We represent the process through mathematics. […] robots in artificial neu-
ral networks [...] [interpret] what’s going on over many data sets. So, this 
is possibly the closest parallel […] between robot knowledge and human 
knowledge. (Student 6/Singapore)

The interviewees who viewed robots as learning co-workers emphasized 
knowledge from a constructionist and processual perspective, which consisted of 
learning, understanding, making sense, and reasoning. This was generally related 
to tacit and subjective elements of knowledge:

Learned, observed, and shared: Knowledge can be used for reasoning and 
decision-making or to extract new information. (Researcher 1/Tampere)
Knowledge is understanding […] how things work, […] It doesn’t mean 
truth. It’s a way to describe, but there may be alternative ways to describe it. 
(Researcher 14/Singapore)

Those who considered robots as only machines described robots’ ability to have 
knowledge about the physical space, whereas the robot as a learning co-worker learned to 
become an autonomous actor in a physical or digital space. The former referred to coded 
space through using code to give that space function. The latter referred to code/space 
in which space emerged through the robots’ function. Such autonomy required robots to 
learn, interact with their environment, and react on the go: “even [if] a new event or new 
decision is coming, he can take this on his own. Based on previous experience, he has 
gathered on this working’” (Student 11/Tampere). Thus, such robots could form collabo-
rative spatial practices with humans in knowledge-creation processes.

Although these interviewees considered robots as learning co-workers, they 
saw a hierarchy between humans and robots because humans created the pro-
grams that allowed the robots to learn. However, robots sometimes initiated com-
munication with humans and brought them uncertainty and surprises. Such a 
robot “should do something that you don’t tell it to do’” (Student 5/Tampere), 
so that “you don’t know how the robot is going to behave” (Researcher 4/Singa-
pore). Here, knowledge can be considered embodied in the practices of individual 
humans and robots and knowledge can move between the bodies of humans and robots.

Spatial Knowledge Co‑creation Processes: System, Synthesis, and Symbiosis

Human–robot interaction was connected to three knowledge co-creation pro-
cesses with different dimensions of space—code/space, coded space, and redefined 
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relational space—that emerged from relations among humans, robots, and cyborgs. 
Sometimes, the interviewees distinguished between digital and material, such as in 
programming (code) versus its actual realization (robots using the code). In other 
cases, material and digital were integrated into one space. Most of the interviewees 
discussed allocating work between humans and robots in terms of a system or syn-
thesis, but they also provided examples of symbiosis (Table 2).

Systems: Humans’ and Robots’ Separated Knowledge in Controlled Code/Spaces

In systems, robots are “only a machine” the creative engineer controls. Robots and 
humans have different and separated knowledge. In humans’ knowledge, the empha-
sis is on tacit and subjective elements needed to create “novelty,” justify knowledge, 
understand emotions and deep communication, and connect robots’ routine work 
to the knowledge-creation process. Human creativity, in general, was considered to 
exceed the robots’ agency (Rose, 2017, p. 782). Creating novel knowledge is based 
on its extraction (Forsythe, 1993) from experts’ brains. It is then logically compiled 
into truthful scientific documents, databases, and code (Kim & Lee, 2019). This 
is an information flow from humans to machines (Breazeal & Scassellati, 2002, p. 
483) and extended memory (Rose, 2017) transferred (uploaded) to a robot, which 
then can perform repeatable tasks humans designed. Such knowledge is not dynamic 
but has predictable outcomes (Lee & Helgesson, 2019). Thus, robots participated in 
the knowledge-creation processes operationally with their accurate (i.e., trustwor-
thy), ongoing, and routine repeatable work.

Robots can do work that is repeatable, programmable, [and] easy, [but] not 
funny. (Student 7/Singapore)
Like the surgery robots, they only repeat the moves of the human as accurately 
as possible. (Student 4/Tampere)

The knowledge-creation process has been transformed to meet a controlled code/
space. As a result, both work and workspaces have been reorganized into a sequential 
order of stages, production lines, and specific activities (Holloway, 2007). Extract-
ing knowledge into separate tasks and creating new combined knowledge require 

Table 2  Human–robot interaction in knowledge co-creation processes

System Synthesis Symbiosis

Robot Only machine Learning co-worker Cyborg
Human Creative engineer Learning co-worker Cyborg
Interaction Hierarchical Co-creative Integrated
Knowledge Divided rational Shared constructionist Embodied
Knowledge-creation 

process
Extraction and transfer Co-creation Being

Space Controlled code/space Everyday communicative code/
space and coded space

Redefined 
relational 
space
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a high degree of control and keeping unexpected happenings outside. For example, 
in Tampere, the robotics students felt that knowledge had been created when robots 
delivered the task exactly as the students aimed. Their code produced the robot’s 
visible movement. This merged digital with material and created a code/space. In 
another case, the students programmed a robot to move an object from one place to 
another, which it did. However, the instructor saw that the robot’s gripper had closed 
while its hand was still moving, but the students disagreed because they had not seen 
this. The instructor found that the code command was on the wrong line, and only 
then did the students understand the mistake in the code and the robot’s movement. 
This resembles rational knowledge: The code must produce the right outcome that 
humans observe and what must be understandable through the code. If these were 
not true, the robot could not be trusted to repeat the activity. Human–robot systems 
require engineer coding experts.

When the code does not work, the process is suspended. Rose (2016) would call 
these frictions of human–software–hardware interfaces. On various occasions, the 
code worked perfectly in the digital simulation, but the robot’s material action did 
not work properly. The perfectly designed code of digital space met, in physical 
space, wires in the wrong places, sensors that did not recognize glass walls, grippers 
that did not grip specific objects, etc. These cases could halt the knowledge-creation 
process between humans and robots.

Synthesis: Knowledge Co‑creation Between Humans and Robots 
in Communicative Code/Spaces

I’d say that if a robot is working together with a human to solve a problem, 
then the system [here: synthesis] as a whole has knowledge. But maybe the 
robot itself doesn’t have the knowledge; maybe the human cannot do it on its 
own. (Student 8/Singapore)

In synthesis, humans and robots form connected units of actors that can create  
knowledge together. Such learning co-workers include cognitive assemblage  
(Hayles, 2017) and social machines as “a single problem-solving entity” (Minimair,  
2018, p. 194). The interviewees presented synthesis as an ideal that required more 
advanced robots, but also saw that the first steps had been taken. In comparison to 
the human–robot systems, the knowledge elements are not divided and separated 
between humans (tacit elements) and robots (explicit elements). Interviewees  
acknowledged that not all knowledge “comes down to numbers” (Student 6/ 
Singapore), similar to the skill-based essence of painting. Thus, in synthesis, 
humans should also share tacit knowledge elements with robots, for instance, in the 
form of embodied practices.

Human–robot collaboration is also a very unknown thing to me, because how 
does a robot ask for help? How do you tell the robot what you want it to do? 
[…] maybe you show [it] how you cook, you show [it] how you do every-
day things […] [An] ideal robot is something with basic capabilities already. 
(Researcher 5/Singapore)
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Humans and robots are co-workers that learn from each other. This makes the 
hierarchy (mostly) disappear from their interaction, thus expanding the robots’ role 
in the knowledge co-creation process. In addition, people without coding expertise 
can create knowledge with robots. The emphasis changes from rational knowledge 
in code/space to merging digital and material in the human–robot interaction. The 
knowledge creation emphasizes the communicative dimension in code/space and 
coded space. Robots can participate in novel creation and justify and move knowl-
edge from themselves to humans.

The work of the students who were building and programming robots included 
moments when the strict rules and control of the laboratory space were bypassed. 
Students played with robots, improvised and built grippers with shoelaces, com-
bined robots to explore and extend their activities, and imitated their behavior to 
understand the reasons and gain suggestions for their unexpected actions. Robots’ 
activities triggered ideas about how to develop the project further. However, releas-
ing the robots from controlled laboratories could have led to unexpected and risky 
outcomes. The ongoing ability to identify, interpret, and react to events requites 
robots’ constructionist knowledge, instead of the rational knowledge that prevails in 
human–robot systems.

Anything can go wrong, so can we really release them? […] In factories, […] 
things are deterministic, so we are used to [telling] robots and machines to be 
perfect, don´t do mistakes. When they come outside, things are dynamic, they 
are uncertain. […] No matter how perfect they are they will get into accidents. 
[…] If somebody just jumps in the front of the car, [the] car has initial speed so 
it can’t be stopped no matter how intelligent you are. (Researcher 3/Tampere)

Symbiosis: Redefining Knowledge by Spatially Embodied Cyborgs

In symbiosis, robots become (temporally) part of humans, and humans and robots 
integrate into each other as cyborgs. Humans “are no longer contained—or even 
defined—by the boundaries of their skins” (Hayles, 2017, p. 2). An example of sym-
biosis was a wearable electromechanical device (exoskeleton) that assisted humans, 
such as to move limbs. Exoskeletons have been used, for example, in rehabilitating 
injured people so they can use their limbs or to reduce the strain on the body during 
the physical work in factories (Sylla et al., 2014). Several interviewees in Singapore 
had worked with wearable robotics and described deep communication and “co-
being” between humans and robots:

The closer the interaction with humans, the more difficult it is. [...] [This is a] 
very high level on human–robot collaboration because you are literally touch-
ing the robot. (Student 6/Singapore)

The experience of using exoskeletons is a process of “embodiment” re-enabling 
the body and its abilities (Pazzaglia et al., 2013); that is, “The intelligence is embed-
ded within a structure” (Student 6/Singapore), indicating the plasticity and cogni-
tion in the cyborgs’ body schema (Longo & Serino, 2012, p. 230). Thus, robots are 
inserted into a person’s body to overcome the human body’s limits and acquire new 
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embodied knowledge by being (temporally) a cyborg (Abrahamsson & Simpson, 
2011). However, the interviewees had very little, if any, experience of cyborgs’ fully 
integrated embodied knowledge. Such human–technology assemblages have been 
discussed as learning and as moving a “quantified self” (Lupton, 2016) and as “digi-
tal wayfarers” (Pink & Fors, 2017) in digital-material spaces. Merging with humans 
allows robots to access tacit elements of knowledge and practices, so that robots 
create and possess constructionist and embodied knowledge. In symbiosis, the robot 
co-evolves with humans (Lupton, 2017, p. 4). Cyborgs re-define space in practice 
through their novel movement and work— different from not only those of humans 
or robots, but also their co-working. Examples of re-defining spatialities and embod-
ied knowing include cyborgs’ “superhuman senses” integrated with individual expe-
rience, cognition, and memory (Wheeler, 2018, p. 1).

Discussion

The next generation of robot engineers—university robotics students 
and researchers—are at the forefront of creating the future of robotics, 
human–robot knowledge-creation processes, and the robotizing knowledge economy.  
They approach this with their perspectives on knowledge, on different understandings  
of robots as knowledgeable actors, and varied human–robot relationships in spatial  
knowledge-creation processes. We investigated these perspectives in this article 
through robotics university students and researchers (including their supervisors) 
in Finland and Singapore. This is one of the first studies to connect robots and  
knowledge creation, thus it is an important contribution to understand empirically 
and theoretically the changing knowledge and knowledge-creation processes in the 
robotizing knowledge economy currently being constructed (Sanzogni et al., 2017; 
Meckin, 2019; Bolade & Sindakis, 2020; Carayannis et al., 2021).

First, students and researchers identified three emerging relations (system, 
synthesis, and symbiosis) in which humans and robots had particular roles. In 
their visions, the human’s roles vary from that of top-down controller (systems) 
to mutual co-worker (synthesis) and integrated cyborg (symbiosis). In systems, 
humans are in control and perceived to pass to robots all necessary knowledge 
of mundane tasks. In synthesis, humans and robots collaborate and co-creatively  
learn from each other. In symbiosis, humans and robots become integrated 
and extend their skills beyond the limitations of pure humans and pure robots 
in the knowledge-creation processes. Moreover, each relation revealed different  
(rational, constructionist, and embodied) understandings of knowledge and  
different roles of humans and robots in spatial knowledge co-creation processes. 
Identifying these relations contributes to the call for better understanding not only 
robots’ agency, but also humans’ changing agency (Rose, 2017).

Second, the article revealed that the most common framework of current 
human–robot interactions among the interviewees was to understand knowledge 
as rational and hierarchical. In human–robot systems, humans (engineers) control 
robots. This is based on rational knowledge and has for long been common among 
artificial intelligence and robot developers (Forsythe, 1993). Here, strong, precise, 
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and relentlessly working robots gain their knowledge from humans and have a 
justified place alongside humans in the controlled code/space of laboratories and 
factories. In such a human-based knowledge economy, the winners would be crea-
tive engineers who master coding and create new ideas and knowledge. However, 
critiques have been addressed to such hierarchical relationships in which knowl-
edge narrowly flows only from humans to robots (Breazeal & Scassellati, 2002). 
Here, robots contribute to knowledge creation narrowly by only repeating speci-
fied human-designed activities with exactly foreseen outcomes, and only humans 
bring knowledge due to its novelty, value, and critical justification. Separating 
tacit and subjective (human) and explicit and objective (machine) knowledge 
neglects knowledge creation’s processual dimension. In all human–robot interac-
tions, multiple meanings of knowledge are at work simultaneously.

However, the next generation of robotics engineers has started to apply also 
constructionist and embodied approaches to knowledge, and want to develop 
robots along these lines. Most of the interviewed robotics students and research-
ers considered that robots could have knowledge—if not independently, then in 
synthesis and symbiosis with humans. If robots could learn non-mathematical 
languages (e.g., speech), then not all robots’ human co-workers would need to 
speak the code’s language. However, “computers can never step outside the code, 
reflect on the code, and contribute their own observations” (Salzogni et al., 2017, 
p. 47). Thus, robots can access tacit elements of knowledge, embodied knowl-
edge, and related social practices only through humans. As robotization advances, 
robots would be needed as companions (Lupton, 2017) that know with humans, 
forming synthesis and symbiosis. The currently prevailing anthropocentric under-
standing of knowledge becomes too narrow and must be elaborated further. Such 
knowledge would not be post-human: it would be more than human and created 
in various modes of human–robot interactions. Critical reflections between engi-
neers and social scientists are needed to discover the possibilities of different 
perspectives on knowledge in developing robots and human–robot interactions. 
This article lays the groundwork for further research that is required to properly 
advance the theory of knowledge creation in the robotizing knowledge economy. 
Empirical research is needed to widen the context from university to industry, 
entrepreneurs, and the public sector, for instance, to employees and managers in 
robotized factories, surgeons in hospitals, artists, etc.

Third, the article brought a novel perspective to the spatiality of knowledge-creation 
processes (Hautala & Jauhianen, 2014) through human–robot interaction. Robots are 
spatial beings, and their activities connect material and digital dimensions of space (Del 
Casino et  al., 2020). This activity is also referred to as spatial cognition: collecting, 
organizing, and analyzing the environment’s data (Hayles, 2017; Lynch & Del Casino, 
2020). This study showed that controlled code/spaces support the efficient work of 
humans with robots. However, these spaces’ functionality is fragile and several frictions 
can stop the knowledge creation there. Empirical research in robotics is needed also 
outside the controlled spaces of laboratories, factories, and production lines (Hannibal,  
2016; Tiddi et  al., 2019). From the perspective of knowledge creation, the everyday 
spaces of human–robot interaction challenge the ways in which robotics mainly has 
been developed in higher education institutes. When top-down control and pre-set 
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regulations were dissolved, the robotics researchers and students became more receptive 
to robots’ “suggestions.” This enhanced the knowledge-creation process. In a robotizing  
knowledge economy, it is important to deepen the connection between robotics  
scientists and social scientists to understand how more-than-human knowledge creation 
develops and what embodiments of knowledge emerge in the intensifying interactions 
and integration between humans and robots.
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