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ABSTRACT: Wearable technologies such as bionic limbs, robotic exoskeletons and neuromodulation 

devices have long been designed with the goal of enhancing human movement. However, current 

technologies have shown only modest results in healthy individuals and limited clinical impact. A 

central element hampering progress is that wearable technologies do not interact directly with tissues 

in the composite neuromuscular system. That is, current wearable systems do not take into account how 

biological targets (e.g., joints, tendons, muscles, nerves) react to mechanical or electrical stimuli, 

especially at extreme ends of the spatiotemporal scale (e.g., cell growth over months or years). Here, 

we outline a framework for ‘closing-the-loop’ between wearable technology and human biology. We 

envision a new class of wearable systems that will be classified as “steering devices” rather than 

“assistive devices” and outline the suggested research roadmap for the next 10-15 years. Wearable 

systems that steer, rather than assist, should be capable of delivering coordinated electro-mechanical 

stimuli to alter, in a controlled way, neuromuscular tissue form and function over time scales ranging 

from seconds (e.g., a movement cycle) to months (e.g., recovery stage following neuromuscular 

injuries) and beyond (e.g., across ageing stages). With an emphasis on spinal cord electrical stimulation 

and exosuits for the lower extremity, we explore developments in three key directions: (1) recording 

neuromuscular cellular activity from the intact moving human in vivo, (2) predicting tissue function 

and adaptation in response to electro-mechanical stimuli over time and (3) controlling tissue form and 

function with enough certainty to induce targeted, positive changes in the future. We discuss how this 

framework could restore, maintain or augment human movement and set the course for a new era in the 

development of symbiotic wearable devices. That is, devices designed to directly respond to biological 

cues to maintain integrity of underlying physiological systems over the lifespan. 
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1. INTRODUCTION 

Preserving the ability to move as we age, or in response to injury, is a key challenge. For decades, 

scientific effort has aimed at interfacing the human body with robotic restorative technologies such as 

neuro-modulative devices or exoskeletons, ultimately for enhancing motor capabilities [1]–[3]. Despite 

advances in surgical procedures, biocompatible implants, and mechatronics, current solutions have had 

only modest results in healthy [4]–[6] and neurologically impaired individuals [2]. Impact has been 

hampered by a lack of basic knowledge on how the neuromuscular system responds (in the short-term) 

and adapts (in the long-term) to device-delivered stimuli, i.e. electrical and/or mechanical. Filling this 

knowledge gap is central for answering a fundamental question at the human-machine interface:  

 

• How should wearable robotic technologies and neuromodulative technologies be controlled to 

best induce positive restorative changes in users over time? 

 

Recovering from conditions such as muscle paresis, spasticity, or contractures requires profound 

changes in different parts of the neuromuscular system, e.g. at the level of brain plasticity, spinal cord 

excitability, muscle tone and stiffness [7], [8]. These changes need to be induced and steered gradually 

over time, to enable an individual’s anatomy and motor capacity to undergo structural remodeling. 

Structural changes in biological tissues are fundamental to the development and physiological 

integration across organ systems. As we move, our neuromuscular system adapts positively to optimal 

stimuli. Skeletal muscle, tendon and bone tissues develop, or heal, in response to optimal mechanical 

strains or loads. Disruptive stimuli, above/below optimal levels can lead to tissue damage/atrophy [9]. 

A similar analogy holds for the nervous system. Lack of physical training after spinal cord injury or 

stroke triggers negative neuroplasticity due to loss of appropriate synaptic input to the spinal cord and 

often results in sensorimotor dysfunction [10].  

 

There currently is no technology that can control stimuli acting on the composite neuromuscular system 

based on either measured or estimated short-term responses (e.g., within milliseconds) or long-term 

adaptations (e.g., months to years) in joints, tendons, muscles, and neural circuitries. This is a major 

element limiting the impact of human-machine interfaces (HMIs) in real-world situations [11].  

 

In this context, the current state of the art includes restorative technologies that are controlled in open-

loop with respect to biological tissues. Lower-limb exoskeletons are still predominantly controlled via 

pre-defined joint trajectories or torque profiles that are prescribed based on pre-assumed body positions 

across the gait cycle [4] or optimized online to minimize walking metabolic energy [5], [12]. The shape 

and timing of these profiles is determined ‘externally’, i.e., not based on estimates of internal body 

neuromuscular function. Although biological tissue function (e.g., skeletal muscles) contributes to the 

metabolic cost of walking, measurements of metabolic energy use do not offer the temporal or spatial 
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resolution required for the precise closed-loop control of the dynamics of targeted individual skeletal 

muscles. Therefore, even if the exoskeleton assistance would provide a metabolic advantage, it is 

unknown how the neuromuscular system would re-model, e.g., would muscle-tendon mass or stiffness 

change in the long term? Would these changes be linked to a biomechanical benefit or to tissue 

maladaptation? Similarly, spinal cord electrical stimulation technologies operate in open-loop with 

parameters empirically tuned and with no real-time corrective feedback at the level of motor neuron 

cellular activity [13]. Restorative technologies controlled without considering the resulting 

neuromuscular responses hamper translation of personalized rehabilitation and assistive robots for 

movement enhancement. The ability to incorporate cellular- and tissue-level analyses into closed-loop 

control schemes could lead to a new class of wearable technologies capable of shaping dynamic 

function and adaptation of the human neuromuscular system at a level not considered before.  

 

Here, we propose and discuss a new framework for the design and application of external wearable 

systems that interact based on feedback from the human neuromuscular system, thereby ‘closing-the-

loop’ between wearable technology and human biology (Fig. 1). The focus is on lower extremity 

technologies for neurological impairment including stroke and spinal cord injury. With an emphasis on 

spinal cord electrical stimulation and exoskeletons, we present developments in three key directions: 

(1) interfacing with cells in the spino-muscular system, (2) estimating function and adaptation in the 

spino-muscular system in response to electro-mechanical stimuli and (3) steering the spino-muscular 

system function and adaptation overtime by continuously adjusting stimulus delivery online.  

 

Within this framework, we envision the birth of a new class of wearable robotic systems to be developed 

within the next 10-15 years. These will be classified as “steering systems”. Wearable robots that steer, 

rather than assist, will deliver coordinated electro-mechanical stimuli to alter, in a controlled way, 

neuromuscular form and function across recovery or ageing stages (Fig. 1).  
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Figure 1. A conceptual 

framework for the closed-loop 

control of wearable robotic 

systems to steer neuromuscular 

tissue structure and function 

over time. A multi-system and 

multiscale human-machine 

interface (HMI) architecture to 

enable controlling spinal cord 

stimulation and exosuit 

technologies based on the activity 

of the underlying neuro-muscular 

system. Integrating novel bio-

sensing techniques (Fig. 2, 

Section 2) with novel multi-scale 

data-model fusion formulations 

(Fig. 3, Section 3) into novel 

closed-loop control schemes (Fig. 

4, Section 4) could help deliver 

electrical stimuli and mechanical 

loads to the neuro-muscular 

system that best enhance motor 

function and optimize for 

structural changes across short-

to-long time scales. 

 

2. INTERFACING WITH THE SPINO-MUSCULAR SYSTEM 

Although neural activity associated with the control of movement can be recorded from the brain, the 

spinal cord is the locus of afferent somatosensory and efferent motor inputs [14]. Therefore, recording 

and interpreting events in the composite spino-muscular system, is central for understanding motor 

control [15], [16].  Focusing on spinal cord neural activity is central not only for injuries of spinal origin 

but also for injuries of cortical origin [14], [17]. Positive spinal cord neuroplasticity has been shown to 

promote brain neuroplasticity in both spinal cord injury and post-stroke subjects [14]. In this section we 

present an approach for recording spinal and muscular cell activity in the intact, moving human in vivo. 

 

2.1. Recording neural cell activity associated to the control of movement 

We propose to use muscles as a biological interface with the spinal cord [18], [19]. The activity of 

spinal neural cells can be inferred in a clinically viable way (e.g. non-invasively) by means of soft 

electronic skins, which are bi-dimensional grids containing tens of electrodes closely located with one 

another, e.g. < 5 mm inter-electrode distance. These grids can be placed in the correspondence of a 

muscle on the skin surface and enable recording high-density electromyograms (HD-EMGs); weak 

electrical signals generated by hundreds of muscle fibres simultaneously (Fig. 2A).  

 

Because muscle fibres are directly innervated by -motor neurons in the spinal cord’s ventral horn, 

HD-EMGs carry neural information in the form of an interferent signal. Given the safe synaptic 

connection between -motor neuron and innervated muscle fibres, there is a one-to-one relationship 
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between motor neuron action potentials and those elicited in innervated muscle fibres [20]. Therefore, 

each motor neuron action potential is transduced into a compound muscle fibre action potential that 

carries the same neural code. Using advanced signal processing techniques such as deconvolution-based 

blind source separation, it is possible to decompose the interferent HD-EMG into the contribution of 

underlying -motor neurons that are active in the control of the muscle [18], [19]. This provides access 

to trains of motor neuron discharges, the same feature that invasive direct nerve interfacing would 

extract with implanted electrodes (Fig. 2A) [19].  

 

This process relies on the development of a mathematical model of the EMG mixing process. This may 

be expressed as the convolution between finite impulse response filter and delta functions, where the 

finite impulse response filter represents muscle fiber action potential and delta function the innervating 

alpha motor neuron spike events [21]. The objective is to unmix the neural spike events from the 

recorded HD-EMG signals. Fig. 2B shows an example of how HD-EMGs recorded from the soleus 

muscle can be decomposed to reveal underlying motor neuron spike trains during an isometric 

contraction [18]. Section 5 discusses the challenges to be tackled to enable decomposition algorithms 

to be valid across muscle dynamic contraction types, i.e., isometric, concentric and eccentric.  

 

The authors recently used HD-EMG recordings from five ankle muscles using more than 250 recording 

sites and demonstrated how multi-muscle spatial sampling and deconvolution of high-density fiber 

electrical activity can be used to decode accurate α-motor neuron discharges across five lumbosacral 

segments in the human spinal cord [18], [22]. This is an important step that will enable understanding 

of how hundreds of -motor neurons interact with each other’s for the control of multi-muscle 

contraction in vivo. Decoded motor neuron information could be directly used to generate high-fidelity 

estimates of how different lumbosacral segments in the spinal cord are activated for the control of the 

ankle joint, a key feature that could help understand how impairment alters spinal cord neuromechanics 

and how external intervention may restore normative physiological function. This approach was 

recently employed to infer how synaptic input to -motor neurons is altered in response to trans-spinal 

electrical stimulation in a group of incomplete spinal cord injury patients [23].  

 

HD-EMG and related signal processing can also be  used to understand how the central nervous system 

(CNS) modulates neuromechanical delays, a factor that is central to understanding closed-loop motor 

control strategies in humans [24]. The neuromechanical delay is the latency between motor neuron 

discharges and the generation of mechanical force in muscle-tendon units. HD-EMG studies have 

revealed that neuromechanical delays are modulated by the CNS as a function of the rate of muscle 

force generation, where recruitment of fast versus slow motor units drives a decrease versus increase of 

ongoing neuromechanical delays, respectively. Similar techniques were used to understand how -
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motor neurons receive synaptic input not only from muscular and spinal levels but also from supraspinal 

levels [25], [26]. 

2.2. Recording muscular cell activity associated to the control of movement 

In addition to using HD-EMGs to extract the neural input to a given muscle it is also possible to non-

invasively monitor the resulting functional output from muscles at different spatial scales. B-mode 

ultrasonography (USG) has become the standard approach used to image muscle fascicles during 

dynamic contractions in both healthy and impaired individuals [27], [28]. Recently, USG was employed 

to study how bi-lateral ankle exoskeletons influence muscle mechanics during human locomotion, 

establishing a path toward closed-loop control of wearable robotics based on measured muscle 

dynamics [29], [30]. Automated image processing of B-mode images [31]–[33] is also accelerating 

toward the possibility for real-time tracking of muscle length and shape changes in vivo [34], [35]. 

Developments in machine learning have enabled automated measurements of muscle architectural 

properties as well as fascicle length and pennation angle during dynamic contractions [36]–[38]. Recent 

advances in microscopy have enabled direct muscle imaging at the sub-cellular scale, i.e., imaging of 

individual sarcomere lengths and contractility in striated muscles across the human body, without 

surgery or anesthesia [39]–[41]. However, sarcomere-level analysis of muscle function is yet to be 

translated into fully portable and clinically viable solutions.  Other measurement and signal processing 

techniques including shear wave elastography [42] to measure muscle stiffness, speckle-tracking to 

extract tendinous tissue strain from ultrasound radio frequency signals [43] and most recently, 

tensiometry to measure tendon stress are also unlocking the possibility to non-invasively measure 

muscle-tendon forces in vivo [44], [45]. 

 

The possibility of combining HD-EMG techniques (Section 2.1) with clinically viable muscle imaging 

techniques (e.g., B-mode USG, Section 2.2) and neuromuscular modelling (Section 3), has the potential 

to unlock a window into broader spinal neural mechanisms and their influence on mechanical force 

generation. For example, leveraging these simultaneous input-output recordings could give insight into 

how the nervous system controls muscle force generation in a quantal manner by successively recruiting 

motor units of increasing size as well as how these processes are altered by aging, training or injury. 

Overall, the combination of HD-EMG, USG and data-driven modelling may provide a generic paradigm 

to decode mechanical function from different sources of neural information (Figs 1-2); e.g., muscle 

surface or indwelling electrodes, nerve intrafascicular electrodes [46], epimysial devices [47]. 
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A 

 

B 

 

Figure 2. Extracting information from the intact spino-muscular system in vivo. (A) Surface grids of 

closely located electrodes in combination with intramuscular fine wire electrodes can be used to record high-

density electromyograms (HD-EMG). Given the safe synaptic connection between α-motor neuron in the 

spinal cord and innervated muscle fibers (i.e., motor units, or MUs), there is a one-to-one relationship 

between motor neuron and innervated fibers’ electrical activity. From these recordings, deconvolution-based 

blind source separation can be used to extract the contribution of the -motor neuron active in the control 

of a given muscle. In addition, ultrasonography (USG) can be used concurrently to measure the kinematics 

of muscle fascicles in response to neural discharges. From these images, fully or semi-automated algorithms 

can be used to measure length and pennation angle of a given muscle. In combination, these signals provide 

comprehensive in vivo recordings of individual muscle neuro-mechanical function. (B) The interferent 

electromyogram can be separated into its central and peripheral components. High-density electromyograms 

(HD-EMGs) visualized for 13 out of 64 channels located in the middle column of a 13 × 5 electrode grid. 

This exemplary signal is recorded from the soleus muscle during a 30% maximal voluntary contraction 

performed with the ankle joint at neutral position. Experimental ankle plantar-dorsi flexion moment 

(continuous curve) is depicted synchronously with soleus HD-EMG and the decoded -motor neuron 

discharge events (spike trains). 

 

3. PREDICTING SPINO-MUSCULAR FUNCTION AND ADAPTATION  

Neuromuscular models that can be driven in real-time by recordings of a user’s neuromuscular cellular 

activity will be critical for implementing devices that can operate in closed-loop feedback with 

biological variables that are difficult to measure (e.g., individual muscle force or stiffness). These 

models should predict how an individual user’s neuromuscular system reacts and adapts to device-

delivered electro-mechanical stimuli to the body (Fig. 3). In the remainder of this Section we propose 

a framework for the development of data-driven models of neuromuscular function (Section 3.1) and 

adaptation (Section 3.2). 

 

3.1. Data-driven models of neuromuscular function 

Recordings of in vivo motor neuron discharges and muscle fascicle kinematics (Section 2) [18], [19] 

can be used to drive an in silico framework that hosts numerical models of spinal neural networks and 

the musculoskeletal system, Fig. 3A [48].  

bio-electrical 

sampling

in vivo MN 

discharges

in vivo 

fascicle 

kinematics
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3.1.1. Numerical models of the musculoskeletal system 

The musculoskeletal modelling framework we propose comprises six main components inspired by the 

authors’ previous work [49]–[57].  The neural activation component: converts incoming motor neuron 

discharges into resulting twitch responses triggered in the innervated muscle fibers using a critically 

damped, linear, second-order, differential system [58], expressed in a discrete form using a time history-

dependent, infinite impulsive response filter [59]. The resulting signal is further processed via a 

nonlinear transfer function to compute the resulting neural activation, reflecting the ensemble dynamics 

of all electro-chemical transformations triggered at the muscle fiber level by the motor neuron 

discharges [11].  

 

The musculotendon kinematics component: synthetizes subject-specific musculoskeletal geometry 

models into a set of muscle-specific multidimensional cubic B-splines [52]. Each B-spline computes 

musculotendon length and moment arms as a function of input joint angles [52]. 

 

The musculotendon dynamics component: uses HD-EMG-derived neural activation (Section 2.1) and 

USG-derived fascicle kinematics recordings (i.e., estimates of instantaneous length and contraction 

velocity, Section 2.2) to drive a Hill-type muscle model and compute viscoelastic force in the muscle 

fibers, as well as strain and force in the series-elastic tendon [49], [50]. The static properties of muscle 

fibers are modelled using parallel force-length passive and activation-dependent curves [59]. The 

dynamic properties of fibers are modelled using an activation-dependent force-velocity curve. The 

tendon properties are modelled using a force-strain function with non-linear toe region [60]. 

 

The joint interaction dynamics component: transfer of musculotendon forces to the skeletal joint level 

using musculotendon moment arms. 

 

3.1.2. Numerical models of spinal neural networks 

Modelling muscle proprioceptors: Numerical models of muscle spindles can be created and placed in 

parallel to muscle fibers (Section 3.1.1), receiving commands from gamma motor neurons [61]–[63]. 

Numerical models of Golgi tendon organs can be placed in series with elastic tendon models (Section 

3.1.1). Proprioceptive feedback to spinal neurons can be modelled via Ia, II and Ib axons mediating 

fundamental pathways associated with standing/gait, e.g. monosynaptic Ia excitations, di-synaptic Ib 

inhibition, di-synaptic II excitation, reciprocal inhibition from antagonist Ia afferents [64].  

 

Modelling spinal neural networks: Models can be created that capture the integration of signals formed 

by combinations of alpha motor neurons and inter-neurons including inputs from musculoskeletal 

afferents and supraspinal drive. Motor neuron types (S-, FR-, FF-type) can be modelled as two- 
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compartment conductance-based neuron models, with one compartment for the soma and one 

compartment for one dendrite and with motor axons represented as simple spike conductors transferring 

one spike from soma to end-plate with a given delay dictated by conduction velocity and distance [65]. 

Inter neurons can be modelled with a single compartment [66]. In this context, the distribution of motor 

neuron type can be inferred via HD-EMG decomposition techniques, e.g. by extracting motor unit 

properties that can be related to motor neuron types including fiber diameter and contraction speed [67].  

 

3.1.3. Driving models of neuromuscular function 

The in silico framework proposed in Section 3.1.2 can be controlled so that synthetic inter-neurons, α-

motor neurons and sensory fibers fire to reproduce in vivo recordings of discharges extracted from HD-

EMG as described in Section 2. This validation step would give confidence that simulations are neuro-

mechanically consistent with in silico spinal cord and musculoskeletal structures interacting to 

reproduce an individual’s in vivo neuro-muscular function.  

 

The approach we propose is in contrast to available methods that solve for individual muscle 

contributions to joint actuation according to a priori-defined optimization criteria (e.g., minimize 

squared muscle activation sum, cost of transport) [68]–[70] or muscle and spinal reflex rules, i.e. stretch 

reflex, positive force feedback, reciprocal inhibition [71]. Although current theoretical models provide 

a valuable starting point for the computational investigation of motor function, they cannot capture 

subject-specific signatures of in vivo neuromuscular function [72], [73], and thus are limited when 

extrapolating to novel conditions. Even though one model can be tuned to reproduce experimental 

outputs  (i.e., muscle activity) in one instance [74], synergies between muscles [75], or even between 

motor units [15], are highly variable across motor tasks [76], [77], pathology [78], and directly 

influenced by assistive devices [79]. 

 

The feasibility of the approach we propose is supported by recent results. Along with colleagues we 

have developed physiologically correct computational models of the human musculoskeletal system 

driven by EMG-derived excitations [49], [51], [52] and by low-dimensional sets of excitation primitives 

[80], rather than pre-defined mathematical rules. This approach avoided a priori assumptions on muscle 

neural recruitment strategies [49] and allowed us to extrapolate across conditions, e.g. motor tasks, 

training, impairment levels [81]. This concept was generalized to estimate torques about multiple 

degrees of freedom and to satisfy multiple mechanical constraints including multi-joint moments [49], 

[82], compressive loads [83], [84] and dynamic joint stiffness [85], a central component for 

understanding mechanical function in redundant musculoskeletal systems. Current developments are 

now linking in vivo -motor neuron cellular discharges decoded from electrophysiological recordings 

with subject-specific musculoskeletal models, Figs, 2-3 [18]. This is a paradigm shift from current 
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formulations that are driven by global EMGs, where underlying motor neuron behavior is hidden within 

the EMG envelope failing to reveal the neuro-muscular processes of human movement [18].  

 

3.2. Data-driven models of neuromuscular adaptation 

Wearable systems interacting with the human body can only become pervasive if they take into account 

the variable nature of the human body. By a simplified example, the same neural command to a muscle 

would yield different force profiles (i.e., function) depending on the muscle form. (e.g., changes in 

muscle cross-sectional area or tendon compliance post-impairment or post-training [20]). In this 

context, multi-scale musculoskeletal modelling would have great potential to reveal the interplay 

between form and function with unexplored opportunities for personalizing wearable robots to the 

structural features of individual users [86].  

 

 

Figure 3. Multi-system and multi-scale data-driven modeling and simulation. (A) We record neuromuscular 

activity in vivo via high-density surface/intramuscular electromyography (HD-EMG) and ultrasonography (USG). 

We establish neuromuscular models that track in vivo data and estimate a larger spectrum of neuromuscular 

mechanisms than is possible via signal-based techniques alone (panel I). This creates neuro-mechanically 

consistent estimates of neural discharges and muscle forces, which provide high-fidelity stimuli to drive multi-

scale models of neuromuscular structural adaptation (panel II). (B) A concrete example of (A). Simulating long-

term tendon adaptation to gait-induced mechanical stimuli. A simplified neuro-mechanical simulation of human 

locomotion (panel I) is used to generate estimates of energy consumed per muscle-tendon unit and distance 

travelled over a day of walking under different behavioral criteria (e.g., when constraining cumulative energy used, 

distance travelled, or number of gait cycles, panel II). Using tendon strain (ƐTendon) per cycle and the number of 

walking cycles per day as inputs, a tendon remodeling algorithm (panel III), can predict changes in tendon tissue 

stiffness (KT) per day. Finally, the new resulting tendon structure can be used to generate a new neuromuscular 

model that will walk with updated muscle activation and cycle frequency (panel IV). These long-term estimates 

could help provide forward prediction of how loading patterns from wearable robotic devices influence 

musculoskeletal structures over long time scales (e.g., 100s of days). 
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Models of the neuro-muscular system can be personalized to each individual’s morphology (i.e., form) 

and host multi-scale formulations to understand how structural changes in molecular, cellular, tissue-

scale mechanisms alter organ-scale form and therefore function [87]–[89]. In this context, the primary 

challenge is that of determining the body internal stimuli that initiate structural changes at (sub)cellular 

scales in different parts of the neuro-muscular system. As a result, current multi-scale formulations are 

not yet data-driven by an individual’s neuromuscular biological signals and fail to reproduce in vivo 

function.  

 

The framework we proposed in Section 3.1 (Fig. 3A) enables capturing neuro-mechanically consistent 

estimates of synaptic inputs to spinal motor neuron cells and resulting forces acting on musculoskeletal 

tissues. We propose that this information can be used to determine the stimuli acting on pools of motor 

neuron and musculotendon tissues as a way to drive predictive simulations of cellular-to-organ scale 

structural remodeling over longer time scales (e.g., days to weeks to months). (Fig. 3A and 3B). 

 

3.2.1. Models of musculoskeletal structural adaptation 

We propose to employ discretized models of muscles and tendons [90]–[92]. These models are defined 

along with an initial configuration of the constituent structures from (sub)cellular, to tissues and organ 

scales. An initial configuration dictates the organ-scale force generating properties. 

 

For instance, for a multi-scale muscle model, the initial configuration may include, at the tissue scale, 

the number of fascicles as well as the distribution of their lengths and their extracellular matrix stiffness. 

At the cellular scale it may include the number of fibers within a fascicle along with the distribution of 

their lengths. At the sub-cellular scale, configuration parameters may include the number of 

serial/parallel sarcomeres, which in turn dictates individual fiber length. At the molecular scale it may 

include titin and myosin isoform types, which in turn dictates sarcomere contractile properties [92]. 

 

Structural changes at (sub)cellular scales are propagated to larger scales, thereby dictating organ 

behavior (Fig. 3B). A statistical model could be used to predict the likelihood of a mechanobiological 

trigger for a given muscle adaptation process. For example, if there is high likelihood that muscle strain 

rate exceeds a  threshold value given a randomly sampled combination of muscle contractile variables 

(e.g., motor unit firing rate, resulting force), duty cycle and input mechanical stimuli (i.e., 

under/overstretch, under/overload), then new sarcomeres could be generated in the model adjusting the 

rest length of the muscle [93], [94].  

 

In this context, given the number of cycles during which the muscle undergoes above-baseline stimuli 

(e.g., over stretch) we propose to employ phenomenological laws to compute molecule-to-organ 

remodeling. In addition to an increase in serial sarcomere number, these could include upregulated 
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expression of myosin and titin isoforms, increase in fiber length, or increase in extracellular matrix 

stiffness [90], [95]. The process continues until tissue homeostasis is reached or stimuli go below 

baseline, thereby resulting in a new steady-state  muscle-tendon structural configuration. [90]–[92] (Fig. 

3B).  

 

In this context, implementing phenomenological laws (as opposed to explicit finite element techniques), 

could provide a balance between physiological accuracy and computational tractability, central for 

translation to real-time closed-loop control scenarios (Section 4) [96]–[98].  

 

3.2.2. Models of neural structural adaptation 

We propose to model structural adaptation in the spinal cord using descriptive models built from spinal 

synergy theory [99]–[101], rather than predictive models as described in the previous Sections. Tissue 

composition in the spinal cord is more diverse than in muscles and tendons. While muscle composition 

is uniform across length scales and therefore suitable for being modeled via scale-specific 

mechanobiology theory, composition across spinal cord spatial scales is complex. A cross section of 

the spinal cord includes white matter, grey matter with motor neurons, interneurons, sensory, 

nociceptive fibers [20]. As a result, the concept of tissue and organ scales in the spinal cord is less 

appropriate. It would be more appropriate to talk about the existence of different spinal systems and 

circuits, composed of interacting cells [102].  

 

We propose to employ HD-EMG-based techniques (Section 2.1) to determine changes in motor neuron 

behavior and how these reflect spinal circuit organization [18], [23]. In a first instance, this information 

can be inferred by applying dimensionality reduction techniques to alpha motor neuron spike trains in 

the time-domain (i.e., NMF) [103]. Changes in muscle modularity (i.e., either at the level of muscle 

weightings or non-negative factors) across mid-to-long time scales may indicate whether there has been 

structural reorganization in spinal motor circuitries (Figs 2).  

 

Alternatively, spinal circuitries organization can be inferred by applying frequency-domain analysis to 

HD-EMG-decomposed motor neuron spike trains [23]. In this context, we propose to use inter-spike 

coherence analysis to infer how synaptic input from spinal and supraspinal centers is projected onto 

alpha motor neuron pools [23], [104]. In this context, common and independent synaptic input can be 

inferred via coherence analysis, which is a measure of linear correlation (i.e., commonality) in 

frequency domain. Common synaptic input refers to the proportion of the sum of excitatory and 

inhibitory inputs that are common to all motor neurons in a pool. Therefore, common input can be 

studied by applying coherence analysis between pairs of cumulative spike trains built from increasingly 

bigger sets of motor neurons. The number of motor neurons within each set at which coherence plateaus 

indicates the strength of the common input into the pool. The earlier it plateaus the more the proportion 
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of common versus independent input. Common input is the main determinant of force production i.e., 

any synaptic input has to be common to all motor neurons in the pool for this command to regulate 

muscle force [25]. This has strong analogies with the concept of spinal synergies. We propose that 

alterations in the strength of common input can be used to infer short-to-long-terms spinal circuitries 

changes.  

 

This multi-scale framework will enable capturing high-fidelity in vivo and in silico cellular activity in 

different parts of the neuro-muscular system and determine the potential that this has to induce structural 

changes in tissue/organ-scales. This will enable predicting how an individual’s motor capacity evolves 

over time in response to physically interacting wearable devices. 

 

The feasibility of the proposed approach is supported by our results along with colleagues. Recent 

developments enabled personalizing musculoskeletal models to match both an individual’s morphology 

[49], [82], [105] and muscle force-generating capacity. This is central for characterizing the actual 

mechanical forces acting on musculotendon tissues, which drive structural adaptation. Multi-scale 

musculoskeletal models are being created to host formulations driven by EMGs [48], [86], [106] and 

by motor neuron cellular activity [18]. This is enabling the investigation of how neurally-driven 

musculotendon units interact with skeletal tissues and induce microstructural bone remodelling [84]. 

These multi-scale formulations are now being extended to study neuro-motor disorders underlying 

spasticity [48], i.e. Fig 3. This is providing the basis for modelling the neuromusculoskeletal system 

across spatiotemporal scales, i.e., seconds/minutes for muscle signals and months for bone remodelling 

[86]. Validation of these models is being performed against in vivo loads from instrumented total knee 

replacements [83], ex vivo hip loads [84], and moments from inverse dynamics [49], [82].  

 

4. STEERING SPINO-MUSCULAR FUNCTION AND ADAPTATION 

The previous two sections proposed the development of clinically viable techniques to record motor 

neuron activity and muscle fascicle dynamics from the intact moving human in vivo (Section 2, Fig. 2) 

and then use it to drive numerical models of the composite neuromuscular system (Section 3, Fig. 3). 

Here we propose to use these data-driven models in real-time to determine the optimal combination of 

device stimuli required to alter ongoing neuromuscular function as well as its future adaptation, Fig. 4. 

This is the central step for moving beyond conventional wearable robots with fixed control parameter 

to a paradigm for continuously adaptive control over broad time scales.  

 

The idea is to steer neuromuscular physiology in closed-loop, with the on/off timing and shape of 

wearable robot assistance patterns prescribed to interact directly with biological tissues. In practice, this 

would manifest as torque profiles sent to biological joints or electrical pulse trains sent to spinal neurons 

(Fig. 1). Exoskeleton-generated torque profiles could be parameterized, for instance, as a function of 
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peak torque, time to peak, and rise-fall times [5]. Pulse trains could be parameterized as a function of 

electrode-on-body position, pulse amplitude, width, and frequency. We the propose to develop online 

optimization-based controllers for exoskeleton and neurostimulator devices that close the loop with 

relevant neuromuscular states (e.g.,  alpha motor neuron excitability, muscle operating strain and force, 

tendon tension, joint stiffness, Figs 1, 3-4). While subjects perform cyclic motor tasks (e.g., walking or 

running), an online optimizer would periodically select a machine control law (i.e., a combination of 

stimulation and/or actuation parameters) based on exploration in broad, but relevant parameter spaces 

spanning possible torque and electrical stimulation profiles. The effect on target neuromuscular 

structures would be captured in vivo via subject-specific, data-model fusion formulations (Fig. 3). An 

iterative process, whereby many candidate control laws and associated multi-scale physiological 

responses are explored and logged [5], it is expected that the online optimizer will have identified the 

optimal control law that brings target tissues closest to desired steady-state (Figs 1 and 4) [107]. 

 

As one example, this may enable neurologically injured patients to experience device-induced 

“physiological gait” (i.e., reduced state of spasticity, paresis), which will gradually lead to pre-planned 

neural and musculoskeletal changes that structurally repair dysfunctional movement over time. This 

scenario may involve patients receiving mechanical torque and electrical stimuli simultaneously (Fig. 

1). A similar approach may be employed in the context of robotic exoskeletons alone as inspired in part 

by recent animal work where in vivo muscle fascicle length recordings were used for the closed-loop 

control of muscle force [107]. In this context, we propose to develop data-driven models that can non-

invasively sample muscle activation (e.g., with HD-EMG) as well as fascicle length and velocity (e.g, 

with USG), estimate the force potential and then update the exoskeleton torque profile to steer fascicle 

dynamics as desired [107]. On longer time scales we envision semi-active exoskeletons with 

hierarchical feedback control structures that employ (1) online servo-based control of tissue strain (Fig. 

4A) where the reference strain pattern is optimally prescribed by (2) a model-based control scheme that 

maps tissue strain to optimize mechanobiological processes and steer tissue properties in a targeted 

manner. For example, in concept, this novel class of hierarchical wearable robot controllers would be 

capable of applying continuously optimal exoskeletal loading patterns to non-invasively manipulate 

tissues in vivo to induce micro-ruptures that facilitate anabolic processes and  promote growth and repair 

(Fig. 4B).  

 

The key is the ability to non-invasively steer target neuromuscular structures with a high spatio-

temporal resolution throughout everyday life. Since using a pure sensor-based approach is unrealistic 

in vivo, we envision the next generation of wearable robots will incorporate wearable sensing capable 

of directly extracting in vivo states (e.g., electromyography surface electrodes, pulse oximetry units, 

and/or thin-film low-profile ultrasonography probes) or sampling a subset of states to drive forward 

subject-specific, neuromuscular models simultaneously running in silico. It is worth stressing that the 
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combination of in vivo and in silico processes observable via this hybrid approach (Figs 3-4) is more 

comprehensive than what is observable via signal-based or model-based approaches alone. This could 

provide a framework to inform wearable device controllers of the user’s current physiological state [6], 

[108], and determine the optimal combination of device stimuli required to alter neuromuscular function 

and adaptation across time scales (Fig. 4).  

 

 
Figure 4. Closed-loop hierarchical control couples a wearable robot and user’s mechanobiology to non-

invasivley steer musculoskeletal tissue properties (A) The proposed exoskeleton system hardware includes 

an elastic actuator (EXO-motor and spring) that can apply torque about the ankle joint to modify loading on the 

human plantarflexor muscle-tendons (MT) and a non-invasive ultrasound (USG) sensor that can sample muscle 

fascicle and/or MT junction displacements in real-time. (B) The exoskeleton employs a hierarchical controller 

with (1) online (milliseconds) and (2) longitudinal (>minutes) components. The online controller sends 

commands to the exoskeleton motor producing torques that modify forces and strains of underlying tissues in 

order to maintain a desired ‘optimized’ reference strain pattern of the muscle or tendon based on real-time 

feedback of displacement from USG measurements. (C) The longitudinal controller feeds optimal strain patterns 

(i.e., desired reference for (1)) using an adaptive model that can accurately map tissue strain to likelihood for 

tissue injury and/or atrophy/hypertrophy (i.e. also see Fig. 3). Sophisticated versions might employ machine 

learning techniques and a cumulative historical data set to continuously improve the mapping between an 

individual user’s specific tissue strains and their unique biomarker derived mechanobiological states over time. 

 

This is all in contrast with current techniques that operate neuromodulators and exoskeletons based on 

surrogate measures of body function. State of the art lower limb exoskeletons are designed to reduce 

lower-limb joint moments and powers as an indirect way to decrease metabolic rate of locomotion [6]. 

However, mounting evidence is casting doubt on the links between a user’s metabolic energy 

consumption and measures of limb-joint moments and power. Indeed, changes in biological mechanical 

power at the center of mass, joint-, or muscle-level are unable to explain how exoskeletons alter users’ 

metabolic rate [6]. Similarly, state of the art sub-threshold spinal cord electrical stimulation is used to 
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modulate neural activity and induce spinal plastic changes [109], rather than establishing functional 

neuroprostheses with bi-directional connections across the human-machine interface. In spinal cord 

injury [110] and stroke patients [111], sub-threshold stimulation can suppress severe lower limb 

spasticity and enable limb movement in motor-complete spinal cord lesions [112]. In this case, 

neuromodulation of the sub-threshold motor state of spinal excitability is the key to recovery[112], 

[113]. However, while spinal cord electrical stimulation has become a standard for treating chronic 

pain, its use for treating motor dysfunctions such as spasticity is limited [114]. In short, the fact that 

spinal cord stimulation methodologies largely operate in open-loop, irrespectively of motor neuron 

cellular activity and musculoskeletal forces, has hindered its utility. 

 

The direct feedback that we propose to establish between wearable robot and human spino-muscular 

function may provide guidance for achieving a more complete symbiosis between human and robot. 

We contend that robots that can seamlessly estimate and then steer spino-muscular dynamics may 

provide greater locomotion performance benefits than current devices that reach beyond merely 

improving walking and running economy.  

 

Our research with colleagues supports the feasibility of the closed-loop approach (Fig. 1). We have 

demonstrated EMG-driven modelling methods [11], [82], [85] to determine how a quadriceps weakness 

patient’s would walk with the aid of a passive ankle-knee orthosis [115], and how a transfemoral 

amputee would walk using a microprocessor controlled prostheses[11], [51], [116]. Since then, we have 

translated these methods in order to operate in real-time [81], and demonstrated that stroke and SCI 

patients can voluntarily control bilateral a knee-ankle-joint exoskeletons in real-time [117], [118]. 

Ongoing work is aimed at demonstrating the possibility of decoding α-motor neuron discharges and 

approximating the distribution of their activity across lumbosacral segments in the human spinal cord 

[18] in order to infer how spinal motor neurons react to electrical stimuli in spinal cord injury patients 

[23]. Finally, we have recently demonstrated that it is possible to record EMG and B-mode USG images 

of plantarflexor muscle fascicles during locomotion with a robotic ankle exoskeleton, giving access to 

the necessary signals for closed-loop control schemes [29] (e.g., Fig. 4B). These and future 

breakthroughs will enable new paradigms for closing the loop between neuro-muscular cellular 

processes and neuromodulation and mechatronic technologies.  

 

5. DISCUSSION 

Our goal was to establish a framework and outline the steps necessary to achieve HMIs capable of 

connecting spinal cord electrical stimulators and exoskeleton technologies to an individual’s spino-

muscular system. It is worth stressing this manuscript describes a possible roadmap for achieving 

steering robotic technologies within the next decade and not a set of readily available technologies that 

can be employed immediately. 
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Our proposed approach is based on three steps. First, the use of non-invasive wearable sensors including 

high-density wearable electrodes and transducers to record HD-EMG and USG data, from which 

decoding activity of spinal motor neurons and muscle fascicles with high spatio-temporal resolution 

(Section 2). Second, the use of decoded motor neurons and muscle fascicle activity to inform multi-

scale models of the composite neuromuscular system. This enables observing a more comprehensive 

set of neuromuscular processes than would be possible via signal-based or model-based approaches 

alone (Section 3). Third, we propose to complement multi-scale models with statistical modelling to 

enable simulation of neuromuscular tissue adaptation and remodelling across time scales (Section 3). 

When incorporated within real-time control schemes (Section 4), this framework will enable direct 

tissue-machine interaction via multiple pathways. That is, interaction with a group of muscles or spinal 

circuitries will be achieved by altering both the neural drive (via spinal cord electrical stimulation) as 

well as the mechanical load (via exoskeletons or exosuits) to a given group of muscles.  

 

In combination, this would allow for control of tissue states across a broad spatio-temporal range that 

has so far, been out of reach. Closing the loop between robot hardware, modelling software, and the 

user’s biological systems (e.g., both musculoskeletal and neural tissues) will lead to a new class of 

devices capable of steering human neuromechanical structure and function over both short and long 

timescales. On the shortest of time scales, robots that have access to neuromuscular state information 

have the potential to modify efferent neural drive to muscles (i.e. common synaptic input to motor 

neuron pool) [23] as well as sensory feedback (i.e. from muscle afferent fibers or mechanoreceptors) 

and augment dynamic balance and locomotion. On the longest of time scales, robots can gain access to 

biomarkers indicating cellular and tissue degradation in the composite neuromuscular system, i.e. 

maladaptation at the level of motor neuron excitability levels, muscle volume, or tendon stiffness. This 

information could be directly used in closed-loop controllers (Figs 1 and 4) to modify external electro-

mechanical stimuli to the human body and shape remodelling in both nervous and muscular tissues to 

ultimately provide a neuro-mechanical benefit for the user, i.e. reduction in tissues peak loads to prevent 

tearing, preservation of tissue tension to prevent atrophy, reduction of muscle spasticity in patients to 

enhance voluntary limb control during rehabilitation [23], [107], [108].  

 

Achieving this novel closed-loop HMI infrastructure will require tackling a number of challenges in the 

future decade. The HD-EMG recording and processing methods as well as the neuromechanical 

modelling techniques presented in Sections 2 and 3 need to be based on fully wearable sensing solutions 

and operate in real-time. This will require substantial innovation both at the level of hardware and 

software. New types of portable and wearable sensors will be required to measure HD-EMG- and USG-

data during dynamic muscle contraction underlying tasks such as locomotion or rehabilitation exercises. 

Stretchable electronics represent good candidates for developing soft electrode grids that can interact 
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with and adapt to human limbs soft tissues, thereby always assuring electrode-to-skin contact [119]. 

Recent developments in printed tattoo-like electronics for EMG recordings showed potentials for 

assuring signal transmission at the electrode-skin interface [120]. More tangible solutions may also rely 

on stretchable textile electrodes directly embedded into smart sensor-equipped clothing [121]. This all 

will enhance electrode-to-skin stability, thereby achieving prolonged use in day-to-day scenarios. 

Similarly, thin-film transducers can be embedded directly in wearable garments to record USG data 

without hindering human movement [122].  

 

The proposed HD-EMG decomposition techniques will have to be applicable to muscle dynamic 

contractions. This will require extending current HD-EMG decomposition methods, now suitable for 

muscle isometric contractions only, to operate during both eccentric and concentric contraction types. 

Relative movement between muscle fiber and electrode leads to non-stationarities in the recorded EMG, 

thereby distorting the shape of fiber action potentials over time as a function of fiber-to-electrode 

relative kinematics [123]. Despite challenges, recent work is supporting the possibility of HD-EMG 

decomposition during dynamic muscle contraction. Recently proposed data models enabled 

identification of motor unit firings from HD-EMGs, recorded during repeated dynamic muscle 

contractions from healthy individuals [21], [124]. Moreover, work applied to amputees’ residual 

muscles EMGs proved the possibility of decomposing motor unit action potential during concentric 

muscle contractions, predominant in transhumeral and transradial amputees’ muscles in the residuum 

[19], [125].  

 

The proposed HD-EMG decomposition techniques will also have to be performed in real-time, 

something especially challenging when decomposing motor neuron function from multiple muscles 

simultaneously. This will require sampling hundreds of EMG channels simultaneously, i.e. 512 

channels could be used to cover 8 to 16 muscles using 64-channels or 32-channels grids respectively. 

Real-time algorithms will have to assure fast data transfer from sensor to robot control logic as well as 

execution of multiple processing steps such as channel-to-channel cross correlation, signal whitening, 

orthogonalization, normalization, optimization of contrast functions (i.e. maximization of non-

Gaussianity of estimated sources), computation of decomposition quality metrics (i.e. pulse to noise 

ratio or silhouette measure) [126]. Despite challenges, initial evidence of real-time decomposition 

possibility was recently provided on fewer EMG channels (i.e., < 200). Fast independent component 

analysis was recently developed to extract motor unit discharge events from high-density HD-EMG 

recordings from healthy individuals’ extrinsic finger muscles [127]. Online decomposition via 

Convolution Kernel Compensation techniques was achieved during slow isometric ankle dorsiflexion 

contractions [128]. Recently, a fully automated convolutive blind source separation technique was 

proposed for extracting dorsi flexor motor unit activity from the recoded surface EMG in real-time 

[129]. Although the proposed method relied on an offline calibration step for computing an EMG 
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separation matrix, it enabled healthy individuals to control in closed-loop their own motor neuron 

activity (i.e., by means of real-time bio-feedback of motor neuron activity), thereby demonstrating the 

possibility of real-time decomposition within closed loop control scenarios. Finally, recent work 

showed the possibility of approximating the complex and computational expensive convolutive blind 

source separation steps within a surrogate model based on deep learning recurrent neural networks 

[130]. Although the method relied on extensive offline training, it allowed relaxing computational 

constraints during the post-training execution phase, something crucial for future real-time control 

applications. 

 

Similarly, to HD-EMG decomposition also the proposed data-driven neuromuscular models (Figs 2-3, 

Sections 2-3) will have to be made computationally efficient yet physiologically correct. This is also 

central for the controllers described in Section 4, which will require designing completely novel closed-

loop schemes that efficiently process large data streams sampled in real-time from the spino-muscular 

system, i.e. spinal neuron discharges and innervated fascicle kinematics, Figs 1 and 4. These large data 

streams will have to be incorporated in numerical models to solve for numerical optimizations online 

(Fig. 3B), with objective functions evaluated based on multi-scale simulations, Fig. 3A [81]. A possible 

way forward is that of approximating sub-components of the proposed neuro-musculoskeletal 

modelling framework via computationally efficient surrogate models [131], [132]. Machine learning-

based regression can be employed to approximate the full input-output relationship of key modelling 

components (Fig. 3), which would otherwise require substantial machine numerical power to be 

operated. This approach has shown to be promising for approximating complex three-dimensional 

musculoskeletal geometries [133] as well as HD-EMG deconvolution-based decomposition techniques 

[134]. Moreover, the use of software-tailored hardware such as FPGAs can further optimize algorithm 

runtime execution speed.  

 

6. CONCLUSION 

Over the next 10-15 years we anticipate the advent of cell- and tissue-in-the-loop control strategies that 

will enable a new class of wearable technologies that can steer neuromuscular form and function over 

short and long timescales. We propose a three-pronged approach that aims to merge multi-modal, non-

invasive, acquisition of biological signals (Fig. 2) with multi-scale neuromuscular modelling (Fig. 3) 

and non-linear optimal robotic control theory (Fig. 4) within an integrative framework (Fig. 1). This 

novel class of steering technologies holds large potentials for improving quality of life. Applications 

ranges from enhancing limb-joint voluntary control in spastic patients, to altering sensory feedback for 

optimal rehabilitation in stroke survivors; to preserving Achilles tendon stiffness to counteract tissue 

degradation in aging, to improving healing following rupture of overstrained soft tissues. Developing 

wearable robotic systems that can truly incorporate neuromuscular physiology in the loop will require 

substantial innovation within the coming decade but, when successful, will enable new avenues for 
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inducing targeted repair of human motor capability at a level not considered before. Gaining more direct 

control over the stimuli that govern neuromuscular function over time will enable (chemo)electro-

mechanical devices to co-adapt with the human body; an achievement that will disrupt the development 

of man-machine interfaces from neuroprostheses, to robotic limbs, to exosuits. 
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