246 research outputs found

    Human-centric explanation facilities

    Get PDF

    Building bridges for better machines : from machine ethics to machine explainability and back

    Get PDF
    Be it nursing robots in Japan, self-driving buses in Germany or automated hiring systems in the USA, complex artificial computing systems have become an indispensable part of our everyday lives. Two major challenges arise from this development: machine ethics and machine explainability. Machine ethics deals with behavioral constraints on systems to ensure restricted, morally acceptable behavior; machine explainability affords the means to satisfactorily explain the actions and decisions of systems so that human users can understand these systems and, thus, be assured of their socially beneficial effects. Machine ethics and explainability prove to be particularly efficient only in symbiosis. In this context, this thesis will demonstrate how machine ethics requires machine explainability and how machine explainability includes machine ethics. We develop these two facets using examples from the scenarios above. Based on these examples, we argue for a specific view of machine ethics and suggest how it can be formalized in a theoretical framework. In terms of machine explainability, we will outline how our proposed framework, by using an argumentation-based approach for decision making, can provide a foundation for machine explanations. Beyond the framework, we will also clarify the notion of machine explainability as a research area, charting its diverse and often confusing literature. To this end, we will outline what, exactly, machine explainability research aims to accomplish. Finally, we will use all these considerations as a starting point for developing evaluation criteria for good explanations, such as comprehensibility, assessability, and fidelity. Evaluating our framework using these criteria shows that it is a promising approach and augurs to outperform many other explainability approaches that have been developed so far.DFG: CRC 248: Center for Perspicuous Computing; VolkswagenStiftung: Explainable Intelligent System

    Explainable Neural Networks based Anomaly Detection for Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are the core of modern critical infrastructure (e.g. power-grids) and securing them is of paramount importance. Anomaly detection in data is crucial for CPS security. While Artificial Neural Networks (ANNs) are strong candidates for the task, they are seldom deployed in safety-critical domains due to the perception that ANNs are black-boxes. Therefore, to leverage ANNs in CPSs, cracking open the black box through explanation is essential. The main objective of this dissertation is developing explainable ANN-based Anomaly Detection Systems for Cyber-Physical Systems (CP-ADS). The main objective was broken down into three sub-objectives: 1) Identifying key-requirements that an explainable CP-ADS should satisfy, 2) Developing supervised ANN-based explainable CP-ADSs, 3) Developing unsupervised ANN-based explainable CP-ADSs. In achieving those objectives, this dissertation provides the following contributions: 1) a set of key-requirements that an explainable CP-ADS should satisfy, 2) a methodology for deriving summaries of the knowledge of a trained supervised CP-ADS, 3) a methodology for validating derived summaries, 4) an unsupervised neural network methodology for learning cyber-physical (CP) behavior, 5) a methodology for visually and linguistically explaining the learned CP behavior. All the methods were implemented on real-world and benchmark datasets. The set of key-requirements presented in the first contribution was used to evaluate the performance of the presented methods. The successes and limitations of the presented methods were identified. Furthermore, steps that can be taken to overcome the limitations were proposed. Therefore, this dissertation takes several necessary steps toward developing explainable ANN-based CP-ADS and serves as a framework that can be expanded to develop trustworthy ANN-based CP-ADSs

    Understanding the Role of Explanations in Computer Vision Applications

    Get PDF
    Recent advancements in AI show great performance over a range of applications, but its operations are hard to interpret, even for experts. Various explanation algorithms have been proposed to address this issue, yet limited research effort has been reported concerning their user evaluation. Against this background, this thesis reports on four user studies designed to investigate the role of explanations in helping end-users build a better functional understanding of computer vision processes. In addition, we seek to understand what features lay users attend to in order to build such functional understanding, and whether different techniques provide different gains. In particular, we begin by examining the utility of "keypoint markers"; coloured dot visualisations that correspond to patterns of interest identified by an underlying algorithm and can be seen in many computer vision applications. We then investigate the utility of saliency maps; a popular group of explanations for the operation of Convolutional Neural Networks (CNNs). The findings indicate that keypoint markers can be helpful if they are presented in line with users' expectations. They also indicate that saliency maps can improve participants' ability to predict the outcome of a CNN, but only moderately. Overall, this thesis contributes by evaluating these explanation techniques through user studies. It also provides a number of key findings that provide helpful guidelines for practitioners on how and when to use these explanations, as well as which types of users to target. Furthermore, it proposes and evaluates two novel explanation techniques as well as a number of helpful tools that help researchers and practitioners when designing user studies around the evaluation of explanations. Finally, this thesis highlights a number of implications for the design of explanation techniques and further research in that area

    A Survey on Explainable AI for 6G O-RAN: Architecture, Use Cases, Challenges and Research Directions

    Full text link
    The recent O-RAN specifications promote the evolution of RAN architecture by function disaggregation, adoption of open interfaces, and instantiation of a hierarchical closed-loop control architecture managed by RAN Intelligent Controllers (RICs) entities. This paves the road to novel data-driven network management approaches based on programmable logic. Aided by Artificial Intelligence (AI) and Machine Learning (ML), novel solutions targeting traditionally unsolved RAN management issues can be devised. Nevertheless, the adoption of such smart and autonomous systems is limited by the current inability of human operators to understand the decision process of such AI/ML solutions, affecting their trust in such novel tools. eXplainable AI (XAI) aims at solving this issue, enabling human users to better understand and effectively manage the emerging generation of artificially intelligent schemes, reducing the human-to-machine barrier. In this survey, we provide a summary of the XAI methods and metrics before studying their deployment over the O-RAN Alliance RAN architecture along with its main building blocks. We then present various use-cases and discuss the automation of XAI pipelines for O-RAN as well as the underlying security aspects. We also review some projects/standards that tackle this area. Finally, we identify different challenges and research directions that may arise from the heavy adoption of AI/ML decision entities in this context, focusing on how XAI can help to interpret, understand, and improve trust in O-RAN operational networks.Comment: 33 pages, 13 figure

    Requirements engineering for explainable systems

    Get PDF
    Information systems are ubiquitous in modern life and are powered by evermore complex algorithms that are often difficult to understand. Moreover, since systems are part of almost every aspect of human life, the quality in interaction and communication between humans and machines has become increasingly important. Hence the importance of explainability as an essential element of human-machine communication; it has also become an important quality requirement for modern information systems. However, dealing with quality requirements has never been a trivial task. To develop quality systems, software professionals have to understand how to transform abstract quality goals into real-world information system solutions. Requirements engineering provides a structured approach that aids software professionals in better comprehending, evaluating, and operationalizing quality requirements. Explainability has recently regained prominence and been acknowledged and established as a quality requirement; however, there is currently no requirements engineering recommendations specifically focused on explainable systems. To fill this gap, this thesis investigated explainability as a quality requirement and how it relates to the information systems context, with an emphasis on requirements engineering. To this end, this thesis proposes two theories that delineate the role of explainability and establish guidelines for the requirements engineering process of explainable systems. These theories are modeled and shaped through five artifacts. These theories and artifacts should help software professionals 1) to communicate and achieve a shared understanding of the concept of explainability; 2) to comprehend how explainability affects system quality and what role it plays; 3) in translating abstract quality goals into design and evaluation strategies; and 4) to shape the software development process for the development of explainable systems. The theories and artifacts were built and evaluated through literature studies, workshops, interviews, and a case study. The findings show that the knowledge made available helps practitioners understand the idea of explainability better, facilitating the creation of explainable systems. These results suggest that the proposed theories and artifacts are plausible, practical, and serve as a strong starting point for further extensions and improvements in the search for high-quality explainable systems

    Understanding the Role of Interactivity and Explanation in Adaptive Experiences

    Get PDF
    Adaptive experiences have been an active area of research in the past few decades, accompanied by advances in technology such as machine learning and artificial intelligence. Whether the currently ongoing research on adaptive experiences has focused on personalization algorithms, explainability, user engagement, or privacy and security, there is growing interest and resources in developing and improving these research focuses. Even though the research on adaptive experiences has been dynamic and rapidly evolving, achieving a high level of user engagement in adaptive experiences remains a challenge. %????? This dissertation aims to uncover ways to engage users in adaptive experiences by incorporating interactivity and explanation through four studies. Study I takes the first step to link the explanation and interactivity in machine learning systems to facilitate users\u27 engagement with the underlying machine learning model with the Tic-Tac-Toe game as a use case. The results show that explainable machine learning (XML) systems (and arguably XAI systems in general) indeed benefit from mechanisms that allow users to interact with the system\u27s internal decision rules. Study II, III, and IV further focus on adaptive experiences in recommender systems in specific, exploring the role of interactivity and explanation to keep the user “in-the-loop” in recommender systems, trying to mitigate the ``filter bubble\u27\u27 problem and help users in self-actualizing by supporting them in exploring and understanding their unique tastes. Study II investigates the effect of recommendation source (a human expert vs. an AI algorithm) and justification method (needs-based vs. interest-based justification) on professional development recommendations in a scenario-based study setting. The results show an interaction effect between these two system aspects: users who are told that the recommendations are based on their interests have a better experience when the recommendations are presented as originating from an AI algorithm, while users who are told that the recommendations are based on their needs have a better experience when the recommendations are presented as originating from a human expert. This work implies that while building the proposed novel movie recommender system covered in study IV, it would provide a better user experience if the movie recommendations are presented as originating from algorithms rather than from a human expert considering that movie preferences (which will be visualized by the movies\u27 emotion feature) are usually based on users\u27 interest. Study III explores the effects of four novel alternative recommendation lists on participants’ perceptions of recommendations and their satisfaction with the system. The four novel alternative recommendation lists (RSSA features) which have the potential to go beyond the traditional top N recommendations provide transparency from a different level --- how much else does the system learn about users beyond the traditional top N recommendations, which in turn enable users to interact with these alternative lists by rating the initial recommendations so as to correct or confirm the system\u27s estimates of the alternative recommendations. The subjective evaluation and behavioral analysis demonstrate that the proposed RSSA features had a significant effect on the user experience, surprisingly, two of the four RSSA features (the controversial and hate features) perform worse than the traditional top-N recommendations on the measured subjective dependent variables while the other two RSSA features (the hipster and no clue items) perform equally well and even slightly better than the traditional top-N (but this effect is not statistically significant). Moreover, the results indicate that individual differences, such as the need for novelty and domain knowledge, play a significant role in users’ perception of and interaction with the system. Study IV further combines diversification, visualization, and interactivity, aiming to encourage users to be more engaged with the system. The results show that introducing emotion as an item feature into recommender systems does help in personalization and individual taste exploration; these benefits are greatly optimized through the mechanisms that diversify recommendations by emotional signature, visualize recommendations on the emotional signature, and allow users to directly interact with the system by tweaking their tastes, which further contributes to both user experience and self-actualization. This work has practical implications for designing adaptive experiences. Explanation solutions in adaptive experiences might not always lead to a positive user experience, it highly depends on the application domain and the context (as studied in all four studies); it is essential to carefully investigate a specific explanation solution in combination with other design elements in different fields. Introducing control by allowing for direct interactivity (vs. indirect interactivity) in adaptive systems and providing feedback to users\u27 input by integrating their input into the algorithms would create a more engaging and interactive user experience (as studied in Study I and IV). And cumulatively, appropriate direct interaction with the system along with deliberate and thoughtful designs of explanation (including visualization design with the application environment fully considered), which are able to arouse user reflection or resonance, would potentially promote both user experience and user self-actualization

    Affinity-Based Reinforcement Learning : A New Paradigm for Agent Interpretability

    Get PDF
    The steady increase in complexity of reinforcement learning (RL) algorithms is accompanied by a corresponding increase in opacity that obfuscates insights into their devised strategies. Methods in explainable artificial intelligence seek to mitigate this opacity by either creating transparent algorithms or extracting explanations post hoc. A third category exists that allows the developer to affect what agents learn: constrained RL has been used in safety-critical applications and prohibits agents from visiting certain states; preference-based RL agents have been used in robotics applications and learn state-action preferences instead of traditional reward functions. We propose a new affinity-based RL paradigm in which agents learn strategies that are partially decoupled from reward functions. Unlike entropy regularisation, we regularise the objective function with a distinct action distribution that represents a desired behaviour; we encourage the agent to act according to a prior while learning to maximise rewards. The result is an inherently interpretable agent that solves problems with an intrinsic affinity for certain actions. We demonstrate the utility of our method in a financial application: we learn continuous time-variant compositions of prototypical policies, each interpretable by its action affinities, that are globally interpretable according to customers’ financial personalities. Our method combines advantages from both constrained RL and preferencebased RL: it retains the reward function but generalises the policy to match a defined behaviour, thus avoiding problems such as reward shaping and hacking. Unlike Boolean task composition, our method is a fuzzy superposition of different prototypical strategies to arrive at a more complex, yet interpretable, strategy.publishedVersio

    Features of hearing: applications of machine learning to uncover the building blocks of hearing

    Get PDF
    Recent advances in machine learning have instigated a renewed interest in using machine learning approaches to better understand human sensory processing. This line of research is particularly interesting for speech research since speech comprehension is uniquely human, which complicates obtaining detailed neural recordings. In this thesis, I explore how machine learning can be used to uncover new knowledge about the auditory system, with a focus on discovering robust auditory features. The resulting increased understanding of the noise robustness of human hearing may help to better assist those with hearing loss and improve Automatic Speech Recognition (ASR) systems. First, I show how computational neuroscience and machine learning can be combined to generate hypotheses about auditory features. I introduce a neural feature detection model with a modest number of parameters that is compatible with auditory physiology. By testing feature detector variants in a speech classification task, I confirm the importance of both well-studied and lesser-known auditory features. Second, I investigate whether ASR software is a good candidate model of the human auditory system. By comparing several state-of-the-art ASR systems to the results from humans on a range of psychometric experiments, I show that these ASR systems diverge markedly from humans in at least some psychometric tests. This implies that none of these systems act as a strong proxy for human speech recognition, although some may be useful when asking more narrowly defined questions. For neuroscientists, this thesis exemplifies how machine learning can be used to generate new hypotheses about human hearing, while also highlighting the caveats of investigating systems that may work fundamentally differently from the human brain. For machine learning engineers, I point to tangible directions for improving ASR systems. To motivate the continued cross-fertilization between these fields, a toolbox that allows researchers to assess new ASR systems has been released.Open Acces
    • …
    corecore