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Recent advancements in AI show great performance over a range of applications, but

its operations are hard to interpret, even for experts. Various explanation algorithms

have been proposed to address this issue, yet limited research effort has been reported

concerning their user evaluation.

Against this background, this thesis reports on four user studies designed to investigate

the role of explanations in helping end-users build a better functional understanding

of computer vision processes. In addition, we seek to understand what features lay

users attend to in order to build such functional understanding, and whether different

techniques provide different gains. In particular, we begin by examining the utility of

”keypoint markers”; coloured dot visualisations that correspond to patterns of interest

identified by an underlying algorithm and can be seen in many computer vision applica-

tions. We then investigate the utility of saliency maps; a popular group of explanations

for the operation of Convolutional Neural Networks (CNNs).

The findings indicate that keypoint markers can be helpful if they are presented in line

with users’ expectations. They also indicate that saliency maps can improve partici-

pants’ ability to predict the outcome of a CNN, but only moderately. Overall, this thesis

contributes by evaluating these explanation techniques through user studies. It also pro-

vides a number of key findings that provide helpful guidelines for practitioners on how

and when to use these explanations, as well as which types of users to target. Further-

more, it proposes and evaluates two novel explanation techniques as well as a number of

helpful tools that help researchers and practitioners when designing user studies around

the evaluation of explanations. Finally, this thesis highlights a number of implications

for the design of explanation techniques and further research in that area.





Impact Statement

Nowadays, we can see the widespread adoption and use of applications, products, and

processes that leverage the latest breakthroughs in Artificial Intelligence (AI). The per-

vasive application of AI spans a wide variety of areas, including predictive policing,

healthcare, and social services, among others. Thanks to the open-source practises, em-

ploying AI algorithms has become significantly easier each day, to the level where no

technical or coding skills is necessary.

Given this growth of AI, which is expected to continue in the future, the European

Parliament adopted the General Data Protection Regulation (GDPR), which includes

the right to explanation when automated decision making takes place. The necessity

of receiving an explanation is emphasised when the target users who are using these

algorithm have no experience on the inner-workings of the AI algorithms. Moreover,

previous research (Yang and Newman, 2013a) has revealed that lay users may overesti-

mate the performance of AI systems, resulting in over-reliance and perhaps detrimental

use. As a result, it is critical to assess if such explanation techniques, particularly those

already present in products or claimed to be effective for lay-users, are truly useful and

do not result in biased user understanding of system decisions.

By focusing on target users with no AI experience, this PhD project sought to contribute

to this space by evaluating existing widely used explanation techniques and developing

new ones. It is hoped that this work will influence the research community to truly

design and assess novel explanation techniques that are centred around human needs

and emphasise what leads to the user’s functional understanding of the system. Fur-

thermore, because of the government’s regulation processes, it is anticipated to see more

explanation techniques deployed in commercial applications. Therefore, we hope that

the methodological contributions and design implications presented in this thesis will

serve as helpful guidelines for practitioners and decision makers regarding when expla-

nations are required, the types of explanations to use, and the types of users to whom

these explanations should be directed. While this thesis focuses on two examples of

computer vision explanation techniques, we believe that the guidelines presented here

are applicable to other domains.
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Chapter 1

Introduction

As Artificial Intelligence (AI) increasingly becomes an integral part of many computer

programs, its impact on our society spans a wide spectrum of domains. Some systems

have already been shown to outperform humans at certain tasks like lung cancer screen-

ing (Ardila et al., 2019). With the ambition to increase efficiency and reduce cost, many

public and private organisations are adopting “data-driven” ML systems to support

or even take decisions around applications that range from predictive policing (Mohler

et al., 2015), healthcare (Cai et al., 2019a), to social services (Kleinberg et al., 2018),

and many others (Stone et al., 2016; Campolo et al., 2018). Therefore, there have been

several calls to make such systems accountable so that even users who are not ML ex-

perts can decide when to trust their predictions (Shneiderman, 2016; The IEEE Global

Initiative on Ethics of Autonomous and Intelligent Systems, 2017).

However, many ML algorithms currently operate as opaque box systems. When trained

with large amounts of data, they may perform very well, but understanding the under-

lying process by which results are achieved is difficult, even for experts. In other words,

interpretability is still a fundamental and open technical challenge (Lipton, 2018). This is

especially the case for one of the most popular and best performing types of ML systems:

Deep Neural Networks (DNN). Miller (2019a) defined interpretability as ”the degree to

which a human can understand the cause of a decision.” Researchers from various fields

have contributed to that notion. A large theme focuses on proposing algorithms that

produce explanations for AI models. Others, attempt to employ the vast literature in

philosophy, psychology, and cognitive science of how humans generate and present ex-

planations to other humans and attempt to apply this knowledge to the machine-human

context (Miller, 2019a). Another theme focuses on evaluating the different explanation

techniques either analytically (Samek et al., 2017) or by conducting studies with target

users. Although explanations are designed for humans to consume, there appear to be

fewer user studies than theoretical or analytical papers in the literature. Past work has

highlighted the need for further user studies to evaluate the significance of explanations

in complex systems and recognised this as a research gap (Narayanan et al., 2018a; Yin

1
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et al., 2019a). Moreover, as AI applications became more widely available, users who

were not necessarily AI specialists began to use them. Previous research (Yang and

Newman, 2013a) has revealed that lay users may overestimate the performance of AI

systems, resulting in over-reliance and perhaps detrimental use. As a result, it is critical

to assess if such explanation techniques, particularly those already present in products

or claimed to be effective for lay-users, are truly useful and do not result in biased user

understanding of system decisions.

In light of this, this doctoral work examines the role of explanations in helping end users

understand complex system decisions. We are interested in evaluating systems that

process images, as this is an area for which some of the most impressive results have

been reported to date, and with a broad range of applications (Pouyanfar et al., 2018).

In particular, this thesis focuses on evaluating two types of explanations. The first is

in the context of a classical pattern recognition system, and is referred to as ”keypoint

markers” - coloured dot visualisations which correspond to patterns of interest identified

by an underlying algorithm. These keypoint markers are most likely derived from a

keypoint matching algorithm, an intrinsic part of many computer vision applications,

e.g. panorama stitching, object detection, gesture recognition, and motion tracking. The

second type of explanations is saliency maps, which are a popular group of explanations

in the context of Machine Learning (ML) systems and represent a visualisation that

highlights which pixels were most important for the image classification of some class

(e.g. the cat class). We are interested in evaluating saliency maps produced to explain

the decisions of Convolutional Neural Networks (CNNs), which are currently the most

prevalent ML algorithm for computer vision applications. Figure 1.1 shows examples of

both techniques; keypoint markers (left) and a saliency map (right).

Figure 1.1: (Left): Smart Camera Apps that display keypoint markers feedback to
users. (Right): a saliency map suggests that the red part of the image supports the
CNN classification of this image as a cat.
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1.1 Research challenges

In this section, we outline the key challenges we encountered while conducting this

research:

• The reasonable amount of data to display –When working with complex sys-

tems, one critical design decision is deciding how much detail should be displayed

to users. Previous research (Kulesza et al., 2013) explored the trade-off between

showing detailed information about the underlying process of the system versus

the accuracy of the explanation. In our studies, we have explored this trade-off

between providing an explanation for all images in a dataset and letting the users

freely navigate through the dataset or sample a few representative images that

reflect the behaviour of the system on various outcomes. Both options have their

own pros and cons. While the first may perhaps provide a holistic overview of

the system, it does not ensure that users look at the same instances, which could

weaken any conclusion regarding the evaluation of the effect of displaying saliency

maps on user understanding.

• Defining the evaluation scope –Interpretability is a latent property that can be

influenced by manipulable factors such as the number of features, model complex-

ity, and the participants’ level of expertise, and these factors influence measurable

outcomes such as user trust, user ability to estimate the model’s outcome, and user

ability to detect biases (Poursabzi-Sangdeh et al., 2018; Chromik and Schuessler,

2020). Taking into account these elements and others results in a large design

space. As a result, selecting an evaluation scope that ensures a rigorous outcome

is a major challenge when evaluating complex systems (Doshi-Velez and Kim,

2017a).

• Choosing an appropriate evaluation measure – Another challenge was choos-

ing an appropriate evaluation measure. Previous work used different measures to

evaluate explanation techniques, including the user’s ability to detect mistakes (e.g.

(Kulesza et al., 2015)), user’s capacity to build a better classifier (e.g. (Poursabzi-

Sangdeh et al., 2018)) and the ability to choose the right model among multiple

candidate options (e.g. (Krause et al., 2018a)). Other studies evaluate expla-

nation techniques by measuring the time it takes users to complete a task (e.g.

(Bussone et al., 2015)).In addition to these measures, the capacity of a user to

predict the output of a model has been proposed and used as a measure of a sys-

tem’s transparency or explainability (Lipton, 2018; Muramatsu and Pratt, 2001).

This measure may be significant since it informs the user about the classifier’s

generalizability to real-world data and, thus, indicates the level of trust the user

should place in the classifier.
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• Study methods and constraints –Finally, an important decision to face when

evaluating systems is the choice between running lab or field studies. Generally,

field studies allow users to be exposed more to the explanations and indirectly

measure their value in natural settings. However, designing an experiment in such

settings is challenging because of the many external factors that may influence

the interaction cycle (Sharp, 2003). Studies in these settings need to be carefully

controlled, preferably in a way not obvious to participants. Furthermore, in order

to simulate a wide range of real world scenarios, design tasks need to lead par-

ticipants to experience instances of failure and success. As an alternative to this

option, lab studies have the advantage of being able to be run faster and cheaper

than field studies, and the conditions can be carefully controlled. The trade-off

between the two options is a known design challenge in HCI (Rogers, 2011) and

represents a research challenge in the context of evaluating smart systems. Due to

the COVID-19 pandemic, from March 2020 running field studies was not feasible,

hence the work was constrained to use online studies.

In summary, this section highlights some challenges that a researcher may encounter

while evaluating explanation techniques for complex systems. In our research, we aim to

evaluate the role of explanations and how they can be used to improve user understanding

of complex models. However, given the broad design area, we intend to focus our effort

on a specific scope. In the following section, we explicitly define the research questions

of this thesis based on the challenges outlined above and influenced by the preceding

research provided in Chapter 2.

1.2 Research questions

The main topic of this thesis is to examine the role of explanation in helping end users

understand complex algorithms’ decisions, as well as how explanations should be de-

signed to improve user understanding. Within this broad scope and following a survey

of the literature, a number of research questions were identified and developed over the

course of the PhD. The first two questions were in the context of a classical pattern

recognition system. The formulation of these questions was motivated by an observa-

tion of a number of smart camera apps that have been developed to assist users in a

variety of tasks, such as product searching. To simplify user interaction, these apps usu-

ally include visual feedback, overlaying the camera’s viewfinder with visual aids called

”keypoint markers”. While such visualisations have long been popular as a debugging

tool for software developers, to date little is known about their effect on end-user in-

teractions. Their inclusion may simply be motivated by a need to convey background

activity, however, their presence motivated us to raise the following research question:
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(R1) Do keypoint markers help users in building a better functional under-

standing of computer vision processes?

Where by ”functional understanding”, we refer to the sort of understanding that helps

users interact with the system effectively rather than understanding the inner-working

processes of the model. We tackle this research question by addressing the following

sub-questions (which have been investigated in Chapter 3):

• R1.1: Are keypoint markers intelligible to lay users?

• R1.2 Do they improve usability and aid users’ interaction around failures?

• R1.3 Can they mislead users if misunderstood?

Furthermore, because data in computer vision is typically propagated via a pipeline with

multiple stages of processing, in which keypoint markers represent information about an

early stage of that pipeline, we were also interested in the following research question:

(R2): What key stages of computer vision processes need to be made visible

(through keypoint markers) to improve lay users’ functional understanding?

(Chapter 3).

In the next studies, the thesis focus shifted to Convolutional Neural Networks (CNNs)

which are currently the most prevalent algorithm for computer vision applications. Fol-

lowing a survey of the literature (Chapter 2), saliency maps emerged as one popular

form of explanation for such algorithms. Moreover, previous work claims that they are

easy to interpret by both novice and expert users (Lapuschkin et al., 2019). However,

we found that a limited number of user studies have been conducted to evaluate saliency

maps. Therefore, we decided to investigate the role of saliency maps in informing user

understanding and pose the following research questions:

(R3) How do saliency maps help with building functional understanding,

including the relation to varied system confidence? (Chapter 4).

Specifically, we seek to measure this understanding by asking participants to predict

the CNN classification outcome of an image (we call it the ”task image”) and count the

number of correct user’s predictions.

In addition, we would like to understand more about the kind of features participants

pay attention to with and without the presence of saliency maps. Therefore, we are

interested in the following question:

(R4): What features do lay users attend to in order to build a functional

understanding of computer vision processes? (Chapter 5).
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Finally, we seek to understand whether the different saliency map techniques help users

to varying degrees by posing the following research question:

(R5): How do different saliency map generation techniques perform to build

functional understanding? (Chapter 6).

For the studies concerning saliency maps, the research questions listed above were ad-

dressed through two study designs. In the first, a number of examples along with their

corresponding saliency maps were displayed, and the user task was to predict the CNN

classification outcome for a task image. The second design is of lower intrinsic complex-

ity, in which saliency maps are presented alongside the task image.

The next section describes how this thesis was structured in order to address these

research questions.

1.3 Research structure

The work of this PhD involves a series of lab studies designed to investigate the role of

explanation in user understanding. The thesis is divided into the following chapters:

Chapter 2: highlights significant prior work and describes how it relates to our research.

The chapter also explains how the research questions emerge from the reviewed litera-

ture.

Chapter 3: documents between-groups user studies examining the role of visual feedback

on informing user understanding. We examine the effect of showing keypoint markers

and compare them to other feedback options that have been derived from different

stages of the data processing. The study highlights a number of interesting findings and

provides implications for pattern recognition feedback design.

Chapter 4 detailed our first study to examine the role of saliency maps. In this study,

participants were asked to estimate the CNN outcome on images (we refer to them as

”task images”). A few representative instances were selected and displayed as exam-

ples in the interface. These examples were the most similar ones in terms of score to

the task image. Findings indicate that the presence of saliency maps did not result

in a significant difference between conditions in terms of correct guessing of whether

images would be correctly or incorrectly classified by the model. However, along with

other interesting findings, a main theme that emerged was the mentioning of features

across all conditions. Qualitative data showed that for correct answers, saliency map

participants often mentioned features that could be highlighted by the saliency map,

while participants in the no-saliency map condition did not. This finding drives us to

look for a different sampling strategy to locate images with similar patterns, rather than

selecting images with the closest score.
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Chapter 5 builds on the work reported in Chapter 4, with a similar design except that the

selected examples were those with similar patterns according to the CNN embeddings

(a low-dimensional representation of input data learned by the CNN model). Given this

new setup, when saliency maps were present, participants’ ability to predict the outcome

of the network for new images was improved. However, even with saliency maps present,

the improvement was moderate (60.7% prediction accuracy). We further report on a

number of key findings which includes the observation that saliency maps appear to

prime participants to primarily focus on what saliency maps can highlight and pay less

attention to other attributes that saliency maps cannot highlight.

Chapter 6 reports on a study that evaluates saliency maps with a task with a lower

complexity compared to the studies reported in Chapter 4 and Chapter 5. Particu-

larly, participants were asked to perform multiple tasks in which saliency maps were

presented alongside the task image. This simplified design also allows us to compare

multiple saliency map generation techniques based on multiple measures. A number of

findings are provided, along with key implications for designing and using saliency map

approaches, including the importance of selecting a technique in light of the intended

task.

Chapter 7 provides a summary of the work presented in this thesis. It concludes with

the main findings, an acknowledgement of the limitations, and a discussion of potential

avenues for further research in this area.

1.4 Research contributions

This section outlines the key research contributions reported in this thesis.

In Chapter 3, we present findings from a study that investigates user interaction around

pattern recognition algorithms, which addresses R1 and R2. Our findings indicate that

participants who received explanations derived from later stages (higher level) of the

data processing demonstrated an improved understanding of the system operation com-

pared to explanations derived from an early stage (lower level). In particular, keypoint

markers can help users in building a better functional understanding of computer vision

processes as long as they are derived from a stage of processing that is inline with user’s

expectations. From this, we suggest that the stage of processing from which feedback is

derived plays an important role in users’ capacity to develop coherent understandings of

a system’s operation and that feedback must be presented inline with user expectation,

the violation of which could result in misconception.

Regarding R3, in the context of saliency map explanation in particular, quantitative

and qualitative data in our studies highlight the following:
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1. Considering participants’ ability to predict the CNN classification outcome of im-

ages as one measure of users’ functional understanding, our findings indicate that

saliency maps could help participants predict the outcome of the model, but over-

all, the success rates were relatively low. Moreover, when we consider task images

with different classification outcomes, we found that showing the saliency maps

of the displayed examples does not appear to aid participants when compared to

only showing the classification scores of these examples.

2. We report on some instances in which despite having access to the saliency maps

some participants expected the system to understand human high-level concepts,

where in reality, CNN learns patterns in a bottom-top hierarchy fashion in which

meaningful patterns that look like what we humans refer to as ”semantics” may

emerge in the deep layers of the network, but that is not guaranteed (Chapter 4)

3. Our data showed that when images with low CNN scores were sampled, features

were mentioned a lot less frequently by our participants suggesting that the utility

of saliency maps varies according to the classification score. These findings suggest

that a saliency map may highlight what supports the prediction of some classes,

but it will fail to provide counter-factual evidence, namely, the absence of evidence

(Chapter 4 and Chapter 5).

4. Regarding R4, saliency maps appear to prime participants to primarily focus on

what they highlight (which we called Saliency-Features), but potentially distract-

ing them from other attributes such as colour and contrast, which saliency maps

cannot highlight (Chapter 5).

5. We designed, implemented and evaluated two new saliency map techniques. The

first is ”semantic occlusion” (sem-occl) which was designed to specifically focus on

features that are meaningful to people (i.e., semantics). As a generalisation of this

approach, we also proposed a second occlusion technique: ”multi-scale occlusion”

(m-scale-occl), which uses rectangular occluding regions arranged on multi-scale

grids (Chapter 6).

6. We investigated R5: How do different saliency map techniques perform to build

functional understanding? where we measure this understanding via different

tasks. Our findings indicate that the utility of the different saliency map tech-

niques appears to vary depending on the task at hand. For example, a technique

that aids users in predicting the CNN classification outcome, may not be effective

in assisting users in detecting errors or biases (Chapter 6).

Based on those findings, we made a number of recommendations for using and designing

explanation techniques. In addition, the work detailed in this thesis has been published

(or is under review) at the following venues:

Chapter 3 is presented in the following CHI conference paper:
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Jacob Kittley-Davies, Ahmed Alqaraawi, Rayoung Yang, Enrico Costanza, Alex Rogers,

and Sebastian Stein. Evaluating the effect of feedback from different computer vision

processing stages: A comparative lab study. In Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems, CHI ’19, pages 43:1–43:12, New York, NY,

USA, 2019. ACM. ISBN 978-1-4503-5970-2.

My role in relation to this paper included designing and conducting the study as well as

analysing the results.

Chapter 5 is presented in the following IUI conference paper:

Ahmed Alqaraawi, Martin Schuessler, PhilippWeiß, Enrico Costanza, and Nadia Berthouze.

2020. Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User

Study. In Proceedings of the 25th International Conference on Intelligent User Interfaces

(Cagliari, Italy) (IUI’20). Association for Computing Machinery, New York, NY, USA,

275–285.

Chapter 4 and 6 form the biases for the following paper in submission:

Ahmed Alqaraawi, Enrico Costanza, Nadia Berthouze and Emma Holliday. Evaluating

and Improving Heatmap Explanations for CNNs through to online user studies. ACM

Transactions on Computer-Human Interaction (TOCHI).

For this paper, the development of the tree structure and its processing (which will be

explained in detail in that chapter) was performed by Emma Holiday as part of her

Master’s thesis.
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Chapter 2

Literature Review

In this chapter, a review of the literature on the role of explanations in informing users

of complex models is presented. We begin by providing a brief overview of some of

the concepts covered in this thesis. Then, we examine research that argues for the

importance of users developing sound mental models of complex systems. Following

that, we provide a general background on pattern recognition and machine learning

algorithms, explore why they are more difficult to interpret, and compare them to other

modeling techniques. Next, we detail works that are more relevant to our studies. In

particular, we review works that propose or evaluate methods that derive a feedback from

the processing pipeline as a basic type of explanation. Then we discuss how visualisation

and interaction are utilised for the purpose of model understanding, where we place

more emphasis on saliency maps as popular group of explanation techniques typically

employed to provide instance-level explanations. Finally, we present an overview of

several works that focus on evaluating ML post-hoc explanation techniques, with a

focus on relevant research that evaluates saliency maps through user studies.

2.1 Background

Before going over the existing literature that is relevant to our work, and because some

terms are defined differently by different authors, in this section, we briefly define some

concepts as they are used in this thesis.

Data processing pipeline –Machines are designed to process data starting from low

level features, propagating the data in a series of processing stages until it reaches a final

decision. For example, in computer vision, images are passed through various stages

of processing, starting from a low level of processing that identifies distinctive points of

interest in an image (e.g. keypoints features), to other stages that map these features

to a domain that is invariant to geometric and photometric variations. Figure 2.1 shows

11
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an example of a data processing pipeline that we have used in Chapter 3. Depending on

the algorithm and the application, the pipeline can be structured in a variety of ways.

Feature extraction

Figure 2.1: An example of a data processing pipeline that we have used in Chapter 3

Keypoint matching algorithm processes – The keypoint marker feedback seen in

many consumer applications is most likely derived from a keypoint matching algorithm,

an intrinsic part of many smart camera apps, e.g. panorama stitching, object detection,

gesture recognition and motion tracking. Most keypoint matching algorithms involve

three stages of processing: (i) identify distinctive points of interest in an image (the

keypoints), (ii) programmatically describe them, so that the description is resilient to

geometric variations e.g. rotation, scale and perspective, and photometric variants e.g.

contrast and brightness, and (iii) compare the descriptions with those of another image.

How the results of this comparison process are used is application specific. In panorama

stitching for example, the closest matching descriptions between images are assumed to

represent the same point in the physical world. Using their relative changes in position

the images can be transformed such that the keypoints overlap creating a new combined

image with a wider field of view.

Machine learning (ML) –refers to the set of algorithms that allow a computer to learn

and discover patterns in data without having to be explicitly programmed (Samuel,

1959). Computer vision, natural language processing (NLP), and bioinformatics are

examples of machine learning’s sub-fields.

Neural Networks (NNs) –are the group of ML algorithms that represent a mathe-

matical framework for learning patterns from data. The network consists of a collection

of connected units structured in multiple layers. Each unit applies a simple data trans-

formation function. An optimisation algorithm (called backpropagation) adjusts the

parameters of these functions in an iterative form by observing and learning from many

input examples (often called the training set). Figure 2.2 depicts a basic demonstrative

example, where for state of the art architecture, the number of nodes can reach millions.

It is worth noting that although the name (Neural Networks) has a reference to the

neurobiology term, there is no evidence that the brain processes information the same

way as NNs (Chollet, 2017).

Convolutional Neural Networks (CNN) –is a subset of the NNs which includes

different types of layers such as densely connected layer but mainly it involves what

is called convolutional layers. When compared to densely layers, convolutional layers

have number of key advantages. First, the learned patterns (or features) have the

characteristics of being translation-invariant, which means that if the model learns a
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X1

X2

h1

h2

h3

y

Input Hidden Layer(s) Output

Figure 2.2: A demonstration of a basic NN with one hidden layer.

pattern at the left lower corner of an image, then this pattern would be recognised

at other locations such as the centre. Second, that they can learn spatial hierarchies

of patterns in which basic local patterns such as edges and corners are learned in the

first few layers, while more complex representations (such as dog faces) emerge in deeper

layers (Zeiler and Fergus, 2014). Third, they require fewer parameters when compared to

dense architectures. These characteristics make CNNs a powerful algorithm for learning

from image data (Zhang et al., 2020). Figure 2.3 shows one types of CNN architectures

called VGG16, which is the one we used in our work.
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Figure 2.3: VGG16 architecture. Adapted from (Chollet, 2017)-Figure 5.19

CNN features (Embeddings) –Previous work (Zeiler and Fergus, 2014) showed that

when CNNs are trained on a large and diverse dataset, they learn a powerful and com-

pressed representation of the data (sometimes called feature vectors) in a hierarchical

fashion. They show that the network’s first few layers are typically responsive to low-level

features (such as corners and shapes), and that as you move deeper into the network,

more complex representations (such as dog faces) emerge. Such representation could

be helpful in variety of tasks such as instance retrieval (Sharif Razavian et al., 2014).

Chollet (2017) demonstrated this learning process in Figure 2.4.

Fine-tuning –Training a NN for complex dataset such ImageNet (Deng et al., 2009)

from scratch require a lot of computational resources. Fortunately, it has been shown

that one can utilise the parameters (i.e. embeddings) that have been learnt for one

dataset and use them for others. Typically, a pre-trained network is a network that was

trained on a large and general enough dataset, on which generic representations were

learned and can prove useful for many different computer vision problems, even if these

new problems involve classes that are completely different from those of the original task.
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Figure 2.4: A demonstration of how CNN features emerge. Early layers learns basic
patterns, while next layers build on that and learn more complex patterns. From
(Chollet, 2017)

Fine-tuning is a widely used approach to achieve this task, which consists of freezing

some of the network’s early layers and substituting and training the remaining layers

with new ones that suite the new problem (Chollet, 2017). For example, in our work, we

have utilised a model that has been pre-trained to classify the ImageNet dataset (1000

classes), and replaced the last few layers with new fully connected layers that classify

the Pascal dataset (with only 20 classes) (Figure 2.3).

Multi-label problems – In the multi-label image classification problem, an image can

contain multiple objects. For example, the assignment of the labels “horse, train” is

considered correct if both, a horse and a train are visible in the image. This problem has

been considered in our studies because in this context, saliency maps have the potential

to highlight specific parts of the image that correspond to one label, as well as parts

that correspond to alternative labels.

The definition of TP, TN, FN and FP for multi-label classification – In the

multi-label image classification problem, for each object class, the CNN computes a

classification score between 0 and 1. Hence, a criterion needs to be defined so that the

score can be translated into an outcome: TP, TN, FN and FP, where these outcomes

are defined as follows:

• True Positives (TP), where a label had been correctly assigned;

• True Negatives (TN), where the CNN had been correctly excluded a label.

• False Negatives (FN), where the CNN had failed to assign the label;

• False Positives (FP), where the CNN had incorrectly assigned the label.

In Chapter 4, the system accepts the predicted labels that satisfy one of two criteria: (1)

the predicted label is among the top three highest scores (By inspecting the PASCAL
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dataset, we found that it is very rare for an image to contain more than 3 objects of

interest). This criterion was motivated by the common measure used for evaluating

datasets by considering the top-n labels. However, we believe that this measure is

appropriate for datasets with a large number of labels, such as ImageNet-1000, therefore

we chose to include another criterion that takes into account the prediction score value,

which is (2) the predicted category is higher than a pre-defined threshold (we used here

0.1).

In Chapter 5, we revised this metric to account for CNN’s various performances across

classes. In particular, we calculated threshold values for each class (e.g. horse, cat)

where each threshold was obtained by maximising the F1-score (a common statistical

measure that takes into account the number of TPs, FNs, and FPs) for the class on the

dataset.

Interpretability –There seem to be no universal agreement on the definition of inter-

pretability. The reference to this notion is diverse and distorted and often depends on

the context in which it was used (Lipton, 2018). Miller (2019a) attempts to provide a

general definition of interpretability as ”the degree to which a human can understand

the cause of a decision”. Miller uses the notions of interpretability and explainability

interchangeably. Montavon et al. (2017) differentiate between interpretations and ex-

planations. In their definition, an interpretation is the mapping between an abstract

concept to a human understandable domain. Images and text are examples of inter-

pretable domains, while the collection of abstract model weights is not. An explanation

is the collection of features or examples in that interpretable domain that support the

model’s outcome.

Post-hoc explanation –given a pre-trained model, A post-hoc explanation is a repre-

sentation that explains predictions (”functional understanding”) without clarifying how

models work (Lipton, 2018). Examples of post-hoc explanations are natural language

explanations, prototypical examples and saliency maps (which are the ones we focus on

in our work).

2.2 The importance of system Intelligibility

Before reviewing the literature that are relevant to our research, we seek to demonstrate

the importance of system intelligibility for effective user interaction with smart systems.

The HCI community is particularly interested in how users understand systems. Conse-

quently, a large body of relevant literature exists. For example, Dix (1992) discussed the

potential impact of deep neural networks (DNN) on interpretability. If mental models

are sufficiently accurate, they enable an interaction with a system that is more efficient.

However, when flawed they may cause confusion, misconceptions, dissatisfaction and

erroneous interactions (Kulesza et al., 2015). Similarly, the overestimation of a system’s
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intelligence or capabilities has been shown to impact user interaction negatively (Alan

et al., 2016). This may lead to over-reliance on a system, less vigilance towards system

failures and unrealistic expectations (Yang and Newman, 2013b). Explanations for bet-

ter system understanding have been investigated in several field including the context

of information retrieval (Koenemann and Belkin, 1996), recommender systems (Kulesza

et al., 2012) and context-aware systems (Lim et al., 2009).

Our work contributes to this space, investigating the importance of user understanding

on effective interaction with smart systems. We present observations of misconceptions

and their consequences for user interaction, as well as examine the implications for

designing effective visual feedback for such systems. In the next section, we discuss the

primary benefits of employing pattern recognition and machine learning systems, which

justify their widespread use despite being more difficult to interpret.

2.3 Are pattern recognition and ML algorithms less Intel-

ligible?

Following our discussion in the preceding section of why it is necessary to make systems

understandable, we now present a general background on pattern recognition and ML

algorithms, discuss why they are more difficult to interpret, and contrast them with

other modeling techniques.

By the definition of Breiman et al. (2001), there are two main approaches of statistical

modeling. The first method is known as ”data modeling,” in which data are generated

by a known data model and the model is frequently validated using goodness-of-fit.

Examples of this category are the linear regression and logistic regression models. The

second is called algorithmic modeling where the model is considered unknown (black

box). The main aim of these algorithmic models is to automatically find the optimum

underlying structure that leads to the highest predictive power. The majority of ML

learning algorithms, including k-nearest-neighbors, Neural Networks (NN), and Random

Forest, fall into this second category.

The question therefore becomes, what is the point of using algorithmic modeling if it

leads to black-box systems? According to Breiman et al. (2001), in addition to reaching

state of the art accuracies, algorithmic techniques have a number of other advantages.

For example, with the availability of data, algorithmic models (e.g. NN) may high-

light novel connections or potential causal relationships between variables, leading to

new hypotheses in that field. When a mathematical model cannot reach a comparable

performance of a state-of-the-art algorithmic model, this hypothesis and suggests that

further understanding is still missing in that field (Shmueli et al., 2010).
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Algorithmic modeling, on the other hand, should be used with caution. Because what

the algorithm learns is constrained by the data provided, it may not reflect the un-

derlying model, posing the risk of arriving at a biased model. The medical case study

mentioned in (Caruana et al., 2015) is a good example in this context. The algorithmic

model (which was a NN in that work) learns a counter-intuitive rule from a pneumonia

dataset, concluding that asthmatic pneumonia patients have a lower chance of dying

from pneumonia than those with general pneumonia. However, it turns out that pneu-

monia patients with a history of asthma are more likely to be admitted to the Intensive

Care Unit (ICU) and receive better care, which helps. The data-driven algorithm will

not be able to spot this unless the dataset reflects the link between asthma and ICU

admission. In (Lapuschkin et al., 2016), two algorithmic models, Fisher vector (FV)

and CNN, were trained to predict a ”horse” class (Figure 2.5). The accuracy of the

two models was comparable. Despite the high accuracy of the FV model, the authors

applied an explanation algorithm, which highlighted the importance of a copyright tag

(which is often found in horse photos from that dataset). After removing the copyright

tag, the FV model’s accuracy dropped substantially. These two examples demonstrate

that attaining a high level of accuracy is not a sufficient indicator that the algorithm is

learning the intended model.

ML systems are currently widely employed by users of varying levels of expertise. Be-

cause there are many different ways to improve the intelligibility of machine learning

models, in this thesis, we focus on ML explanation techniques that are suitable for users

that don’t necessarily have knowledge of machine learning. In the next section, we

review works that are relevant to our research.

Figure 2.5: An explanation presented as a saliency map for FV and DNN models.
Before and after removing the copyright tag (Lapuschkin et al. (2016))
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2.4 Explanations in computer vision systems

A large body of literature proposes a variety of different solutions to improve the in-

telligibility of machine learning models. For literature reviews, we refer the interested

reader to (Lipton, 2018; Guidotti et al., 2018; Adadi and Berrada, 2018).

One stream in this research field seeks to understand how a model works. For example,

Strobelt et al. (2016) proposed a visual analysis tool to support the understanding of

the hidden state dynamics of Recurrent Neural Networks (RNN). Kahng et al. (2018)

presents ActiVis; an interactive visualisation system designed for large-scale deep learn-

ing models. One component of their system displays neuron activation, which aids

practitioners in identifying and comparing patterns in the models’ underlying processes.

Such visualisations are useful for debugging complex models, but they demand a high

level of ML knowledge. In our research, we target users that don’t necessarily have such

a background.

In this thesis, we are interested in the research field that seeks to explain computer vi-

sion models predictions with post-hoc explanations without uncovering the mechanisms

behind them. Common explanation techniques in that space include:

• Deriving feedback from different stages of the data processing pipeline (Patel et al.,

2010; Krause et al., 2016): which is a basic type of explanation that visualises the

processed data (often called feature vectors) as it progresses through the various

phases of processing. In Chapter 3, we designed a study around one type of this

class of explanations called keypoints (Section 2.1).

• Saliency maps: which is a popular group of post-hoc explanations that assign

a score to each input feature, determining the importance of this feature to the

classification of some class. This score is then visualised as a saliency map that

highlights the importance of such a feature. For example, the input data could

be an image, and a saliency map would highlight the pixels that support the

prediction of some label (e.g. car). In Section 2.4.2, we mention more details about

the mechanism of generating saliency maps and a description of some popular

techniques.

• Textual explanations: instead of highlighting the relevant part of the image that

support the prediction, another explanation techniques is to produce a natural

language sentences that describes the image. For example, for an image, the system

produces the following sentence: ”A group of people sitting on a boat in the water”

(Xu et al., 2015). Commonly this task is achieved by using a combination of CNN

to extract an image embeddings and another network such as recurrent neural

networks (RNN) to decode those embeddings into a meaningful text (Xu et al.,

2015). Because the text is created by two different models (i.e., CNN and RNN),
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it is difficult to determine which of these two models is at fault if the explanation

is incorrect. In fact, some works showed that such textual output is not reliable

and proposed techniques to explain them (Han et al., 2020).

• Example-based explanations: present subset of instances from the dataset that

describe the behaviour of the model (Molnar, 2020). This type of explanations

can be represented in multiple ways which includes: (1) counterfactual instances,

which indicate which parts of the input would have the most impact on classifier

output if plausible alternative values were substituted (Chang et al., 2018), (2)

Prototypes which are representative data points sampled from the data (Molnar,

2020; Kim et al., 2016), (3) Influential instances represents the data points most

responsible for a given prediction (Koh and Liang, 2017).

Montavon et al. (2017) defined an explanation as ”the collection of features of an in-

terpretable domain (e.g. images or text, where a human can look at them and read

them), that have contributed for a given example to produce a decision”. According

to this definition, the techniques listed above are considered explanations. In our work,

we focused on the first two explanation techniques: keypoints and saliency maps. The

choice of keypoints was motivated by the observation that a number of commercial smart

camera apps that target lay users include these keypoints. In regards to saliency maps,

we observed that, in addition to the argument that such explanations can aid non-expert

users (Ribeiro et al., 2016a), several techniques that are used to explain CNNs have been

proposed in the literature, but they are rarely evaluated with users. Furthermore, previ-

ous work showed that when a constant shift is introduced to the input, various saliency

map approaches fail to attribute appropriately (Kindermans et al., 2019), suggesting

that they are not completely reliable. We seek to investigate this argument by evaluat-

ing several saliency map techniques through user studies. In the following subsections,

we detail works that are more relevant to our studies.

2.4.1 Deriving feedback from the processing pipeline

Machines are designed to process data starting from low level features, propagating

the data in a series of processing stages until it reaches a final decision. A basic type

of explanation is to visualise the processed data (often called feature vectors) as it

progresses through the various phases of processing.

Software platforms such as Crayons (Fails et al., 2003) and Eyepatch (Maynes-Aminzade

et al., 2007) were specifically developed to insulate users from the complexities of com-

puter vision and pattern recognition technologies. They theorise that by providing users

with interfaces that facilitate ”rapid trial-and-error”, the most effective solutions to

classification problems can be found.
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However, as machine learning technologies become increasingly complex, Patel et al.

(2008) have suggested that successful implementation can only be achieved with a deeper

understanding of the inner- workings of the processes. DejaVu (Kato et al., 2012) was

developed to expose domain-expert programmers to computer vision technologies, with

the ambition of aiding code debugging. The system allows images passing through

the various stages of processing to be inspected and an interactive timeline interface

lets users record and examine data flow temporally. Although a small user study was

conducted, the focus of that paper was demonstrating system functionality rather than

the assessing user understanding. Zhao et al. (2016) conducted a study examining

lay-users’ interactions with an augmented reality pattern recognition system on a head-

mounted display (HMD) designed to assist users with low vision in a product search task

by recognising the product and utilising visual feedback to guide the user’s attention

to the product. The feedback in this study was derived from the output of a pattern

recognition processing pipeline. Exposing the underlying data processing is an idea

which has been explored in the domain of machine-learning. The creators of Gestalt

(Patel et al., 2010) an integrated development environment (IDE) designed specifically to

assist programmers creating software which makes use of machine learning technologies,

demonstrated through lab studies, that exposing data at various stages of a process

significantly improves programmers’ ability to identify and correct errors in their code.

While these studies employ some sort of visual feedback, they do not compare feedback

derived from multiple stages of the pipeline in an interactive computer vision application.

The closest work in that space is (Zhao et al., 2016), however, the feedback was derived

from one stage of the pipeline, namely the output. Our work in chapter 3 builds on

the reported studies with the aim of investigating the capacity of algorithmic feedback

to support user understanding, but also how it can lead to misconceptions if poorly

designed.

2.4.2 Saliency map as an explanation technique

A popular group of post-hoc explanation techniques is feature-attribution or saliency

map. In this section, we provide more details about saliency maps, how they are gen-

erated and key differences between several saliency map techniques. Although saliency

maps can be classified as visualisation techniques, we have chosen to devote this section

to them because this type of explanation covers up a large portion of this thesis.

For a given input, a relevance score is calculated for each individual input feature (e.g.

pixel) then rendered as a saliency map (see for example Figure 2.6). Several techniques

in the literature have been proposed to produce these saliency maps. In NN, the back

propagation step involves calculating the gradient, which can be readily used to assess

the relevance of the input features (Montavon et al., 2017). This process can be efficient

since it often only requires one forward and backward pass through the network. The
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Figure 2.6: An explanation presented as a saliency map using Sensitivity Deconvolu-
tion and LRP approaches (Samek et al., 2017)

basic form of this process is the sensitivity analysis (Baehrens et al., 2010; Simonyan

et al., 2013), where the saliency map intensities are calculated by taking the gradient

(partial derivative) of the output score for a specific class with respect to the input.

To understand how a saliency map is constructed, it is helpful to recall how the back-

propagation steps work. In NN, learning is achieved by minimising the loss (prediction

error) with iterative updates of the network parameters. This process is often performed

efficiently by the backpropagation algorithm, which involves updating the parameters in

the opposite direction from the gradient, which decreases the loss. For demonstration,

Figure 2.7 explains the process in a simple 1D continuous function that maps an input

x to an output y.

Figure 2.7: a simple demonstration of the optimisation process in the back-
propagation algorithm

In the context of saliency maps, we utilise the gradients not to minimise the loss, but

to have an indication of the contribution of each pixel. In particular, considering the

most basic forms of saliency maps, in the forward pass step, we get a probability score

for each class. Then we apply one backpropagation step for a specific class (e.g. cat),

which yields a gradient for each pixel. Each gradient has a magnitude that indicates the
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importance of this pixel, and a sign to indicate that changing this pixel would contribute

to the increase or decrease of the model’s output.

Modern NNs architecture often involves multiple rectified linear units (ReLU) which

serve as activation functions. In the back propagation step, the sensitivity analysis

approach (Simonyan et al., 2014) sets the negative values to zero (i.e. multiplying by

the indicator function) when mapping the signal from one layer to the previous one,

which makes the backward mapping discontinuous (Montavon et al., 2017). To solve

this limitation, Zeiler and Fergus (2014) proposed the deconvolution method where the

back-propagated signal is passed through a ReLU similar to the one used in the forward-

pass, which makes the mapping continuous. In addition, for pooling layers, this approach

also records the location of the maxima to use it in the backward mapping. Bach et al.

(2015a) argues that this approach, on the other hand, has two shortcomings; first, the

negative relevance will be discarded by the ReLU in the backward pass, and second,

because the back-propagated signal is not layer-wise normalised, the final saliency map

may be primarily determined by a few dominating relevance scores. Thus, Bach et al.

(2015a) attempts to solve these shortcomings by introducing the Layer-wise Relevance

Propagation (LRP) algorithm. In contrast to the previous techniques, in the backward

pass, the ReLU step is skipped to preserve the negative evidence. In addition, the

prediction score is distributed to each node in that layer subject to how much that node

has contributed in the feed-forward phase. To further provide an insightful saliency map,

when propagating back across the different layers, scores have to satisfy a local relevance

conservation principle to ensure meaningful mapping between the final prediction scores

and the produced saliency map.

Alternative to the gradient-based approaches is a set of techniques that rely on the

relationship between the input and the output. Saliency maps are formed by occluding

parts of the input and observing how that affects the output. These are often referred

to as perturbation-based (or occlusion-based) techniques, and they have the advantage

of being model-agnostic. Solutions in that space include the occlusion of an image with

a fixed-size grey square, and monitoring how that affects the output of the classifier

(Zeiler and Fergus, 2014). Petsiuk et al. (2018) proposed RISE a technique that forms a

saliency map by combining multiple random masks, where these masks are weighted by

the score of the target class. Ribeiro et al. (2016b) presented LIME an algorithm that

explains the prediction of any classifier (model-agnostic) by drawing samples around

an instance x (super-pixels) and learning a model that is locally faithful by performing

perturbations.

In Chapter 4 and the ones that follow, we focus on evaluating saliency maps as an

explanation technique. In addition, in Chapter 6, we introduce and evaluate two novel

occlusion-based saliency map generating approaches, extending previous work in this

space.
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2.5 The presentation of explanation

Given the complexity of current ML models, it is essential to study the level of detail that

should be presented to users. To that end, Kulesza et al. (2013) examined the impact

of soundness (the accuracy with which the feedback accurately reflects the underlying

processes of the system), and completeness (To what extent the feedback describes all of

the underlying processes of the system). They evaluated the impact of these two notions

on the user’s mental model by using a music recommender system as a vehicle. Their

findings imply that completeness, rather than soundness, is more significant.

Bussone et al. (2015) raised the question of when explanations could be considered

harmful. In a study that targeted primary care physicians to diagnose and treat balance

disorders, the system showed two versions to the users: a comprehensive version, which

provides an explanation that shows inputs associated with the diagnosis, and a second

version, which shows fewer details. Their findings indicate that users who received a rich

explanation from the system developed an over-reliance bias, which led them to accept

results from the system despite knowing the possibility of error.

More relevant to our studies, some popular techniques produce instance-level explana-

tions. Building a coherent understanding of the underlying model by examining these

individual instances can exceed users’ cognitive load. Therefore, selecting and display-

ing representative data points or finding ways to summarise these individual instances

is crucial (Krause et al., 2018a). In our work, we plan to explore multiple options that

enable users to examine large datasets.

2.6 Evaluating ML post-hoc explanation techniques

Subjective evaluation on aesthetic appearance of saliency maps (e.g. how the saliency

map accurately highlights the parts of interest) is not accurate, yet some proposed

techniques are guided accordingly (Adebayo et al., 2018). Samek et al. (2017) argue

that explanations do not have to correspond to human intuition or focus on the item of

interest, but rather on what the classifier has learned from the provided data. Moreover,

it is important to define the scope of the evaluation; claiming that one approach is more

interpretable than the other should be within the scope of the study design, which

includes but is not limited to: data type, model, user expertise level, and designed task.

Chromik and Schuessler (2020) proposed a taxonomy for rigorously evaluating XAI,

which was backed up by a thorough analysis of the literature from several disciplines

involved in XAI. They grouped the requirements of XAI evaluation into three main

groups: task related, participant-related and study design related dimensions. In the

task dimensions, the authors distinguish between multiple intended explanation goals
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such as transparency, trust, debugging and education. In addition, they stated a number

of user tasks that have been proposed or used in the literature to evaluate the quality of

the provided explanation, and grouped them according to the information provided to

participants and the defined task. Examples of these user tasks are forward simulation

tasks (or simulatability as defined by Lipton (2018)) and Counterfactual simulation

tasks. In the Participant Dimensions, when evaluating XAI, it is necessary to take into

account the participant expertise level: AI novices, domain experts, or AI experts, which

may also determine the number of participants to be able to recruit (i.e. novices are often

easier to recruit than domain experts). The last group is the study design dimensions

in which the study method (i.e. a qualitative, quantitative, or mixed and whether it is

between or within-subject) is also a factor that may determine the appropriate choice

of treatments in terms of the provided types of explanations.

Given an explanation, Hoffman et al. (2018) attempt to understand whether this expla-

nation has provided the user with a functional understanding of the AI system. For this

goal, they proposed multiple levels of XAI evaluation which include: (1) the goodness

of explanations which could be represented by clarity and precision often evaluated by

researchers. (2) The satisfaction of the given explanations, which defined by the degree

to which users feel that they understand the AI system or process being explained to

them. (3) Their understanding of the AI system (i.e. accuracy of their mental model).

A number of methods from the literature were proposed to elicit users’ mental models

which involves: Think-Aloud Problem Solving Task, the Nearest Neighbour Task, in

which participants choose the explanation or diagram that best matches their views.

(4) and how to measure the performance in terms of the users’ success in conducting the

intended task for which the system is designed. The authors noted that this measure

will be a function of the previous levels: user satisfaction of the explanation, and their

accuracy of their mental model. It will also be a function of their trust on the system.

2.6.1 Analytical evaluation of techniques

For saliency maps in particular, Samek et al. (2017) proposed an objective measure for

evaluating different techniques that is based on a region perturbation process where an

algorithm progressively removes relevant regions highlighted by the saliency map. They

showed that LRP (which was proposed by the same authors) outperforms deconvolution

and sensitivity analysis techniques (Section 2.4.2) when considering this measure.

Adebayo et al. (2018) suggests that relying solely on the visual appearance of saliency

maps could be misleading. They further back up this argument with experiments that

show that for some techniques, saliency maps appear to be unconnected to the model

or the data generation process. In addition, they propose an evaluation framework that

consists of a model parameter randomisation test and a data randomisation test. Gra-

dients and GradCAM passed their sanity check among the saliency maps they tested,
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whereas Guided BackProp and Guided GradCAM failed. Similarly, Sixt et al. (2020)

proposed a metric (cosine similarity convergence (CSC)) that can be used to assess the

faithfulness of a heamap technique by tracing the lost information during the back-

propagation step. The above mentioned work proposed analytical methods to evaluate

saliency maps. Despite the fact that explanations are designed for humans to consume,

there appear to be fewer user studies than theoretical or analytical papers in the lit-

erature. Therefore, in this thesis, we focus on evaluating saliency maps through user

studies. In the next section, we put more emphasis on user studies that are relevant to

our work.

2.6.2 User evaluation of techniques

Some studies in the literature use approaches that explain individual data points (i.e.

in contrast to a global explanation that provide a summary of the model). In that

sense, they are comparable to saliency maps, therefore, we believe that reporting some

of these studies in this section will be helpful. Figure 2.9 provides a summary of the

studies reported in this section, where the measures (i.e. the green columns) are the

ones defined in Figure 2.8.

Table 1

Factors Measures

Category Paper Explanation type Date type Model User-expertise 
level 

M1 M2 M3 M4 M5 M6

Showing the 
weights

Poursabzi-Sangdeh et al. 
(2018)

Exposing the model’s weights Tabular (housing 
features)

Linear regression Lay

heatmaps

Krause et al. (2018) Feature importance derived from LIME 
algorithm (instance-level)

Tabular (housing 
features)

Multi-Layer 
Perceptrons

Not clear

Ribeiro et al. (2016) LIME heatmap Text (M3, M5)  
images (M2)

Multiple models. CNN 
for images

Lay for M3, M5 
Experts for M2

Selvaraju et al. (2017) GradCAM heatmap Images VGG-16, AlexNet Lay

Adebayo et al. (2020) Multiple heatmap techniques Images CNN 80% have ML 
background

Meaningful text

Kulesza et al. (2015) Relevant words and folder size Text  (20 Newsgroups 
dataset)

Multinomial Naive 
Bayes (MNB)

80% experts

Springer and Whittaker (2019) word highlighting  Text A unigram-based 
regression

Lay

Lai and Tan (2019) word highlighting  Text Linear Support Vector 
Machine (SVM) with 
bag of words

Lay

Bussone et al. (2015)  Text (Comprehensive vs selective 
explanation)

Text (Medical records) Wizard of Oz Clinicians 

Similar 
examples

 Cai et al. (2019) Similar examples (normative and 
comparative examples)

Images CNN Lay

 Cai et al. (2019) Retrieve similar images/patches. Users 
can refine the retrieval process based 
on region, example or concept

Images CNN pathologists  

F1

F3

F2 Interpretability

Complexity of the model M2 Debugging, detecting biases, 
mistakes

as a latent attribute

factors measured by 

Complexity of the dataset

User-expertise level 

M3

Rating the system (likert scale)

M4

Ability to choose between 
multiple candidates models 

Forward simulation: Ability to 
estimate the classification 
outcome

M1

M6

Amount of time required 
to perform a task

M5 Ability to build a better classifier 

�1

Figure 2.8: How can we measure interpretability?

Poursabzi-Sangdeh et al. (2018) conducted experiments with 1250 lay-users. They found

that participants performed better at estimating the outcome of their model if there were

fewer input features (2 vs. 8), and feature weights were revealed (transparent condition).

However, such results cannot be generalised because predicting the outcome of such a

simple linear model is a matter of performing a simple multiplication, which does not

reflect the complexity of current machine learning models.

Explaining individual data points (sometimes called instance-level explanations) can

be misleading if a user is exposed to a few instances that do not reflect the actual

distribution of the data. Building patterns from such individual instances can exceed

people’s cognitive capacity. To that end, Krause et al. (2018a) proposed a visualisation

that displays such instance-level explanations in aggregate format and showed that such
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visualisations improve users’ capacity to spot data biases when compared to inspecting

individual instances. Their work uses a housing price dataset with 10 features. In

comparison to working with tabular data, creating a suitable aggregate representation

of more complex data types such as images, with their approach, would not be applicable.

Several studies (Kulesza et al., 2015; Ribeiro et al., 2016a; Lai and Tan, 2019; Springer

and Whittaker, 2019) have demonstrated the benefits of techniques that explain the

importance of individual words for text-based classifiers. More relevant to our work

are the studies conducted in the context of image classification. For example, Ribeiro

et al. (2016a) proposed the LIME saliency map technique, and conducted a within-

subject study in which they trained a biased classifier to distinguish between wolves

and huskies. All the images of wolves in this set have snow in the background, whereas

the images of Huskies do not. In the first phase, participants were shown ten images

in which the model incorrectly identified two images, and they were asked to identify

how the algorithm distinguishes between wolves and huskies. In the following phase,

an explanation (LIME) for these ten images was presented. Their findings reveal that

explanations help participants identify (snow) as a feature used by the algorithm to

classify images. The study has two major limitations. First, because the sample size

of the participants was small (the authors did not specify the number), no statistical

analyses were performed. Second, the study was conducted on a simple binary classifier,

and it’s not clear whether increasing the dataset’s complexity, and hence the model’s

complexity, will yield comparable results.

Selvaraju et al. (2017) proposed the GradCAM and Guided-GradCAM saliency map

techniques and conducted two studies to evaluate their utility. In the first study, the

aim was to compare four types of saliency map techniques in terms of their ability to

discriminate between classes. For example, if an image contains both a human and a

horse, a good visual explanation should be able to distinguish between the pixels that

support the horse prediction and the pixels that support the person prediction. A total

of 43 people were asked to look at a saliency map and select the category (e.g., horse or

person) that was best depicted in the saliency map. They found that Guided-GradCAM

outperforms all other techniques. In the second study, participants were given two

explanations produced by two different models with varying accuracy (VGG16= 79.09

mAP versus AlexNet= 69.20 mAP), and they were asked to rate which model seemed

more trustworthy using the provided saliency map techniques. With Guided-GradCAM,

participants achieved a higher score in identifying that VGG16 is more accurate than

AlexNet. Similar to (Ribeiro et al., 2016a), the study lacks any statistical analysis.

More importantly, there is a strong assumption that a better saliency map is the one

that highlights what we as humans expect, assuming that CNNs process and classify

images the same way as humans. We argue that a reliable saliency map should highlight

what CNN actually learns, even if it does not align with our expectations. For example,

the saliency map presented in Figure 2.5 highlights the copyright tag rather than the
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Figure 2.9: Examples of works that have evaluated some post-hoc explanations
through user studies. Measurements (M1,M2, .., etc) are cross-referenced with fig-
ure 2.8
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horse. Relying on the author’s measure, we would reject this explanation because it

does not agree with our expectations. The copyright tag example might be obvious, and

one can reason and figure out such a bias; however, we should keep in mind that CNN

may learn other unexpected patterns that do not correspond with human conceptions.

Adebayo et al. (2020) examined the efficacy of saliency maps in detecting artefacts

generated at different stages of the development pipeline: input, model, and test-time.

They discovered that while the investigated explanation approaches were capable of

diagnosing a spurious background artefact, they were unable to detect mis-labeled data

points. They conducted a user study and discovered that participants relied mainly on

model prediction, but not on the saliency map, to identify flawed models.

Rendering prototypical examples proved to be valuable feedback (Kim et al., 2014). To

that end, Cai et al. (2019a) evaluated two forms of example-based explanations: nor-

mative (similar examples from the same class) and comparative (most similar example

from the training set regardless of the class). Participants are assigned to one of these

two forms and asked to draw images, which are then passed to the NN algorithm. When

the algorithm is unable to recognise the sketch, it provides examples from either form,

depending on the condition. When the drawing was not recognised, participants who

were given Normative explanations rated the system capability and their understanding

higher. While relevant to our studies (i.e., later in our studies, we display examples to

inform participants), this study did not evaluate saliency maps, and has the limitation

of basing the evaluation on users’ subjective ratings. In another work, Cai et al. (2019b)

proposed an interactive tool that helps pathologists search for similar images or patches.

Users can direct the retrieval process of the algorithm by instructing the tool to search

for a similar region, example or concept. The tool was evaluated with pathologists with

multiple metrics (rated on a 7-point scale) related to its utility.

To date, CNNs are becoming the default approach for many computer vision problems

(Pouyanfar et al., 2018). While numerous post-hoc explanations for CNNs exist, they

are rarely evaluated with users, presenting an opportunity to contribute to this space.

2.7 Summary and Discussion

As a summary, previous work shows that building sound mental models impacts the

capacity of users to interact effectively with a system (section 2.2). The complexity

often increases when specifically considering systems that employ pattern recognition or

machine learning technologies. Several studies have demonstrated the benefits of making

the motivations behind automated decisions salient to users.

Deriving feedback from the processing pipeline is one technique to inform users about

system behaviour (section 2.4.1). Systems such as (Patel et al., 2008; Kato et al.,
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2012; Patel et al., 2010) were developed to reveal the underlying processes to achieve

effective interaction. This can be reasonable as the target users in these studies were

developers who perhaps need to understand and debug these systems. In contrast,

systems such as (Fails et al., 2003; Maynes-Aminzade et al., 2007) which target lay-users,

choose to distance the user from the internals of the system. This design choice can be

feasible for some systems, however, as some new smart systems become increasingly

complex and prevalent, there is a need to make these systems intelligible enough for

users to support effective interaction. However, what information should be presented to

users? Moreover, as data in these systems is typically propagated via multiple processing

stages (low-level to high-level), from which stage should we derive the explanation? In

Chapter 3 We aim to investigate these questions in the context of ”keypoint markers”

because this basic type of explanation, which is typically derived from an early stage of

the processing pipeline, can be seen in a variety of smart camera apps, but the literature

lacks studies that investigate their utility. This observation motivated us to raise the

research questions previously presented in Section 1.2.

The study in chapter 3 explored the research question in the setting of a classical CV

algorithm (i.e. pattern recognition that employs a keypoint matching algorithm). To

date, CNNs are becoming the default approach for many computer vision problems

(Pouyanfar et al., 2018). Given its better performance and widespread use in many ap-

plications, it would seem reasonable to investigate explanation strategies in this domain

influenced by earlier research findings. CNNs, unlike classic dense neural networks,

preserve image spatial structure, allowing them to create more powerful models more

efficiently. Furthermore, CNN operations can be easily parallelized across GPU units

(Zhang et al., 2020).However, the number of parameters that construct CNN models is

large, making interpretation difficult. Therefore, in section 2.4, we reviewed works that

focus on explaining ML models in comparison to other data models, emphasising their

positive and challenging aspects and reporting on how other fields of study contribute

to this space by introducing explanation techniques or investigating interaction around

them.

For pattern recognition algorithms, the findings of the study reported in Chapter 3 sug-

gests that deriving feedback (explanation) from the later stages of the processing pipeline

can be an effective means of informing lay-user understanding. Does that conclusion

hold in the context of ML systems? And what would be an equivalent explanation that

could be derived from a later stage of the ML pipeline, especially for computer vision

applications?

As reported in Section 2.4, several explanation techniques have been proposed in the

literature to explain ML models. Previous work claims that saliency maps (or heatmaps)

as a form of explanation are easy to interpret by both novice and expert users, and that

they can help to detect unexpected behaviour (Lapuschkin et al., 2019), and develop

appropriate trust towards the system (Ribeiro et al., 2016a). Although many saliency
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map generation algorithms have been proposed and analytically examined (Doshi-Velez

and Kim, 2017b), they are rarely evaluated with users (Abdul et al., 2018a; Chromik

and Schuessler, 2020). Indeed, calls have been made for careful evaluation of ML expla-

nations (Doshi-Velez and Kim, 2017b; Chromik and Schuessler, 2020). As reviewed in

Section 2.6.2, and demonstrated in Table 2.9, there appears to be a limited number of

user studies that have evaluated the utility of saliency maps using CNNs or models of

equivalent complexity. We see this as a research gap and an opportunity to contribute

to this space. As a result, we raise a number of research questions in Section 1.2, which

we aim to address in a series of user studies reported in Chapter 4, Chapter 5 and

Chapter 6.

To accurately assess the utility of saliency maps, one must validate a method while

taking into account a number of elements, such as the complexity of the model and the

dataset, as well as how these factors affect measurable outcomes, such as their ability to

estimate the model’s outcome. The mind map in figure 2.8 is an attempt to demonstrate

some of the factors and measures (which are not comprehensive) that can be useful in

identifying research gaps and serving as a guideline for future study design. In section

2.6.2, we reviewed the literature on the lens of the factors and measures reported in

figure 2.8. Informed by the suggestion of prior work, in the first two saliency map

studies (Chapter 4 and Chapter 5), we considered the participants’ ability to predict

the outcome of a ML classifier (M1) as a measure of their understanding of how such

a system works (Lipton, 2018; Muramatsu and Pratt, 2001). This measure may be

important since it informs the user about the classifier’s generalisability to real-world

data and, thus, indicates the level of trust the user should place in the classifier. In the

next chapter, we begin by reporting our first study, which investigates user interaction

around pattern recognition algorithms.



Chapter 3

Evaluating the Effect of Feedback

from Different Computer Vision

Processing Stages

In this chapter, we examine the role of visual feedback in informing end-users in the

context of pattern recognition systems. The work detailed in this chapter has been

published at the following CHI conference paper:

Jacob Kittley-Davies, Ahmed Alqaraawi, Rayoung Yang, Enrico Costanza,

Alex Rogers, and Sebastian Stein. Evaluating the effect of feedback from

different computer vision processing stages: A comparative lab study. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems, CHI ’19, pages 43:1–43:12, New York, NY, USA, 2019. ACM. ISBN

978-1-4503-5970-2.

For the purpose of aiding user interaction, a number of commercial smart camera apps

include visual feedback, over-laying the camera’s viewfinder with visual aids. Two no-

table examples are Amazon app’s “search by image” feature and Samsung’s Bixby, a

camera-based search tool1 (Figure 3.1). Both display feedback in the form of “keypoint

markers” - coloured dot visualisations which correspond to features of interest iden-

tified by an underlying algorithm. When a user points the camera at an object, the

app starts searching for similar images and displays keypoint markers over-laying the

camera’s viewfinder to reflect the identified features. The placements of the keypoint

markers vary interactively as the user moves and tilts their phone. While such visual-

isations have long been popular as a debugging tool for software developers2, to date

1which tries to find matching images from an internet search
2e.g. OpenCV https://goo.gl/bX4XEM
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little is known about their effect on end-user interactions. Their inclusion may simply be

motivated by a need to convey that some background activity is taking place, however,

their presence raises some interesting questions:

(R1) Do keypoint markers help users in building a better functional under-

standing of computer vision processes?

We tackle this research question by addressing the following sub-questions:

• R1.1: Are keypoint markers intelligible to lay users?

• R1.2 Do they improve usability and aid users’ interaction around failures?

• R1.3 Can they mislead users if misunderstood?

In addition, because keypoint markers represent information about the early stage of

data processing, we were also interested in the following research question:

(R2): What key stages of computer vision processes need to be made visible

(through keypoint markers) to improve lay users’ functional understanding?

Addressing these questions through a controlled yet ecologically valid study is particu-

larly challenging, because it requires observing interactions around failures of the pattern

recognition system. Such failures need to be controlled and repeatable, but their causes

should not be obvious to participants. Moreover, the experimental tasks need to be en-

gaging and enjoyable to motivate participants, have a clear goal and provide discussion

points. Through experimentation, we found the task of creating stop-motion animations

(described below) is a good choice that satisfies these criteria.

Figure 3.1: Smart Camera Apps that display keypoint markers feedback to users:
left, Amazon and right, Samsung’s Bixby.
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Figure 3.2: Illustration of procedure for creating an animation with Anim8 - (1)
Set up the background scene with the character in its starting position and hold the
tablet such that the camera’s viewfinder encapsulates the scene and the character. (2)
Capture a frame. (3) Place the tablet aside and manipulate the character in some way
e.g. reposition or rotate. (4) Reposition the tablet and capture another frame. (5)
Preview the captured frames / playback the animation. If the result is not acceptable
then the frame can be deleted at this stage (or at any time later). (6) Repeat stages 3
to 5 until the animation is complete.

3.1 Study Design

To address the research questions presented above, we designed and conducted a between-

groups study with four conditions with the aim of seeing if visual feedback obtained from

various stages of the processing pipeline can assist a user in a task of automatic alignment

of frames that results in a stop-motion animation.

3.1.1 Creating a stop-motion animation

To create a stop-motion animation, an animator must capture a series of still images

(frames) of a given scene. By incrementally moving artifacts (characters) between frames

the illusion of animation can be achieved (i.e. when the frames are played back in order

the characters appear to move autonomously in relation to the static elements of the

scene (e.g. the background)). Figure 3.2 demonstrates the process. Traditionally stop

motion animations are created using cameras where the position and angle are strictly

controlled e.g. held in a tripod. To incorporate pattern recognition technologies into

our study design we replaced the controlled camera with a handheld tablet computer

and bespoke app (Anim83) which employs a keypoint matching algorithm4 to align each

frame to its predecessor - a process of stabilisation. This process makes all frames appear

to have been captured from the same physical location even though the camera’s position

and angle vary. The keypoints with the closest descriptions are matched and assumed to

point to the same physical feature in both frames. The most recently captured image can

then be transformed so that its keypoints overlap its predecessors. Characters which

have been moved between frames will create erroneous mappings, however if enough

matches are found for the elements of the scene which have remained static (e.g. the

3For more information about the Anim8 app visit: http://anim8.space/
4Through experimentation the ORB algorithm Rublee et al. (2011) proved to offer the best compro-

mise of performance, speed and control for our study.

http://anim8.space/
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background) then the matches associated with the moving characters will be treated as

outliers and ignored.

In order for the stabilisation process to work effectively it is critical that the static

elements of the scene are “feature rich”, i.e. the algorithm can identify many keypoints.

If there are too few then the transformation process may output an image where the

background is distorted and the character remains stationary (Figure 3.3). Leveraging

this limitation, the likelihood of whether the stabilisation process will succeed or fail can

be controlled - by providing “feature rich” and “feature poor” backgrounds participants

of the study can be exposed to situations where the stabilisation process succeeds and

fails respectively. Factors such as lighting conditions, shadows and camera angle make

this form of manipulation not immediately obvious to study participants.

3.1.2 Tasks

Through pilot studies we concluded that four animation tasks with 4 to 5 frames per task

provides sufficient exposure. We designed the tasks to assess whether feedback derived

from the stabilisation process can help participants develop better understandings of

the systems’ needs. To create discussion points and elicit user understanding we ask

Figure 3.3: When too few matching keypoints are identified in the background, the
stabilisation process can result in an image transformed such that the character appears
to remain stationary and the background becomes distorted.

Keypoint 
Matching

Image 
Alignment

Keypoint 
detection

Keypoint 
DescriptionPreprocessing

(a) No-Feedback (b) Keypoints (c) Matching-Keypoints (d) Split-screen

Conditions

(e) Animation-preview

Input Output

Figure 3.4: Examples of the feedback conditions presented by the Anim8 application
and their relationship to the processing pipeline (a, b, c, d). Also the preview interface
(e).
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(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 4

Figure 3.5: Example frame for each of the animation tasks.

participants to choose one of three background options in the last two animation tasks

(3 options per task). The feature richness of the three background options varied and

thus the likelihood of the stabilisation process succeeding varied (Figure 3.6). The tasks

were structured as follows:

Task 1: This task was designed to allow participants to familiarise themselves with

the UI and reassure them that the app works as described. To this end, a feature rich

background (Figure 3.5a) which proved in testing to work with almost no failures was

provided, making the task easy to succeed. On completion, the experimenter asked how

the participants found using the app and if they had any queries.

Task 2: This task was designed to highlight the limitations of the system. The back-

ground in this task (Figure 3.5b) proved in testing to always fail. As it was impossible

to complete this task, the experimenter would intervene after a time limit of 2 minutes,

if the participant had not already raised concerns. The experimenter would ask the par-

ticipants to explain what was happening and if they knew why it did not work, before

suggesting that they proceed to the next task for brevity.

Task 3: This task was designed to assess users’ understanding and create a point of

discussion in the interview. Participants were asked to choose the background they felt

would work best for the app from a selection of 3 backgrounds (see Figure 3.6). Partic-

ipants were advised that they could preview them through the application’s viewfinder

if they wished. The backgrounds offered had previously been assessed and ranked ac-

cording to the algorithm’s ability to effectively identify features within them. One of

the backgrounds consistently failed in testing and the remaining two consistently worked

well, although one was more visibly “feature rich” than the other. The motivation for

presenting users with this range of background options was to make the different levels

of detail between the backgrounds less obvious. Once the participant completed this

animation task, they were asked why they had selected that specific background.

Task 4: This task followed the same structure as Task 3, with a new character and set

of 3 backgrounds (see Figure 3.6). This last task was designed to sustain participant

interaction with the application, collect an additional data point and further assess user

understanding (i.e. what, if anything, had been learned in Task 3.)
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3.1.3 Conditions

We designed and conducted a between-groups study with four conditions. To explain the

study conditions, we describe them in relation to the computer vision pipeline employed

by Anim8 (Figure 3.4). It should be noted that we did not explain the feedback nor

point out its presence to participants. This was done to mirror the experiences of current

consumer smart camera app users.

No-Feedback (Figure 3.4 (a))

This condition was included as a baseline. The input images to the pipeline were pre-

sented back to participants without any additional feedback.

Keypoints (Figure 3.4 (b))

The camera’s viewfinder was augmented with keypoint markers which indicate the lo-

cations at which keypoints had been detected in stage 2. It is important to note that

not all the identified keypoints will be matched. Matches where the descriptions are

considered too dissimilar are deemed outliers and are ignored by the stabilisation pro-

cess. Despite this, the location, distribution and volume of identified keypoints are good

indicators for the potential success of the stabilisation process.

Matching-Keypoints (Figure 3.4 (c))

Again the viewfinder was augmented with keypoint markers, however in this case only

those which have been successfully paired with keypoints in the previous frame were

displayed (Stage 4).

Split-Screen (Figure 3.4 (d))

This condition represents the final stage of processing. The viewfinder was divided into

two equal halves. On the left: the input image updated in real-time (as per No-Feedback

condition). On the right: the image outputted by the processing pipeline (update every

˜120ms).

The No-Feedback and Keypoints conditions were compared first, while the Matching-

Keypoints and Split-Screen conditions were included at a later stage.
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3.1.4 Procedure

All studies were conducted in the same empty windowless meeting room (so lighting

conditions could be controlled) on the UCL campus. Two experimenters were present

at all times - one to conduct the experiment and the other to observe, take notes and

make audio recordings.

At the start of the study participants received written instructions (Section B.1) de-

tailing: (i) the procedure necessary to create stop-motion animations, (ii) how Anim8

uses computer vision technologies to remove the need for a tripod, and (iii) a high level

explanation of the image processing operations - that Anim8 tries to align images “by

looking for things in each image which are not supposed to have moved, for example the

background”. After reading the instructions participants were asked to stand up while

performing the animation tasks.

Participants were tasked with creating 4 stop motion animations. Animating a two di-

mensional cardboard character (approximately 8cm by 5cm in size) moving across an A3

printed background (see Figure 3.5 for examples). To ensure that all participants had

a good understanding of how to use the Anim8 application, the experimenter demon-

strated the capture, playback and delete operations prior to the first task commencing.

Whilst demonstrating the capturing of a frame, the participants were advised to ensure

the printed background scene was fully encapsulated in the camera’s viewfinder and that

the desk should not be visible. This was done to prevent features other than those in the

scene impacting the outcome of the experiment (this was not explained to the partici-

pant). The participants were also advised that if they needed any assistance regarding

the operation of the application during the study, then they could ask at any time.

Prior to each animation task, the experimenter provided each participant with the nec-

essary materials (i.e. a character to animate and static background scene / scenes) and

an instruction sheet detailing an example path for the character to follow, along with

the number of frames expected (4 to 5). On completion of the task, the participant was

asked to play back the animation they had created to the experimenter. The tasks were

conducted in the same order for all participants to ensure that they experienced both

successful and unsuccessful attempts.

At the end of the study a semi-structured interview was conducted. The interview

began by asking participants if their experience in Task 3 and Task 4 had given them

a better understanding of why the animation in Task 2 resulted in failure. Using this

as a starting point, the experimenter asked further questions to assess the participants’

understanding of the algorithm and their motivations for selecting the backgrounds in

Task 3 and Task 4. For the participants of conditions where feedback was presented

in the viewfinder, the experimenter also asked what they thought it represented and if

they used it in their decision making.
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Figure 3.6: Background options presented to participants in Tasks 3 (Top row) and
Task 4 (Bottom row). Left: Likely to fail, Center and Right: Likely to succeed.

3.1.5 Participants

We recruited 40 participants (15F, 25M) from the university participant pool which in-

cludes university staff, students and the general public. Anyone who expressed interest

was allowed to participate in the study, so long as they did not identify as having techni-

cal hobbies or interests (e.g. computer programming), were not in technical employment

(e.g. lab assistant) and were not technically educated (e.g. no degree in computing or en-

gineering related subjects). Participants were also required to have normal or corrected

to normal vision. Each participant received a £10 payment for their participation. Of

the 40 participants 29 reported to be in education and 11 in full time employment. Par-

ticipants’ backgrounds were diverse with the most common being Business & Economics

(13) followed by Social Sciences (9) Law (5), Languages (5), Art (4), Accountancy (2),

Medicine (1) and Geography (1). One participant was aged between 40 and 49 years, 6

between 30-39 and 33 between 20-29.

Ten participants were randomly assigned to each condition. For conciseness, we will

refer to participants by condition and subject number, for example, K7 was subject

number 7 of the Keypoints condition. The other prefixes “N”, “M” and “S” were refer

to the No-Feedback, Matching-Keypoint and Split Screen conditions respectively.

3.2 Results

3.2.1 Data analysis: choices and processes

We analysed data through a combination of quantitative and qualitative methods.

In the quantitative findings section below, we assess the effect of feedback across

the conditions, where three researchers independently coded participants’ responses to

questions (taken from researcher notes and transcripts of audio recordings) pertaining to
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their (1) background selections and (2) whether this choice was based on a participants’

understanding of how the system works. In particular, a participant’s response was coded

as “correct understanding” if they described how the presence of distinctive shapes and

features in the background positively impacted the app’s ability to align frames. For

example, the following statements were coded as demonstrating a correct understanding:

“I think it picks up the shapes on the picture and it [. . . ] then compares the position of

the dots on the other one [. . . ] the next picture? So it can tilt the frame accordingly”

(K9) or “because the background is distinct enough” (N6). If a participant reported

motives not connected to the requirements of the app or their understanding of what is

significant was incorrect they were coded as “incorrect understanding”. For example, the

following statements were coded as demonstrating an incorrect understanding: “Because

it’s nice and colourful” (N8) or “[. . . ]it looked more homogeneous than the other ones.

So I thought [. . . ] it would be easier to take the photos like this” (K2). To compare

participants’ understanding between the conditions we consider the total number of

answers. Because the collected data represents a count, we found the chi-square to be

an appropriate statistical test for analysing the data.

We report a further analysis of the data through broader, more general coding in the

qualitative findings section, where transcripts of all audio recordings and researchers’

notes collected during the studies were also independently coded by three researchers

in a second round of analysis. Codes were initially drawn from research questions and

then supplemented with those that emerged from the interviews before being grouped by

consensus. In the subsequent subsections we report on the quantitative and qualitative

findings.

3.2.2 Quantitative Findings

Table 3.1 summarizes the background selections made by participants in Task 3 and Task

4 and Figure 3.7 shows whether their selection was based on a correct understanding of

the stabilisation processes.

Task 3 (max=10) Task 4 (max=10)

No-Feedback 10 10
Keypoints 7 10
Matching-Keypoints 10 10
Split-Screen 9 10

Table 3.1: No. Participants who selected a “correct background” i.e. suited to the
needs of the app.

To compare participants’ understanding between the conditions we consider the total

number of answers which demonstrated a correct understanding in Task 3 and Task

4 (Figure 3.7). For example, 7 of the 10 participants in the Split-Screen condition
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demonstrated a correct understanding in Task 3 and 9 participants in Task 4, giving

a summed value of 16. A chi-square test of the summed values revealed a statistically

significant difference (chi-square=8.33, p=.040, df=3, Cramer’s V=0.323). To better

understand the differences between the conditions, we analysed the chi-squared stan-

dardized residuals (presented in Table 3.2). It can be noticed that the standardized

residuals are larger (in absolute value) for the Keypoints and Split-Screen conditions,

suggesting that these two conditions explain the significance of the chi-square test. A

chi-square test also shows no statistically significant differences for correct background

selections (chi-square=6.316,p=.097,df=3), nor when testing the tasks individually5. It

should be noted that participants sometimes selected a ’feature-rich’ background for aes-

thetic reasons rather than because it would make the app work better (as instructed),

failing to demonstrate correct understanding. In the next section we discuss our quali-

tative findings and the role of background selection further.

Figure 3.7: No. Participant responses coded as “correct understanding” when report-
ing their motivation for background selection in task 3 and task 4.

Count (max=20) Expected Std Residual

No-Feedback 10 12 -0.6
Keypoints 8 12 -1.2
Matching-Keypoints 14 12 0.6
Split-Screen 16 12 1.2

Table 3.2: Standard residual results of the No. participants who demonstrated a
“correct understanding”.

3.2.3 Qualitative Findings

Codes that emerged from the interviews and grouped by consensus. In the subsequent

subsections we detail these groups and give example quotations. First however, we

would like to note that overwhelmingly participants reported the task to be interesting

and entertaining. This suggests that the experimental task was sufficiently engaging and

participants were invested in creating animations successfully.

5understanding on Task 3: chi-square=3.509, p=.320, df=3, Cramer’s V=0.296; understanding
on Task 4: chi-square=5.812, p=.121, df=3, Cramer’s V=0.381; correct selections on Task 3: chi-
square=6.667,p=.083,df=3; all selections were correct in Task 4, so no statistical test needed



Chapter 3 Evaluating the Effect of Feedback from Different Computer Vision
Processing Stages 41

3.2.3.1 Participants drew from their existing knowledge

First we note, that when asked about previous experience with computer vision ap-

plications, participants mentioned QR Code scanning, Facebook and Instagram (none

of which provide visual feedback). No participants reported using Amazon or Bixby’s

search by image, or any other application which provides keypoint feedback.

In the No-Feedback condition, half of the participants demonstrated a correct under-

standing. These participants explained that having elements in the background which

were “more detailed” (N1), “most defined” (N7), “distinct” (N6) or “prominent” (N2)

would help the app because they were good reference points for alignment. The remain-

ing five participants had an incorrect understanding and in the main focused on the

aesthetics, e.g “I thought the clouds would go really well with [. . . ] the hot air balloon”

(N9).

Interestingly, participants in the No-Feedback condition selected a correct background

more often than participants in the Keypoints condition (Table 3.1). Participants K2, K4

and K8 of the Keypoints condition made associations between the keypoint markers and

their experience of other applications, suggesting that the keypoint markers functioned

in much the same way as the auto-focus on digital cameras, in that they highlight regions

on which the camera is focusing. Whether these analogies are helpful is not clear. One of

the participants who drew such parallels made good choices when selecting backgrounds,

while the remaining two were misled by their assumptions - K2 for example, chose a

feature poor background for Task 3, expecting that a plain background would make it

easier for the app to identify the character.

3.2.3.2 Early stage keypoint marker feedback is not easy to understand

Participants of the Keypoints condition broadly failed to understand the meaning of

keypoint markers and how it related to low-level features of interest to the algorithm

(30% demonstrated a correct understanding in Task 3 and 50% Task 4). Participants K1,

K2 and K3 incorrectly thought that the keypoint markers were highlighting regions where

the algorithm had identified a moving object, something the user intended to animate.

These participants theorised that if the algorithm succeeds in finding the objects which

are meant to move, then the algorithm will be able to successfully transform the captured

images to create animations e.g. K2 said “these dots might help show that the focus of the

photo is the [character] [. . . ] if I have these dots around the [character] then the image

will be clearer”. K2 and K3 both selected the worst background option for Task 3. They

justified their choice by saying that among the three options the plainest background

would work best because it would make the identification of the character easier for

the algorithm e.g. K3, when asked why they chose a plain background in Task 3, said

it was “because [the app] could be confused about the subject of the picture”. Both K2
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and K3 expressed confusion when keypoint markers appeared in locations which did

not fit their understanding of how the system works i.e. on the background instead of

the character. K2 remarking: “[keypoint markers] try to capture the [character] in the

photo, a balloon, [. . . ], but it’s not on the balloon” and K3, “[if keypoint markers] mean

the [character] is moving, [. . . ] I don’t understand why [keypoint] markers are showing

up on the cloud, not the [character]”. Despite witnessing evidence to the contrary both

participants failed to correct their misunderstanding, a behaviour pattern previously

reported in work on intelligent system Tullio et al. (2007).

3.2.3.3 When keypoint marker feedback was helpful

The quantity of the keypoint markers was the most commonly reported explanation

of how participants took into account Keypoint feedback. For example, K1 explained

that if “[. . . ] in background, [I] see a lot of dots. I can tell that background is definite.

When I did the [animation of the] plane [for which the app failed], there were only

1 or 2 dots”. K6 stated that “if there is nothing [in the background], it’s not going

to work. [If ] something is there it’s going to work”. However, only four participants

demonstrated a better understanding which was consistent with the workings of the

stabilisation process. These participants noticed how and where the keypoint markers

appeared and were able to develop more specific theories of how the algorithm identifies

keypoint markers within an image. For example, K10 correctly speculated that the

algorithm “pick[s] up the shape” and “areas of heavy contrast”.

In the Matching-Keypoint condition, six of the ten participants reported the feedback

to be helpful. Of these participants, three described the keypoint markers as indicators,

reporting what the algorithm was doing: “I can see what the dots are surrounding. [...]

I know what it’s doing” (M10), “when I saw [keypoints markers], it was more reassuring

[...] saying you’re doing it right” (M7), and “the app is trying to match between images

[...] things which the app sees in this image which it also saw in the previous image”

(M1). The other three participants explained that they saw the keypoint markers as

guides, that the keypoint markers were designed to help them test if the background

image would work or not: “the dots showed if the picture would work out” (M6), “I can

tell what’s the problem of the image” (M8) and “[the keypoints] might help you pick a

background” (M5).

Participants in the Keypoints condition tended to overestimate the meaning of the Key-

point feedback and relate the meaning to higher level concepts, such as the separation

of background and foreground objects. In this regard Matching-Keypoints appeared to

be more intuitive as its meaning is more inline with user expectation. M1 for example,

reported that when the app didn’t work in Task 2 he did not know why. During Task 3,

he speculated that the colour might have an effect (lighter or darker colour), but found

through experimentation that this was not the case. He then correctly theorised that
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the app needed distinct features. He explained, “The dots meant like it’s picking distinct

points throughout the image. [...] I think [the app is] re-mapping the points that [it had]

taken in an image before. I think that’s what it’s trying to do”.

3.2.3.4 Split Screen feedback was helpful, but not in the way we expected

Seven participants in the Split-Screen condition also reported the feedback to be helpful.

Four participants suggested that it acted as a cue, indicating when best to capture a

frame e.g. “The preview helped me decide when to take a picture” (S7) or “I [wait] for

the preview to stabilize before taking the picture” (S3). An artifact of the stabilisation

processes implementation is a “flickering effect” which occurs when the system is rapidly

toggling between a successful transform and a failure. This strictly speaking is a usability

“bug” which participants reappropriated, using it as a means of gauging the likelihood

of a successful transform e.g. “If it was flickering I wouldn’t take the picture” (S7), and

“I waited for a clear picture [. . . ] then hit capture” (S4).

Another unexpected way of using Split-Screen feedback was described by two partici-

pants (S7 and S2). They used the feedback to position the camera in the same place as

the previous image, S7 commenting “the preview tells me what angle to take the picture

from”. Both participants would keep moving the camera until the left and right images

matched in the preview i.e. the alignment transformation was minimal. This approach

does in fact help make better quality animations, however it is not how the app was

intended to be used and this process of positioning was very time consuming for the

participants.

3.2.3.5 When feedback was unhelpful

Five participants in the Split-Screen condition and three in the Matching-Keypoints

condition reported the feedback to be distracting or unhelpful. For example, “I found

the split screen very distracting and would rather not see it” (S4), “I found the dots

distracting because it ruined the focus at times” (M4), “They were a bit annoying, they

get in the way” (M1) and “they could be obstructive” (M6). Interestingly, S6 described

the feedback as unhelpful because they prefered to frame the photo from memory, using

the viewfinder to align the camera with features they had identified in the background.

To this end the preview was unhelpful because the split screen design reduced the size

of the viewfinder. These comments illustrate the risk that feedback visualisations can

be distracting.
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3.2.3.6 Background selection motivation

Although all participants selected a correct background in Task 4, not all provided a

correct explanation. Participants responses when asked why they chose the background

image they selected in Task 3 and Task 4 were coded into one of two categories: aesthetic

- they were motivated by how the image looked, and detail - where they stated in

some way that the level of detail was important (including incorrect understandings).

Aesthetics was the primary motivation for 27 selections out of 80 (10 No-Feedback, 9

Keypoints, 5 Matching-Keypoints and 3 Split-Screen), with detail accounting for the

remaining 53 selections (10 No Feedback, 11 Keypoints, 15 Matching-Keypoints and 17

Split-Screen). It should be noted that it is by chance that some of our participants

considered the correct background to be more aesthetically pleasing.

3.3 Discussion

At the beginning of this chapter, we set out a series of questions. In this section we

discuss the outcomes of our study in light of these questions.

3.3.1 Does the processing stage from which feedback is derived impact

user understanding?

Our results indicate that feedback derived from the later stages of the processing pipeline

(Matching-Keypoints and Split-Screen) are more effective at informing users’ under-

standing. The chi-square test of “user understanding” reveals a significant difference

between conditions, with the standard residuals indicating the Keypoints and Split-

Screen are responsible. More participants of the Split-Screen condition demonstrated

a correct understanding of how the system works than participants of any other con-

dition (Figure 3.7), with Matching-Keypoints second. In contrast, participants in the

Keypoints condition performed worse than participants who received no feedback at all.

Despite users understandings varying between conditions, most participants across all

conditions were successful in selecting a correct background (see Figure 3.1). As men-

tioned above, participants sometimes selected the correct background for aesthetic rea-

sons, rather than to make the algorithm work (as requested by the study instructions).

As a consequence, instead of using selection as a measure of understanding, we rely only

on the participants’ explanations of why they selected a specific background.
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3.3.2 Is keypoint marker feedback intelligible to lay-users?

More participants in the Matching-Keypoints condition were able to correctly describe

the input requirements of the system in comparison with those who received no addi-

tional information in the form of feedback (No-Feedback). Interview responses indicate

that users have a tendency to interpret feedback as an outcome rather than a progress

notification of an intermediary stage. In this regard Matching-Keypoints appeared to

be more intuitive, as their meaning is more inline with user expectation. We tentatively

propose that keypoint markers can be used to inform user understanding, so long as the

meaning being conveyed is inline with user expectations.

3.3.3 Can keypoint markers mislead if misunderstood?

Given that the Keypoints and Matching-Keypoints conditions utilise exactly the same

feedback visualisation (keypoint markers), the result showing that Keypoints condition

participants were least able to understand the needs of the algorithm (Figure 3.7) sug-

gests that they may have been detrimental to user understanding. While the keypoint

markers are a good indicator of the future stabilisation processes success, participants

commonly understood them to represent the final output, that they represented regions

where the stabilisation process had identified matches. It is feasible that this miscon-

ception could result in users using the markers in ways which inhibit their interactions.

Indeed, Keypoints condition participants’ interview responses indicate a disconnect be-

tween their interpretation of feedback and the actual information conveyed e.g. K3, “[if

keypoints] mean the [character] is moving, [. . . ] I don’t understand why keypoints are

showing up on the cloud, not the [character]”.

3.3.4 Can keypoint markers improve usability and aid users’ interac-

tion?

The inherently visual nature of computer vision processes, both in their input and also

the intermediate stages, makes visual feedback the logical medium through which to

deliver feedback Kato et al. (2012). However, participants in our studies, at times re-

ported the feedback to be distracting or obtrusive (e.g. M1 “They were a bit annoying,

they get in the way”). This highlights a design tension between attracting attention and

causing distraction, and between being informative and not overwhelming. These ten-

sions are well understood in graphic design, particularly around the design of interactive

visualisations. However, the situation here is more complex. Some aspects of algorithm

design are conceptually simple and naturally map to visual representations. Keypoints

for example, are a concept that lend themselves to being represented pictorially e.g. by

marking their physical location with geometric points. It could at first be tempting to
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see this as an example of “form follows function” Sullivan (1896), however when dealing

with the design of feedback for systems which employ pattern matching algorithms, we

argue that the “form follows function” principle requires careful interpretation. What

is “function” in this case? At first, it may seem to be the “technical” function of the

algorithm, but this is not the case. We need to remind ourselves that the “function” is

instead the function to help users understand what the system does. One implication

then, is that to design feedback, it may be beneficial to distance oneself from the ques-

tion of how algorithmic steps and internal states map to form, and instead think about

the end result of the system and how it will be used. Moreover, in some cases, it may

be challenging, or even impossible, to map the function of the algorithm to form.

3.4 Summary

This chapter reported a comparative between-groups lab study examining the role of

visual feedback in smart camera apps. Leveraging a novel experimental design centred

on the creation of stop-motion animations, 40 participants were exposed to four different

levels of feedback. Through a combination of quantitative and qualitative methods, our

findings indicate a disconnect between user expectations and the information actually

represented by the feedback. In particular, they show that keypoint markers can help

users in building a better functional understanding of computer vision processes as long

as they are derived from a stage of processing that is inline with user’s expectations

(R1), where in our study, participants who received keypoint marker feedback derived

from later stages of processing demonstrated an improved understanding of the system

operation (R2). Conversely, participants exposed to keypoint marker feedback derived

from early stages of processing showed a tendency to misunderstand it and overall they

performed worse than participants who received no feedback at all.

Because CNNs became the most common algorithm for Computer Vision applications,

the thesis focus shifted to that class of algorithms. As discussed in the literature review

chapter, saliency maps emerged as one popular form of explanation for such algorithms.

Therefore, in the next chapter, we start by discussing our rationale in choosing saliency

maps to study. We then report on our first study examining the role of saliency maps

in informing user understanding.



Chapter 4

Evaluating the role of saliency

maps

In the previous chapter, we looked at how the stage of the processing pipeline from which

feedback is obtained affects users’ capacity to form a coherent and correct understanding

of how systems work. In particular, one implication of this study is that when designing

an explanation for users who are not experts in complex algorithms, we should seek an

explanation that provides a ”functional understanding” of the system and how it will

be utilised rather than describing the system’s inner workings.

The prior study explored the research question in the setting of a classical CV algorithm

(i.e., pattern recognition based on keypoints matching). In Chapter 2, we mentioned

how Convolutional Neural Networks (CNNs) are now the most widely used algorithm

in computer vision. Thanks to their ability to process spatial structures of the im-

ages, CNNs can be efficiently trained to recognise images without explicitly instructing

the algorithm on what input parameters to use; a processing stage often called ”fea-

ture engineering” which involves a careful selection of best input parameters that helps

the algorithm to achieve its goal (e.g. classification). In other words, in CNN, these

parameters are learned directly from the data.

While the superiority of CNNs makes them the most popular technique, the large number

of parameters used to build their models makes them challenging to interpret. Thus,

many techniques have been proposed to help explaining these complex models. However,

what would be an explanation that provides end-users with a ”functional understanding”

that may be helpful?

As we mentioned in Section 2.4.2, a popular approach to trying to make CNNs ex-

plainable is to produce “saliency maps” (also called “heatmaps”) that highlight which

pixels were most important for the image classification algorithm. The claim is that

47
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such explanations are easy to interpret by both novice and expert users (Ribeiro et al.,

2016a).

Despite the fact that numerous algorithms have been published to generate such saliency

maps from CNNs (Linardatos et al., 2021), little research effort has been reported re-

garding their assessment with users (Narayanan et al., 2018b; Yin et al., 2019b). This

observation led us to run a series of user studies that investigated the role of saliency

maps in informing user understanding of the CNN models. In section 2.6.2, we reviewed

the works that evaluated saliency maps through user studies, highlighting the research

gaps and formulated the following research question:

(R3) How do saliency maps help with building functional understanding,

including the relation to varied system confidence?

In this chapter, we report on two user studies to investigate this main research question.

In both studies, we seek to measure the impact of saliency maps on users’ functional

understanding by asking them to predict the CNN classification outcome of an image

(we call it the ”task image”) and count the number of correct user’s predictions.

The first is a pilot study: Study 2-pilot (Section 4.2), where for each task image, partici-

pants were encouraged to use an interactive browser that allowed them to explore a large

dataset of examples and examine how CNN classified the different images. Findings of

this pilot study indicate that there were wide variations in data exploration strategies

across participants. Such variation points us to the need to design a study with more

constraints to ensure that the effect of showing the saliency map is genuinely evaluated.

Therefore, we designed another study: Study 2 (Section 4.3), where instead, for each

task image, we chose to present a few examples to participants to reduce the possible

noise that may emerge from users’ diverse data exploration strategies.

In addition, because task images can be sampled from various areas of the input space

where the CNN performs differently, in the study reported in Section 4.3, we would also

like to investigate whether saliency maps help with building functional understanding,

in light of varying CNN’s classification outcomes?. In other words, are higher scores

easier to predict than lower scores?. And how do saliency maps contribute to this?.

In the sections that follow, we begin by describing the materials utilised in both studies,

then report on the Study 2-pilot in Section 4.2, and discuss Study 2 in Section 4.3.

The work detailed in this chapter and Chapter 6 form the biases for the following paper

in submission:

Ahmed Alqaraawi, Enrico Costanza, Nadia Berthouze and Emma Holliday. Evaluating

and Improving Heatmap Explanations for CNNs through to online user studies. ACM

Transactions on Computer-Human Interaction (TOCHI).
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4.1 Materials

4.1.1 Dataset, CNN Model Architecture and Training

Various public datasets, algorithms and configuration options exist for the multi-class

image classification problem. In both studies, we used the PASCAL Visual Object

Classes dataset (19714 images where each may contain around 1-3 objects), because of

its popularity, and its limited number of classes (20). Additionally, we used the Keras

library for Python, starting from an existing Keras model trained on the ImageNet

dataset Deng et al. (2009), utilizing the VGG16 architecture Simonyan and Zisserman

(2014)1. We then fine-tuned the model on the train-val part of the PASCAL VOC 2012

dataset Everingham et al. (2012), achieving an Average Precision (AP) score of 0.7 on

the validation-set. On a hold-out test-set (the PASCAL VOC 2007 test data Everingham

et al. (2007)), the AP was also 0.7 2. This performance could have been improved further

by several techniques such as augmentation. However, we chose to work with an off-

the-shelf model simulating a realistic case where a domain expert (with minimal ML

expertise) would use explanation techniques. In addition, such a model should produce

a sufficient number of cases where the model struggles to recognise an object in an

image, providing us with the enough false positive and false negative examples for the

user study.

4.1.2 Saliency maps Generation

A variety of algorithms have been proposed for generating saliency maps. In our pilot

studies, we investigated two popular implementations: LIME (Ribeiro et al., 2016a) and

LRP (Bach et al., 2015b). Unlike LIME, with LRP, saliency maps are not restricted to

a super-pixel (neighbouring patch of similar pixels) but highlight contours of objects,

which was preferred by most of our pilot study participants (perhaps because they do

not occlude the objects). For this reason and to simplify our study design, we chose to

focus on the LRP algorithm only to create saliency maps. Concretely, we used the α-β

propagation rule (Bach et al., 2015b) with α = 2 and β = 1.

Figure 4.1 shows a true positive (TP) example, where the model correctly predicts

a train. The saliency map suggests that the red part of the image containing the rail

supports the classification of this image as a train. Figure 4.2 shows what we may

refer to as false positive (FP) example where the system incorrectly assigned a train

label. The red part of the image contains what looks like a rail is what supports the

classification of this image as a train. The blue parts are against this classification.

1https://keras.io/applications/#vgg16
2For a reference, in the Visual Object Classes Challenge 2012 3, the AP for the winner team was

around 0.82 on a hold-out set.
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Figure 4.1: Example of a saliency map explanation of a True Positive (TP) image
for the label “train”. It highlights the contours of the lines below the train. A possible
interpretation is that the CNN has learned to recognise trains when rails are present.

Figure 4.2: Example of a saliency map explanation of what we may refer to as a False
Positive (FP) image for the label “train”. A possible interpretation is that edges in the
lower part appeared similar to rails, which could explain this error.

4.1.3 Presentation

The interfaces of the study (Figure 4.6 was implemented as a Web application, using

HTML5 and Python with the Django framework. We served the application from a

standard Web server. The view-port of the participant browser window was required to

be at least a 1000px wide and 600px high, in order to take part in the study.

4.2 Study 2-pilot: A preliminary investigation of the role

of saliency maps

In this pilot study, we designed a between-group study to evaluate whether saliency

maps can help users understanding of a highly complex CNN used for multi-label image

classification. Participants were presented with a pre-trained CNN and asked to estimate

the outcome of the model for 10 task images. For each question, participants were

encouraged to use an interactive browser (details below) to examine how the CNN

classifies a large set of training images.
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The study included one independent variable that varied between groups which is the

presence of saliency maps. A screenshot of the experimental setup is shown in Figures 4.3

and 4.4.

Figure 4.3: Exploration page 1: a tool to navigate the dataset

Figure 4.4: Exploration page 2: the overall performance of the model
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4.2.1 Conditions

Each participant was assigned to one of the following two conditions: No-saliency map:

each training image was displayed along with a bar chart showing the probability score

of each category. saliency map: An explanation (a saliency map) for each training

image is displayed in addition to the bar chart.

4.2.2 Participants

20 participants were recruited from the university participants pool which includes uni-

versity staff, students and the general public. Each received a £10 payment for their

time, as well as an additional performance-based bonus of £0.5 for each correct answer

as an incentive. Anyone above 18 years of age who expressed interest was included in

the study, so long as they have a technical background (i.e. degree in computing or

engineering), had normal or corrected to normal vision and fluent in English.

4.2.3 Procedure

All studies were conducted in person in the same empty meeting room on the UCL cam-

pus. At the beginning of the study, all participants went through a brief tutorial that

included background information on the experiment as well as step-by-step instructions

on how to utilise the system. The tutorial includes a demonstration of how the system

classifies a specific image, as well as how the classification scores should be interpreted.

The definitions of TP, FN, and FP are also provided. The saliency map group is given

extra information in the tutorial that describes (with examples) the saliency map ex-

planation and how it should be interpreted (see for example the saliency map displayed

in figure 4.3). In both conditions, participants spent a few minutes to familiarise them-

selves with the interactive browser. They were then asked to answer ten questions. Each

question asks if the model will recognise an object (for example, a horse) in a new image.

Participants were encouraged to utilise the interactive browser as a tool to assist them

answer the question accurately.

In addition to being asked if the system would correctly recognise an object (e.g. horse)

in a task image, participants are verbally asked to justify their choices at the end of the

study (i.e. why did you pick this choice for this particular question?). This question

allows us to get more specific information on their decision-making strategy. It also helps

us understand whether exposing the saliency map to users affect their interpretation of

the model performance.

The set of images used in the questionnaire are only sampled from two classes: horses

and monitors, where the first 5 images are sampled from the ”horse” category, while the

last 5 are sampled from the ”monitors” category.
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Figure 4.5: Query images used for the study

4.2.4 Results

The quantitative assessment is based on counting the total number of correct answers

out of 10. A chi-square test of the overall scores revealed no statistically significant

differences between conditions (chi-square=0.526, p=0.46, df=1). The average score for

participants in the saliency map condition was (µ = 0.67, σ = 0.24) and for No-Saliency

map (µ = 0.65, σ = 0.22).

Further to the quantitative results, a thematic analysis was performed on the collected

qualitative data. Four themes emerged from this process. Each theme is described

in one of the following subsections. In what follows, we use the letter S to indicate

that a participant was in the Saliency map condition, and the letter N to indicate the

No-Saliency map condition.

4.2.4.1 Variations of exploration strategies

In both conditions, participants’ comments reflect a variety of exploration strategies.

several participants gave more weight to where images belong to in terms of performance

measures (e.g., TP, FN, or FP) (S2, S6, S8, N1, N5, N8, N9, N11).

Some participants dismissed The FN examples, believing that such a metric is irrelevant

or ineffective in making a decision. Following a discussion, those participants revisited

this metric (N7, S2). The FP examples were ignored by the other participants (N10). In

certain circumstances, a participant would disregard the saliency map for some questions

(S5) or rely solely on the visuals while ignoring the metrics (N8, N10).

In other cases, the overall performance of the system played an important role in par-

ticipants’ answers (S8, S13, N9, N12). For example, S10 reported: “I put (No) for Q10
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when I realised that I have many Yes’s for monitors, and the model is not perfect”. Many

participants considered distractions from other objects (S6, S14, N6, N8, N9, N11). For

example: “for Q7, no, because it’s distracted by other objects, guitar, the mirror which

has a similar shape” (N8).

Some comments showed that participants did not always notice certain details: “what

about this one?, oh .. seems that I didn’t notice it”(S2). Or that properly answering

some questions is due to chance since there are similar images in the dataset that are

classified differently (i.e. TP, FN, or FP), but they were not seen to that particular

participant (S10, S2, S5, N1, N7, N8).

4.2.4.2 Building a pattern

When exploring the examples, a number of participants commented on how difficult it

was to establish a pattern. Some participants stated that they became confused as a

result of finding identical images that were categorised differently (N3). In some extreme

cases, participants expressed their dissatisfaction and viewed the exploration process as

a total guessing game (N5, N8, N10).“[...] I can’t work out why it’s not picking up on the

horse in the FN, to me it seems very random. I can’t seem to determine, what features

of the horse, the system is using to categories the horse”(N10).

In other comments, some participants explained how challenging it is to build patterns

(N1, N3, N11). For example, a participant reported that in order to answer a question,

one must go back and forth between TP, FN and FP examples in order to build a

pattern: “I’ll check TP and try to find the most important feature for horse (e.g. brown

colour), and validate that with FN, as you can see the system misses some black and

white horse images” (N1).

4.2.4.3 Attention and understanding the saliency map

Quantitative results show a comparable user performance for both groups (i.e. with and

without saliency map). A cause for this effect could be that some participants did not

pay attention to the saliency map. Several comments seem to highlight this limitation

in design. For example, one participant ignored the saliency map from the beginning

and argued that the role of saliency map is minor given that the metrics are provided

(S12). In other cases, participants stopped relying on the saliency map after noticing

that the saliency map has picked up things that do not belong to the object of interest

(S5, S14). One participant reported that he was only using the saliency map for FN

examples (S8).
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4.2.4.4 Confusion and other biases

Comments in this category relate to some wrong assumption about the system. Some-

times the comments highlight that some participants overestimated the system capa-

bilities: “[...] did you also check FN for that image? No, I also had high confidence

in the system, [...] usually the system learns from its mistakes”(S8). Similarly, a par-

ticipant assumed that the system has an online learning feature which can learn from

a few new data points (S3). One participant thought that the saliency map “has also

its own negatives, it can identify things that are not relevant” (S5). Although saliency

maps’ purpose is to reflect what the model has learned from the data (i.e. to serve as

a diagnostic tool), the last comment demonstrates that some participants may overlook

the fact that the model can also learn incorrect features, which the saliency map would

then ”illogically” highlight. To put it another way, the saliency map can be ”truthful”

by highlighting the wrong part of the image to reflect the model’s flaws.

4.2.5 Discussion

4.2.5.1 Guiding users’ interpretation of Saliency maps

The system provides users with a number of features, including overall scores, proba-

bility scores for particular cases (bar chart), and a saliency map. This diversity has a

cost, which includes inconsistencies among individuals during the exploring phases. To

accurately assess the impact of a saliency map as an additional feature, it is necessary

to ensure that participants are paying attention to the saliency map and are aware of

how to utilise it.

An implication for design is to consider techniques that draw users’ attention to the

details of the saliency map. Previous research, for example, shows that individuals

typically describe one event in relation to another event; a strategy based on contrasting

Miller (2019b). In the context of saliency map explanation, users’ attention to the

saliency map may be directed by contrasting two comparable examples that have been

classified differently by the model, such as two similar horse pictures, one correctly

identified (TP) and one misclassified by the model (FN). Users may learn more by

comparing the two images than by looking at each saliency map individually.

4.2.5.2 Designing more constrained studies

The explorer enables users to easily navigate the dataset by category (for example, cat or

horse) and filter out based on classification criteria (i.e. TP, FN and FP). Despite these

characteristics, we observed that participants use a variety of exploratory strategies to
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explore examples. Due to this inconsistent nature of explorations, each participant was

exposed to a different set of examples, which appears to have influenced their judgement.

For example, if we knew that the model correctly classified an image, individuals who

discovered a similar example from the TP category during the exploration phase would

be considered favoured. This observation holds true for both conditions. Being exposed

to saliency maps would also be ineffective, as one acknowledged limitations of saliency

maps is that they are regarded instance-level explanation Krause et al. (2018b). An

implication for design then is to find strategies to reduce this potential noise by limiting

the possible exploratory variances between participants. One method is to sample a

small portion of the dataset that represents the most useful images from which to learn

for a specific task image. This perhaps may assist improve the efficiency of saliency

maps as well as the design of user studies based on them.

4.3 Study 2: Evaluating the role of saliency maps

The results of the pilot study reported above showed that participants’ data exploration

strategies differed greatly. Such variations suggests that a study with more constraints

is required to ensure that the effect of displaying the saliency map is evaluated correctly.

Therefore, we designed another a between-group online study in which we sampled and

presented a few examples for each task instead of allowing participants to explore the

whole dataset. A screenshot of the experimental setup is shown in Figure 4.6. In the

following sections, we lay out a more elaborate description of the study.

4.3.1 Tasks

The main task was to predict the classification outcome of a CNN for a set of 12 task

images. This task has been proposed in prior work to evaluate the explainability of a

system (Lipton, 2018). In addition, for each task, participants were asked to justify their

choice (i.e. why did you pick this choice). This question helps us gather more detailed

data about whether exposing the saliency map to users affect their interpretation of the

system and how they use the saliency map. Figure 4.6 shows the interface for one task

image.

To increase participant engagement in the study, participants received a performance-

based bonus of £0.50 for each correct answer in addition to an £8 payment for their

time,
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Shows 2 True Positive (TP) & 2 False Positive (FP) examples.

Shows 2 True Positive (TP) & 2 False Negative (FN) examples.

Shows 2 False Positive (FP) & 2 False Negative (FN) examples.

1

2

3

4

Notice, the same question is repeated in the 4 pages !

After observing the examples in page 1, 2, 3, it is the time 
for you to answer the question in this page.

Figure 4.6: A demonstration of how examples and question are displayed to a saliency
map participants. The system will show few examples of how it classifies some images,
where for each task, the system shows the depicted 4 pages. The same information,
excluding saliency maps, are presented to no-saliency map participants.
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4.3.1.1 Selection of task images

We intended our study to be no longer than 40 minutes to avoid fatigue effects. This

design choice limited the possible number of task images. Consequently, we had to

choose between sampling from a variety of classes or sampling from a subset of classes.

In our pilot studies, participants found predicting model behaviour very confusing when

the class in question was continually switching. Furthermore, the more classes they had

to reason about the more challenging the tasks became, because they were not able to

“learn” much about the model’s behaviour regarding a specific class. We also wanted to

capture a variety of cases where the model had given correct as well as incorrect output.

For these reasons, we decided to limit our experiment to four classes but included one

TP, one FN and one FP for each class.

Task images were evenly sampled from the following four categories: horse, cat, car, bus,

where the order of these categories is counterbalanced between participants to ensure

there is no order effect. For each task image, participants were shown 12 example images

from the CNN training set to inform their judgement.

The study also aimed to examine if there is a difference in the participants’ performance

depending on the CNN classification outcomes (i.e., are task images with high CNN

scores easier to predict than the ones with lower scores?). Therefore, we set the sampling

strategy of task images as an independent variable in the study with two levels: either

task images were randomly sampled with a high CNN classification score or with a with

a medium CNN classification score. For the high CNN classification score sampling

strategy, the image with highest score was taken from each of the TP, FN, and FP

clusters. To sample images with a medium CNN classification score, the midpoint was

found within the positive certainty range and images with the closest score were sampled.

This midpoint is calculated by finding the half-way point between 1 and the acceptance

threshold (in this study, the threshold is 0.1, thus, the midpoint is 0.1 + (1 - 0.1)/2 =

0.55).

Horse Cat Car Bus

4 TP 4 FP 4 FN 4 TP 4 FP 4 FN 4 TP 4 FP 4 FN 4 TP 4 FP 4 FN

1 FP 1 TP 1 FN 1 TP 1 FN 1 FP 1 TP 1 FP 1 FN 1 FP 1 FN 1TP

Examples  

Task images 
(ordered randomly for 

each category) 

0 0.1 1
Task images 

with high CNN scores
Detected region + 

has to be with top-3Missed

TPs & FPsFNs

0 0.1 1

Task images 
with medium CNN scores

Detected region + 
has to be with top-3Missed

TPs & FPsFNs

(a)

Horse Cat Car Bus

4 TP 4 FP 4 FN 4 TP 4 FP 4 FN 4 TP 4 FP 4 FN 4 TP 4 FP 4 FN

1 FP 1 TP 1 FN 1 TP 1 FN 1 FP 1 TP 1 FP 1 FN 1 FP 1 FN 1TP

Examples  

Task images 
(ordered randomly for 

each category) 

0 0.1 1
Task images 

with high CNN scores

TPs & FPsFNs

0 0.1 1

Task images 
with medium CNN scores

Detected region + has to 
be within top-3Missed

TPs & FPsFNs

(b)

Figure 4.7: A demonstration of the sampling procedure. (a) How examples and task
images were sampled. A total of 15 images were sampled from each category, 12 were
used as examples, while the rest 3 were used as task images, this results in 48 example
images (12 x 4 categories) when images were sampled with a high CNN score and
another 48 images when example images were sampled with a medium CNN score. (b)
High and medium CNN score images are sampled around these locations.
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Figure 4.8: The 12 task images used in the study when they were sampled with a
high CNN score

Figure 4.9: The 12 task images used in the study when they were sampled with a
medium CNN score

4.3.1.2 Selection of example images

Example images were sampled for every task image from the PASCAL dataset, based

on their score similarity to the task image. In particular, a total of 15 images were

sampled from each category, 12 were used as examples, while the rest 3 were used as

task images (questions). Figure 4.7 demonstrates how examples and task images were

selected with a high CNN score sampling strategy, resulting in a total of 48 example

images, and 12 task images. Similarly, a different 48 example images, and 12 task images

were used with the medium CNN score sampling strategy. The assumption was that

user understanding might benefit from looking at instances where the model assign a

similar score. Moreover, showing the outcome of the classifier (i.e. TP, FN and FP) for

the examples has been found to be important for the utility of explanation techniques

(Lai and Tan, 2019). For this reason, we sampled the most similar examples (in terms

of score) of different outcomes for each task image as follows:
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• 4 examples of True Positives (TP), where a label had been correctly assigned;

• 4 examples of False Negatives (FN), where the CNN had failed to assign the label;

• 4 examples of False Positives (FP), where the CNN had incorrectly assigned the

label.

We also based our decision, regarding the number of shown examples, on experience from

pilot studies. We had noticed that if we presented too many examples, participants were

likely to only look at a random subset of them. At the same time, if the number was too

low, there was a risk that not enough information was made available to participants.

For this study, we selected 12 as a compromise. The definition of how the system accepts

the predicted labels (as a binary outcome) are clearly explained in the tutorial before the

tasks begin (please refer to Section 2.1), therefore, although examples show continuous

scores, participants should understand how these scores maps to the binary outcome:

accepted or not accepted.

4.3.2 Conditions

The study included the following two independent variables:

Presence of saliency maps This factor had two levels: shown or omitted. When

shown, the saliency map for the relevant class was displayed next to each example image.

It is important to note that saliency maps were not shown for the task image but only

for the examples.

Sampling strategy This factor also had two levels: sampling task images with a

high CNN score and sampling task images with a medium CNN score.

These two variables bring out the following four conditions, where each participant was

exposed to only one of these conditions (i.e. between subject study design):

• Saliency maps not shown and images were sampled with a high CNN score.

• Saliency maps shown and images were sampled with a high CNN score.

• Saliency maps not shown and images were sampled with a medium CNN score.

• Saliency maps shown and images were sampled with a medium CNN score.

Because classification scores produced by the CNN are the default sources of explanatory

information on the instance level, a bar chart of the top 10 classification scores was

displayed next to each example image for all conditions.



Chapter 4 Evaluating the role of saliency maps 61

4.3.3 Participants

64 participants (16 per condition) were recruited through Prolific 4, an online crowd-

sourcing platform. For the sake of data quality, we required participants to have an

approval rate above 95% on the Prolific Academic platform, have normal or corrected

to normal vision, and to be fluent in English. Moreover, we also made it mandatory

for participants to be above 18 years of age and to have a technical background (i.e. a

degree in computing or engineering), because of the technical concepts used in our study

(i.e. neural networks, classification outcomes, scores, image pixels).

4.3.4 Procedure

After providing informed consent, each participant went through a short tutorial (Sec-

tion B.2) providing the necessary background about the experiment as well as clear

instructions for using the system. The tutorial included examples of how the model

classified a specific image. Further, we provided participants an information about the

explanation technique and how they can be interpreted.

Upon completion of the introduction, participants commenced completing their 12 tasks.

Participants may navigate between examples linked with each task, but once they reach

page 4 (Figure 4.6), they cannot return. The rationale of this design choice was to

control the time each participant spend on examples (i.e., avoiding that one participant

(out of attitude) would spend lots of time going back and forth and another would

not). On page 4, participants chose whether they thought the image would or would not

be classified with the given label. Although there was no time restriction for viewing

examples, participants were told that the study should take no longer than 40 minutes.

Because prior work (Lascau et al., 2019) pointed out that participants in online studies

tend to multi-task, working in parallel, which suggests that task completion time may

not be a reliable measure, so we do not report it in our online studies. At the end of the

study, we gave them feedback for each task images and showed them the bonus earned.

4.3.5 Results

4.3.6 Data analysis: choices and processes

We analysed data through a combination of quantitative and qualitative methods.

In Section 4.3.6.1 below, we first evaluated participants ability to predict the CNN

score by counting the total number of correct answers per condition. Because the col-

lected data represents a count, we found the chi-square to be an appropriate statistical

4https://prolific.ac/



62 Chapter 4 Evaluating the role of saliency maps

test for analysing the data. We further applied a post-hoc analysis (with a Bonferroni

adjustment) to understand the pairwise effect between conditions.

Besides making a prediction, for each task image, we asked participants why they ex-

pected the system to succeed or fail in recognising an image. Therefore, in Section

4.3.6.2, we carried out a qualitative content analysis (Braun and Clarke, 2006) on the

free text replies. A main theme that emerged from the data is the reference to features.

Therefore, we focused our analysis on coding participants’ answers in respect to the

mentioned features.

In particular, in the first pass, two researchers coded the answers inductively. Each

response could be assigned several open codes (e.g. nose, low contrast) based on the

features or concepts it addressed. Subsequently, coders discussed their individually

established codes and agreed on a shared and simplified codebook. We decided to assign

each code to one of two code groups: Saliency-Features and General-Attributes.

The Saliency-Features group included codes referring to features which could be lo-

calised to pixels in the proximity of the object of interest and that saliency maps could

highlight. The rationale for this was that we aimed to compare how frequently partici-

pants mentioned concepts related features that saliency maps could potentially highlight.

Besides the somewhat obvious feature codes such as Ears and Legs, this group also in-

cluded: Outline which applied to answers referring to the “shape” or “contour” of the

object of interest and “Fur” which was used for utterances referring explicitly to the

“fur”, “skin” or texture pattern on the animal.

The General-Attributes group included codes that refer to utterances of generic proper-

ties. An example is the code Background - which applied to answers referring generically

to “surroundings” or “context”. Another example is Image Quality which was used for

replies addressing issues of “contrast”, “blur” or “lighting condition”. Finally, Generic

was assigned when the code refers to other concepts that are not directly related to the

image (i.e. threshold, number, easy).

To compare participants’ answers between conditions, we also applied the chi-square test

on the total number of times (i.e., count) a participant mentioned Saliency-Features (F)

or General-Attributes (G) and whether the provided answer was correct (C) or wrong

(W) for all conditions.

Finally and further to the focused coding process, in Section 4.3.6.3, a thematic anal-

ysis (Braun and Clarke, 2006) was performed on the qualitative data collected in the

study.

In the subsequent subsections we report on our findings.
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Figure 4.10: Percentage of correct answers for each condition. For both sampling
strategies (i.e high CNN scores and medium CNN scores), the presence of saliency
map showed no statistically significant difference in terms of the outcome prediction
accuracy

4.3.6.1 Participants ability to predict the CNN score

A summary of the analysis is shown in Figure 4.10. A chi-square test of the overall

scores revealed statistically significant differences between conditions (chi-square=45.8,

p=06.15e-10, df=3). We ran a post-hoc analysis to understand this significance, where

in that case, the Bonferroni-adjusted p-value is equal to 0.05/6 or 0.0083. In terms

of the sampling strategy, when the sampling was for images with a high CNN score,

participants were more accurate in predicting the outcome of the classifier (Saliencymap-

top vs Saliencymap-middle: chi-square=30.9, p=2.7e-08, df=1) and (No-Saliency map-

top vs No-Saliency map-middle: chi-square=12.7, p=0.0004, df=1). However, the test

revealed no statistically significant differences between conditions within either sampling

strategy; neither when images were sampled with a high CNN score (Saliency map-top

vs No-Saliency map-top: chi-square=0.526, p=0.46, df=1), nor when sampled with a

medium CNN score (Saliency map-middle vs No-Saliency map-middle: chi-square=1.27,

p=0.26, df=1 ).

When images with a high CNN score were sampled, the overall average number (regard-

less of the explanation condition) of correct answers was 9.15 out of 12, while it was 6.47

when images with a medium CNN score were sampled. As the only difference between

the two variations is the sampling strategy, this difference indicates that different parts

of the input space are more easily predictable than others. Furthermore, the saliency

maps did not seem to aid performance. In fact, the performance of Saliency map par-

ticipants was worse when images with medium CNN scores were sampled (Figure 4.10).

However, no statistical significance exists.

4.3.6.2 Mentioned saliency maps features

Figure 4.11 shows the percentage of different codes mentioned by participants when

task images were sampled with top CNN scores, while Figure 4.12 shows them when

task images were sampled with medium CNN scores.
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Figure 4.11: Frequencies of individual attributes mentioned by participants when task
images were sampled with high CNN scores. Top: Features belonging to the Saliency-
Features. Bottom: belonging to the General-Attributes (frequencies were averaged over
all participants in that condition).
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Figure 4.12: Frequencies of individual attributes mentioned by participants when
task images were sampled with medium CNN scores. Top: Features belonging to
the Saliency-Features. Bottom: belonging to the General-Attributes (frequencies were
averaged over all participants in that condition).
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To compare participants’ performance between conditions, we consider three variables:

Condition (Saliency map, No-Saliency map), Answer (Correct, Wrong), and Code (Saliency-

Features, General-Attributes). For conciseness, we will refer to these sets by the fol-

lowing: ”S”, ”N” refer to ”Saliency map” and ”No-Saliency map”, ”C”, ”W” refers

to ”Correct” and ”Wrong”, and ”F”, ”G” refers to ”Saliency-Features” and ”General-

Attributes”. Also, we will refer to participants by condition and subject number, for

example, S7 was subject number 7 of the Saliency map condition.

Images with a high CNN score Table 4.1 summarises the scores for each of these

sets, the same data is visualised (as a ratio) in figure 4.13a. A chi-square test of the

scores revealed a statistically significant difference (chi-square=20.86, p=0.00011, df=3).

Results suggest that there is an association between the distribution of correct/wrong

answers for Saliency map participants and the distribution of correct/wrong answers for

No-Saliency map participants. This significance can be explained by the standardised

residuals (presented in Table 4.1). It can be noticed that the standardised residuals

are larger (in absolute value) when considering the correct answers only, (i.e. F-C and

G-C ). For our analysis, the Bonferroni-adjusted p-value is equal to 0.05/6 or 0.0083,

which clearly suggests that for correct answers, Saliency map participants

often mention a feature, while No-Saliency map participants do not (chi-

square=18.4, p=.0000176, df=1).

Condition F-C G-C F-W G-W

Saliency map 101 50 16 23
Std Residual 4.40 -3.61 -0.167 -1.15

no-Saliency map 59 84 17 31
Std Residual -4.40 3.61 0.167 1.15

Table 4.1: The number of answers (freq) of Saliency-Features (F) or General-
Attributes (G) and whether the provided answer was correct (C) or wrong (W) when
task images were sampled with high CNN scores

Images with a medium CNN score The same analysis was performed on the data

collected from the two conditions showing images with a medium CNN score. Table 4.2

summarises the qualitative scores for each condition, the same data is visualised in fig-

ure 4.13b. A chi-square test of the scores revealed a statistically significant difference

(chi-square=11.299, p=0.0102, df=3). Results suggest that there is an association be-

tween the distribution of correct/wrong answers for Saliency map participants and the

distribution of correct/wrong answers for No-Saliency map participants.
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This significance can be explained by the standardised residuals (presented in Table 4.2).

It can be noticed that the standardised residuals are larger (in absolute value) when con-

sidering the correct answers only, i.e. F-C and G-C. For our analysis, the Bonferroni-

adjusted p-value is equal to 0.05/6 or 0.0083, which suggests that for correct an-

swers, Saliency map participants tend to mention a feature more than No-

Saliency map participants (chi-square=8.42, p=0.0037, df=1).

Condition F-C G-C F-W G-W

Saliency map 37 59 31 65
Std Residual 2.25 -3.087 0.846 0.8424

no-Saliency map 21 88 25 57
Std Residual -2.25 3.087 -0.846 -0.8424

Table 4.2: The number of answers (freq) of Saliency-Features (F) or General-
Attributes (G) and whether the provided answer was correct (C) or wrong (W) when
task images were sampled with medium CNN scores

Overall, the data indicates that for correct answers, saliency map participants often

rely on Saliency-Features, while participants in the no saliency map condition do not.

However, the effect of the saliency maps falls short of causing a difference in the number

of correct answers between conditions.

(a) Sampling task images with high CNN
scores

(b) Sampling task images with medium CNN
scores

Figure 4.13: The ratio of Saliency-Features (F) or General-Attributes (G) and
whether the provided answer was correct (C) or wrong (W) for both conditions

4.3.6.3 Qualitative Analysis

In what follows we use the letter S to indicate that a participant was in the Saliency map

condition, and the letter N to indicate the No-Saliency map condition. For images we use

the letter T to indicate that the image was sampled from an area of the input space with

high CNN scores (Figure 4.8), and the letter M to indicate that the image was sampled
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an area of the input space with medium CNN scores (Figure 4.9). Six themes emerged

from the thematic analysis process, each described in one of the following subsections.

Mis-classification Comments in this category relate to the expectation that the

system may mis-classify, or confuse an object for another. Sometimes the comments

refer to specific features that may cause mis-classification such as mentioning that the

squares in the image form a shape similar to a bus shape (S4, image T11), or that the

system may incorrectly classifies a photo of a plane as a car because of the appearance

of wheels (S2, image T7). Other times they refer to the number of items in the photo:

”Since there are two elements (even if they’re humans), the system recognises them as

horses” (N18, image M2). Some comments are more generic such as expecting the

system to see dogs as cats as in (N2, image T6 and N17, image M4).

Other objects The presence of objects other than the one being classified positive

is sometimes reported as potentially helping the recognition, in terms of context. For

example a stable was mentioned as context for a horse, a house as context for a cat, a

road as context for a car or a bus, or a ”car workshop” as context for a car: ”Looks like

a car workshop which can be lead to car recognition.” (N22, image M8).

Other times the presence of other objects was reported instead as a cause for failing to

recognize an object, beyond the issue of mis-classification. For example, S24 expected

the system to incorrectly see a car if there are people in the image, but assume that

is not the case with the presence of a bicycle. Along the same lines, the absence of

other objects was also sometimes put forward as a reason for the system to successfully

recognize an object: ”Because a bus is similar to a car and there aren’t other things on

the picture” (S21, image M10). When referring to T3, N10 thought there is nothing

in this image that might look like a horse to the system, and justified this assumption

by the observation that all of the false positive images contained at least a non-human

animal. Similarly, for the same image, N5 thinks the system needs to see some kind of

animals in the picture before classifying it as a horse.

Image Qualities A number of comments referred to the quality of the image. Some-

times participants referred the entire image being clear (S11, image T9) or unclear (S8,

image M12). Other comments in this category referred to specific characteristics, such

as brightness (N16, image T2 and S25, image M8), blurriness (N11, image T8), colour

contrast (N30, image M3) or ”Because of the shape of the bus is very clear with the black

background” (N31, image M12).

Some of the comments referred to specific portions of the image: ”[...] this picture has

a car in a shadowed area so I think the system will struggle.” (S26, image M7). In some

of the comments image quality is provided as the only reason why participants expected
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the system to recognize, or fail to recognize the object. Other times, image quality is

mentioned in reference to specific features such as mentioning the clear appearance of

the shape and the wheels of the car (S14, image T9). Finally, sometimes poor image

quality is mentioned as a challenge that the system can overcome: ”Although the image

is dark, the contrast between the bus and the background makes the bus stand out, making

it easier to be identified” (N14, image T12).

View The distance of objects (”Cat is too far away” S10, image T5) and the zoom

level (”It appears to be at the right zoom level to be recognised. Seems to have an issue

with those too close or too far away” - S32, image M11) were reported as factors that

would determine the success or failure of the system. Similarly, occlusion was mentioned

as a reason for the system to fail such as the insufficient visibility of the car (S16, image

T8), and conversely participants refer to entire object being visible as a reason for

success (N26, image M3). Also, the viewpoint from which the object was captured such

as having the horse facing the camera (N32, image M6), and the posture (e.g. a ”cat

lying down”) were also reported as influential.

Like-example In the study, examples were the main source of information for our

participants (in addition to the preliminary information provided in the introduction).

So it is perhaps not surprising that a number of comments referred explicitly to the image

provided as examples. In some instances, participants referred to general similarity of a

photo to a specific examples (N11, image T10 and S21, image M8). In other instances,

it was reported that a photo was similar to an entire group of examples: ”this image is

similar to all TPs examples” (N17, image M5).

Sometimes, the comments referred to specific aspects of the examples, such as colour

and viewpoint. For example, the majority of the true positives, according to N15, were

yellow buses, similar to the one in T12, and one of these buses was practically in the same

sideways posture. Similarly, for T8, N6 referred to a previous case in which the system

failed to recognise a car because the shape was not properly displayed, or the object

(cat) being on the foreground (S24, image M4). Sometimes the similarity to examples

was weighted in the judgement, in conjunction with other factors, for example: ”Horse

if fully visible with good lighting on it, also it reminds me of the first TP example.” (N7,

image T2). To a more extreme extent, occasionally participants refer to the example,

but offer contrasting conclusion: ”it is similar to some false negatives but I think the

shape is not as much hidden.” (N31, image M7).

Generic Comments Under this category we grouped comments that quite generi-

cally state that the object to be classified appears in the image. For example, S31 and

N5 referred to the appearance of an object (M11 and T4), while S31 and N17 mentioned
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the absence of an object (M2 and M9). N24 expressed uncertainty on the recognition of

a car in M8.

Sometimes participants mentioned aspects of the system, such as the threshold, which

was mentioned in the introduction and visible in the histogram examples: ”I think it

resembles a bus enough to be above the threshold, but not very high” (N3, image T10).

Other times the probability and ranking of the images were mentioned (”The system will

recognise the car in this image and probably the bus category would be in the top three”

- N27, image M10, or ”The probability of identifying the bus will be second after the

probability of identifying a person.” - N19, image M12), or the saliency map (”Because

the saliency map of the first example is very similar to the photo” - S30, image M11).

4.3.6.4 Contrasting Images

In addition to the thematic analysis reported above, we also looked for contrasting points

in the data, by considering the following question: are there images, where most of the

participants in one condition provide the correct answer, while most of the participants

in the other condition offer the wrong answer?

When images with a high CNN score were sampled, the first to observe are the answers

where most of H participants mentioned a feature and provide a correct answer, while

most of the N participants mentioned a feature but provide a wrong answer (i.e. the in-

tersection between H-F-C and N-F-W ). T1 (figure 4.8) is an example that demonstrates

this observation. For that image, 12 H participants answered this question correctly,

mentioning the reason for the system to mis-recognise the horse is that legs are not

visible. On the other hand, 4 N-participants (N1, N6, N7, N8) incorrectly answered Yes,

making a reference to the visibility of the horse face. It is worth mentioning that the

saliency map for horse images seems to highlight that the model gives more weight to

the legs of the horse (figure 4.6) which is missing in T1. Similarly, in T6, The saliency

map suggests that fur is a feature that is considered by the model. Some N-participants

(N6, N14) rely on face or ears, but did not consider fur as a feature for cats. 7 H

participants mentioned ears or fur as features and answered the questions correctly.

On the other hand, 2 participants incorrectly answered the question, referring to the

existence of another object, e.g. ”There is more than one item in the image, and that

might confuse the system” (S4).

It is also worth observing the answers where most of H participants mentioned a feature

and provide a correct answer, while most of the N participants does not mention a

feature but provide a wrong answer (i.e. the intersection between H-F-C and N-nF-W ).

In T2 (figure 4.8), 12 H participants answered this question correctly, mentioning the

reason for the system to recognise the horse is that legs are visible. On the other hand,

4 N-participants (N4, N9, N15, N12,) incorrectly answered No making a reference to
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the existence of a person in that image. Moreover, the 4 remaining H participants who

answered this question incorrectly did not mention a feature, e.g. ”because the system

fails to recognise other horses like this one” (S48).

When images with a medium CNN score were sampled, there seems to be no clear

pattern when we start looking closely into each question individually. This observation

is inline with (figure 4.13b), which shows that there is less contrast between the two

conditions compared to (figure 4.13a) .

4.3.7 Discussion

At the beginning of this chapter, we posed the following research question: (R3) How

do saliency maps help with building functional understanding?. In this section,

we will discuss the findings of our research in light of this question. We also reflect on

the key issues, highlighting the implications for design and further research.

4.3.7.1 Can saliency maps improve users’ understanding?

The saliency maps did not seem to aid performance. In fact, the performance of Saliency

map participants was worse when images with medium CNN scores were sampled (Fig-

ure 4.10). However, no statistical significance exists. As a result, more studies are

needed to properly characterise the impact of various sampling procedures on users’ un-

derstanding of system operation. Furthermore, more research and analysis are needed

to determine whether the existence of a saliency map has a negative impact on user

performance when task images are sampled from portions of the input space with lower

CNN scores.

In terms of information gained by reasoning on examples, many of our participants’

comments reveal that through the examples, they could infer features of the objects

that were used for the classification (even without the presence of saliency maps). For

example, the presence of wheels seems to be correctly associated with the prediction of

the ‘car’ or ‘bus’ classes. In this context, N18 suggests that the system would recognise

the bus in image (M12) because of the ”sideview and the wheels.” However, in this photo,

the wheel contrast with the black background is quite poor. While a person can infer

wheels from the image context, it is less likely that a network would (indeed, this image

is a false negative). One possible interpretation of this finding is that participants expect

the CNN to recognise a horse or cat whenever they can recognise one. This interpretation

could be an instance of the cognitive psychology notion of ”attribute substitution,” which

is considered the basis for a number of cognitive heuristics (Kahneman and Frederick,

2002): participants might be ”replacing” the difficult question ”does the CNN recognise

a horse/cat in this image?” with the easier question ”do I recognise a horse/cat in
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this image?”. Also, human expectation can give emphasis to some factors, such as the

brightness of the image, even if it is not a major cause of failure for the model.

It is worth noting that if a specific model is resilient to the brightness of an image being

dark, then the saliency map will highlight edges even if the contrast is not high (notice

how the saliency map highlights the rail of the train in Figure 4.1). An implication for

design is to run more user studies to assess whether saliency maps can spot these possible

biases or ideally shift user expectations to the correct understanding, complementing the

large spectrum of literature that supports this idea, as we mentioned in Section 2.2.

4.3.7.2 Saliency maps can help participants notice Saliency-Features

In this study, examples with the highest similarity score to the task image were se-

lected. Given the observation that for correct answers, saliency map participants often

mentioned Saliency-Features, then would selecting examples that share similar Saliency-

Features help participants answer questions more correctly? As an implication of these

findings, in the next study (Chapter 5), we utilise a unique property of CNNs which

enables them to learn powerful descriptors of the data represented as a vector (often

called embeddings), which can be used to find images that share similar patterns (that

may resemble Saliency-Features).

Another point to make regarding features is the observation that when images were

sampled from an area of the input space where they have a lower classification score, we

still found a statistically significant difference (in terms of the number of mentioned fea-

tures) between the Saliency map and No-Saliency map conditions, but overall, features

are mentioned a lot less frequently than when images were sampled with a high CNN

score (across both conditions). This finding suggests that the utility of saliency maps

varies according to the classification score which is novel compared to other prior works,

where the usefulness of the saliency maps is often demonstrated through visual inspec-

tion, as argued by (Adebayo et al., 2018), rather than through systematic sampling.

4.3.7.3 Tensions between local and global feedback

The saliency maps can highlight portions of the image that act as context for the object

being detected. For example, referring to the same example we mentioned previously,

the pixels corresponding to the train tracks in Figure 4.1 are highlighted as supporting

the classification of this image as ‘train’. The qualitative analysis revealed instances

where our participants applied the same type of reasoning, suggesting an effect of a

specific feature (see for example Section 4.3.6.3).

In Section 2.1, we demonstrated how CNNs respond to low-level patterns in the first lay-

ers and how more complex representations resembling concepts like ”cat’s eyes” emerge
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in deeper layers. This finding does not necessarily, however, imply that the network

has learnt the specific concept of ”cat’s eyes.” This discussion remind us of the tension

between local and global AI explanations (Ribeiro et al., 2016b; Lipton, 2018). For ex-

ample, a participant comment such as ”I think the system needs some kind of animal in

the picture before it can say it is a horse” (N5, image T3) suggests that this participant

may expect the system to have a global label of ”animal”, yet we know that it is not

necessary that CNN has an ”animal” label. In fact, CNN may have actually learned a

high-level representation of features that looks like ”animal”.

The complexity increases when we consider saliency maps. The generation process of

an explanation represents a different process (that is related but not identical) to the

forward pass process. In particular, saliency maps are local explanations in the sense

that changing some pixels in the input image may result in a very different saliency

map (Lipton, 2018). Yet a comment such as ”Whenever there’s a person in the image,

it recognises the person before the horse.” (S4) points to participants’ expectations of

’concepts’ understood and used by the system. An implication for design is how to

develop explanations that convey the right expectation to users. When considering

explanations generated for CNNs in particular, works such as (Kim et al., 2017) and

(Hamidi-Haines et al., 2018) proposed techniques that attempt to bridge the gap between

concepts defined by users and how these concepts are represented by the model.

The tension between local and global also exists at the image level (rather than in

terms of the classifier input space). Saliency maps are defined on individual pixels. In

contrast, some of the properties mentioned by our participants in relation to ”Image

Qualities” (see for example, Section 4.3.6.3) are global properties of the images, such as

contrast and overall brightness. An implication for the design of explanation systems,

then, is that saliency maps should be complemented by more global representations. For

example, saliency information could be related to global descriptors of the images, such

as overall contrast or brightness measures, as well as histograms.

4.4 Summary

In this chapter, we report on two between-subjects lab studies designed to investigate

the role of saliency maps in informing technical users making sense of Convolutional

Neural Networks (CNN). The first is Study 2-pilot and was conducted in person with

20 participants. They were asked to estimate the outcome of an object recognition

algorithm, half of them were shown a saliency map of each image. No statistically

significant differences were found between groups in terms of user prediction accuracy.

Participants observations and post-study interviews point to the local nature of saliency

maps as a key limitation, but they also indicate that there were wide variations in data

exploration strategies across participants. Such variation points us to the need to design



Chapter 4 Evaluating the role of saliency maps 73

a study with more constraints to ensure that the effect of showing the saliency maps is

genuinely evaluated.

Study 2 builds on the results of the pilot study by sampling a few examples to reduce

the possible noise that emerges from users’ variation in data exploration strategies.

The study was conducted online with a total of 64 participants. They were asked to

estimate the CNN outcome on task images, with 12 examples (each with a similar score)

shown to help them make a decision. The study included four (two-by-two) conditions:

(Saliency map, No-Saliency map X Images with a high CNN score, Images with a medium

CNN score). Through a combination of quantitative and qualitative methods, we can

summarise the key findings of this study in light of the research question as follows:

1. Considering participants’ ability to predict the CNN classification outcome of im-

ages as one measure of users’ functional understanding, the presence of saliency

maps did not result in user’s higher prediction accuracy.

2. Across conditions, higher scores seem to be easier to predict than lower scores.

Moreover, saliency maps do not seem to help in that regard.

However, an interesting finding emerged from the qualitative data, which showed that

for correct answers, participants tended to mention Saliency-Features more often than

when they were not. This finding prompts us to consider a different sampling strategy

based on locating and presenting images that share similar features. This strategy should

yield examples that are visually similar to the task image (rather than selecting images

with the closest score), which is the subject of the next chapter.
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Previous study (Chapter 4) showed that the presence of saliency maps did not result in

higher accuracy. One thing that we have noticed by ”visual inspection” of many images

is that the saliency map sometimes has a tendency to highlight specific parts of the

object (e.g., the legs of the horse). Therefore, we were curious as to why saliency maps

did not help participants and whether they actually paid attention to and used saliency

maps for reasoning.

For that reason, in this study, we aim to prime participants to think and reason about

features by asking them to list the features they think the system is sensitive to for each

task image. Moreover, results from the previous study also indicated that for correct

answers, participants in the saliency map condition mentioned Saliency-Features more

frequently. Does this imply that providing images with similar saliency-features would

provide them with more opportunities to reason about features, potentially leading to

more correct answers?. This is what we are mainly seeking to investigate in this chapter.

75
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Previous research demonstrated that the CNN embeddings extracted from the penul-

timate layer of a trained CNN contain powerful descriptor information that may be

employed in a variety of tasks, including finding instances that share similar patterns; a

task usually named in the literature as instance retrieval (Sharif Razavian et al., 2014).

In this chapter, we made use of this CNN property and conducted another study in

which we sampled images that were visually similar to the task image. Given this new

sampling strategy of examples, we aim to investigate the same main research question

we posed in the previous chapter:

(R3) How do saliency maps help with building functional understanding?

In addition, we would like to understand more about the kind of features participants

pay attention to in each group. Previously in Chapter 4, participants were asked to

justify their answer by responding to this open-ended questions: ”why did you pick this

choice”. In contrast, in this study, we focus on features by asking participants to list

features they believe the system is sensitive to and features the system ignores. Given

this new question that focuses primarily on features, we seek to confirm the previous

findings that saliency maps seem to prime participants to think about Saliency-Features.

In particular, we aim to address the following research question:

(R4): What features do lay users attend to in order to build a functional

understanding of computer vision processes?

Finally, because classification scores produced by the CNN are the default sources of

explanatory information at the instance level, we aimed to investigate whether visualising

this additional numerical information would outperform, compliment or interact with

the presence of saliency maps. Our study design in the previous chapter did not allow us

to investigate this factor. Therefore, we designed this study to account for this factor.

In the following sections, we begin by describing the study, then reporting the results,

and finally discussing the key findings.

5.1 Study Design

We designed a between-group online study to evaluate whether saliency maps can help

users understanding of a highly complex CNN used for multi-label image classification.

The study included two independent variables that varied between groups, with a full

factorial design. Both were related to the amount of information shown to participants:

presence of saliency maps and presence of classification scores.

A screenshot of the experimental setup is shown in Figure 5.1. In the following sections,

we lay out a more elaborate description of the study. At this point, it is essential to point

out that, similar to the study reported in the previous chapter, we needed to strike a
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balance between the number of participants, the duration of the study and the variation

of experimental factors.

Figure 5.1: The interface: what participants were shown for one of the 14 different
tasks. Examples are presented in the blue box at the top. The task is shown in the
green box at the bottom. All participants worked on the same tasks and where shown
the same examples. Conditions differed only in terms of the additional information
that was presented alongside each example. Here, saliency maps and scores are shown.

5.1.1 Materials

The dataset, model, and the method for producing saliency maps are similar to those

described in Section 4.1. In contrast to our previous studies, and because the CNN

performs differently across classes, we revisited the model outcomes definition (i.e. TP,

FN, and FP). In, particular, we calculated threshold values for each class (e.g. horse,

cat) such that it maximises the F1-score for the class on the dataset. In Figure 5.1, the

small vertical red lines represent these selected thresholds.

5.1.2 Tasks

We gave our participants the task to predict the classification outcome of the CNN

described in Section 4.1 for a fixed set of 14 task images from the hold-out test set.

More specifically, for each task image, we asked participants:
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1. to predict whether the system will recognise an object of interest (‘cat’ or ‘horse’)

in the given task image.

2. to rate their confidence in their forecast on a 4-point forced Likert item.

3. to list (2-3) features they believe the system is sensitive to and (2-3) features the

system ignores.

Figure 5.1 depicts the interface for one task image (with a reduced number of example

images). Half of the participants started with images of horses, while the other half,

began with images of cats. Seven task images were concerned with the class “cat” and

another seven with the class “horse”. For each task image, participants were shown 12

example images from the CNN training set to inform their judgement. All participants

worked on the same task images and were shown the same example images.

Same as in previous study (Chapter 4), to increase participants engagement in the

study, in addition to an £8 payment for their time, participants received an additional

performance-based bonus of £0.5 for each correct answer as an incentive.

5.1.2.1 Selection of Example Images

The rational of displaying examples with different outcomes is the same as in the previous

study (Chapter 4), however, in this study, example images for every task image were

selected based on their cosine distance (Tolias et al., 2015) from the task image in the

embeddings space generated from the penultimate layer of the network (Sharif Razavian

et al., 2014) (with the guidance of the similarity retrieval tool, please see Section A.2).

In particular, we sampled examples of different outcomes for each task image as follows:

• 6 examples of True Positives (TP), where a label had been correctly assigned;

• 3 examples of False Negatives (FN), where the CNN had failed to assign the label;

• 3 examples of False Positives (FP), where the CNN had incorrectly assigned the

label.

Furthermore, we noticed in the previous study that the saliency maps of TP examples

are more informative than FN and FP. Thus we decided to show more TP than FN or

FP examples.

5.1.2.2 Selection of Task Images

In Chapter 4, we argued that given the short time frame of the study, the task complexity

increases when more classes are included. To simplify the task further, in this study, we
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decided to limit our experiment to two classes but included three TP, two FN and two

FP for each class.

We drew task images randomly from the hold-out test dataset, with the constraint of

having a mid-range classification score. In our pilot studies we had found that images

with a low classification score (close to the threshold) were almost unpredictable for

participants, while images with a high score were easily predictable (as we observed in

Chapter 4) when we sampled task images with a high classification score). Consequently,

we chose to sample images with a medium CNN score, as we expect to see the most

performance variation this way.

5.1.3 Conditions

The study included the following two independent variables:

Presence of saliency maps This factor had two levels: shown or omitted. When

shown, the saliency map for the relevant class was displayed next to each example image.

It is important to note that saliency maps were not shown for the task image but only

for the examples.

Presence of Classification Scores This factor also had two levels: shown or omit-

ted. When shown, a bar chart of the top 10 classification scores was displayed next to

each example image.

The two independent variables were combined in a full factorial design, resulting in the

following four conditions:

• Saliency maps shown and scores shown (Figure 5.2a).

• Saliency maps shown and scores not shown (Figure 5.2b).

• Saliency maps not shown and scores shown (Figure 5.2c).

• Saliency maps not shown and scores not shown (Figure 5.2d).

Figure 5.1 illustrates the saliency maps shown and scores shown condition. In other

conditions, the interface appeared the same, with the exception of not presenting the

saliency maps, not presenting the scores, or not presenting both, as demonstrated in

Figure 5.2.
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21 Saliency maps shown

• Two indepandant variables 
• combined in a full factorial designConditions

16  
Participants 

Scores shown 

(a) Saliency maps shown and scores shown

21

• Two indepandant variables 
• combined in a full factorial designConditions

16  
Participants 

Saliency maps shown Scores NOT shown 

(b) Saliency maps shown and scores NOT shown

21

• Two indepandant variables 
• combined in a full factorial designConditions

16  
Participants 

Saliency maps NOT shown Scores shown 

(c) Saliency maps NOT shown and scores shown

21

• Two indepandant variables 
• combined in a full factorial designConditions

16  
Participants 

Saliency maps NOT shown Scores NOT shown 

(d) Saliency maps NOT shown and scores NOT
shown

Figure 5.2: Study conditions. The study recruited 64 participants (16 per condition)

5.1.4 Participants

We recruited 64 participants (16 per condition) through Prolific 1, with the same criteria

we described in previous study (please see 4.3.3).

5.1.5 Procedure

After providing informed consent, each participant went through a short tutorial (Sec-

tion B.3) providing the necessary background about the experiment as well as clear

instructions for using the system. The tutorial included examples of how the model

classified a specific image and clear definitions of TP, FN and FP. We presented par-

ticipants who belonged to conditions that would show saliency maps with additional

information and examples that described this explanation technique and how they can

be interpreted. Similarly, participants assigned to a condition showing scores received

additional advice on their interpretation.

Upon completion of the introduction, participants commenced completing their 14 tasks.

At the end of the study, we gave them feedback for each task images and showed them

their earned bonus.

1https://prolific.ac/
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5.2 Results

5.2.1 Data analysis: choices and processes

The prediction data was analysed in terms of the percentage of correct predictions. Be-

cause in this study, conditions represent a full factorial between-subject design with two

independent variables: the presence of saliency maps, and the presence of classification

Scores, we chose to apply a two-way independent ANOVA test.

The confidence data were coded by numbers 1-4 and summed up per participant. A one-

way independent Kruskal-Wallis test were used since we have one factor with 4 levels

that represent the 4 conditions.

The open questions about what features the classifier is sensitive to and what features it

ignored were analysed using a qualitative content analysis similar to the one we detailed

in the previous study (Section 4.3.6.2), where we decided to assign each code to one

of two code groups: Saliency-Features and General-Attributes. We counted the

number of Saliency-Features codes and General-Attributes codes. We noticed that some

participants wrote a lot in the qualitative response and therefore mentioned a lot of

features, while others did not. To prevent this from skewing the results, we calculated

a ratio. We obtained the Saliency-Features ratio for each participant by dividing

the number of Saliency-Features codes by the total number of Saliency-Features and

General-Attribute codes that we had assigned to their answers. Therefore a ratio of 0.6

means that 60% of the features that a participant mentioned were Saliency-Features.

In the same fashion, we calculated ratios for all codes. Similar to (1), to analyse the

data, we also applied a two-way independent measures ANOVA using white-corrected

coefficient covariance matrix (White, 1980).

5.2.2 Outcome prediction accuracy

We summarized the data in Figure 5.3. A Shapiro-Wilk test revealed that the percentage

of correct forecasts within groups were approximately normally distribute (W = 0.957,

p=0.027). A Levene’s Test showed performance variances between groups were similar

(F(3,60) = 0.156, p = 0.925).

A two-way independent ANOVA revealed a statistically significant main effect of the

presence of saliency maps on the performance (F(1,60) = 4.191, p = 0.045, η2 = 0.063). In

the presence of saliency maps participants were more accurate in predicting the outcome

of the classifier (µ = 60.7%, σ = 11.0% vs. µ = 55.1%, σ = 10.8%). There was no

significant main effect of the presences of scores on performance (F(1,60) = 1.938, p =

0.169, η2 = 0.029). Furthermore, there was no interaction effect (F(1,60) = 0.060, p =

0.807, η2 = 0.001).



82 Chapter 5 Evaluating the role of saliency maps with visually similar examples

Saliency maps
shown

Saliency maps
not shown

Scores shown Scores
not shown

0.0

0.2

0.4

0.6

0.8

1.0

Us
er

s c
or

re
ct

 p
re

di
ct

io
ns

 o
f t

he
 o

ut
co

m
e

= 0.61 = 0.55 = 0.6 = 0.56

=
0.11 =

0.108

=
0.114 =

0.108

F(1, 60) =  4.19
p < 0.045

Figure 5.3: Left: When saliency maps were shown, participants were significantly
more accurate in predicting the outcome of the classifier . Right: Scores did not
significantly influence the participant’s prediction performance. Success rates were
relatively low across conditions, showing that tasks were very challenging.

We also consider participants’ accuracy on the subsets of images corresponding to dif-

ferent outcomes (i.e. TP, FP, FN). Overall the accuracy was higher for TP images,

on average 79.4%, it was lower for FP, on average 46.9%, and even lower for FN, on

average 36.7%. An interpretation of this result is that participants are possibly inclined

to over-estimate the performance of the systems on challenging cases. Such cases are

represented by FP and FN images. In fact, in 67.3% of all cases, participants predicted

that the system would be correct, whereas it was only correct in 42.9% of the cases (i.e.

6 out of 14 task images were TP, which represents 42.9%). Because we did not fully

counterbalance the order of tasks and True Negatives (TN) were not part of the task

set, unfortunately, we were not able to run statistical tests on the different outcomes.

5.2.3 Confidence

We also asked participants to rate their confidence in their forecast on a 4-point forced

Likert item. Answers were coded by numbers 1-4 and summed up per participant. A one-

way independent Kruskal-Wallis test showed that no statistically significant differences

in confidence were found across conditions (H(3) = 1.130, p = 0.770). On average

participants tended to be “slightly confident” in their answers (Median = 3.00).

5.2.4 Mentioned Saliency maps Features

Besides making a prediction, we asked participants what features they think the classifier

is sensitive to and what features it ignored.
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Figure 5.4: Frequencies of individual features mentioned by participants for images
of horses (top) and cats (bottom). Left: Features belonging to the Saliency-Features.
Right: Features belonging to the General-Attributes (frequencies were normalised for
each participant).

5.2.4.1 Excluded data

An analysis of the qualitative data revealed that two participants misunderstood these

tasks. Consequently, they were excluded from this analysis. It also became apparent

that many of the remaining participants misinterpreted the question about the features

the system ignored. Therefore, we focused only on replies participants gave regarding

the sensitivity of the classifier to features.

5.2.4.2 Mixed-Method Analysis of Answers

We carried out a qualitative content analysis similar to the one we detailed in the

previous study (Section 4.3.6.2), where we decided to assign each code to one of two

code groups: Saliency-Features and General-Attributes.

The top of Figure 5.4 shows the ratios for the answers participants gave for images of

cats, while the bottom of Figure 5.4 shows them for images of horses.

The Saliency-Features ratio was subjected to a statistical analysis. The data is sum-

marised in Figure 5.5. A Shapiro-Wilk test revealed that the rate of Saliency-Features

within groups were approximately normally distributed (W = 0.900, p < 0.01). A Lev-

ene’s Test showed that the variances between groups were significantly different (F(3,58)

= 3.749, p = 0.016). To account for heteroscedasticity we ran a two-way independent

measures ANOVA using white- corrected coefficient covariance matrix (White, 1980).

It revealed a statistically significant main effect of the presence of saliency maps on the
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Figure 5.5: The ratio of mentioned Saliency-Features. It summaries the share of
saliency-features participants mentioned per task. They mentioned significantly more
such features when saliency maps were present (Left). Scores did not have an influence
(Right).

rate of mentioned Saliency-Features (F(1,58) = 23.427, p < 0.01, η2 = 0.295). Partic-

ipants mentioned a larger share of Saliency- Features (e.g. legs, outline) compared to

General-Attributes (e.g. colour, image quality) when saliency maps were present (M =

83.9%, SD = 15.4% vs. M = 54.6%, SD = 28.4%). There was no significant main effect

for the presences of scores (F(1,58) = 1.384, p = 0.244, η2 = 0.013) and no interaction

effect (F(1,58) = 0.004, p = 0.948, η2 = 0.001).

The effect of saliency maps can be explored in more detail in Figure 5.4. It shows that

saliency maps seem to lead people to pay attention to specific parts of the object of

interest. For example, Figure 5.4 depicts the share of mentioned features for images of

horses. It is evident that some features such as legs, outline, tail and belly were mentioned

much more frequently by participants exposed to saliency maps, while general-attributes

such as background and colour are mentioned more often when the saliency maps are

not shown.

5.3 Discussion

Through a combination of quantitative and qualitative analysis, the results of our study

highlight the potential to use saliency maps as an explanatory tool for non-expert AI

users, as well as their limitations. In the following subsections, with respect to the

research questions posed at the start of this chapter, we discuss the key issues and their

implications for design and future research.
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5.3.1 The utility of saliency maps exists, but it is limited

our results show that when saliency maps were shown, participants predicted the out-

come of the classifier significantly more accurately, however, success rates were still

relatively low (i.e., 60.7%). Hence, the task of estimating the system’s predictions on a

new image remained challenging. This is also reflected by our participant’s self-reported

confidence in their answers, which was not affected by the presence of saliency maps

or scores, and was on average still quite low. Moreover, Participants across conditions

seemed to be better in predicting the system’s outcome when it was correct (i.e., TPs).

They were mainly struggling with the prediction of errors (i.e., FPs and FNs), perform-

ing worse than chance. One of the envisioned applications of explanations is aiding users

in building appropriate trust into a system (Dzindolet et al., 2003; Bussone et al., 2015).

Unexpected and unpredictable failures of a system (i.e. in our case, the ability to predict

the FP and FN images) affect trust more negatively than those that can be understood

and anticipated (Lee and See, 2004; Dzindolet et al., 2003). Therefore, it is important

that users can understand when the system will fail. As detecting errors is a claimed

utility of instance-level explanations (Ribeiro et al., 2016a; Lapuschkin et al., 2019), we

suggest that future work should evaluate this empirically in more detail.

Reasoning on Examples In contrast to the last study (Chapter 4), we explained

at the beginning of this chapter that we are exploring R3 in a setting where sampled

examples are based on images with similar embeddings to the task image. The rationale

behind this choice was that people might learn more effectively from examples that are

similar in appearance to the task image (Cai et al., 2019a,b). It might help them to

reflect upon the visually similar images that the system had successfully classified (i.e.

TPs) and images the system had classified incorrectly (i.e FN, FP). We hypothesised

that such contrasting reasoning (Miller, 2019a) can help users to understand the system’s

causes of successes and failures. However, when considering the examples presented to

participants, we noticed that the usefulness of FN saliency maps is negligible. They

usually highlight very little evidence (e.g. see the FN example in Figure 5.1). For FN

examples, the actual image and the other saliency maps (TP, FP) become the only

source of information for understanding why an example has not been recognised by the

system. This insight suggests that the utility of saliency maps varies according to the

classification score. In other words, a saliency map may highlight what supports the

prediction of some class, but it will fail to provide counter-factual evidence, namely, the

absence of evidence. In the next study (Chapter 6), we designed a task that investigates

this point.

We would like to emphasise that for a human, it is easy to spot and point to the absence of

a feature concept, while it is not for a CNN. Humans can easily break down an image into

meaningful regions (semantics) (Fei-Fei et al., 2007). In contrast, CNNs look for patterns
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in a sub-symbolic fashion that lead to an outcome (Bishop, 2006; Lipton, 2018). Because

CNNs do not process data in a ‘semantic‘ fashion, other patterns in an image (which may

not belong to the concept) can contribute towards a classification outcome in unexpected

ways (Lapuschkin et al., 2019). An implication for the design is that we need to develop

explanation algorithms that bridge the gap between humans and machines by leading

the user to understand that the system is not basing its classification decision on higher-

level ‘semantics’ of the image. Furthermore, we would like to emphasise that choosing

representative examples with their corresponding saliency maps, which summarise the

behaviour of the system well, is an under-explored topic. New approaches for generating

saliency maps and for applying them to various machine learning problems exist (see

(Adadi and Berrada, 2018)). However, very little work exists that investigates for which

instances users should examine salience maps. Researchers have acknowledged that

users can only inspect a limited number of saliency maps (Ribeiro et al., 2016a), but to

the best of our knowledge, only two works explore sampling strategies (Ribeiro et al.,

2016a; Lapuschkin et al., 2019) - none of which where applicable for this work. An

important implication, then, is that further research needs to characterise the effect

of different sampling strategies of saliency map examples on users interpretation of the

system operation.

5.3.2 Facilitating global model understanding by explaining local fea-

tures

It is worth emphasising that even when users notice features, this does not necessarily

imply that they will perform better in predicting the outcome of the CNN or reach a

global understanding of the model. Saliency maps provide only a visualisation of the

importance of pixels in a single image. Transferring knowledge about potential features

to new images, where they are presented in different orientations, scales, forms and

perspectives, is very challenging. Furthermore, it is hard to get a quantifiable measure

of the importance of individual features in an image. Again complexity increases if

one attempts to quantify the importance of a feature on new images. In other words,

it is difficult to estimate how the classification score would change if a feature would

be absent. Would the score go down by a factor of 0.1, 0.2 or 0.6? Moreover, does

the presence of different features cause an interaction effect between the highlighted

features? It is challenging for users to reason about this, especially when considering

that CNNs process the input data in a non-linear fashion (Bishop, 2006).

An implication for the design of explanation systems, then, is that saliency maps

should be complemented by a global measure that explains how sensitive the presence

of a feature is to the prediction of some class. For example, how sensitive the presence

of nose is to the prediction of cat? In that regard, complementing saliency maps with

this additional information could be valuable for users to build quantifiable measures of
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saliency maps, and perhaps avoid biases that might arise from exploring an unrepresen-

tative subset of the dataset. (Kim et al., 2017) proposed an algorithm in that direction,

where a user can test how sensitive the model’s predictions are to a global concept de-

fined by the user. For example, how important the strips concept is to the ”zebra” class.

Informed by the discussion above, in the next study (Chapter 6), we investigate whether

the saliency map technique we are evaluating can help participants in quantifying the

importance of individual parts in an image.

5.3.3 The importance of general attributes

Another reason why noticing Saliency-features does not necessarily facilitate a better

understanding of a model is that general-attributes (e.g. colour, contrast) might in-

fluence the classification outcome. However, these general-attributes are usually not

directly highlighted by saliency maps, because as a more general image property, they

can not be localised to individual pixels. Moreover, saliency maps might even prime par-

ticipants to primarily consider only highlighted features, and give less weight to other

attributes that are not highlighted but important. In fact, our data indicates that when

saliency maps are present, participant mentioned general-attributes less. This finding

complements the previously stated limitation of the expressive capabilities of saliency

maps (Schuessler and Weiß, 2019). In contrast, users preconceptions may cause them to

focus on attributes such as the brightness of the image, even if it is not a major cause

of failure. An implication for design is to develop explanations that convey the right

expectation to users. We suggest that saliency maps should be complemented by more

global representations of the image features. For example, saliency information could

be related to global descriptors of the images, such as overall contrast or brightness

measures.

5.4 Summary

This chapter reported on a between-group user study designed to evaluate the utility of

“saliency maps”. A total of 64 participants were asked to estimate the CNN outcome

based on task images, with 12 visually similar examples shown to help them make a

decision. The study included two independent variables that varied between groups,

with a full factorial design. Both variables were related to the amount of information

shown to participants: the presence of saliency maps and the presence of classification

scores.

Reflecting on the research questions we raised earlier, we can summarise the key findings

of this study as follows:
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1. In relation to R3, we can see that selecting examples with similar embeddings

seems to enhance participants’ ability to predict the outcome of the network for

new images. However, even with saliency maps present, the CNN model remained

largely unpredictable for participants (60.7% prediction accuracy). In addition,

data indicates that scores had no influence on participants’ ability to predict the

outcome of the network.

2. In response to R4, when saliency maps were present, participants tended to men-

tion Saliency-Features more often and give less weight to other attributes such as

colour and contrast.

We may attribute the moderate performance in predicting the outcome of the network to

saliency maps’ limited utility. However, similar to the previous study, the complexity

of the task, which involves asking participants to learn complex patterns from a few

examples and then apply this knowledge to a new task, may have overshadowed what the

saliency map truly offers. Although we found an improvement over the results reported

in the prior study, the task’s complexity may still exist. In the following chapter, we

will attempt to reduce these elements in order to better understand the role of saliency

maps.



Chapter 6

Evaluating the role of saliency

maps through a simplified study

design

In previous studies (Chapter 4 and Chapter 5), task images were presented without their

saliency map explanations. Through this design we intended to simulate a realistic set-

tings where a user would spend time browsing examples (with or without) explanations

in order to understand a model’s behaviour. To evaluate participants’ understanding,

we asked them to predict (or ”simulate”) the model outcome on new images. Results

of the previous study (Chapter 5) indicate that when saliency maps were available, par-

ticipants answered correctly more frequently than when they were absent (60.7% vs.

55.1%, p = 0.045). However, the overall performance was generally low even with the

presence of saliency maps.

To better understand the limited results of the previous study, we hypothesised that

learning how a model works from a few examples may be a task intrinsically too difficult,

limiting participants’ accuracy even when explanations were provided. Consequently,

we decided to evaluate the explanation techniques through a task of lower complexity.

Thus, for this study, we designed a task to try and assess what the various explanation

techniques communicate to users by presenting them alongside the task image. Our

reasoning is that if the information gained from an explanation is genuinely low, the

user’s performance in a complex task that does not show the corresponding explanation

of the task image will likely to be worse.

In addition, previous results indicate that when saliency maps were present, participants

mentioned Saliency-Features more often. Informed by this findings, we designed and

evaluated a new saliency map technique ”Semantic occlusion” (sem-occl) to

specifically focus on features that are meaningful to people. As a generalisation of this

89
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approach, we also proposed another occlusion technique ”multi-scale occlusion” (m-

scale-occl), which does not rely on semantic annotation and instead uses rectangular

occluding regions arranged on multi-scale grids. In both techniques, parts of the image

get occluded and the image is fed through the CNN. A saliency map is generated based

on how big the effect of the occluded pixels is on the CNN result. Examples produced

by both techniques can be seen in figure 6.7.

Examining users’ functional understanding through other measures: Given

the new designed tasks (i.e. where saliency maps are presented alongside the task image),

we aim to investigate the main research question we posed in previous chapters:

(R3): How do saliency maps help with building functional understanding,

including the relation to varied system confidence?

where we measure this understanding by:

(1) Users’ ability to predict the CNN classification outcome on task images. Which is

the same measure we used in previous chapters, but this time, we present a saliency

map alongside the task image.

In addition, in the previous study (Chapter 5), we discussed that one of the claimed util-

ities of saliency maps is detecting errors, and that one of the potential applications of

explanations is to assist users in developing appropriate trust in a system. Despite Deep

Neural Networks’ greater performance, past research has shown that these networks are

vulnerable to well-designed little perturbations of the input samples, which are com-

monly referred to as adversarial examples, which are a set of images that look almost

identical to the original images to the human eye, but not to the network Yuan et al.

(2019). Figure 6.1 shows an adversarial example produced by an algorithm developed

by Chen et al. (2019). The significance of dealing with these adversarial samples is high-

lighted in safety-critical applications such as autonomous vehicles, where for instances

traffic signs might be altered to deceive the smart system. Therefore, in this study, we

are also interested in evaluating the role of saliency map techniques in informing users

about this sort of error called adversarial images. In particular, we seek also to measure

users understanding in R3 by:

(2) their ability to predict the CNN classification outcome of adversarial images.

Moreover, in Section 5.3, we hypothesis that it is challenging for saliency map techniques

to quantify the importance of individual parts in an image.

Quantifying the importance of a part across a large number of examples could be helpful

in gaining a global understanding of a part’s importance (in contrast to what saliency

maps offer locally) and discovering the challenging cases that the system may struggle

to identify. Moreover, such global perspective could be a first step towards providing a
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Figure 6.1: (Left: an adversarial example produced by Chen et al. (2019) algorithm.
Right: the original image.

counter-factual explanations. For example, in addition to identifying the relevant parts,

the explanation technique may inform users that the system had difficulty identifying

the ”cat’s eyes” in an image because the ”eyes” were not visible. Therefore, we also seek

to measure users understanding in R3 by:

(3) their ability to quantify the importance of individual parts of an image.

Comparing different saliency map techniques: Finally, in our previous studies,

we demonstrated that the design space is large with many elements, therefore, one of

the design choices (to constrain this large space) was to work with a single saliency map

technique, namely the LRP. When compared to the previous study design, the task in

this study is simpler, which should enable us to experiment with different saliency map

methods. It is therefore feasible to address this additional research question:

(R5): How do different saliency map generation techniques perform to build

functional understanding?

A total of 144 participants took part and were randomly assigned to one of six conditions,

each with its own set of saliency maps generated using a different explanation technique.

In all conditions, participants were asked to perform 6 tasks, each based on a different

image. Each task includes 6 sub-tasks (i.e., they need to answer 36 questions in total).

The tasks are detailed below in Section 6.2.

The work detailed in this chapter and Chapter 4 form the biases for the following paper

in submission:

Ahmed Alqaraawi, Enrico Costanza, Nadia Berthouze and Emma Holliday. Evaluating

and Improving Heatmap Explanations for CNNs through to online user studies. ACM

Transactions on Computer-Human Interaction (TOCHI).
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6.1 Background: Occlusion-Based Saliency maps

The findings of our previous studies prompted us to consider alternative strategies to

generate saliency map explanations, we describe each in the following subsections.

6.1.1 Semantic Occlusion

Our previous studies revealed that the features of an object played an important role

when our participants reasoned about how the CNN would classify an image. The

importance of object features is also highlighted in the previous study (chapter 5).

Arguably, it is natural for participants to refer to the parts of the object they are

reasoning about, as that is how we as humans reason about visually recognising objects.

Therefore, we decided to explore whether an explanation technique that explicitly refers

to object features may better match users’ expectations (their mental model), and hence

be more informative and useful.

In particular, we decided to highlight the effect that different sub-regions of an object

have on the classification score of the image. For the horse class, we considered the

legs, head and body. For the cat class we considered, the head, eyes, nose, ears, legs

and body. We leveraged the annotations available as part of the PASCAL-part dataset

(Chen et al., 2014) to define these regions, merging them into higher level ones when

needed (for example, the face, eyes, muzzle, and ears of the horse is merged into head).

Initially, we developed an interactive tool that allows users to check the contribution of

the different parts of the object. Figure 6.2 shows a screen shot of the tool, in which

in (1) we show the images, saliency map and the classification score of the presented

image. In (2) The system highlights some of the object parts as the user hovers over

an image. (3) Once a part is selected, it will be occluded using the DeepFill technique

(Yu et al., 2018) to make it appear as if the selected part does not exist. Consequently,

a new saliency map and a classification score are displayed for this modified image.

The interactive element in this tool proved to be overwhelming for users because they

had to recall the different saliency maps and scores that corresponded to the different

occluded parts. To address this limitation, we developed a saliency map visualisation

named: sem-occl, which attempts to provide almost the same information in a single

static saliency map.

In particular, to estimate the effect of each sub-region on the classification score for an

image I, we occluded the corresponding pixels obtaining a new image IwithOccludedRegion

and we fed the modified image through the CNN to compute the score: scorewithOccludedRegion.

We then used the difference between the original CNN score S and SwithOccludedRegion to

estimate Sregion = S−SwithOccludedRegion. We then map Sregion to a shade of red or blue

to represent the importance of this region, where red indicates parts of the image that
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1

2

3

Figure 6.2: The click and hide tool

support the classification, while blue indicates parts that are against this classification.

Example saliency maps generated through this method are shown on the fourth column

(’sem-occl’) of Figure 6.7.

The semantic occlusion method was designed primarily as a contrasting element for this

study. Due to the method’s reliance on the manual annotations of the images, in its

current form it would not be easily applicable beyond a specific dataset like PASCAL-

part. If user evaluation results show promise they would provide further motivation to

try and address the technical challenge of automatic object segmentation of arbitrary

images - a challenge already recognised by the AI community (Chen et al., 2014).

6.1.2 Multi-scale Occlusion

The limitations of the semantic occlusion method led to explore another occlusion-based

method, which we refer to as ”multi-scale occlusion”1. Unlike semantic occlusion, this

1While the initial development of this technique was developed by myself, further work needed to
combine the data at multiple scales was done by Emma Holiday as part of her MSc thesis at UCLIC.
Information about her work is included here for clarity, but labelled accordingly.
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method occludes all sub-regions of an image using an iterative algorithm, so it is more

general. By occluding at multiple scales, we believe this can roughly approximate dif-

ferent sized features of an object. We believe that the conceptual simplicity of occluding

a region of the image to (coarsely) estimate its contribution to the CNN classification

is attractive and promising because it can be easily communicated to non-expert users,

without requiring much (if any) technical knowledge of how a CNN works. This is in

stark contrast to method like LRP or GradCAM, which instead involve referring to the

layers of the network and their operation. Indeed, our own experience when writing

the participant instructions for previous studies, using LRP, was that we had to rely

on a very generic description of the outcome of the explanation techniques, rather than

mentioning how the explanation was generated.

We started by considering a grid of rectangular regions as a basis for the occlusion as a

generalisation of regions representing parts of the objects. Each rectangle may contain a

feature useful for the classification by the CNN, if so occluding it would affect the CNN

classification score, and this could be visualised similar to the above for the semantic

occlusion saliency maps. Inspired by methods like Wavelet Transforms (Grossmann and

Morlet, 1984) and SIFT (Lowe, 2004) (ORB is a similar approach to SIFT that we have

utilised in Chapter 3), we used a multi-scale approach, in recognition that features of

interest might appear with different sizes within an image.

The image is initially divided into quarters (Figure 6.3, centre), and each quarter is

used as an occlusion rectangle. Each quarter is then subdivided into quarters again,

resulting in smaller occlusion rectangles as shown in Figure 6.3 (right). The process

can be iterated to different maximum depths. The saliency maps used in this work were

generated at maximum depth equal to 3. For each occluding rectangle a score can be

Figure 6.3: an example image with occlusion areas as per recursive programmatic
occlusion. There are 20 occlusion areas, 4 large and 16 small. Note that the small areas
are contained within the large areas, as highlighted by the yellow box. The order of
occlusion starts from 1.

estimated, following the same process as for semantic-occlusion saliency maps. However,

for multi-scale saliency maps occluding rectangles of finer resolution overlap with those

at coarser resolution. Given the hierarchical nature of the recursive subdivision of the

image in smaller and smaller rectangles, the scores of all rectangles can be stored in
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a tree data structure 2. To synthesise a single multi-scale saliency map, the tree is

pruned starting from the leaves as follows: child nodes are pruned if the sum of their

scores is lower than the parent node (and the parent node is kept instead). Conversely,

if the sum of the scores of the children nodes is higher than or equal to the score

of the parent, the children are kept. Thus, once fully pruned, the tree contains the

finest granularity regions possible without diminishing the score (importance). One

Figure 6.4: an example of the occlusion areas resulting from the offset pattern. Note
how A and E are effectively the same. The dotted lines indicate the theoretical regions
while the solid lines indicate the final occlusion regions, after cropping to the bounds of
the image. In this Figure, W is the width of the original image, H is the height of the
original image, Wsmall is the width of the smallest occluding rectangle (the rectangle
is not shown), and Woff = Wsmall/2 is the width offset

limitation of the process as described so far is that features of interest might fall across

adjacent rectangles, and hence their importance would be missed. To address this issue,

we followed an approach that is well established in Computer Vision, i.e., to consider

overlapping rectangles. Specifically, the entire multi-scale grid is offset by half of the

size of the smallest rectangle, and repeated at this interval across the width of the

largest occlusion size. As illustrated in Figure 6.4, for an image of W pixels in width

and a saliency map with maximum depth N , the smallest occluding rectangle will have

width Wsmall = W/2N and the horizontal offset will be Woff = Wsmall/2 = W/2N+1.

As shown in Figure 6.4, the offset is applied horizontally 2N−1 times, where N is the

maximum depth of the saliency map, after which point the offset pattern would repeat

2The development of this tree data structure and its processing was carried out by Emma Holiday
as part of her Master’s thesis at UCLIC, and it is included here for clarity.



96 Chapter 6 Evaluating the role of saliency maps through a simplified study design

(for the saliency maps in this paper N = 3 and the offset is repeated horizontally 22 = 4

times). The offset is applied both vertically and horizontally, and for each application

a new saliency map is generated, resulting in 2N−1 × 2N−1 = 22(N−1) offset versions of

the saliency map (for the ones in this chapter, it is equal to 16). This potentially large

number of offset saliency maps is aggregated using a heuristic rule which favours the ones

that have the highest score for the smallest area (i.e. where the score distribution over

area has higher density). In particular the top 5 offset saliency maps by this heuristic are

averaged to produce a single saliency map. Example saliency maps generated through

this method are shown on the third column (m-scale-occl) of Figure 6.7.

While the naive implementation of this process is computationally intensive (because it

requires feeding through the CNN a large number of occluded versions of the image), a

large proportion of the calculations is repeated, offering a clear opportunity for optimi-

sation and execution in parallel. Moreover, in contrast to the semantic occlusion, the

multi-scale occlusion does not rely on manual annotations of the images.

6.2 Study Design

In this study, Participants were asked to complete 6 tasks, each based on a different

image. Each task includes 6 sub-tasks, which are presented on separate pages. Figure 6.5

demonstrate how tasks and sub-tasks are structured and Figure 6.6 depicts the sub-

tasks that participants have to complete for each task. These sub-tasks were designed

to evaluate the amount of information gained by each technique, and they are defined

as follows:

• Q1-score-noH: a baseline sub-task in which participants were asked to predict

the CNN classification outcome of an image by assigning one of five levels of scores:

[very low score, low score, medium score, high score, and very high score].

• Q2-score-H is the same as Q1-score-noH, but with the presence of a saliency

map.

• Q3-select-part: Participants were given the image and the saliency map and

asked to choose the part of the object that would reduce the score the most if

obscured.

• Q4-cover-part: similar to Q3-select-part but with a slightly different question,

in which participants were asked to predict whether the score would (decrease,

increase, or remain nearly the same) if a certain part of the object was covered.

• Q5-score-H is the same as Q2-score-H, except that the image is the adversar-

ial version of the original image (and the saliency map corresponds to this new

version).
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Q1_score_noH Q2_score_H Q3_select_part Q4_cover_part Q5_score_H Q6_select_part

Task 1: with one image, for example:

Q1_score_noH Q2_score_H Q3_select_part Q4_cover_part Q5_score_H Q6_select_part

Q1_score_noH Q2_score_H Q3_select_part Q4_cover_part Q5_score_H Q6_select_part

Q1_score_noH Q2_score_H

Factor: the question type (i.e. Q1_score_noH, Q2_score_H, Q3_select_part) is within subject

No heatmap With heatmap
Select the part 
the will dcrease 
the score the 
most

Same as 
Q2_score_H, 
but the image 
is  adversarial 

Same as 
Q3_select_part, 
but the is  
adversarial 

If we cover a 
part (e.g. nose), 
the score will 
decrease, 
increase or stay 
the same?

Task 2: with one image, for example:

Task 6: with one image, for example:

Figure 6.5: How tasks and sub-tasks are structured. All conditions were exposed to
the same set of images. However, different conditions received different explanations.

• Q6-select-part is the same as Q3-select-part, except that the image is the adver-

sarial version of the original image (and the saliency map corresponds to this new

version).

For all these sub-tasks, we measure users’ performance based on the number of correct

selections.

Three images are from the ”cat” class, while the other three are from the ”horse” class.

Half of the participants started with images of horses, while the other half with images

of cats. To capture a variety of cases, we sampled task images from three levels of CNN
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Q1_score_noH Q2_score_H Q3_select_part Q4_cover_part Q5_score_H Q6_select_part

Q1_score_noH

Q5_score_H

Q6_select_part

Sub-task:

Q2_score_HSub-task:

Q3_select_partSub-task:

Q4_cover_partSub-task:

Sub-task:

Sub-task:

No-
heatmapPredict the CNN score

Predict the CNN score

Predict the CNN score

Adversarial version

The score will decrease the most if 
we cover the ______ of the horse 

If we cover the “legs”, the score will 
decrease, increase or stay the same?

The score will decrease the most if 
we cover the ______ of the horse 

Task 1: with one image, for example:

Figure 6.6: Details of the sub-tasks for Task 1 as an example. Note that the order
of tasks (which is associated with images) are counter-balanced; meaning that other
images might be presented for task1 instead of the one shown here.

scores: very low score (two images), medium score (two images) and very high score

(two images). The images (tasks) were counter-balanced according to the Latin square

scheme. In the tutorial session participants were shown five examples images on which
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the system achieved different levels of scores. Saliency map explanations were shown

for all five examples. The work and implementation of (Chen et al., 2019) was used to

produce the adversarial examples. All participants worked on the same task images and

were shown the same example images. To explore the effect of covering different areas

of the object on the classification score, we developed two interactive tools, the one we

represented in Figure 6.2 and the one detailed in Section A.3.

The saliency map techniques involved in this study are LRP (Bach et al., 2015b), Grad-

CAM (Selvaraju et al., 2017), Guided-backpropagation (Springenberg et al., 2015)) and

the two saliency map techniques we introduced above (i.e. sem-occl and m-scale-occl).

For contrast, we also included a simple edge detector as an additional condition, which is

visually similar to other saliency map techniques (Adebayo et al., 2018), yet independent

of the CNN model. Figure 6.7 shows the generated saliency maps for the images used

in this study, while Figure 6.8 shows the generated saliency maps for the adversarial

images version.

Low

Image LRP m-scale-occl Sem-occl edge-detection GradCAM guided-backprop

Med
ium

High

Low

Med
ium

High

Figure 6.7: Generated saliency maps for the images used in the study (Q2-score-H,
Q3-select-part and Q4-cover-part). The score is displayed on the left side: low, medium,
or high
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Low

Adversarial Image LRP m-scale-occl Sem-occl edge-detection GradCAM guided-backprop

Low

Low

Low

Low

Low

Figure 6.8: Generated saliency maps for the adversarial images used in the study
(Q5-score-H and Q6-select-part). The score is displayed on the left side: low, medium,
or high

6.2.1 Conditions

The study utilised a mixed factorial design with two independent variables (factors):

1. The saliency map generation method which is between subjects and has

six levels which represents all techniques under assessments, which are: LRP,

GradCAM, Guided-backpropagation, multi-scale occlusion (m-scale-occl), Seman-

tic occlusion (sem-occl) and edge-detection.

2. The sub-task type (detailed in Section 6.2) which is within subjects and has

six levels as well which represents all six sub-tasks: Q1-score-noH, Q2-score-H,

Q3-select-part, Q4-cover-part, Q5-score-H and Q6-select-part.
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6.2.2 Participants

We recruited 144 participants (24 per condition) through Prolific 3, with the same criteria

mentioned in Chapter 4 (subsection 4.3.3).

6.2.3 Procedure

After providing informed consent, each participant went through a short tutorial (Sec-

tion B.4) providing the necessary background about the experiment as well as clear

instructions for using the system. The tutorial included examples of how the model

classified a specific image. Further, we provided participants information about the ex-

planation technique and how they can be interpreted. To avoid that one participant

would spend lots of time going back and forth and another would not, examples were

not presented during the actual task.

Upon completion of the introduction, participants were asked to complete 6 tasks (each

with 6 sub-tasks). At the end of the study, they were debriefed: feedback for each task

was presented together with the corresponding amount of bonus reward earned.

6.3 Results

6.3.1 Data analysis: choices and processes

We ran two types of statistical tests. The first is concerned with the main effects. The

second examines the statistics in relation to a specific sub-task.

In Section 6.3.2 we report on the main effects (i.e. main effect of condition, main

effect of sub-task) using the Aligned Rank Transform (ART) (Wobbrock et al., 2011).

ART is based on aligned ranks and was proposed to analyse Non-parametric data from

multi-factor, where common non-parametric tests such as Friedman test is inadequate

(Wobbrock et al., 2011). In our study, we have a between subjects factor (i.e. The

saliency map generation method) and a within-subject factor (i.e. The sub-task type).

Therefore, we chose to apply ART to check for the main effects which can then be

followed by post-hoc pairwise comparisons within each factor.

To check if there is a difference between conditions within a specific sub-task, we addi-

tionally run a Kruskal-Wallis test (which is also based on ranks) followed by a Mann-

Whitney U test for the post-hoc pairwise comparisons. In particular, we report on the

results of

3https://prolific.ac/
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• Q1-score-noH and Q2-score-H: in which we examined participants’ ability to pre-

dict the CNN score for images with and without the presence of saliency map

(Section 6.3.3.1).

• Q5-score-H: in which we examined the effect of saliency maps on participants’

ability to predict the CNN score for adversarial images (Section 6.3.3.2)

• Q3-select-part, Q4-cover-part and Q6-select-part: in which we examined the effect

of saliency maps on participants’ ability to understand how different regions of the

object contribute to the CNN score (Section 6.3.3.3 and Section 6.3.3.4).

In addition, to further understand the impact of each explanation on participants’ pre-

diction accuracy, we ran a Wilcoxon signed rank test when the saliency maps were

present and when they were not (i.e. between (Q1-score-noH, Q2-score-H) and between

(Q1-score-noH and Q5-score-H)). Wilcoxon signed rank test is suitable to compare be-

tween two related samples (i.e. within-subject settings). Finally, in Section 6.3.4 we

investigate how participants performed overall across the different sub-tasks (regardless

of which condition they came from) as well as across different CNN outcomes (i.e. when

task images have a low, medium or high CNN score).

6.3.2 Main effects

The Aligned Rank Transform (ART) test showed a statistically significant difference

between conditions (F= 12.2, p <0.001, df=5). It also showed that participants’ per-

formance in the various sub-tasks differed significantly (F= 67.9, p <0.01, df=5).

Further to this, we report on the contrasts between conditions in Table 6.1. Additionally,

because Q1-score-noH, Q2-score-H and Q5-score-H are related to participants’ ability to

predict the CNN score, we report on the contrasts between these sub-tasks in Table 6.2.

guided-backprop GradCAM edge-detection LRP m-scale-occl

GradCAM 0.9029
edge-detection 0.7312 0.1516
LRP 0.3362 0.9241 0.0107
m-scale-occl <.0001 0.0015 <.0001 0.0357
Sem-occl 0.0006 0.0212 <.0001 0.2385 0.9671

Table 6.1: Overall contrasts between condition (p-values)

6.3.3 Contrasts between conditions within a specific sub-task

In the following subsections, we report on several statistical tests to check for contrasts

between conditions within a specific sub-task.
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contrast p-value

Q1-score-noH vs Q2-score-H <.0001
Q1-score-noH vs Q5-score-H <.0001
Q2-score-H vs Q5-score-H 0.4398

Table 6.2: Overall contrasts between sub-tasks (p-values)

6.3.3.1 Participants ability to predict the CNN score (Q1-score-noH and

Q2-score-H)

In Q1-score-noH and Q2-score-H, the percentage of correct prediction per participant

served as the basis for our evaluation (Figure 6.9 and Figure 6.10).

A Kruskal-Wallis test showed that the performance of participants across conditions were

similar in Q1-score-noH, where saliency map explanation is not present (H(5)= 3.8, p=

0.58). The same test revealed a statistically significant difference between conditions in

Q2-score-H (H(5)= 13.9, p= 0.016).

A Mann-Whitney U test for post-hoc pairwise comparisons, with Benjamini–Hochberg

correction, revealed that (Figure 6.10) m-scale-occl and LRP performed statistically

significantly better than GradCAM and edge-detection.
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Figure 6.9: The percentage of correct answers across techniques. Lines denote that
two techniques are (statistically) significantly different.
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Figure 6.10: The percentage of correct answers across techniques. Lines denote that
two techniques are (statistically) significantly different.
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To further understand the impact of each explanation on participants’ prediction accu-

racy, we ran a Wilcoxon signed rank test with Benjamini–Hochberg correction on the

performance difference between Q1-score-noH and Q2-score-H (e.g. LRP Q1-score-noH

vs LRP Q2-score-H). The test showed that the performance of participants has been

improved significantly after showing the saliency map for all conditions (Table 6.3 - first

column).

Condition Q1-score-noH vs Q2-score-H (p-value) Q1-score-noH vs Q5-score-H (p-value)

GradCAM 0.023 0.0009
guided-backprop 0.003 0.0077
LRP 0.012 0.0077
Sem-occl 0.0216 0.72
m-scale-occl 0.0018 0.0002
edge-detection 0.0195 0.72

Table 6.3: Wilcoxon signed rank test (corrected p-values) on the performance differ-
ence between (Q1-score-noH,Q2-score-H) and (Q1-score-noH,Q5-score-H)

6.3.3.2 Participants ability to predict the CNN score for adversarial images

(Q5-score-H)

In Q5-score-H, we asked participants to predict the CNN classification outcomes of an

adversarial version of the same images used in Q2-score-H (Figure 6.11). (saliency maps

for those adversarial images are shown in Figure 6.8).

A Kruskal-Wallis test revealed a statistically significant difference between conditions

on the performance (H(5)= 104.8, p = <0.001). A Mann-Whitney U test for post-hoc

pairwise comparisons, adjusted with Benjamini–Hochberg procedure, showed that:

• m-scale-occl had a statistically significant better performance than the rest.

• GradCAM is significantly better than all except m-scale-occl and LRP.

• LRP is better than all except m-scale-occl and GradCAM.

• Guided-backprob is better than edge-detection.

In addition, we ran a Wilcoxon signed rank test with Benjamini–Hochberg correction

on the performance difference between Q1-score-noH and Q5-score-H (e.g. LRP Q1-

score-noH vs LRP Q5-score-H). The test showed that showing the saliency map in (Q5-

score-H) helps in all conditions except sem-occl and edge-detection (Table 6.3 - last

column).
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Figure 6.11: The percentage of correct answers across techniques. Lines denote that
two techniques are (statistically) significantly different.

6.3.3.3 Participants ability to understand how different regions of the object

contribute to the CNN score (Q3-select-part and Q4-cover-part)

In Q3-select-part and Q4-cover-part, we sought to see if saliency map methods might

help participants understand how different parts of the object contribute to the CNN

score. The summary of the results can be found in Figure 6.12 and Figure 6.13.

For both sub-tasks, a Kruskal-Wallis test revealed that participants’ performance differed

across conditions (Q3-select-part: H(5)= 32.12, p= <0.001, Q4-cover-part: H(5)=

19.4, p= 0.0016).

For Q3-select-part, a Mann-Whitney U test for post-hoc pairwise comparisons with

Benjamini–Hochberg correction showed that participants presented with Sem-occl per-

formed better than all other conditions (Figure 6.12). Similarly, for Q4-cover-part, the

same test showed that Sem-occl condition performed better than all other ones except

m-scale-occl.
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Figure 6.12: The percentage of correct answers across techniques. Lines denote that
two techniques are (statistically) significantly different.
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Figure 6.13: The percentage of correct answers across techniques. Lines denote that
two techniques are (statistically) significantly different.

6.3.3.4 Participants ability to understand how different regions of the object

contribute to the CNN score for adversarial images (Q6-select-part)

Similar to Q3-select-part, Q6-select-part asked participants to predict the performance

of the system given an adversarial image and its corresponding saliency map. The

summary of the results can be found in Figure 6.14.

A Kruskal-Wallis test revealed a statistically significant difference between conditions

on the performance (H(5)= 48.3, p = <0.001). A Mann-Whitney U test for post-hoc

pairwise comparisons showed that:

• m-scale-occl and sem-occl had a better performance than guided-backprob and

edge-detection

• LRP and GradCAM performed better than edge-detection
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Figure 6.14: The percentage of correct answers across techniques. Lines denote that
two techniques are (statistically) significantly different.

6.3.4 Participants overall scores, and across different CNN outcomes

As described above, the dataset of images used in this study included two images for

which CNN score was high, two for which it was medium, and two for which it was low.
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Figure 6.15 reports the average participant accuracy plotted against the CNN score (as

well as overall). The figure shows the average score for all participants regardless of

which condition they came from.

To reflect on the overall performance of the various saliency maps, we find it useful to

compare the results to the chance level. Q1-score-noH, Q2-score-H and Q5-score-H are

multiple choice questions with 5 levels (very low, low, medium, high, and very high),

thus, the chance level is 1 out of 5 or 0.2. In relation to users’ ability to predict the CNN

classification outcome on task images, we found that overall the success rate in Q1-score-

noH (no saliency map) is slightly lower than chance (average score=0.17) (figure 6.15),

suggesting that the task is not easy. In contrast, when saliency maps were shown in Q2-

score-H, participants across conditions predicted the classifier’s outcome significantly

more accurately than in Q1-score-noH (Table 6.2), reaching about 0.3. While this is

above chance level, it remains low overall, suggesting that saliency maps do not provide

a major gain when it comes to estimating the system’s predictions.

It should be noted that for the two sub-tasks involving adversarial images (Q5-score-H

and Q6-select-part) the CNN score was always very low (5 images) or low (1 image),

in virtue of the definition of such images. Therefore data for these two sub-tasks is not

included in this analysis. However, the overall average accuracy for Q5-score-H was 0.35

and for Q6-select-part was 0.27.

To better understand participants’ performance in Q2-score-H, we broke down the results

based on the different CNN scores on the study images (i.e. when the CNN produced

low, medium and high scores), as illustrated in Figure 6.15. Participants across con-

ditions did better at predicting the system’s outcome when the CNN score was high

(participants’ average accuracy: 0.46). They were mostly struggling to predict the CNN

outcome when it was low (participants’ average accuracy: 0.23) or medium (partici-

pants’ average accuracy: 0.22). In these cases, the results were similar to chance. The

same effect does not hold for Q5-score-H, where the images were adversarial. For this

sub-task, the CNN score was always low, in virtue of the definition of such images (see

Figure 6.8). In this case, participants’ overall performance was a bit higher (around

0.35). However, participants’ average accuracy on images that used to be high in the

original version is 0.26 (Q2-score-H with high CNN scores was 0.46), which may also

confirm the observation above about overestimating the performance of the system.

6.4 Discussion

The results of the study show that different saliency map explanation techniques offer

different information gains, highlighting the key strengths and limitations of each (R5).

At the beginning of this chapter, we raised a couple of research questions. In the
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Figure 6.15: Participants’ overall scores (All), and across different CNN outcomes
(Low, Medium, High). The red horizontal line indicates the chance level

following subsections, we reflect on those questions and highlight implications for design

and further research.

6.4.1 Participants’ ability to predict the CNN score

All evaluated saliency maps techniques proved to help in the task of predicting the

CNN classification outcome of an image. However, even after simplifying the task by

presenting the corresponding saliency maps of the task images, overall participants’

performance remained low (average score was around 0.3). It’s worth noting that even

edge detection seemed to assist participants in Q2-score-H. One possible explanation is

that, while not being linked to the CNN model, it may draw attention to characteristics

that are known to be selected from CNNs.

With respect to users’ ability to predict the CNN classification score of adversarial im-

ages, we found that overall, saliency maps seem to help for most conditions. Adversarial

images are defined as being almost identical to the original versions to the human eye,

but not to the network. So that’s where the explanations are most needed and helpful.

However, we can observe that not all explanations are equal in their effectiveness. In

particular, (1) edge-detection stops being helpful because the algorithm only detects

the edges and does not take into account all of the CNN parameters. For that reason,

the saliency map generated for the original image in Q2-score-H and the saliency map

generated for the adversarial version in Q5-score-H appear nearly identical (for compar-

isons, please refer to Figure 6.7 and Figure 6.8 - the fifth column). (2) When it comes

to sem-occl, its saliency map contains red and blue colours to represent the parts that

look like the object of interest and those that do not (this is in contrast to m-scale-occl

which only shows the red colour). We hypothesise that analysing both colours requires

more cognitive load and can be hard to map to a score. In addition, sem-occl is a sim-

plified but incomplete explanation in that only the parts of the object get highlighted,
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whereas CNN can classify an object using other patterns that are not necessarily related

to the object (e.g. the grass around a horse). (3) Finally, for guided-backprob, although

statistics show that it is helpful in Q5-score-H, this result is likely due to the low score

of this condition in Q1-score-noH. If the score in Q1-score-noH was the same as other

techniques (i.e. around 0.2), its significance would vanish. In (Adebayo et al., 2018), it is

argued that guided-backprop is untrustworthy according to their evaluation test, which

showed that such a method is invariant under model randomisation, which is compatible

with our findings.

When we broke down the results for Q2-score-H based on the different CNN scores

on the study images (i.e. when the CNN produced low, medium and high scores), we

noticed that participants seem prone to overestimating the performance of the system:

they expect the CNN score to be high even when it is actually low. One possible

interpretation of this result is that it offers further evidence to the idea that we presented

in Section 4.3.7.1: participants might be ”replacing” the difficult question ”does the CNN

recognise a horse/cat in this image?” with the easier question ”do I recognise a horse/cat

in this image?”.

6.4.2 Some saliency maps directly reflect the CNN score

Our results in Q2-score-H show that m-scale-occl and LRP helped the most when it

comes to the sub-task of predicting the classification outcome (Figure 6.10). These

results could be explained by considering the correlation between the presentation of a

saliency map and the score value. LRP is a gradient-based technique that relies on a

conservation principle (Bach et al., 2015b) which ensures that the back propagated score

is preserved in each layer until it reaches the input space and is visualised as a saliency

map. In contrast, any method that does a sort of normalisation (such as GradCAM) or

loses part of the evidence while back-propagating through the network (such as guided-

backprob) performed at the same level as the edge-detection condition (which does not

take the model into account). For example, when examining the saliency map of the

guided-backprob in Figure 6.7, we can notice that the high and low score saliency maps

are visually similar. In fact, we investigated the participants’ performance further in

the guided-backprob condition, and found that they performed well in Q2-score-H for

images with high CNN scores. In contrast, they performed poorly in the adversarial

versions of these same images, i.e., Q5-score-H, which are in fact adversarial images

with low scores.

M-scale-occl is generated according to the difference in value between the original score

and the score after occluding a selective patch (or selective part of the object when

it comes to the semantics technique). Thus, its saliency maps provide a clear indica-

tion of the score (see Figure 6.7), and it appeared to perform better in general. Basic
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forms of these occlusion techniques, on the other hand, are known to be computation-

ally inefficient. Furthermore, the sem-occl technique, in particular, is based on human

annotation of object parts, which represents a limitation. An implication for design

then is the need for further improvements to such techniques, especially given recent

developments in CNN-based segmentation algorithms (e.g. (Tao et al., 2020)) which

can potentially automate the generation of sem-occl saliency maps.

When it comes to analysing the results of Q5-score-H, we would expect a truthfulness

explanation (saliency map) not to be fooled by an adversarial image. M-scale-occl per-

formed statistically significantly better than all conditions (Figure 6.11). The second

best were LRP and GradCAM. For LRP, because all scores for adversarial images are

low, associated LRP saliency maps were always in the shades of blue (see Figure 6.8),

which makes the user’s forecasting relatively easy. For GradCAM, one can notice that

its saliency maps are not localised to pixels in the proximity of the object of interest for

adversarial images compared with the saliency maps generated for the original images,

which may have helped participants to predict that the score of the system is unlikely

to be high for the given adversarial images.

Given these differences, the intended task should guide the saliency map approach se-

lection; for example, if the goal is to detect errors or find a unique pattern in the data,

a method that applies some sort of normalisation should suffice (e.g. GradCAM). An

application that requires some form of mapping between the saliency map and the score

(e.g. predicting the CNN outcome) would, on the other hand, require a technique that

meets these criteria.

6.4.3 Highlighted regions in some saliency map techniques could be

misleading

For Q3-select-part, the sem-occl performed significantly better than the rest, as shown

in Figure 6.12. It’s interesting to note that no condition performed better than edge-

detection, apart from sem-occl. This is fairly surprising, since we expected other ap-

proaches to highlight features (parts) other than the general edges to which the model

responds. For Q4-cover-part, because we have 3 multiple choices (increase, decrease,

or stay almost the same), the chance level is 0.33. Similar to Q3-select-part, all con-

ditions except sem-occl performed in a similar level to the baseline condition: edge-

detection. The situation for Q6-select-part appears to be more complicated; sem-occl

has stopped to be the best, possibly because, when looking at its associated saliency

maps (Figure 6.8), and given that the CNN score for all the provided adversarial im-

ages was low, there is no clear indication of which part will reduce the score the most

if covered (with the exception of image 2 and image 5). It’s also worth noting that

guided-backprob did not perform well in this task, which may support previous research

(Adebayo et al., 2018) that suggests that guided-backprop is not truthful.
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Since the design of sem-occl matches these tasks (i.e., highlighting the effect of occluding

different parts of the object), its superior performance in Q3-select-part and Q4-cover-

part was to be expected. It’s worth remembering how Q3-select-part and Q4-cover-part

were defined to better understand the result. In Q3-select-part, participants were asked

to choose the part of the animal that would cause the score to drop the most. A saliency

map technique has to provide a fine-grained indication of the importance of the different

parts to help users achieve this task. The formulation in Q4 is slightly different, which

asks whether covering part of the animal will shift the score in either direction or hold it

almost the same. This sub-task is more challenging since we discovered that removing

a part of an image does not guarantee that the score will change; other patterns may

exist that are sufficient for the CNN to recognise an object. This point reminds us that

the learning process of CNN is complex and can be non-linear.

As a summary, and in response to users’ ability to quantify the importance of individual

parts of an image, the saliency map techniques we examined do not appear to help in

quantifying the significance of individual parts (semantics) in an image. The inclusion

of the sem-occl condition was mainly for the purpose of contrast. However, since its

performance in Q3-select-part and Q4-cover-part was better than other techniques, this

may suggest that developing a technique in that direction could be promising. Further-

more, as we mentioned earlier, quantifying a part’s relevance across a large number of

examples may help in gaining a global perspective about how relevant this part is to the

classification process. All saliency maps considered in this study are designed to convey

what is essential for the classification score, but not the contrasting question: what if

this part is occluded or does not exist? This, perhaps, could be a first step towards

the overarching aim of providing an explanation that relies on a cause-and-effect scheme

rather than a simple correlation.

6.5 Summary

This chapter reported on a between-group user study designed to evaluate the utility

of “saliency maps”. In contrast to our previous studies reported in Chapter 4 and

Chapter 5, in this study, we assess the utility of saliency map techniques through a

task of lower complexity, in which saliency maps are presented alongside the task image.

Reflecting on our research questions we raised earlier, we can summarise the key findings

of this study as follows:

• All evaluated saliency map techniques proved to help in the task of predicting

the CNN classification outcome of an image. However, even after simplifying the

task by presenting the corresponding saliency maps of the task images, overall

participants’ performance remained low (average score was around 0.3).
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• For the task of predicting the CNN classification outcome of adversarial images,

all techniques helped as well except sem-occl.

• The saliency map techniques we examined do not appear to help in quantifying

the significance of individual parts (semantics) in an image nor to estimate how

the classification score would change if a part would not be present in the image.

• Results of the study show that different saliency map explanation techniques offer

different information gains (R5).

Results also suggest that techniques based on some form of occlusion could be promising,

as such techniques have the characteristics of being model-agnostic and more truthful

than gradient-based techniques. They do, however, have some limitations. For example,

although sem-occl was designed to highlight features that are meaningful to people, such

visualisation represents a simplified and incomplete explanation because other patterns

that are not necessarily connected to the object (e.g. the context) may also contribute

to image classification. Finally, because the results highlight that different saliency map

generation techniques provide varied levels of value, selecting a saliency map technique

should be in light of the intended task.



Chapter 7

General Discussion and

Conclusions

This chapter provides a summary of the thesis, and a general discussion of the reported

studies and how they are related, as well as future research directions.

7.1 Summary and Key Findings

In Chapter 1 and Chapter 2, we discussed that while ”data-driven” ML systems have

grown common and successful in a wide range of disciplines, many of these algorithms are

currently opaque boxes. We pointed out how previous research has suggested that ex-

planation techniques can help detect unexpected behaviour and build appropriate trust

in the system. Despite the fact that various explanation techniques have been developed

and analytically examined, we highlight that only a limited number of user studies have

been carried out to determine their utility to users. Based on this premise, we men-

tioned that the main objective of this thesis is to investigate the role of explanations in

informing end-users. We demonstrated that evaluating complex systems is challenging,

where there is a need to strike a balance between multiple factors, which include the

number of participants, the duration of the study, and the variation of experimental fac-

tors. As a result, we decided to specify a defined scope in which we would try to focus

on specific types of users, datasets, models, explanation techniques, and the evaluation

measure choice. We came to the conclusion that analysing explanation techniques in

these contexts would provide useful design guidelines for explanation techniques.

In Chapter 3, we examined the role of visual feedback in informing user understanding

in the context of pattern recognition systems. Through the application of creating a

stop-motion animation, we designed and conducted a between-groups study with four

conditions with the aim of seeing if visual feedback obtained from various stages of the

113
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processing pipeline can assist a user in a task of automatic alignment of frames that

results in a stop-motion animation. Our findings show that Keypoint markers can help

users in building better functional understanding, so long as the meaning being conveyed

is inline with user expectations (R1). In particular, participants who received Keypoint

markers derived from later stages (higher levels) of the processing pipeline demonstrated

an improved understanding of the system operation compared to explanations derived

from an early stage (lower level) of the pipeline (R2). A main implication from the

study was that when designing an explanation for users who are not experts in AI, we

should seek an explanation that provides a ”functional understanding” of the system

and how it will be utilised rather than an explanation that focuses on the system’s inner

workings.

In Chapter 4, we discussed how CNNs became the preferred algorithm for computer vi-

sion applications, then explained their main limitations and how explanation techniques

are required. We also explained why we chose saliency maps to investigate. We then

begin by conducting an online study investigating the role of saliency maps in informing

technical users. In particular, the following research question was defined:

(R3): How do saliency maps help with building functional understanding,

including the relation to varied system confidence?.

To examine users’ functional understanding, participants were asked to estimate the

CNN outcome on task images, with 12 examples (each with a similar score) shown to help

them make a decision. Our data highlighted a number of key findings which includes:

(1) There was no significant difference between conditions in terms of correct guessing of

whether images would be correctly or incorrectly classified. (2) Across conditions, higher

scores seem to be easier to predict than lower scores, and saliency maps do not appear

to aid in this regard. (3) When images with low CNN scores were sampled, features

were mentioned a lot less frequently by our participants suggesting that the utility

of saliency maps varies according to the classification score. (4) Participants applied

different strategies to reason about the provided examples trying to find patterns about

the system’s behaviour, highlighting the limitation of saliency maps being defined on

individual points. (5) we report on some instances in which despite having access to

the saliency maps some participants expected the system to understand human high-

level concepts, where in reality, CNN learns patterns in a bottom-top hierarchy fashion

in which meaningful patterns that look like what we humans refer to as ”semantics”

may emerge in the deep layers of the network, but that is not guaranteed. (6) Finally,

a main theme that emerged from the study was the mentioning of features across all

conditions. Findings showed that for correct answers, saliency map participants often

rely on features that can be highlighted by the saliency map (i.e. Saliency-Features),

while participants in the no-saliency map condition do not.
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Building on the findings of the previous study, Chapter 5 focuses on features by dis-

playing examples and task images that share similar patterns, utilising the power of

CNN-embeddings. We specifically seek to understand the kind of features users attend

to by asking them to explicitly list the features they think the system is sensitive to. In

particular, the following research question was defined:

(R4): What features do lay users attend to in order to build a functional

understanding of computer vision processes?.

Results showed that presenting saliency maps seem to prime our participants to attend

to features that can be highlighted by saliency maps and give less attention to other

attributes (e.g. colour, contrast) that may also influence the CNN outcome but cannot

be directly highlighted by the saliency map. Generally, our data indicates that lay users

have a tendency to interpret explanations as an outcome rather than a progress of an in-

termediary stage. Moreover, in this study, participants were significantly more accurate

in predicting the outcome of the classifier when saliency maps were shown, nonetheless,

the total success rate remained low (R3). In an attempt to explain this moderate out-

come, we discussed a number of factors that may have contributed to it, which includes

the tasks’ complexity, which required participants to learn complex patterns from a few

samples and then apply this knowledge to a new task image, had overshadowed what the

saliency map truly offered. Although we discovered an improvement over the previous

study’s results, the task’s complexity may still remain.

Therefore, to limit possible confounds that may emerge as a consequence of the com-

plexity of the study design which involves a variety of factors, in Chapter 6, we devised a

task that, unlike earlier studies, assesses what the different explanation techniques com-

municate to users by presenting them alongside the task image. Moreover, informed by

the results of our previous studies which indicate that when saliency maps were present,

participants mentioned Saliency-Features more often. we designed and evaluated two

new saliency map techniques that focus on features that are meaningful to people. Given

the new task, we raised the following research question:

(R5): How do different saliency map generation techniques perform to build

functional understanding?.

Results showed that (1) all evaluated saliency map techniques proved to help in the task

of predicting the CNN classification outcome of an image. However, even after simpli-

fying the task by presenting the corresponding saliency maps of the task images, overall

participants’ performance remained low. (2) For the task of predicting the CNN clas-

sification outcome of adversarial images, all techniques helped as well except sem-occl.

(3) The saliency map techniques we examined do not appear to help in quantifying the

significance of individual parts (semantics) in an image nor to estimate how the classi-

fication score would change if a part would not be present in the image. (4) findings

indicate that techniques appear to perform differently across tasks. As a result, the
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saliency map technique should be guided by the intended task. (5) techniques based

on occlusion performed better overall, especially when images were adversarial. Basic

forms of these occlusion techniques, on the other hand, are known to be computation-

ally inefficient, providing a clear possibility for optimisations, especially given recent

developments in CNN-based segmentation algorithms.

Table 7.1 summarises the contributions made by this thesis.

7.2 Design Implications

In this section, we will summarise several design implications that have been highlighted

throughout this thesis.

Chapter 3 Design Implications

• When designing an explanation for users who are not experts in AI, we should seek

an explanation that provides a ”functional understanding” of the system and how

it will be utilised rather than an explanation that focuses on the system’s inner

workings.

• Choosing the stage of processing from which feedback is derived is important in

users’ ability to construct coherent understandings of a system’s operation.

• Misunderstanding a feedback could result in a worse functional performance than

received no feedback at all.

Chapter 4 and 5 Design Implications

• Saliency maps should be complemented by global descriptors such as overall con-

trast, brightness, and histograms to constrain the locality effect.

• Human expectation can give emphasis on some factors that are not the main cause

of a model’s failure, which highlight the importance of developing explanations that

convey the right expectation to users.

• Further research needs to be conducted to better characterise the effect of different

sampling strategies on users interpretation of the system operation.

• Further studies could be conducted to measure whether the inclusion of saliency

maps in the UI changes users behaviour.
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Contribution Chapter

Conducted an investigation of how feedback from differ-
ent stages of the processing pipeline helps users build
a functional understanding of the computer vision pro-
cesses. Our findings indicate that participants who re-
ceived keypoint markers derived from later stages (higher
levels) of the processing pipeline demonstrated an im-
proved understanding of the system operation compared
to explanations derived from an early stage (lower level)
of the pipeline.

Chapter 3

Examined the role of saliency maps in informing end users
through three user studies. The thesis provided a num-
ber of key findings. For example, saliency maps could
help participants predict the outcome of the model, but
overall, the success rates were relatively low.

Chapter 4, 5, 6

Conducted a study to investigate the features lay users
attend to in order to build a functional understand-
ing of computer vision processes. Our findings indi-
cate that saliency maps appear to prime participants to
primarily focus on what saliency maps highlight (which
we called Saliency-Features), but potentially distracting
them from other attributes such as colour and contrast,
which saliency maps cannot highlight.

Chapter 5

Compared between different saliency map generation
techniques in terms of their impact on building functional
understanding. The utility of different saliency map ap-
proaches appears to vary depending on the task at hand.

Chapter 6

Presented methodological contribution in the form of how
to design user studies for evaluating explanation tech-
niques.

all studies chapters

Highlighted a number of implications for the design of
explanation techniques and further research in that area.

all studies chapters

Investigated several methods for selecting and displaying
example images to users, one of which was influenced by
the results of our first saliency map study.

Chapter 4, 5

Developed, implemented and evaluated two novel
occlusion-based saliency map techniques: ”semantic oc-
clusion” (sem-occl) and ”multi-scale occlusion” (m-scale-
occl).

Chapter 6

Developed a number of helpful tools to aid in testing and
understanding on how to design our studies.

Chapter 6, Appendix A

Table 7.1: A summary of the contributions made by this thesis
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Chapter 5 Design Implications

• Choosing representative examples with their corresponding saliency maps, which

summarise the behaviour of the system well, is an under-explored topic.

• Need to develop explanation algorithms that bridge the gap between humans and

machines by leading the user to understand that the system is not basing its

classification decision on higher- level ‘semantics’ of the image.

• The utility of saliency maps for low score images is negligible suggesting that new

techniques which provides counter-factual evidence is needed.

• Transferring knowledge about potential features to new images, where they are

presented in different orientations, scales, forms and perspectives, is very challeng-

ing. Therefore, saliency maps should be complemented by a global measure that

explains how sensitive the presence of a feature is to the prediction of some class.

Chapter 6 Design Implications

• Because different saliency map explanation techniques offer different information

gains, selecting a saliency map technique should be in light of the intended task.

• Occlusion-based techniques performed better, especially when images are adver-

sarial. Design implications include the need for further improvements to such

techniques, especially given recent developments in DNN-based segmentation al-

gorithms which can automate the generation of sem-occl saliency maps.

• Highlighted regions in some saliency maps techniques could be misleading as they

might give the wrong impression that covering these regions would result in a lower

prediction score.

7.3 Discussion

7.3.1 Seeking a functional understanding of the system

Findings from all the studies in the thesis indicate the importance of deriving an expla-

nation that is inline with the user’s expectations. In the following paragraphs, we shall

reflect on some aspects that are related to this notion.

The first is related to how explanations are generated. When we reflect on some of

the AI algorithms, we may notice that some of their aspects can be easily mapped to

visual representations. For example, keypoint markers (Chapter 3) are often naturally

represented as dot visualisation over-laying an image. Similarly, a saliency map is a
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simple and natural map of the network’s neuron activations to a visual representation

that overlays the image (Chapter 4, 5, 6). The simplicity and readiness of these repre-

sentations provoke a tendency to use them for explanation. However, we must ensure

that such a representation is truly in line with what a user would expect.

”Key point markers”, for example, may provide an accurate representation of one stage

of the processing pipeline, but our results indicate that participants related them to

the outcome of the algorithm (i.e. indicated regions where the stabilisation process

had identified matches), while in reality they are obtained from an early stage of the

processing pipeline. Therefore, we argue that when designing an explanation that targets

end users, we should distance the user from understanding the internal states of the

algorithm, and instead consider the end result of the system and how it will be used.

This finding is also inline with Kulesza et al. (2013) work, in which they showed that

completeness (i.e., to what extent the feedback describes all of the underlying processes

of the system) is more significant than soundness (the accuracy with which the feedback

accurately reflects the underlying process of the system). In our context, ”key point

markers” may provide a sound but incomplete representation, as it explains only one

stage of the processing pipeline.

The situation for saliency maps is different. Saliency maps tend to highlight all pat-

terns that contribute to the final outcome (because they are designed to summarise the

contribution of all neurons in the network), but they are still incomplete because they

are defined on individual instances.So, a complete functional understanding is hard to

achieve without observing many representative examples, a topic that will be discussed

in more detail in Section 7.3.3 below.

When it comes to assessing the soundness of saliency map techniques, we should remind

ourselves that saliency maps represent a separate (though related) process from how

CNN analyses data, and this separate process is not guaranteed to be accurate. In

Chapter 6, we showed that some saliency map techniques are not truthful (e.g. guided-

backprob), in the sense that the generated saliency map for an image and its adversarial

version look almost identical, even though the CNN outcome is very different between the

two. Results of the study showed that such similar visualisation of the two versions led

participants to a worse performance in that sub-task. In addition, the locality aspect

of saliency maps adds another degree of complexity and potentially confusion, where

locality in this context refers to the fact that changing a few pixels in the input image

can result in a significantly different saliency map. (Lipton, 2018; Ghorbani et al., 2019)

In addition to the soundness and completeness factors, another dimension to consider is

understanding what patterns are required by a model to classify an image. For example,

the saliency map visualisation highlights what supports the prediction of a class (e.g.

cat). This may include, for example, the eyes and the nose of the cat, however, this

visualisation does not tell us whether the presence of all (i.e. eyes and nose) or just

some of the patterns is required by the model. In Chapter 6, we studied this point and
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discovered that, for some task images, covering some of the highlighted regions (e.g. eyes

of the cat) had no effect on the classification outcome. Participants who were exposed

to various saliency map generation techniques, however, predicted that the score would

drop if this particular ”highlighted” part was covered.

7.3.2 Do explanations contribute to an overestimation of the system’s

capabilities?

Across the different studies, we reported instances in which explanation may have con-

tributed to participants over-estimating what the system is actually doing. For example,

in Chapter 3, participants in the Keypoints condition tended to overestimate the mean-

ing of the key feedback and associate it with higher level concepts such as the separation

of background and foreground objects.

With heatmeaps, although this technique represents an approximate representation of

the output of the algorithm as it summarises the neuron activations across the whole

network, there were also instances of over-estimation. For example, in CNN, the learning

process has an iterative nature, in which the system slowly updates its parameters to

reach the optimum model. This learning process has a bottom-top hierarchy in which

several works showed (through saliency maps) that a meaningful patterns that look like

what we humans refer to as ”semantics” may emerge in the network’s deep layers. We

reported in Chapter 4 cases in which some participants expected the system to have a

global label of an object (e.g. animal), and saliency maps may have contributed to this

understanding. We conclude that proposing techniques that attempt to bridge the gap

between concepts defined by users and how these concepts are represented by the model

is important.

In Chapter 6, we introduced sem-occl as an attempt to achieve this goal. However, as

we discussed before, this representation has some limitations. First, it may contribute

more towards this inaccurate understanding that the system has a global label for an

object. Second, it may allude to the understanding that CNN processes parts or features

independently, where in fact the learning process of CNN is more complex and can be

non-linear (e.g. there might be an interaction effect between multiple features). Finally,

this technique does not highlight other patterns that are not part of the object, which

can also contribute to image classification.

7.3.3 Limitations of instance-level explanations

Some explanation techniques are defined on individual data points rather than on a

global scale. This fact suggests that such explanations are incomplete and may lead

users to an inaccurate understanding of the model if the displayed saliency maps are not
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representative instances. In fact, building a coherent understanding of the underlying

model by examining these individual instances can exceed users’ cognitive load. As a

result, previous work argued that it is critical to select and display representative data

points or to find ways to summarise these individual instances. However, when it comes

to dealing with images, we found the situation to be more complex; creating a suitable

aggregate representation of data types such as images is not obviously clear.

To mitigate the impact of this limitation, previous work (Miller, 2019a) suggested to

apply the contrasting strategy in which two examples with different outcome displayed.

Our results complement the suggested strategy in most cases, but also report the con-

trary in others. In particular, in Chapter 3: we report on instances in which the user’s

understanding has been improved by looking at contrasting cases. However, we also

witnessed cases where participants failed to correct their misunderstanding despite wit-

nessing evidence to the contrary; a behaviour pattern previously reported in work on

intelligent system Tullio et al. (2007).

Qualitative data reported in Chapter 4 revealed that participants use examples and

employ various types of reasoning to explain why a specific image would be recognised

or not recognised by the model. Examples of such reasoning include the reference to a

general similarity to a specific example, or group of examples. or even to some general

aspect such as ”image brightness”. In addition, multiple comments justify their choice

by referencing similar TPs or FNs or specific features of those outcomes.

In Chapter 5, we attempt to improve the way of selecting examples to show images that

are visually similar to the ”task image” (i.e. using CNN embeddings). Previous work

showed that embeddings may include a high-level representation of what people refer to

as semantics. However, even with these attempts, the task seems to exceed the user’s

capacity to build a global understanding of a model that has learnt complex patterns in

which objects are often displayed in different orientations, scales, forms and perspectives.

Finally, for instance-level explanations, we would also like to emphasise the importance

of studying how many images to show so that participants can learn from multiple

instances. In our studies that examine saliency maps, one challenge was to display an

adequate number of examples with the aim of being informative but not overwhelming.

Although previous works (please see Section 2.5) have investigated multiple aspects in

that area, we believe there is still room for contribution.

7.3.4 Explaining challenging cases

One strategy we used in our studies to inform participants about the system’s behaviour

was to display instances where the system is likely to succeed and other instances where

it is not. The role of explanation in these distinctive cases is to highlight the reasons

for possible successes and failures. Recall for keypoint-markers, tasks were designed to
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expose participants to “feature rich” backgrounds, where the algorithm is likely to work,

and “feature poor” backgrounds, where the algorithm is likely to fail in the stabilisation

process. Keypoint-markers appear to be useful in some cases, particularly when they

are obtained from a later stage of the processing pipeline (i.e. Matching-Keypoints

condition) as opposed to earlier stages (i.e. Keypoints condition). We applied a similar

strategy with saliency maps displaying contrasting examples (i.e. TPs, FNs and FPs).

However, for both explanations (keypoints and saliency maps), the absence of evidence

was the only indicator that a system had failed to function with an instance (e.g. no

enough keypoints in the image, or no highlighted pixels for saliency maps). A more

helpful explanation would be to explain why the evidence is missing. For example, to

inform a user about the behaviour of a keypoint matching algorithm, a more helpful

explanation should indicate that distinctive shapes and features are required for the

algorithm to perform the task.

7.4 Future Work

The investigations described in this thesis identified a number of potential areas for

future research. In this section, we highlight some limitations and potential possibilities

for further research. Because the design space for the studies we presented is vast, we

made some design decisions that represent both a limitation and potential avenues for

future work.

The first limitation is the small number of image classes we considered. We decided for

this compromise considering the limited time for each session, and the limited knowledge

participants would have been able to obtain about class-specific behaviour. Future

work should run a long-term evaluation (i.e. lasting several days or weeks) to allow

participants to explore a large dataset with multiple classes in more depth. In addition,

it would be valuable to run field studies with participants who can apply these models

in real world applications. As mentioned previously, lab studies are faster, cheaper, and

more regulated than field studies. In field studies, on the other hand, participants can

be exposed to saliency maps in more realistic settings. However, evaluating saliency

maps in field studies requires controlled and well-motivated experimental tasks.

Another limitation of our design is the usage of one specific network architecture (VGG16

(Simonyan and Zisserman, 2014)) and one specific technique to generate saliency maps

for the first two studies (LRP (Bach et al., 2015b)). Through a series of pilot studies,

we have tried to explore other techniques that provide saliency maps that participants

found to be informative. However, this also means that results might change with a

different combination of techniques. Moreover, our participants were required to have a

technical background, whereas in our studies, we did not control for ML expertise. We
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see a potential opportunity to repeat our studies with different participant populations,

such as ML-experts or lay users.

For the first two saliency map evaluation studies, we considered the user’s ability to

predict the outcome of a ML classifier as a measure to assess how transparent or ex-

plainable a system is. This measure has been proposed and utilised in other studies

(Lipton, 2018; Muramatsu and Pratt, 2001; Poursabzi-Sangdeh et al., 2018). However,

there are potential avenues to discover the value of saliency maps from varied angles. Fig-

ure 2.8 shows a number of alternative measures that could be used to evaluate saliency

maps. For example, as we mentioned in our studies, generally, when saliency maps

were present, participants referenced Saliency-Features more often. A possible research

question would be to investigate whether participants who receive the saliency maps

are better at providing specific suggestions (informed by the highlighted features) on

ways to improve the model accuracy. This implication aligns with the argument that

Lipton (2018) put forward by mentioning informativeness as one of the desiderata of

interpretability research. He suggested that although the outcome of the model is the

obvious way of conveying information to people, other intermediate aspects might also

convey useful information.

Training ML models on specific datasets may not necessarily result in good generalisa-

tion. When the system is deployed in the field, new captured instances could come from

a different probability distribution. For example, Nguyen et al. (2015), showed how to

easily deceive a state-of-the-art CNN by feeding it images with certain patterns that a

model responds to. These images can be easily verified ”visually” by people, and yet the

model incorrectly classifies the image with very high confidence. In less obvious cases,

the problem becomes more challenging. For example, our results in Chapter 6 showed

that different generation techniques provide different utility in helping participants pre-

dict the CNN classification outcome of adversarial images. However, adversarial attacks

and biases can take different forms, highlighting an opportunity for future work in that

area.

With current advancements in computational capabilities, there are opportunities to

introduce an interactive element to such systems. By so doing, this may perhaps help in

situations which require a substantial cognitive load and in other situations where the

user would have the ability to ask questions such as ”what if” instead of just observing the

output of a static model. This argument is also supported by (Abdul et al., 2018b), where

they point out that explanation techniques reported in the explainable AI literature are

mainly static. They argue that interaction would be a promising direction to explore

and derive insights from complex models. In Appendix A, a number of interactive tools

have been developed to explore and understand image datasets.

Saliency maps generated from images with low scores do not appear to be useful. Our

findings show that saliency maps can emphasise what supports the prediction of a class,
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but they cannot explain what is missing in the image. For example, if the ”eyes” are the

only component of the cat that contributes to the prediction, saliency maps will typically

highlight the ”eyes” as evidence. Saliency maps, on the other hand, will highlight nothing

if the ”eyes” are covered. In other words, saliency maps do not show which patterns

are missing in the image so that the model can recognise them. CNN is well-known

for its ability to acquire complicated and abstract visual concepts in its deep layers

(Chollet, 2017). Inspecting several channels in a deep layer reveals that the network

learns concepts such as ”eyes” and ”legs.” where these concepts are typically learnt

through multiple channels. One possible direction for future research is to investigate

the possibility of utilising this special property of CNN by identifying the existence of

a specific concept (e.g., nose), then feeding this information back to the user as an

explanation.

Finally, future work should assess the effect of saliency maps in terms of trust, or measure

whether the inclusion of saliency maps in the UI changes users’ behaviour, along the

lines of what (Verame et al., 2016) evaluated for confidence information.

7.5 Conclusion

This thesis reports on a series of user studies which evaluate the role of explanation in

informing end-user understanding of complex system decisions. Building on prior work,

the thesis highlights the importance of explaining complex system decisions and under-

lines the need to evaluate the proposed explanation techniques through user studies.

Two explanation techniques were evaluated. The first is keypoint markers, which are

often derived from a keypoint matching algorithm. Our results indicate that they can be

more informative to users when obtained from the later stages of the processing pipeline,

as this is more inline with user expectations.

The second is saliency maps produced to explain the decisions of Convolutional Neural

Networks (CNNs). Our results indicate that the presence of saliency maps helps partic-

ipants predict the outcome of the model, but overall, the success rate is relatively low.

Through a combination of quantitative and qualitative methods, our data highlights a

number of key findings that may explain this moderate outcome. Our data shows that:

• saliency maps might prime users to consider features that can be highlighted by

the saliency map (Saliency-Features) and give less weight to other attributes such

as colour and contrast.

• when images with low CNN scores were sampled, features were mentioned a lot

less frequently than when images were sampled with a high CNN score, suggesting

that the utility of saliency maps varies according to the classification score.
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• participants applied different strategies to reason about the provided examples

and build a pattern about the system’s behaviour, highlighting the limitation of

saliency maps being defined on individual points.

• some saliency map generation techniques do not seem to help in predicting the

CNN score of adversarial images.

• saliency maps can be misleading in that the highlighted regions do not always

indicate that covering these regions would result in a lower prediction score.

Overall, we argue that reaching a solid understanding of how the CNN model classifies

images is not possible with the sole use of instance-level based explanations (of which

saliency maps are an example). Even with very informative examples, saliency maps

can only highlight the importance of features that are localisable to pixel-regions. We

suggest using saliency maps in conjunction with other more global explanation methods.

Furthermore, we view saliency map sampling strategies (i.e. what instances to display to

users) as a promising direction for future research. Finally, while developing or deploying

an explanation for non-expert users, we would want to emphasise the importance of

looking for an explanation that offers a ”functional understanding” of the system and

how it will be used rather than one that concentrates on the underlying algorithm. We

hope that the work presented in this thesis will promote discussions and future research

on interaction with complex systems, as well as draw attention to the importance of

creating and evaluating new explanation techniques centred around human needs.





Appendix A

Tools

We have developed a number of tools to aid in testing and understanding on how to

design our studies. In this appendix chapter, we introduce each tool briefly and show a

screenshot of how it looks and how it may be used.

A.1 The browser

This is a helpful tool to navigate a dataset based on multiple aspects such as the category

and the classification outcome. Figure A.1 shows a screenshot of the interface. In (1),

the user can filter images by category (e.g. horse, dog). In (2), a subset of images can

be displayed based on whether the image is considered as TP, FN or FP. The user can

Figure A.1: The browser: a tool to navigate the dataset
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Retrieved images: most similar images and how they are 
classified by the model (i.e. TP, FN, FP or TN)

Query image and its explanation

Images can be retrieved 
based on multiple criteria: 
embeddings, colour, size ..etc

Figure A.2: Similarity tool: to retrieve similar images based on multiple criteria

scroll up and down to select an image (3). Once an image is selected, it will be displayed

in (4). At the same time, a heatmap explanation will be shown in (5) and a bar chart

representing the probability scores for each category will be presented in (6) along with

the ground truth of this particular image. The bar chart is interactive; by clicking on

any of the bars in the chart, users can display the heatmap for the corresponding class.

In addition to these functions, the tool allow the user to explore how different models

classify certain image, along with the corresponding heatmap explanation.

A.2 Similarity tool

In Chapter 4 and Chapter 5, we displayed few examples that are related to the task image

based on some criterion. To help us inspect and explore the different selection options,

we developed this tool which allow a user to retrieve instances based on multiple options,

which includes different embeddings extracted from different layers of the network. We

also include the option to retrieve examples based on other aspects such as the dominant

colour and size of the main object. Figure A.2 shows a screenshot of the tool.
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Possible study: 
•  

Usefulness: 
• Gives a global scope.

Each circle represents an image in the  
dataset. As you go up, images are more 
sensitive to covering the leg (i.e. score will 
dcrease) such as this example.

Green circles: TP

Red circles: FN

Figure A.3: The interactive scatter plots tool

A.3 Scatter plots tool

In Chapter 6, we had to find a convenient way to explore the effect of covering different

part of the object on the classification score. For that reason, we created an interactive

scatter plot (Figure A.3 in which a user can explore the relationships between different

attributes. For example, what is the relationship between the classification score and the

size of the object. The tool offer multiple options to explore including the size, colour,

image brightness and the sensitivity index to covering a part of the object (e.g. the eyes

of a cat).





Appendix B

Study Tutorials

B.1 Chapter 3 tutorial

 

Please turn 

INSTRUCTIONS 
Hello and thank you for participating in this study. 
 
In this experiment you will be asked to create 4 short Stop-motion 
animations. 
 
A stop-motion animation is an animation created from a sequence of still 
photos, like the following:  
 

    

Picture 1 Picture 2 Picture 3 Picture 4 

 
When the photos are played back in order, the skateboarders will appear to 
move on his own. 
 
To make a stop-motion animation you need to: 
 

1. Take a photo. 
2. Move the object you are animating by a small amount. 
3. Then go to step 1 - Repeating until the animation is complete. 

 
 

Figure B.1: Chapter 3 instructions - page 1
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Please turn 

 

Usually stop-motion animations require the 
camera to be fixed to a tripod so that it stays 
perfectly still between photos. 
 
We are testing an experimental application 
that allows stop-motion animations to be 
created without a tripod (e.g. when a tripod is 
not available). 

 

The problem with making a stop-motion 
animations without a tripod is that the camera 
may move between photos.  
 
The application you will be using today tries to 
stabilise the animation by reshaping all the 
images so they look as if they have been 
taken from the same position.  
 

It does this by looking for things in each picture which are not supposed to 
have moved, for example the background. 

 

WHEN YOU TAKE A PHOTO 
As with most camera apps you will be shown a preview while you position 
the camera for the photo. In the app you are testing today this preview will 
show some orange dots called “keypoints”.  

Figure B.2: Chapter 3 instructions - page 2
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Please turn 

 
 
These keypoints represent pixels which the app finds to be distinctive - 
please note that what is distinctive to the app may be different from what is 
distinctive to the human eye.  
 
For the app to work well: 

● keypoints should appear on the background, and 
● they should be spread evenly, rather than concentrated on a small 

area 
 
Note: Keypoints on a moving object (e.g. the character) don't help. 
 
Note  
The application we are testing is not yet perfect, so you may need to "work 
around it" to get good results. If a photo looks wrong after the app has 
processed it, then please delete it and try again. If this happens repeatedly 
or there is a technical issue, then please let the investigator know. We are 
testing the app and not you. 
 
Any Questions?  
Please ask the investigator now. 
 
Ready? 
Please tell the investigator. 

Figure B.3: Chapter 3 instructions - page 3 for the keypoints condition. Similar
instructions are provided for other conditions
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B.2 Chapter 4 tutorial

Figure B.4: Chapter 4 tutorial - page 1,2
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Figure B.5: Chapter 4 tutorial - page 3,4
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Figure B.6: Chapter 4 tutorial - page 5,6
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Figure B.7: Chapter 4 tutorial - page 7,8
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B.3 Chapter 5 tutorial

Figure B.8: Chapter 5 tutorial - page 1,2
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Figure B.9: Chapter 5 tutorial - page 3,4
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Figure B.10: Chapter 5 tutorial - page 5,6
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Figure B.11: Chapter 5 tutorial - page 7,8
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B.4 Chapter 6 tutorial

Figure B.12: Chapter 6 tutorial - page 1,2
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Figure B.13: Chapter 6 tutorial - page 3,4





Appendix C

Forms

Figure C.1: Participant Information sheet
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Figure C.2: Informed Consent Form



References

A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli. Trends and Trajecto-

ries for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda.

In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,

CHI ’18, pages 582:1–582:18. ACM, 2018a.

A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli. Trends and trajec-

tories for explainable, accountable and intelligible systems: An hci research agenda.

In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,

CHI ’18, pages 582:1–582:18, New York, NY, USA, 2018b. ACM.

A. Adadi and M. Berrada. Peeking Inside the Black-Box: A Survey on Explainable

Artificial Intelligence (XAI). IEEE Access, 6:52138–52160, 2018.

J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim. Sanity checks

for saliency maps. In Proceedings of the 32nd International Conference on Neural

Information Processing Systems, NIPS’18, page 9525–9536, Red Hook, NY, USA,

2018. Curran Associates Inc.

J. Adebayo, M. Muelly, I. Liccardi, and B. Kim. Debugging tests for model explanations.

arXiv preprint arXiv:2011.05429, 2020.

A. T. Alan, E. Costanza, S. D. Ramchurn, J. Fischer, T. Rodden, and N. R. Jennings.

Tariff Agent: Interacting with a Future Smart Energy System at Home. ACM Trans.

Comput.-Hum. Interact., 23(4):25:1–25:28, August 2016.

D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, D. Tse,

M. Etemadi, W. Ye, G. Corrado, D. P. Naidich, and S. Shetty. End-to-end lung

cancer screening with three-dimensional deep learning on low-dose chest computed

tomography. Nature Medicine, 25(6):954, June 2019.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On

pixel-wise explanations for non-linear classifier decisions by layer-wise relevance prop-

agation. PloS one, 10(7):e0130140, 2015a.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On

Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance

Propagation. PLOS ONE, 10(7):e0130140, July 2015b.

147

http://doi.acm.org/10.1145/3173574.3174156
http://doi.acm.org/10.1145/3173574.3174156


148 REFERENCES

D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Müller.

How to explain individual classification decisions. The Journal of Machine Learning

Research, 11:1803–1831, 2010.

C. M. Bishop. Pattern recognition and machine learning. Information science and

statistics. Springer, New York, NY, 2006.

V. Braun and V. Clarke. Using thematic analysis in psychology. Qualitative research in

psychology, 3(2):77–101, 2006.

L. Breiman et al. Statistical modeling: The two cultures (with comments and a rejoinder

by the author). Statistical science, 16(3):199–231, 2001.

A. Bussone, S. Stumpf, and D. O’Sullivan. The role of explanations on trust and reliance

in clinical decision support systems. In 2015 International Conference on Healthcare

Informatics, pages 160–169, Oct 2015.

C. J. Cai, J. Jongejan, and J. Holbrook. The Effects of Example-based Explanations

in a Machine Learning Interface. In Proceedings of the 24th International Conference

on Intelligent User Interfaces, IUI ’19, pages 258–262, New York, NY, USA, 2019a.

ACM.

C. J. Cai, E. Reif, N. Hegde, J. Hipp, B. Kim, D. Smilkov, M. Wattenberg, F. Viegas,

G. S. Corrado, M. C. Stumpe, and M. Terry. Human-Centered Tools for Coping with

Imperfect Algorithms During Medical Decision-Making. In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 4:1–4:14,

New York, NY, USA, 2019b. ACM.

A. Campolo, M. Sanfilippo, M. Whittaker, and K. Crawford. AI Now 2017 Report.

Microsoft Research, February 2018.

R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad. Intelligible

models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 1721–1730. ACM, 2015.

C.-H. Chang, E. Creager, A. Goldenberg, and D. Duvenaud. Explaining image classifiers

by counterfactual generation. arXiv preprint arXiv:1807.08024, 2018.

S. Chen, X. Huang, Z. He, and C. Sun. Damagenet: A universal adversarial dataset.

arXiv preprint arXiv:1912.07160, 2019.

X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect what you

can: Detecting and representing objects using holistic models and body parts. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

1971–1978, 2014.



REFERENCES 149

F. Chollet. Deep learning with Python. Simon and Schuster, 2017.

M. Chromik and M. Schuessler. A taxonomy for human subject evaluation of black-box

explanations in xai. In ExSS-ATEC@ IUI, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei. ImageNet: A large-

scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, Miami, FL, June 2009. IEEE.

A. Dix. Human Issues in the Use of Pattern Recognition Techniques, page 429–451. Ellis

Horwood, USA, 1992.

F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning.

arXiv preprint arXiv:1702.08608, 2017a.

F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning.

2017b.

M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and H. P. Beck. The

role of trust in automation reliance. Int. J. Hum.-Comput. Stud., 58(6):697–718, June

2003.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes Challenge 2007 (VOC2007). 2007.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes Challenge 2012 (VOC2012). 2012.

J. Fails, D. Olsen, a. a, and b. b. A design tool for camera-based interaction. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’03, pages 449–456, New York, NY, USA, 2003. ACM.

L. Fei-Fei, A. Iyer, C. Koch, and P. Perona. What do we perceive in a glance of a

real-world scene? Journal of Vision, 7(1):10–10, January 2007.

A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. 33:

3681–3688, Jul. 2019.

A. Grossmann and J. Morlet. Decomposition of hardy functions into square integrable

wavelets of constant shape. SIAM journal on mathematical analysis, 15(4):723–736,

1984.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A

Survey of Methods for Explaining Black Box Models. ACM Comput. Surv., 51(5):

93:1–93:42, August 2018.

M. Hamidi-Haines, Z. Qi, A. Fern, F. Li, and P. Tadepalli. Interactive naming for

explaining deep neural networks: A formative study. arXiv preprint arXiv:1812.07150,

2018.

http://dx.doi.org/10.1016/S1071-5819(03)00038-7
http://dx.doi.org/10.1016/S1071-5819(03)00038-7
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://doi.acm.org/10.1145/642611.642690
https://doi.org/10.1167/7.1.10
https://doi.org/10.1167/7.1.10
https://ojs.aaai.org/index.php/AAAI/article/view/4252


150 REFERENCES

S.-H. Han, M.-S. Kwon, and H.-J. Choi. Explainable ai (xai) approach to image cap-

tioning. The Journal of Engineering, 2020(13):589–594, 2020.

R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman. Metrics for explainable ai:

Challenges and prospects. arXiv preprint arXiv:1812.04608, 2018.

D. Kahneman and S. Frederick. Representativeness revisited: Attribute substitution in

intuitive judgment. Heuristics and biases: The psychology of intuitive judgment, 49:

81, 2002.

M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. A cti v is: Visual exploration

of industry-scale deep neural network models. IEEE transactions on visualization and

computer graphics, 24(1):88–97, 2018.

J. Kato, S. McDirmid, and X. Cao. Dejavu: Integrated support for developing interactive

camera-based programs. In Proceedings of the 25th Annual ACM Symposium on User

Interface Software and Technology, UIST ’12, pages 189–196, New York, NY, USA,

2012. ACM.

B. Kim, R. Khanna, and O. O. Koyejo. Examples are not enough, learn to criticize!

criticism for interpretability. Advances in neural information processing systems, 29,

2016.

B. Kim, C. Rudin, and J. A. Shah. The bayesian case model: A generative approach

for case-based reasoning and prototype classification. In Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Infor-

mation Processing Systems 27, pages 1952–1960. Curran Associates, Inc., 2014.

B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, and R. Sayres. Inter-

pretability beyond feature attribution: Quantitative testing with concept activation

vectors (tcav). 2017.

P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan,
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