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Abstract

The first anthropomorphic robots and exoskeletons were developed with the idea of combin-
ing man and machine into an intimate symbiotic unit that can perform as one joint system. A
human-robot interface consists of processes of two different nature: (1) the physical interac-
tion (pHRI) between the device and its user and (2) the exchange of cognitive information
(cHRI) between the human and the robot. To achieve the symbiosis between the two actors,
both need to be optimized.

The evolution of mechanical design and the introduction of new materials pushed pHRI
to new frontiers on ergonomics and assistance performance. However, cHRI still lacks on
this direction because it is more complicated: it requires communication from the cognitive
processes occuring in the human agent to the robot, e.g. intention detection; but also from
the robot to the human agent, e.g. feedback modalities such as haptic cues.

A possible innovation is the inclusion of the electromyographic signal, the command
signal from our brain to the musculoskeletal system for the movement, in the robot control
loop.

The aim of this thesis was to develop a real-time control framework for an assistive device
that can generate the same force produced by the muscles. To do this, I incorporated in the
robot control loop a detailed musculoskeletal model that estimates the net torque at the joint
level by taking as inputs the electromyography signals and kinematic data. This module is
called myoprocessor.

Here I present two applications of this control approach: the first was implemented on a
soft wearable arm exosuit in order to evaluate the adaptation of the controller on different
motion and loads. The second one, was a generation of myoprocessor-driven force field on a
planar robot manipulandum in order to study the modularity changes of the musculoskeletal
system.

Both applications showed that the device controlled by myoprocessor works symbiotically
with the user, by reducing the muscular activity and preserving the motor performance.



iii

The ability of seamlessly combining musculoskeletal force estimators with assistive
devices opens new avenues for assisting human movement both in healthy and impaired
individuals.
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Introduction

I, Robot

"Imagine a wearable robot that gives you superhuman abilities, or another one that takes

wheelchair users up standing and walking again..." In his beautiful TED talk in 2011,
Eythor Bender addressed the potential of the human-robot interaction, by describing this new
technology as "something that you put in the morning and it will give you extra-strength and

it will further enhance your speed by helping you on your daily routine" (Bender, 2011).
Nowadays, wearable robotics has expanded in several areas, embracing the civil and

industrial domains. In particular, the introduction of smart sensing and actuation that
can interface the user and the robot through biological signals made the human-machine
interaction close to the symbiosis goal (Masia and Vitiello, 2020).

However, to completely achieve the synergistic effort of these multiple actors, it is
necessary to find the best way for the user’s intention detection. How can we find it? Daniel
Wolpert (Wolpert, 2011) invited to reflect that all living being that move voluntarily have a
brain: the complexity of the movement somewhat is reflected in the complexity of our brain.

For this reason, the best way to control a robot that can cooperate with a user in a
symbiosis way is to include in the machine control loop the same motor command that the
brain sends to the motor system: this can be done through electromyographic signal.

The electromyographic signal (EMG) is the muscle fiber electrical activity which reflects
the signal that our brain uses. The detection and the inclusion of these signals in a robotic
control loop through a human-machine interface (HMI) have the potential to make user and
robot a single being through a perfect symbiosis.

Assistance and rehabilitation: two sides of the same coin

Work-related musculoskeletal disorders (WRMDs) are the most common occupational ill-
nesses in Europe: nearly of 50% of european worker suffer from back, neck or upper limb
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Figure 1 Human-machine symbiosis

disorders, causing significant health and cost issues (Iden, 2017). These health issues cause a
huge financial burden for companies and healthcare system. In the worst cases, WRMDs
could become chronic, with drastic consequence for the quality of life of the worker. Most
disorders are related to repetitive movements, including also overhead tasks and awkward
body postures (Grieve and Dickerson, 2008).

In the last few years, several companies started to develop and commercialize wearable
upper limb exoskeletons to improve condition for workers in order to reduce musculoskeletal
injuries: examples of commercially available upper-limb exoskeletons for workers are
EksoVest (EksoBionics, Richmond, California, USA), Airframe (Levitate Technologies,
San Diego, California, USA), ShoulderX (SuitX Emeryville, California, USA), PAEXO
(Ottobock, Duderstadt, Germany), and Skel’Ex (Skel’Ex, Rotterdam, The Netherlands). All
these devices have the aim to augment human performance and assist the movement, by
reducing the effort of the user.

Robot devices are also increasingly being used in neurorehabilitation therapies, specially
on disorders related to the central nervous system: disorders related to age, spinal cord
injuries, multiple sclerosis, traumatic brain injuries, cerebral palsies and strokes induce a loss
of arm dexterity in manipulating and communicating. Various strategies have been explored
to improve motor recovery and they found that the best outcomes is in the acute phase of
recovery (Bütefisch et al., 1995; Kwakkel et al., 2004; Van Peppen et al., 2004). For these
treatments, robots assistance can increase the intensity of practice and relieve therapists from
the demanding task of manually assisting the patient. Robot-assisted therapy has shown
encouraging results, comparable to the ones achieved with traditional therapy (Klamroth-
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Marganska et al., 2014), while allowing greater patient compliance and a quantitative, more
accurate monitoring of the subject’s performance.

Unfortunately, currently available robotic platforms are not logistically capable of follow-
ing the patient after discharge from physical therapy. Patients go back home, training stops
and their conditions plateau or even deteriorate.

Motivation and aim of the thesis

Robots are currently used to enable stroke survivors to perform intensive training under the
influence of assistive forces. However, present-generation devices often use simple and fixed
strategies, with little or no account for the patient’s residual functions. One potential way to
personalise treatment is to explicitly take the residual muscle activation into account.

Through EMG signals, it is possible to estimate the force generated by a particular muscle
or use it as an input to control a robotic device in order to provide assistance in a symbiotic
way. The development of a myoprocessor, a real-time module that estimates the force of a
muscle or a group of muscles through a model-based approach, is an open challenge that
could have a strongly impact both in daily activities, industry and rehabilitation.

This thesis work had the following scientific and technological objectives:

- to develop a biomechanical model of the musculoskeletal system, which allows to
estimate the forces generated by each muscle in real-time

- to create a human machine interface (HMI) on a elbow exosuit that can adapt the
assistance to different load and velocity conditons by keeping trasparent the exosuit’s
intrinsic dynamics and the external mechanical loads to the individuals’ musculoskele-
tal systems

- to use the myocontrol module on a planar robot manipulandum to add a virtual muscle
that can modify neuromuscular control in order to study its adaptivity.

The last aim required that the myoprocessor reliably estimated the muscle torque in
each explored arm configuration. This implied a robust modelling of muscle contraction
dynamics and muscle kinematics on a biomechanical point of view. The only way to achieve
the proposed aims was to estimate the joints torques produced by the muscle by using an
accurate and complex model-based approach.
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Outline of the thesis

The first part of the work is an overture: the aim is to provide insight about the field of my
PhD project. Chapter 1 is a brief introduction on myoelectric control and its applications.
Chapter 2 presents an historical digression on the musculoskeletal modeling. This section
describes the different approaches presented in literature by highlighting their limitations.

In part II I describe the approach taken in order to develop a real-time myoprocessor
module for use in conjunction with a planar robot manipulandum. During my PhD project
I developed myoprocessor modules with increasing level of biomechanical realism and
computational complexity (Chapter 3, 4, 5). Real-time implementation is also addressed here
(Chapter 6).

Part III discusses two applications for the myoprocessor framework: in Chapter 7 I
describe how to control a soft wearable exoskeleton (exosuit) with a myoprocessor in order
to partly compensate for user effort. In Chapter 8 I combine a myoprocessor module with
the planar robot manipulandum in order to apply force field that mimics the contribution
of an individual muscle. The aim is to study the modularity and the adaptivity of the
musculoskeletal system.

The last Chapter draws general conclusions on the work, highlights our major contribu-
tions and elaborates on the open questions and paths for future work.



Part I

Model-based myoelectric control



Chapter 1

Introduction to myoelectric control and
musculoskeletal modeling

Figure 1.1 Myoelectric control pattern recognition. Image adapted from (Asghari Oskoei
and Hu, 2007)

Myoelectric control approaches allow to detect movement intentions from the recorded
movement and EMG signals. This intention detection can be used as an input to control a
robot device (Cavallaro et al., 2006) or, more in general, as a human-machine interface (Fer-
reira et al., 2008). Myoelectric control can be divided in two main approaches: classification
algorithm and model-based approach.
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The efficiency of classification is important to validate the model (Hudgins et al., 1993),
and the best compromise between efficiency and computational cost (Asghari Oskoei and
Hu, 2007) must be identified. Englehart et al. (Englehart and Hudgins, 2003) developed
a real-time myoelectric controller for the upper limb based on the wavelet classification:
this approach is efficient, but it was tested using only two channels for movements and four
channels for the EMG activity.

In the literature there are many works focused on the myoelectric control: Nielsen et
al. (Nielsen et al., 2011) trained a neural network to estimate force in the bilateral mirror
training. With this approach, they estimated the parameters of an amputated arm based on the
activity of the other one (Jiang et al., 2012). One limitation of this approach is the different
crosstalk between the amputated arm and the intact limb. The first has more crosstalk, so the
signal is noisier but it was a good compromise with respect to the reinnervation technique
(Kuiken et al., 2009). However, classification algorithm works only under training and are
bounded to the training workspaces.

The second approach - i.e. model-based approach - has the aim at reconstructing the joint
torque by using detailed musculoskeletal model. Musculoskeletal models can estimate the
muscle force through mathematical relationships that model the dynamics of excitation and
contractile behavior. In this way, it is possible to generalise the control through a muscle force
estimation. Several studies demonstrated that a model-based real-time framework is robust
enough to control prosthesis (Sartori et al., 2019) and rigid exoskeleton (Durandau et al.,
2019), both in physiological and pathological cases. Since my work is focused on specific
applications that are described in the following chapter, here I only focus on musculoskeletal
modelling approach.



Chapter 2

Musculoskeletal modeling

2.1 Muscle contractile behavior

The muscle unit is composed by a group of muscle fibers. These fibers can be arranged along
the direction of the tendon - i.e. parallel muscle fibers - or along a specify direction - i.e.
pennated fibers. The angle between the pennated fibers and the tendon is called pennation
angle φ . Pennates fibers are connected to the aponeurosis of the muscle, which is also called
the inner portion of the tendon because its properties appear identical to the properties of the
"external" portion of the tendon.

To understand muscletendon mechanics, the effect of pennation on musculotendon
function can be ascertained from the arrangement shown in Fig. 2.1 by assuming the muscle
is isovolumic and the distance between the aponeurosis of origin and insertion is constant.
Specifically, the major effect is that φ , the orientation of muscle fibers to tendon, increases as
fibers shorten.Thus, muscle fibers shorten in a direction that is not colinear with the direction
in which tendon stretches (Fig. 2.1 red arrows). Though, this planar representation may also
convey the notation that the longitudinal forces in tendon act to rotate muscle fibers, such
effects on moving the body segments are believed to be either nonexistent or secondary to
effects caused by the longitudinal forces. The muscle fiber of length LM comprises a series of
sarcomeres that have the same length. During muscle contraction, the sarcomeres are excited
simultaneously to generate muscle strength. The sarcomere, in turn, encloses filaments of
actin and myosin which, through mutual sliding, cause the shortening of the fiber. The motor
unit comprised a series of muscle fibers that are innervated by the same motor neuron. The
motor unit is the smallest functional unit associated to the muscle contraction. Motor units
are recruited based their size (size principle, (Henneman et al., 1965)) and the force that can
be produced: the type I motor unit, the first recruited, are slow, little and they are resistant
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Muscle

Tendon
external internal

aponeurosis

fibers

φ

Figure 2.1 Relation among muscle fibers and tendon in a pennated muscle. Muscle fibers
have the same length and are oriented at some φ to the tendon axis of pull. Functionally,
tendon can be considered to consist of an internal portion (i.e. the aponeurosis of muscle
origin and insertion) and external portion. As muscle fibers shorten, muscle is assumed to
mantain isovolume, tendon to move onli along its axis, and fibers to become more pennated
(i.e. φ increases (Zajac, 1989).

to fatigue. When it is necessary to increase the muscle force, the type IIa motor units are
recruited. Finally, there are the type IIb motor units that are the strongest, fastest and more
fatiguing motor units. The central nervous system can control the number of the motor units
and the activation frequency in order to generate the desired force (Zajac, 1989). In a muscle
there are several motor unit that control the contraction, but to simplify the problem, classical
muscle modeling approximates the whole muscle with a single fiber controlled by a single
motor neuron (i.e. a single-fiber motor unit).

Muscle dynamic behavior results from the combination of two distinct processes: activa-
tion and contraction. Activation dynamics converts neural activation, that can be detected by
using EMG techniques, into muscle fiber recruitment. Contraction dynamics converts the
muscle fiber recruitment into muscle force.

2.2 Dynamic contraction modeling

Several musculoskeletal models derive from the one introduced by A. V. Hill (Hill, 1938). He
modeled the muscle fiber as the combination of a contractile (CE) and a series (SE) element,
as shown in Fig. 2.2.
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SE

F0

CE

Figure 2.2 Hill musculoskeletal model.

The contractile element has a force generator and a damping element. The dynamic
equation to obtain the muscle fiber force F is

F(t) = FM
0 −

a+FM
0

b+ L̇
L̇ (2.1)

where FM
0 is the maximum isometric force, L̇ is the contraction fiber velocity and a, b

are model parameters (a: heat of shortening; b: rate of energy liberation). Eq. 2.1 includes
the muscle thermodynamics. The series element models the instant contraction dues to the
muscle stiffness through the relationship

F(t) =−k(F)∆L (2.2)

This model presents some limitations. It studies only the concentric dynamics, by
ignoring the eccentric ones. With this model is possible to analyze only the maximum
isometric contraction situation -i.e. tetanic contraction-. This condition is limited to a very
limited range. Finally, the model does not include the tendon contribution and the calcium
kinetics.
The "Hill-based" models evolve the paradigms introduced by the Hill model by generalizing
Eq. 2.1 and 2.2 in order to extended them to other conditions, such as eccentric contraction
and non-maximum activation.
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2.2.1 Zajac Model

The work of Felix Zajac model (Zajac, 1989) is a milestone of musculoskeletal modeling. It
extends the Hill model by considering the entire muscle (not only the single muscle fiber),
taking into account also the tendon contribution. The purpose of this model is to estimate
muscle-tendon force starting from muscle activation. Muscle and tendon are a single actuator
that provides movements in conjunction with the dynamics of the body (see Fig. 2.3. The
dynamics directly influences the muscle-tendon length and its velocity contraction: these
values depending by the body movement and position. Body kinematics, instead, depending
by the muscle-tendon force. Given an excitation signal u(t) we can obtain the corresponding
activation signal through the activation dynamics that models the calcium channels opening.
Through the muscle activation a(t), combining with the muscle length LM(t) and the fiber
velocity contraction vm(t), is possible to obtain the muscle force FM(t), that corresponds also
to the tendon force FT (t). The tendon length LT (t) and its time derivative vT are computed
by using the muscle force. These two values close the loop of the scheme, as shown in Fig.
2.3;

Figure 2.3 Zajac musculoskeletal model. Image adapted from (Zajac, 1989)

2.2.2 Rosen-Fuchs-Arcan model

The Rosen-Fuchs-Arcan model (Rosen et al., 1999) was developed to estimate elbow joint
torque during an elbow flexion-extension. The movement was performed along the sagittal
plane by using an upper limb exoskeleton to record elbow position. The authors extended
Hill model by adding EMG signals to obtaine a reliable torque reconstruction. The model
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comprised three blocks: the contractile element (CE), the series element (SE) and the parallel
element (PE). SE and PE represent, respectivetely, the passive component of the tendon and
the passive fiber tissue. Blocks are connected as shown in figure 2.4

PE

CE SE

Figure 2.4 Rosen-Fuchs-Arcan musculoskeletal model. Image adapted from (Rosen et al.,
2001)

The force-extension relationship of these tissues is defined by the following equations:

FSE(t) =
FSE

max
eSEsh

(eSEsh∆LSE(t)/∆LSE
max −1) (2.3)

FPE(t) =
FPE

max
ePEsh

(ePEsh∆LPE(t)/∆LPE
max −1) (2.4)

FSE(t), FPE(t) are the SE and PE forces, ∆LPE(t), ∆LSE(t) are the extensions of the cor-
responding element and SEsh, PEsh are shape factors. Finally, the CE component represents
the muscle fiber activity, that is characterized by two relationship: the force-length fl and the
force-velocity fv relationship.

FCE(t) = fv(VCE(t)) · fl(LCE(t)) ·FCE
max ·u(t) (2.5)

where VCE(t) and LCE(t) are the fiber velocity contraction and the fiber length and u(t) is
the normalized activation level.

The force-length relationship fl is a decreasing exponential function that depends by the
CE element length normalized respect to the resting length.

fl(t) = e−0.5((LCE(t)/LM
0 −1.05)/0.19)2

(2.6)

The fv relationship is bounded to the fiber velocity contraction normalized respect to its
maximum value.
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fv(t) =
0.1433

0.1074+ e−1.409sinh(3.2VCE(t)/V M
max+1.6)

(2.7)

The inputs of the model are the activation level of the motor unit and the elbow joint
position and the output is the joint torque. The force generated by the contractile element is
the same of the series element (FCE−SE(t) = FCE(t) = FSE(t)) and the muscle force is the
sum between FCE−SE and FPE (FM(t) = FCE−SE(t)+FPE(t)).

2.2.3 Lloyd-Besier model

The Lloyd-Besier model (Lloyd and Besier, 2003) evolves the Zajac model and was originally
developed to estimate the net torque at the knee level through an inverse dynamics approach.
Respect to Rosen (Rosen et al., 2001) that limits the study to the biceps, the triceps and
the brachioradialis, this model takes into account 13 muscle-tendon units, by using simpler
equations but exploring a huger case. The force generated by each unit is estimated through
the force-length fl(t), the force-velocity fv(t) and the parallel passive elastic force–length
fp(t) relationships. The curves are normalized respect to the maximum isometric force FM

0 ,
optimal fibre length LM

0 , and maximum muscle contraction velocity vM
max. The force-length

relationship fl(t) is obtained by a cubic spline interpolation of normative data points, fv(t) is
taken from (Schutte et al., 1993) and fp(t) is obtained from an exponential relationship. The
general equation to estimate the muscle-tendon force (FMT (t)) is

FMT (t) = FT (t)

= FM
0 [ fl(t) · fv(t) ·a(t)+ fp(t)] · cos(φ(t))

(2.8)

where φ(t), the pennation angle, depended by the muscle length LM(t), the muscle
optimal fiber length LM

0 and by its value at the muscle optimal fiber length (φ0):

φ(t) = arcsin
(

LM
0 sin(φ0)

LM(t)

)
(2.9)

The muscle activation level a j for the muscle-tendon unit j derives from the excitation
level u j through a non-linear shape factor A(−3 < A < 0)

a j(t) =
eAu j(t)−1

eA −1
(2.10)

The muscle fibre lengths is calculated by forward integration of the fibre velocities ob-
tained from the force–velocity and force–length relationships using a Runge-Kutta–Fehlberg
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algorithm (Fehlberg, 1968). To obtain the net torque at the knee level, the muscle-tendon
force of each unit is multiplied by the corresponding moment arm and the vectorial sum
provides the model output.

2.2.4 Thelen model

The Thelen model (Thelen, 2003) is an evolution of Zajac model. It was developed to
study the lower limb dynamics, by focusing on the ankle joint torque estimation. The
activation dynamics and contraction dynamics follow two non-linear first order differential
equations. There are two time constants for the activation dynamics: one faster for the
activation (τact = 10 ms) and one slower for the deactivation (τdeact = 40 ms). The contraction
dynamics models the relationship between the force-length relationship of the contractile
element and the elastic properties of the tendon element. The forces are normalized respect
to the maximum isometric force FM

0 and the lengths respect to the optimal fiber length LM
0 .

I report the normalized element with a ’ ˜ ’ respect to the non-normalized ones (e.g.: a(t),
ã(t)).

The model output is the muscle-tendon force FMT (t) (see Fig. 2.5). It use as inputs the
EMG signals and the muscle fiber length LM(t). From the EMG signals u(t) is possible to
obtain the activation level a(t)) as

ȧ(t +∆t) =

(u(t)−a(t))/τact , u(t)≥ a(t)

(u(t)−a(t))/τdeact , u(t)< a(t)
(2.11)

The muscle fiber has two elements: the contractile element and the passive element. The
tendon force is the same generated by the muscle element, so we have FMT (t) = FM(t) =

FT (t). The normalized passive force F̃PE(t) is described by the equation

F̃PE(t) =
ekPE(L̃M(t)−1)2/εM

0 −1
ekPE −1

(2.12)

where kPE is a shape factor and εM
0 is the passive strain due to the maximum isometric force

(εM
0 = 0.6FM

0 ).
The tendon force F̃T (t) is computed as

F̃T (t) =


F̃T

toe
ektoe−1(e

ktoeεT (t)/εT
toe −1), εT ≤ εT

toe

klin(ε
T (t)− εT

toe)+ F̃T
toe, εT > εT

toe

(2.13)
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PE

CE

SE

muscle tendon

Figure 2.5 Thelen model muscle-tendon scheme. Panel (a) shows the force-length relationship
and the passive element curve. Panel (b) represents the force-velocity relationship and panel
(c) the tendon curve (Thelen, 2003). Image adapted from (Thelen, 2003)

where εT (t) is the tendon strain, εT
toe is the strain when the tendon is in the linear range, klin

is a scale factor and Ftoe is the maximum tendon force in its linear range. The contractile
element force is obtained as

FCE(t) =
FT (t)

cosα(t)
−FPE(T ) (2.14)

The force-length relationship is modeled as a Gaussian function

fl(t) = e−(L̃M(t)−1)2/γ (2.15)

the fiber contraction velocity is computed as

V M(t) = (0.25+0.75a(t))V M
max

F̃CE(t)−a(t) fl(t)
b(t)

(2.16)
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b(t) =

a(t) fl(t)+ F̃CE(t)/A f , F̃CE(t)≤ a(t) fl(t) shortening
(2+2/A f )(a(t) fl(t)F̃M

len−F̃CE)(t)
F̃M

len−1 , F̃CE(t)> a(t) fl(t) lengthening
(2.17)

F̃M
len is the maximum normalized force produced by the fiber during lengthening and A f

is a shape factor. Finally, the tendon length is obtained as LT (t) = LMT (t)−LM(t)cosα(t).

2.3 Muscletendon kinematics modeling

Musculoskeletal modeling and simulations require accurate estimates of musculotendon kine-
matics including musculotendon length (LMT ) and moment arms (JM) to accurately predict
musculotendon forces (FMT ) and joint moments. It is necessary to not have discontinuities
in the predicted musculotendon kinematics (Gao et al., 2002; Garner and Pandy, 2000) by
using equation function that are continuosly differentiable.

2.3.1 Estimation of musculotendon kinematics as function of joint an-
gles

Pigeon et al. modeled musculotendon lengths and moment arms of human upper limb
muscles through polynomial functions of n coefficients that took joint angles as input (Pigeon
et al., 1996). They obtained the musculotendon length equations using anatomical and model
data and they derived them to estimate the moment arms. LMT and JM for the j−muscle
were described by the equations

LMT
j = k j0 +

nDoF

∑
i=1

(k j
i1qi + k j

i2q2
i + · · ·+ k j

inqn
i ) (2.18)

JM
j =

nDoF

∑
i=1

(k j
i1 + k j

i2qi + · · ·+ k j
inqin−1) (2.19)

where qi is the angle value for the i−joint, nDoF the degrees of freedom of the considered
joints and ki1, . . . ,k j

in is the sequence of the polynomial k coefficients. Table 2.1 shows the
coefficient k for the upper limb muscles and Fig. 2.6the muscle length trend for the elbow
joint muscles.
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Long head
of biceps

Short head
of biceps

Figure 2.6 Muscle-tendon length trend by following Pigeon model (Pigeon et al., 1996).

2.3.2 Estimation of musculotendon kinematics using multidimensional
B-spline

Sartori et al. used instead of a single function per muscle, a set of differentiable polynomial
equations to estimate musculotendon kinematics. In particular, they opted for continuously
differentiable multidimensional cubic splines (Sartori et al., 2012) based on estimates of
musculotendon lengths LMT obtained for different body configurations. These lengths were
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extracted from musculoskeletal geometry models using Opensim (Delp et al., 2007). They
developed, tested, and validated the method on lower limb muscle models (Delp et al., 1990;
Winby et al., 2009). A cubic spline consists of a series of third-order polynomials spliced
together to preserve continuity of the first and second-order derivatives. The points at which
polynomials are spliced together are called nodes and they respect the relationship

a = x0 < x1 < · · ·< xn = b (2.20)

where a and b are the lower bound and the upper bound of the interval Γn ∈ R. A spline
s(x) with n+1 nodes can be interpolated from the nominal data y as a linear combination of
n+3 cubic polynomials u1,u2, . . . ,un+3

s(x) =
m

∑
i=l

ciui(x) (2.21)

where ci are the coefficients, m = min(l + 3,n+ 3), l =
[x−a

h

]
and h is the distance

between nodes. If s j(x) represents the musculotendon length of the j−muscle, the corre-
sponding moment arm JM

j will be

JM
j =

ds(x)
dx

(2.22)

It is possible to extend the spline formulation described above to a multidimensional case
of dimension d (Habermann and Kindermann, 2007) by taking d different grids ∆1,∆2, . . . ,∆d

and the corresponding interpolation data y1, . . . ,yd . If ni is the number of nodes in ∆i and
ci1i2...id the spline coefficients, the spline function sd(x) can be written as

sd(x) =
n1+3

∑
i1=1

. . .
nd+3

∑
id=1

ci1i2...id ·
d

∏
j=1

u j
i j

(
x j) (2.23)

The moment arm for a multi joint muscle corresponds to the partial derivative of the
musculotendon length LMT respect to the qk joint

JM
j =

∂LMT

∂qk
=

∂ sd(x)
∂qk

(2.24)

Fig. 2.7, 2.8 and 2.9 show respectively the musculotendon length, the shoulder mo-
ment arm and the elbow moment arm of the long head of the biceps computed by using
multidimensional cubic b-spline technique.
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Figure 2.7 Musculotendon length of the long head of the biceps computed through multidi-
mensional cubic bi-spline

Figure 2.8 Musculotendon shoulder moment arm of the long head of the biceps computed
through multidimensional cubic bi-spline
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Figure 2.9 Musculotendon elbow moment arm of the long head of the biceps computed
through multidimensional cubic bi-spline

2.3.3 Net torque computation

The projection of the muscle force FM(t) at the joint level can be obtained by combining it
with the moment arm JM in order to compute the muscle torque τM

τ
M(t) = J(q(t))T ·FM(t) (2.25)

Finally, the net torque τnet(t) is the sum between all muscle torques.

τ
net(t) =

nMuscles

∑
j=1

τ
M
j (t) (2.26)



Part II

Myoprocessor module
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The myoprocessor is a Real-time EMG-driven model that estimates the human joints
torque starting from the EMG signals and the joints kinematics. The torque estimation
is obtained from detailed biomechanical models and it can be used to control a device.
Myoprocessor is a Human Machine Interface that directly connects the human musculo-
nervous system with a target to control. The myoprocessor needs to be calibrated on each
subject in order to obtain the most reliability on a biomechanical point of view.

During my PhD, I developed several versions of the myoprocessor module, that can be
summarized in three main versions:

1. Proportional myoprocessor module

2. Hill-based myoprocessor module: preliminary version

3. Hill-based myoprocessor module: final version

The first module was a proportional myoprocessor (Chapter 3) that estimated the muscle
torque in isometric conditions. Here the calibration involved the muscle geometry, modelled
through polynomial function with free coefficients.

The second version included an Hill-based myoprocessor module (Chapter 4) that can
describes the contraction aspect related to the arm movement that the proportional model
was not able to capture. However, the polynomial estimation of muscle geometry did not
reliable estimate the muscle length and the moment arm of each muscle and, for this reason,
I changed my approach to the last version of the myoprocessor module.

This last version (Chapter 5) keeps the same Hill-based model structure of the version 2,
but estimates the muscle geometry by scaling normative musculoskeletal models in order to
match subjects anthropometric sizes.



Chapter 3

Proportional myoprocessor module1

As first step in the myoprocessor development, I decided to focus on musculoskeletal
geometry identification. For this study I took into account 8 muscle-tendon units: anterior
and posterior deltoid, the long and the short head of the biceps, the long and the medial head
of the triceps, brachioradialis and the pectoralis major. To simplify the problem, I assumed
that in isometric conditions the muscle force was proportional to the muscle activation, u(t),
defined as the envelope of the EMG signal:

FM = A ·u (3.1)

where A is a diagonal matrix with aii = F i
max/U i

max. Parameter vectors F i
max and U i

max are,
respectively, the maximum isometric force and maximum activation for the i muscle.

3.1 Muscle geometry and force capability

The joint torque τm is calculated as

τm = Jm(q)T · fm (3.2)

where Jm(q) is the moment arms matrix of the muscle-tendon complex and q is the upper
limb configuration (vector of shoulder and elbow angles). The moment arms matrix Jm(q) is
composed by the Jacobian vector of the muscle lengths. Each i−row ji contains the partial

1Partial content of this Chapter has been published as Lotti N. and Sanguineti V. Toward emg-controlled
force field generation for training and rehabilitation: From movement data to muscle geometry. International
conference on Rehabilitation Robotics (ICORR), 17-20 July 2017, London (UK).
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derivatives of the muscle-tendon length LMTi of the muscle i respect to the shoulder angle qS

and the elbow angle qE .

ji =
[

∂LMTi
∂qS

∂LMTi
∂qE

]
(3.3)

I tested three different models to estimate muscle geometry. On the first one, I assumed
the moment arms constants with respect to arm configuration. The rows ji of Jm were

ji = constant (3.4)

This corresponds to assuming that muscle lengths change linearly with joint rotations.
Maximum muscle force and moment arms always appear multiplied together, thus the model
parameters are in fact the moment arms times the peak muscle force. In conclusion, the model
has two parameters for bi-articular muscles (the short head of the biceps and the long head
of the triceps) and one parameter for mono-articular muscles, with a total of 2×2+6 = 10
parameters.
The second tested model of muscle geometry was based on cadaver and normative anatomical
data: Pigeon et al (Pigeon et al., 1996) suggested that muscle lengths have a linear dependence
on shoulder angle qS and a polynomial dependence on elbow angle, qE (up to 5-th order
depending on muscle). Following Pigeon (Pigeon et al., 1996), the i-th row of Jm(q),
corresponding to the i-th muscle, can be calculated as

ji =
[
kSi kE0i

+ kE1i
qE + kE2i

q2
E + kE3i

q3
E + kE4i

q4
E + kE5i

q5
E

]
(3.5)

In a bi-articular muscles, the moment arm function is described by up to 7 parameters per
muscle. In mono-articular muscles, there either one parameter for the shoulder muscle or six
parameters for the elbow. This makes a total of 2×7+3×6+3 = 35 parameters. I tested
two variants of this model. In one case I used the normative estimates provided in (Pigeon
et al., 1996) for each subject; see Table 2.1.

In this normative polynomial model, the only parameter is the vector of maximum force
lengths, Fmax – a total of 8 parameters. In a variant of the same model, I estimated the
polynomial parameters for each subjects acquired. As in constant moment arms model,
polynomial coefficients and peak muscle force always come multiplied together and cannot
be estimated independently. This variant of the model has 35 parameters as calculated above.
It is possible to obtain the muscle-tendon length for each muscle tendon unit by integrating
the corresponding ji respect to the joint angles. For the polynomial models the muscle tendon
length LMTi for the i−muscle is
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LMTi =

qS1,qE1x

qS0,qE0

ji dqS dqE (3.6)

= kSiqS + kE0i
qE + kE1i

q2
E + kE2i

q3
E + kE3i

q4
E + kE4i

q5
E + kE5i

q6
E +LMTi

rest (3.7)

where LMTi
rest is the muscle-tendon length during the resting state. Fig.2.6 shows the muscle-

tendon length trend of the short head of biceps, long head of biceps, long head of triceps and
brachioradialis respect the elbow joint angle qE by using the normative polynomial model.

As discussed above, I developed this myoprocessor to work in conjunction with a planar
robot manipulandum: for this reason, another relevant quantity that I wanted to estimate
were endpoint forces FMT

H in order to compare them to the force generated by the robot
FH . Assuming that the torso and the wrist were blocked and that the arm only moves in the
horizontal plane, were possible to uniquely determine the endpoint force FMT

H from the joints
torque τm as

FMT
H = J(q)−T

τm (3.8)

where J(q) is the Jacobian of the forward kinematics transformation x = x(q), where x is
hand position. Given the above assumptions we have:

J(q) =

[
−LU sinqS −LF sin(qS +qE) −LF sin(qS +qE)

LU cosqS +LF cos(qS +qE) LF cos(qS +qE)

]
(3.9)

where LU and LF are the upperarm and the forearm lengths.
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3.2 Model calibration

I designed a motor task specifically aimed at parameters identification and test myoprocessor
module. In this work I studied how limb and muscle geometry – the way endpoint position
and muscle torque change with arm configuration – can be estimated from movement data
and be used to extend the linear controllers used in (Berger et al., 2013; de Rugy et al., 2012)
to reliably estimate isometric endpoint forces in various arm configurations.

3.2.1 Experimental Apparatus

The subjects sat in front of a 19′′ computer monitor placed vertically about 1 m away, at eye
level. They grasped with their right hand the handle of a planar manipulandum with two
degrees of freedom - see Casadio et al. (2006) for details. Torso and wrist were restrained.
The robot handle included a support for the forearm, which partly compensated for the
effect of gravity. A Force/Torque sensor (Gamma 130-10, ATI Industrial Automation, USA)
was mounted on the robot handle to measure the interaction force between subject and
robot. Seat position was adjusted so that, with the cursor pointing at the center of the
workspace, the elbow and the shoulder joints were flexed about 90◦ and 45◦. A multi-channel
wireless EMG system (EMG Wave plus, Cometa srl, Italy) was used to record the muscle
activity from selected muscles in the subject’s right arm. The activity of seven muscles was
recorded: anterior and posterior deltoid, the long and the short head of the biceps, the triceps,
brachioradialis and the pectoralis major. As it is difficult to obtain separate EMG recordings
for different parts of the triceps, I separately modelled long head and medial head of the
triceps, but assumed that they are driven by the same activation. I used an additional electrode,
placed on the sternum, to record the electrocardiography (ECG) signal. One infrared camera
(Slim 13, Optitrack, NaturalPoint Inc, USA) placed above the robot workspace recorded
the movements of three IR LED markers, placed on the subject’s shoulder acromion and
elbow joint and on the robot handle. The experimental set-up was controlled by two network-
connected PCs, communicating through the UDP protocol. PC1 was responsible for the
management of a software application, written in Simulink and based on the Real-Time
Windows Target toolset, which was responsible for managing the experimental protocol,
force recordings and robot control. PC2 was responsible for EMG and camera recordings
and marker detection. Fig. 3.1 shows the setup of this experimental apparatus.
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Figure 3.1 Experimental apparatus of the proportional myoprocessor calibration.

3.2.2 Task and experimental procedure

The task alternates reaching movements between seven targets, P1, . . . ,P7 (Flanagan and
Rao, 1995) evenly distributed within the robot workspace – see Fig. 3.2, (a) – and isometric
force steps in twelve directions, while the hand is centered in each of the Pi targets. Once
the spatial target is reached, the robot generates a position-dependent force (stiffness: 8
kN/m) directed toward the target. Subjects are instructed to push against the force field to
generate quasi-isometric force steps (amplitude: 25 N) in twelve directions. The target force
is displayed as a white circle. The current force generated by the subject is depicted as an
arrow; see Fig. 3.2 (b). Once the target force is reached, the target changes its color from
white to red, and the subjects must hold the force until the target circle disappears (after 3 s).
At this point, the subjects return back to the start position and must relax for 3 s, until a new
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force target appears. The whole sequence (movement and force generation) was repeated
a total of 5 times. A total of four subjects (2 M + 2 F, age 24±1) participated in this pilot
study, all right-handed and with no previous history of neurological disorders; see Table 3.1
for the demographic data.

Figure 3.2 Task scheme of the proportional myoprocessor calibration. Panel (a) shows the
target position in the workspace and the movements toward the targets (black arrows). Panel
(b) shows the isometric force step on a single target.

Table 3.1 Subjects demographic data

Subject Gender Age Height [m] Weight [kg]
S1 F 23 1.70 60
S2 M 25 1.80 75
S3 M 24 1.85 85
S4 F 24 1.60 50

3.3 Data analysis and model identification

Computer PC2 recorded the raw EMG signals from the seven muscles (sampling rate: 1000
Hz). The recorded muscle activity of the major pectoralis was contaminated by the cardiac
activity. Using the recorded ECG signal, I removed this artifact by using a cross-correlation
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method (Hof, 2009). These signals were online rectified and low-pass filtered with a 100-th
order FIR filter (cut-off frequency: 6 Hz). The resulting EMG envelopes were sent to PC1
via a UDP connection – see Fig. 3.1. The same computer also acquired the IR camera
frames (sampling rate: 100 Hz) and detected the position of the three markers in camera
coordinates. The camera was previously calibrated by comparing the trajectories of the
’robot’ marker with the end effector trajectories estimated through the robot encoders. I
used the Direct Linear Transform to translate these measures into Cartesian coordinates in
the robot coordinate frame. The following signals: (i) envelope of EMG activity, u(t); (ii)
endpoint trajectory, x(t); (iii) forces F(t) against the robot handle were sampled at 100 Hz
and saved for further analysis. Although the set-up allows for real-time estimation of the
joint angles qS(t) and qE(t), from the estimated marker positions, in these initial experiments
all processing was performed off-line. The camera measurements were used to estimate the
skeletal geometry (LU and LF ). Using these parameters, through inverse kinematics we then
derived off-line the joint angles for each time step from the endpoint trajectory. This is less
accurate than estimating the joint angles directly from the camera measurements, but does
not require to process the latter in real-time. To estimate the muscle parameters, we focused
on the isometric portion of the experiment, which allows to identify the spatial patterns of
activation of the individual muscles (de Rugy et al., 2012). The maximum activation, Umax

was estimated, for each muscle, as the maximum activation over all force directions and
arm configurations. The remaining parameters include muscle geometry parameters and
peak muscle force. In the first variant of the polynomial model, the normative ones, peak
muscle forces are the only parameters. In the constant moment arms and the second variant
of the polynomial, the fitted ones, peak muscle force always appear multiplied by the muscle
geometry coefficients so I can only estimate their product. By defying B(q) = JM(q)T ·A,
in all three models B is a function of the parameters set p, i.e. B = B(q, p). The estimation
procedure is a quadratic optimisation problem:{

minp ∑
T
t=1

[
FH(t)− J(q(t))−T B(q(t), p) ·u(t)

]2
+µ pT · p

Bi j(q, p) ·bi j > 0 i = 1 . . .2, j = 1 . . .M
(3.10)

where FH is the endpoint force exerted on the robot handle (equal and opposite to the force
generated by the robot handle). In other words, optimal model parameters that minimise the
mean square error between actual and predicted endpoint force. The additional constraints
reflect muscle geometry, in the sense that irrespective of the parameters the moment arm of a
given muscle with respect to a joint cannot change its sign. We set bi j = 1 if muscle j is an
extensor for joint i, bi j =−1 otherwise. In the normative polynomial model, the constraint
reduces to x j = FMT j

max > 0 (muscle forces can only be positive). The second part of the cost
function penalize solutions in which antagonist muscles exert greater forces.



3.4 Results 31

3.3.1 Model Evaluation

To quantify fitting performance, I used an extended version of the coefficient of determination,
r2, which measures similarity between vector quantities (Crosby et al., 1993). The coefficient
r2 is defined in terms of the cross-correlation matrices between the actual (FH) and predicted
(FMT

H ) endpoint force vectors. If I define Σxy = cov(x,y), where x and y are either F or FMT
H ,

I have:
r2 =

1
2

Tr(Σ−1
FHFH

ΣFHFMT
H

Σ
−1
FMT

H FMT
H

ΣFHFMT
H

) (3.11)

As in its scalar counterpart, r2 = 1 corresponds to exact fitting, whereas r2 = 0 denotes no
correlation between measure and prediction. For each subject, I calculated r2 separately
for each trial, by considering all force trajectories and arm configurations. I then averaged
these values over trials. Reconstruction performance alone is not enough to assess the
model differences in predicting muscle forces. When applied to scalar data, r2 measures
similarity irrespective of scale. Similarly, when applied to vector quantities, r2 measures
similarity irrespective of vector magnitude and rotation. To account for these, I calculated the
matrix regression coefficient A so that FH ≈ A ·FMT

H , calculated as A = ΣFHFMT
H

·Σ−1
FMT

H FMT
H

.
I then factorized A = ΛR where Λ is a diagonal (scale) matrix and R is an orthogonal
(rotation) matrix. I finally took rotation= tan−1(A21/A22) and scale= sign(A11)

√
A2

11 +A2
12

as measures of rotation and scale of FMT
H with respect to FH . Exact fitting not only has r2 = 1

but also rotation= 0 and scale = 1.

3.4 Results

In the following pages I reported the results obtained by the calibration of the proportional
myoprocessor module. This results were also published in the ICORR 2017 proceedings
(Lotti and Sanguineti, 2017).

3.4.1 Muscle parameters estimation

The results of the analysis are reported in Fig. 3.3, in a typical subject, for all seven joint
configurations. For each muscle, the polar plots depict the spatial selectivity of muscle
activation. The columns of the matrix P(q) = J(q)−T B(q) denote, for each muscle, its
direction of action or ’pulling vector’ (de Rugy et al., 2012) – displayed as an arrow in the
figure. The contribution of each muscle to the endpoint force in a given direction is calculated
by multiplying the pulling vector by the normalised muscle activation.
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Long head
of biceps

Short head
of biceps

Figure 3.3 Spatial selectivity of activation and directions of action of the arm muscles, for
a typical subject (S3). For each muscle, the polar plots depict the direction dependence of
muscle activation. The arrows denote the muscles’ directions of action or ’pulling vectors’
(de Rugy et al., 2012).

3.4.2 Isometric force prediction

Table 3.2 summarizes, for each subject, the reconstruction performance (r2, rotation and
scale) obtained by the different muscle geometry models. The first model is the constant
moment arms model, the second one is the normative polynomial model and the last one the
polynomial model with the coefficients calibrated for each subject (k∗), the fitted polynomial.

Not surprisingly, the more complex model (the fitted polynomial) generally exhibits the
best performance. The gain of this model with respect to the constant moment arms model is
subject-dependent: accurately modelling muscle geometry provides a gain of 0−6%. With
respect the normative model of muscle geometry, a personalised model produces a 1−14%
increase. Similar differences are observed for scale and rotation. A less obvious finding is
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Table 3.2 Reconstruction performance, per subject and per muscle geometry model

ji = constant ji =

[
kSi

5

∑
j=0

kE jiq
j
E

]
ji =

[
k∗Si

5

∑
j=0

k∗E ji
q j

E

]
Subject r2 scale |rotation| (deg) r2 scale |rotation| (deg) r2 scale |rotation| (deg)
S1 0.73 0.98 8 0.65 0.98 12 0.79 0.98 5
S2 0.73 0.88 24 0.73 0.89 23 0.74 0.89 22
S3 0.72 0.97 14 0.64 0.97 19 0.72 0.97 13
S4 0.63 0.82 31 0.58 0.82 32 0.65 0.85 30
mean±SD 0.70±0.05 0.91±0.08 19±10 0.65±0.07 0.91±0.07 22±8 0.72±0.06 0.92±0.06 17±11

that the constant moment arms model often outperforms the normative polynomial model.
Fig. 3.4 compares the actual endpoint force trajectories FH and their reconstructions FMT

H .
The results suggested that the three muscle geometry models are indeed very different in

reconstruction performance. In particular, the fitted polynomial model clearly outperforms
the other models, specially in specific force directions.

3.5 Discussion

Adaptability to different subjects was an essential requirement of this modelling effort. The
results suggest that accounting for muscle geometry may be important to accurately predict
muscle forces from EMG and movement data. As shown in Table 3.2, I found that a more
accurate model of muscle geometry significantly improves force reconstruction. The fitted
polynomial model was the most adaptable to different anatomical structures because of its
parametric model of muscle geometry k∗. This might explain the performance improvement
with respect to the normative polynomial model, particularly in the two female subjects
(S1 and S4). A less obvious finding is that in spite of its simplicity, the constant moment
arms model outperformed the normative polynomial model (r2, scale and rotation). This
may be due to the fact that the muscle geometry parameters in the normative polynomial
were fixed: they were estimated by Pigeon (Pigeon et al., 1996) through cadaver anatomical
data. This suggests that normative polynomial was good for subjects which reflect this
’average’. In contrast, the parameters of the constant moment arms model were estimated
separately for each subject. However, the constant moment arms model did not consider
nonlinear changes of muscle length as the arm configuration changes, which might explain
why it was outperformed by the fitted polynomial model. I also found that the muscle
geometry parameters can be reliably estimated from combined movement, force and EMG
data. The reconstruction problem defined by Eq. 3.10 used muscle activations to weight the
contributions of the different muscles. If muscles acting on the same joint have similar spatial
patterns on muscle activity, the reconstruction problem may become ill-posed, thus allowing
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Figure 3.4 Actual and reconstructed forces using different models of muscle geometry. Data
came from subject S1 and configuration P6. Panel (a) represents the constant moment arms,
panel (b) the normative polynomial model and panel (c) the fitted polynomial model. Red
line is the reconstructed force FMT

H and the black ones the measured force FH . All repetitions
for each force direction averaged together. Panels (d), (e) and (f) show the time course of the
endpoint forces module in three different target force reaching: for 120◦, 270◦ and 300◦. The
black line is the measured force and the red lines the force reconstructed by using the three
models. The label convention is the same used in panels (a), (b) and (c).



3.5 Discussion 35

for multiple solutions. This is the case, for instance, when muscles co-contract. Cross-talk is
another possible source of inaccurate reconstruction. Because of cross-talk, nearby muscles
may turn out to have similar activations, which prevents the correct reconstruction of their
respective geometry parameters. This problem may seriously affect the correct assessment
of the activity of short head of biceps and the triceps. These problems may be mitigated
by allowing during the experiment time intervals to relax muscle activation and by more
accurate electrode placement. A penalty term was added to the cost function of Eq. 3.10 to
penalise for larger force magnitudes (de Rugy et al., 2012).



Chapter 4

Hill-based myoprocessor module:
preliminary version 1

A proportional myoloectric control approach (Lotti and Sanguineti, 2017) can reliably
estimate the net joint torque in isometric condition. However, it cannot model enough the
whole muscle-tendon dynamics during movements. A simple linear mapping between the
EMG activity and the muscle-tendon force cannot capture all the aspects related to the
dynamics contraction. The introduction of a Hill-based model in the myoprocessor module
was necessary to improve the controller performance.

4.1 Myoprocessor module

4.1.1 Muscle model structure

The EMG activity, U(t), was normalized with respect to minimum and maximum activation,
calculated over the whole trial:

u(t) =
U(t)−Umin

Umax −Umin
(4.1)

I then calculated neural activation, n(t) as the output of a second-order low-pass filter:

τ
2n̈+2τ ṅ+n = u (4.2)

1Partial content of this Chapter has been published as Lotti N. and Sanguineti V. Estimation of muscle
torques from EMG and kinematics during planar arm movements. IEEE International Conference on Biomedical
Robotics and Biomechatronics, 29-29 August 2018, Enschede (NL).
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with τ = 40 ms.
The muscle model has the Thelen structure (Thelen et al., 2003), with a contractile

element (CE), a parallel element (PE) and a tendon element (TE). As simplifying assumption,
I considered the tendon as non-deformable, i.e. with a constant length LT E = LT E

0 . Under
this assumption the model is simply defined as:

FM(n,LM, L̇M) = Fmax ·
[
F̃CE(n, L̃CE , ˙̃LCE)+ F̃PE(L̃CE)

]
(4.3)

with L̃M = L̃T E
0 + L̃CE . I modelled the CE as:

F̃CE(n, L̃CE , ˙̃LCE) = BH n · e
−
(

L̃CE

L̃CE
0

−1
)2

/γ

+AH ˙̃LM

BH − ˙̃LCE
(4.4)

The PE was set to:

F̃PE(L̃M) =
e

KPE

(
L̃CE

L̃CE
0

−1
)
−1

e
KPE

(
L̃CE

max
L̃CE

0
−1

)
−1

(4.5)

I set L̃CE
max = 1.5 · L̃CE

0 (Garner and Pandy, 2003). The behaviour of a given muscle is
completely specified by the following parameters: Fmax, L̃CE

0 , γ , AH , BH and KPE .

4.1.2 Muscle geometry and force capability

The joint torque τm is calculated as

τm = Jm(q)T ·Fm (4.6)

where Jm(q) (matrix of muscle moment arms) is the Jacobian of the vector of lengths of the
muscle-tendon complex, lMT (q), and q is limb configuration (vector of shoulder and elbow
angles). I adopted a model of muscle geometry based on cadaver and normative anatomical
data (Pigeon et al., 1996), which assumes that muscle lengths have a linear dependence
on shoulder angle qS and a polynomial dependence on elbow angle, qE (up to 5-th order
depending on muscle). Following this approach, the j-th row of Jm(q), corresponding to the
j-th muscle, can be expressed as

J( j)
m

T
=

[
k jS

k jE0 + k jE1qE + k jE2q2
E + k jE3q3

E + k jE4q4
E + k jE5q5

E

]
(4.7)
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In bi-articular muscles (short head of biceps, long head of triceps), the moment arm is
described by up to 7 parameters per muscle. In mono-articular muscles, there are either one
(shoulder: pectoralis major, anterior deltoid, posterior deltoid) or six parameters (elbow: long
head of biceps, medial head of triceps, brachioradialis). This makes a total of 2×7+3×6+
3 = 35 parameters. An additional geometric parameter, lm0, specifies length of the whole
muscle-tendon unit for qS = 0 and qE = 0.

4.2 Model calibration

The experimental apparatus, the experimental protocol and the data analysis followed the
same procedure described in Chapter 3.

A total of three subjects (2 M + 1 F, age 25± 1) participated in this pilot study, all
right-handed and with no previous history of neurological disorders. The research conforms
to the ethical standards laid down in the 1964 Declaration of Helsinki that protects research
subjects. Each subject signed a consent form that conforms to these guidelines.

4.2.1 Parameters identification

Although the set-up allows for real-time estimation of the joint angles qS(t) and qE(t), from
the estimated marker positions, in these initial experiments I only focused on the model
identification procedure which was performed off-line. The camera measurements were
used to estimate the skeletal geometry (L1 and L2). Using these parameters, through inverse
kinematics I then derived off-line the joint angles for each time step from the endpoint
trajectory. This is less accurate than estimating the joint angles directly from the camera
measurements, but does not require to process the latter in real-time and is an acceptable
approximation for planar arm movement with fixed shoulder.

To estimate the muscle parameters from the movement data I used a two-step procedure.

Muscle geometric and ’static’ parameters

I initially focused on the isometric portion of the experiment. For each muscle I estimated
the maximum activation, Umax as the maximum activation over all force directions and arm
configurations. In isometric conditions, the endpoint force, Fh – i.e. the force exerted on the
robot handle – reflects the joint moments:

τm = J(q)T Fh (4.8)
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where J(q) is the Jacobian of the forward kinematics transformation x = x(q), where x is
hand position. Given the above assumptions we have:

J(q) =

[
−L1 sinqS −L2 sin(qS +qE) −L2 sin(qS +qE)

L1 cosqS +L2 cos(qS +qE L2 cos(qS +qE)

]
(4.9)

The estimation procedure is formulated as a quadratic optimization problem:{
minp ∑

7
i=1 ∑

12
d=1 ∑

T
t=1

[
τm(t)− Jm(q(t))T ·Fm

]2
+µ ∥Fmax∥2

Ji j
m (q) ·bi j > 0 i = 1 . . .2, j = 1 . . .M

(4.10)

where τm = J(q)T Fh is the isometric joint torque (corresponding to the endpoint force Fh)
and Fm is the vector of the predicted muscle forces. Therefore, the cost function minimizes
the mean square error between actual and predicted joint torque. The additional constraints
reflect the requirement that irrespective of the parameters values, the moment arm of a given
muscle with respect to a joint cannot change its sign. We set bi j = 1 if muscle j is an extensor
for joint i, and bi j =−1 otherwise. The second part of the cost function penalizes solutions
involving muscle co-contraction.

The vector p includes moment arm geometry, peak muscle force and all the static param-
eters of the muscle model. Therefore, p =

{
l j
m0,k jS,k jE0, . . . ,k jE5,K j,F j

max, l
j

CE0
,γ j,K j

PE

}
,

for each muscle j = 1 . . .M. I initialized all the parameters with values found in the literature
for both muscle geometry (Pigeon et al., 1996) and contractile properties (Garner and Pandy,
2003). I additionally required that each parameter remained within its physiological range.
In the optimization, I used an iterative procedure in which the cost function was minimized
with respect to the geometric parameters – by keeping the muscle parameters fixed – and by
optimizing the muscle parameters alone, in alternation until convergence.

Muscle dynamic parameters

To estimate the muscle dynamic parameters of the Hill-based model, I only focused on the
movement data. During movements the hand force measured by the force sensor, Fh(t)

reflects not only joint moments τm, but also arm dynamics:

I(q)q̈+C(q, q̇) = τdyn(q, q̇, q̈) = τm − J(q)T ·Fh (4.11)

so that τm = J(q)T ·Fh + τdyn. I used a normative model of arm dynamics, whose parameters
were determined from individual subjects’ mass and arm geometry (Winter, 2009), in
conjunction with measured joint rotations, angular velocities and accelerations to calculate
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the inverse dynamics, τdyn at each time instant. I then minimized the following cost function:

min
p

4

∑
r=1

7

∑
i=1

Tir

∑
t=1

[
J(q(t))T ·Fh(t)+ τdyn − Jm(q(t))T ·Fm

]2
(4.12)

where r = 1, . . . ,4 are the repetitions and i = 1, . . . ,7 are the movements. The model parame-
ters here describe, for each muscle, the dependence of CE force on shortening or lengthening
speed, i.e. p =

{
AH ,BH

conc,B
H
ecc

}
.

4.3 Results

4.3.1 Joint moments estimation in isometric conditions

An example of the reconstruction of the endpoint isometric force trajectories is displayed
in Figure 4.1. For one specific force direction, the Figure also shows the recorded muscle
activities and the corresponding joint moments estimates.

The overall reconstruction performance, for all directions and arm configurations, is
summarized in Table 4.1. In two subjects (S1 and S3) the reconstruction performance is
close or around 80% throughout the whole workspace. A somewhat poorer performance is
observed in subject S2.

Table 4.1 Coefficient of determination (r2), expressed in %, of isometric torque reconstruction
performance, per subject and per configuration

P1 P2 P3 P4 P5 P6 P7 mean±std
Subject sh el sh el sh el sh el sh el sh el sh el sh el
S1 81 84 83 83 91 90 90 88 89 76 86 90 81 83 86±4 85±5
S2 71 73 70 78 44 50 69 58 64 55 76 74 83 81 68±11 67±11
S3 89 79 91 75 80 89 53 40 87 85 86 86 61 77 78±14 76±15
mean 80 79 81 79 72 76 71 62 80 72 83 83 75 77 77±4 75±6
std 6 4 8 3 20 19 15 20 11 12 5 7 9 2

4.3.2 Joint moments estimation during movements

Figure 4.2 shows the recorded EMG activity and the hand speed profiles for three such
movements.

For the same movements, Figure 4.3 displays the measured and reconstructed joint
moments.
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Figure 4.1 Isometric endpoint force reconstruction. Top, right: Measured (black) and
estimated force trajectories (red) in a typical subject and in a specific configuration (P6).
Bottom, right: joint moments (measured and estimated) for the force direction −150◦. Left:
normalized EMG activity u(t) for the same force direction.
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Table 4.2 Coefficient of determination (r2), expressed in %, of isometric torque reconstruction,
per subject and per configuration

P1 P2 P3 P4 P5 P6 P7 mean±std
Subject sh el sh el sh el sh el sh el sh el sh el sh el
S1 16 11 25 76 80 45 40 23 24 34 39 20 61 33 41±21 35±20
S2 21 25 17 20 15 20 15 14 15 13 10 11 12 18 15±3 17±5
S3 16 10 32 43 56 47 39 36 19 10 15 10 26 37 29±14 28±16
mean 18 15 25 46 50 37 31 24 19 19 21 14 33 29 28±10 26±11
std 2 7 6 23 26 12 12 9 4 11 13 4 21 8

Table 4.2 summarizes the reconstruction performance for all trajectories and subjects. The
reconstruction performance is lower than in isometric conditions. However, some subjects
still exhibit a high reconstruction performance at least for some trajectories.

4.4 Discussion and Conclusions

The reconstruction performance exhibited in isometric movements suggests that muscle
geometry and muscle activation parameters can be reliably estimated from EMG data.

The reconstruction performance during movements is only acceptable for some subjects
and movements. Estimation accuracy is generally better in elbow torques with respect to the
shoulder.

This degradation may have multiple causes. The reconstruction problem defined by Eq.
4.10 uses muscle activations to weight the contributions of the different muscles. If muscles
acting on the same joint have similar spatial patterns of muscle activity, the reconstruction
problem may become ill-posed, thus allowing for multiple solutions. This is the case,
for instance, when muscles co-contract. Cross-talk is another possible source of inaccurate
reconstruction. Because of cross-talk, nearby muscles may turn out to have similar activations,
which prevents the correct reconstruction of their respective geometry parameters. These
problems affect both movements and isometric conditions, but may additionally affect the
estimation of dynamic parameters, thus affecting to a greater extent the torque predictions
during movements.

Poor estimation of shoulder torques during movement may additionally depend on
inaccurate modeling of muscle geometry at the shoulder (for which a constant moment arm is
assumed), and/or residual movements of the shoulder. Although preliminar, this work is one
step forward the implementation of a general myo-processor which is capable of estimating
muscle torques in a variety of conditions.
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Figure 4.2 Normalized EMG activity and speed profiles for three specific movements.
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Figure 4.3 Joint moments reconstruction during movement. Estimated (black) vs recon-
structed (red) - mean ± SE - for a three specific movements, for a typical subject



Chapter 5

Hill-based myoprocessor module: final
version

The previous version of the myoprocessor module estimated muscle geometry (i.e. muscle-
tendon length and moment arm) by using a polynomial model. This approach was not enough
robust to describe the geometry on the overall workspace. During my visiting period at
University of Twente, I learned several approaches to improve the myoprocessor module.
The most important was related to the muscle geometry estimation

5.1 Muscle geometry estimation toward cubic b-spline

This technique is based on the work of Sartori (Sartori et al., 2012). A cubic spline consisted
of a series of third-order polynomials spliced together to preserve continuity of the first and
second order derivatives. The points at the which polynomials are spliced together are called
nodes. I spliced the range of motion of each joint in n nodes. I sampled the muscle-tendon
length LMT of a musculoskeletal model (Holzbaur et al., 2005), previously scaled in order
to match subjects’ anatomical size. The lengths LMT were interpolated by using the cubic
splines. To compute the moment arms jM

qi
, I derived LMT respect to the joint.

jM
qi
=

∂LMT

∂qi
(5.1)
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Figure 5.1 The myoprocessor module scheme.

5.2 Muscle model structure

The myoprocessor model is composed by four elements, as shown in Fig. 5.1: the Activation

dynamics block describes the muscle fiber recruitment, the MTU kinematics estimates the
muscle geometry (e.g. muscle-tendo unit length and moment arm), the MTU dynamics block
describes how to obtain the muscle forces and the torque computation computes the torque at
the joints level.

Activation dynamics

In the Activation dynamics block the EMG signals are converted into the muscles activation.
As the first step, the normalized EMG signal emg j(t) for the muscle j is converted into the
neural excitation u j(t) by using a second-order discrete linear model Lloyd and Besier (2003)

u j(t) = α · emg j(t −d)+β1 ·u(t −1)+β2 ·u(t −2) (5.2)

where α is the gain coefficient, β1 and β2 the recursive coefficients and d the electromechani-
cal delay. To obtain the muscle activation a j(t) we used the non-linear relationship described
in Lloyd and Besier (2003)

a j(t) =
eA ju j(t)−1

eA j −1
(5.3)
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Muscle-tendon unit kinematics

The Muscle-tendon unit kinematics synthesizes the three-dimensional musculoskeletal geom-
etry of the human arm (Holzbaur et al., 2005) into a set of multidimensional cubic B-splines
(Sartori et al., 2012).

Muscle-tendon unit dynamics

This unit estimates the muscle force starting from the Activation dynamics and MTU kine-

matics outputs. The force FMT
j (t) produced by the j-muscle is obtained by the equation

FMT
j (t) = Fmax

j [a j(t) fl(t) fv(t)+ fp(t)] · cosφ j(t) (5.4)

where Fmax
j is the maximum isometric force, a j(t) the muscle activation, fl , fv and fp

are respectively the force-length relationship, the force-velocity relationship and the parallel
passive elastic muscle force. Finally, φ j is the pennation angle. The force-length, force-
velocity relationship and the passive elastic muscle force have the Thelen structure (Thelen,
2003): fl describes the force produced by the muscle in isometric condition as

fl(t) = e−
(lM(t)−1)2

γ (5.5)

This relationship depends by the normalized muscle length lM(t). The shape factor γ is
the same for each muscle. The force velocity relationship models the muscle force during
eccentric and concentric movements

fv(t) =



v(t)+1
1+1/A f

, v(t)<−1
v(t)+1

1−v(t)/A f
, −1 ≤ v(t)< 0

(2+2/A f )v f M
len+ f M

len−1
(2+2/A f )v+ f M

len−1 , 0 ≤ v(t)< 10( f M
len−1)(0.95 f M

len−1)
(1+1/A f ) f M

len
f M
len

20( f M
len−1)

(
(1+1/A f )v f M

len
10( f M

len−1) +18.05 f M
len −18

)
, v(t)≥ 10( f M

len−1)(0.95 f M
len−1)

(1+1/A f ) f M
len

(5.6)
where A f is a shape factor and f M

len the maximum normalized muscle force achievable
when the fiber is lengthening. The last relationship fp computes the passive force in the
muscle dues to the elasticity of the tissue that is in parallel with the contractile element.
Passive forces are very small when the muscle fibers are shorter than their optimal fiber
lengths, LM

0 , and rise greatly thereafter
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fp(t) =


0, lM ≤ 1

e
kp
ε lM(t)−1
ek

p−1 , lM > 1
(5.7)

The pennation angle φ j(t) for the j-muscle depends by the muscle length LM(t), by the
optimal fiber length LM

0 and by the pennation angle of the muscle fibers at the optimal fiber
length φ0

φ j(t) =
LM

0 · sin(φ0)

LM(t)
(5.8)

5.3 Myoprocessor calibration

The myoprocessor module is subject-specific. The calibration consists of three procedures:
(i) EMG normalization, (ii) muscle geometry estimation, (iii) parameters optimization. The
EMG are normalized trough a maximum voluntary contraction trial (MVC) in which subjects
performed a series of task in order to achieve the maximum contraction for each muscle
included in the model. The muscle geometry estimation linearly scales a generic muscu-
loskeletal model (Holzbaur et al., 2005) to match each individual’s arm anthropometry by
using the open-source software OpenSim. From the scaled model I extract the musculotendon
lengths and moment arms through the multidimensional spline techniques (see Chapter 2).
The parameters optimization calibrates several parameters of the myoprocessor module by
using the kinematic data, EMG, and Force signals recorded during a calibration task related
to the application (see Chapter 7, 8). By using the simulated annealing algorithm (Das and
Chakrabarti, 2005), the minimized function is

nDoFs

∑
i=1

N

∑
t=1

(τ
re f
i (t)− τ

M
i (t))2 (5.9)

where nDoFs are the degrees of fredoom of the model, τre f is the reference torque
and τM the torque estimated by the myoprocessor model. The parameters involved in the
optimization function are the optimal fiber length, the tendon slack length and the maximum
isometric force in the MTU dynamics block (Fig. 5.1c) and the filtering coefficients and the
non-linear coefficient in the activation dynamics block (Fig. 5.1a).
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Real-time control

The ultimate challenge in the development of a myoprocessor is to convert the musculoskele-
tal model into a real-time controller. The control algorithm could be different depending
on the hardware target. The control techniques can be grouped in two main different fields:
compliant and stiff control (Calanca et al., 2015). Traditional robotic devices used the stiff
control in order to be as stiff as possible, by increasing position/velocity control accuracy
and bandwidth. However, the high stiffness produced high force modification for small
displacement errors by causing instability and unsafe interaction. Compliance controller
try to fix these issues by shaping the mechanical impedance of the robotic system, i.e. the
dynamical relation between robot position or velocity and external forces (Hogan, 1985).
These changes allow to safely interact with the unknown environment because, instead of
controlling either a position or a force, It possible to control the power transferred to the
environment. A common term that highlights the aim to change in real-time the rigidity of
the robot is virtual stiffness control.

The virtual stiffness can be controlled by using impedance or admittance control over
stiff or soft joints. For example, let

fe = g(x, ẋ, ẍ) (6.1)

be the ordinary differential equation modeling of a single degree of freedom mechanical
system, where fe is the sum of external or environmental forces and x is a Lagrangian
coordinate. At given position x0 the stiffness can be defined as

k =
∂g(x, ẋ, ẍ)

∂x

∣∣∣
x=x0

(6.2)
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Figure 6.1 Compliant control. Compliant control for soft and stiff robots scheme (Calanca
et al., 2015). Explicit and implicit refer, respectively, to the need or not of a sensor to measure
the interaction force between the robot and the environment. Image adapted from (Calanca
et al., 2015).

Mechanical compliance is the reciprocal of stiffness, c = k−1. It refers to the ability
to exhibit displacement if a force is applied. While stiffness and compliance refer to the
static displacement/force relation, impedance, and admittance describe the dynamic relations
between force and velocity. In the literature, alternative definitions of impedance and
admittance are used by considering the relation between force and velocity instead of
position, to account for power quantities. Using Laplace notation, impedance and admittance
can be computed as

I(s) =
Fe(s)
JX(s)

A(s) =
JX(s)
Fe(s)

= I(s)−1 (6.3)

where J is the rotor inertia, Fe(s) and X(s) are the Laplace transform of fe(t) and x(t),
respectively.

The control of a task in an environment having kinematic and/or dynamic constraints is
generically termed interaction control. The main distinction is between active interaction
control and passive interaction control. In active interaction, the compliance is entirely due to
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Figure 6.2 Impedance scheme planar robot manipulandum.

control, while in passive interaction, it is entirely due to mechanics. Active control is divided
in direct and indirect subcategories. The direct force control category includes algorithms
that control separately the force and the position subspaces, called hybrid position–force
control (Mason, 1981), (Raibert et al., 1981). Fig. 6.1 summarises all the control technique
in robotics. Both soft and stiff control require a fast inner loop and an outer loop to shape the
impedance or admittance. Admittance control on stiff joint cannot display a low impedance
whereas impedance control cannot display a high impedance.

Figure 6.2 shows an example of a myoprocessor module combined with an impedance
stiff control: the controller, implemented on a planar robot manipulandum, takes as inputs
the value of the motor encoder and the endpoint forces computed by the myoprocessor.

The relation between the current i(t) that controls the motors and the endpoint forces
FH(t) is

i(t) = k · J(q)T ·FH(t) (6.4)

where k is the vector that contains the relationship between the current and the motors
torque and J(q) the Jacobian matrix that depends by the encoders value.

An opposite example is to apply the myoprocessor module to a soft wearable exosuit,
that presents soft joint. The admittance controller (Fig. 6.3) compares the difference between
the muscle torque τm and the interaction torque τi.
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Muscle torque

Figure 6.3 Admittance scheme exosuit.

From the resultant torque τr is possible to obtain the velocity that controlled the motor
through a PID-like admittance

Y (s) =
ωr

τr
= P+

I
s
+Ds (6.5)

where the P, I and D gains shapes the dynamic response of the exosuit in order to follow the
target τm from the myoprocessor. The velocity can be converted into the current i(t) through
a gain value k.
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Myoprocessor applications



Chapter 7

Adaptive model-based myoelectric
control for a soft wearable arm exosuit1

7.1 Introduction

The quest for co-existence between humans and machines has pushed scientific boundaries
beyond industrial automation, towards the area of wearable robotics. With regards to
motor rehabilitation and augmentation, a wealth of wearable robots have been designed
for providing movement assistance. In this context, the aim is that of compensating for
reduced or missing voluntary activity via controlled forces that support task-based motor
activities. Yet, technological limitations hamper the adoption of wearable robots and their
widespread acceptance by final users: limitations in ergonomics, motor intention prediction
and in control robustness represent major open challenges.

Existing wearable robots (i.e. active orthoses or exoskeletons) interact with their users
with little knowledge of the effects induced to the musculoskeletal system. It is currently
unknown how the human body responds to different HMI types and how wearable robots
should operate to best enhance movements (Sartori et al., 2016). In this context, HMIs for
active orthoses and exoskeletons have been developed that superpose pre-defined trajectories
to the user’s joint motions in order to provide the level of assistance necessary to complete
selected functional movements (Lo and Xie, 2012). HMIs using model-free machine learning
approaches have also been proposed. These include pattern recognition or regression to map
electromyograms (EMGs) into joint kinematics. However, one joint rotation can be generated

1The whole content of this Chapter has been published as Lotti, N., Xiloyannis, M., Durandau, G., Galofaro,
E., Sanguineti, V., Masia, L., and Sartori,M. Adaptive model-based myoelectric control for a soft wearable arm
exosuit: A new generation of wearable robot control. IEEE Robotics & Automation Magazine, 2020.
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via different EMG patterns. Therefore, mappings learned in one condition (i.e. low loads)
may not generalize to novel conditions (i.e. high loads), leading to lack of control robustness
(Sartori et al., 2018). An alternative approach is that of neuromusculoskeletal modeling,
which explicitly characterizes each intermediate transformation between EMG-onset and
joint torque production by simulating the interplay between the nervous, the muscular, and
the skeletal systems. We will refer to this as a myoprocessor. Unlike a model-free machine
learning approach, a myoprocessor maps EMGs into forces that belong to the solution space
of the human musculoskeletal system (Cavallaro et al., 2006). Therefore, decoded forces are
always within physiological bounds, potentially enabling robust robot control across a broad
range of conditions (Durandau et al., 2018).

Design of powered orthoses has been long based on rigid exoskeletal technologies. This
has the drawback of restricting body mobility, inducing misalignment with the user’s joint
(Schiele et al., 2006) as well as leading to sub-optimal ergonomics due to the device excessive
weight and size (Frisoli et al., 2005). The introduction of soft robotic exosuits, employing
flexible materials for transmitting forces to the human body, has provided the possibility
of addressing limitations of rigid hardware (Asbeck et al., 2014). Soft exosuits have the
potential to effectively operate as an external layer superposed to biological muscles to
support human joint mechanics.

However, despite potential benefits, exosuits still present limited control reliability (Ding
et al., 2017) due to their highly non linear behaviour, lower tracking accuracy, reduced
magnitude of assistance and control robustness when compared to rigid exoskeletons (Park
and Cho, 2017). As a result, there is currently no effective framework for controlling soft
wearable robots as a function of human motor intention (Anam and Al-Jumaily, 2012).

We have developed a new framework that combines, for the first time, a model-based
human machine interface (HMI) with a soft wearable arm exosuit, ultimately for addressing
key limits in current HMIs and wearable robotics. This work assessed whether a myoproces-
sor based on an EMG-driven musculoskeletal model could be established and personalized
to different individuals. We assessed the myoprocessor accuracy in decoding elbow joint
torques from EMGs and translating decoded torques into exosuit control commands across a
repertoire of dynamic joint rotations and load lifting tasks. To the best of our knowledge, this
is the first time that a subject-specific EMG-driven musculoskeletal model is synthetized into
an HMI for the online control of an upper limb exosuit. Interfacing real-time myoproces-
sors with soft wearable robotics may lead to a new paradigm for achieving exosuit control
robustness as well as symbiotic human-exosuit interaction.
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Figure 7.1 Exosuit device. The exosuit for assistance of the elbow joint is comprised of three
fabric straps: one around the forearm (distal anchor point), one around the arm (proximal
anchor point) and a shoulder harness, connected to the arm strap via adjustable webbing
bands. Buckles, velcro straps and a Boa lacing system allow to tighten the suit. A pair of
Bowden cables is attached to the front and the back of the arm strap and transmits power
from an actuation unit to the anchor points. The assistance is provided by recovering the
front cable during elbow flexion. During elbow extension the motor releases the cable.

7.2 Methods

7.2.1 Exosuit design and control hardware

A cable-driven elbow exosuit (Xiloyannis et al., 2019) (Fig. 7.1) powered by a brushless
electric motor (EC-i 40-70W, Maxon, Sachseln, Switzerland) was used to test the newly
proposed controller. Sensing elements consisted in a load cell (LCM300, Futek, Irvine CA,
USA) secured on the distal anchor point of the exosuit, and feeding back cable tension,
while elbow angular position was recorded by means of an absolute encoder (AS5047P,
AMS, Premstaetten, Austria) aligned with the anatomical joint. In order to detect muscular
bio-electric activity, a multi-channel EMG system (Bagnoli Desktop, Delsys, Natick MA,
USA) was used to record three muscles that contribute flexing and extending the elbow joint:
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namely the long head of biceps (BIC), long head of triceps (TRI) and brachioradialis (BRD):
electrodes placement followed the SENIAM guidelines (Hermens et al., 2000). All signals
from the exosuits and the EMG workstation were acquired using DAQ board NI 6025E
(National Instruments, Austin TX, USA), at a sampling frequency of 1 kHz, while an inner
control loop for the exosuit actuation (Fig. 7.2) ran at 10 kHz on a dedicated motor controller
(EPOS2 50/5, Maxon, Sachseln, Switzerland). The control architecture was arranged as two
separate modules, which ran concurrently. Real-time low-level control of the exosuit and data
logging was implemented as a MATLAB/Simulink application. Exosuit high-level control
was based on an EMG-driven musculoskeletal model implemented in C++ (Durandau et al.,
2018).

7.2.2 Real-time control framework

Figure 7.2 Exosuit control scheme. The myoprocessor (light red) estimates physiologically
accurate torque profiles (τm) equal to the torque generated by the muscles spanning the
elbow joint. This is tracked by an admittance controller comprised of an outer torque loop
(light blue) and an inner velocity loop (light grey). The myoprocessor combines geometric
and dynamic properties of muscle-tendon units (MTUs) to estimate the net elbow flexion-
extension torque as a function of muscle activation derived from surface EMG electrodes.
Myoprocessor estimated torque is compared to the torque (τi) delivered by the robot to
the human joint. The error torque (τr = τm − τi) is then converted to a motor velocity ωr,
delivering assistive power to the suit’s wearer.
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We developed a real-time framework composed of a high-level controller (myoprocessor)
that estimated joint torque from EMG signals and a low-level controller (Section 7.2.2) that
provided the assistance needed.

Myoprocessor (high-level controller)

Our proposed real-time EMG-driven modelling framework (Durandau et al., 2018; Sartori
et al., 2018) computed elbow flexion-extension torque as a function of (i) three EMG channels
and (ii) elbow flexion-extension joint angle from the exosuit encoder (see Suit design and
control hardware Section 7.2.1). The model included four components (Fig. 7.2):

– The Activation dynamics component (Fig. 7.2a) converted the three input EMGs into
muscle activations via a second order muscle twitch model and a non-linear transfer
function. The resulting muscle activations were mapped to seven musculotendon units
(MTU). The activation derived from the BIC-EMG channel controlled both long head
and short head MTUs of the biceps. Activation from the TRI-EMG channel controlled
long, lateral and medial head MTUs of the triceps. Activation from BRD-EMG
controlled brachioradialis and brachialis MTUs (Sartori et al., 2018).

– The MTU kinematics component (Fig. 7.2b) synthesized the three-dimensional muscu-
loskeletal geometry of the human arm (Holzbaur et al., 2005) into a set of multidimen-
sional cubic B-splines.

– The MTU dynamics component (Fig. 7.2c) solved for muscle and tendon force using
a Hill-type muscle model, as previously described in (Durandau et al., 2018; Sartori
et al., 2018).

– The Torque computation component projected MTU forces from Fig. 7.2c onto the
elbow joint using moments arm from Fig. 7.2b. The EMG-driven modelling framework
was then connected to the exosuit low-level controller via UDP protocol to compute
the assistance provided by the tendon-driven transmission.

Velocity and torque loops (low-level controller)

The elbow torque estimated via the myoprocessor (Section 7.2.2) was used as reference signal
for the exosuit’s low-level admittance controller. The admittance controller was comprised
of an outer torque and of an inner velocity loop. The torque loop (light blue in Fig. 7.2)
compared the reference torque, τm, with the interaction torque, τi. The interaction torque was
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estimated from a load cell recording the cable tension ( f ), and transformed into elbow torque
via the Force/Torque mapping (Fig. 7.2f) (Chiaradia et al., 2018).

Assuming the anchor point was fixed with respect to the user’s arm and neglecting the
deformations of the fabric and the soft tissues, the interaction torque τi was given by:

τi = J(φe)
T f (7.1)

where J(φe) was the cable’s moment arm with respect to the elbow joint. This quantity was a
function of the elbow angle, φe and was defined as

J(φe) =
∂h f

∂φe
(7.2)

where h f (φe) was the cable displacement function, which was described by the following
model - see Figure 7.2f for details:

h f (φe) = 2
√

a2 +b2 cos
(

tan−1
(a

b

)
+

φe

2

)
−2b (7.3)

where a and b were respectively the forearm’s half width and the distance between the
elbow’s centre of rotation and the anchor point.

The resulting torque error τr = τm − τi was transformed into a desired angular velocity,
ωr, through a PID-like admittance (Target Admittance in Figure 7.2), of the form:

Y (s) =
ωr

τr
= P+

I
s
+Ds (7.4)

where the P, I and D gains shaped the dynamic response of the exosuit in order to follow
the target τm from the myoprocessor. The control gains were tuned to preserve stability,
assured a promptness of response comparable with the requirements of the proposed tasks
and to minimize the tracking error, τr (Yu et al., 2011). They were tuned prior to perform the
experiments, on a single subject, and then left unchanged. Finally, the velocity loop (light
grey in Fig. 7.2) is responsible for compensation of the intrinsic, unwanted dynamics of the
exosuit device (backlash, static and dynamic friction).

7.2.3 Experimental protocol

The study involved six subjects: two female and four male with age 26.0 ± 2.4 years (mean
± sd), body weight 78.3 ± 12.0 kg and height 1.78 ± 0.08 m. All participants presented
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Figure 7.3 Tracking task to test controller’s performance. We instructed subjects to follow
a reference trajectory displayed on a screen in the form of a moving elbow, the position of
their own arm was superimposed to provide visual feedback. Setup was the same for both
powered and unpowered conditions.

no evidence or known history of skeletal or neurological diseases, and exhibited normal
joint range of motion and muscle strength. All experimental procedures were carried out
in accordance with the Declaration of Helsinki on research involving human subjects and
were approved by the ethical committee of the University of Twente. All subjects provided
explicit written consent to participate in the study. To test the performance of the controller,
we designed an experiment in which subjects, wearing the exosuit, were requested to track
a reference elbow trajectory, which was visually presented via a screen (see Fig. 7.3). The
tracking task was performed in two different conditions where the exosuit was powered and
unpowered respectively. In the unpowered condition the exosuit cable was slack and the
motor turned off. This enabled replicating an unassisted scenario comparable to not wearing
the device. The tracking task consisted of a single sequence of minimum-jerk trajectories,
replicating features of physiological movements (Flash and Hogan, 1985) in both speed and
amplitude.

– Speed: we selected 35 deg/s and 70 deg/s, which respectively correspond to 27% and
55% of the average speed observed in activities of daily living (ADLs) (Buckley et al.,
1996).
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– Amplitude: three movement amplitudes were tested, 30 deg, 60 deg and 80 deg (Fig.
7.5), where each of them was repeated four times in a random order, for a total of 12
movements per trial.

Similar to (Xiloyannis et al., 2019), the sequence was repeated for different load condi-
tions. The load was placed on subjects’ forearm through a specific support to avoid wrist
flexion/extension in order not to incur in muscular activation at the level of brachioradialis
nerve. Load conditions were three: 0 kg (unloaded), 1 kg and 2 kg. We performed the
experiment starting with the unpowered condition for all subjects and randomized load and
velocity conditions. During the unpowered condition another workstation ran the algorithm
to calibrate the myoprocessor module by using the data collected during dynamic calibration.
To avoid fatigue, participants rested for 10 min between conditions.

7.2.4 Myoprocessor calibration

Before running the experiment using the controller shown in Fig. 7.2, each subject performed
a calibration task. This allowed the musculoskeletal model of the myoprocessor to be tuned
for individual anthropometric features. A 3D motion capture system (Visualeyez II, Phoenix
Technologies Inc., Vancouver BC, Canada) was used to record at 100 Hz the trajectories
of six markers, placed on anatomical landmarks: third metacarpus, lateral wrist, medial
wrist, lateral elbow, medial elbow and acromion. The calibration procedure consisted of
three different phases: (i) static pose acquisition, (ii) a maximum voluntary contractions
(MVC) trials and (iii) a dynamic calibration. During the static pose, we recorded the three-
dimensional location of reflective markers by means of motion capture. For each subject,
the open-source software OpenSim was used to linearly scale a generic musculoskeletal
model (Holzbaur et al., 2005) to match each individual’s arm anthropometry. During the
MVC trials, a series of isometric contractions for each muscle group were performed to
extract EMG peaks, used successively for EMG signal normalization. During the dynamic
calibration, subjects were requested to follow reference trajectories, visually feedback on a
screen, by flexing and extending the elbow at different speeds. Recorded EMG signals, joint
angles and reference torques were used to calibrate the myoprocessor: joint moments were
extracted using the OpenSim inverse dynamics tool by following the procedures described in
(Durandau et al., 2018). The calibration process estimated the values of the internal model
parameters that minimised the normalized error between the myoprocessor torque estimates
and the reference torque profiles. Tuned parameters included optimal fiber length, tendon



7.2 Methods 62

slack length, maximal isometric force and EMG-to-activation filtering coefficients (Durandau
et al., 2018).

7.2.5 Data analysis

Raw EMG signals were processed online using a 50 Hz notch filter, high-pass filtering (35
Hz), full-wave rectification and low-pass filtering (4 Hz, second-order Butterworth filter),
and then normalized with respect to individual MVC level recorded during the calibration
procedure. In order to test subjects’ performance across the different experimental conditions
a set of indicators was evaluated:

– Tracking accuracy: we computed the coefficient of determination r2 and the root means
square error RMSE between reference and measured elbow trajectories performed by
the subjects over the different conditions. The two metrics were also used to quantify
the ability of the myoprocessor to estimate the elbow joint torque by comparison with
the OpenSim inverse dynamics tool.

– Time delay: to assess the time lag occurring between the EMG signal onset and
the exosuit motor drive engagement, we calculated the time window between the
acquisition of EMG signals and the torque loop output, ωr. We used two different
approaches: offline and online. In the offline method, we simulated 140 EMG pulses
and collected the output from the target admittance (Fig. 7.2g), which drove the exosuit
actuation. The online method estimated the onset time during subjects’ performance.
We computed the norm of the derivative of both EMG linear envelopes and reference
elbow angular velocity. In both signals we estimated the onset as the time instant at
which the signal was greater than 10 % of its peak magnitude. We then extracted the
time lag as the difference between the onset time of the velocity and the muscle, which
activated first – typically, the biceps.

– Muscular activity: we evaluated the Root Mean Square (RMS) of both EMG signals
and muscle forces, estimated from the myoprocessor, under all experimental conditions.

7.2.6 Statistical analysis

Whenever appropriate, we assessed normality of the statistical distribution using the Kolmogorov-
Smirnov Test and the sphericity condition for repeated-measures ANOVA with the Mauchly
Test. All metrics resulted normally distributed. When the sphericity condition was violated,
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we applied the Greenhouse-Geisser correction. Significance of differences in muscular activa-
tion was inferred for different conditions using performance indicators (%MVC and muscle
forces) across the two main setups (powered vs unpowered exosuit) and load conditions
(unloaded vs 1kg vs 2 kg). For the kinematic analysis we considered the average value of the
movement amplitude and velocity. A repeated-measures ANOVA (rANOVA) within-subject
factors was performed: ’powered vs unpowered’, 3 ’loading conditions’ (unloaded, 1 kg
and 2 kg) and their mutual interaction. The significance level was set at p<0.05. We also
reported for ANOVA the notation F(n,d), where n are the DOFs of the numerator - i.e.
powered/unpowered condition - and d of the denominator - i.e. subjects.

7.3 Results

7.3.1 Myoprocessor reliably estimated elbow joint torque

Fig. 7.4a displays the myoprocessor estimated torque in the unpowered condition and
zero load as well as the reference torque obtained by inverse dynamics (extracted from the
trajectories showed in Fig. 7.5). The coefficient of determination depicted in Fig. 7.4b was
calculated for each subject by averaging on all movement amplitudes (30 deg, 60 deg and 80
deg), and velocities (35 deg/s and 70 deg/s).

For all subjects and across all trials the coefficient of determination r2 was always higher
than 0.82, with a mean value of r2 = 0.87±0.04 (mean ± sd). The RMSE was lower than
0.02 Nm/kg and the mean value was 0.0146 ± 0.0051 Nm/kg (mean ± sd).

7.3.2 Exosuit responsiveness was comparable to the electromechanical
delay

The shorter the latency between EMG onset and electromechanical actuation, the more
transparent the exosuit was perceived by the wearer. This may be due to optimal synchro-
nization between muscle contraction and exosuit actuation. Fig. 7.4c shows the distribution
of the estimated latencies, including the mean latency and the standard deviation across
all simulation frames (140 spike frames). Using Chebyshev’s Theorem we also estimated
the maximal expected latency within a 95% confidence. We found that in 95% of cases
the onset of the controller response occured within 53.8 ms, which is comparable with the
physiological upper limb electromechanical delay – 55.5 ms according to (Norman and Komi,
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(c) (d)

Figure 7.4 Accuracy and latency of the model-based myoprocessor. Panel (a) shows the
EMG-driven model estimated torque, averaged over all subjects (red line, mean ± sd),
compared to the inverse dynamic torque (reference value, black line, mean ± sd) during the
tracking task. Torques were normalized using the mass of each subject. Panel (b) displays
the coefficient of determination, r2, and the root mean square error between the two torques
for each subject, averaged over repetitions, velocities and loads. Panels (c) and (d) show the
time delay of the latency in exosuit reaction. Panel (c) shows the distribution of latencies
between the EMG input and the motor speed, including the average latency (mean ± sd) and
the maximal expected error within the 95% percentile of data. In panel (d) we report a typical
delay between the activation of biceps (BIC) and the target admittance output ωr (see Fig.
7.2g) during a trial. The controller latency is within the time range of the electromechanical
delay of upper limbs natural muscle fibers (55.5 ms).

1979). Fig. 7.4d exemplifies a typical delay of 45 ms between the onset of BIC and the target
admittance output ωr during a tracking movement.

7.3.3 Assisted elbow motion accurately tracks reference trajectories

Fig. 7.5a shows that reference trajectory tracking accuracy was not affected by the exosuit
assistance with respect to the unpowered condition and in the presence of loads. Average
tracking accuracy measured using the coefficient of determination r2 during unloaded trial (0
kg) for unpowered condition was 0.94 ± 0.03, while for powered condition was 0.90 ± 0.03
(mean ± sd). We found similar values for the maximally loaded setup (2 kg) with average
r2 being 0.94 ± 0.03 for unpowered and 0.90 ± 0.02 for powered conditions respectively.
Regarding the RMSE, we found 10.3◦ ± 2.3◦ for unpowered condition and 10.7◦ ± 2.5◦ for
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Figure 7.5 Human tracking accuracy. Panel (a) shows the tracking accuracy averaged over
all subjects (mean ± sd) for the unloaded condition (top) and the 2 kg condition (bottom).
Black continuous lines represent the unpowered condition, red lines represent the powered
condition and the dashed line the tracking reference. Panel (b) reports the coefficient of
determination r2 and the root mean square of the error RMSE for each subject, computed on
the unloaded trial (top) and 2 kg trial (bottom).

powered condition during unloaded trial. In the maximally loaded setup (2kg) we found 9.0◦

± 2.2◦ during the unpowered condition and 11.0◦ ± 2.4◦ during the powered condition. A
Wilcoxon signed-rank test between the two aforementioned analysis confirmed that wearing
the exosuit did not significantly reduce the ability to track a reference trajectory (p = 0.16) in
terms of delay by looking the r2, but we found a significative difference in the RMSE value
(p = 0.0034).

7.3.4 Exosuit assistance reduced muscular activity

A significant difference was observed in muscular activation across conditions: in particular
Fig. 7.6 shows EMG traces for a representative subject performing tracking movement
in unloaded (Fig. 7.6a) and 1-2 kg loads (Fig. 7.6b-c) conditions, respectively with and
without exosuit assistance. For the unloaded condition (a) the difference between the EMGs
waveforms was negligible, indicating that the controller was able to not feel the presence
of the exosuit assuring an almost complete mechanical transparency of the device. When
movements were performed in the presence of a load (Fig. 7.6b-c), the EMG amplitude, with
the exosuit assistance, was substantially lower, proving that the myoprocessor accurately
estimated the elbow torque from muscular activity and consequently the controller delivered
assistance to the subjects against gravity. Analysis of muscular envelopes revealed that in all
muscles and in all powered conditions the EMG activity decreased significantly with respect
to the unpowered conditions. In particular, the BIC muscle displayed a significant decrease
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(a) (b) (c)

Figure 7.6 Muscle activation and tracking. EMG linear envelopes of a representative subject
who performed three consecutive tasks at the highest velocity, with 0 kg load (a), 1 kg (b) and
2 kg (c) in both the powered and unpowered conditions. During the powered condition, the
exosuit reduced the biceps activity (black line) by 35.6 %, 55.1 % and 73.0 %, brachioradialis
activity (red line) by 49.5 %, 77.0 % and 58.4 % and the triceps activity (blue line) by 35.6
%, 59.7 % and 51.9 % for 0 kg, 1 kg and 2 kg loads, respectively.

(F(1, 5) = 35.9, p = 0.0018) as well as the BRD muscle (F(1, 5) = 12.6, p = 0.016) and the
TRI (F(1, 5) = 9.8, p = 0.026).

Fig. 7.7a shows the trend of EMGs RMS, expressed in % of MVC, for two elbow
velocities (min and max), with increasing loads and powered vs unpowered conditions.
During powered conditions the activity of the biceps only increased less than 2% between
1 kg and 2 kg loads. With regard to the muscle forces estimated by the myoprocessor (Fig.
7.7b), we observed similar results, where BIC (F(1, 5) = 12.1, p = 0.018), BRD (F(1, 5) =
20.0, p = 0.0066) and TRI (F(1, 5) = 14.6, p = 0.012) reported a significant reduction in all
powered conditions. Also in this analysis, the BIC, which was the muscle predominantly
working against gravity, was found to increase by less than 5 N between 1 kg and 2 kg loads.

7.4 Discussion

We developed a human-machine interface, which combined, for the first time, a realistic,
subject-specific real-time EMG-driven myoprocessor with an upper limb active soft exosuit.

The proposed myoprocessor used EMGs and kinematic data to estimate the net muscle-
generated elbow flexion-extension torque, which was used to determine the assistance
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(a)

(b)

Figure 7.7 EMG activity and estimated muscle force. Panels (a) and (b) show EMG amplitude
and estimated muscle force, respectively. Translucent dots are the values for each participant,
opaque ones the average over subjects; lines indicate the trend across loads (dash line for
35 deg/s and continuous line for 70 deg/s). From left to right we report the biceps, the
brachioradialis and the triceps. The marks ∗∗ and ∗ above the bar plots denote, respectively,
high significant (p<0.01) and significant (p<0.05). EMG amplitude and force of all muscles
were significantly lower in all powered conditions.

provided by the exosuit. That is, the exosuit added a fraction of the estimated elbow torque
to support a range of movements. A distinctive aspect of this control scheme is that the
myoprocessor directly incorporated changes in arm+exosuit dynamics and task requirements
(e.g. presence of additional loads or different speeds), with no need for additional re-
calibration and low-level controller re-tuning. In this way, the exosuit effectively operated
as an extension of the human musculoskeletal system, dynamically adapting to different
external mechanical loads.

We assessed the performance of the controller during tracking tasks – a sequence of
arm flexion and extensions in the sagittal plane – carried out at different speeds as well as
including lifting of different loads.

Results showed that model-based estimates of elbow torques well matched reference
torque values across all tested kinematic and load conditions (Fig. 7.4a), thereby validating
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model estimation accuracy. Results also showed that the exosuit tracked EMG-decoded
elbow torques with high accuracy, thereby mimicking human musculoskeletal forces.

These are necessary conditions to be met for actively supporting elbow rotations while
not inducing unwanted motions or affecting natural movements, as how it usually happens
when in the presence of a rigid exoskeleton. In this context, results from human tracking tests
confirmed that during powered tasks, accuracy did not deteriorate with respect to unpowered
tasks across all subjects and trials (Fig. 7.5). When compared to a previously presented
gravity compensation controller (Xiloyannis et al., 2019), our proposed solution displayed
improved tracking accuracy: mean r2 with gravity compensator assistance was 0.80 ± 0.06,
while with our HMI was 0.90 ± 0.04. We found a significant difference in the root mean
square tracking error variations (p = 0.034). However the difference between the powered
and unpowered condition was always less than 2◦. Importantly, the gravity compensator
controller (Chiaradia et al., 2018) also needed PID parameters tuning for each subject, which
made it hard to provide an adaptive assistance depending on the external dynamic conditions.
The PID module specifies the exosuit behavior at the human-machine physical interface and
the parameters need to be set to provide stability within the myoprocessor range of outputs
and to prevent saturation of the actuators. As the myoprocessor output torque had similar
magnitudes for all subjects, we tuned the PID module on the basis of one single subject
only. This procedure also reduced the controller set-up time and allowed focusing on the
myoprocessor contribution to the system overall performance. However, adapting the PID
gain to individual subjects may further increase the control performance. Future studies will
address a systematic analysis of how generic vs subject-specific PID gains affect control
performance.

Our results suggest that the exosuit response to EMGs may be faster than HMIs based on
human-exosuit interaction forces (Fig. 7.5). EMG-controlled exosuits can react to EMGs
theoretically before physical joint force and motion is generated. In the case of interaction
force, detectable joint force and motion must occur before exosuit assistance can be computed
and delivered to the human, something that would limit final applicability, e.g. according
to this scheme, exosuits can only provide assistance after detectable movement is produced
by the user. Importantly, our approach did not require any modification in hardware with
respect to interaction-force based controllers we previously developed and tested on the same
device (Xiloyannis et al., 2019). We used the same configuration showed in (Xiloyannis
et al., 2019) and we integrated our HMI in the control loop. Furthermore, results showed
that the exosuit intervention reduced effort in major elbow flexors across increasing velocity
and load conditions: this was reflected by a decrease of both EMG and mechanical force
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magnitude in the transition from unpowered to powered conditions, i.e. both muscle EMGs
and forces across the 1 kg and 2 kg conditions varied within similar absolute ranges (Fig.
7.7). Results also showed that the exosuit support preserved muscle force generating capacity
across multiple velocities and loads (Fig. 7.7b). This condition was observed in particular on
the biceps, the main elbow flexor muscle.

The exosuit assisted only in flexion and allowed unassisted extension along gravity by
releasing its artificial tendon. Therefore, the muscles that predominantly contributed to
control the exoskeleton during flexion were the biceps and brachialis muscles. However,
it was necessary to include also triceps in the myoprocessor module for two reasons. The
first one concerned the elbow net torque estimation for which triceps contribuite to: in the
hypothetical and extreme scenario where subjects were able to exclusively contract the flexor
muscles (leaving the triceps completely off), there would still be passive force produced
by the triceps due to muscle stretch. These forces could be in the order of several tens of
newton and therefore not negligible. The correct estimation of these passive resistive forces
would provide the best possible estimation of net elbow torque. If we neglected these passive
torques we could have had potentially over or under estimation of the net elbow torque,
thereby providing sub-optimal assistance to the human. The second reason regarded the
exosuit control: the mechanical system was not backdriveable, so the triceps was used to
release the artificial tendon during elbow extension and its initial burst triggered the releasing
of the motor and made the device transparent during elbow extension too. In this context,
the reduction in the triceps muscle activity (Fig. 7.7) was an unexpected result. It could be
caused by the participants having to follow a predefined trajectory, displayed on a screen.
This might have caused the descending motion to not be a purely concentric one, that implies
modulation of agonist and antagonist muscle to preserve accuracy. Fig. 7.6 between the
exosuit and the human arm.

In this context, our also showed that the biceps activity in the powered condition varied
minimally across loads: this all provided evidence that the proposed myoprocessor could
make both the worn device and the external load transparent to the human operator during
dynamic tasks. Since small discrepancies between the onset of human limb movement
and that of the parallel exosuit can significantly increase human muscle effort, our results
demonstrated that our approach ensure a reliable synchronization approach could directly
exploit the electromechanical delay (EMD) for prompt device control. Results showed
that, across the recruited subjects, the EMD was sufficiently large (20 - 48 ms, Fig. 7.4)
for decoding mechanical moments from EMGs before the voluntary movement took place.
Moreover, the EMD was sufficiently consistent to be considered as a hard real-time deadline
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for the exosuit control. Meeting this deadline within our proposed HMI assured the exosuit to
be actuated synchronously with the user’s muscle mechanical function. This is an additional
advantage with respect to current HMIs that actuate wearable robots solely on the basis of the
detection of externally measurable forces, which could not provide support until the operator
has produced detectable dynamics at the interface with the machine (Asbeck et al., 2014).

Our study presented limitations. We explored a limited range of movements: this
was due to limitations in the exosuit actuation stage. Experiments involved only healthy
subjects. Future work will involve neurologically impaired subjects. The device actuated
a single degree of freedom, so during the calibration it was important to avoid movement
that involved other joints. For this reason, in this study we constrained the wrist to best
test our approach. The exosuit was only designed for the elbow flexion-extension. We did
not model any degree of freedoms at the wrist and therefore, we avoided motions at these
DOFs. Future works will focus on testing control of multiple soft mechatronic DOFs, e.g.
simultaneous control of elbow and hand joints in exosuits. Experiments required subject-
specific calibration. However, it is worth stressing that this calibration is not needed to be
performed every time one uses the device. In this context, there are two type of parameters in
the myoprocessor module: anatomical parameters and filtering parameters. Once identified,
anatomical parameters should not vary anymore for a grown adult because they are linked
to the anatomy of the subject. In a previous study (Sartori et al., 2018), using the same
myoprocessor, model calibration was always performed a number of days prior to real-time
prosthesis control experiments. This provided evidence of the EMG-model framework ability
of retaining subject-specific parameter consistency across time scales. On the other hand,
filtering parameters (MVC and EMG-to-activation coefficients) may be less stationary as they
depend on EMG-skin impedance, fatigue and other factors, but this quantification requires a
stand alone study, planned in future.

In this study we did not compare our HMI with different approaches such as simpler
direct-EMG controllers. In this context, the added complexity of our model is repaid by a
twofold benefit: (1) the ability to capture and adapt to unpredictable and varying external
dynamics, tested in the different loads conditions (Fig. 7.6, 7.7); (2) a higher robustness
to movement artefacts and noise in the EMG signals. A proportional controller, based
only on processed EMG signals, could not capture all the aspects related to the dynamics
of the arm, since it ignores muscles geometry and EMG-to-activation conversion. The
second advantage directly translates to a higher usability in real-world scenarios: in (Sartori
et al., 2018), we showed that the myoprocessor, relying on muscular geometry as well as
activation levels, is robust to mechanically induced movement artefacts in the EMG signals,
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such as arm positions or cable movements. In future studies, we will directly compare the
myoprocessor to other myoelectric control techniques (e.g. proportional EMG control), by
enlisting a larger number of subjects and conditions (after hardware improvements) to test
the generalizability. We will also test the exosuit control on subjects with neuromuscular
conditions to assess to what extent the model-based HMI can adapt to abnormal anatomies
and affected muscular activation patterns (Durandau et al., 2019). Finally, the study only
explored highly controlled elbow rotations and did not include functional real-life tasks.
However, our approach demonstrated adaptation to external load that could be applied in
unstructured environments. The robustness of the controller, combined with a symbiotic
HMI, can provide cooperation between the user and the exosuit. The next step will adapt the
system in order to port this device in the real world.

In conclusion, we demonstrated the possibility of controlling exosuits via a real-time
myoprocessor enabling adaptive support during a diverse range of mechanical loads and kine-
matics during elbow motion. The integration of model-based HMIs with soft mechatronics
has the potential to open new frontiers in highly ergonomic wearable assistive robots, which
will behave symbiotically with humans.



Chapter 8

Myoprocessor-driven force fields to
induce virtual changes in human
biomechanics: a feasibility study

8.1 Introduction

Estimating the contributions of individual muscles to limb movements is crucial to our
understanding of the organization of the motor system.

The temporal evolution of muscle activity during a movement may be the end result of
a on-line optimization process, involving the trade-off of accuracy and effort (Todorov and
Jordan, 2002). It has been suggested, however, that the motor system may have a modular
organization (Bizzi et al., 2008; Cheung et al., 2005; d’Avella et al., 2003; Tresch et al., 2006,
1999), so that muscle activity is generated by combining a smaller number of motor modules,
or muscle ’synergies’. An alternative but similar hypothesis is that muscle activation follows
stereotypical patterns, but they reflect previous individual experience rather than structural
constraints. Both hypotheses predict limitations in the ability of muscle activation to adapt to
novel situations.

In pathological conditions, characterizing the roles of the individual muscles may provide
a basis for devising personalized forms of treatment. In particular, understanding these
control mechanisms is a prerequisite for devising ways to selectively modify the activity of
individual muscles or muscle groups for neuro-rehabilitation purposes.

Electromyographic signals (EMG) in conjunction with detailed musculoskeletal models
allow to simulate the force generated by a specific muscle or group of muscles (Thelen,
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2003). Musculoskeletal models are widely used in biomechanics, for instance to predict the
load to a particular joint (Manal et al., 2002) or to predict joint torques during movements
(Cavallaro et al., 2006). Model simulations may be performed in real-time, driven by the
recorded muscle activity and movement kinematics. These computational modules have
been referred as ’myoprocessors’ (Durandau et al., 2018). Myoprocessors have been used as
biofeedback during gait studies (Pizzolato et al., 2017) or to control external devices, such
as an exoskeleton (Buongiorno et al., 2016), soft wearable exosuit (Lotti et al., 2020) or a
prosthetic hand (Sartori et al., 2019).

Recently, myoprocessors have been used to computationally alter muscles directions of
action (’virtual biomechanics’) in order to study the motor system’s modular structure and its
adaptive capabilities (Berger et al., 2013; de Rugy et al., 2012). In these studies, the endpoint
force – in isometric conditions and with a fixed arm configuration – was estimated from
the recorded activity of multiple upper limb muscles. The endpoint force was then used to
operate a virtual point mass, displayed as a cursor on a computer screen.

In (de Rugy et al., 2012) individual muscles were virtually ’removed’ so that the same
muscle activation produced a different endpoint force. The study examined whether muscle
activity adapts in order to recover the previous endpoint force, thus compensating for muscle
removal. The main finding was that EMG activity indeed changes with training – the action
of the removed muscle is taken over by muscles with similar directions of action. However,
the activity of this muscle does not go to zero but rather increases dramatically, even though
it has now become task-irrelevant. A similar approach (’virtual surgery’) (Berger et al., 2013)
specifically focuses on the degree of modularity of the motor system, i.e. its organization
in terms of muscle synergies. Two types of perturbations – compatible and incompatible –
were applied to the myocontroller. In compatible surgery, the original endpoint force could
be generated by simply recombining existing synergies. In incompatible surgery, the target
endpoint force could only be achieved by rearranging synergies. The modularity hypothesis
predicts that adaptation to compatible surgery is faster than that to incompatible surgery. The
findings seem to confirm this prediction.

One major limitation of these approaches is that they only focus on isometric force
generation with a fixed body configuration, with no actual body movements. Neural control
of limb movements requires precise coordination of multiple degrees of freedom and com-
pensation of dynamic interaction torques (centripetal/Coriolis). Also, during movements the
limb resistance to perturbation (stiffness) is regulated through muscle cocontraction (Franklin
et al., 2008; Tee et al., 2010). The contribution of individual muscles to both movement
and cocontraction is determined by their geometric arrangement and by the dynamics of
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contraction. In conclusion, generalization of the above results to control of limb movements
must be taken cautiously. Here we extend the above results to a more general situation,
involving multi-joint arm movements. Our aim is to use the myoprocessor module to generate
force field on a planar robot manipualndum in order to emulate the mechanical action of
one muscle or muscle groups. This technique allows to effectively modify the geometric
arrangement (and therefore the directions of action) of existing muscles and/or their dynamic
properties.

8.2 Materials and Methods

8.2.1 Myoprocessor-controlled force fields

The myoprocessor-controlled force field concept is summarized in Figure 8.1. A detailed
model of arm geometry, muscle geometry and muscle contraction dynamics, in conjunction
with measures of arm kinematics and muscle activity is used to predict the joint torque
generated by an individual muscle, in real-time. If the movements are limited to shoulder and
elbow rotations and the arm moves in a plane, the muscle torques can be translated into an
equivalent endpoint force. A planar manipulandum is programmed to generate an endpoint
force corresponding to the simulated ’virtual’ muscle or muscle group, which is then applied
to the subject’s hand. The force generated by the manipulandum (’robot force’ in Figure 8.1)
is added to the actual muscle force - the endpoint equivalent of the torque generated by the
actual muscle. The sum of these forces represents the overall contribution of that muscle
(’virtual muscle force’).

8.2.2 Experimental Apparatus

The experimental apparatus involves a planar robot manipulandum with two degrees of
freedom (Casadio et al., 2006), a Force/Torque Sensor (Gamma, 130-10, ATI Industrial
Automation, USA), mounted on the robot handle, and a multi-channel wireless EMG system
(EMG Wave plus, Cometa srl, Italy). One infrared camera (Slim 13, Optitrack, NaturalPoint
Inc, USA) placed above the subject’s workspace recorded the movements of three markers,
placed on the subject’s shoulder acromion, the elbow joint, and on the robot handle. All
markers approximately move on the same horizontal plane. We recorded the activity of
nine muscles: anterior deltoid (aDEL), posterior deltoid (pDEL), long and short head of
biceps (lBIC, sBIC), long and lateral heads of triceps (loTRI, laTRI), brachioradialis (BRD),
pectoralis major (mPEC) and upper trapezius (TRA). We used one additional electrode,
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Figure 8.1 The myoprocessor-controlled force field concept. The robot generates a force
which reflects the behavior of a simulated muscle. Muscle simulation relies on a detailed
model of arm kinematics, muscle geometry and of muscle contraction dynamics. This allows
to computationally modify the directions of action of individual muscles, which are now
determined by the summation of the contributions of the original muscle and by that of their
simulated counterpart



8.2 Materials and Methods 76

placed on the sternum, to record the electrocardiography signal. Electrode placement was
based on the SENIAM recommendations (Hermens et al., 2000).

The subjects sat in front of a 40 ” computer screen placed vertically at eye level at a
distance of about 1 m, and grasped the handle of the manipulandum with their right hand.
Torso and wrist were restrained and the seat position was adjusted so that, with the cursor
pointing at the center of the workspace, the shoulder and the elbow joints were flexed about
45° and 90°. The forearm was suspended to the ceiling to partly compensate for the effect of
gravity. This arrangement only allowed planar shoulder and elbow rotations in the horizontal
plane.

The experimental set-up involved two computers (PC1 and PC2). Two separate applica-
tions ran on PC1, respectively managing EMG recording, early processing and extraction of
the EMG envelopes, and extracting the marker positions from the camera data. The latter
was only used during calibration (see below). Another application, running on PC2, was
responsible for managing the experimental protocol, force recordings and robot control. The
two application running on PC1 communicated in real-time with PC2 through two separate
user datagram protocol (UDP) data streams. The software implementation was based on
Simulink and the Desktop Real-Time toolset (Mathworks, Natick USA).

8.2.3 Myoprocessor model

The myoprocessor model is composed of four modules, as shown in Figure 8.2. The structure
and the aim of each block are the same described in Chapter 5.
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Figure 8.2 The myoprocessor module scheme.
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8.2.4 Calibration of the myo-processor module

We improved the task described in (Lotti and Sanguineti, 2018) for the myoprocessor module
calibration. The pipeline consisted of three procedures:(i) a maximum volontary contraction
task (MVC), a resting state acquisition and a model calibration task. During the MVC,
subjects performed a series of task in order to achieve the maximum contraction for each
muscle included in the model. This procedure was useful to normalize the EMG activity.
The other two procedures were performed in conjuction with the planar robot manipulandum
(Casadio et al., 2006). During the resting state acquisition subject had to grasp the robot for
30 sec without performing movement: in this phase we acquired the data for the ECG blinking
and for the muscle activity baseline acquisition. As the recorded mPEC muscle activity
turned out to be contaminated by the cardiac activity, we used the recorded ECG signal
to remove this artifact by using a cross-correlation method (Hof, 2009). The cancellation
filter was then used on-line in order to filter out the ECG artifact from the mPEC activity.
The model calibration task included reaching movements through a sequence of five targets,
P1, . . . ,P5 evenly distributed within the whole arm workspace, see Figure 8.3 (right). The
whole sequence (movement and force generation) was repeated for a total of 3 times. The
total duration of this task was about 40 min.

P1

P2

P3

P4
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P1

P2

P3

P4 P5

Figure 8.3 Calibration procedure. Workspace representation in scale (left), reaching move-
ments through a sequence of five targets (right).

We estimated during the model calibration task upper arm and forearm length and
shoulder position (L1, L2, xs) by using camera data. The IR camera acquired (sampling rate:
100 Hz) and detected the position of the three markers. The camera was previously calibrated
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by comparing the trajectories of the ’robot’ marker with the end-effector trajectories estimated
through the robot encoders. We used the Direct Linear Transform to translate these measures
into Cartesian coordinates in the robot coordinate frame. Although the set-up allows for the
real-time estimation of the joint angles q1(t) and q2(t), from the recorded marker positions,
the camera measurements were only used off-line to estimate the skeletal geometry (L1 and
L2). Using these parameters, through inverse kinematics we then derived on-line the joint
angles from the endpoint trajectory. This is less accurate than estimating the joint angles
directly from the camera measurements, but does not require to process the latter in real-time
and is an acceptable approximation for planar arm movement with fixed shoulder. We also
used camera data as input for the open-source software OpenSim in order to linearly scale
a generic musculoskeletal model (Holzbaur et al., 2005) to match each individual’s arm
anthropometry. From the scaled model we extracted the musculotendon lengths and moment
arms through the multidimensional spline techniques (see Chapter 2). We calibrated the
myoprocessor module by using the kinematic data, EMG, and Force signals recorded during
the reaching movements in the model calibration task. By using the simulated annealing
algorithm (Das and Chakrabarti, 2005), we minimized the function

2

∑
i=1

N

∑
t=1

(τH
i (t)+ τdyn(t)− τ

M
i (t))2 (8.1)

where τH is the torque obtained by measured the force at the end effector τH = J(q)T ·
FH(t), τdyn is the upper-limb inverse dynamics and τM the torque estimated by the myopro-
cessor model. The upper-limb inverse dynamics τdyn is estimated by using a normative model
(Winter, 2009)

τdyn = M(q(t))q̈+C(q(t), q̇) (8.2)

where

M(q(t)) ∆
=

[
I2 +M1Lg2

2 + I1 +M1Lg2
1 +M2(L2

1 +2L1Lg2 cos(q2(t))) I2 +M1Lg2
2 +M2(L1Lg2 cos(q2(t)))

I2 +M1Lg2
2 +M2(L1Lg2 cos(q2(t))) I2 +M1Lg2

2

]

C(q(t), q̇) ∆
=

[
−M2L1Lg2sin(q2(t))q̇2

2 −2M2L1Lg2sin(q2(t))q̇1q̇2

M2L1Lg2sin(q2(t))q̇1
2

]

I1, I2: moment of inertia of the arm and forearm;

M1, M2: mass of the arm and forearm (Hogan et al., 1990);
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[
Lg1

Lg2

]
∆
=

[
0.436L1

0.682L2

]
;

We considered in the function both shoulder and elbow torque (τ1, τ2). The parameters
involved in the optimization function were the optimal fiber length, the tendon slack length,
the maximum isometric force, the filtering coefficients and the non-linear coefficient in the
activation dynamics block (Lloyd and Besier, 2003).

8.2.5 Adaptation experiment

The adaptation experiment consisted of a series of center-out reaching movements in six
different directions (0°, 60°, 120°, 180°, 240°, 300°) with a 10 cm amplitude. The subjects
were instructed to place the hand at start position (white circle with �1 cm located at the
center of the workspace). When a new target appeared (white circle with �1 cm), they had
to move toward it as fast and as accurate as possible. Participants received a speed visual
feedback. The target turned green if participants reached it within a certain time range (1±
0.1 sec), otherwise the target turned red.

The experimental protocol was organized into epochs (one epoch: six repetitions for each
direction, total 6×6 = 36 movements. The experiment involved a total of 13 epochs. In the
first two epochs (baseline phase, 72 movements) the robot generated no forces. During the
subsequent seven epochs (adaptation phase, 252 movements) the robot generated a force
field that mimic the contribution of a muscle at the end-effector. During the adaptation phase
the force-field was pesudo-ranmly removed in 1/6 of the total number of trials. During the
last four epochs (washout phase, 144 movements) the robot forces were removed.

The endpoint force that emulates the contribution of the selected muscle is given by:

FH = J(q)−T · j jm(q)T ·FVM (8.3)

where J(q) is the Jacobian of the arm, j jm and FVM are respectively the vector of the
moment arm and the estimated force of the selected muscle. These force fields were directly
controlled by the EMG signal and by kinematic data. We extracted the envelope of EMG in
real-time using using a 50 Hz notch filter, high-pass filtering (35 Hz), full-wave rectification
and low-pass filtering (4 Hz, second-order Butterworth filter), and then normalized with
respect to individual MVC level recorded during the calibration procedure. Through inverse
kinematics approach we estimated in real-time shoulder and elbow joint value knowing
end-effector coordinates and kinematic parameters.

The duration of this phase of the experiment was about 100 min.
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Figure 8.4 Control scheme and Calibration pipeline.

We calibrated the myoprocessor module on a total of five subjects (2 M + 3 F, age
25±2) who presented no evidence or known history of skeletal or neurological diseases, and
exhibited normal joint range of motion and muscle strength. However, in this preliminary
study we performed the adaptation experiment on only one subject. We tested the effect of
the virtual lateral head of the triceps

FH = J(q)−T · j jlaTRI(q)
T ·FlaTRI (8.4)

The following results are based on this pilot subject.

8.2.6 Data Analysis

For each movement we recorded the raw EMG signals from the nine muscles (sampling rate:
1000 Hz). The EMG signals envelope were extracted as described above.

The resulting EMG envelopes were sent to PC1 via a UDP connection. The following
signals: (i) envelope of EMG activity, U(t); (ii) endpoint trajectory, x(t); (iii) force Fh(t)

against the robot handle were sampled at 100 Hz and saved for further analysis. We evaluated
several indexes to quantify the myoprocessor calibration performance and the adaptation to
the virtual muscle.
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Calibration

Torque reconstruction we computed the coefficient of determination r2 and the root means
square error RMSE to quantify the ability of the myoprocessor to estimate the shoulder and
the elbow joint torque by comparison with the inverse dynamics 8.2 and the torque measured
from the sensor.

Adaptation

Kinematics smoothness smooth movements are a characteristic feature of healthy, effi-
cient and well-trained motor behaviour (Sejnowski, 1998) and an external assistive device
should ideally maintain such smoothness. To quantify smoothness, we used the SPectral
ARC length (SPARC) index proposed in (Balasubramanian et al., 2015).

EMG reduction we evaluated the Root Mean Square (RMS) of EMG signals during the
adaptation task and we looked at the reduction of this level on the late epochs of the adaptation
respect to the baseline.

8.3 Results

8.3.1 Calibration

Arm kinematics reconstruction

Figure 8.5 compares the IR camera trajectory after the mapping to the end-effector.

Musculotendon geometry estimation

Figures 8.6, 8.7, 8.8 show respectively the musculotendon lengths, shoulder moment arms
and elbow moment arms extracted from the spline. The orange marks are the nodes: in
mono-articular muscles the set of nodes is a vector, in bi-articular muscles is a matrix.
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Figure 8.5 Camera Calibration. Dark grey dots represent the robot end-effector trajectory
during the calibration task. Red dots are the calibrated trajectory after the DLT transformation.

Torque reconstruction

The performance of the myoprocessor module calibration is summarised in Figures 8.9 and
8.10 for one typical subject. Figure 8.9 displays movement speed (top) and the shoulder
and elbow torques. Colored lines represent the measured torque, the black line is the
torque reconstructed by the myoprocessor. Since the calibration task comprised forward and
backward movements between target pairs, the different colors represent these movements
(e.g. red color represents P1 −−P2 movements)

8.3.2 Adaptation

8.3.3 Kinematic changes

Figure 8.11 displays the kinematics trajectories during the adaptation task. We evaluated the
kinematics smoothness trend (Figure 8.12) by using the SPARC index (Balasubramanian
et al., 2015). Directions 60°, 120° and 240° preserve the smoothness during the trial. The
direction of movement of 0° is the one with the largest smoothness deterioration.
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Figure 8.6 Musculotendon lengths estimation. Mono-articular muscles are represented by
using an orange line; bi-articular muscles are described through the surface plot.
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Figure 8.7 Musculotendon shoulder moment arms estimation. Mono-articular muscles are
represented by using an orange line; bi-articular muscles are described through the surface
plot.
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Figure 8.8 Musculotendon elbow moment arms estimation. Mono-articular muscles are
represented by using an orange line; bi-articular muscles are described through the surface
plot.
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Figure 8.9 Estimated vs measured torque across the calibration task movements. Colored
lines are the reference torques for each movement (τH + τdyn). The black line represents the
reconstructed torque τM

Figure 8.10 Coefficient of determination R2 and root mean square error RMSE computed
for the shoulder and the elbow on each movement (Mean ± SD).
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Figure 8.11 Changing on kinematics trajectories during the adaptation task (scale bar: 2 cm).
Black lines represent the trial in which the force fields were removed.

Figure 8.12 Changing on kinematics smoothness across the six movements, measured by
using the SPARC index (Balasubramanian et al., 2015). Read line represents the median
value computed overall the repetitions.



8.3 Results 88

8.3.4 Myoprocessor selectively reduces the muscular activity

Figure 8.13 shows the reduction of the muscular activity during the last 2 epochs of the
adaptation respect to the baseline. The virtual muscle contribution reduced the activity of the
lateral head of the triceps in all movements.

Figure 8.13 Muscular activity reduction between the baseline and the early adaptation (Mean
± SE).
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8.4 Discussion

These preliminary results showed that a myoprocessor driven force field may be a feasible
approach to probe into the organization of neuromuscular control. Our real-time framework
can provides reasonably accurate estimates and reconstruct the shoulder and elbow torques
in almost any direction. The worst cases are related to P4: the reason could be that the target
is close to the fully extension of the joint and the inverse kinematics estimation deteriorate
the performance.

However, to the best of our knowledge, this is the first time that a myoprocessor control
approach is implemented on a planar robot manipulandum and more in general in movements
involving more than one joint. The adaptation induced kinematic and neuromuscular changes
on the pilot subject: the kinematics smoothness (Fig. 8.12) was completely preserved along
the direction of action (pulling vector) of the lateral head of the triceps (60°-240°). The
virtual muscle favoured these movements and made it more difficult to execute others: the
worst cases were 0° and 300°, the directions close to the perpendicular direction of the laTRI
pulling vector.

The virtual muscle contribution selectively reduced muscle activity: with respect to the
baseline epochs, the lateral head of the triceps activity was reduced across all directions, but
this did not happen for all muscles. The long head of the biceps and the brachioradialis pre-
sented a similar trend: this could suggest a change on antagonist muscular activity. Regarding
the other muscles, the reduction range is wider and depends by the direction of the movement.
A possible hypothesis could be a compensatory re-organization of musculoaskeletal system.

Future steps will involve a large number of subjects in order to analyse the effects of
adaptation at population level. Here we showed the effect of a replication of a real muscle:
future study will investigate how to potentiate or weaken the selected muscle and the effect of
this changes on the musculoskeletal system modularity. We will also investigate the effects
that the virtual muscle induces on the cocontraction.

In conclusion, the preliminary results suggest that ’dynamic’ virtual biomechanics may
modulate the neuromuscular system by integrating its contribution on the activation pattern
of the upper-limb muscles.

Selectively modifying the activity of individual muscles or muscle groups can be useful
for neurorehabilitation purposes, by augmenting the force of the muscles in which the activity
is deteriorate.

In pathological conditions, identifying the roles of each individual muscles may provide
a basis for designing personalized treatments aimed at motor recovery.



Chapter 9

Conclusion and outlook

9.1 General conclusion

This thesis presented the development and the testing of a real-time framework myoprocessor
module for the upper-limb. The final aim was an inclusion in the control loop of assistive
devices for rehabilitation and assitance in activity of daily livings for subjects with neuro-
muscular disorders. In the Introduction to the work, I presented the main objectives and
feasibility of the study. These objectives were addressed in the third part of the thesis, the
applications of this control approach. The following sections list again the aims of each
Chapter, with concluding remarks on whether these they were achieved.

9.2 Major contributions

9.2.1 Myoprocessor module development

Aim: to develop a myoprocessor module in order to estimate the muscle contribution
at the joints level in real-time

Chapters 3, 4 and 5 described the steps followed to develop a real-time myoprocessor
module by increasing the biomechanical complexity. As a first step, I developed a myoproces-
sor module in which the estimated muscle forces were proportional to the electromyographic
signals, by focusing on the musculoskeletal geometry estimation. This was done in several
isometric conditions. Preliminary results showed a reliable estimation for all muscles.

The major limitation of the first myoprocessor version was the unreliable reconstruction
of the force during movements. A second version of the module included a Hill-based
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musculotendon model (Thelen, 2003) that could better reconstruct the net torque on the
explored workspace. However, the reconstruction was acceptable only in few movements.

The last version proposed greatly improved the reconstruction by changing the musclu-
loskeletal geometry estimation from simple polynomials (Pigeon et al., 1996) to multidimen-
sional cubic splines (Sartori et al., 2012).

9.2.2 Real-time control implementation

Aim: to include the myoprocessor module in the control loop of a robot device
Chapter 6 described how to implement the myoprocessor in the control loop of a robotic

device. The approach changes based on the type of controller: I showed how to achieve this
in both impedance and admittance controllers.

9.2.3 Myoprocessor control for the exosuit

Aim: testing the performance of the myoprocessor module on a soft wearable arm
exosuit

Chapter 7 decribed the first application of a myoprocessor real-time framework control.
The study was a multi-centre collaboration in which I implemented the myoprocessor
developed by the University of Twente (Durandau et al., 2018) on the soft wearable arm
exosuit developed by the Nanyang Technological University of Singapore (Xiloyannis et al.,
2019).

In this work we evaluate the effort of this assistance control on healthy people by looking
at the kinematics performance and the muscular activity reduction.

The myoprocessor module performed in a symbiotic way with the user musculoskeletal
system by enabling adaptivity support during a diverse range of mechanical loads and
kinematics during elbow motion.

9.2.4 Myoprocessor-driven force field on a rehabilitation device

Aim: to study the adaptation effects of a force field driven by the myoprocessor module
Chapter 8 showed how the final version of the myoprocessor module (Chapter 5) can

generate force field on a planar robot manipulandum in order to modulate the musculoskeletal
system. We tested the approach only on one subject and we presented, for the first time, the
feasibility of the control.
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However, preliminary results suggest that ’dynamic’ virtual biomechanics may be a feasi-
ble approach to probe into the organization of neuromuscular control. Selectively modifying
the activity of individual muscles or muscle groups can be useful for neurorehabilitation
purposes. In pathological conditions, identifying the roles of each individual muscles may
provide a basis for designing personalized treatments.

9.3 Open questions and future

One main weakness of this work is that the proposed controller were only evaluated on a
cohort of young, healthy participants. Although the obtained results are positive, we can only
speculate on the outcome that such a technology could have on a population of subjects with
neuromuscular impairments. It would be interesting to examine the effects on patients with
different pathologies and at a different stage of recovery.

The work outlined in this thesis set a basis for addressing this question but did not venture
in that direction.

Furthermore, we only explored the surface of the myoprocessor-driven force field adapta-
tions. However, the aims achieved in this studies open up new frontiers in the human-machine
symbiosis.
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