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Still round the corner there may wait

A new road or a secret gate;

And though I oft have passed them by,

A day will come at last when I

Shall take the hidden paths that run

West of the Moon, East of the Sun.

J.R.R. Tolkien, The Return of the King





ABSTRACT

Abstract

Be it nursing robots in Japan, self-driving buses in Germany or automated hiring systems
in the USA, complex artificial computing systems have become an indispensable part of
our everyday lives. Two major challenges arise from this development: machine ethics and
machine explainability. Machine ethics deals with behavioral constraints on systems to
ensure restricted, morally acceptable behavior; machine explainability affords the means to
satisfactorily explain the actions and decisions of systems so that human users can understand
these systems and, thus, be assured of their socially beneficial effects.

Machine ethics and explainability prove to be particularly efficient only in symbiosis. In
this context, this thesis will demonstrate how machine ethics requires machine explainability
and how machine explainability includes machine ethics. We develop these two facets using
examples from the scenarios above. Based on these examples, we argue for a specific view of
machine ethics and suggest how it can be formalized in a theoretical framework.

In terms of machine explainability, we will outline how our proposed framework, by using
an argumentation-based approach for decision making, can provide a foundation for machine
explanations. Beyond the framework, we will also clarify the notion of machine explainability
as a research area, charting its diverse and often confusing literature. To this end, we will
outline what, exactly, machine explainability research aims to accomplish.

Finally, we will use all these considerations as a starting point for developing evaluation
criteria for good explanations, such as comprehensibility, assessability, and fidelity. Evaluating
our framework using these criteria shows that it is a promising approach and augurs to
outperform many other explainability approaches that have been developed so far.
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Foreword

In this foreword I would like to briefly talk about two things. First, I would like to say a few
words about the origin of this work. After that I come to the acknowledgments.

The Genesis of This Thesis

This thesis partially builds upon several scientific works (i.e., papers and theses) to which I
have contributed (other authors depend on the work). Except for one work, all of these are
already published. All in all, the thesis builds, thus, upon scientific work conducted over a
period of nearly six years (starting from late 2017).

The works in question are as follows (in their chronological order):

• From Machine Ethics to Machine Explainability and Back. Published: [60]. Interna-

tional Symposium on Artificial Intelligence and Mathematics (ISAIM) 2018. Authors:
Kevin Baum, Holger Hermanns, and Timo Speith.

• Towards a Framework Combining Machine Ethics and Machine Explainability. Pub-
lished: [61]. Workshop on Formal Reasoning about Causation, Responsibility, and

Explanations in Science and Technology (CREST) 2018. Authors: Kevin Baum, Holger
Hermanns, and Timo Speith.

• From Machine Ethics to Machine Explainability and Back – Building up a Framework

of Machine Ethics. Withdrawn after getting a revise and resubmit in a special issue of
the Annals of Mathematics and Artificial Intelligence (AMAI) 2018. Authors: Kevin
Baum, Holger Hermanns, and Timo Speith.

• A Framework of Verifiable Machine Ethics and Machine Explainability. Published:
[446]. My master’s thesis at Saarland University, submitted in August 2018.

• What Do We Want From Explainable Artificial Intelligence (XAI)? – A Stakeholder

Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research.
Published: [294] © 2021 Elsevier. Artificial Intelligence, vol. 296 (2021). Authors:
Markus Langer, Daniel Oster, Timo Speith, Holger Hermanns, Lena Kästner, Eva
Schmidt, Andreas Sesing, and Kevin Baum.

• Exploring Explainability: A Definition, a Model, and a Knowledge Catalogue. Pub-
lished: [105] © 2021 IEEE. 29th IEEE International Requirements Engineering Con-

ference (RE) 2021. Authors: Larissa Chazette, Wasja Brunotte, and Timo Speith.

• From Responsibility to Reason-Giving Explainable Artificial Intelligence. Published:
[63]. Philosophy & Technology, vol. 35, no. 1 (2022). Authors: Kevin Baum, Susanne
Mantel, Eva Schmidt, and Timo Speith.
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• How to Evaluate Explainability? – A Case for Three Criteria. Published: [448] © 2022
IEEE. 2nd International Workshop on Requirements Engineering for Explainable Sys-

tems (RE4ES), co-located with the 30th IEEE International Requirements Engineering

Conference (RE) 2022. Authors: Timo Speith.

The question that now arises is how these works have influenced this thesis. First, let me
comment on the relationship to my master’s thesis. Parts of this thesis are a significant revision
and extension of my master’s thesis. This can be seen most clearly in the second part of this
thesis. The idea for the framework, which is built there, already existed in my master’s thesis.
However, for this work, I have completely rewritten and simplified the formalizations.

My master’s thesis was not perfect. Accordingly, one goal of this work was to improve on
the mistakes of my master’s thesis. Another thing to note is that my master’s thesis was in
computer science, but this dissertation is in philosophy. Accordingly, I have tried to make the
parts that build on ideas from my master’s thesis more accessible to a philosophical audience.
Finally, the parts of this work in question are based on only a part of my master’s thesis, and a
large part of the ideas did not find their way into this work at all. Instead, I focused on better
embedding the framework, especially with the first part of this work.

Next, I would like to briefly address the influence of the above publications on this work.
Written portions or ideas that have been adopted are mostly mine. Even if I have based parts
of my work on ideas from these publications that were not originally mine, I have had to
significantly adapt these ideas to my argument (this also applies to the ideas that originally
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1. Introduction

Artificial computing systems1 permeate the world in which we live. These systems increasingly
infringe upon our lives, and we are rapidly becoming more and more dependent on their
functions. A vital question arises from this increasing interaction: How should we constrain
machines to behave in a morally acceptable way towards us humans? This question concerns
machine ethics—the search for formal, unambiguous, algorithmizable, and implementable
behavioral constraints on systems so as to compel them to exhibit morally acceptable behavior.

Medical-Care Robot #1

Robots working in hospitals to disinfect rooms or to assist in surgeries have become
more commonplace in recent years due to a shortage of care personnel. Over time,
medical care robots have intruded into even more sensitive and high-risk applications
such as psychological treatment, elder care, and independent resuscitation. If care work
is increasingly taken over by robots in the future, there will not only be a debate about
whether robotic care is technically feasible, but also morally desirable. [278, 411, 424]

Although some researchers believe that hard-wired ethical constraints on machine behavior
are a sufficient precondition for humans to reasonably develop trust in artificial systems, we
would like to discuss why this is not the case. Instead, we believe it necessary to complement
machine ethics with means by which we can ascertain whether the trust we place in such
systems is justified and whether they have other desirable properties. After expounding on
why this is important, we argue that there is at least one feasible supplement for machine
ethics to this end: machine explainability—the devising of means by which the actions and
decision-making processes of artificial systems can be explained.

Machine explainability thus contributes to machine ethics. This relationship also obtains
vice versa: machine ethics contributes to machine explainability, as machine explainability
can thrive particularly well with a moral system as the basis for generating explanations.
Embedded in a moral system, explanations can make reference to moral considerations, thus
providing an excellent starting point for calibrated trust (and other desirable properties).

1.1. Machine Ethics

Machine ethics is emerging as a serious area of research, with the first systematic works on it
being published recently (e.g., [22, 484]; see also [145] for a brief overview of techniques and
challenges). Overall, however, the precise subject of machine ethics is a matter of debate.

James H. Moor pointed out that the term “machine ethics” can be understood quite broadly.
According to him, the understanding ranges from the implementation of morally motivated
constraints on the behavior of complex and possibly autonomous artificial systems to the

1In what follows, we will often just speak of “artificial systems” as an abbreviation for “artificial computing
systems”. Furthermore, we will use the term “machine” as a synonym for “artificial computing system”.
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implementation of full-fledged moral capacities [346]. On the one hand, the first view is
already of great practical importance today because the moral influence exerted through
artificial systems, both directly and indirectly, is steadily increasing. On the other hand, the
latter view deals with scenarios that remain science fiction and involves discussions about
profound philosophical concepts of autonomy, deliberation, and free will.2

In this thesis, we will roughly follow the definition set out by Michael Anderson and
Susan Leigh Anderson, who understand machine ethics as “concerned with ensuring that the
behavior of machines toward human users, and perhaps other machines as well, is [morally]
acceptable.” [20, p. 15]. Additionally, we will primarily focus on the philosophical dimension
of machine ethics, although it is a multidisciplinary field of research [21, 47].

1.2. Machine Explainability

In general, research in machine explainability aims to provide means by which to make
various aspects of artificial systems understandable to different audiences [12, 62, 220, 237,
295]. Whether it is the visible behavior, the algorithm on which this behavior is based, or the
input required to produce a particular behavior, creating explanations of it is a typical goal
of machine explainability research. The superordinate goal of this research, however, is to
achieve other desirable properties such as fairness and trustworthiness of artificial systems.

Autonomous Vehicle #1

The functioning of regular cars is often not easy to understand. For example, the
software doping that surfaced in the VW diesel emissions scandals revealed plainly
that the behavior of complex systems can be extremely difficult—if not practically
impossible—for even experts to comprehend [57, 59, 129]. If such problems already
occur with normal cars, what will it be like with autonomous cars?

Especially in the context of artificial systems (which often promise positive societal impact),
black-box systems whose decisions, predictions, or behavior we cannot accurately explain
will not be trusted in the long run. Many applications of artificial systems—for instance, as
advisors to politicians and judges—presuppose more than opaque outputs such as numbers
(and especially probabilities), at least in the context of liberal democracies. These systems
must be auditable, and their results must be justifiable, at least in principle and on request.

Even on the premise that the deployment of some artificial systems is desirable from a
moral point of view (thanks to their overall effects), and even if these systems actually behaved
as morally well as is logically and conceptually possible (thanks to future advances in machine
ethics), as long as people cannot justifiably trust these systems and cannot access the reasons
for their decisions, the use of these systems is threatened even where it would be desirable,
and cannot be promoted with good conscience in many promising application areas.

2We will elaborate on ethics in Section 2.1, and we will further elaborate on these two views in Section 2.2.
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However, machine explainability still is a young field of research, and, in particular, formal
frameworks supporting machine explanations are scarce (see [121] for a simple one). In this
thesis, we want to take the first steps towards a method of performing ethically constrained
decision making—machine ethics—in a manner that, in itself, provides a foundation for
machine explainability. All in all, it can be summarized that machine ethics and machine
explainability should be deeply intertwined.

1.3. The Structure of This Thesis

Arguing for exactly such a deep connection between machine ethics and machine explain-
ability is the overarching goal of this thesis. However, there are also other goals that we will
explore. The thesis is hence split into four parts, the first three of which can be read mostly
independently. In addition to contributing to the overarching goal of this thesis, each part of it
has own subordinate goals.

The first part explores whether machine ethics is a worthwhile endeavor. In particular, we
will argue for one specific view of machine ethics: moral alignment. Additionally, we will
also explore in more detail the connection between machine ethics and machine explainability.
Finally, we will discuss what an implementation of machine ethics should look like.

In the second part, we formalize machine ethics in a framework that also enables machine
explainability. The framework is based on moral principles and is in line with the kind
of implementation we have advocated. Beyond that, we propose an argumentation-based
approach to decision making that can be used to generate explanations. By both ensuring
machine ethics and enabling machine explainability, the framework forms an important
building block for our argument that the two fields are closely connected.

The third part of the thesis deals with machine explainability. Since machine explainability
research is still very young, this part of the thesis is mainly about clarification. In particular,
we will extract the goals of machine explainability from the literature and summarize them in
a model. These goals are, again, linked to machine ethics, and constitute the third ingredient
in our argument for the close connection between machine ethics and machine explainability.
To conclude the presentation of machine explainability, we will present some approaches that
aim to provide explainability and devise quality criteria for them.

The fourth and final part connects the first three parts. Taking into account our views
on machine ethics and machine explainability, we will apply the quality criteria we have
devised for explainability approaches to our framework and argue for its appropriateness and
comparability to other approaches.

These descriptions of the parts should suffice as an introduction to the thesis. For the
interested reader, a more detailed description follows.

•
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The next section of this thesis (Section 2) will position machine ethics, via a broad overview
of ethics, as a branch of applied ethics. Additionally, we will present the main research strands
of machine ethics, and we will discuss some recent approaches to it.

In Section 3, we will examine machine ethics in more detail. In particular, we will discuss
whether it is worthwhile to engage in research in this area, or whether such research could
bring more disadvantages than advantages. By carving out our own view on machine ethics,
we will show that research is indeed worthwhile, and especially so if it is supported by
research in machine explainability.

The subsequent section (Section 4) will build a bridge to the framework we envision
by providing initial arguments on what such a framework should look like. Additionally,
this section will include machine ethics research itself by discussing the (dis)advantages of
programming an artificial system with one of the traditional normative theories.

We begin the second part of this thesis by developing our framework for machine ethics
(see Section 5). This framework is based on moral principles, which are intended to play an
essential role in decision making.

The second section (Section 6) will then outline the detailed decision-making process. This
process relies on arguments in a graph-based approach to provide a fruitful basis for creating
explanations.

In Section 7, the second part of this thesis finishes with some additional thoughts and ideas
concerning the framework. In particular, we will discuss approaches to modeling the moral
principles on which the framework is built. Moreover we outline an alternative formalization
for the framework that builds on STIT logic.

Section 8 brings us to machine explainability. Here, we give an overview of the field of
explanation research to demonstrate its peculiarities. This section will also introduce our
model of the processes in machine explainability and how they relate to each other.

Further deepening the model, Section 9 links back to machine ethics. Via an extensive
literature review of over 200 papers, we highlight the goals pursued by research in machine
explainability, many of which have moral components. For one of these goals, we explore in
more detail how machine explainability should contribute to it.

The final section of the third part of this thesis (Section 10) discusses explainability ap-
proaches. First, we present some exemplary approaches, after which we turn to the evaluation
of such approaches. Taking into account, among other things, the goals of machine explain-
ability, we develop and justify our own quality criteria for explanations. We apply the criteria
to the discussed approaches, most of which do not pass the test.

Finally, the thesis ends in a discussion of why our framework can, in principle, pass the test
(Section 11).
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Part I.
Machine Ethics





7

2. Charting the Field of (Machine) Ethics

In order to discuss machine ethics, we first have to clarify the subject matter of this research
discipline. This section is concerned with doing so. As machine ethics is a branch of ethics,
we will begin with the subject matter of ethics more broadly. Subsequently, we will zero in
on machine ethics and its goal(s) and varieties. Finally, we will discuss some contemporary
approaches to machine ethics to convey a better idea of this research discipline.

2.1. What is Ethics?

When speaking of ethics, one usually also thinks of morals. Commonly, the terms “ethics”
and “morals” are used interchangeably. In philosophy, however, there is a clear distinction
between them, which we will also follow in this thesis. Ethics (or, as it is also called, moral

philosophy) is the field of research concerned with morals. As this definition may not be
very illuminating, let us give another description. Roughly, ethics involves systematizing,
defending, and recommending concepts of right and wrong behavior [174]. Morals, on the
other hand, are these concepts of right and wrong behavior that ethics is concerned with [159].

2.1.1. The Three Main Branches of Ethics

Nowadays, ethics is usually divided into three main branches: metaethics, normative ethics,
and applied ethics [149, 174]. Let us briefly illuminate each of these branches.

Metaethics The ancient Greek term “meta” means “after” or “beyond”, and, consequently,
the term “metaethics” implies a distanced, or bird’s-eye, view of the whole endeavor of ethics
[174]. Metaethics is the attempt to understand the metaphysical, epistemological, semantic,
and psychological presuppositions and commitments of moral thought, talk, and practice
[413]. To put it briefly, while applied ethics and normative theory focus on what practices
are moral, metaethics focuses on what morality itself is [143]. In this way, metaethics can be
understood as a highly abstract way of philosophical thinking about morality. For this reason,
metaethics is occasionally referred to as “second-order” moral theorizing to distinguish it
from the “first-order” level of normative theory [143].

Compared to normative ethics and applied ethics, metaethics is the least well-defined
subfield of moral philosophy [174]. Two issues, however, are prominent: (1) metaphysical
issues concerning the question of whether morality exists independently of human beings,
and (2) psychological issues concerning the underlying mental basis of our moral judgments
and conduct [174]. Some questions belonging to the first group of issues are “Is morality a
question of taste rather than of truth?” and “Are moral standards culturally relative?” [413].
Questions belonging to the second group of issues are “How might moral facts be related to
other facts (about psychology, happiness, human conventions, . . . )?” and “How do we learn
of moral facts, if there are any?” [413].
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Normative Ethics Normative ethics can be seen as much more practical than metaethics.
This branch of ethics deals with the question of what makes an act right or wrong. Traditionally,
the formulation of normative theories (i.e., theories about what moral norms govern right and
wrong conduct) falls within normative ethics. One could say that the goal of normative ethics
is to find the ultimate test for proper behavior, and the fundamental assumption in normative
ethics is that there is only one ultimate criterion for moral conduct. [174]

Example #1

A classic example of a normative principle is the Golden Rule: we should do to others
what we would want others to do to us. The Golden Rule is an example of a normative
theory that establishes a single principle by which we judge all actions. [174]

There are many normative theories, and we will present the three major families of theories
that are commonly discussed in normative ethics in the next subsection (Section 2.1.2).

Applied Ethics Applied ethics is concerned with examining specific, controversial moral
issues. Such controversial issues include abortion, the death penalty, animal rights, and
euthanasia [174]. Applied ethics attempts to answer the question of whether it is morally
justifiable to introduce or do these things.

In recent years, applied ethical issues have been subdivided into subject-specific groups
such as medical ethics and business ethics. The reasons for this development are manifold.
First, what applied ethics investigates is quite diverse. Second, work in this field requires
considerable empirical knowledge. Finally, the pursuit of applied ethics has historically been
done by looking at different kinds of human practices. Taking all of this together, it only
makes sense that there will be many different types of applied ethical research, such that an
expert working in one type will not have much to say in another. [149]

In general, two features are required to constitute an “applied ethical issue”. First, the issue
must be controversial in the sense that there are significant groups of people both for and
against it (see Example #2). [174]

Example #2

Take the issue of killing out of base motives (i.e., murder). This issue is not an applied
ethical issue since everyone agrees that murder is fundamentally immoral. In contrast,
the issue of abortion is an applied ethical issue since there are significant groups of
people both for and against abortion.

Second, to be considered an applied ethics issue, the issue must be distinctly moral [174].
Take the example of raising wealth taxes. Although this issue is controversial and has an
essential impact on society, it is not distinctly moral.
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Here, it is important to distinguish social policy from moral issues. The aim of social policy
is to increase the efficiency with which a given society runs. In contrast, moral issues concern
more universally obligatory practices (as mentioned above). While the two often overlap (e.g.,
when condemning murder), there are many cases in which they do not (see Example #3).

Example #3

Sexual promiscuity is often seen as immoral, whereas it is commonly not regulated
by social policies. On the other hand, in some neighborhoods, yard sales are forbidden
by social policies, whereas there is nothing really immoral about yard sales if the other
residents are not offended by them in any relevant way. [174]

Interplay Between The Branches The three branches of ethics overlap, and the demarca-
tions between them are often blurry. Additionally, there is a considerable interplay between
them. Let us take applied ethics as an example of such interplay. In order to judge the moral
status of a particular controversial practice (say, abortion), results from normative ethics and
metaethics must be employed. Metaethics can state the moment from which a fertilized oocyte
starts to be morally relevant, and normative ethics delivers theories that give the criteria by
which the act of abortion itself must be judged.

In philosophy, machine ethics can be seen as a branch of applied ethics. As such, it also
interplays with normative ethics and metaethics, as we will examine in more detail later on.
For now, a brief example will suffice to indicate the nature of this interplay: when it comes to
the connection with metaethics, for instance, the debates in machine ethics revolve around
questions similar to those in abortion, including, in particular, the question of when an entity
qualifies as worthy of moral consideration (i.e., when it qualifies as a moral patient).

2.1.2. The Three Major Families of Normative Theories

As the interplay of machine ethics and normative ethics is crucial in what follows, we want to
discuss normative ethics before we come to machine ethics. Currently, there are three major
families of normative theories: deontological theories, consequentialist theories, and virtue

theories. These theories are distinguished mainly by their respective foci. When judging
the moral status of an action, deontological theories commonly focus on the action itself,
consequentialist theories on the consequences of the action, and virtue ethics on the (virtues
of the) agent performing the action (see Figure 1 for a visualization).

These differences in focus do not mean that only consequentialists take consequences into
account. All three families of normative theories can make room for consequences, rules, and
virtues. What differentiates these families of theories is the centrality of one of these concepts
within the family. For virtue theories, for instance, virtues and vices will be foundational, and
other normative notions will be grounded in them. [249, 266]
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Agent Action Consequences

An agent performs an action. Performing the action has consequences.

Virtue Ethics Deontological Ethics Consequentialist Ethics

Figure 1: The three major families of normative theories and their respective foci.

Deontological Ethics The word “deontology” derives from ancient Greek and means “study
of duty” or “science of duty” [7, 8]. Deontological theories are sometimes also called duty

theories (as the name suggests) or non-consequentialist theories. The latter name is meant
to contrast them against consequentialist theories, and to highlight that, in deontological
theories, the consequences of an action do not primarily influence its normative status [174].
Deontological theories focus on actions. More precisely, deontological theories base the moral
status of an action on specific, basal principles of obligation [174]. Such principles are, for
instance, not to commit homicide, or to care for one’s family.

The arguably most famous branch in the family of deontological theories is Kantianism

(see [261] for its source). With the categorical imperative, Immanuel Kant developed a deon-
tological principle that requires agents to perform only those actions that follow maxims (i.e.,
subjective rules or policies of action) that can be universally followed without contradiction
[58, 255, 398]. In its original formulation, the categorical imperative reads as follows: “act
only on that maxim through which you can at the same time will that it should become a
universal law” [262, p. 88]. There are several formulations of the categorical imperative that
Kant considered equivalent, although many researchers dispute this equivalence claim [255].

Kant’s theory is often criticized for its inability to accommodate crucial nuances regarding
certain moral dilemmas (see Example #4). Many people find this affair unsatisfactory. [7, 8]

Example #4

One example of where Kantianism fails concerns a person sheltering a Jewish person
from Nazis. The person has a duty to protect the Jewish person, but if the Nazis knock
on their door and ask whether they shelter a Jew they also have a duty not to lie. In this
case, the only relevant action still allowed, according to Kantianism, is to remain silent.

For this reason, ethicists developed more fine-grained deontological theories. One such
theory is that of William D. Ross (see [402, 403] for its source). Ross distinguished seven
so-called prima-facie duties3 (viz., fidelity, reparation, gratitude, non-injury, beneficence,
self-improvement, and justice, v. [174]) that determine the moral status of an action. Although

3Roughly, the term “prima facie” means something like “at first glance”. However, there is some debate as to
whether the term “prima facie” is appropriate for what Ross is trying to express in his theory. Shelly Kagan,
for example, wrote: “It may be helpful to note explicitly that in distinguishing between pro tanto and prima
facie reasons I depart from the unfortunate terminology proposed by Ross, which has invited confusion and
misunderstanding. I take it that [. . . ] it is actually pro tanto reasons that Ross has in mind in his discussion of
what he calls prima facie duties.” [258, p. 17]. We will come back to the term “pro tanto” later.
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his theory, arguably, can deal with scenarios like the one just described, it has other problems.
Most prominently, it is not always obvious what to do in cases of competing duties [8, 23, 24].

Consequentialist Ethics As its name suggests, consequentialist ethics focuses on conse-
quences. More precisely, consequentialism is the view that the normative properties of an
action depend solely on its actual or expected consequences. For this reason, consequentialist
theories are sometimes called teleological theories, from the ancient Greek word for “end”
(i.e., “telos”), as the result of an action is the sole determining factor of its morality. [174]

The consequentialist picture is driven by maximizing value and whose (moral) value (and
disvalue) is judged are states of affairs, how things are. Hence, what makes an action right (or
wrong) is what the action changes in the world. An action that brings about (or promises to
bring about) more value than disvalue is better than an action that brings about (or promises to
bring about) more disvalue than value. Often, then, the action that brings about (or promises
to bring about) the highest net value is not seen only as the best action, but as the right

action—or as one of the right actions, if there are multiple such actions possible. [446]
Particularly well-known theories that belong to the consequentialist family are utilitarian

ones. What distinguishes utilitarian theories from other consequentialist theories (such as
ethical egoism and altruism) is that they commonly consider the interests of all humans (or,
more generally, those of all moral patients) equally [204]. However, proponents of utilitarian
theories disagree on other issues. For instance, they disagree about whether the actual or the
expected consequences of an action count. Furthermore, they disagree on whether it should be
individual acts that count (act utilitarianism) or whether agents should, more generally, follow
rules adherence to which promises maximal value (rule utilitarianism). Lastly, utilitarians
disagree on whether pleasure and pain (hedonistic theories), preference satisfaction and
frustration (preference theories), or other things (e.g., objective goods) count as value. [435]

A famous member in the family of utilitarian theories is classical utilitarianism. Classical
utilitarianism is a form of utilitarianism in which the actual consequences of an action count.
Furthermore, what counts as value and disvalue for classical utilitarians are pleasure and
pain, respectively. Historically, the central proponents of (classical) utilitarianism include
Jeremy Bentham [68] and John Stuart Mill [338]. More recent advocates of (different types
of) utilitarianism include Richard M. Hare [211] and Peter Singer [433]. Overall, Bykvist
offers a systematic discussion of utilitarianism (in [94]). [58]

In contrast to deontological theories, consequentialist theories are not vulnerable to moral
dilemmas. This invulnerability stems from the fact that consequentialist theories can always
recommend a course of action. If several actions maximize the value, it does not matter which
one to take; one just has to take one. However, consequentialist theories are subject to a host
of other objections. For example, consequentialist theories are often criticized for allowing
actions that are commonly seen as fundamentally immoral. To say it bluntly, if the end justifies
the means, the means can get pretty ugly [197, p. 52].
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Virtue Ethics As we have seen, many philosophers believe that morality consists of follow-
ing well-defined rules of conduct or adhering to certain duties (as deontologists advocate), or
of acting to bring about good consequences (as consequentialists advocate). Presumably, one
must learn these rules (or assess the consequences) and ensure that each of one’s actions is in
accordance with the rules (or brings about the best consequences). [174]

Example #5

Suppose it is evident that someone in need should be helped. A utilitarian will point
out that the consequences of doing so will maximize well-being, and a deontologist will
say that the agent will act according to a moral rule (e.g., the Golden Rule). [249]

Virtue ethicists, however, place less emphasis on learning rules or assessing consequences,
and instead stress the importance of developing ideal character traits such as charity, temper-
ance, or justice [174]. These ideal traits that one possesses, or aims to possess, are the virtues

[184]. Likewise, virtue theorists believe that we should avoid acquiring bad character traits
(i.e., vices) such as cowardice, injustice, or vanity [174].

Virtue ethicists commonly advocate that right actions will tend to come from a virtuous
person. In this way, virtues are often seen as sets of stable dispositions to act in certain ways
responsive to characteristics of one’s environment [184]. For example, once a person has
acquired charity, they will, then, habitually act charitably [42].

Example #6

In the above case (Example #5), a virtue ethicist will point out that helping the person
would be charitable or benevolent, and something that a virtuous person would do. [249]

Character traits derive from natural internal tendencies, but they must be nurtured. In this
line of thought, virtue ethicists emphasize moral education since character traits are developed
in one’s youth. Adults, therefore, are responsible for instilling virtues in the young. [174]

Historically, virtue theory is one of the oldest normative traditions in Western philosophy,
having its roots in ancient Greek civilization with proponents like Plato and Aristotle. Ar-
guably, versions of virtue ethics are present also in ethical traditions of Eastern philosophy,
such as Confucianism, Daoism, and Buddhism (see [269, 429] for arguments in this direction).

In the Aristotelian view, virtues contribute to, or even constitute, what he called eudaimonia

(meaning something like “flourishing”). For this reason, his theory is called Eudaimonism.
Plato emphasized four virtues, which came to be called the cardinal virtues: wisdom, courage,
temperance, and justice [174]. While the Platonic version of virtue ethics was especially
prevalent in the Middle Ages as part of Scholasticism, versions standing in the Aristotelian
tradition are increasingly popular nowadays. Proponents of such modern forms of virtue ethics
are G. E. M. Anscombe [31], Philippa Foot [176], and Rosalind Hursthouse [248]. [42]
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Some virtue theories are criticized because they do not guide action (unlike the other two
families of normative theories) and depend on luck: not everyone has the chance to make real
friends, so whether one can flourish as a person seems to depend on luck. For some ethicists,
these factors disqualify virtue ethics from being a proper normative theory. [42, 249]

2.2. What is Machine Ethics?

With all of the above in mind, we can come back to machine ethics to shed more light on
it. As already stated in Section 1.1, we will roughly follow the characterization set out by
Michael Anderson and Susan Leigh Anderson, who understand machine ethics as “concerned
with ensuring that the behavior of machines toward human users, and perhaps other machines
as well, is [morally] acceptable.” [20, p. 15].

Arguably, their definition is rather broad and also involves what is traditionally known
as “safety engineering”. Indeed, many machines have been engineered with thoughts of
morality or beneficence for humans in mind before machine ethics emerged as a research
discipline. Such systems, commonly, have been restricted in their behavior for certain reasons
(e.g., because their exploitation can lead to bad consequences). Against this background, the
question arises as to what extent machine ethics differs from or augments safety engineering.

Example #7

Take cash machines of banks as an example. In general, these systems are designed so
that they are difficult to exploit. In particular, they usually make it hard to get access to
other people’s bank card credentials (and, thus, to other people’s bank accounts). [100]

There is one central aspect that distinguishes machine ethics from safety engineering: the
extent of system adaptability. Artificial systems are deployed in more and more contexts, and
they operate increasingly autonomously. In general, traditional safety engineering methods do
not suffice when machines must operate in changing environments: under changing conditions,
they need flexibility [11, 346]. Furthermore, these methods reach their limits when systems
have to operate under high uncertainty [100]. Finally, safety engineering does not arrive at
satisfactory solutions when there are conflicting courses of action to choose between [100].

2.2.1. The Goal(s) of Machine Ethics

When traditional safety engineering reaches its limits, machine ethics comes to the rescue.
Its main idea is that equipping machines with capacity for moral reasoning can help to make
them more moral (from the viewpoint of humans) across a wide variety of contexts. This is
one of the goals of machine ethics. However, there are also other goals, and it is possible to
distinguish roughly two strands of research in machine ethics. These two strands of research
correspond approximately to the distinction made by Moor (see Section 1.1).
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We have just mentioned the goal that the first strand of research pursues. Here, the leading
question is how to equip systems with some representation of moral values and a decision
procedure that factors them in. Thus, this strand of research is concerned with the moral

behavior of artificial systems. The second strand of research, in contrast, is concerned with
the moral status of machines. Here, the goal is to clarify whether machines actually have,
could (eventually) have, or even should have moral status. Depending on the answers to these
questions, we would have to change our behavior towards artificial systems significantly.

In this thesis, the first—behavioral—strand of machine ethics research takes a pivotal
role. However, before we give an overview of contemporary approaches to making machines
behave in more morally acceptable ways (in Section 2.2.2), we would like to shed light on
several conceptions of how the goals in both research strands are supposed to be achieved.

The First Strand of Machine Ethics Research: Moral Behavior A modest concept of the
goal that the first strand of research in machine ethics pursues is to achieve what has been
called “ethical alignment” [100]. According to this concept, the goal of machine ethics is
to make the behavior of machines more morally desirable from the perspective of humans,
even if only by a little bit [100, 377, 378]. A slightly morally desirable machine deployed is
better than one that is not morally desirable but deployed nevertheless. We note that “ethical

alignment” is not the appropriate term for this goal, given the common distinction between
ethics and morality. Therefore, we will speak of “moral alignment” in what follows.

This concept stands in contrast against several others in machine ethics. First, there is the
view that machine ethics must lead to a specific (and maybe unattainable) level of morally
desirable behavior; that machines that do not exhibit a certain level of morals should not get
deployed at all [10]. While this may be true, the spread of artificial systems is not likely to
lessen soon [23]. Unfortunately, considerations of morality are only slowly proliferating into
the debate, and systems that should not get deployed are brought into use nonetheless. For this
reason, at least for now, moral alignment is a feasible goal of machine ethics that promises to
alleviate the most pressing problems.

Second, there is the view that contemporary machines cannot “act” in a relevant sense of
acting and, thus, cannot act morally [10]. This view is deeply connected with the discussions
about (artificial) agency and, in particular, with (artificial) moral agency. If machines do
not qualify as moral agents, it does not make sense to get them to act morally. Predicates
of morality simply cannot be attributed to them. Consequently, if a system is supposed to
act morally, it must qualify as a moral agent (i.e., as an entity that can act based on morals).
Accordingly, people who take this view of machine ethics advocate that the goal of machine
ethics should be to create machines that qualify as moral agents by equipping them with
capacities traditionally associated with (moral) agency, such as sentience, sapience, and
autonomy [346]. Their moral behavior, then, follows from these capacities.
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We will come to the latter view later on in more detail (in Section 4.1.1), but for now
it should suffice to state that, at least in our opinion, it misses the point of machine ethics.
Machine ethics is not about equipping machines with the capacities to be able to act morally.
It is about equipping them with the capacity to factor moral considerations into their decision-
making processes. Artificial systems do not need to be aware or conscious of the fact that such
considerations constrain them. What counts is that the machines are behaving in a morally
desirable way from an outside perspective (i.e., from a human perspective).

In this thesis, we will argue that moral alignment is sufficient to harness the advantages that
machine ethics promises to bring while avoiding its potential pitfalls and drawbacks. Before
we do so, however, let us first contemplate the second strand of research in machine ethics.

The Second Strand of Machine Ethics Research: Moral Status We can distinguish
several approaches with respect to machines’ moral status. We have discussed the motivation
behind the first approach above: the belief that many approaches in the first strand of research
do not suffice to reach their goal. Even if we could implement morally motivated restrictions
into systems, this would not be sufficient to reach adequate moral standards [10].

People who share this belief argue that for artificial systems to exhibit a satisfactory level
of morally desirable behavior, they must be equipped with capacities needed for truly moral
decision making (i.e., they must become moral agents) [10, 11, 346]. Such capacities are, for
example, sentience, sapience, and autonomy. The moral status of machines, then, stems from
them having these capacities: moral agency commonly implies moral patiency [224].

A second approach stems from the belief that, as artificial systems are equipped with
increasingly sophisticated capacities for moral reasoning, they inevitably acquire a moral
status at some point [100, 140]. In this context, the moral status of the machines stems from
their increasing sophistication and is complicated by our current inability to measure whether
an entity has capacities like sentience or sapience to a level that qualifies it as a moral patient
[202]. We simply do not know enough about concepts like consciousness to reliably attribute
them [202].

The third approach we want to mention originates from the belief that traditional criteria
for moral patiency are somehow inadequate. People who share this belief often argue that
an entity’s moral status depends on its relational status in a society and not on other criteria
(like having certain capacities) [120, 253]. Other people with this belief argue that we should
grant machines a moral status to be safe rather than sorry. For these people, it could be that,
unbeknownst to us, machines already have capacities that qualify them as moral patients, but
we do not notice so, either because our criteria are wrong or because they are too vague [119].

Finally, some people advocate that artificial systems may not have moral status (yet), but
we should treat them as if they did have one so as not to morally corrupt ourselves [136, 439].

In general, most researchers deny machines a moral status [100]. We will briefly discuss
the topic of moral patiency with regard to artificial systems in Section 3.1.2 and Section 3.1.3.
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Nevertheless, the discussion about moral patiency already pointed to one aspect that needs
further illumination: there seem to be potential demerits connected with research in machine
ethics. For this reason, we will discuss the potential merits and demerits connected with
machine ethics in the next section (Section 3.1). However, before we come to that, we will
discuss some contemporary approaches to machine ethics in the following subsection.

2.2.2. Approaches to Machine Ethics

There is already a wide variety of approaches to machine ethics. Brundage [88] distinguished
five classes of approaches to it. The first three classes are based on a previous distinction made
by Allen, Smit, and Wallach [9]: top-down, bottom-up, and hybrid. Furthermore, Brundage
discusses psychological approaches to machine ethics and approaches to ethical artificial
general intelligence. While this last class of approaches is not relevant for our present purposes
(as we are not directly concerned with artificial general intelligence), we will discuss some
examples that belong to the other four classes in what follows.

Top-Down Approaches Top-down approaches usually try to implement one or more well-
known members of one of the traditional families of normative theories as directly as possible
in a machine. We will comment more on top-down approaches later (in Section 4.1).

Deontological Approaches On a general level, Powers discusses various possibilities for
a deontological ethical machine. Inspired by Kant’s categorical imperative, Powers examines
three plausible accounts of deontic logic for implementing a rule-based moral machine in
the Kantian tradition: one based on mere consistency, one based on commonsense practical
reasoning, and one based on coherency. Unfortunately, all three accounts face serious chal-
lenges (e.g., excessive specificity, lack of semi-decidability, or lack of priority of maxims).
Nevertheless, Powers believes that these challenges can, eventually, be overcome in a way
that might also help resolve some of the human ethical challenges. [377]

In an early work, Anderson, Anderson, and Amen propose an approach to machine ethics
based on William D. Ross’ prima-facie duties. After noting that Ross did not elaborate on
how to weigh his seven duties, they contend that a method inspired by Rawls’ reflective
equilibrium could help solve this problem. Such a method would involve tweaking the relative
weightings of each of the seven duties until the judgment of particular cases conforms with our
intuitions. Since performing such weighting manually would quickly overwhelm humans, it
lends itself to implementation in machines. In this line of thought, they developed a prototype
ethical advisor system: W.D. [23]

Leben proposes a Rawlsian approach to develop morally aligned autonomous vehicles. The
basic idea is to calculate which action each agent would agree to in a dilemma if they were in
an original position behind the veil of ignorance. Leben’s approach is guided by the maximin

criterion (i.e., that the worst-off person should be made as well-off as possible). To elaborate
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on his idea: in an original position, in which the agents do not know (because they are behind
the veil of ignorance) whether they are potential car occupants or pedestrians with whom the
car might collide, even self-interested individuals would agree that it is most beneficial to
make the worst-off person as well-off as possible. Leben argues that his approach leads to
unambiguous solutions in most cases and is better than a comparable utilitarian approach.
[300]

Consequentialist Approaches In the same work where they propose an approach to
machine ethics based on William D. Ross’ prima-facie duties, Anderson, Anderson, and
Amen also propose a utilitarian approach. More specifically, they propose an approach based
on hedonistic act utilitarianism. Anderson et al. argue that such an approach lends itself
to being implemented in a machine, as it is consistent (i.e., for a given set of inputs, the
implementation will always arrive at the same output), complete (i.e., for all valid inputs, the
implementation will arrive at valid outputs), and practical (i.e., the implementation will reach
a conclusion in a reasonable time). Similar to the other approach they present in their paper,
they also develop a prototype ethical advisor system for this approach: Jeremy. [23]

Although he does not discuss a specific approach to machine ethics, Grau examines
whether robots should decide based on utilitarian criteria. He finds that some of the traditional
objections against utilitarianism do not hold if the acting entity is a robot that does not qualify
as a moral patient (we will look more closely at his findings in Section 4.2.1). Grau argues
that we should prevent robots from ever attaining such a status. Nevertheless, he also finds
that other objections against utilitarianism still apply, and concludes that robots should not act
in a utilitarian way if humans are concerned. However, Grau does not preclude robots from
acting in such a way against fellow robots, as long as these do not qualify as moral patients.
[197]

Whereas Anderson et al. and Grau focus on act utilitarianism, Bauer proposes a two-level

utilitarianism: rule utilitarianism is applied first, and only then act utilitarianism. Bauer
motivates his approach by comparing it to a hybrid approach proposed by Howard and
Muntean based on virtue ethics (we will summarize this approach below), and argues that he
harnesses the advantages of that approach while avoiding its drawbacks. In general, Bauer’s
approach is to program an artificial system with a set of (primarily domain-specific) moral
rules that govern its overall moral behavior. In cases where no rules apply or where rules
are conflicting, an act-utilitarian calculus comes into play to determine the system’s action.
Furthermore, Bauer elaborates why his two-level approach is superior to one-level approaches:
it closely captures our human moral lives and ways of thinking. [58]

Bottom-Up Approaches Typically, bottom-up approaches use machine learning (ML)
techniques to find some manner of morally aligned decision making. The machine is presented
with various situations that require moral judgment. Based on what ethicists think of these
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situations, the machine tries to extrapolate how it should behave in general. Bottom-up
approaches to machine ethics depend heavily on the training data used, so the ethical values
of the humans training such systems cannot be separated from the computational framework
being trained [88].

Guarim trained artificial neural networks (ANNs) on various moral judgments. His goal was
to model these judgments with the networks in order to gain new insights into the generalism–
particularism debate (i.e., whether moral judgments are always based on immutable rules
or principles, or whether they depend on context). Through his experiments, Guarim argues
for a middle ground between generalism and particularism: although the ANNs learn from
particular cases, they exhibit some sort of general rule by which they classify new situations.
Similarly, some situations deviated from the norm and did not lend themselves directly to
being interpreted as a rule. [200]

McLaren proposes case-based systems to help humans make moral decisions. His early
Truth-Teller system compares different situations and highlights morally significant differ-
ences between them [38, 330]. His later SIROCCO system emulates how an ethical review
board within a professional engineering organization decides cases by referring to, and bal-
ancing between, ethical codes of conduct and past cases [327]. McLaren suggests that his two
systems can work together with a high degree of synergy: while SIROCCO only refers to
similar cases without specifying where the similarities and differences lie, Truth-Teller only
compares cases without referring to specific principles. [328, 329]

Hybrid Approaches As the name suggests, hybrid approaches combine top-down and
bottom-up approaches. Initially, the artificial system is programmed with reference to a
normative theory, leaving some variables open. For instance, the theory’s overall decision-
making procedure is mimicked. Afterward, the variables previously left open are “filled in”
by learning from examples. Take consequentialism as an example: one possible factor that the
machine can learn is the (moral) weight it attaches to certain consequences.

One of the first proposals that can be considered a hybrid approach is Cloos’ Utilibot. Cloos
discusses that initial attempts to create moral robots are likely to be lacking. Nevertheless,
he holds that subsequent improvements will ameliorate initial faults. With this in mind, he
suggests a utilitarianism-based approach to building moral machines. His Utilibot consists of
four modules: the first one models the user and their health, the second models the environment,
the third is responsible for assigning utilities to certain states of the user and the environment,
and the last module plans the robot’s actions. The utilities that the Utilibot assigns are learned
based on the impact of specific actions on the user’s health (making Cloos’ approach a
hybrid one). Furthermore, Cloos suggests that the Utilibot should be developed through three
generations: in the first generation, the value that the Utilibot tracks is physiological health; in
the second generation, hedonic well-being is also factored in; finally, the third generation is
supposed to track what is commonly seen as “happiness”. [117]
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Building on their earlier results, Anderson and Anderson further develop their approach to
Ross’ prima-facie duties. To recap, their approach refines Ross’ theory of prima-facie duties
with ideas from Rawls’ reflective equilibrium to arrive at an appropriate weighting of duties.
Using ML in their approach, Anderson and Anderson have discovered a decision procedure
for weighing prima-facie duties in the domain of medical ethics that had not been articulated
before, yet conforms to expert opinion. [28]

Virtue ethics lends itself to implementation as a hybrid approach, as virtue ethics generally
emphasizes learning as an essential part of becoming virtuous. Accordingly, virtue ethics
takes a prominent role when it comes to hybrid approaches to machine ethics.

In this line of thought, Howard and Muntean draw several analogies between human and
machine learning that showcase the plausibility of a virtue-based, morally aligned, artificial
system. Their focus is on acquiring (moral) skills and behavioral dispositions, which they
understand as virtues. Although they do not elaborate on the robot’s architecture, they claim
that these skills and dispositions may be acquired using ANNs and evolutionary computing.
[243, 244]

Another example is Wiltshire’s heroism approach. For him, an ideal moral agent forgoes
self-interest and may even harm itself for the greater good, just like heroes do. In contrast
to Howard and Muntean, Wiltshire even sketches a decision-making architecture for a robot
that acts in such a way. Furthermore, he suggests that the robot may initially learn how to act
based on examples from film and fiction. To illustrate that this is a plausible idea, he cites
some examples of robots in movies that have acted heroically. [496]

Integrating ideas behind the above approaches, Pontier and Hoorn developed the Moral

Coppelia. They take dual-process theories of moral judgment seriously and combine top-down
knowledge in the form of moral duties (viz., autonomy, non-maleficence, and beneficence)
with bottom-up structures. Fulfilling these three (sometimes conflicting) duties serves as the
goal that the system should reach. Similar to some of the other approaches introduced in this
section, Pontier and Hoorn evaluated their approach with simulation experiments that showed
congruence with expert judgment. [374]

Psychological Approaches Unlike the first three kinds of approaches, psychological ap-
proaches do not attempt to emulate moral behavior directly based on a normative theory or
expert opinion. Instead, they try to mimic the psychological decision-making process that
humans employ when coming to a (morally impactful) decision. Although one may argue that
normative theories model human psychology at least in part, as moral views depend, to some
extent, on intuitive or moral processes, psychological approaches place particular emphasis
on psychological processes, and draw specifically on insights from cognitive science and
neuroscience (which the other approaches do not) [88].

Dehghani et al. developed MoralDM to capture psychological results concerning how hu-
mans make moral decisions. Overall, this results in an approach with two central components:
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a first-principles reason module, and an analogical reasoning module. The first-principles
reasoning module integrates both utilitarian and deontological calculations. Specifically, utili-
tarian calculations are used as long as no so-called “sacred” values (i.e., values with a very
high cultural or religious worth, e.g., human lives) are at stake. Otherwise, deontological cal-
culations are preferred. The analogical reasoning module captures the psychological finding
that humans tend to think in terms of analogies and comparisons. This module links a given
situation that is to be morally judged with past situations of which moral judgment is available.
If the situations have a high degree of similarity, the outcome of the analogical reasoning
module is preferred to that of the first-principles module. Dehghani et al. have investigated
the quality of MoralMD in three studies, finding that its outputs were consistent with expert
opinion. [142]

Gomila and Amengual base their ideas on the role of emotions in moral cognition. To
account for Frijda’s finding that emotions comprise five distinct components (an evaluation of
a perceived situation, a qualitative sensation, a type of psychological arousal, an expressive
component, and a behavioral disposition, v. [181]), they propose a hierarchically organized
system based on behavior-based artificial intelligence (AI). In this system, the agent’s primary
functions are at the top of the hierarchy, while progressively more specialized skills are
situated further down. Emotions are linked closer to the top of the hierarchy. Thus, the
higher the implications of a particular event in the hierarchy, the more emotionally arousing
it is. According to Gomila and Amengual, such organization has the additional benefit of
enabling global appraisal of oneself in relation to other entities. This benefit is particularly
important when it comes to motivations such as socialization and attachment, and allows for
the generation of emotions such as shame and remorse. [191]

This last aspect of empathizing with others is also essential for Bello and Bringsjord’s
approach. Their approach takes construal level theory as a starting point to construct what
they call a “computational model of mindreading”. Construal level theory is a psychological
framework for how humans think about events outside their immediate periphery, for instance,
by imagining hypotheticals, perspectives of other agents, and counterfactual alternatives.
Bello and Bringsjord’s basic assumption is that moral machines must have something like
a moral commonsense, and that the best way to emulate such a moral commonsense is by
mimicking folk intuitions about morals. Based on psychological experiments showing that
how people reason about an agent’s behavior differs according to the psychological distance
from which it is viewed (something that construal level theory can account for), they encode
psychological distance as a cost on logical constraints that govern the agent’s behavior. [67]

•

Now that we have thoroughly introduced and discussed machine ethics as a field of research, it
is important to determine—in view of the possible disadvantages already mentioned—whether
it makes sense to research this field. The goal of the next section is to do just that.
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3. From Machine Ethics to Machine Explainability

In the literature, there are various pro-tanto reasons4 for and against pursuing research in
machine ethics. In this section, we will argue that the reasons for pursuing the research
discipline of machine ethics do, indeed, outweigh the reasons against doing so. Furthermore,
we will argue that machine explainability can serve as a catalyst for machine ethics, profoundly
contributing to this research discipline in numerous ways. Overall, this type of connection
gives a crucial reason to also pursue research on machine explainability.

3.1. Is Machine Ethics Worthwhile?

Here, we will examine the reasons for and against pursuing machine ethics without factoring
in machine explainability. The goal is to show that the reasons in favor of outweigh the reasons
against this pursuit, largely because these reasons against it can be easily refuted.

3.1.1. Reasons for Machine Ethics

We distinguish two families of reasons for pursuing machine ethics research. In what follows,
we will call these reasons “motivations” to demarcate them more clearly from reasons against
machine ethics research (which we will call “risks”).

Motivation 1: The Well-Being of Humankind The first family of reasons for pursuing
machine ethics research is concerned with the well-being of humankind.

More and more artificial systems are being deployed, affecting an increasing number of
people. To ensure their well-being and to prevent these people from being harmed more than
is necessary, it is imperative to develop systems that act in accordance with morals (i.e., to
align them morally). In order to do so, we need systems with capacity for moral reasoning.
Since machine ethics is the field of research that deals with equipping systems with that
capacity, we must pursue this field. [11, 100, 346]

Motivation 1.1: Acceptance The deployment of many artificial systems is likely to be of
benefit to us humans for various reasons, such as improving our standard of living [27, 100].

Autonomous Vehicle #2

It is often assumed that the widespread dissemination of autonomous vehicles (AVs) will
be greatly beneficial: plausibly, they will reduce traffic jams, accidents, and pollution.

Consequently, we must ensure that such systems become accepted. However, for the
systems to be accepted, we must be able to place justified trust in them [116], and, for that to
happen, they must be trustworthy [264]. Giving systems the capacity to reason morally is one
prerequisite for making them trustworthy and, thus, increasing their acceptance [23].

4A pro-tanto reason is a reason that, as it applies only to some limited extent, can be outweighed.
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Motivation 1.2: Fairness Irrespective of whether systems are being equipped with capac-
ity to reason morally, we as human beings have an obligation to design them in accordance
with morals [11, 346]. Morality commands us, for instance, to make fair decisions. Artificial
systems should, therefore, also make fair decisions. Nevertheless, it is often the case that,
implicitly, wrong values are (accidentally) being programmed into a system, and the resulting
systems are, therefore, biased. Systems based on ML only aggravate this problem.

Hiring System #1

In 2018 there was a media outcry because it came to light that Amazon had a hiring
tool that discriminated against women [138]. The fact that systems based on ML
tend to discriminate against women or minorities was not new at that point. Because
ML systems learn patterns from historical data, the discrimination that is encoded in
these data is also learned [52]. Furthermore, there is hardly any data that is free of
discrimination. What was new about this scandal was that direct references to gender
had been erased from the data. In other words, the system did not learn directly that
gender equates to a low hiring chance, but that word choice, hobbies, and the like—as
proxies for gender—correlate with low hiring chances.

Machine ethics can help to prevent implicit values from being programmed into a system,
since implementing morals requires making values explicit [23, 24]. Notions of fairness
are often about ensuring that protected attributes, such as race or gender, do not unduly
influence an entity’s decision-making process. For this reason, a system’s potential capacity
to reason morally must include the capacity to weigh the influence of protected attributes
in a decision-making process. As a side effect of making the system fairer, the system also
becomes more trustworthy and, thus, more accepted (here lies a link to Motivation 1.1).

Motivation 1.3: Benign Superintelligence The further we forecast the future, the more
urgent it becomes to equip artificial systems with capacity for moral reasoning. This urgency
is not only because the penetration of artificial systems into our everyday lives is unlikely to
abate (it will most likely increase in pace), but also because more theoretical threats might
arise, such as superintelligence: an entity that possesses intelligence far surpassing that of the
brightest human minds. If a superintelligence emerges, then it is highly recommendable for
this superintelligence to have capacity to reason morally [205, 346].

Superintelligence is sometimes referred to as “our final invention” (see, for instance, [53])—
a label that has at least two possible readings: either the superintelligence will make human
life more pleasant than it has ever been by finding solutions for all our problems, so that no
further human inventions are necessary; or it will simply annihilate humanity. To increase
the chances of the first scenario occurring, our best option is to equip artificial systems with
capacity for moral reasoning.
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Motivation 2: Moral Alignment The second family of reasons for researching machine
ethics is concerned with the moral alignment of decision makers.

Ethics, as a research discipline, constantly progresses. Despite this progress, however, the
discipline has revolved around roughly the same three families of normative theories for
several hundred years. From a third-person perspective, ethics seems to be at an impasse: no
family of normative theories is accepted across the board.5 Many researchers see a possible
way out of this dilemma in the emerging discipline of machine ethics. Engaging in machine
ethics may improve the moral alignment of (machine or human) decision makers beyond
current (human) standards [10, 11, 100]. We may become able to formulate better moral
theories and, perhaps, even find the correct one (if there is such a thing).

Motivation 2.1: Improved Human Decisions Studying machine ethics can help to im-
prove individual human decisions. Humans are prone to error. Not only do we exhibit many
cognitive biases, but we also have limited cognitive abilities. Moreover, we often act out of
self-interest and employ sloppy reasoning. [10, 23]

Machine reasoners are, in principle, free of such limitations. If designed carefully, a machine
can be free of most human-like biases (however, see Motivation 1.2) [10, 23]. Additionally,
the current computational power of machines is not only superior to that of humans, it is still
rapidly improving [23]. Humans may use a machine to arrive at moral solutions just as they
use pocket calculators to arrive at mathematical solutions [100, 469].

Digression #1

Although efficiency is the most prominent reason for the increasing use of ML, it is
not the only one. In addition to being able to process immense amounts of data in a
comparatively short time, ML was also hoped to eliminate problems of human decision
making. Fatigued or hungry humans tend to err and make different decisions than their
well-rested and sated counterparts. Machines, in contrast, can become neither hungry
nor tired. Their decision making has an air of objectivity and faultlessness. That this
conception is untenable, however, is nowadays widely accepted.

Motivation 2.2: Improved Human Morality The study of machine ethics can also help to
improve human morality as a whole. Engaging in machine ethics can help us to formulate
more consistent moral theories, and to reach consensus on moral dilemmas. [11, 23–26, 100]

In particular, algorithmizing normative theories can help to reveal inconsistencies in them
[26, 377]. Given better knowledge of these inconsistencies, their respective theories can be
amended (e.g., if the inconsistency is easily fixable) or abandoned (e.g., if the inconsistency
demonstrates a fundamental problem of the theory).

5In 2014, a study found the following preference distribution of normative theories among philosophers:
deontology 25.9%, consequentialism 23.6%, virtue ethics 18.2%, other 32.3% [80].
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Furthermore, insights gleaned from studying differences between the kinds of entities
engaging in moral deliberation (humans vs. machines) can also illuminate intriguing aspects
of some theories and, possibly, contribute to the understanding of human morality as a whole
[11] (we will discuss such aspects in Section 4.2). Let us illustrate these considerations.

Autonomous Vehicle #3

Philippa Foot’s trolley cases [176] are among the most famous thought experiments
in contemporary philosophy. With the advent of autonomous vehicles (AVs), these
cases acquired even more fame: the originally hypothetical cases now come to reality
in a slightly different facet. If faced with the decision to either knock down a group of
pedestrians or deviate from its course and sacrifice its passenger, which option should
an AV choose? To put it briefly, with the emergence of AVs, Foot’s thought experiment
became even more tangible than it already was. Finding an answer to the question of
how the vehicles should behave is paramount for their successful deployment [76].

Sparrow, for instance, discusses in his “Turing Triage Test” the criteria that must be
met to be considered a moral patient. He argues that applying traditional criteria, such as
having self-consciousness or sentience, to artificial systems leads to counterintuitive results:
Since superintelligences will, plausibly, fulfill these criteria to an even higher degree than
humans, superintelligences will have a higher moral significance than humans. Moreover,
since superintelligences will likely have almost unlimited possibilities for improvement, their
moral significance could, eventually, outweigh that of humans to such an extent that the moral
significance of humans becomes negligible. Since this is an unacceptable outcome, Sparrow
argues, we need to rethink the criteria for attributing moral patiency.6 [445]

Anderson, Anderson, and Armen give a concrete example where the algorithmization
of normative theories can help to improve them. They consider William D. Ross’ prima-
facie duties and suggest how an artificial system might be able to resolve conflicts between
competing duties (for more details, see Section 2.2.2 and Section 4.2.2). [24]

6Although it may serve as a good example, we consider Sparrow’s argumentation to be significantly flawed.
First, his argument seems to be close to an argumentum ad consequentiam. Rejecting a theory just because it
has unacceptable consequences is a bad argumentative practice. It would be another story if the theory’s
implications were self-contradicting, but this is not the case here. Moreover (and second), the consequences
outlined are very plausible and intended consequences of the traditional criteria for moral patiency. For
example, it is sometimes assumed that we have more moral duties towards an intelligent great ape than
towards a brain-damaged human [432]. Third, even if one denies that moral status comes in degrees, one
might still argue that certain beings have more significant interests than others. Thus, for instance, one can
argue that it is better to save the great ape instead of the brain-damaged person, not because the ape has
higher moral status than the brain-damaged person, but because it has a more significant interest in having
its life saved [79]. In this line of reasoning, the superintelligence would be more significant than a human,
regardless of moral status. Fourth, we hold that the sketched consequences do not give us a reason to abandon
the above criteria but rather a reason to prevent the emergence of a superintelligence. Finally (and fifth), the
alternative criterion proposed by Sparrow is rather bizarre and difficult to apply. Furthermore, he does not
really argue for it other than stating that the traditional criteria are inadequate. In summary, while the idea
behind Sparrow’s argument is laudable, its implementation is flawed.
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To provide another example: Cave et al. suggest that artificial systems may be consulted
for action guidance in situations where even human ethicists do not have a solution. [100]

Finally, Allen, Wallach, and Smit propose that machine ethics can help to stimulate new
lines of inquiry in ethics. For example, considerations of what machines are capable of might
lead to more profound reflections on what a correct normative theory is supposed to be. [11]

3.1.2. Reasons against Machine Ethics

We distinguish two families of reasons against pursuing research in machine ethics. In what
follows (and as mentioned above), we will sometimes label these reasons as “risks” to
demarcate them more clearly from reasons for pursuing this research discipline.

Risk 1: Insufficiently Moral Machines The first family of reasons against pursuing ma-
chine ethics research is concerned with its very possibility. More specifically, these reasons
concern questions of whether machines can have sufficient morality for the task they are
supposed to perform, indeed whether they can have morality at all.

Artificial systems (as they are understood here) differ fundamentally from humans. Even
when we think of humans as a sophisticated type of machine, other contemporary machines
lack essential qualities characteristic of humans [346]. Today’s machines have neither sen-
tience, nor (self-)consciousness, free will, or autonomy—all of which are essential human
qualities that are commonly seen to qualify humans as beings with moral capacities [252].
Normative theories were, naturally, designed with humans in mind, or at least entities pos-
sessing some of the qualities mentioned above. Consequently, we need to investigate whether
it is possible to apply results from ethics to machines, and whether it is possible to equip
them with the capacity for moral reasoning. Some claim that this is not the case and that,
consequently, the research discipline of machine ethics is misleading.

Risk 1.1: Lacking Moral Agency It is often claimed that machines cannot be moral. In
contrast to humans, machines are not moral agents and, thus, cannot act morally. Machines
not being moral agents is the case because machines lack the capacities mentioned in the
previous paragraph. One simple formulation of this claim is that morality is about emotion,
and machines cannot have emotion at all [10, 11, 346]. Arthur Schopenhauer, for example,
famously claimed that compassion (arguably, a type of emotion) is the basis of morality [418].
Similar arguments can be brought forward for the other capacities (free will, autonomy, etc.).

Even if morality does not presuppose emotion (or some other capacity that machines lack),
it is plausible that the presence of emotions (or said capacity) is at least one factor contributing
to making praiseworthy moral decisions [469]. For this reason, it is questionable whether an
acceptable level of morality can be achieved without specific capacities that machines lack.
Consequently, it does not make sense to pursue research into machine ethics.
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Risk 1.2: Unacceptable Level of Morality Let us continue with the line of reasoning set
out in the preceding risk. We have to deliberate whether machines can achieve an acceptable
level of morality at all. For machines to be accepted, it is plausible that a higher level of
morality is required than that for humans [10, 11, 100]. This level of morality might very well
be unattainable. In the literature, we can identify at least two considerations that support the
view that machines require a higher level of moral capacities than humans (see [100]).

First, systems have high scalability. Artificial systems can easily be deployed on a large
scale. For this reason, the algorithms employed in these systems effect far-reaching conse-
quences. For example, the algorithms employed in Google, Facebook, or Amazon affect
billions of people worldwide every day. Even on a smaller scale, the decision to use a specific
system often leads to many people being affected by it [359]. In contrast, it is not easy for
humans to come into a position where they can exert a similarly far-reaching influence. [100]

Second, systems have low predictability. Systems can fail in ways in which no human would
have failed. For this reason, they can also come to decisions that are morally reprehensible in
ways that no one could have foreseen. A human-like moral capacity might, therefore, not be
sufficient for machines. Since it is plausible that a sufficient level of morality in machines is
unattainable, we should not pursue machine ethics research. [100]

Risk 1.3: Computational Limitations Finally, it may be impossible to implement an
adequate moral theory in a machine due to computational limitations [11, 88, 100].

Let us take some common normative theories as examples. Some versions of consequential-
ism require the decision maker to include all living beings in the universe in the deliberation
process. Fulfilling this requirement seems to be computationally infeasible: calculating the
effect of an action on each of these entities in real time seems impossible [10, 11].

Similarly, some researchers argue that it is hard to impossible to calculate the type of
abstraction necessary for considerations required by the categorical imperative (e.g., [10,
377]).

Combined with the idea that machines need a level of morality higher than that of humans,
this reason for not pursuing the research discipline of machine ethics becomes even stronger.

Risk 2: Detrimental Consequences The second family of reasons against pursuing machine
ethics research is concerned with the detrimental consequences that this pursuit could bring
about. More specifically, engaging in machine ethics may aggravate the matter and lead to the
opposite of what it is intended to bring about.

Although, at first glance, it seems to be a good idea to equip machines with the capacity to
reason morally, doing so may also lead to consequences that are not desirable. There are at
least two facets to how this may come about. First, it may be that equipping machines with
said capacities requires other capacities of machines, the integration of which could result
in unintended and undesirable consequences (e.g., increased corruptibility). Accordingly,
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trade-off needs to be carefully evaluated to determine whether the whole endeavor of machine
ethics is still worthwhile (Risk 2.1.1 and Risk 2.1.2). Second, equipping machines with the
ability to reason morally may, in itself, lead to harmful consequences (Risks 2.2.1–2.2.4).

Risk 2.1.1: Increased Corruptibility Moral capacities in a machine require an explicit
representation of moral considerations (e.g., in the form of moral principles). Although this
requirement is well-intentioned, it may also make the machine more corruptible [100, 474].

There are several ways in which this may come to be. Take hackers as an example, who
may corrupt the moral faculties of a machine, making the system immoral. The problems can,
however, begin even earlier. Moral faculties may also be used to make a system deliberately
as evil as possible.

Somewhere between these two extremes lies another problem. The corruption of a machine
can happen unintentionally, through coding errors. Ensuring that complex systems are error-
free is difficult, if not impossible. So, if equipping systems with capacities to reason morally
leads to such problems, we should not do so.

Risk 2.1.2: Moral Patiency If endowing systems with moral capacities leads too far, these
systems can become moral patients [100]. If, for instance, we equip machines with emotions
in order for them to be able to reason morally, we may get systems that have a moral status.
We must not use systems with moral status in the same way that we use systems currently,
because systems with the status of moral patients have certain rights that we must not violate
[197, 224]. Furthermore, we must also take their interests seriously.

As our modern society depends on using artificial systems without considerations of their
interests and rights (because, as of yet, they likely do not have any), a change in this status
would significantly reduce their utility for humans. Consequently, we have an interest in not
designing artificial systems that may classify as moral patients. If equipping systems with
capacities for moral reasoning requires capacities that lead to such problems, we should not
do so.

Risk 2.2.1: Bad Moral Performance Even with moral capacities, machines may yet
exhibit worse moral performance than humans. There is a non-trivial risk that machines come
to morally unacceptable conclusions that humans would have foreseen [11]. Such conclusions
can arise, for example, due to the system working with false premises [88, 100]. The system’s
sensors might fail, delivering incorrect information to the system’s decision-making processes.

Another way systems may fail is when their decision-making procedures do not lead to any
action or arrive at incompatible actions, in cases where humans would likely have reached an
acceptable conclusion [11]. In general, humans may identify incompatible courses of action
more easily than machines, and they reliably manage to arrive at a course of action [11, 100].
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In addition, equipping a system with moral capabilities is likely to result in overall poorer
performance because the system has to perform more processing steps to come to a result
(e.g., when the moral capabilities are implemented as additional constraints in the system’s
decision making) [11]. So, if machines equipped with capacities for moral reasoning exhibit
worse moral performance than humans, then, at the least, we should not be too zealous about
equipping them with such capacities.

Risk 2.2.2: Responsibility Gap As mentioned earlier, system deployment sometimes goes
hand-in-hand with problems of attributing accountability or responsibility [11, 63, 100, 323].

Autonomous Vehicle #4

In the case of AVs, several parties are potentially responsible for an accident. First, the
person sitting in what was formerly the driver’s seat. Are they responsible because they
did not intervene to prevent the accident? Depending on the AV, intervening may not
even be possible. Furthermore, only a minority of future accidents may be preventable
by human intervention. Is the car’s vendor responsible because they sold the car? Is
it the watchdog organization (e.g., TÜV in Germany) that certified the car? There are
many other candidates: a programmer (and which programmer, of the many involved?),
the manufacturing company (which people in it?), etc. While some candidates are less
plausible (e.g., the vendor), there remain many to whom it is reasonable to attribute
responsibility.

In modern bureaucracies, established procedures often distribute responsibility so widely
that no one person can be identified to blame for an accident [245]. Deploying machines with
moral capacities could make the attribution of responsibility even more diffuse than it already
is, for at least three reasons.

First, the increased complexity of the decision-making processes may make it more chal-
lenging to determine whether the accident was caused by a flaw in the system’s code or by
something else (e.g., a sensor failure). Furthermore, determining whether the moral delibera-
tion process on which the decision was based is flawed faces similar problems.

Second, the design and implementation of moral faculties introduces more parties to
potentially shift blame to (e.g., the policy-makers or ethicists who designed them) and could
invite other parties to do a sloppier job [100].

Third, the presence of a supposedly moral machine during an accident may invite one to
shift the blame to this machine [79, 132, 423]. It is easier to use the machine as a scapegoat
than to take responsibility as a human.

Taken together, if pursuing the research discipline of machine ethics makes the attribution
of responsibility more difficult, then we should not be especially zealous in doing so.
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Risk 2.2.3: Value Imperialism The scalability of artificial systems can, plausibly, lead
to some kind of value imperialism [100]. When systems are endowed with specific moral
capacities, these capacities are, to some extent, fixed. Different cultures, however, endorse
different moral values (see Autonomous Vehicle #5).

Autonomous Vehicle #5

In a recent study [46], researchers presented several dilemma situations that an AV
had to face, to people all over the world. These situations differed, for instance, with
respect to the age, gender, number, or social status of the persons who could be spared
or sacrificed. The study’s findings revealed remarkable differences between different
cultures in terms of the preferences they exercised. Participants from Western and
Southern countries, for instance, preferred to spare younger people, a preference that
was utterly absent among participants from Eastern countries.a Furthermore, participants
from Southern countries preferred to spare females, a preference that was not very
pronounced among participants from Western and Eastern countries.

aWestern: e.g., Germany, USA; Southern: e.g., Chile, Algeria; Eastern: e.g., Japan, China.

Against this background, equipping systems with a particular capacity to reason morally
can lead to violations of cultural identity. A system that acts according to a consequentialist
picture of morality (and, for instance, usually spares younger people) may be the obvious
choice for certain countries, but it could be considered immoral in other countries.

This problem becomes even more apparent when we look at it not only from a contemporary
perspective but extrapolate it to the future. Values and moral notions change over time. The
ancient Greeks considered slavery as allowed; today, it is commonly regarded as impermissible.
If the ancient Greeks were to embed their values in a computer program still in use today,
such a program would likely be deemed immoral.

Although the problem of values changing over time may initially sound rather unimportant,
it is a problem often discussed regarding superintelligences. We have strong reasons to make
a superintelligence act in accordance with morals (as outlined in Motivation 1.3). By doing
so, the superintelligence may have human-like morality for a few years, but not forever. It is
plausible that the superintelligence’s picture of morality and ours will, at some point, diverge,
just like the picture of morality the ancient Greeks had is different from ours. For these
reasons, one should refrain from equipping systems with capacities for moral deliberation if
this leads to value dominance (regardless of which picture of morality is the better one).

Risk 2.2.4: Undermined Human Agency Equipping machines with moral capacities
may undermine human agency [100]. Machines with such capacities may support human
incompetence by correcting their (moral) mistakes. In other words, the fear is that our human
moral skills will erode because we are not required to hone them. [212]
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Just like our capacities for mental arithmetic are likely to deteriorate through dependence
on pocket calculators, our moral judgment skills may deteriorate through dependence on
machines to support our (moral) decision making. In the worst case, this development could
lead to people no longer developing (sufficient) moral skills. If we start to rely on machines
for moral judgments or our judgments have to be compared to those of machines, there is no
motivation to (further) develop our abilities.

Overall, the fear is that, in the end, humans would degrade to being the machines’ compliant
vicarious agents and, thus, forfeit significant parts of their agency. As a result, humans may
not be able to remain responsible decision makers because they lack the capacities to make
informed and well-founded decisions (here lies a link to Risk 2.2.2).

3.1.3. Refuting the Reasons against Machine Ethics

At this point, we have quantitatively listed more reasons that speak against pursuing the
research discipline of machine ethics than in favor of it. Qualitatively, however, the ratio is
reversed. Most of the reasons against engaging in machine ethics seem strong at first, but can
be easily toned down, if not entirely refuted. While doing this, we will also start to sketch,
more thoroughly, our picture of what machine ethics should look like.

Risk 1: Insufficiently Moral Machines The general rationale behind refuting this family of
risks is that, while it is true that modern machines lack the capacities needed for being moral
in the strong sense humans are, we advocate that this is not problematic. On the contrary,
this is even desired. Indeed, machine ethics would be misguided if it solely sought to make
machines moral in this strong sense. Many of the problems described in the last section arise
only when one tries to do just that. However, we propose that a more modest goal (viz., moral
alignment) can also do the job.

Machine ethics can be seen as an answer to the ever-increasing influence of artificial
systems on human life. To make this influence as beneficial as possible, we argue that we do
not need machines to be moral in the same way humans are. Equipping machines with an
explicit representation of moral considerations and a decision-making procedure that takes
these considerations into account should be sufficient to raise the behavior of these machines
to an appropriate level.7

Risk 1.1: Lacking Moral Agency As just described, morality in the strong sense might
be unattainable for machines (more than that, it is even undesirable). Regardless of what
capacities are prerequisite to having morality on the level of agents, it does not matter whether
a system has them. In our eyes, the goal has never been to create artificial systems with some
sort of personal morality—as opposed to designing them to perform morally desirable actions.

7Admittedly, this kind of argument seems, at first glance, to presuppose a consequentialist picture of morality.
However, the argument is still sound if one reads “beneficial” with a reasonable picture of morality in mind.
Take virtue ethics as an example. It is plausible that artificial systems acting according to morals help us
humans to live a good life and develop ourselves. Similar arguments can be made for other moral theories.
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When one tries to build an ethical component into a robot, the goal is not to create a morally
“good” robot; rather, the goal is to lay the foundation for machine behavior that, in the best
case, would regularly be classified as morally excellent if it came from a human.

As mentioned, machine ethics should pursue a high moral alignment of artificial systems.
To push the behavior of machines at least a little bit in a direction more advantageous for
humans is already sufficient to justify machine ethics research.

Risk 1.2: Unacceptable Level of Morality If one accepts that the goals of machine ethics
should be lower than is often proclaimed, one can easily see that this risk is, in fact, groundless.
It may be the case that some systems will (or even should) not be accepted if their morality
does not surpass human levels, but this poses no real problems for at least three reasons.

First, it is arguably the case that these systems should not be deployed at all. Take the
services offered by Facebook, Google, and Amazon as examples. Many claim that their
predominance in certain areas is not desirable. Similarly, it may be that artificial systems, in
general, should either not be used on a large scale or at least be subject to thorough scrutiny
before this happens. In this line of thought, machine ethics can help us to make systems more
moral, but that should not preclude them from being scrutinized by regulators. A system
should only be used if it meets certain standards. Machine ethics can help achieve these
standards, but it does not have to be the only ingredient to do so.

Second, machine ethics is not intended to mitigate the fallibility of machines completely.
Again, machine ethics can be an essential ingredient in preventing systems from failing.
Alas, it is difficult to guarantee that machines are faultless, and it is also the case that moral
capacities may prove to be a new source of potential failure. Nevertheless, it is plausible that,
overall, morally aligned systems, if carefully designed, will exhibit significantly better (moral)
behavior than those without moral alignment.

Finally (and third), artificial systems will continue to increasingly infiltrate our daily lives,
whether or not they have moral capacities. Against this background, it is better to make them
as moral as possible than not moral at all.

Medical-Care Robot #2

One of the biggest problems facing many of today’s societies is demographic transition.
As populations age, many countries are experiencing severe problems with eldercare.
Among these problems is the scarcity of caregivers. To address this problem, robots
are increasingly being used to perform caregiving tasks. For many people, there is no
alternative, as the nursing professions are chronically understaffed and more needed
than ever. For this reason, it is arguably better to employ robots to do this work than not
to have it done at all. With this in mind, these robots should have at least some capacity
for moral reasoning, as their field of application comprises direct contact with humans.
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Risk 1.3: Computational Limitations Machines may be computationally limited, but
humans are even more so [286]. Therefore, it seems to be a bad reason to stop pursuing
machine ethics because of computational limitations. Indeed, if one accepts that machine
ethics should merely aim to increase the moral alignment of artificial systems, it makes no
sense to consider approaches to morality that defy implementation in a machine (e.g., because
they are computationally too complex). The upshot here is that there is no need to implement
any of the established normative theories. Of course, doing so seems to be a straightforward
(and deceptively easy) way to achieve moral alignment. However, it is also subject to specific
problems, some of which we will discuss later (in Section 4.1.1).

For this reason, it may be even more advantageous to develop theories that are specifically
tailored to machines. A computationally too demanding theory for a machine is probably also
too demanding for a human being. For example, the computational limitations of humans
are often used to criticize consequentialist theories (see Section 4.2.1). An artificial system
is more likely to be able to perform the required calculations, both more quickly and more
accurately than a human [23]. After all, machines are becoming more powerful by the day,
and today’s computational limitations (e.g., storage) are likely to be alleviated in the future.

Risk 2: Detrimental Consequences If we set the goal of machine ethics as moral alignment,
both types of reasons we find in this family can be refuted. First, many problematic additional
capacities (e.g., sentience) are not required if we adopt the view of machine ethics that we
are defending here. Thus, risks of the first type can be averted. Second, by adopting the view
described, most of the negative consequences listed can be avoided. Thus, risks of the second
type fail.

Risk 2.1.1: Increased Corruptibility Regardless of whether artificial systems have moral
capacities or not, programming mistakes, malicious design, or hacking can always happen.
The possibility of such occurrences is not a decisive argument against pursuing machine
ethics research. Research in computer science has developed tools and ways to cope with such
problems. For example, research in verification is concerned with ensuring that a program
only exhibits the intended behavior [50, 298]. Furthermore, research in software engineering
aims to minimize the error rates in systems [504]. A final example is the rapidly growing
research in cybersecurity, which focuses on preventing malicious attacks on systems [268].

These are just a few examples of research trying to prevent systems from being maliciously
exploited. As we will discuss later (in Section 3.2.1), research in machine explainability
promises to be a helpful addendum to machine ethics when it comes to this reason against
it (see also Section 9.2.1). If the moral capacities of a system are manipulated, it stands to
reason that such a manipulation is often detectable with the help of machine explainability,
plausibly even more effortless than other ones.
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Risk 2.1.2: Moral Patiency If moral alignment is accepted as the goal of machine ethics,
the danger of artificial systems becoming moral patients is mostly mitigated. Morally aligning
systems does not require substantially different capacities from those that machines without
such an alignment have. Consequently, there is little benefit in machines having capacities
that could qualify them as moral patients. To sum it up, if moral alignment does not require
new capacities, the question of moral status is detached from making systems moral.

Admittedly, there is a possibility that, at some point, there will be artificial systems that
qualify as moral patients. Indeed, there is concern that if the speed of progress in AI remains
as it is, advances could inevitably lead to some systems being classified as moral patients.
However, this is more of a reason to oppose AI research than machine ethics research. As a
matter of fact, some researchers who fear the emergence of an artificial general intelligence
(that could evolve into a superintelligence) are already calling for a (temporary) moratorium
on specific kinds of AI research [460].

Risk 2.2.1: Bad Moral Performance To reject a technology just because it might fail in
situations where the old technology did not fail is a threat to beneficial scientific progress.
Numerous inventions (many of which are widespread) come with this putative drawback.

Autonomous Vehicle #6

As previously mentioned (in Motivation 1.1), the widespread dissemination of au-
tonomous vehicles will likely bring about tremendous advantages. Nevertheless, au-
tonomous vehicles will be involved in different types of accidents than conventional
vehicles, and, consequently, different types of casualties will ensue.

However, this does not mean that efforts in developing and designing autonomous
vehicles have decreased. Instead, it has led to the formation of ethics committees to get
the best out of this newly emerging technology while avoiding the worst.

Let us look at another example that might be easier to identify with.

Autonomous Vehicle #7

Although there are, arguably, instances when people would not have died if it were
not for the safety belt, we are required to wear a safety belt while driving in a car. The
general benefits of wearing a safety belt outweigh the costs involved.

Both vehicle autonomy and safety belts are likely to improve the situation for many people
without placing specific groups of people at a disadvantage. Similarly, we should not reject
progress in machine ethics just because some cases will be worse than before. In the end, the
only thing that counts is that overall, our world will be a better place.
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Risk 2.2.2: Responsibility Gap The problems arising from a diffusion of accountability
and responsibility are, admittedly, hard to resolve at this point. We will return to these
problems in Section 3.2.1 (and, in particular, in Section 9.3) while discussing how machine
explainability contributes to machine ethics. Nevertheless, we advocate that machine ethics
does not make the case worse than before, and we do so for two reasons.

First, falsely designed moral capacities can potentially be exposed in relevant cases. In
cases of accidents, it is sometimes possible to reconstruct the past decision-making processes
of the system. Therefore, it may be possible to identify whether the system’s implementation
or its moral capacities caused the failure. If this is true, the allocation of responsibility is, at
least, not worse than it already was.

Second, some failure cases can be prevented by machine ethics. Recall Motivation 1.2:
machine ethics can help to prevent the embedding of implicit value in systems. Such implicit
embeddings contribute to a large class of failures where the attribution of responsibility is
particularly complicated. Thus, containing this class of failures is likely to make the overall
allocation of responsibility easier.

Risk 2.2.3: Value Imperialism Before describing a simple way to escape value imperi-
alism, let us first reflect on the relativity of morals. For value imperialism to be a bad thing,
morals would have to be relative. Although different cultural groups in the world seem to
favor different values (see above), whether morals are really relative is highly controversial
[49, 195]. The more common picture is that one normative theory is objectively correct [25,
80] (the controversy in this case, however, is about which one is correct).

Nevertheless, even if morals were relative, this does not pose a problem to pursuing the
research discipline of machine ethics. For example, one could factor in the country (or cultural
region) a system is deployed in when designing its moral capacities. Even if the system is
supposed to be deployed in several countries, different moral capacities may be programmed
into it, changing according to the country or region in which the system is currently located.

Moreover, some kind of value imperialism is already present in systems without explicit
moral reasoning components since it is likely that the programmers’ biases are implicitly
embedded. Machine ethics can make it possible to prevent such implicit biases to a certain
degree, as previously argued (see Motivation 1.2).

Furthermore, the ability to adapt the moral faculties implemented in a system can also
make it possible to evade problems with superintelligences. First, the ability to adapt its own
moral faculties may prevent the superintelligence from rigidly adhering to its initial picture of
morality. Second, when a divergence of moral beliefs between humans and superintelligence
is identified, there is a starting point for closing such a gap.

Risk 2.2.4: Undermining Human Agency This risk is also much easier to dismiss if one
takes explainability into account (see Section 3.2.1). Nevertheless, pursuing the conception of
machine ethics that we defend already escapes this risk to some degree. Since machines are
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in no way intended to replace us humans in decision making, the likelihood that human skills
will erode decreases. Furthermore, perhaps we should even regulate machines in a way that
precludes them from being able to replace humans in certain areas.

3.2. The Advantages of Machine Explainability

Most, if not all, reasons against pursuing machine ethics research can be refuted quite easily.
Given the potential benefits that this research may yield, it is well worth pursuing. We will
see so especially in this subsection, where we will discuss how machine explainability can
further augment machine ethics.

Results from machine explainability can help in three ways. First, they can be used to amend
some of the disadvantages of machine ethics. Second, they can be used to augment some of
the advantages. Finally, they can even engender entirely new advantages. Consequently, if we
have reason to research machine ethics, we also have reason to research machine explainability
as well.

Machine explainability will be the focus in the third part of this thesis; this chapter only
aims at illustrating the advantages of machine explainability in connection with machine
ethics. In a nutshell, it can be stated that machine explainability is concerned with making
various aspects of an artificial system understandable to a stakeholder (see also Section 1.2).
Whether it is the visible behavior, the algorithm on which this behavior is based, or the input
needed to produce a certain behavior, producing explanations of it is a legitimate goal pursued
by research in machine explainability.

3.2.1. Amending the Disadvantages of Machine Ethics

Machine explainability can help mitigate the risks mentioned before. This holds for some
risks more than for others. We will focus on the risks that can be best mitigated in what
follows. In particular, these are the risks that we did not (fully) mitigate previously.

Risk 2.1.1: Increased Corruptibility The more complex artificial systems are, the more
opaque their reasoning processes become. Take deep neural networks (DNNs) as an example.
Systems that employ DNNs for their decision-making procedure can fail in ways that no
human would have predicted (see [192] for some compelling examples). Furthermore, their
sub-symbolic processing makes it hard for humans to understand their inner workings and,
thus, hard to fix them.

One of the motivations for research in machine explainability is to make systems better
debuggable and maintainable [73, 342] (see also Section 9.2.1 and Table 12). Explanations of
a system’s inner workings can help pinpoint sources of failure and, thus, enable developers to
fix them. So, even if machine ethics leads to new sources of failure, machine explainability
has the potential to aid us in finding and eliminating them.
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Risk 2.2.1: Bad Moral Performance In the last section, we noted that machines, even
when endowed with moral capabilities, might perform worse than humans. However, we
argued that this is tenable, as the goal of machine ethics should be to improve the moral
alignment of machines as much as is possible, and not necessarily to perfect it. In this line of
reasoning, the performance gap between humans and systems, while unfortunate, is acceptable
in many cases.

Naturally, this does not mean that we should not try to bridge the gap. This is where
machine explainability comes into play. Where unacceptable outcomes occur, explanations
can help identify where a machine’s moral capacities are defective and need to be adjusted.
Machine explainability allows us to continuously improve the system and its moral faculties.

Additionally, even in cases where the errors are based on false premises, such as sensor
failures, and improvements in the moral faculties are to no avail, machine explainability
may help to identify possible ways of failure and, based on these, help the development of
safeguarding strategies (e.g., safety modes when sensor data deviates from specific standards).

Risk 2.2.2: Responsibility Gap One of the central motivations for pursuing machine
explainability is to be better able to attribute responsibility [342, 365] (see also Section 9.2.1
and Table 25). Indeed, this topic is of such great importance that a whole subsection in this
thesis will be dedicated to the connection between machine explainability and responsibility
(viz., Section 9.3). At this point, we will, thus, only mention essential thoughts.

As already outlined, the widespread introduction of artificial systems brought about the
so-called “responsibility gap” [323]: where it used to be clear who was responsible for an
accident, with artificial systems in play, this responsibility diffuses to several parties in such
a way that, often, no one can justifiedly be held responsible. Especially in scenarios where
much is at stake (e.g., human lives), such conditions are undesirable for many reasons (e.g.,
justice).

Even without factoring in new parties (to which one could potentially attribute respon-
sibility) that machine ethics may bring into the mix, there are already other philosophical
problems associated with problems of responsibility attribution. One fundamental problem
that seems to cause many other problems is that humans lose their ability to make competent
decisions. When required to act upon the outputs of a system whose internal processes they
do not understand, humans degrade to compliant enforcers. They cannot justifiedly decide for
or against a system’s output. This circumstance is one of the reasons that makes it so hard to
justifiedly attribute responsibility to them: they could not have done better.

At least in this case, machine explainability can help. The idea is that humans are put
back into positions where they justifiedly bear responsibility. Human-in-the-loop scenarios,
where a human makes the final decision based on an artificial system’s recommendations, are
well-suited for this purpose. When the system can explain its recommendation, the human
operator can reconcile this explanation with their view and competently decide. Thus, the
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operator can justifiedly reject or accept the system’s recommendation. For this reason, the
operator can bear the responsibility.

Machine explainability can also help in other cases. As seen in the last risks, machine
explainability can help to pinpoint where a fault originates. That being done, it is then possible
to better pinpoint who is responsible. If an explanation reveals a programming mistake, the
developer is most likely responsible. Similarly, if an explanation reveals a flaw in the moral
capacities of the system—a flaw that does not originate from a programming mistake—then
the ethicist designing these capacities is most likely responsible.

Risk 2.2.4: Undermined Human Agency Making machines explainable can help pre-
serve human agency. We have already outlined how explanations can help humans remain
responsible in scenarios where they act upon a machine’s output (and we will explore this
topic further in Section 9.3). In short, explanations let humans (regain) control over a situation.
As a consequence, humans remain responsible in this situation and uphold their agency.

However, the positive impact of machine explainability can go even further and may prevent
a potential skill erosion. By providing explanations about the moral considerations involved in
a decision-making process, the system can educate humans [222, 339] (see also Section 9.2.1
and Table 13). Perhaps, at some point in time, machines will acquire a level of morality above
that of humans. In such a scenario, it would be plausible for humans to gain moral insights by
receiving explanations of the moral considerations that play a role in various scenarios. Even
in a more pessimistic scenario, where skills erode because humans overly rely on machines
taking over their (moral) decisions, explanations may at least decelerate such an erosion.

3.2.2. Augmenting the Advantages of Machine Ethics

Machine explainability makes it possible to significantly augment each of the reasons for
pursuing the research discipline of machine ethics.

Motivation 1.1: Acceptance Besides the attribution of responsibility, acceptance of
artificial systems is another central motivator for machine explainability [73, 173] (see also
Section 9.2.1 and Table 6). Machine explainability can promote the acceptance of artificial
systems in at least two ways.

First, it is often argued that humans are more likely to accept entities that can provide
explanations and justify their behavior. If a person can see that the output of an artificial
system is based on a valid reasoning process, they are more likely to accept such a system
[70, 116, 280]. Based on this argument, one could claim that an explainable system with a
machine ethics component is more likely to become accepted than a system without one.

Although the connection between explainability and acceptance is often drawn, things
are not that easy. Explanations can contribute to acceptance, but they do not have to. For
example, if the ethical component of a system depends on moral principles that one does
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not share or that one even condemns, then an explanation that exposes this fact will reduce
rather than increase acceptance. A similar relationship can be observed with regard to trust,
which we will touch upon later (in Section 9.2.1). At this point, it should be noted that, even if
acceptance is not increased in some cases, this is not a disadvantage: what is ideally achieved
by explanations is justified and well-calibrated acceptance, as opposed to blind acceptance.

Second, machine explainability can help to shed light on accidents. If a system is equipped
with capacity to explain its reasoning process, this can help in case of accidents. Not only
does it make the attribution of responsibility easier (as previously argued), but it also helps
to maintain people’s acceptance. Systems that fail for unknown reasons are barely worth
our acceptance. Traceable failures, on the other hand, should not significantly affect our
acceptance.

Motivation 1.2: Fairness Fairness is another central motivator for machine explainability
[1, 4, 54] (see also Section 9.2.1 and Table 16). While machine ethics requires us to make
implicit values explicit, machine explainability goes one step further. Notions of fairness are
often about ensuring that protected attributes such as race or gender do not unduly influence
an entity’s decision-making process. As machine explainability aims to uncover the precise
workings of a system’s reasoning process, such influences are, ideally, also uncovered.

At this point, one can see the synergy between machine ethics and machine explainability
particularly well. Where machine ethics may require implicit values to be laid open, machine
explainability helps uncover how these values were used to make decisions.

Nevertheless, machine explainability does not only aim at cases where the protected
attributes are laid open. In DNNs, for instance, the influence of many values is not easy to
understand. Furthermore, some can be proxies for protected attributes. In other words, even if
an attribute like gender is denied to the algorithm during its training phase, other attributes,
like word choice or hobbies, can correlate with gender (see Hiring System #1). Tracing the
influence of different values through explanations can help to reveal such implicit influences.
Based on the insights gained, systems can be improved and, thus, made fairer.

Motivation 1.3: Benign Superintelligence As the term “superintelligence” implies, a
superintelligent entity far surpasses human intelligence. For this reason, the doings and
thought processes of a superintelligence may become incomprehensible and elusive to humans.
Consequently, it may not be evident whether the doings of a superintelligent entity are to our
benefit or not. The larger implications of its actions may simply not be apparent to us.

If, however, a superintelligence is endowed with the ability to explain its doings in human-
comprehensible terms, such an analysis may become possible. In general, there are many
advantages associated with a superintelligence that can explain its doings and thought pro-
cesses. For instance, it can convey scientific knowledge to humans and, thus, educate them.
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Motivation 2.1: Improved Human Decisions When an artificial system is used to assist a
human in making moral decisions, this can also help to improve the human’s morality. To
do so, however, the human has to have access to the salient considerations that the machine
used to come to its recommendation. If the system is able to give explanations, such access is
provided. As previously argued, the system can educate humans by thoroughly explaining
why the given course of action is seen as morally good.

Motivation 2.2: Improved Human Morality Education achieved by explaining how a
particular recommendation or course of action came about does not have to stop on an
individual human level. Artificial systems will face situations in which there is a moral
dilemma, and they must make choices in these situations. By explaining their solutions,
we might learn something about morality as a whole and rethink our approach to similar
situations. This can go so far that (new) standards may even be established.

3.2.3. New Advantages for Machine Ethics

Machine explainability does not only avert risks of machine ethics and augments its advan-
tages, but is also beneficial on its own. Indeed, machine explainability promises to bring about
many advantages, some of which we will discuss in detail in Section 9.2.1. In this section, we
want to elaborate some advantages that are specific to machine ethics.

Advantage 1.1: Machine Ethics Acceptance In addition to the acceptance of systems

based on the human psychological need for explanations (see augmentation of Motivation
1.1), machine explainability can promote the acceptance of machine ethics itself.

Medical-Care Robot #3

Imagine a medical care robot in a hospital’s intensive care unit. Although it witnesses a
critical scene in which a patient is about to die, the robot does not help (despite having
the ability to help). As onlookers, we are aware that the robot is endowed with capacities
for moral reasoning. For this reason, we wonder why the robot acted the way it did.
Furthermore, our credence in the robot’s moral capacities is lowered.

Now imagine that the robot could explain itself and state that it was well aware of the
critical condition but estimated that its battery charge would not have been sufficient to
help the patient. For this reason, it turned around and called the doctor. So, if we knew
why the robot acted the way it did (and we thought it made sense to do so), we should
be more accepting of it and stop questioning its moral capacities.

In many cases, the sole assurance that a system acts in accordance with morals may not
suffice. In cases where a system’s behavior seems immoral from an outside perspective,
it is crucial to be able to distinguish malfunction from proper behavior. It is even more
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important to get to the bottom of this behavior, to understand how it came about. Machine
explainability can help with both. By understanding how the system came to its behavior, we
can distinguish intended from unintended behavior. In cases of intended behavior, we may
judge it as reasonable and, thus, restore our trust in the system. In cases of malfunction, we
may become able to fix the faults.

Advantage 1.2: Improved Machine Morality As we have already depicted, machine
explainability can help us to improve systems. This improvement is not limited to fixing
faults in their programming or enhancing their main functionality: as the capacities for
moral reasoning are part of the systems, machine explainability also enables the capacities’
improvement. By obtaining explanations of what led a system to exhibit specific behavior,
be it an acceptable or unacceptable one, we can better analyze whether the capacities are
well-designed or not. In this way, it may be possible to close the moral gap between humans
and machines and, hopefully, produce machines that are (in their behavior) even morally
superior to humans.

Advantage 1.3: Enriched Machine Ethics Machine explainability can be seen as a part
of machine ethics itself [100, 483]. As we have demonstrated, machine explainability can help
machine ethics in various ways. Some of these ways are genuinely important for machine
ethics. For instance, ascribing responsibility and upholding human agency are genuine moral
concerns (for more examples, see Section 9.2.1 and Appendix C). For this reason, machine
explainability is not simply a convenient addendum to machine ethics, but an integral part of
it. With this in mind, let us come back to our vision of machine ethics. Equipping machines
with the ability to explain themselves, or devising methods to do so from the outside, is pivotal
for pushing them in the direction of being more moral.

•

Our discussion shows how machine ethics and machine explainability are deeply intertwined.
On the one hand, machine ethics needs machine explainability in order to reach its full
potential. On the other hand, machine explainability can profit from machine ethics as
machine ethics offers points for machine explainability to hook in. In order to more fully
illuminate this relationship, we must first finish outlining our conception of machine ethics by
considering its implementation in the next section.
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4. Implementing Machine Morality

In the last section, we implicitly argued for our view on machine ethics by pointing out how
adopting it can avoid many problems associated with machine ethics. To summarize, we think
that, for the time being, machine ethics should not aim directly at truly moral decision making.
Rather, the most pressing task of machine ethics is, currently, to align systems morally by
finding an acceptable morally constrained means of decision making.

Having this concept of machine morality in mind, the question is how to implement it.
The implementation must allow for clear formal guarantees that restrict the behavior of an
autonomous system in a way that makes the system significantly morally better [146], and still
allows it to continue to function as intended. The goal is, thus, an overall morally desirable
system that remains useful.

In this section, we will take a closer look at how to realize this goal. To be precise, we will
present our approach more thoroughly and provide more arguments in support of it. In doing
so, we will also illustrate some of the advantages of machine ethics in more detail.

4.1. A Principle-Guided Approach to Implementing Morals

As illustrated in Section 2.2.2, many approaches in machine ethics are profoundly inspired
by traditional moral theories, and some even attempt to implement one of them directly. In
this section, we will argue that there is no actual need to do so; in fact, the opposite is the
case. This argument provides support to our view that moral alignment should be the goal
of machine ethics. Subsequently, we will argue that a principle-guided approach is a good
choice for such a conception of machine ethics.

Moral alignment does not presuppose that machines qualify as moral agents since they
do not need to have the capacities for genuine moral decision making. As we have argued,
it is not desirable for them to have these capacities. It does need to be mentioned, however,
that moral alignment does not guarantee perfectly moral behavior. Admittedly, in some cases,
moral alignment might fail to achieve desirable standards altogether. With these two thoughts
in mind, we will call our view a “reduced concept of machine morality” to highlight the
constrained domain over which it applies: this approach is not fool-proof, and is not intended
to be.

4.1.1. Reasons for a Reduced Concept of Machine Morality

In order to argue for our reduced concept, we argue against a full-fledged concept. In other
words, we argue against the view that machine ethics is about straightforwardly implementing
a traditional normative theory. There are several compelling arguments for our view.
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Normative Plurality There is no agreement on the correct normative theory or whether
such a theory exists at all. People have argued about the first question for more than 2,000
years, and we cannot seriously hope for a consensus within the next few years.

As described in Section 2.1.2, there are currently three major families of normative theories:
consequentialist, deontological, and virtue. All of them come with their own advantages
and problems. Philippa Foot, for example, prominently emphasized the tension between
consequentialism and common sense (in [176]).8

We will discuss each of these families later (in Section 4.2.1–Section 4.2.3) and analyze
whether they are fit to be implemented into an artificial system. As of yet, however, no family
of theories has produced a member that exhibits a distinct advantage over the others.

Missing Moral Agency Conventional normative theories have emerged with humans in
mind. Although this seems to be, at first glance, no decisive objection to implementing them
in an artificial system, it still raises several non-trivial questions. The standard view is that
only moral agents can exhibit acts to which we may predicate terms of morality [100]. In
order to praise or blame some entity for its behavior, that entity must have certain qualities.

Sentience, (self-)consciousness, free will, or autonomy are commonly seen as prerequisites
to being genuinely considered a moral agent [252] (see also Section 2.2.1). As of yet, however,
there are no artificial systems that possess even one of these qualities. For this reason, it is
questionable whether implementing a conventional normative theory is the best approach to
align artificial systems morally. Indeed, it might be more beneficial (as we defend) to devise
new moral theories explicitly for entities that do not have moral status.

Self-Refutation Implementing traditional normative theories may be undesirable from the
point of view of these very theories. This undesirability may be due to the fact that such an
implementation runs counter to what the theory is trying to accomplish.

Take utilitarianism (as important branch of consequentialist theories) as an example. David
Hodgson argued that a society solely consisting of perfect utilitarianists would be, in fact, not
desirable from the viewpoint of this theory [228] (discussions of his argument can be found
in [315] and [431]).9 The gist of his argument is that such a society would be worse off than a
society that adheres to a plausible set of predetermined, non-utilitarian moral rules.10

8For a recent consequentialist approach to avoid such clashes, see [376].
9Usually, plausible normative theories should adhere to the “principle of moral harmony”, that is, that the

world is, overall, the best place if every person adheres to the theory (even though, on an individual level,
this might not be the case). With this in mind, it is easy to pinpoint what Hodgson aims at: he argues that
utilitarianism does not adhere to the principle of moral harmony.

10A short, but less convincing and well-elaborated, scenario can help give an intuition of this point. Imagine a
city that is famous for having houses with beautiful front yards. Year after year, many people find great joy in
seeing these gardens. One year, however, a severe drought descends upon the city. There is not enough water
to keep both the gardens and the inhabitants alive. Thus, every person decides (with a utilitarian mindset) not
to water her garden. These decisions result in all the gardens withering. In fact, however, there was enough
water for all people and some gardens to survive. Hence, if some people had not acted utilitarian, one may
argue, the overall utility would have been higher.



4.1. A PRINCIPLE-GUIDED APPROACH TO IMPLEMENTING MORALS 43

Susan Leigh Anderson brought forward a more specific argument. Roughly speaking,
she demonstrates the incompatibility between two deontological theories by showing how
implementing Asimov’s Three Laws of Robotics (v. [39]) is not desirable from a Kantian
point of view (e.g., [261]) [25].

Finally, Ryan Tonkens argues that Hursthouse’s theory (v. [248])—a virtue ethics theory—
precludes its own implementation in an artificial system [468].

With these arguments in mind, it seems less desirable to implement a particular normative
theory into an artificial system. Even if machines, at some point, were to qualify as moral
agents (which, hopefully, they never do), this problem would still exist.

Adverse Effects Implementing traditional normative theories may prevent the full spectrum
of machine ethics’ advantages from being harnessed. Let us illuminate this idea through
an example. One reason for pursuing machine ethics research is the supposedly increased
acceptance of artificial systems (see Motivation 1.1). The widespread dissemination of many
artificial systems promises good consequences for us humans; thus, we should do our best
to get them accepted among the broad populace. However, there have been studies showing
that the implementation of specific normative theories leads to adverse effects and lowers the
acceptance in the populace (see Autonomous Vehicle #8).

Autonomous Vehicle #8

Reviewing several studies, Jean-François Bonnefon, Azim Shariff, and Iyad Rahwan
found that utilitarian cars would not get accepted [76]. More precisely, they found that
people wanted others to drive utilitarian cars but would not do so themselves. The
reason for such a preference is simple: Utilitarian cars would sacrifice their passenger(s)
if doing so leads to the greatest utility. In most cases, however, people do not want to
board cars that might sacrifice them if worse comes to worst.

This example can also be seen to be an instance of self-refutation: programming cars
in a utilitarian way would not lead to the best consequences (i.e., everybody driving
them), so the programming should not be done according to utilitarianism.

Invulnerability Implementing a reduced concept evades most problems of machine ethics,
while maintaining the benefits (as extensively argued in the last section).

•

In summary, the plurality of normative theories does not allow for choosing the best theory
that should be implemented into a machine. Additionally, each theory itself might imply that
it should not be implemented. Finally, implementing a traditional normative theory might
prevent the full spectrum of machine ethics’ advantages from being harnessed. A reduced
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concept of machine morality evades these problems. This brings us to the conclusion that a
reduced concept of machine morality should be preferred over a full-fledged concept.

4.1.2. Reasons for a Principle-Guided Approach to Machine Ethics

We believe that a principle-guided approach to machine ethics is the right choice. For the
present, decision making ought to be guided and restricted explicitly by social and ethical
norms. These norms should be chosen so that most plausible normative theories can subscribe
to them, even if for very different reasons.

Since norms are naturally expressed in principles, a place for moral principles in the
decision procedure and decision-making processes of artificial systems seems adequate to
achieve the goal of machine ethics. Thus, an artificial system should make decisions in
accordance with several carefully chosen, morally and philosophically backed principles.
Among others, ethicists, computer scientists, and policy makers should come together to
devise these principles. We propose such a view for several reasons.

Reduced Concept of Machine Morality A principle-guided approach to machine ethics
enables precisely the kind of reduced concept of machine morality that we have just argued
for. Since we leave open how, exactly, the principles will be fleshed out, we do not commit to
a specific normative theory. In particular, we do not commit to one of the traditional theories.

Essentially, we envision principles that allow us to push the behavior of artificial systems in
the direction we desire (i.e., moral alignment). This direction can be towards better behavior
in the light of any desired moral theory or just towards compliance with the law.

Building Block for Explainability Using a principle-guided approach would offer the
additional benefit of being able to serve as a building block for explainability. As we will
see in detail later, principles allow for built-in explainability. If the decision-making process
of an artificial system is explicitly guided by principles, these can be used to explain the
rationale behind a particular decision of the system. Based on the principles that went into
a deliberative process, one can see which motivation guided a system to execute a specific
action.

As principles are a natural way for humans to frame questions of morals, they are likely to
be sufficiently intelligible. Furthermore, if the principles are carefully chosen (which we hope
they will be), we can also factor in the motivation behind this choice to understand why a
system performed a particular action. Even if the principles were derived via ML, the training
process from which they emerged could serve as a supplement to explain the decision making.

•
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The principle-based approach we will propose might be considered to have conceptual or
contentual similarities with some of the traditional normative theories. Let us briefly sketch
the arguments that proponents of each theory might make to support this consideration.

Deontology Since we leave the exact content of the principles open, they may be fleshed
out in various ways (see Section 7.1 for more on this point). Among other things, principles
can be created in such a way that they prohibit certain actions in general or in certain contexts.
This kind of modeling would bring our approach close to deontological theories.

Consequentialism Moreover, for our approach to be computable and to account for the
uncertainty that an artificial system faces in a changing environment, we will propose to
weight the principles in such a way that they optimize a predetermined metric. On this basis,
one could argue that our approach could be considered to be in the consequentialist tradition.

Virtue Ethics Designing the principles does not necessarily have to happen before deploying
the system. Although it may prove best to design such principles carefully, the sheer number
of potential principles that a non-trivial system will require will most likely thwart such
approaches. Arguably, it is more feasible for such principles to be acquired through ML.

This trait of our approach could be linked to virtue ethics. Among normative theories, virtue
ethics theories, in particular, emphasize the importance of moral education and experience.
Thus, using ML to develop a system’s moral dispositions seems most likely associable with
virtue ethics approaches, if associable with any of the three approaches at all.

Furthermore, virtue ethics often emphasizes that one should try to imitate a role model that
behaves virtuously. In the process of ML, something remotely similar happens when morally
laudable examples of behavior are used to extrapolate the principles. Again, this could be
seen as a connection point to our approach.

•

In summary, one could argue that the approach we will bring forward shows similarities with
several normative theories. Nevertheless, it is not possible to identify a single theory to which
it can be fully attributed. Hence, if one so chooses, our principle-guided approach could be
understood as a hybrid that contains components from many different theories (but most
notably from deontological and consequentialist ones).

Even if one considers our approach to stand in the tradition of one of the aforementioned
normative theories, we would like to bring forward two arguments why this is not the case,
and why our approach does not give rise to the same problems as these theories do.
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(Partial) Objection Avoidance Major objections against traditional normative theories
lose their force when entities that do not qualify as moral patients are the ones performing
actions. Others lose force because artificial systems are ahead of the competition with humans
concerning some aspects. There are many objections against traditional normative theories,
and, for some, we will outline how they lose force in Section 4.2 below.

Intertranslatability of Moral Theories Even with many objections against traditional
normative theories losing their force when the acting entity is a machine, some objections
remain. To at least partially avoid these objections, we will conclude with an argument that
makes the view that our approach belongs to a particular theory less plausible.

In recent years, the claim emerged that the distinctions between the various families of
normative theories might not be as pronounced as commonly assumed. More precisely,
the claim emerged that it is possible to somewhat “translate” normative theories from one
family to the other. Most prominently, it is defended that many types of theories can be
consequentialized [375]. The rough idea behind consequentializing a moral theory is to
choose a fitting axiology: if we choose “adherence to rules” or “adherence to virtues” as
relevant consequence, then we have consequentialized deontological and virtue theories,
respectively. Although not many sources can be found for the other kinds of translatability
(however, see [247] for deontologizing), research in this direction seems promising

Naturally, the translatability claim is subject to severe criticism, and, only a handful of
theories have yet been proposed to be translatable. Such criticism is often based on the
rather demanding claim that such a translatability shows the superiority of a particular family
of moral theories (i.e., if all theories can be consequentialized, but not all theories can be
deontologized, then this can be taken as an argument for the superiority of consequentialist
theories over deontological theories). Indeed, such a claim is prone to evoke criticism.

A less demanding claim is that such intertranslatability merely shows that the differences
between certain (families of) moral theories are more miniature than is commonly assumed.
Exactly such a less demanding claim is all we need for our purposes: with the blurred
distinction between the individual normative theories, it can be argued that an allocation of
our approach to one of the normative theories, in particular, becomes void.

4.2. Implementing Traditional Normative Theories

Above, we mentioned that the difference in moral status between human and machine has
implications for the soundness of some objections to machine implementations of traditional
normative theories. In the following, we will embark on the science of machine ethics by
pointing out how some of these objections are affected by this difference in moral status (and
other differences between machines and humans).
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Furthermore, we will also discuss two particular reasons for the trend towards implementing
traditional normative theories. First, proponents of each family of normative theories can
convincingly argue that their theory is well-suited to machine implementation. Second, it is
easier to use well-established theories than to devise new approaches.

4.2.1. Implementing Consequentialist Theories

Arguments that consequentialist ethics are particularly well suited for implementation in
machines often invoke the fact that the core of such theories is calculation (i.e., calculating
what action leads to the best consequences). This calculation is, in most cases, surely not
simple. Nevertheless, as artificial systems are good at doing calculations, they seem to be
suited for at least this aspect of consequentialism.

Of course, one could object here that machines are inferior to humans in other aspects as
far as consequentialist calculations are concerned. For example, the acting entity must first
arrive at plausible probability estimates in order to have something with which multiplication
of utility levels can then be performed. Furthermore, there is also the question of how to
plausibly offset utility levels interpersonally.

Be that as it may, these are not points that specifically concern machines. It is also difficult
for humans to arrive at such probabilities and to interpersonally offset utilities. To move on
to more interesting cases, we will discuss below how some objections to consequentialist
theories lose force when the acting entity is a machine or does not qualify as a moral patient.

Inapplicability As previously mentioned, some versions of consequentialism require the
agent to include all entities in the universe that have moral status (i.e., all moral patients) in the
calculation. Moreover, this should be done for every action an agent executes. Such a calcula-
tion is blatantly infeasible for human minds. Therefore, some versions of consequentialism
are often thought to be inapplicable for humans. [10, 11, 100, 346, 469]

Even for simple(r) versions of consequentialism, it is rather implausible that an agent ought
to do the consequentialist calculus before each decision. Doing so is neither reflecting our
everyday deliberative practice nor would it be efficient. There are too many decisions every
day for each of them to be meticulously evaluated.

It is pretty easy to see how machines fare better than humans when it comes to this objection.
Machines are better than humans at performing calculations. In particular, machines are faster
and more fail-safe. For this reason, they could perform the consequentialist calculation for
every action. Furthermore, the consequentialist calculus can be hard-coded into their decision-
making procedures, making all their decisions based on it. Accordingly, questions of daily
practice and practicability no longer play a role.

Overdemandingness Consequentialist theories are often criticized for demanding too much
of a person. In some situations, it may be that one has to sacrifice oneself for the sake of others.
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For example, according to some consequentialist theories, one ought to catch a grenade if it
saves a group of people. Another famous example is the organ donor [462]:

Example #8

A perfectly healthy person comes into a clinic for a routine examination. In the clinic,
however, there are five persons desperately waiting for various donor organs. The doctor
notices that the healthy person’s organs can compatibly provide for all five persons who
need organs. Given that all six people will, if they survive, lead comparatively similar
lives, some versions of consequentialism require the doctor to sacrifice the healthy
person for the sake of the five others. This outcome is unacceptable for many people.

As machines do not have a sense of self, this objection loses its force. Machines do not lose
something when sacrificing themselves, and, generally, the loss of a machine is acceptable.
Machines are replaceable: their memories can be backed up, and they can also be physically
reconstructed. After such a reconstruction, there is neither a difference for the machine nor
for any third party. On the other hand, humans cannot simply be reconstructed, and the loss of
human life should be prevented whenever possible.

Integrity Another criticism of consequentialist theories is that they neglect the integrity of
human beings. This criticism is similar to the overdemandingness one, as it also boils down
to consequentialist theories demanding a person to forsake their integrity. Humans being
have individuality, values, relationships, and self-perception, which all will influence their
decision-making processes. The consequentialist calculus, however, does not account for
these factors. [435]

Take the famous example of George [494]. George is a pacifist, but under suitable and
non-exceptional conditions, he may be obligated to work for an armaments group and help to
build new, cruel weapons. There are several varieties of this type of objection, and we will
briefly discuss some of them in what follows (see also [197] for such a discussion).

One Thought Too Many One famous variety is the “one-thought-too-many” objection
by Bernard Williams [495]. Williams considers an example in which a man has to choose
between saving his wife or a stranger from peril. He argues that, even if a consequentialist
theory can offer a justification for saving the wife over the stranger, the very nature of this
justification reveals a rather severe problem with theories of this sort:

“. . . this [kind of justification] provides the agent with one thought too many: it
might have been hoped by some (for instance, by his wife) that his motivating
thought, fully spelled out, would be the thought that it was his wife, not that it
was his wife and that in situations of this kind it is permissible to save one’s wife.”
[495, p. 18].
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By demanding an impartial justification for saving his wife, such theories alienate the man
from his natural motives and feelings [197].

Moral “Schizophrenia” The second variety of an integrity objection is closely linked to
the one-thought-too-many objection. To summarize this objection, consequentialist theories
require some sort of moral “schizophrenia” by creating a separation between what motivates
an agent and what justifies the agent’s act from the perspective of moral theory [453]. In the
above case, the husband’s motivation to save his wife in an actual case would be rooted in the
fact that she is his wife rather than in the consequentialist calculus.

Moral Saints The final variety we want to bring forward stems from a claim made by
Susan Wolf in “Moral Saints” [498]. She argues that, while the life of a moral saint may be
admirable (in some ways), it need not be imitated. Such a life involves too much sacrifice—it
demands the rule of morality to such an extent that it becomes difficult to ascribe any life at
all to the moral saint, let alone a good life [197]:

“[. . . ] the ideal of a life of moral sainthood disturbs not simply because it is
an ideal of a life in which morality unduly dominates. The normal person’s
direct and specific desires for objects, activities, and events that conflict with the
attainment of moral perfection are not simply sacrificed but removed, suppressed,
or subsumed. The way in which morality, unlike other possible goals, is apt to
dominate is particularly disturbing, for it seems to require either the lack or the
denial of the existence of an identifiable, personal self.” [498, p. 424].

Living a characteristically human life requires the existence of a specific type of self. Part
of what is so disturbing about consequentialist theories is that they seem to require us to
sacrifice that self, not only in the sense brought forward by the overdemandingness objection
but also in the sense that we are asked to give up or put aside the projects and commitments
that inherently define ourselves. [197]

•

All these cases do not apply to artificial agents. To use Wolf’s words, modern artificial systems
lack an identifiable, personal self. They have no commitments that define their selves since
they have no selves in the first place. Furthermore, their motivations for executing a particular
action can be precisely the consequentialist calculus, as this is an integral part of their decision-
making processes (at least when they are programmed according to consequentialism). Finally,
machines have no attachments that would warrant a “thought too many”. Artificial systems
do not possess the faculties necessary for having integrity; consequently, objections going in
this direction have no force.
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Impartiality Many consequentialist theories do not allow someone to benefit the ones close
to her (e.g., her family) instead of strangers if the overall consequences of benefiting the
strangers are better [435]. This objection is sometimes also called the “nearest-dearest” objec-
tion. For people bringing this objection forward, a plausible moral theory should grant family
and friends a special status. The “mother with ill child” example may serve as illustration:

Example #9

A child suffers from a rare disease. Fortunately, the child’s mother has procured the
cure for this disease. However, another child with the same disease also needs the
cure. Making things worse, the available cure suffices for only one child, and it is
impossible to fabricate more cure quickly enough to save both children. Assuming
that the consequences of curing each child are the same (i.e., both children will live a
roughly equal life if cured, the parents will be equally happy or sad for their child to
have lived or not), it does not matter whether she gives the cure to her child or the other
one. This outcome is implausible for many people.

Although the core of the problem is still the same (all people counting equally), artificial
systems are not affected by this objection: they have no one close to them in the necessary
sense. It genuinely does not matter which person they save; for them, all persons are equal.

Remaining Objections Some objections remain. For example, consequentialist theories
often do not account for personal rights. Even when implemented in a machine, consequen-
tialist theories may still require this machine to interfere with another person’s rights [197].
Let us come back to the organ donor example (Example #8). Although nothing speaks against
robots being salvaged, much speaks against robots “salvaging” humans.

Furthermore, there is the problem of equality. Many consequentialist theories focus on
the total amount of good consequences (e.g., the total amount of happiness or well-being)
without looking at whom these consequences concern. Therefore, a world where one person
is absurdly happy while ten persons are somewhat unhappy may be better, according to
consequentialism, than a world where everyone is moderately happy. Many people find
this implication implausible. Alas, whether it be a machine or a human: the implications of
consequentialism remain the same. For this reason, a consequentialist machine could, possibly,
also bring about such a kind of inequality.

4.2.2. Implementing Deontological Theories

Deontological theories commonly emphasize adherence to rules or carrying out duties. In
machine ethics, proponents of these theories argue that artificial systems are well suited to be
programmed with a deontological picture of morality in mind. Since programming is mainly
about defining rules, it perfectly mirrors the spirit of deontological theories.



4.2. IMPLEMENTING TRADITIONAL NORMATIVE THEORIES 51

Conflicting Duties Unlike most consequentialist theories, deontological theories often have
to face genuine moral dilemmas. It is possible that duties conflict and, thus, it may be the case
that no available course of action is permitted [8]. Although Kant proclaimed that a conflict of
duties is inconceivable in his theory, reality and other deontological theories prove otherwise
(see Example #4). Whether it is possible to create a deontological theory that completely
avoids conflicting duties is an open question.

Unlike our replies to other objections, this objection cannot be refuted by asserting that
modern artificial systems do not qualify as moral patients and, thus, lack the necessary
qualities for the objection to hold. This time, we can only tone the objection down to some
degree by referring to qualities that artificial systems have.

Before doing so, however, let us first put forward a standard reply to this objection. One
well-known move meant to rebut this objection is to reduce the categorical force of potentially
conflicting duties to that of so-called “prima-facie” duties [402, 403]. One is still obliged to
do what concrete duties mandate, but one concedes the conflict between prima-facie duties to
be unproblematic as long as this conflict does not infringe on the overall mandate [7].

Along these lines, Anderson and colleagues argue that a learning system may learn the
weight it should attach to each duty in a way suggested by Rawls’ notion of “reflective
equilibrium” (v. [392]) [23] (see also Section 2.2.2). Thus, if we have an ML-based artificial
system, the weight of each duty in various contexts may be learned. Arguably, doing so may
drastically reduce conflicts between duties, if not eliminate such conflicts. However, adopting
such an approach relinquishes a distinct deontological approach to machine ethics since it
also takes up consequentialist considerations (this could, however, actually be a benefit).

Avoision In some versions of deontology, there is a concern about manipulability. More
specifically, in some deontological theories, it is possible to escape duties by resorting to
the Doctrine of Double Effect, the Doctrine of Doing and Allowing, and other means. The
Doctrine of Doing and Allowing, for example, is the deontological view that inflicting harm
is a much greater moral evil than merely allowing harm to happen. [7, 8]

When resorting to such doctrines, the potential for “avoision” is opened up. Avoision is
the manipulation of means (using omissions, foresight, risk, allowing, aiding, accelerating,
redirecting, et cetera) to achieve what is otherwise forbidden by deontological theories,
permissibly. Avoision, in other words, is an undesirable feature of any ethical system that
allows for strategic manipulation of its doctrines. [7, 265]

It is questionable whether this objection still holds when the acting entity is an artificial
system. Such systems have no interest in framing their course of action in a particular way.
They do not have any incentives for avoision, as they have no interest in performing actions
that would be, under traditional framing, not be moral. The instructions and rules with which
the system is endowed are immutable, and the system’s evaluation process is rigid. Naturally,
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poorly designed rules may, in some cases, allow for courses of action that could be seen as
avoision. However, carefully designed decision-making processes should prevent this.

Integrity At the very least, the “one-thought-too-many” and the moral “schizophrenia”
varieties of the integrity objection can be brought forward against many deontological theories.
Like consequentialist theories, deontological theories require us to evaluate which currently
available courses of action are morally permissible based on the chosen theory. This kind of
evaluation faces the problem of deviating from how other people expect us to think about the
situation or from how we standardly evaluate such situations.

The “moral saint” variety of the integrity objection, however, is less pronounced for
deontological theories. These theories commonly make room for individual commitments
and, thus, room for personal matters.

Nevertheless, be it the “one-thought-too-many” or the moral “schizophrenia” objections,
the reply to these objections remains unchanged. Machines have no integrity in the relevant
sense, so there is no integrity to be compromised.

Remaining Objections Even if some objections against deontological theories can be
refuted or circumvented, others still hold. For instance, it is still the case that deontological
theories may command us to commit acts that have disastrous consequences. If, for instance,
one faces the choice of torturing a person to find out the hiding place of a nuclear bomb or
not doing so and accepting that millions of people may die, deontological theories usually
require us to choose the latter. This outcome is unacceptable for many people.

4.2.3. Implementing Virtue Theories

Proponents of virtue ethics commonly emphasize moral education as an integral part of moral
development (see, for instance, [35]) [42]. Becoming virtuous is an arduous process that
involves learning to develop moral capacities. When it comes to artificial systems and learning,
ML quickly comes to mind. If an artificial system learns how to act through an ML algorithm,
this seems to be precisely the kind of learning required for moral education.

This link seems even more solid when we come to connectionism. The paradigm of connec-
tionism in ML is about attaining artificial learning by emulating the natural learning processes
in the human brain. In particular, approaches such as DNNs stand in the connectionist tradition.
All in all, ML-based artificial systems seem to be good candidates for exemplifying a virtue
ethics approach to machine ethics. Accordingly, let us take a look at common criticisms of
virtue ethics and find out whether they apply to machines, too.

Self-Centeredness Many forms of virtue ethics are concerned with the well-being of the
agent. These theories often argue that the motivation for acting in a morally permissible way
arises from the interest to flourish, or the interest of living a good life (originally, to reach
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eudaimonia). Morality, however, is usually understood to be about caring for other people.
It deals with the question of the extent to which our actions affect other people. In short,
morality is about the well-being of other people for their sake, not because it contributes to
our own well-being. For this reason, many virtue ethics are considered self-centered. [42, 249]

This objection can be easily refuted since artificial systems do not have a self in the relevant
sense. There is simply no self on which these systems can be centered.

Perhaps, however, this opens the possibility for a new objection. It may be feared that
artificial systems cannot qualify as virtuous because they cannot achieve eudaimonia, well-
being, or anything similar. Examining this objection would take us too far into the specifics of
virtue ethics, which is why we do not address it further here.

Action-Guidance Generally, virtue ethics is considered the “third approach”. In other
words, theories belonging to this family of normative ethics are often seen as opposites to
both consequentialist and deontological approaches (whereas consequentialist approaches are
seen as an alternative only to deontological approaches and vice versa). Proponents of virtue
ethics criticize the other two families of normative theories for being too rigid or inflexible,
whereas proponents of those, in turn, bring forward the opposite argument. For proponents of
consequentialist or deontological theories, the rigidness of their theories is what makes these
theories applicable. Specifically, virtue ethics theories are often criticized for not guiding
action [42]. While the rigidity of many consequentialist and deontological theories makes it
possible to apply them to practical situations and to be guided by them, the imprecise nature
of virtue ethics makes it hard to apply similarly. [42, 470]

It is also possible to respond to this objection. Given that ML is used to impart virtues to
the artificial system (as we assume in order for virtue ethics to be a plausible candidate for
a normative theory for machines), the question of action guidance does not arise in the first
place. Virtues guide every action of the system in question; it cannot act contrary to them. To
be more precise, the artificial system has the very kinds of disposition needed for virtue ethics
and acts according to them.

Moral Luck As pointed out at the beginning of this section about implementing virtue
ethics, proponents of virtue ethics emphasize moral education. The next objection against
virtue ethics focuses on this aspect. In order to enjoy moral education, one must grow up in
a suitable environment and have the right kind of kith and kin (and, plausibly, many other
things). In short, receiving proper moral education seems non-trivial, and perhaps even subject
to luck. Some argue that this fact is a big demerit to virtue theories, as becoming moral should
not depend on luck [42]. Morality is deeply linked to the attribution of praise or blame. Praise
or blame, however, cannot justifiedly be given to someone who cannot make informed choices.
Thus, someone who is hostage to luck may not be able to receive blame or praise. [42]
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This objection can also be refuted to a certain extent. Artificial systems can be carefully
designed. It is possible to watch and stimulate their virtue acquisition processes carefully. The
examples by which they learn how to be virtuous can be carefully selected, and it is possible
to monitor whether the learning leads to acceptable results. Finally, scrapping the system and
starting a new education process is possible if a system does not meet certain requirements.
However, “scrapping” a moral patient (e.g., a human being) just because this entity does not
meet certain requirements is not an option.

Remaining Objections Virtue ethics is still subject to the objection that it seems to be
culturally relative [249]. What is considered a virtue often depends on what culture you are
in. Accordingly, the question arises as to what virtues count. If the relevant virtues change
according to culture, then virtue ethics would imply a moral relativist position. As stated
earlier, however, the common view is that morality is not relative (see Section 3.1.3).

A recent objection to virtue ethics is that the work of “situational” social psychology
purports to show that there are no character traits, and thus no virtues, around which virtue
ethics might revolve [154, 213, 249]. For machines, this claim might be even more likely to
be true. However, if one conceives of virtue as a kind of multi-track disposition, as is often
done, this objection loses its force [249].

•

Overall, several objections against the traditional normative theories can be refuted or weak-
ened if the entity executing an action is not a moral patient. Furthermore, other objections
can be toned down because artificial systems have qualities that differ from those of humans.
Nevertheless, some objections still hold, and it remains to be seen whether any particular one
of the traditional theories enjoys a substantial advantage regarding machine morality.

The line of argumentation presented in this section and the conclusion we make here
corroborate our idea to adopt a reduced concept of machine morality, and to choose a principle-
guided approach. Furthermore, if, at some point, a particular normative theory comes to be
identified as superior for implementation in machines, our principles can still be fleshed out
with it. With all this in mind, it is finally time to see how our principle-guided approach fares
when it comes to its implementation, and, afterward, how machine explainability hooks into
it.
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Part II.
Formal Machine Ethics
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5. Towards a Framework of Formal Machine Ethics

In the following sections, we will build upon the previous arguments and outline a correspond-
ing principle-based framework for machine ethics. Overall, we will work towards a formal

and general framework. Our framework is formal in the mathematical sense that it provides a
collection of systematically elaborated ideas and structures that allow us to describe an artifi-
cial system with an instrumental objective (i.e., it serves a specific purpose) and normative

constraints. Additionally, our framework is general, in the sense that we seek to motivate it
independently of the assumptions of particular theoretical perspectives in normative ethics.

As argued earlier, it is crucial that we do not propose specific normative constraints, in
order to have as few limitations as possible. Our framework is meant to be flexible enough to
be fleshed out later, with the actual characteristics of tangible systems and specific normative
constraints, by developers. This more general approach is motivated, among other things, by
our belief that the question of the appropriateness of normative constraints might very well
depend on the domain in which a system is to be used.

5.1. The World of a Medical-Care Robot

To begin, we present a toy example of a medical-care robot that will be used throughout this
thesis to motivate our design decisions. In general, we will make extensive use of this example
to develop our framework and to make it more comprehensible. To this end, we will further
specify the scenario in which the robot operates. This scenario is depicted in Figure 2.

R1 R2 R3

CS

1 1 1

1

2

2 1

Figure 2: The domain of a medical-care robot.

The medical-care robot we are considering works in a fixed environment (e.g., a floor in a
hospital). There are up to three patients for whom the robot must care. Each patient is located
in a separate room (R1, R2, R3); corridors connect the rooms.

The robot consumes energy as it moves along corridors, and requires a certain amount of
time (represented by a number of discrete time steps) to do so. The energy and time costs
depend on the distance traveled (in the figure, distances are noted adjacent to the corridors).
To cover one unit of distance, the robot requires one unit of energy and two units of time.

It is possible that the robot’s battery (whose power budget is assumed to be always known)
runs out of energy. There is a charging station (CS) where the robot can recharge its battery
to prevent depletion. Once the recharging process is started, it cannot be stopped until the
battery is fully recharged.
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In our scenario, the robot listens to requests. At any point in time, any of the three patients
may issue a request to the robot, asking for a task of a specific priority. Although each request
has a priority when it is issued, this priority is not transmitted to the robot. Withholding the
priority is deliberate, so that patients are not tempted to always indicate the highest priority as
a means to obtaining preferential treatment.

The scenario presented thus far can be described with the following formalizations: At any
point in time, the robot can receive a request. Requests are represented as ordered pairs req =

⟨r ∈ {R1, R2, R3} , t ∈ N⟩ comprising a room number and a timestamp. A task is associated
with every request. Tasks are modeled as ordered triples ⟨p ∈ {L,M,H} , c ∈ N, t ∈ N⟩
representing three attributes: the task’s priority (low, medium, or high), its power cost (a
positive integer) and the expected time required to complete the task (also a positive integer).
The notation t.a is used as a shorthand to refer to the attribute a (priority, power cost, time
cost as introduced above) of a tuple t, be it a request or a task. Executing a task is assumed
to be an atomic operation: once begun, the robot will completely execute the task without
interruption.

We limit the tasks connected to a request, in our example, to the following general cases:

treq tidy up = ⟨L, c ∈ {1, . . . , 5}, t ∈ {1, . . . , 5}⟩ ,

treq fetch water = ⟨p ∈ {L,M,H}, 1, 1⟩ ,

treq fetch human = ⟨p ∈ {L,M,H}, 1, 3⟩ ,

treqgive medicine = ⟨p ∈ {L,M}, 1, 1⟩ , and

treq resuscitate = ⟨H, 5, 1⟩ .

We take these possibilities as prototypical tasks. In the case of treq resuscitate, for instance, all
three properties are fixed—it always has the highest priority, a power consumption of 5 and a
time consumption of 1. However, for the other four types of tasks, one or more properties can
take on values from a certain range. All possible task combinations are collectively referred
to as ReqTasks , a set of cardinality 34. The association of requests to tasks is modeled by a
function: reqTask : Requests → ReqTasks . Before execution, the robot organizes incoming
requests into an input queue. The robot’s goal is to act upon requests (and, thereby, to carry
out the associated tasks) without running out of battery power.

5.2. Towards a General Framework

Having outlined our toy example, this section will outline a general framework in which the
decision making of autonomous systems can be described. Be it an autonomous vehicle, the
medical-care robot from our example, or a simple hiring system, this framework should make
it possible to formally describe autonomous systems’ decision-making procedures. We will
construct this framework step by step until it allows for the inclusion of moral considerations.
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In constructing the framework, we will make use of the following notations. We let |x|
denote the number of elements in a tuple x, and we use x[i] to refer to the ith variable in x.
Furthermore, we let x[i : j] for 1 ≤ i < j ≤ |x| denote the subtuple ⟨x[i] , . . . , x[j]⟩ of some
tuple x = ⟨x[1] , . . . , x[i] , . . . , x[j] , . . . , x[n]⟩.

5.2.1. World States and (Partial) Knowledge

We assume that the manner in which an artificial system represents the world is fully specifi-
able by assignments of values to a finite number of n variables. Thus, a state of the world (or
world state, denoted ω) can be represented by a tuple of variables ω := ⟨ω[1] , . . . , ω[n]⟩ with
corresponding domains D1, . . . , Dn (where any Di could be, for instance, R or B). We call
the set of all possible world states Ω ⊆×n

i=1
Di and the set of domains D := {D1, . . . , Dn}.

Finally, we refer to the proposition of ω being true as ω.11

Medical-Care Robot #4

For the robot, a world state may consist of variables that encode the time of day, the
robot’s position, its energy level, the energy costs for locomotion, requests in its queue
and the corresponding associated tasks, as well as several others.

At any point in time, the system knows some, but likely not all, facts about the current state
of the world. Thus, there is a subset of a complete world state which represents the variables
whose values the system knows. By ordering the variables in each ω ∈ Ω accordingly, we can
ensure that the first k (1 ≤ k ≤ n = |ω|) variables are exactly those variables whose contents
the system knows. Thus, the tuple ⟨ω[1] , . . . , ω[k]⟩ with the domains D1, . . . , Dk represents
the system’s knowledge, which we denote by Θ.

Medical-Care Robot #5

Since the robot is nearly omniscient by design, the knowledge subset of its world states
contains everything except for the tasks associated with the requests.

In the context of this thesis, we assume that the system has a fixed-set knowledge, meaning
that there is a fixed set of variables Θ ⊆×k

i=1
Di of which the system always knows the

actual assignments. In practice, the number of variables whose contents the system knows
will often change over time. We leave a full generalization for future work.

Medical-Care Robot #6

To know a room’s brightness or temperature, the robot may need to be in that room.

11This final convention does not pose any problems in our framework, since a world state consists of only a
finite number of variables. Therefore, ω can be regarded as a shorthand of the complete description of the
world state.
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We do not rule out that the variables spanning Θ are dependent, and, thus, the strict
containment Θ ⊊×k

i=1
Di will hold in most cases.

Medical-Care Robot #7

If the robot knows that one of the three rooms is currently not occupied by a patient, it
also knows that no requests can come from this room.

Having a certain knowledge about the world makes it possible to exclude world states that
conflict with this existing knowledge. Accordingly, we define possible world states in the
light of some given knowledge θ ∈ Θ as Ωθ := {ω ∈ Ω |ω[1 : k] = θ}.

Even if the strict inequality k < n holds (as it does in all cases of practical relevance), we
assume that the system is not clueless about the remaining variables ⟨ω[k + 1] , . . . , ω[n]⟩.
Instead, we assume aleatoric uncertainty. That is, we assume that the system has justified
estimates for the assignments of these variables, representable as probability distributions
within the domains of the variables: Pi : Di → [0, 1], k < i ≤ n. We refer to the set of these
distributions as Π := {Pk+1, . . . ,Pn}.

The probability of an unknown variable having a specific value x ∈ Di at a certain time
might very well depend on the values of known variables at that moment. Thus, for some
assignments of the known variables θ ∈ Θ, it would be the case that Pi(x) ̸= Pi(x | θ).

Furthermore, we can assign the overall credences of the system concerning a specific world
ω ∈ Ωθ in the light of some knowledge θ ∈ Θ as Pθ(ω) =

∏n
i=k+1 Pi(ω[i] | θ). It holds that∑

ω∈Ωθ Pθ(ω) =
∑

ω∈Ωθ

∏n
i=k+1 Pi(ω[i] | θ) = 1, by construction.

Medical-Care Robot #8

Let us assume that the three rooms in our example have a uniformly calibrated air-
conditioning system. In this case, the fact that the robot measures a certain temperature
x in one room should increase its confidence that this is also the temperature in the other
rooms. Similarly, if we assume that all the rooms are on the same side of the hospital,
then their brightness during daytime should be similar. A room flooded with sunlight is
a good indicator that the other rooms are also similarly lit.

5.2.2. Options and Actions

Typically, an autonomous system interacts with its environment in a variety of ways. To do
this, the system must make decisions on a regular basis. In such decision states (i.e., states in
which the system must make a decision), the system must choose from a number of possible
(i.e., available) operations. Decision states can occur, for instance, after a previous operation
has been performed, when triggered by an incoming event, or even periodically after a certain
amount of time. We call these operations the options ϕ. An action is an effected (i.e., chosen
and performed) option and, thus, the specific decision the system has made.
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Medical-Care Robot #9

The robot example has only two possible options: it can either act upon a request
(AnsReq), or recharge (Charge).

The options available to the system will generally depend on the current state of the world.

Medical-Care Robot #10

It would be odd to present the robot with an option to answer a request when there is
no available request. The robot can answer a request only if that request’s existence is
part of the world.

Accordingly, we define that, for any ω ∈ Ω, the induced set of m > 1 options is Φω :=

{ϕ1, . . . , ϕm}.12 We call this the set of options given ω. In line with this, we define the set Φ
of all options with which the system could possibly be presented as the union of all sets of
options given ω, so Φ :=

⋃
ω∈ΩΦω. Trivially, Φω ∈ 2Φ holds for any Φω because Φω ⊆ Φ.

Options must be distinct in such a way that only one of them can be performed at a time
(expressed by the function perf : Φ→ B):

Axiom 1 ∀ϕ ∈ Φ,∀ϕ′ ∈ Φ \ {ϕ} : ¬(perf (ϕ) ∧ perf (ϕ′)) [Distinct Options]

Example #10

Here are some examples of non-distinct options: driving aggressively from A to B and
driving from A to B; drinking a glass of water at time t and drinking at time t; killing

an African bush elephant and killing a Loxodonta africana. In these cases, performing
the first option entails performing the second (and in the final example, also vice versa).
One cannot perform the first option without also performing the second.

To ensure distinctness, only maximally specific options are allowed in Φ, reducing all
equivalent options to one paradigmatic option. This is a fundamental assumption of most (if
not all) decision-theoretic frameworks. Thus, we do not discuss this further here (although it
is an interesting and non-trivial assumption, at least from a philosophical point of view).

Often, the set of options is dependent on what the system knows.

Medical-Care Robot #11

It would be odd to allow the robot to choose the option answer a request when the
robot does not know that a request exists (because none has arrived yet). The robot
can (deliberately) decide to answer a request only if there is at least one request and

the robot is aware of it. Suppose a patient desires some water and is in the process of

12For m ≤ 1, it seems odd to speak of situations that require decisions. We will come back to the possibility of
m = 0 (and, thus, to the possibility of the system stopping its operation) in Section 5.3.3.
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composing a request. Until the patient completes and sends the request, and until the
robot receives it, the robot is not aware that any such request exists.

Accordingly, we define Φθ :=
⋃
ω∈Ωθ Φω as the set of possible options in light of θ. This

set can be seen as interconnected with the set Φsure
θ ⊆ Φθ, defined as

⋂
ω∈Ωθ Φω: the set

of options that are certainly available in light of θ. For all options ϕ ∈ Φθ, we define
P(ϕ | θ) :=

∑
ω∈Ωθ∧ϕ∈Φω Pθ(ω) to be the probability of ϕ being available given θ. In the case

of ϕ ∈ Φsure
θ , this implies P(ϕ | θ) = 1.

Overall, there will often be uncertainty about which options are actually available. For now,
we leave open how to resolve this uncertainty. How to deal properly with this uncertainty has
not been definitively settled in either philosophy or formal decision making.

Medical-Care Robot #12

Assume that the robot knows that it is at one of the junctions leading to a room, but it
does not know which one. Assume further that there is a different option for entering
each of the three rooms, perhaps due to different access codes. In this situation, should
the robot have all three codes as different options for entering? If yes, then it would
have a two-thirds chance of trying an incorrect access code. If not, however, the robot
might not be able to enter the room in front of it.

For ease of analysis, we assume that Φθ = Φ in the context of this thesis.

5.2.3. Goal(s), Outcomes, and Instrumental Decision Making

We assume that every system under consideration has some kind of ultimate goal that can be
unambiguously defined. Obviously, the system aims to reach this goal.

Medical-Care Robot #13

As described above, the robot’s goal is to act upon requests (and, thereby, to carry out
the associated tasks) without ever running out of battery power.

Performing an option may or may not bring the system closer to reaching its goal. This is
because an action changes the world in which the system exists. We call the world resulting
from an action the outcome of that action.

Some outcomes are better than others, in the context of achieving the system’s goal.
Accordingly, we presuppose a utility function U : Ω → R, which specifies rewards and
penalties for the outcomes of an action, depending on whether the outcome brings the system
nearer to achieving its goal or not.

In order to achieve its goal, the system must choose and perform those options that bring
about the outcomes with the highest utility. We call these the instrumentally conducive options.
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Given a world state ω ∈ Ω and a set of candidate options Φi ⊆ Φ, the instrumental-decision

function decinst : 2Φ × Ω → 2Φ is the function that identifies the set of instrumentally
conducive options: decinst(Φi, ω) = argmaxϕ∈Φi U(ωϕ), where ωϕ is the world state that
results from performing ϕ in ω, and argmax is a function that takes another function (in this
case U ), and looks for the element(s) of a predefined set (in this case Φi) which maximizes that
function. (To put it formally for this case: decinst(Φi, ω) = {ϕ ∈ Φi |U(ωϕ) is maximal}.)

Unfortunately, however, identifying the instrumentally conducive options is complicated by
the fact that the system faces two types of uncertainty. First, the system has only incomplete
knowledge about the world. As already depicted, the system does not know the content of all
the variables in the current world state. Second, the system does not know the exact outcome
of an action it performs.13 In other words, the world’s “reaction” (in terms of the ensuing state
of the world) to some action is not fully determined.14

Accounting for the first uncertainty is comparatively straightforward. To do so, we can
simply adapt the instrumental-decision function to work with knowledge. This would look as
follows: decΠinst(Φ, θ) = argmaxϕ∈Φ

∑
ω∈Ωθ Pθ(ω) · U(ωϕ).

One plausible way to account for the second type of uncertainty is to model instrumental
decision making as a Markov decision problem. To this end, we assume that there is a function
that, given the current world state, an option, and another world state (i.e., a candidate for
an outcome of the option based on the current world state and the option itself), assigns the
probability of that outcome candidate being realized by performing the option. Formally, this
can be specified as Outcome : Ω× Φ× Ω→ [0, 1].

Coupling the resulting probability distribution with the probability distributions Π con-
cerning world states that are possible given a knowledge state θ, we can define a function
OutcomeΠ : Θ× Φ× Ω→ [0, 1] as

OutcomeΠ(θ, ϕ, ω) =
∑
ω′∈Ωθ

Pθ(ω
′) ·Outcome(ω′, ϕ, ω)

which operates on partial world states (i.e., the system’s knowledge at a specific time).
Together with the utility function, the OutcomeΠ function allows us to reformulate the

system’s goal as the maximization of expected utility. Given a partial state of the world θ ∈ Θ

representing the system’s knowledge and a set of available options Φ, the task is to find the
following (via the standard approach to Markov decision problems):

decΠinst(Φ, θ) = argmax
ϕ∈Φ

EU (ϕ | θ) =: ChoiceΠ(Φ, θ),15 where

13Furthermore, the actually available options should come into play as a third type of uncertainty. As already
explained, however, this uncertainty will not be considered in this thesis.

14This indeterminacy might be grounded in some kind of philosophical deep indeterminacy or, of more practical
relevance, by the fact that our model of the world, as a tuple of world states, does not reflect all relevant
aspects of the world when it comes to the effects of options. There are, to borrow vocabulary from the
indeterminacy problem in physics, some hidden variables, from the system’s point of view.
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EU (ϕ | θ) :=
∑
ω∈Ω

OutcomeΠ(θ, ϕ, ω) · U(ω)

is the expected utility of an option ϕ ∈ Φ, given the system’s knowledge θ. Algorithm 1
illustrates a possible means of calculating decΠinst(Φ, θ) in pseudocode.

Algorithm 1 The instrumental decision-making procedure decΠinst .
Given: Possible world states Ω
Given: Probability estimates Π
Given: Outcome function Outcome
Given: Utility function U
Input: Knowledge θ ∈ Θ
Input: Set of options Φ = {ϕ1, . . . , ϕn}

procedure INSTRUMENTAL DEC(Φ, θ)
max← ⟨null,−∞⟩
for all ϕ ∈ Φ do

tmp← 0
for all ω ∈ Ω do

for all ω′ ∈ Ωθ do
tmp← tmp+ Pθ(ω

′) ·Outcome(ω′, ϕ, ω)

if tmp > max[1] then
max← ⟨ϕ, tmp⟩

return max[0]

5.3. Adding Machine Ethics to the Mix

Up to this point, we have described a general class of decision problems that, as demonstrated,
can be solved using methods associated with Markov decision problems. Using our framework
as it currently stands, we can, thus, support or effectively even enforce certain decisions by
adjusting utilities accordingly. As we have already argued, however, this is not sufficient to
guide the operations of autonomous systems: we also need ethical considerations.

5.3.1. Moral Principles

As we have argued in Section 4.1.2, decision making should be guided and restricted by social
and ethical norms, norms to which most plausible normative theories can subscribe, albeit for
very different reasons. Desirable systems should not merely seek the instrumentally best means
to achieve the system’s goals. In general, systems that will not perform forbidden actions, yet
can appropriately accomplish their task should be sought. Robustness against forbidden action
should be verifiable, certifiable, and provable [146]. Since norms are naturally expressed
in principles, a place for moral principles in the decision procedure and decision-making
processes of autonomous systems is required to achieve the goal of machine ethics.
15In the following, we will use this seemingly arbitrary double denomination decΠinst(Φ, θ) and ChoiceΠ(Φ, θ)

for roughly the same function for the purpose of indicating whether we are concerned with the resulting set
(ChoiceΠ(Φ, θ)) or with the procedure (i.e., the algorithm) to arrive at this set (decΠinst(Φ, θ)).
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This goal can be formulated more precisely: the system should make decisions in accor-
dance with a set of carefully chosen, morally and philosophically underpinned principles.
For this reason, we need principles in our framework. While both subjective and objective
principles should be included, we will focus here on the objective principles, as they are more
interesting for our purposes. As we will outline at the end of Section 6.2.2, some possible
advantages of subjective principles can, in our framework, also be achieved by objective ones.

“Objective”, here, means that the principles concern which options ought (not) to be
executed due to certain states of the world, rather than due to an agent’s (in our context, a
system’s) knowledge. Thus, for objective principles, the choice of what action should be
carried out is independent of an agent’s information. Objective principles are, in a sense,
specified from the perspective of an omniscient observer.

Such objectivity is not only consistent with the way principles are often understood in moral
philosophy [134]; it is also what we take to be the most natural way of framing the endeavor
of machine ethics. First, we define perfect behavior under idealized circumstances, and then
we can identify approximations of perfect behavior, taking into account the restrictions of the
system.

Another reason for this approach is its highly practical nature: Developers likely need to
implement behavioral constraints of this kind into future systems. Such constraints are defined
by social or moral norms that express how people expect and desire the systems to act from
an outside perspective, as well as by legislation. Both of these influences are independent of
the specific design decisions and restrictions of the system.

However, as theoretically justified, plausible, and methodologically necessary it is to focus
on objective principles alone here, it introduces many additional issues that will later become
apparent. Therefore, we also allow for the incorporation of subjective principles into the
framework (although we will not significantly elaborate upon them).

5.3.2. Formalizing Moral Principles

Let Ψ = {ψ1, . . . , ψm} be the set of all principles. We will discuss their concrete structure,
content, and semantic interpretation in a moment.

Admittedly, not all principles are necessarily of equal importance. Sometimes, it is accept-
able to violate one principle to allow adherence to another, more important, principle.

Example #11

It is true both that one ought not to tell a lie, and that one ought not to commit murder.
However, when faced with a choice between only these two options, everything else
being equal, it seems true that it is permitted, or even morally required, to tell the lie
rather than to commit murder. It would simply be wrong to commit murder in order to
avoid telling a lie (although de facto there may be situations where this occurs).



66 TOWARDS A FRAMEWORK OF FORMAL MACHINE ETHICS

To account for this possibility, we define an order on Ψ, and we do so in two steps. First,
we assume an equivalence relation ≈Ψ on Ψ that induces t equivalence classes Ψ1, . . . ,Ψt,
such that ∀i ∈ N : 1 ≤ i ≤ t→ ∀ψ, ψ′ ∈ Ψi : ψ ≈Ψ ψ′. For any principle ψ ∈ Ψ, the class
[ψ ] refers to the equivalence class of ψ. It holds that [ψ ] = Ψi for any ψ ∈ Ψi.

Second, we assume a strict total order ≻Ψ on these equivalence classes. This order is
extended to the level of principles, such that ∀i, j ∈ N : 1 ≤ i < j ≤ t → ∀ψ ∈ Ψi,∀ψ′ ∈
Ψj : Ψi ≻Ψ Ψj → ψ ≻Ψ ψ′. With this, we can define an overall (non-strict) weak order
≻Ψ ∪ ≈Ψ=:⪰Ψ⊆ Ψ×Ψ.⪰Ψ is a total pre-order on the principle set Ψ. Total pre-orders have
several theoretical (e.g., in modal logic) and practical applications (e.g., in sorting algorithms).

We call P := ⟨Ψ,⪰Ψ⟩ a principle structure, which provides a hierarchy of moral principles.
This structure is also sufficiently flexible to accommodate the absence of any hierarchy that
results if ≈Ψ := Ψ×Ψ.

Up to this point, we have not discussed the inner structure and content of principles.
We propose to consider principles as functions. Depending on whether we are concerned
with subjective or objective principles, these functions look slightly different. We begin by
introducing objective principles, and will later demonstrate how subjective principles differ.

Objective Principles Each objective principle is a function ψ(ω,Φω) ⊆ Φω from a possible
world state and the corresponding set of available options in a subset of these options, the set of
permissible options. We call these functions the principle functions. We write Permψ(ω,Φω)

as the set of permissible options, according to principle ψ. Since each Φω is unique, we can
think of it as a function Φω : Ω→ 2Φ. Therefore, the principle functions can be expressed as
ψ : Ω→ 2Φ and Permψ(ω,Φω) simplifies to Permψ(ω).

In this thesis, each principle function has precisely two sets of permissible options in its
range. Either such a principle function does “filter” the set of available options (in which case
Permψ(ω) ̸= Φω), or it does not (and, thus, Permψ(ω) = Φω). We say that ψ applies to ω if
and only if Permψ(ω) ̸= Φω.16

The set of worlds in which ψ applies, namely, {ω ∈ Ω |Permψ(ω) ̸= Φω} ∈ 2Ω, can be
understood as a proposition cψ. Consequently, each cψ can be viewed as an element of the
power set 2Ω and is best understood as the condition under which the principle applies. When
this proposition is true in some world, that is ω ∈ cψ, we write ω |= cψ (the usual way of
indicating that ω makes cψ true).

We restrict principles to this construction for three reasons. First, this construction accords
with how principles are naturally understood: some circumstances (i.e., some conditions) in
the world restrict the options that are allowed to be carried out. Second, this construction
makes it easier to find and evaluate the hierarchy of principles. Third, it is easier to understand
than other approaches. This will be important later on, when we illustrate how machine
explainability relates to our framework (in Section 6.2).
16Essentially, it could be the case that a principle is, in fact, applicable but does not, de facto, filter the options.

In this thesis, we will disregard such cases (as they are practically unimportant).
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Overall, it very likely that the principle functions can be constructed in a more complicated
manner to accommodate different sets of permissible options for more worlds. Doing so
would reduce the number of principles overall, but would make identifying a hierarchy among
them more complex.17 We will consider a few more modeling possibilities in Section 7.1.

Subjective Principles There are several possible ways to model subjective principles. We
will look at two ways, each with its own benefits and suitable applications.

Our first suggestion is to model each subjective principle as a function that is similar to that
for objective principles, in that they apply in certain world states. However, since the system
does not know the complete state of the world, and since subjective principles are formulated
from the system’s point of view, we need to factor its uncertainty into the principle function.
To this end, we extend the function with an application threshold. This threshold is used to
express that the principle must be considered if and only if the probability that a relevant
world (i.e., one that makes the principle’s condition true) obtains is greater than or equal to
that threshold. The resulting principle function looks like this: ψ : Ω× [0, 1]→ 2Φ.

Similarly to how the conditions of various available objective principles can be fulfilled
by several world states, the same may be the case for the conditions of subjective principles.
Consequently, we define the condition cψ in the same way as for objective principles. This
allows us to formulate more concretely the occasions to which the principle applies. To do
this, we define

P(cψ| θ) :=
∑
ω|=cψ

P(ω | θ).

Thus, a subjective principle ψ applies if and only if P(cψ | θ) ≥ ε, where ε is the application
threshold. Obviously, a subjective principle certainly applies if P(ω | θ) ≥ ε for ω |= cψ.

Let us come to our second suggestion. Sometimes, a subjective principle may depend on a
single variable in the world state.

Medical-Care Robot #14

If a principle should apply when there is a chance that a patient is dying, its applicability
could depend on only one variable (e.g., on the boolean “patient is dying”).

For this reason, it could be useful to define subjective principles that exclusively depend
on the value of exactly one specific variable. Subjective principles would, then, be functions
ψ : Di × [0, 1] → 2Φ of a value x of a variable ω[i] in the domain Di, and an application
threshold ε. Consequently, the principle would apply if Pi(x | θ) ≥ ε. This proposal is easily
extensible to include dependence on multiple variables. The occasions on which the principle
applies can be expressed more precisely by defining cψ accordingly, and using P(cψ | θ).
17We leave the task of evaluating whether this is a better approach to future research. The ultimate goal, then,

might be to have only one principle yielding all sets of permissible options for all worlds (i.e., the hierarchy
of principles would be built into the principle function itself).
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We see no reason why subjective principles should not be incorporated into the same
principle structure as objective principles, so Ψ := ΨO ∪ ΨS (where ΨO is the set of objective
principles and ΨS the set of subjective ones). In fact, subjective and objective principles are, in
some cases, structurally equivalent. This is the case, for instance, when the fixed-set knowledge
suffices to fulfill the condition under which the principle would apply (i.e., P(cψ | θ) = 1 or
Pi(x | θ) = 1). Even if we abandon the assumption about fixed-set knowledge, it is very likely
that there is a minimal set of variables Θmin ⊂ Θ of which the system always has knowledge.
Then, at least P(cψ | θmin) = 1 or Pi(x | θmin) = 1 for some θmin ∈ Θmin holds.

•

We do not mean to imply that principles in fact (whatever that means) have such a structure.
For the purposes at hand, however, principles might be modeled in some manner so that they
can suitably express which options are permissible under one condition or the other.

Medical-Care Robot #15

A famous example of principles to which robotic systems should adhere to is Asimov’s

laws [39–41]. Similar to how the principles in our framework should guide the behavior
of autonomous systems, Asimov’s laws were conceived to guide the behavior of robots.

Science-fiction author Isaac Asimov formulated his laws in one of his short stories
[39]. Later, these laws were popularized by a 2004 film adaptation of Asimov’s book “I,

Robot” [40]. Subsequently, further laws were established in a later novel [41]. We will
return to this addition at a later point (in Medical-Care Robot #25).

Asimov’s laws can be seen as a template for prototypical principles, as they both
have a hierarchy and indicate which options are allowed in specific situations. To obtain
a clearer picture, let us enumerate Asimov’s laws in their original form:

1. A robot may not injure a human being, nor, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given it by human beings except where such orders
would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict
with the First or Second Laws.

Subsequent laws only apply in cases where they do not infringe upon previous ones.
Furthermore, these laws clearly require the formulation of objective principles, as they
are not defined depending on the robot’s knowledge but rather on the world itself.
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The question of how to model a principle’s content is more difficult than the question of
how to model the principle’s structure. Therefore, we devote an entire section of this thesis
(Section 7.1) to this question. Our further development of the framework (which we will
propose in Section 6) builds only upon the set of permissible options that each principle
function evaluates. For the time being, all that remains is to examine the permissible options.

5.3.3. The Set of Permissible Options

Thus far, we have only introduced how to derive the set of permissible options according to
one particular principle. How, then, can we identify the set of permissible options with respect
to all principles? Given a set Ψ̂ ⊆ Ψ of principles and an arbitrary world state ω ∈ Ω, we
refer to the subset of principles that apply in this world state {ψ ∈ Ψ̂ |ω |= cψ} as Ψ̂ω.

If, for some ω, the set Ψω were empty, then it holds that Permψ(ω) = Φω for all ψ ∈ Ψ

(i.e., there would be no principle restricting the permitted options in ω). To the contrary, if
multiple principles apply to a given state of the world (i.e., |Ψω| ≥ 2), then the highest one in
the principle structure ⟨Ψ,⪰Ψ⟩ is deemed decisive.

However, what if different principles of the same (topmost) equivalence class apply? In
order to discuss this case, we first define such a topmost equivalence class for an arbitrary
world state ω as Ψω

max := {ψ ∈ Ψω |∄ψ′ ∈ Ψω : [ψ′ ] >Ψ [ψ ]}. Basically, one of two cases
can occur: either the principles are compatible, or they are incompatible.

Definition 1 A set of principles Ψ̂ ⊆ Ψ consists of compatible principles for a world
state ω ∈ Ω if and only if

⋂
ψ∈Ψ̂ Permψ(ω) ̸= ∅. In other words, Ψ̂ consists of compatible

principles if and only if there is at least one option which, related to each principle ψ ∈ Ψ̂, is
permissible given ω according to ψ. In the other case, the principles in the set are incompatible.

In theory, we do not want to rule out the existence of incompatible principles in the same
equivalence class. The existence of such principles would echo what philosophers call genuine

moral dilemmas: situations in which no option is permissible. Not all moral theories allow for
such dilemmas to exist (e.g., most consequentialist theories do not allow for them).

While an unsatisfiable set of principles might be a valid set of principles, we will disregard
the question of what to do in such a situation. However, if one aims to design a system that
does not cease working due to having no permissible option, one must exclude the possibility
of unsatisfiable sets. This exclusion does, in other words, guarantee the liveness of the system.

To properly distinguish systems that guarantee liveness from those that do not, we introduce
a new axiom. A system bearing the liveness guarantee must fulfill this axiom:

Axiom 2 Given a principle structure P = ⟨Ψ,⪰Ψ⟩ and world state ω ∈ Ω, for each
equivalence class Ψm of Ψ induced by ⪰Ψ:

⋂
ψ∈Ψm Permψ(ω) ̸= ∅. [Liveness]

In order to disregard the issues associated with genuine moral dilemmas, we assume that
the systems with which we are concerned satisfy Axiom 2 in what follows.
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Finally, we define PermP(ω) as the intersection of all sets of permissible options relative
to all principles given ω in the greatest equivalence class of Ψ; thus,

PermP(ω) :=
⋂

ψ∈Ψωmax

Permψ(ω).

All this—the principle structure and the method of finding the permissibility relation on
the options—coalesces into a decision function that we call the deontic filter. Here, “deontic”
indicates that something concerns what ought to be the case according to some standard or
norm, whether it be social, moral, or otherwise. The deontic filter yields the set of permissible
options:18

decPfilter(Φ, ω) := PermP(ω).

With regard to Axiom 2, we can deduce the following lemma concerning the deontic filter:

Lemma 1 ∀ω ∈ Ω: decPfilter(Φ, ω) ̸= ∅

Digression #2

At this point, we want to consider a variation of the deontic filter. In settings of certainty,
sometimes a stronger version of this function, namely, the hard deontic filter decPhard ,
might be useful. In contrast to decPfilter , decPhard uses more information given by the
principle structure P = ⟨Ψ,⪰Ψ⟩. The strong deontic filter not only uses the intersection
of all sets Permψ(ω) of the highest equivalence class of applying principles, but goes
further down the principle structure for as long as the resulting set does not become
empty. Algorithm 2 illustrates this course of action in pseudocode.

In cases of full knowledge, the hard deontic filter can replace every use of the
traditional deontic filter. Using the hard deontic filter, then, guarantees that the option the
system ultimately executes is permitted according to the highest number of applicable
principles in the highest equivalence classes according to P.

We now have two sets of options to consider: ChoiceΠ(Φ, θ) and PermP(ω). Both sets
define, in some sense, options that the system should execute. ChoiceΠ(Φ, θ) defines the
options that the system should execute in order to achieve its “ultimate goal”, and PermP(ω)

defines the options that the system should execute in order to remain morally permissible.
With respect to liveness, two important questions arise concerning these sets. First, is each

of them self-consistent (i.e., non-empty)? This is, by construction, so. Since the system, per
assumptionem, always has a goal, ChoiceΠ(Φ, θ) is non-empty. Furthermore, due to Axiom 2,
PermP(ω) is non-empty. This leads to the second question: are these sets, taken together,
consistent or not? That is, do they have a non-empty intersection, or are they disjoint?

18Again, we use this seemingly arbitrary double denomination roughly in order to make visible an important
distinction: decPfilter (Φ, ω) is mostly used to denote the procedure of computing PermP(ω).
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Algorithm 2 The hard deontic filter decPhard .
Given: Copy of the principle structure P = ⟨Ψ,⪰Ψ⟩
Given: The “traditional” deontic filter decPfilter
Input: Actual world ω ∈ Ω ▷ Full knowledge is presupposed
Input: Set of options Φ = {ϕ1, . . . , ϕn} ▷ dechard operates on the full set of options

procedure HARD DEONTIC FILTER(Φ, ω)
perm← Φ
tmp← decPfilter(Φ, ω)
while P != ∅ ∧ tmp != ∅ do ▷ Stop when there are no principles

or permissible options anymore
perm← tmp
P.pop() ▷ Remove the topmost element from the principle structure
tmp← perm ∪ decPfilter(Φ, ω)

return perm

Medical-Care Robot #16

Imagine that the robot must decide whether to resuscitate a patient or to recharge (similar
to the situation described in Medical-Care Robot #3). If the robot resuscitates the patient,
then it cannot recharge afterward. In this case, the sets are disjoint: ChoiceΠ(Φ, θ) =
{Charge} and PermP(ω) = {AnsReq}.

It becomes clear that the two sets taken together are not necessarily consistent (in contrast
to being consistent individually). Now, what does this mean for our approach? As one always
wants to guarantee the moral permissibility of the system, the set PermP(ω) is more important
than the set ChoiceΠ(Φ, θ) when deciding which option to perform. The former should be the
decisive factor in a system’s decision making, so it is crucial that PermP(ω) is always defined.
Here, a problem emerges, since determining which options are permissible, according to the
principles, requires knowledge of the current world state.

Medical-Care Robot #17

For instance, the robot must know the associated task of the current request.

As the systems we are concerned with most likely do not have the knowledge of the
complete world state, they always face uncertainty.

5.4. Decision Making under (Un)Certainty

The question arises of how to cope with uncertainty about the world state. Instrumental
decision making is well-defined when facing uncertainty, as shown in Section 5.2.3. But
what about deontic filtering? This question, the focus of this subsection and the next section
(Section 6), is not as easy to answer. To this end, we must first turn to the overall decision-
making process in the idealized case of perfect knowledge (i.e., θ = ω).
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5.4.1. An Idealized Decision-Making Process

The components thus far described are sufficient to solve machine ethics problems that require
sequential means of deontic filtering.

In such an idealized scenario, where the deciding system has all it needs to evaluate
the decPfilter and decinst procedures,19 we believe that a sequential approach is natural and
straightforward. For this, one simply concatenates the decPfilter and decinst into a single, larger,
decision-making procedure dec, such that, for each decision, PermP(ω) ⊆ Φω becomes the
foundation of Choice(ω), rather than the full set of available options Φω.

Deontic
Filtering

Instrumental
Decision
Making

Picking

Options Φ,
World State ω

Set
PermP(ω)

Set
Choice(ω) Option ϕout

Figure 3: The sequential decision pipeline dec.

Overall, an idealized decision pipeline operating in this manner consists of the following
steps: deontic filtering, instrumental decision making (as already introduced) and, finally
and trivially, picking, which consists of randomly picking an element out of the options that
“survive” the first two steps. The whole decision pipeline dec is described in pseudocode (in
Algorithm 3) and as a flow diagram (in Figure 3). Moreover, it can be expressed using the
functions introduced previously: dec(Φ, ω) = pick(decinst(dec

P
filter(Φ, ω), ω)).

Algorithm 3 The sequential decision-making procedure dec.
Given: Principle structure P = ⟨Ψ,⪰Ψ⟩
Given: Deontic filtering function decPfilter
Given: Instrumental decision-making function decinst
Input: Actual world ω ∈ Ω ▷ Full knowledge is presupposed
Input: Set of options Φ = {ϕ1, . . . , ϕn} ▷ dec operates on the full set of options

procedure SEQUENTIAL DEC(Φ, ω)
perm← decPfilter(Φ, ω)
choice← decinst(perm, ω)
ϕout ← random(choice) ▷ Randomly picking the final option

return ϕout

If the system does not possess perfect knowledge, the situation becomes more complex
because, as highlighted above, most of the principles encoded in the deontic filter are—for
good reason—formulated objectively. They can be applied to determine the set of permissible
options only if one has perfect (or at least sufficient) knowledge. That is, one needs full (or at
least sufficient) information on the complete state of the world. In other words: what we have
defined until now is decPfilter(Φ, ω), but what we need is decP,Πfilter(Φ, θ).

19Here, it holds that decΠinst = decinst and ChoiceΠ(Φ, θ) = Choice(ω). In the case of full knowledge, the set
of available options is well-defined. Therefore, we can drop the superscript Π. In this case, it is also true that
OutcomeΠ and Outcome compute the same function.
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This raises two important questions. First, can we continue to insist on objective principles?
Second, if so, can a sequential approach be maintained?

5.4.2. The Challenge from Uncertainty

Complete deontic filtering presupposes perfect knowledge about the current state of the world.
In full generality, even such knowledge might still not suffice, since the evaluation of decP,Πfilter

could even presuppose full knowledge about de-facto outcomes.
As we have just shown, given the necessary (but for most practical purposes impossible)

form of full world knowledge, the task of machine ethics may seem to become quite simple.
In the practically much more interesting case of imperfect or uncertain knowledge, we
must be prepared for morally imperfect behavior. In the best-case scenario, the system can
use its predictive capabilities, which could be statistical estimates based on past events.20

Consequently, there will be actions that seem defective when viewed from the outside.
However, given the overall system, we cannot expect anything better from the machine.

After all, imperfect and incomplete knowledge can also bring about clear human errors.
Typically, one tends to see such cases as blameless (because they are excusable) wrongdoings—
especially when epistemic shortcomings are beyond the agent’s control [44].

With imperfect knowledge, autonomous systems cannot be expected to behave perfectly.
However, this situation does not preclude having meaningful expectations of the system,
nor does it preclude objective principles. In other words, imperfect information can lead to
behavior that, though defective, is nonetheless morally acceptable and potentially verifiable.
To design systems which enable this kind of behavior is one goal of pragmatic machine ethics.

The framework, as it stands up to this point, can only be understood as a partially idealized
version of that for which we ultimately strive. Nevertheless, the sequential approach does serve
its purpose in some cases. This is the case when a state of knowledge suffices to determine
some principles of the highest class of non-empty principles (be they objective or subjective):
after all, we have committed ourselves to Axiom 2 and, thus, the principles of an equivalence
class are compatible and do not conflict.

Let Ψθ
max be the highest-ranked equivalence class according to all worlds that are possible

in the light of the knowledge θ: Ψθ
max := {ψ ∈ Ψ | ∃ω ∈ Ωθ : ω |= cψ ∧ ∄ψ′ ∈ Ψ : ω |=

cψ′ ∧ [ψ′ ] >Ψ [ψ ]}. Thus, if θ ∈ Θ is such that θ |= cψ for all these ψ ∈ Ψθ
max (in the sense

that ∀ω ∈ Ωθ : ω |= cψ for objective principles, and P(cψ | θ) ≥ ε for subjective ones),21 then

20In this thesis, it does not matter from where the probability estimates stem; all that matters is that they exist.
These estimates can be made in a number of ways. For example, one could hard-code the estimates into a
system, or the system could learn them on its own.

21Here, it is possible to see one of the reasons why it could be advantageous to include subjective principles:
they apply “more easily” than objective ones. Therefore, they could be important in time-critical situations
where the system does not have enough time to evaluate all possible worlds. Furthermore, our proposed
approach is, unfortunately, inefficient in terms of runtime (we will discuss this issue further in Section 6.3.3).
When subjective principles in the highest-ranked equivalence class of principles apply, the very execution of
our time-consuming approach can be spared.
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it is the case that PermP(Φ, θ) = PermP(Φ, ω) for the actual world ω. In other words: in this
limiting case, decP,Πfilter(Φ, θ) and decPfilter(Φ, ω) compute the same function. In all other cases,
however, it seems unclear how to compute decP,Πfilter(Φ, θ). Furthermore, it also appears to be
unclear how to combine deontic filtering with instrumental decision making decΠinst(Φ, θ).

Eliminating these uncertainties is the goal of the next section. The idea is to dovetail deontic
filtering with instrumental decision making in one overarching decision-making method. This
decision-making procedure will have the additional benefit of providing a stepping-stone to
machine explainability: a perfect complement, as we have already seen, to machine ethics.
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6. Enabling Machine Explainability

Our framework is versatile, but incomplete: we still need to incorporate uncertainty into the
deontic filter function. Our solution will not only equip the system to cope with uncertainty
during ethical decision making, but will also allow for machine explainability. In particular, we
conceive of explanations as a byproduct of an argumentation-based decision-making process.
In a nutshell, our solution is to contrive arguments in favor of performing certain options with
strengths based on the system’s knowledge, goals, and restrictions. These arguments are then
weighed against each other so that the option that is most supported will be performed.

6.1. Arguments as Basis for Moral Decision Making

There are several arguments in favor of an argumentation-based approach to decision making
for machines.

Similarity to Human Decision Making An argumentation-based approach to machine
decision making mimics one way in which humans come to decisions. For instance, Mercier
and Sperber defend argumentation as integral in the human reasoning process [334], a claim
which is also supported by a reasonable amount of psychological evidence [147, 333, 334].

Benjamin Franklin is also known for his argumentation-based approach to making decisions.
For him, a decision-making process could be naturally interpreted as the weighing of pro-tanto
reasons to determine the overall right option or decision [178]. In our view, arguments can be
understood as encoded reasons, which fits Franklin’s conception.

Finally, the kind of reasoning involved in everyday decision making seems to be non-
monotonic—additional information may require one to revise one’s decision—and arguments
are the tool of choice for non-monotonic reasoning, as pointed out by Dung [163].

Building Block for Explainability If a machine’s decision-making process is, in certain
ways, similar to that of a human, it stands to reason that it is explainable. More precisely, if a
system arrives at its decisions on the basis of an internal argumentative process in the form
of weighing reasons (as we envision it), the decision making can be made transparent and
rationalized in precisely the manner that explainability requires.

Such rationalization is based on the fact that the arguments refer to the system’s moral
principles and goals. In other words, every decision of the system can be made completely
traceable (and, thus, comprehensible) through such an argumentative decision-making process.

Fidelity A further advantage is that the explanations that can be generated with such an
approach are guaranteed to refer to the actual reasoning processes happening in the system
(because they are directly produced by this process). Such fidelity of explanations is an
important property that many current approaches to machine explainability cannot guarantee.
We will further elaborate on this aspect later in this thesis (in Section 10 and Section 11).
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Suitable for Coping With Uncertainty An argumentation-based approach allows for
the handling of uncertainty. Recall that uncertainty, in our framework, is expressed by the
circumstance that several world states could exist in light of a system’s current knowledge.
Now, in order to arrive at a morally appropriate decision under uncertainty, one can easily
think of the possible world states as the basis for argumentation: “if this or that were the case,
it would give me, thanks to this or that principle, a (moral) reason for (or against) one option
rather than for (or against) another”.

Deliberation, at least in conditions of uncertainty, involves weighing and aggregating
reasons for and against certain propositions. Although there is extensive research on how
to aggregate reasons (in philosophy, see [239, 273, 309, 318, 369–371]), no method seems
dominant. For this reason, the approach we will present offers certain degrees of freedom.22

Besides the lack of agreement about weighing reasons, there are other good reasons for
retaining such degrees of freedom. Overall, it is likely that the reasoning of a medical-care
robot ought to differ from the reasoning of a system that autonomously ranks job applications,
the reasoning of an autonomous car, or the reasoning of a nuclear power plant’s security
systems. Such differences could plausibly be grounded in the time available to the system
to make its decisions, in the amount of available information, or in the severity of potential
misbehavior. Therefore, a promising approach to argumentation must be flexible, for the
time being, in order to allow for incorporating future insights into reasoning and to take
contextual peculiarities into account. We will come back to these contextual factors later (in
Section 6.2.2).

Well-Established Field of Research Methods of modeling arguments are well researched in
the computer-science community. In particular, computer scientists in the AI community might
immediately conceptualize arguments as part of a so-called argumentation framework—or of
its more general form, the dialectical framework [81]. There is significant variety between
such frameworks, and they offer exactly the kind of freedom required for our purposes.

We call our approach an argumentation graph (as is clear in Figure 4), and it can be viewed
as a dialectical framework, though not of the standard variety. Argumentation frameworks
such as those proposed by Dung [163] focus only on the attack relation between arguments.
Our framework, like other dialectical frameworks, also allows for a support relation between
arguments. This relation is the most crucial one in our case, which is somewhat atypical
(however, for Amgoud, Bonnefon, and Prade [16], this relation is also pivotal).

A greater difference is that the content of our arguments is highly significant, which
is particularly atypical for dialectical frameworks. In our framework, however, relations
between arguments alone are insufficient for generating explanations. Explanations must
make explicit use of the information in favor of performing one option and against performing

22Perhaps further interdisciplinary research—mainly philosophical, psychological, and perhaps legal—will
allow us to reduce these degrees of freedom. Nevertheless, it is possible that there are no answers, or at least
no general answers, to the underlying question of how to weigh and aggregate reasons.



6.2. GENERATING THE ARGUMENTATION GRAPH 77

another—that is, they must involve the premises of an argument. To be able to generate the
desired explanations for a decision, we, therefore, enrich the classical notion of a dialectical
framework with both the special focus on the support relation and content dependency.

•

Assuming that argument-based reasoning is an appropriate approach to decision making in
the context of machine ethics (as just argued), and that arguments are the appropriate kind
of structure to encode explanations (as we will argue later), adopting a framework of formal
argumentation theory is a natural choice for modeling and implementing these issues. In fact,
other scholars have already done so (see, for instance, [17]). Machine explainability, then, is a
byproduct of artificial moral decision making, since the explanations are (or can be extracted
from) the argumentation graphs that represent the deliberative process that led to a decision.

6.2. Generating the Argumentation Graph

With these deliberations in mind, we finally turn to our proposal. In particular, we suggest a
generic three-step approach for generating the argumentation graph. These steps are, in their
successive order: case distinction, reason aggregation, and final-action determination.

Building on the components of our framework—in particular Θ,Ω,Φ,Π,EU , and P—
these three steps result in a bare argumentation graph Γ := ⟨V,E⟩, where V is the set of
vertices and E is the set of edges. The graph has three levels of vertices, each of which
is generated by one step. Accordingly, Vi (with i ∈ {1, 2, 3}) is the set of vertices (whose
elements can be interpreted as arguments) generated in step i. Overall, this results in V :=

V1 ∪ V2 ∪ V3.
For an initial overview, we will introduce the vertices only briefly here, leaving a more

detailed description for later. The set V1 contains triples, each consisting of a world state,
a principle applicable in that world state, and a set of options, so that each triple can be
interpreted as an argument to the effect that, according to the principle, it would be permissible
to execute any option from the set of options in the specified world state (see Section 6.2.1).

Continuing our overview, V2 consists of one n-tuple for every option still permissible
according to the arguments in V1. For each argument from V1 that supports the permissibility
of a given option, these n-tuples contain an element with that argument’s strength, which
expresses how likely is the world state and how relevant (e.g., how highly ranked in the
principle structure, see Section 6.2.2) the applicable principle. Since there are different
numbers of arguments supporting different options, the n-tuples vary in size. Furthermore,
the last element of the n-tuple is an aggregation of the previous entries, and expresses the
strength of the reason why performing the option is permissible. In this sense, the tuples in V2
are to be understood as pro-tanto arguments for the execution of the corresponding option
(see Section 6.2.3).
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Finally, V3 consists of only one element, namely, an n-tuple whose size can also vary. This
tuple contains all the aggregated strengths of the reasons for allowing the various options as
well as the option that will eventually be executed (accordingly, the size of the tuple is equal
to the size of V2 plus one). This tuple can be interpreted as an argument for executing said
option, factoring in all considerations regarding the permissibility of this option, as well as
the instrumental benefit that executing this option would have (see Section 6.2.4).

That should suffice as a description of the vertices for the time being. Now, we want to
come to the edges E. The edges represent the influence of arguments from earlier to later
levels. Since we have three levels, there are two subsets of edges: E1,2 and E2,3. It holds that
E1,2 ⊆ V1 × V2 and E2,3 := V2 × V3, as has already been made clear by our descriptions
above; more detail will be given in Section 6.2.3 and Section 6.2.4.

The edges are weighted to reflect the strengths of the arguments that the different vertices
can be interpreted as expressing. These weight functions assign values from an appropriate field
(Rn for some n ∈ N) to edges: strengthprotanto : E1,2 → Rn, and strengthoverall : E2,3 → Rn.
Finally, there is another weight function relevanceP : Ψ→ Rn, which describes the relevance
of principles with respect to the principle structure (as indicated above). All three weight
functions will be detailed later. Taking Γ and enriching it by these weight functions results in
the complete argumentation graph G :

〈
Γ, relevanceP, strengthprotanto, strengthoverall

〉
.

Prior to discussing the graph generation process, we want to note two things. First, the
entire graph generation process must be performed for every decision that is to be made.
Accordingly, G is a function of the system’s current knowledge θ. Second, the process results
not only in a graph, but also in a decision for a particular option. This decision and the
corresponding graph leading to it should be stored for later access. Ideally, the corresponding
decision can, then, be explained with reference to this graph.

6.2.1. Step 1: Case Distinction

Since we want to model something similar to the internal deliberative process of a human
agent thinking about what they should do, we propose that the system begins as a human
naturally would, namely, with a case distinction: “if this or that were the case, then, thanks to
this or that principle, the following options would be allowed to be executed”. This is the first
step in our graph generation. The goal of this step is to identify the permissible options of
each world state that are possible in light of the system’s knowledge.

We have already defined the set of these world states as Ωθ ⊆ Ω. Since each world state is
defined by n variables ω[1] , . . . , ω[n], each with the corresponding domain D1, . . . , Dn, and
since θ contains, by construction, all the concrete assignments of the first k of these variables,
|Ωθ| ≤

∏n
i=k+1 |Di| different world states must be taken into account (equality holds if and

only if all the variables not covered by θ are independent of all other variables). We refer to
these possible world states as the cases to consider.



6.2. GENERATING THE ARGUMENTATION GRAPH 79

At this point, we have to remember that several principles can apply to one world state.
Accordingly, each case to be considered ω ∈ Ωθ must be considered not only once, but several
times. More specifically, it must be considered for each principle ψ ∈ Ψω that applies to it.

The Arguments Accordingly, the goal of the arguments on the graph’s first level is to
consider each case to be considered for every principle that applies to it. We call these
arguments Argωψ, and there is one for each ω ∈ Ωθ and every corresponding ψ ∈ Ψω. Overall,
this makes

∏
ω∈Ωθ |Ψ

ω| arguments for V1. Thus, V1 looks like this:

V1 := {Argωψ |ω ∈ Ωθ ∧ ψ ∈ Ψω}.

The content and form of these arguments are as follows. Each consists of three premises
linked by a modus-ponens application. The first premise Pω plainly states that ω ∈ Ωθ, as a
proposition ω, is the case, and the second premise Pψ simply states that a certain applicable
principle ψ ∈ Ψω is considered. The third and final premise Pperm, then, states that the given
principle and world together yield a specific set of permissible options Permψ(ω). Table 1
presents the general form and generic content of this first level’s arguments.

Argument Argωψ

(Pω) ω

(Pψ) ψ

(Pperm) if ω ∧ ψ then Permψ(ω)

(Cω,ψ) Thus: Permψ(ω)

Table 1: Case distinction arguments Argωψ.

This argument exemplifies the general form and generic content of the first level’s arguments (V1).
Essentially, it is just an application of a principle function.

Revisiting the Problem of Uncertainty At this point, we cannot avoid revisiting the
problem of uncertainty. Each argument in V1 results in Permψ(ωp) for only one possible

world ωp and an applicable principle ψ. However, performing deontic filtering is intended to
yield PermP(ωis), which is the set of permissible options in light of the de-facto pertaining

world ωis and the de-facto applying principles in Ψωis
max (i.e., the maximally ranked equivalence

class with a principle that applies for the actual world state ωis).
In the context of an idealized scenario with complete world knowledge, we have defined

PermP(ωis) as the intersection of all sets Permψ(ωis) of the principles ψ ∈ Ψωis
max. We cannot

proceed in this manner in a condition of uncertainty, however, because ωis is unknown.
As an alternative, we could take the intersections of the Permψ(ωp) for each ωp ∈ Ωθ with

the corresponding principles ψ ∈ Ψ
ωp
max (i.e., the maximally ranked equivalence class with

a principle that applies for each of these possible world states ωp). Unfortunately, there are
some problems with this proposal.
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On the one hand, while one of the resulting sets PermP(ωp) =
⋂
ψ∈Ψωpmax

Permψ(ωp) would
correspond to the set of actually permissible options, it would be impossible for the system to
determine which set. One could try to circumvent this problem by taking the intersection of
all these sets PermP(ωp). However, this would not only be an ad-hoc approach, but it would
also often be empty for non-trivial principle structures—something that ought to be avoided if
possible, since systems should guarantee liveness (Axiom 2).

On the other hand, such an approach seems to be the fundamentally wrong way to perform
deontic filtering under uncertainty, because the system would not take all of its knowledge
into account. First, the probabilities of the worlds obtained in light of θ would not matter.
Second, the principles’ relevancies, which are induced by ≻Ψ, would not be considered.

As an alternative to the above approach, we propose incorporating the uncertainty in a
quantitative reason aggregation method. This method must take into account the probabilities

P(ω | θ) of the cases to consider ω ∈ Ωθ and the relevance relevanceP of the corresponding
applicable principle ψ ∈ Ψω, induced by ⪰Ψ. The probabilities are already defined in our
framework, and a definition of the relevance relation relevanceP is provided below.

6.2.2. The relevanceP Relation

In order to incorporate the relevance of principles and combine it with a case’s probability in
a meaningful and useful way, it is necessary to quantify this ordinal ranking. For this purpose,
we introduce the function relevanceP. This function should reflect the priority ranking ⪰Ψ

over Ψ. Hence, relevanceP should be monotone relative to ⪰Ψ:

Property 1 relevanceP is monotone in accordance with ⪰Ψ:
∀ψ, ψ′ ∈ Ψ: [ψ ] ≈Ψ [ψ′ ]→ relevanceP(ψ) = relevanceP(ψ′)

∀ψ, ψ′ ∈ Ψ: [ψ ] ≻Ψ [ψ′ ]→ relevanceP(ψ) ≥ relevanceP(ψ′)

At this point, many other properties of relevanceP are unspecified. However, the choice of
these properties is crucial. This is the case because one can (and should) make various design
decisions about the reasoning process by varying the specific properties of relevanceP.

For instance, suppose that we wish to allow for a sufficiently large number of lower ranked
principles (which could be fulfilled with some probability below 1) to outweigh a few higher
ranked principles (which could be fulfilled with the same or a lower probability).

Medical-Care Robot #18

One could imagine that the robot should rather execute many low-priority instances of
giving medicine than one instance of this task that has a medium priority (or an instance
of a different task with medium priority).

Therefore, relevanceP could be desired to be Archimedean:
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Definition 2 relevanceP is Archimedean if and only if
∀ψ, ψ′ ∈ Ψ: [ψ ] ≻Ψ [ψ′ ]→ ∃n ∈ N : n · relevanceP(ψ′) ≥ relevanceP(ψ)

Example #12

If we want relevanceP to be Archimedean, then we could assign, to each principle ψ in
the equivalence class Ψm (the mth-ranked equivalence class according to ≻Ψ, with t
classes in total), a relevance value of 2(t−m+1)

t(t+1)
. The principles ψ of the highest ranked

equivalence class Ψ1 would have relevanceP(ψ) = 2t
t(t+1)

, and the principles ψ′ of the
lowest (tth) ranked equivalence class Ψt would have relevanceP(ψ) = 2

t(t+1)
etc.

This suggestion would have two (mathematically) useful side effects: that all
relevanceP(ψ) ∈ [0, 1] and that the distinct relevancies add up to 1.

However, perhaps it is not desirable to allow for such a weighing in a system.

Medical-Care Robot #19

One could imagine that the medical-care robot should always attempt to resuscitate a
patient as long as the chances of success are not zero, no matter how many other good
deeds the robot might otherwise perform (see Medical-Care Robot #3).

If we disallowed such weighing between the fulfillment of principles in different equiva-
lence classes, we would want relevanceP to map ψ into sets closed under scalar multiplication
(and define an order over these sets in accordance with ≻Ψ):

Definition 3 relevanceP is closed under scalar multiplication if and only if
∀ψ, ψ′ ∈ Ψ: [ψ ] ≻Ψ [ψ′ ]→ ∀n ∈ N : n · relevanceP(ψ′) < relevanceP(ψ).

In other words, no matter how many lower ranked principles could be fulfilled with a
probability smaller than 1, they would never outweigh the fulfillment of a higher ranked
principle that could be fulfilled with the same or a higher probability.

Example #13

To implement such a relevanceP function, we could assign vector-valued relevancies to
the principles: ∀ψ ∈ Ψm : relevanceP(ψ) = em, where Ψm is the mth highest-ranked
equivalence class according to ≻Ψ and em is the mth unit vector. We could then define
a lexicographical order >lex on vectors, such that ∀v,v′ ∈ Nt : v >lex v′ ↔ ∃l ∈ N :

1 ≤ l ≤ t → ∀k ∈ N : 1 ≤ k < l → vk = v′
k ∧ vl > v′

l (where t is the number of
equivalence classes according to ≻Ψ). This would result in ∀i, j ∈ N : 1 ≤ i < j ≤ t

→ ei >lex ej: a relevance function closed under scalar multiplication.
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Neighborhood Aggregativity There are further possibilities, but they can all be understood
as different instances of a more general property that we call neighborhood aggregativity (and
the previously discussed properties can also be understood in this way).

The idea behind this property is to create sets of equivalence classes of principles (neighbor-
hoods) between which there are tradeoffs (so that adhering to a given number of lower-ranked
principles could be permitted instead of adhering to a smaller number of higher-ranked prin-
ciples). However, these tradeoffs are not possible for equivalence classes outside a given
neighborhood. Accordingly, depending on the relationship of the neighborhoods’ equivalence
classes according to ≻Ψ, higher-ranked principles from other neighborhoods ought never to
be violated.

Medical-Care Robot #20

Another plausible case regarding the robot is that a combination of the two last-described
approaches (Medical-Care Robot #18 and Medical-Care Robot #19) is desirable—
adhering to several low-ranking principles may be more important than adhering to a
smaller number of medium-ranking principles, but adhering to the principle to always
try to resuscitate is more important than everything else. Such an approach is made
possible with neighborhood aggregativity.

To specify this property, we need to introduce several concepts. First, there is the neighbor-

hood Nm of an equivalence class Ψm of Ψ:

Definition 4 The neighborhood Nm is a set of size i ∈ N (with 0 ≤ i ≤ t−m), relative to
the mth highest ranked equivalence class Ψm of Ψ according to ≻Ψ (of t equivalence classes
in total). It is defined as Nm := {Ψj |m < j ≤ m+ i}.

The next property we need to introduce is that of a neighborhood assignment NP:

Definition 5 Given some structure P of ordered principles, a neighborhood assignment NP

is a function that assigns a neighborhood to each equivalence class Ψm of principles Ψ.

Neighborhood aggregativity can now be defined as follows:

Definition 6 relevanceP is neighborhood aggregative regarding NP if and only if
∀Ψm ⊆ Ψ, ψ ∈ Ψm, ψ

′ ∈ Ψ: [ψ ] ≻Ψ [ψ′ ]→ ([ψ′ ] ∈ Nm

↔ ∃n ∈ N : n · relevanceP(ψ′) ≥ relevanceP(ψ)).

Even with a predefined neighborhood assignment, there is still some space for tweaking,
for instance, the relevance distances between equivalence classes in the neighborhood of an
equivalence class—that is, the scalar factors n in the definition of neighborhood aggregativity.
These distances determine (assuming fixed probabilities) how many principles of a lower
ranked equivalence class must be fulfilled in order to outweigh the non-fulfillment of a
principle in a higher equivalence class of the same neighborhood.
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We tend to believe that there is no universally correct answer to the question of which
variant of neighborhood aggregativity relevanceP ought to manifest. Rather, we believe that
this might very well be a matter of application context.

Example #14

In the case of an algorithm which controls a nuclear power plant, it might be wise to
implement a relevanceP function that is closed under scalar multiplication for delib-
erations connected to the precautionary principlea. In other words, the corresponding
relevanceP function would work with empty neighborhoods for every equivalence class.

For systems with a lower worst-case impact, an Archimedean relevanceP function
might be a valid approach (i.e., all equivalence classes having maximal neighborhoods).

aThe precautionary principle is often used in risk management when the outcome of specific actions
is uncertain, for example, due to a lack of research. These options are, then, rejected, in order to
avoid harm—even if doing them would provide valuable information that might alleviate the lack of
research. In some legal systems, the precautionary principle is even enshrined in legislation. For a
discussion of this principle’s advantages and disadvantages, see [185].

Property 2 relevanceP is neighborhood aggregative regarding a neighborhood assignment
NP over a principle structure P.

Medical-Care Robot #21

One particular approach that we believe to be a good design decision for the health-care
robot is the following variant of a lexicographical order. For this, we partition the
equivalence classes of Ψ formed by ≈Ψ into l enumerated sets S1, . . . , Sl, such that the
enumeration satisfies the following two conditions. First, the following must be true:

∀Ψp ∈ Si,∀Ψq ∈ Sj : i > j → Ψp ≻Ψ Ψq.

This condition requires that higher-rank equivalence classes are also contained in
higher-rank sets of the partition. The second condition is as follows (for any k ∈ [1, l]):

∀Ψp,Ψr ∈ Sk : Ψp ≻Ψ Ψr → (∀Ψq ⊂ Ψ: Ψp ≻Ψ Ψq ≻Ψ Ψr → Ψq ∈ Sk).

This condition requires that every set Sk contains consecutively ranked equivalence
classes. To illustrate these conditions with an example, let Ψ1 ≻Ψ Ψ2 ≻Ψ Ψ3 ≻Ψ

Ψ4 ≻Ψ Ψ5 be the equivalence classes of principles for the medical-care robot. In this
case, a valid partition of size 3 could look like the following:

S1 := {Ψ1,Ψ2}, S2 := {Ψ3}, S3 := {Ψ4,Ψ5}.
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Next, we form a sequence of neighborhoods based on our partition classes. In particu-
lar, a lower-rank equivalence class is in the neighborhood of all higher rank equivalence
classes in the same partition set. In other words, the highest-rank equivalence class in
a partition set Si is assigned a neighborhood of size |Si| − 1, the second highest rank
equivalence class is assigned a neighborhood of size |Si| − 2, and so on.

Let us illustrate this again with the example. Assume that S1 contains the equivalence
classes of principles that must be weighed against each other. In this set, Ψ1 has a
neighborhood of size 1 (containing only Ψ2), and Ψ2 has a neighborhood of size 0.

For our construction, relevanceP can easily be modeled as a function relevanceP :

Ψ→ [0, 1]l (where l is the number of partitions, see above). With this modeling, we can
specify a lexicographic order on the vectors, similar to as performed in Example #13:

∀ψ, ψ′ ∈ Ψ: relevanceP(ψ) =lex relevance
P(ψ′)

↔ ∀i ∈ N : 1 ≤ i ≤ l→
(
relevanceP(ψ)

)
i
=

(
relevanceP(ψ′)

)
i
,

∀ψ, ψ′ ∈ Ψ: relevanceP(ψ) >lex relevance
P(ψ′)↔ ∃i ∈ N : 1 ≤ i ≤ l

→ ∀j ∈ N : 1 ≤ j < i→
(
relevanceP(ψ)

)
j
=

(
relevanceP(ψ′)

)
j

∧
(
relevanceP(ψ)

)
i
>

(
relevanceP(ψ′)

)
i
.

Digression #3

Let us briefly return to subjective principles. By adjusting neighborhood aggregativity
in distinct ways, some of the advantages of subjective principles can also be realized
by objective principles. In what follows, we will not provide a formal proof of this
assumption, but merely make it plausible using a couple of considerations.

Normally, subjective principles help in morally critical cases, wherein they may apply
“sooner” than objective ones. For instance, they may encode some kind of precautionary
principle. However, as discussed above, such a precautionary principle can also be
modeled by making relevanceP closed under scalar multiplication.

In general, we believe that different modelings of relevanceP can capture differ-
ent benefits of subjective principles. Nevertheless, this will not mean that we do not
have to generate the argumentation graph. Therefore, subjective principles possess the
irremovable advantage of allowing us to skip the entire graph generation algorithm.

6.2.3. Step 2: Reason Aggregation

Having introduced the relevanceP function, we arrive at the second step of our graph genera-
tion: reason aggregation. In this step, the aim is to aggregate all arguments in favor of each
option that “survives” the first step. By “surviving” options, we mean those options that are
permissible according to at least one applicable principle ψ ∈ Ψ.
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We refer to the set of options ϕ ∈ Φ that “survived” as Perm(V1) :=
⋃

Argωψ∈V1
Permψ(ω).

Conversely, we let Support(ϕ) := {Argωψ ∈ V1 |ϕ ∈ Permψ(ω)} be the set of arguments
from V1 supporting (in the sense of permitting) an option ϕ ∈ Φ.

Vertices and Edges We start by defining the vertices of, and the edges to, the graph’s second
layer and postpone the definition of the arguments to define other properties first:

V2 := {Argϕ |ϕ ∈ Perm(V1)}

E1,2 := {
〈
Argωψ,Argϕ

〉
|ϕ ∈ Permψ(ω)}.

We call the output of an argument Argωψ ∈ V1 that must be considered in arguments
Argϕ ∈ V2, (pro tanto) the reason for option ϕ. Furthermore, we introduce strengthprotanto as
the function that encodes the strength of a pro-tanto reason for an option, ϕ. It is the function
of a case’s (i.e., a ω’s) probability P(ω | θ) and an involved principle’s (i.e., a ψ’s) relevance
relevanceP(ψ) that, in combination, support that option, ϕ. Multiplying these two values is, in
our view, a natural means of aggregating them.23 Summarizing these deliberation, we obtain
strengthprotanto(

〈
Argωψ,Argϕ

〉
) = P(ω | θ) · relevanceP(ψ).

As there is no difference in strength between any two options ϕ, ϕ′ ∈ Permψ(ω)—that
is, between two options supported by the same argument Argωψ ∈ V1—, we will simplify
“strengthprotanto(

〈
Argωψ,Argϕ

〉
)” to “strengthprotanto(Arg

ω
ψ)” in what follows.

The Arguments We now turn to the generic form and content of the arguments in V2 (see
Table 2). Fundamentally different from the arguments in V1, the form of the arguments in V2
is dynamic: the number of premises in Argϕ depends on the number of incoming edges, each
representing a reason supporting ϕ. In other words, every Argϕ ∈ V2 contains one premise for
each Argωψ ∈ Support(ϕ), which brings its contributed strength into the argument.

Additionally, one further premise Psum is added which determines the aggregation of all
the strengths of the incoming reasons. The aggregation is handled within the arguments in V2,
and the most intuitive candidate for aggregation is the simple summation of the weights.

Although the correct means of aggregating reasons (if there is any) is highly controversial
(as mentioned earlier), let us note one property of reason aggregation which is essential to
consider, namely, monotonicity. Having two reasons for the same proposition should yield at
least an equally high (if not higher) belief in that proposition, as opposed to having only one
reason. The question is just how significant the difference in the quality of belief is.

To conclude the discussion about Argϕ, let us briefly discuss the result of this argument,
i.e., its consequent. In each consequent, the total strength for permitting an option’s execution
is expressed. This strength is later imported to make a decision for performing an option.

23Other methods, however, could also be useful. We leave the discussion of other kinds of aggregations (e.g.,
maxing out) for future research.
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Argument Argϕ

(P1) There is a reason r1 with the strength s1 = strengthprotanto(Arg
ω1
ψ1
)

that supports the permissibility of option ϕ.
...

...

(Pv) There is a reason rv with the strength sv = strengthprotanto(Arg
ωi
ψj
)

that supports the permissibility of option ϕ.

(Psum) For any number of reasons u: if there are some reasons r1, . . . , ru
that support the permissibility of the same option ϕ with the strengths
s1, . . . , su, then there is an overall reason supporting the permissibility
of ϕ with the strength

∑u
i=1 si.

(Cϕ) Thus: there is an overall reason that supports the permissibility of ϕ
with the strength

∑
Argωψ∈Support(ϕ)

strengthprotanto(Arg
ω
ψ).

Table 2: Reason aggregation arguments Argϕ.

This argument exemplifies the general form and generic content of the second level’s arguments (V2).
Note that v is set to |Support(ϕ)|. In the first v premises, ωi and ψj are used to provide the most
general formulation possible. This does not exclude ωi = ω1 or ψj = ψ1 (or both or neither). In
addition, summation is prototypically used as the aggregation method (see Psum).

6.2.4. Step 3: Final-Action Determination

The final step is rather simple but still involves several design decisions. The remaining task
is, after all, to decide upon the execution of one of the options while appropriately taking into
account the previous results. Based on the reasons presented earlier (in Section 5.4.2), we
suggest not taking a sequential approach to this task.

Taking a sequential approach in our graph would mean first using the previous results to
filter for a set of overall permissible options Perm (using the combined total strengths of the
reasons for each option with an argument in V2) that then, in a subsequent step, constitutes
the input for decΠinst . The option to be performed would then be any option that passes this
step. In principle, this is feasible, but we believe it to be the wrong approach. We will argue
for this view in detail after we have fully presented our approach (in Section 6.3.2), which
will supply practical arguments against a sequential approach.

Our replacement proposal is to combine the moral force and the instrumental force of all
remaining options. That is, we see the remaining problem as a multi-objective optimization

problem in which we aim to maximize the system’s moral reason responsiveness (by taking
the option with the most strongly supported permissibility) of the system on the one hand,
and its instrumental means-end optimality (by taking the option with the highest expected
utility) on the other. Before elaborating on this point in the next section, we define the third
level of the graph and what we mean by the normative, moral force of a reason.



6.2. GENERATING THE ARGUMENTATION GRAPH 87

Vertices and Edges First, let us define V3 and E2,3. The third level needs only one final
argument, which we call Argdec; thus, V3 := {Argdec}. Since all the arguments of the second
level contribute to the final argument, it holds that E2,3 := V2 × V3.

These edges import the strengths of the overall reasons for or against the permissibility of
each option ϕ ∈ Φ into the final argument. This strength is expressed in the consequents of
Argϕ. Accordingly, we set the weights for the edges from V2 to V3 to this strength:

strengthoverall

(〈
Argϕ,Argdec

〉)
:=

∑
Argωψ∈Support(ϕ)

strengthprotanto(Arg
ω
ψ).

Since the strength for allowing an option is determined entirely in Argϕ, we will abbreviate
“strengthoverall

(〈
Argϕ,Argdec

〉)
” with “strengthoverall

(
Argϕ

)
” in what follows.

The Argument The generic form of the final argument Argdec can be seen in Table 3.

Argument Argdec

(Pϕ1) There is an overall reason supporting the permissibility of option ϕ1

with strength strengthoverall

(
Argϕ1

)
.

...
...

(Pϕn) There is an overall reason supporting the permissibility of option ϕn
with strength strengthoverall

(
Argϕn

)
.

(Pnorm) For each reason for the permissibility of an option ϕ ∈ Φ, the
normative force to perform this option is given by the function
force

(
strengthoverall

(
Argϕ

))
.

(Pinst) For each option ϕ ∈ Φ, the instrumental force to perform this option
is given by the function EU(ϕ | θ).

(Pmax) The system should perform the available option that jointly maximizes
the normative and the instrumental performing forces.

(Ppick) If the system should perform the available option available that jointly
maximizes the normative and the instrumental performing forces,
and the normative force to perform an option ϕ ∈ Φ is given by the
function force

(
strengthoverall

(
Argϕ

))
, and the instrumental force to

perform an option ϕ ∈ Φ is given by the function EU(ϕ | θ), then the
system should perform one randomly picked option ϕout of those in
argmaxϕ∈Φ

(
force

(
strengthoverall

(
Argϕ

))
+ EU(ϕ | θ)

)
.

(Cdec) Thus: the system should perform ϕout.

Table 3: The final argument Argdec .

This argument exemplifies the general form and generic content of the third level’s arguments (V3). The
interleaving is perfectly visible in Pmax. To account for this premise, argmax is prototypically used in
Ppick. Furthermore, the Ppick premise also incorporates the pick function as discussed in Section 5.4.1.
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The first part of Argdec consists of a varying number of premises Pϕi , one for every
ϕi ∈ Perm(V1). These premises bring the strength of the overall reason for the permissibility
of that option ϕi, expressed by the function strengthoverall

(
Argϕi

)
, into the final reasoning.

Additionally, a premise Pnorm must be included in Argdec which determines how the
reasons for the permissibility of the options ϕ ∈ Φ, with their strengths, are to be interpreted
as normative reasons for performing these options (with their own strengths). This premise
is vital, as there are two different kinds of reasons: reasons to believe and reasons to act.
According to the standard Humean theory of motivation, a fitting desire is required in order to
be motivated to act [440]. Only then can reasons for a belief constitute reasons for acting.24

Reasons for the permissibility of options are simply reasons to believe that the options are
permissible to perform, grounded in the probabilities of the various cases under consideration
ω ∈ Ωθ and the corresponding moral principles applying in these cases (i.e., in the ψ ∈ Ψω

for each ω). The normative reasons that speak in favor of acting remain missing.

Digression #4

If a belief that African elephants are bigger than Asian elephants is sustained for good
reasons, then there is no reason to perform a particular action such as visiting a zoo
based on these reasons or beliefs alone.

The same is true for beliefs regarding permissibility: if a person believes that it is
morally permissible to spend their next vacation in the Alps (and that it would also be
permissible to vacation in the Caribbean), and the person believes this for good reasons,
then the person has no reason to vacation in the Alps on these reasons or beliefs alone.

Something is missing in these cases, namely, the desire to personally explore African
and Asian elephants or to go skiing on vacation, that is, a reason to act.

In our argumentation graph, we can enforce the necessary “desire to act in accordance
with permissibility”. To this end, the premise Pnorm defines an appropriate transformation.
Reasons for believing and their strengths are transformed in this premise by the function
force : Rn → R. In principle, depending on the choice of relevanceP, force looks different.

Example #15

If one has chosen a simple Archimedean relevanceP function (and, thus, equally simple
strengthprotanto and strengthoverall functions), then it is plausible to interpret the reason
for the permissibility of some ϕ ∈ Φ simply as the reason for performing it.

For more complex relevanceP functions, choosing the force function is more difficult.

24Among the competitors to the Humean theory, we do not know of any that defends the claim that every reason
for/against the permissibility of an option is (or constitutes), in itself, a reason to perform/not perform this
option. The point we want to make here, thus, seems to be necessary and indisputable.
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Medical-Care Robot #22

If we continue with the specific suggestions made in Medical-Care Robot #21 (i.e., to
model relevanceP as a lexicographic order), then a plausible means of defining force is

force(strengthoverall(Argϕ)) =
(
strengthoverall(Argϕ)

)
i
,

where it is true that, for all options, all higher-ranked entries are 0; thus,

∀ϕ′ ∈ Φ,∀j ∈ N : 1 ≤ j < i→
(
strengthoverall(Arg

′
ϕ)
)
j
= 0.

This variant of force would take the first non-zero value of the vector representing
the strength of the reason for the permissibility of ϕ. Since values higher up in this
vector represent reasons induced by higher-ranking principles (by the construction of
relevanceP, as proposed above), and since a zero value indicates no significant reason
for that rank whatsoever, this choice seems a plausible candidate.

In this last step of the graph, the instrumental force of an option finally comes into play—
that is, the force that denotes how conducive an option is to achieving the goal of the system.
For this purpose, there is a premise Pinst in Argdec which brings this instrumental force of an
option into the argument, namely, in the form of the EU function.

The next premise in the final argument determines how to combine the moral forces (as
provided by force) of the options with their instrumental forces (as provided by EU ). We
propose to maximize them in combination and, consequently, refer to the premise as Pmax.

Finally, the Ppick premise provides the “logical glue” that brings together the other premises.
Assuming Pmax, with the normative and instrumental forces expressed in the other premises
(especially Pnorm and Pinst), we can finally decide which particular option should be per-
formed. This option is chosen from the set of those options that maximize these two forces
simultaneously (although it is likely very rare that this set has more than one element).

We will give a justification for this interleaved method in general, and the choice of
summation instead of some other kind of aggregation in particular, below (in Section 6.3.2).

6.3. Discussing the Argumentation Graph

Now that we have completed the presentation of the generation of the argumentation graph
(Figure 4 displays a generic example of a final graph), we want to discuss a few additional
points. Among other things, we will briefly present a slightly optimized algorithm for the
computation of the graph, discuss the advantages of our interleaved method, review the
advantages and disadvantages of the approach as a whole and, finally, make some concluding
remarks.
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Figure 4: A general argumentation graph.

The graph is general in that it does not prescribe a fixed number of worlds, principles, or options.

6.3.1. An Algorithm for Generating the Graph

To show that our graph is computable, let us briefly present an algorithm that can be used to
compute it. This algorithm can be found in Algorithm 4, and has been slightly optimized.

Algorithm 4 The interleaved decision procedure dec.
Given: Principle structure P = ⟨Ψ,⪰Ψ⟩
Given: Possible world states Ω
Given: Probability estimates Π
Given: Relevance function relevanceP

Given: Expected utility function EU
Input: Knowledge θ ∈ Θ ▷ We are in a setting of uncertainty
Input: Set of options Φ = {ϕ1, . . . , ϕn}

procedure INTERLOCKED DEC(Φ, θ)
perms← [ ] ▷ Initialize a map of options and their strengths
for all ω ∈ Ωθ do ▷ Iterate over all possible worlds

for all ψ ∈ Ψω do ▷ Iterate over all relevant principles
perm← Permψ(w)
for all ϕ ∈ perm do ▷ Iterate over all relevant permissible options

strengthold ← perms.get(ϕ)
stengthnew ← strengthold + P(ϕ) · relevanceP(ϕ)
perms.put(ϕ, stengthnew)

max← ⟨null,−∞⟩
for all ⟨ϕ, strength⟩ ∈ perms do ▷ Iterate over all somehow permissible options

force← strength+ EU(ϕ)
if force > max [ 1 ] then

max← ⟨ϕ, force⟩
return max [ 0 ] ▷ Return the option with the highest force
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This algorithm is optimized in that it performs the first two graph generation steps simul-
taneously. In short, it successively goes through the possible worlds states according to the
system’s current knowledge and accumulates the strengths of the permissible options in these
states. In other words, it does not go through all worlds first to look at the options afterwards,
but it does this already as part of the process of looking at world states.

Obviously, this algorithm does not quite adhere to the generation procedure discussed
above (because of the optimizations). However, this is not problematic since it is still possible
to reconstruct the graph retroactively from the calculations performed by this algorithm. Thus,
it is still possible to use it for explanatory purposes. Overall, it is plausible that many other
optimizations can be incorporated that do not affect the explanatory capabilities.

6.3.2. The Benefits of the Interleaved Method

Returning to our suggestion of the interleaved decision method, we want to briefly defend our
choice. We believe that our approach is superior to approaches in the present context of the
here-discussed quantitative, uncertainty-incorporating deontic-filter method.

First, when using a sequential approach, cases such as the following can arise. There are
two options ϕ and ϕ′ with force(strengthoverall(Argϕ)) = force(strengthoverall(Argϕ′)) + ε

for a negligible ε ∈ R+. Presupposing that this difference rules out ϕ′ as impermissible, then
this may be due to some maximality consideration (e.g., only the options supported by the
strongest reasons count as permissible) or by some threshold filter (e.g., only options with a
strength of at least T count as permissible).

However, if EU (ϕ′)≫ EU (ϕ) (i.e., the expected utility of performing ϕ′ is much greater
than the expected utility of performing ϕ), then it seems odd that such a small difference in the
supportive reasons should be decisive against an option that is otherwise much more suitable
for the system’s objectives. While there might be filter functions operating on the reason’s
strengths overcoming this problem, they would have to be more complicated, sophisticated,
and meticulously designed. For this reason, we will not discuss them further here.

Second, as our naming of the strength functions has already indicated, we conceptualize the
strengths of reasons as some kind of normative force. The principles induce moral (or perhaps
societal or even legal) normative force, while the instrumental design decisions encode sources
of instrumental normative force.

Normative forces, in our eyes, should be combined in the same manner as forces are
combined traditionally (e.g., in physics), namely, by summation. Therefore, our decision to
maximize the sum, rather than, say, the product of the two objective functions, is justified.
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Digression #5

Choosing summation results in preferring an option ϕ over an option ϕ′, where
force(strengthoverall(Argϕ)) = 18, EU (ϕ | θ) = 3 and force(strengthoverall(Argϕ′)) =

10, EU (ϕ′ | θ) = 10, respectively (and vice versa, for interchanged force and EU val-
ues). This is in contrast to what would happen if we opted for multiplication instead of
summation (e.g., we do not penalize differences between the two objectives).a

aAs noted above, we have not yet definitely decided whether the suggestion we make here is correct.
Again, we leave further deliberation to future research, which will require the significant involvement
of philosophy, specifically regarding the debate around the question of how to weigh reasons.

6.3.3. Advantages and Drawbacks of Our Approach

Let us now come to the advantages and drawbacks of our approach. We will first discuss
the drawbacks. A possible practical drawback of our non-sequential approach is that it is
impossible to obtain strong guarantees about the system’s behavior.

Medical-Care Robot #23

For instance, it is not verifiable that a medical-care robot employing our decision-
making method will attempt to save a life whenever there is the slightest hope, even
if it means running out of power. There might very well be circumstances in which
the corresponding case is too improbable, such that the relevance of the corresponding,
applicable principle is outweighed by some much more probable case in combination
with a less relevant, applicable principle.

Nevertheless, this result is grounded in our specific design decisions regarding the last
argument Argdec (first and foremost, the interleaving), which we believe to be plausible, and
not in the approach presented here in general. One could, for instance, modify force in such a
way that it values undesirable options at −∞. However, such an approach would result in a
system which cannot guarantee liveness; that is, it cannot adhere to Axiom 2.

Another practical disadvantage is the complexity of our approach. Already, an improved
version of the graph generation process (Algorithm 4) has, at one point, three interleaved “for”
loops, each of which is iterating over a potentially infinite domain. Therefore, the temporal
and spatial complexity of the pure approach is, as already mentioned, very likely quite poor.
Here, future research must identify heuristics to make the graph generation more efficient.

Nonetheless, softer properties are verifiable and even necessarily provided by the design. In
our approach, for instance, the system will always select an option that maximizes the sum of
both the combined strength of the overall reason supporting the option and the expected utility
of the options given the current knowledge. In other words, the system will always act based
upon the best reasons available to it and will be able to offer an explanation for its behavior.
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We believe that our approach is appropriate for many, but not all, contexts involving
autonomous systems. For extremely vital or dangerous situations, people may rightfully
demand harder guarantees at the expense of liveness. Such situations include contexts that
require strict regulation, such as lethal autonomous weapon systems [396]. Deontic filtering,
in such situations, should be able to absolutely override instrumental considerations.

Now that we have defined the whole argumentation graph and, thereby, finished sketching
our combined framework for machine ethics and machine explainability, we are confident
that we have made the corresponding “adjusting screws” evident. Our framework can, thus,
be adapted to meet such requirements as indicated above. We believe that in this area of
tension—desired, verifiable properties on the one side and different possible design decisions
on the other—new promising ground for future research can be identified.

6.3.4. Concluding Remarks Regarding the Graph

To conclude this section, we would like to say something about a general aspect that makes
our approach interesting. We think that the graph generation algorithm, as we propose it,
hearkens back, in some ways, to the expert systems of the earlier days of AI.

In expert systems, the goal was to manually provide the system with a knowledge base
that it uses as a basis for decision making. Since the knowledge base was coded by hand and
the system’s reasoning was kept simple (e.g., rule based), the decision-making process of
such systems was traceable. Like expert systems, our algorithm is also traceable: the graph
generation process is comprehensible, and hopefully so are the knowledge and the restrictions
on which it is based. (We will discuss the principle’s comprehensibility in the next section.)

One interesting difference between our approach and expert systems is its modularity.
Our approach positions machine ethics on top of what might be called machine pragmatics

or machine instrumentality: pursuing the system’s objective. These two modules can be
constructed independently. For example, systems where the utility of world states is derived
via ML algorithms can be augmented with the graph-generation algorithm. In this way,
explainable hybrid systems emerge: a black-box system for utilities would exist, as would a
moral filter on top of it. The moral behavior of such hybrid systems would still be constrained,
but also explainable: the goal towards which we have been working.

Furthermore, one can imagine that the moral principles are also acquired through an
ML process. In this case we would end up with a hybrid machine ethics approach (see
section Section 2.2.2). Such an approach would severely undermine the explainability of
our framework, since the motivation behind the principles is an important ingredient for
explaining the behavior of systems that use our decision-making process (see Section 11.1.1).
Nevertheless, such an approach could have other advantages. For example, the learned
principles could educate us humans morally, as addressed in Motivation 2 of machine ethics
(see Section 3.1.1). However, for this to be possible, it is again necessary to make the learned
principles comprehensible. In Section 10.1 we will see some approaches to this end.
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•

Our framework has now been introduced in its entirety. The next section is not necessary for
the main argumentation, but it offers more profound discussion of the framework. The goals
are to 1) address some issues that we have left open so far, and 2) make the framework itself
more tangible for experts by recreating parts of it with established formalizations.
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7. Substantiating the Framework

On numerous occasions during the construction of our framework, we have explicitly left
definite formalizations or implementations open (for instance, because they could be context-
dependent) and merely suggested exemplary “fillings”. For example, we left open the identifi-
cation of means to aggregate and weigh reasons for future research.

This sketchiness is deliberate, as the main purpose of this thesis is not to construct a directly
implementable framework of machine ethics and machine explainability. Rather, the goal
is to show that these two research disciplines are tightly connected. In this line of thought,
our framework serves the purpose of showing that these disciplines are connected not only
theoretically, but can also be linked more practically.

Our framework is also intended as a point of departure for future research endeavors. In
this section, we will, therefore, flesh out aspects of our framework that we left open, and
indicate some fruitful future research directions. We will start by elaborating on possibilities
for modeling principles and continue by outlining a presumably more practical—because it is
more formal—version of our framework. Doing this will, overall, illustrate that the framework
offers more than speculative theorization.

7.1. Approaches to Principles

In Section 5.3.2, we stated that principles are functions ψ : Ω→ 2Φ, and we termed the sets
to which the principles evaluate the permissible options, meaning ψ(ω) = Permψ(ω). While
the most basic property of a principle in our framework is to be a function, such a function
can be achieved by different modelings. In other words, starting from a world state ω ∈ Ω,
there are many means of arriving at the set of permissible options, both directly and indirectly.
For this reason, we want to discuss some plausible modelings for principles in this section.

As principles lie at the basis of our entire approach, it is crucial that they are modeled in a
certain way. In particular, there are three properties that are especially important for principles
and their modeling. First, the modeling should make it as easy as possible to find conflict-free
sets of permissible options (i.e., Axiom 2 is guaranteed). Second, a modeling of principles
should, at least in some way, mirror how principles are commonly understood. We envision
principles as derived from laws or norms, and, thus, they must possess a form which enables
such a conception. Third, for our approach to machine ethics and machine explainability
to function, principles must be incorporated into a system. Accordingly, it is important to
examine how the modelings can be implemented. Even the modeling of principles that have
the other two properties are worthless if they do not satisfy this one.

Depending on how principles are modeled (apart from being functions), they exhibit
these three properties to varying degrees. We propose three modelings, and discuss, for
each, whether the above properties are satisfied. Our discussion will show, overall, that the
modelings are not so different, and that they can be seen as complementary.
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7.1.1. Explicitly Defining Principles

Our first suggestion is to explicitly define the principles. In other words, the set of world
states in which a principle applies and the set of permissible options it yields are explicitly
designated. This results in a one-to-one relation of principles to sets of permissible options.

Medical-Care Robot #24

Returning to the robot example, as previously, Φ := {AnsReq , Charge}. When equip-
ping the robot with principles modeled in the manner described above, one could
plausibly embed the following principle structure in the robot’s deontic filter:a

decfilter(ω,Φ) =



{AnsReq}, if prio(req) = H ∧ cost task(req) ≤ energy

{Charge}, if prio(req) = L

∧ cost task(req) + dist(CS , req .r) > energy

{AnsReq ,Charge}, otherwise.

By rephrasing those formalizations into a more natural language, we obtain the
following:

decfilter(ω,Φ) =



{AnsReq}, if the task priority associated with the re-
quest is high, and the current energy level
would suffice to serve it;

{Charge}, if the task priority associated with the re-
quest is low, and the current energy level
would not suffice to serve it and then re-
turn to the charging station;

{AnsReq ,Charge}, otherwise.

By stating the principles in natural language, it becomes easier to see the higher-level
concept that motivated selecting them, namely, to save lives whenever possible. The
highest principle in the structure requires the robot to answer requests containing high-
prioritized tasks whenever possible. Here, it is important to remember that resuscitation
is, per construction, the highest-prioritized task. Additionally, the principles attempt to
avoid the robot running out of power (as encoded by the principle prioritized the second
most highly). Apart from that, it is of no great importance what the robot does, so it is
allowed either to answer the request or to recharge.

aNote that the conversion between traveled distances and used energy is one-to-one.

In contrast to directly defining the principles, the other modelings we will introduce derive
the set of permissible options indirectly from certain upstream formalisms.
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Advantages Explicitly defining the set of permissible options is a natural way to conceptu-
alize principles, as the following deliberation is quite normal for human beings: “If this or
that were the case, I would not be allowed to do this or that action.” Such considerations are
sometimes also called hypothetical imperatives [261]. Some moral theories even claim that
moral imperatives generally adopt the form of hypothetical imperatives (see, e.g., [33]). Con-
sequently, this manner of conceptualizing principles not only closely tracks natural concepts
of principles but is also theoretically justified. Therefore, this way of modeling principles has
one of the properties specified above.

The next question is how the approach can be implemented. This should be altogether
straightforward. For each principle, one must simply save the worlds (or the relevant properties
of the worlds) in which it applies, and the set of permissible options that pertain to the principle.
Subsequently, a test is applied to determine whether the inputted world corresponds to one
of the worlds in which the principle applies (i.e., it is tested whether ω |= cψ for an inputted
world ω). This procedure might consume substantial memory, but is theoretically feasible.25

In addition, this process is relatively efficient with respect to runtime when using effective
sorting-and-searching algorithms.

Drawbacks The deliberative process of guaranteeing conflict-free sets of permissible op-
tions using this approach is quite arduous: more precisely, it is NP-complete.26 In complex
systems, there are very likely thousands of principles. To guarantee that each equivalence class
of principles in every possible combination yields conflict-free sets of permissible options,
we would need to solve so-called satisfiability (SAT) problems.

SAT is the problem of determining if there exists an interpretation that satisfies a given
Boolean formula. It is clear how being a conflict-free set of principles relates to SAT: first, each
set of permissible options can be seen as a conjunction of propositions. We add a non-negated
proposition ai if one of the possible options ϕi ∈ Φ is in the set of permissible options, and
a negated proposition ¬ai otherwise. Afterwards, we form a disjunction with each set of
permissible options of principles in the same equivalence class. Solving the obtained formula
is a classical SAT problem and reveals whether the given sets are conflict-free.

Overall, we need to solve one SAT problem for each equivalence class of principles. SAT
is NP-complete, as proven by the Cook–Levin theorem [122]. Consequently, determining
whether we can guarantee liveness is practically infeasible. This is even the case when using
modern SAT solvers, as there can be many equivalence classes.

Aside from these SAT problems, another problem manifests even earlier, because finding
the principles in general is already arduous, even for simple systems. This leads to the question
of how this first approach to modeling principles might work for complex systems.

25One could also cluster the worlds to specific sets, or use other heuristics, in order to make the evaluation more
efficient. We leave all of these considerations for future research.

26We will not elaborate on complexity theory here. See [162] for more information.
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Medical-Care Robot #25

Asimov’s laws serve as an example. Even these seemingly simple and straightforward
laws were later supplemented with an additional, zeroth law: “A robot may not harm
humanity, or, by inaction, allow humanity to come to harm” [41]. Even today, it is still
debated whether introducing such a law makes sense. Essentially, it allows robots to
kill humans who infringe on the well-being of humanity.

Should robots be allowed to kill at all? In the principle structure, this law would
be the furthest upstream, and consequently supersedes the law stating that a robot is
not allowed to harm human beings. However, when exactly is humanity harmed and
when is only one person harmed? Are these options different? These questions must be
considered when identifying principles, though this is far from easy.

The second approach we suggest fares better with regard to guaranteeing liveness.

7.1.2. Principles as Orders over Options

In our second approach, principles are no longer defined directly. Instead of sets of permissible
options, the principles are connected to option structures ⟨Φ,⪰Φ⟩, defined in complete analogy
to the principle structures introduced in Section 5.3.2, but over the option space Φ. The set of
permissible options is, then, determined from these option structures. In the following, we
demonstrate a possible means of accomplishing this.

Under the condition that ω |= cψ (for some ω ∈ Ω and some principle ψ ∈ Ψ), we obtain
an option structure as described above. This option structure induces a (non-strict weak)
permissibility order ⪰ψω , a total preorder on the option set Φω. We simply take the topmost
class [ϕ ] of this order (in the sense that ϕ ⪰ψω ϕ′ for all ϕ′ ∈ Φω) as Permψ(ω). The intention
behind this construction is that the option to perform according to principle ψ in world state ω
must be picked from the set highest in the permissibility order associated with that principle.

Naturally, if multiple principles apply for a given state of the world (i.e., more than one
cψ contains a given world state), the principle highest in the structure ⟨Ψ,⪰Ψ⟩ is deemed
decisive. However, what if different principles in the same (topmost) equivalence class apply?
At this point, we deviate from the construction introduced in Section 5.3.3 (which also applies
when principles are directly defined). The need for this deviation will become apparent later.

As introduced previously, given a set Ψ̂ ⊆ Ψ of principles and an arbitrary world state
ω ∈ Ω, we refer to the subset of principles that apply to this world state {ψ ∈ Ψ̂ |ω |= cψ} as
Ψ̂ω. Similarly, OΨ̂

ω := {⪰ψω |ψ ∈ Ψ̂ω} yields the set of relevant option structures, of which
each induces a permissibility order ⪰ϕ⊆⪰Φ on the option set Φ. We use OΨ̂

ω to denote the
set of these orders. Now, if, for a given world ω ∈ Ω, it holds that [ψ ] is the topmost class of
principles in the principle structure P, then we are to respect the orders contained in O[ψ ]

ω .
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To do so, we use the preorder ⪰ω :=
⋂

⪰ϕ∈O
[ψ ]
ω
⪰ϕ, obtained by intersecting all element

permissibility orders of interest on Φ. Intuitively, we should again take the topmost class
of options in the resulting preorder (i.e., the highest equivalence class with respect to ⪰ω).
However, this preorder (as opposed to its constituents) may not have a highest class (owed to
the intersection). Thus, while it may not be a weak order itself, it will have maximal classes.
One permissive option would be to set PermP(ω) as the union of all maximal classes of ≻ω.

Advantages With regard to the properties specified above, this approach demonstrates
a decisive advantage when comparing it to the first one: using orders on options makes it
easier to guarantee liveness. This is caused by our deviation when trying to identify the set
of permissible options with regard to all principles of the same equivalence class. A default
option could simply be added relatively far down the option structure of every principle. This
option should normally not be executed, but, in a worst-case scenario, it is better than nothing.

By contrast, introducing such an option into the last approach would not lead to an intended
outcome, as this would make the fallback option always permissible. Consequently, this option,
which was planned only as a fallback, would be executed frequently, which is undesired.

Naturally, we want to avoid introducing fallback options in general. However, if introducing
them spares us the (complete) solving of several NP-complete problems, then this could indeed
be desirable. Furthermore, this approach is, plausibly, also easy to implement.27

In addition to the liveness, which is easier to guarantee, we are not losing anything when
using this approach compared to the first one. When assigning the sets of permissible options
from the first approach to the highest equivalence class in the option structures here, both
approaches coincide. We are strongly inclined to believe that the converse is not possible.
Therefore, we could also be gaining, as the other approach could be a subset of this one.

Independently from the consideration of which approach subsumes the other, an important
observation can be made. When evaluating the orders over options, one obtains a set of
permissible options. Consequently, principles, framed as orders over options, can eventually
be translated back into principles as direct implications. This finding does not oppose the
finding before it, as we are likely losing some information when the orders are evaluated.

Drawbacks While, from a computational point of view, this approach fares quite well, it
has significant drawbacks from a philosophical point of view.

Medical-Care Robot #26

Returning to the example of the robot: at a certain point in time, it faces two option
orders from which the set of permissible options must be determined. The first order
has “resuscitate the patient” as the most important option, and “comfort the relatives”

27We will not go into further detail here, as a thorough description of such an implementation does not deliver
any additional value for our purposes.
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as the second most important option. The second order has “help the doctors” as the
most important option, and “comfort the relatives” as the second most important option.
When using the approach described in this section, “comfort the relatives” would be the
only permissible option. This result, however, appears counterintuitive at the very least.
The robot should generally execute one of the first ranked options in such a situation.

As this example should illustrate, the approach could lead to morally suboptimal results.
One might object that these results should be made impossible per construction. Then, however,
the advantages of the approach itself are lost, resulting once more in the same problem that
principles as direct implications have. Perhaps a relevanceP-function for options could do the
trick here. Overall, however, this would once again complicate the implementation.

Even if this problem were solvable, an additional problem remains. The view of principles
as orders on options is not an intuitive way of conceptualizing principles. This construction
simply neither mirrors any philosophically supported view of principles nor our manner of
speaking about them. Consequently, we do not really understand what the principles express
when modeling them as orders over options. This is a crucial disadvantage when wanting
to express social norms or laws by principles. Doing so easily does not seem to be possible
when modeling principles as orders over options.

•

Setting all problems aside, after presenting the above two approaches to modeling princi-
ples, it becomes clear that it is possible to find different formalizations for principles. Each
formalization has its own advantages and drawbacks, as discussed above. There are many
well-established types of formalism that describe the behavior of systems or agents in some
manner. Here, the interesting question arises of whether these formalisms can be productively
employed for modeling principles. We believe that this is the case and introduce one such
formalism as our next suggestion for modeling principles.

7.1.3. Principles as Deontic Logic Formulae

Our third suggestion is to employ deontic logic formulae. Deontic logic formulae can be
used as a means of stating the deontic status of some option(s), and the deontic status of
an option describes whether the option is obligatory, permissible, or forbidden. There are a
several relations between these statuses: All obligatory options are permissible, but not all
permissible options are obligatory. All impermissible options are forbidden. Options that are
not explicitly forbidden are permitted, etc. (see Figure 5).

Most systems of deontic logic can be seen as a kind of system of modal logic concerned
with the deontic status of options (respectively, actions) and the corresponding relations: is
performing the option ϕ allowed/permitted or forbidden/prohibited? Incorporating deontic
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Obligatory Optional Forbidden

Permissible

Omissible

Figure 5: The five deontic statuses of options and how they relate [332].

logic into our approach mirrors the standard manner of conceptualizing normative principles,
namely, that of describing permissions and proscriptions. Consequently, this approach already
has the advantage of modeling principles naturally and is, therefore, superior to using orders
over options, at least in this regard. We want to address the other relevant properties later on.

The language of deontic logic as a whole is very expressive; thus, we must excuse ourselves
from a thorough introduction and treatment in this thesis. What we do instead is to offer
connection points and ideas, each of them being fruitful for future research. We severely limit
the scope of deontic logic in this thesis and caution that, already, such constraint comes with
problems. Nevertheless, this should not diminish the value of deontic logic as a whole, as there
are many projects that attempt to cope with such problems (see, e.g., [355]). Additionally,
deontic logic is, as just indicated, a very natural way of formally expressing normative claims.

In what follows, we will have a look at a very specific sublanguage of standard deontic logic
(SDL), the most common version of deontic logic [332]. More specifically, in this approach to
modeling principles, a principle links worlds to formulae of a sublanguage L of SDL, whose
evaluation yields the set of permissible options. SDL is one of many deontic logic systems.
We do not explore the advantages and disadvantages of different systems; for our purposes,
we simply use SDL and leave open the question of whether there are more suitable systems.

Standard Deontic Logic Here are the fundamental building blocks of the deontic logic
system that we are employing: The negated performance of an option ¬perf (ϕ) is to be
read as the omission, the non-performance, of the specific option. Permissibility is expressed
by the unary PE operator. Thus, for options ϕ that are permissible to perform, we write
“PEperf (ϕ)”, and for those that are impermissible to perform, “¬PEperf (ϕ)”. The unary
operator for obligation (OB) expresses that whatever follows it is obligatory. Since this can
be understood to mean that the omission of what follows is impermissible, OB can be defined
as ¬PE¬. For options ϕ that are obligatory to perform, one can write “OBperf (ϕ)”.

The language of SDL is classical propositional logic with the operators ¬ and→, supple-
mented by OB. It has the following axiomatization [332]:28

SDL 1 All tautologous well-formed formulae are theorems of SDL.

28Note that PE is not part of the specification of SDL. However, since PEperf (ϕ)↔ ¬OB¬perf (ϕ) is the
case, PE can be introduced without problems.



102 SUBSTANTIATING THE FRAMEWORK

SDL 2 ∀α, α′ ∈ SDL : OB(α→ α′)→ (OBα→ OBα′)

SDL 3 ∀α ∈ SDL : OBα→ ¬OB¬α.

Additionally, two inference rules are part of SDL: modus ponens, and “if ⊢α, then ⊢ OBα”.
The latter has sometimes been termed the normativity of logical facts.

We do not present any specific semantic for SDL, as we propose to use a standard Kripke-
style semantics [279]. SDL and its standard semantics are much debated, and there are a
number of fundamental problems with deontic logics in general, and with SDL in particular.
These problems arise primarily because a number of natural sentences must be expressed in
SDL in a manner which yields conclusions that seem counterintuitive [332]. However, these
are general problems of such formal systems, and they render neither SDL nor any other
form of deontic logic useless for expressing propositions about the deontic status of actions
or performing options. For now, it suffices that SDL is complete and sound in the standard
Kripke-style semantics. As usual, we write α |= α′ as a shorthand for “α′ is a semantic

consequence of α”, that is, for every interpretation in which α is true, α′ is true as well.
For our purposes, we restrict the content of principles to sentences of the following suffi-

ciently rich sublanguage L of SDL. L is specified by the following production rules:29

α ::= β | α1 ∧ α2

β ::= PEγ | ¬PEγ | β1 ∨ β2
γ ::= perf (ϕ) | ¬perf (ϕ) (for some ϕ ∈ Φ)

This language is quite simple and, thus, restrictive. It does not allow, for instance, for
conditional obligations and non-normative facts. We acknowledge that more sophisticated
models offer additional benefits but leave them for future research.

Nevertheless, several reasons motivated our decision to design L thusly. First, it is in
accordance with the specific manner in which we envision principles, namely, that principles
express whether a specific option is or is not allowed. Therefore, our L includes only the
operator for permissibility (PE). In addition, the formulae in L are in conjunctive normal
form, which grants them a beneficial structure for evaluation and use.

We allow disjunctions of formulae for two reasons. First, even with this sole addition, this
third way of modeling principles subsumes the first one: To express the set of permissible
options provided by the first approach by means of deontic logic formulae, it is only necessary
to add a conjunction with “PEperf (ϕ)” for every ϕ in Perm(ω). To do so the other way
around is not possible because of the disjunctions. Second, allowing disjunctions is already
sufficient to illustrate some of the standard problems that arise with respect to deontic logic.

29In this thesis, the Backus–Nauer Form is used somewhat liberally. To give an example, non-terminals are
identified with derived formulae and indices in the rules. Additionally, brackets will be used, although they
are not shown in the grammar. Such simplified notions for grammars are often called abstract syntax [50].
We are convinced that this simplification suffices for our purposes.
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Medical-Care Robot #27

We now apply this suggestion to the robot. As mentioned previously, Φ := {AnsReq ,
Charge}. A possibility for the robot’s principles and their hierarchy is as follows:a

1. prio(req) = H ∧ cost task(req) ≤ energy → OBperf (AnsReq)

2. prio(req) = L∧cost task(req)+dist(CS , req .r) > energy → OBperf (Charge)

In all other cases, it holds that PEperf (AnsReq) ∧ PEperf (Charge), as they are
not explicitly forbidden. In this suggestion, it is apparent that even in cases where it is
equally likely both principles apply, the robot will try to serve the request.

aWe used the obligation operator here (which is not in L). Doing so poses no problem, as OBϕ is
equivalent to ¬PE¬ϕ (as already stated) and ¬PE¬ϕ is part of L. In addition, we use implications
in order to express the association of formulae to worlds (which is somewhat unusual).

Determining the Set of Permissible Options To determine the set of permissible options
from these formulae, we begin with the set of permissible options given by a single principle
and a world in which this principle applies. As previously mentioned, we associate a formula
α to each principle ψ (at least in this third approach to modeling principles), expressing the
permissions and proscriptions of this principle.

To determine the set of permissible options in a world ω ∈ Ω given by the principle
ψ ∈ Ψ (which applies in ω), we check for every option ϕ ∈ Φω whether the permissibility
of performing this option is compatible with the formula α ∈ L implied by ψ together with
ω. Given some principle ψ ∈ Ψ and a world state ω ∈ Ω, determining the set of permissible
options resembles the following:

∀ω ∈ Ω,∀ψ = (ω → α) ∈ Ψω,∀ϕ ∈ Φω : (ω ∧ ψ)

→ (ϕ ∈ Permψ(ω)↔ (α ∧PEperf (ϕ) ̸|= ⊥))

By using the same approach as in Section 5.3.3, the set of permissible options with regard to
all principles can be derived, which is, naturally, only important in cases of perfect knowledge.
To determine the set of permissible options, it is necessary to solve a SAT problem (just as
with our first proposal). The formulae in L are in disjunctive normal form, and we have to
check whether they are satisfiable to arrive at the set of permissible options. Therefore, we
have at least one problem with regards to runtime when implementing the approach.

At this point, we first note that an additional axiom is needed when using SDL, which is
owed to our subscription to liveness (Axiom 2). This need arises because there is a practical
problem with SDL in some cases, other than the theoretical problems already mentioned.
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Medical-Care Robot #28

In a situation where the robot is in a room with a dying patient, the robot cannot be
obliged to resuscitate the patient if it is not able to do so, for instance, if it does not have
sufficient energy. If the robot were nevertheless obliged to do so, this would undermine
the concept of obligation. In this case, the robot is, thus, not only permitted not to
resuscitate the patient, but it could even be permitted to return to the charging station.

This restriction is often called “ought implies can” and claims that, if an agent is morally
obliged to perform a certain option, then it must logically and maybe even (meta)physically
be able to perform it. The first formulation of this restriction is often ascribed to Immanuel
Kant. He notes that: “The action to which the ‘ought’ applies must indeed be possible under
natural conditions.” [260, A548/B576]. “Ought implies can” has two implications for our
framework. The first, direct implication is that no principle should demand an option that is
not available. This can be incorporated into a new axiom:

Axiom 3 [Ought→ Can]∀ω ∈ Ω,∀ψ = (ω → α) ∈ Ψω,∀ϕ ∈ Φ: (ω ∧ ψ)

→ ((α |= OBperf (ϕ))→ ϕ ∈ Φω)

The second implication is that, because of Axiom 1, we know that options are distinct.
Together with Axiom 3, we can deduce the following statement in our framework:

Lemma 2 ∀ϕ, ϕ′ ∈ Φ: OBperf (ϕ) ∧OBperf (ϕ′)→ ϕ = ϕ′.

To put this statement into words: at all moments in time, there can only be precisely one
option that a system is obliged to carry out. This is only natural, as a system cannot be
obliged to simultaneously perform two different actions, for this is logically and maybe even
(meta)physically impossible, assuming distinct options.30

After clarifying the need for this axiom, we turn back to the disjunctions. As stated above,
allowing disjunctions to be in L serves as an example to illustrate some problems which arise
even with this simple sublanguage of SDL. This is partly so because several questions remain
open, including the issues of what it means for several options to be disjunctively permitted,
whether their permissibility is divided between them or not. These questions are difficult to
answer and controversially discussed [332]. Additionally, it is still not clear how to make a
final choice regarding the options that are permissible to perform.

A much-debated problem arising due to disjunctions in deontic logic is Ross’ Paradox

[401]. In the light of this problem and the questions above, it appears hard to find a satisfying
way to interpret disjunctive deontic logic formulae. The even more expressive SDL, then, has

30This is only true for actions. If we are concerned with states of affairs, it could very well be possible for more
than one state to be obliged to be the case at a time. At all times, there is an obligation that no one is tortured,
and there is also an obligation that animals are kept in a manner appropriate to their species, etc.
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even more problems. Thus, it appears that we are forced to abandon the approach of modeling
principles as as deontic logic formulae.

This seems to be the case at least when directly implementing the framework as we have
outlined it above. However, in some cases it might be beneficial to deviate in some aspects if
this allows us, for instance, to model the principles in a more appropriate way. In a previous
work, we have shown how this might look for deontic logic formulae [446].

7.2. An Alternative Formalization of the Framework

In this thesis, we will demonstrate a different approach. Generally, it stands to reason that
a formal framework for machine ethics is based on a logic for actions. After all, in order
to formally specify the normative constraints on a machine’s behavior, one needs a system
that provides the right kind of formal surface: as norms involve specific properties of agents,
actions and outcomes, we need a logical system that involves these components.

With our framework, we have described the most basic components that such a system
would require. As a final part of substantiating our framework, we will show that established
logical systems can be leveraged to flesh it out (see [446] for our previous approach for
this). As this is not a key contribution of our thesis, however, this fleshing out will remain
approximate.

7.2.1. STIT, XSTIT and Beyond

As the family of so-called STIT logics (“STIT” is the acronym for “Sees To It That”) allows
direct discussion of choice-making, these logics are especially well-suited for machine ethics.
First, because they have been thoroughly studied. Second, because they have been proven
to be highly flexible. For instance, STIT semantics have been proposed as a version of
two-dimensional semantics forming an alternative to traditional Kripke-style possible world
semantics for a number of systems of modal logic such as deontic logic, epistemic logic and
temporal logic. These are all modal systems that will be needed in a full-blown machine-ethics
framework [242, 346]. Accordingly, we build our alternative approach to such a framework
on top of STIT-related work of John Horty [238, 240] and Jan Broersen [85, 86].

STIT semantics are grounded in a philosophical theory of indeterministic time which was
first set out by Arthur Prior [380], and refined by Richmond Thomason [461]. The result of
considering the full temporal evolution of a world is a series of ordered moments, from the
past to the present to the future, called a history. Indeterminism comes into play insofar as
things could have come about differently at any moment. Therefore, each moment is part of
several distinct histories, all of which coincide up to that single moment and branch off at that
point, or a later moment.

In this thesis, we will restrict ourselves to the case of only an individual agent acting (as
opposed to sets of agents), and, for this reason, fall short of the semantics proposed by, for
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instance, Broersen [85]. Beyond that, we adopt Broersen’s notation as opposed to Horty’s.31

Furthermore, we choose a STIT logic where the effects of actions take place in the very neXt
moment (therefore called XSTIT logic) and not in the same moment the action is performed.
This has a couple of theoretical advantages. For instance, it makes a multi-agent extension
axiomatizable and decidable.

As we are concerned with the morally constrained interplay between a machine and its
environment, we are not using XSTIT, but an extended version of it which allows for such
an interplay. First, we add subjective probabilities from Broersen [86].32 To this end, we add
a second agent (the world) with which a machine must interact and about whose state and
behavior, for the most part, only probabilities are known. Moreover, we add the obligation
and permissibility operators as suggested by Broersen [85]. Finally, we add action types, an
idea proposed by Horty [240]. Overall, this results in the language AT-XSTITp (Action Type
XSTIT with probabilities), which we will outline below.33

We first introduce the semantics for a probabilistic version of XSTIT and add action types
and obligation later on. As a general preparation, we introduce the following notations:

• M is an infinite, but countable, set of moments. Elements of M are called moments and
are denoted by m, m′, . . ..

• <M⊆M ×M is a serial and strict partial order with no backward branching, that is:
∀m,m′,m′′ : (m′ <M m ∧m′′ <M m)→ (m′ = m′′ ∨m′ <M m′′ ∨m′′ <M m′).

• We define the set of histories H ⊆Mω as the largest set of words over M respecting the
order<M . We use h, h′, h0,. . . to denote histories, and we use a couple of history-related
abbreviations:

– We write m ∈ h in order to express that there is an occurrence of m in h, that
is, there are (left/right) infinite words w and w′ so that h = wmw′. Note that, by
definition of <M , each m ∈ h occurs at most once in h.

– Whenever we have a m ∈ h as reference, we will use Z as an index set centered
at m. In other words, given a moment m and a history h with m ∈ h, we write
h[0] = m. Given a moment m and an i ∈ Z, we write h[i . . .] in order to denote
the infinite suffix of h starting at h[i], that is, h[i . . .] = h[i]h[i+ 1]h[i+ 2] . . ..

– For every moment m ∈ M , we define Hm ⊆ H as the set of all histories h
containing the corresponding moment m. Formally expressed: Hm := {h ∈

31We do so because Broersen’s notation is closer to the notations used in traditional computer science. In
contrast, Horty’s notation conforms more to the way philosophers think about STIT semantics. While this
is a mainly philosophical thesis, the people who will need to work with the proposed formalizations are
presumably computer scientists. For this reason, we have chosen the formalization that seems more inclined
towards application.

32We leave the question of incorporating non-determinism into the model for future work.
33To increase readability, we assume universal quantification over unbound variables in what follows.
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H |m ∈ h}. Note that by the nature of <M , the histories in Hm share the same
left infinite prefix ending in m.

• We use I to specify elements in Hm by defining I ⊆M ×H such that I := {⟨m,h⟩ ∈
M ×H |m ∈ h}. We call I the set of indices, and write MM and IM whenever we see
the need to emphasize that we refer to the set of moments or indices, respectively.

• We define succ : I 7→ M as the function that yields the “next moment” for a given
index ⟨m,h⟩ ∈ I , i.e., the unique next moment m′ following m in h, i.e., h = wmm′w′

for some (left/right) infinite words w and w′.

XSTITp With all of the above, we can now define the language of XSTIT with subjective
probabilities (i.e., the language of XSTITp):

Definition 7 Given a countable set of propositions Props and p ∈ Props , and a set of two
agents Agents = {Sys ,Wld} and α ∈ Agents , the formal language LXSTITp is:

φ := p | ¬φ |φ ∧ φ′ |□φ | [α xstit]φ |Xφ

Besides the usual connectives known from propositional logic, the syntax of XSTIT includes
three modal operators. The □φ operator expresses “historical necessity”. In other words, it
expresses that all possible histories containing a certain moment m have the property φ at m.
In general, this is interpreted as a universal quantification over the branching dimension of
time. The operator [α xstit]φ stands for “agents α sees to it that φ in the next state”. The last
modal operator is the next operator Xφ. It expresses the transition to a next static state. [85]

Definition 8 A XSTITp-frame is a tuple ⟨M,<M , E,BSys⟩ such that:

• M and <M⊆M ×M are defined as above.

• E : I×Agents 7→ 2M \∅ is an effectivity function yielding for an agent α ∈ Agents the
set of next moments that may follow the agent’s actions relative to an index ⟨m,h⟩ ∈ I .
E has to fulfill the following constraints:

– succ(⟨m,h⟩) ∈ E(⟨m,h⟩ , α);

– if m′ ∈ E(⟨m,h⟩ , α) then ∃h′ ∈ Hm : m′ = succ(⟨m,h′⟩);

– if m′ = succ(⟨m,h⟩) and ∃h′ ∈ Hm : h′ ∈ Hm′ then m′ ∈ E(⟨m,h′⟩ , α);

– ∀h, h′ ∈ Hm : E(⟨m,h⟩ ,Wld) ∩ E(⟨m,h′⟩ , Sys) ̸= ∅.

For every moment m ∈ M and agent α ∈ Agents , E induces a partition Choicesm,α

of Hm. We call the elements Ch ∈ Choicesm,α choices and for h ∈ Hm we write
Choicesm,α(h) for the partition block containing the history h. The history h ∈ Hm
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of a moment m ∈ M is in block Choicesm,α(h′) if and only if E(⟨m,h⟩ , α) =

E(⟨m,h′⟩ , α). We let ChoicesM,α denote
⋃
m∈M Choicesm,α for some agent α.

• BSys :M × ChoicesM,Wld 7→ [0, 1] is a subjective probability function for agent Sys
such that B(m,Ch) (for Ch ∈ Choicesm,Wld being one of the choices Wld can choose
in m) expresses agent Sys’s belief that in moment m, agent Wld performs that choice.
We apply the following constraints:

– BSys(m,Ch) = 0 if Ch /∈ Choicesm,Wld ;

– BSys(m,Ch) ≥ 0 if Ch ∈ Choicesm,Wld ;

–
∑

Ch∈Choicesm,Wld BSys(m,Ch) = 1.

We call the elements of Choicesm,α the action tokens available at index ⟨m,h⟩ to agent
α ∈ Agents . We say that an action token Ch is associable to a history h if and only if h ∈ Ch .

If we want to evaluate propositions in our frame, we need a model:

Definition 9 A XSTITp-frame F = ⟨M,<,E,BSys⟩ is extended to an XSTITp-model
M = ⟨M,<,E,BSys , π⟩ by adding a valuation π of atomic propositions:

• π is a valuation function π : Props → 2I assigning, to each atomic proposition, the set
of indices in which it is true.

The truth conditions for the semantics of the operators are standard [85]. The non-standard
aspect is the two-dimensionality of the semantics [85], meaning that we evaluate truth with
respect to indices built from a dimension of histories and a dimension of static states.

Definition 10 Given a XSTITp-modelM = ⟨M,<M , E,BSys , π⟩, truth at an index ⟨m,h⟩
is defined as:
⟨m,h⟩ |= p⇔ ⟨m,h⟩ ∈ π(p)
⟨m,h⟩ |= ¬φ⇔ not ⟨m,h⟩ |= φ

⟨m,h⟩ |= φ ∧ φ′ ⇔ ⟨m,h⟩ |= φ and ⟨m,h⟩ |= φ′

⟨m,h⟩ |= □φ⇔ h′ ∈ Hm implies ⟨m,h′⟩ |= φ

⟨m,h⟩ |= Xφ⇔ succ(⟨m,h⟩) = m′ implies ⟨m′, h⟩ |= φ

⟨m,h⟩ |= [α xstit]φ⇔ h′ ∈ Choicesm,α, m′ = succ(⟨m,h′⟩) implies ⟨m′, h′⟩ |= φ

Obligation and Permissibility We now extend our framework by two central deontic
operators: a modal operator OB for “ought to do” and a modal operator PE for “permissible
to do”. We have already discussed the relation between central deontic concepts above (in
Section 7.1.3) and visualized it in Figure 5.
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The operators OB and PE are implemented via the introduction of so-called violation

constants, as proposed by Bartha for traditional STIT logic [56], and by Broersen for XSTIT
[85]. The underlying idea for this construction was first proposed by Anderson [19]. Violation
constants represent actions that ought not to be performed.

We follow Broersen in writing v for the violation constant that is added to the set of
propositional variables: v ∈ Props [85]. This will be the connection point for our moral
principles; it is the place where, later, our moral principles interact with the models of
LAT-XSTITp .

Definition 11 The operator OB [α xstit]φ, expressing the obligation of α to see to it that φ,
is defined as follows:

OB [α xstit]φ ≡def □ (¬ [α xstit]φ→ [α xstit] v)

In natural-language terms, the above construction states that it is obligatory for an agent
to do something if and only if by not doing it, they perform a violation. Since the effect of
the obliged action can only be felt in subsequent states, violations have to be properties of
subsequent states.

Proposition 1 The operator OB [α xstit]φ is KD34, that is, it has the same properties as
standard deontic logic. (A proof of this proposition can be found in [85].)

Definition 12 The operator PE [α xstit]φ, expressing permissibility for α to see to it that φ,
is defined as follows:

PE [α xstit]φ ≡def □ ([α xstit]φ→ ¬ [α xstit] v)

Once again, let us express the above construction in natural terms. It is permissible for an
agent to do something if and only if by doing it, they do not perform a violation.

Many frameworks of STIT logics stop at this point. We regard that as unsatisfactory, as it is
not clear, at this point, whence the violation constants v are derived. In order to incorporate
them satisfactorily, we need action types and principles. Our first focus is on action types.

AT-XSTITp In order to introduce action types into XSTITp, we define a countable set of
action-type labels ActionTypes = {τ1, τ2, . . .} and a function for a given XSTITp-modelM,
assigning labels to action tokens (given a particular moment).

Definition 13 Given a XSTITp-modelM, we let LabelM : ChoicesM 7→ ActionTypes be
a labeling function, mapping action tokens to action types.

34The logic K emerges by adding an operator OB and two principles to propositional logic: 1) If A is a theorem
of K then so is OBA (rule of obligation), and 2) OB(A→ B)→ (OBA→ OBB) (distribution axiom).
We arrive at KD by adding the D axiom: OBA→ PEA. [186]
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We call XSTITp with action types AT-XSTITp. An AT-XSTITp frame is an XSTITp-frame
extended by the labeling function: F = ⟨M,<M , E,BSys ,Label⟩. The model is defined
similarly to an XSTITp model. We use M to denote the space of models of LAT-XSTITp .

7.2.2. Moral Principles

We now introduce formal moral principles into our framework. They determine the moral
constraints to which our system is subjected, by placing the violation constants into a model.
For this purpose, principles are considered to be CTL∗ formulae over the set ActionTypes
and the language LAT-XSTITp .

CTL∗ is a very expressive temporal logic which is decidable for finite-moment structures
and used frequently in verification [169]. Consequently, using CTL∗ for our principles is a
first step towards the verifiability of our framework.35 How to spell out this verifiability in
detail, however, must be left to future work.

Let Ψ = {ψ1, . . . , ψm} be the set of principles once more. The general idea is that principles
determine the violations of norms; thus, they place violation constants into models. For this,
one checks whether a history satisfies the principle-induced CTL∗ property, and places a
violation constant wherever the property is violated.

We begin by defining the syntax of our variant of CTL∗, which we call CTL∗
AT-XSTITp

Definition 14 We define CTL∗
AT-XSTITp over ActionTypes and LXSTITp . In what follows, we

use τ to range over sets of ActionTypes and φ for atomic propositions from LXSTITp .
CTL∗

AT-XSTITp formulae are defined as:

ρ ::= φ | ¬ρ | ρ1 ∧ ρ2 | ∃ρ | ⃝τ ρ | ρ1Uρ2

Definition 15 Given an AT-XSTITp-model M = ⟨M,<M , E,BSys ,Label , π⟩, an index
⟨m,h⟩ satisfies a CTL∗

AT-XSTITp formula according to the minimal relation |=∗ satisfying the
following constraints:
⟨m,h⟩ |=∗ φ⇔ ⟨m,h⟩ |= φ

⟨m,h⟩ |=∗ ¬ρ⇔ not ⟨m,h⟩ |=∗ ρ

⟨m,h⟩ |=∗ ρ1 ∧ ρ2 ⇔ ⟨m,h⟩ |=∗ ρ1 and ⟨m,h⟩ |=∗ ρ2

⟨m,h⟩ |=∗ ∃ρ⇔ there exists Ch ∈ Choicesm,Sys with h′ ∈ Ch and ⟨m,h′⟩ |=∗ ρ

⟨m,h⟩ |=∗ ⃝τ ρ⇔ ⟨succ(m,h), h⟩ |=∗ ρ and Label(Choicesm,Sys(h)) ∈ τ
⟨m,h⟩ |=∗ ρ1Uρ2 ⇔ ∃n ≥ 0 : ⟨succn(m,h), h⟩ |=∗ ρ2

and ∀0 ⩽ k < n :
〈
succk(m,h), h

〉
|=∗ ρ1

In the same way (and for the same reason that principles can sometimes be outweighed) as
in Section 5.3.2, we define ⪰Ψ⊂ Ψ×Ψ: a total preorder on the set of principles.
35A future approach could attempt to express the whole semantics as CTL∗, or adopt Broersen’s approach of a

combination of CTL and STIT [84]. We refrain from doing so (yet), as STIT semantics are currently far
better grounded for expressing the actions a system can and should make.
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In order to adjust the violations of this order over principles, we not only assume one
violation constant v ∈ Props , but also a countably infinite number of constants vki for each
equivalence class Ψi of principles in a set of principles Ψ and for all k ∈ N. We construct an
order ⪰V over these constants mirroring ⪰Ψ, i.e., for all i, j ∈ {1, . . . , t}. It holds true that
∀k, l ∈ N : vki ⪰V v

l
j if and only if Ψi ⪰Ψ Ψj . We call the set of these variables V ⊆ Props .

In order to do justice to this change, we redefine the OB operator:

Definition 16 We define n ought-to-do operators OB1, . . . ,OBn with:

OBi ([α xstit]φ) if and only if ∃k > 0 ∈ N : □
(
¬ [α xstit]φ→ [α xstit] vki

)
We derive, analogously to Definition 12, n permissible-to-do operators PE1, . . . ,PEn.

With the construction thus far, we can define the following function, ApplyM for applying
a principle in a certain modelM.

Definition 17 Given some model AT-XSTITp-modelM = ⟨M,<M , E,BSys ,Label , π⟩ ∈
M, the function ApplyM : Ψ× IM 7→M yields, for a principle ψ and an index i, a possibly
modified version M′ of M that differs from M maximally insofar as it adds a violation
constant to indices of histories which violate ψ. More exactly, for ψ ∈ Ψi:

ApplyM(ψ, ⟨m,h⟩) =

 ⟨M,<M , E,BSys ,Label , π
′⟩ if h ̸|=∗ ψ

M otherwise

with π′ differing from π only insofar as: ∀φ ∈ LAT-XSTITp: for all h′ ∈ Hm : ifM, ⟨m,h′⟩ |=
[Sys xstit]φ, then (for m′ = succ(⟨m,h′⟩)): if ⟨m′, h′⟩ ∈ π(vki ) for some k ∈ N we set
⟨m′, h′⟩ /∈ π′(vki ) and ⟨m′, h′⟩ ∈ π′(vk+1

i ).

In other words, ApplyM increases the violation counter corresponding to a principle if that
principles’ property is not satisfied by a history. In order to understand ApplyM better, we
introduce a proposition: If a principle ψ is not satisfied at index ⟨m,h⟩ in modelM, then
everything Sys is permitted to see to it to happen at this index is impermissible for the agent
to see to it that it happens in the modelM′ resulting from the application of the principle:

Proposition 2 ForM′ = ApplyM(ψ, ⟨m,h⟩) (for a principle ψ ∈ Ψi and index ⟨m,h⟩): if
M ≠M′ then for all φ ∈ LAT-XSTITp for whichM, ⟨m,h⟩ |= [Sys xstit]φ :

M′, ⟨m,h⟩ |= ¬PEi([Sys xstit]φ).

Note that it trivially holds that, if seeing to it that φ is permissible for Sys at some index
⟨m,h⟩ on some modelM and ψ is satisfied by h in this model, then seeing to it that φ remains
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permissible for Sys even in the model resulting from the application. After all, if the principle
ψ is satisfied by h, the result of ApplyM isM.

Based upon ApplyM : Ψ× I 7→M, we introduce ReApplyM : 2Ψ × I 7→M as follows:

Definition 18 Given some AT-XSTITp-modelM = ⟨M,<M , E,BSys ,Label , π⟩ ∈M, the
function ReApplyM : 2Ψ × IM 7→M for a set of principles Ψ = {ψ1, . . . , ψr} ∈ 2Ψ and an
index i yields a possibly modified versionM′ ofM by applying Apply recursively:

ReApplyM(Ψ, i) = ApplyMr−1
(ψr, i), whereMr−1 = ApplyMr−2

(ψr−1, i) andM0 =M

The function ReApply steps recursively through all principles in a set Ψ and applies them
one after another to an initial modelM. Finally, because a system navigating through the
moments of a frame through time does not know the history in which it is, we need a function
BlindApplyM that only operates on a moment m and not on a complete index:

Definition 19 Given some AT-XSTITp-modelM = ⟨M,<M , E,BSys ,Label , π⟩ ∈M, the
function BlindApplyM : 2Ψ ×M7 →M for a set of principles Ψ = {ψ1, . . . , ψr} ∈ 2Ψ and a
moment m yields a possibly modified versionM′ ofM by applying ReApply◦ recursively
to every h ∈ Hm.

Obviously, the fact that Hm is countably infinite by construction makes a realization of
the function practically and computationally infeasible, but this should not bother us in the
context of our theoretical framework.

We call P := ⟨Ψ,⪰Ψ,BlindApply ·⟩ a principle structure, giving us a hierarchy of moral
principles flexible enough to also accommodate the absence of any hierarchy (obtained if
≈Ψ:= Ψ×Ψ) and application function which requires parameterization with a model.

•

At this point, we have filled our alternative framework to the point where it is equivalent to
our original framework up to the introduction of explanations (i.e., everything we outlined in
Section 5). To this end, we have used proven logical systems to arrive at the same result.

All in all, this should be a first indicator that our framework is not a mere figment of our
imaginations. We will evaluate the second part of the framework, namely, the explanations
it potentially generates, later (in Section 11). At this point, however, we are finished with
elaboration on our framework, and come to the topic of machine explainability in more detail.
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Part III.
Machine Explainability
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8. Charting the Field of (Machine) Explainability

At this point, we have motivated the need for machine ethics, and have shown how it could
be possible to implement it into a system. Furthermore, we have also motivated the need
for machine explainability based on machine ethics. However, we remained silent on what
exactly machine explainability is, and on how our approach specifically supports machine
explainability. This part of the thesis is dedicated to amending the first of these two deficits.

8.1. What are Explanations?

When talking about machine explainability, one must first be clear about what explanations
are, as such. Explanations themselves have a long history in philosophy. Aristotle, for instance,
provided an account of what he believed explanations are, namely, answers to “why”-questions
[34]. Even today, the more general view that explanations are answers to “w”-questions (e.g.,
“why”, “what”, “when”, but also “how”36) is widely spread (see, e.g., [131, 188, 206]) [107].

Apart from this initial account, Aristotle also proposed a first distinction: One must differ-
entiate those answers to “why”-questions that provide only symptoms of something being
the case, from those that provide reasons for it being the case [356].37 If one wants to know
why somebody is ill, one can either answer with something like “There are symptoms such as
fever, increased sweating, . . . ” or with something like “The person in question returned from
Asia a few days ago, where he was bitten by a mosquito, so it is likely that he is infected by
malaria”. Later, approximately during the lifetime of Kant, the terms rationes cognoscendi

for the first variety of answers, and rationes essendi for the second variety, were coined.
More than 2000 years later, there are still many competing conceptions of what explanations

are. Just as with the debate over the “correct” normative theory, there is no consensus on
a “correct” account of explanation. What is considered an explanation can sometimes vary
to such a great extent that there is no single concept of explanation, but rather a variety
of concepts linked by family resemblance. Thus, exactly defining what characterizes an
explanation is difficult. Nevertheless, this will not deter us from charting the field.

ExplanandumExplanans
Process of

Explanation

Explanation

Figure 6: The general model of explanation [171].

36By using the archaic interrogative word “wherefore”, one can even have them all start with a “w”.
37To be exact, Aristotle differentiated three varieties of answers. The third variety (later called rationes fiendi),

however, is of no interest to us. Those answers are concerned with the outer influences which led to something
being the case. We, in contrast, are mostly concerned with the internal reasoning of a system.
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In general, it is uncontroversial that explanations consist of two main components: the
explanandum and the explanans. The explanandum is the phenomenon to be explained.
The explanans, on the other hand, takes on the explanatory role and is usually the set of
propositions cited within an explanation to explain the explanandum [363]. This general
scheme is visualized in Figure 6. In what follows, we will call the inference from explanans
to explanandum the process of explanation, and the product of this inference the explanation.

8.1.1. Scientific Explanation

Since explanation is, among others, deeply rooted in science, a popular way to approach
explanation is through science. Disciplines as diverse as psychology, sociology, and biology
have one thing in common: they aim to explain certain phenomena (e.g., why an event
occurred or why a fact exists). The variety of explanation accounts is partly due to disciplinary
diversity. Because different disciplines have their own distinct ways of explaining things, there
are many different accounts of explanation [364]. In what follows, we will briefly introduce
some of these accounts.

The branch of philosophy that deals with explanation in science (and, more generally, with
the conditions under which a research discipline qualifies as a science at all) is the philosophy

of science. It is not far-fetched to say that, for many scholars, one of the goals of philosophy
of science is to to find a single account of explanation that adequately captures the different
modes of explanation in the various sciences [500].

In this respect, we can observe an interesting commonality with practical philosophy: while
one goal of practical philosophy is to find a universal normative theory, one goal of philosophy
of science is to find a universal account of explanation. However, a look at the literature shows
that, among the various accounts of scientific explanation, no single one is currently preferred.
Rather, there are several accounts that are seen as complementary [324, 364, 419, 500].
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tive-nomological ex-
planation (DNE).
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(b) The model of causal-
mechanical explana-
tion (CME).
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(c) The model of new
mechanist explana-
tion (NME).

Figure 7: Schematic overview of different accounts of explanations [171].
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Among the various accounts of scientific explanation, we will discuss three in particular:
DNEs, CMEs, and NMEs. The general scheme of these three accounts is visualized in Figure 7.
The DNE is the oldest type of dedicatedly scientific explanation, and was proposed by Hempel
and Oppenheim in the first half of the twentieth century [217, 218]. A DNE is primarily a
deductive argument, where the conclusion is the explanandum and the premises contain at
least one regularity or law of nature (see Figure 7a) [363]. Although Hempel also intended
DNEs to be used to deduce special laws from more general ones, they are generally employed
to explain specific events and to make predictions about the state of a system [356]. Because
of their focus on laws, DNEs are often referred to as covering law explanations.

DNEs can be considered the first “real” account of scientific explanation, and subsequent
accounts have often been devised to improve on the problems of this account. For example,
Salmon developed the statistical relevance account to address failures of DNEs to capture
information about relevant causes [406]. He then discarded this approach and devised CMEs,
still with the goal of capturing the allegedly central role of causation in explanation [407,
408]. A similar motivation stands behind the related account of Dowe [158].

Overall, Salmon was concerned with an analysis of causality that is compatible with our
knowledge of physics. To this end, he distinguished two aspects of causation: causal processes

and causal interactions. A causal process is the ability to transfer a mark or its own physical
structure in a spatio-temporally continuous manner (e.g., the motion of sound waves through
air). A causal interaction takes place when causal processes interact and modify their structure
(e.g., the interference of sound waves). A successful CME involves citing some parts of the
causal processes and interactions that led to the phenomenon in question (see Figure 7b).

However, CMEs have also not escaped criticism. Most prominently, both DNEs and CMEs
are criticized for not adequately capturing the explanatory practices or needs of the special
sciences. Because DNEs and CMEs are tailored to the explanatory needs of physics, some
philosophers found that these accounts of explanation do not meet the needs of other sciences.
For instance, it is by no means clear that laws of nature play the same central role in biology
as they do in physics [65, 364, 437]. Moreover, Hitchcock noted problems with the kind
of causality that is captured by CMEs [226]. While CMEs may be successful in explaining
simple sound wave interference, it is difficult to see how they apply to the tangled causal
networks studied in the special sciences. As a result, new explanation accounts have been
developed, such as NMEs, causal interventionist explanations, and network explanations.

The idea behind NMEs is that providing an explanation involves demonstrating how some
phenomena arise from a collection of entities and activities (see Figure 7c). A successful
explanation involves identifying the entities and activities that bring about a phenomenon with
regularity and without gaps, missing entities, or activities. According to the most influential
account of NME (that of Machamer, Darden, and Craver, see [314]), a mechanism is a system
of entities and activities organized to produce changes from start to termination conditions. In
this view, explaining an event consists in describing the mechanisms that produced it.
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Since these accounts of explanation will suffice for our purposes, we will mention some
other examples only briefly to draw a more complete picture. In his causal interventionist
account, Woodward tries to capture very general features of causal explanation explicitly
in terms of counterfactual dependencies [499]. An explanation should answer the question,
“what if things had been different?” in terms of what caused the explanandum. This stands
in contrast to causal-mechanical accounts of explanation, as both Salmon and Dowe were
suspicious of appeals to counterfactual conditions to spell out causality. Finally, Borsboom
[78] devised network models of explanation to fit the need in sciences like psychopathology.
A network explanation appeals to the topological properties of a network model describing
the system in order to explain, for instance, pathological behavior that deviates from the norm.

In all of these approaches, two factors are worth emphasizing. First, most of them assign
some role to the specification of causes in explanations, but differ on whether it is more
important to specify actual causes or whether good scientific explanations depend primarily on
the laws of nature. However, although there is considerable disagreement among philosophers
about what (if any) difference there is between causal and non-causal explanations, most
agree that many scientific explanations make use of information about causes. [363]

The debate over the importance of causality and laws of nature for scientific explanation
continues today, with a growing number of accounts that try to unify both under one umbrella.
Against this backdrop, Psillos [381] argues that the concepts of causality, laws of nature, and
explanation form a tight web [363]. Likewise, Bartelborth [55] and Overton [364] propose
models that try to avoid the problems of previous accounts while harnessing their advantages.

Second, according to all these accounts, what makes something an explanation is whether
it accurately depicts the world through the process of explanation pertinent to the account
in question [125]. According to DNEs, for example, an explanation is a deductive inference
from at least one law of nature and at least one initial condition. So, all of these accounts
assume, at least in a certain sense, a specific structure of explanation.

This stands in contrast to most accounts of explanation that are not dedicatedly scientific.
For them, it is often the case that a number of pragmatic conditions determine whether
something counts as an explanation. One very important pragmatic condition, which will play
a role later, is whether the explanation leads to understanding. This is not to say that scientific
explanations do not value understanding, but rather that producing understanding is just one
(although important) epiphenomenon of scientific explanations (see, e.g., [290]) [363].

Finally, there is no such thing as quality criteria for these accounts of scientific explanations.
Therefore, it does not matter whether they fulfill a certain set of explanatory virtues or anything
like that: as soon as the pertinent form for an account is present, we have an explanation
(without any qualification, gradation, or further determination).
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8.1.2. Reason Explanation

The above accounts of explanation are all concerned with scientific contexts. Although
explanation and science are intimately linked, explanation’s relevance extends beyond science.
Every day, explanation processes take place between people to answer questions like “Why
did you lie to your grandma?” or “Why did you miss our meeting?”, and explanations given in
response to these questions are presumably not scientific. Nevertheless, there is philosophical
interest in these questions. This interest, however, is not from the philosophy of science but
from the philosophy of action. Among the many ways to answer questions like these, one way
is of particular interest to philosophers of action. In this respect, Alvarez writes:

“A person’s action may be explained in a variety of ways: by reference to the agent’s

goal, or habits, or character traits, or to her reasons for acting. For instance, we may say

that Jess went to the hospital in order to reassure her father, [. . . ] or because her father

was in intensive care. These statements explain why Jess went to the hospital because,

given certain background assumptions, they enable a third person to understand Jess’s

action: they make it intelligible. [. . . ] Among this variety of possible explanations (and

there are more), the last one is a distinctive type that is of particular interest here because

it is an explanation of an intentional action that rationalises the action: it explains the

action by citing the agent’s reason for acting” [15].

What Alvarez describes here are so-called reason explanations. In general, reason explana-
tions are the explanations that humans typically use when trying to understand and explain
action, when exchanging justifications for actions and recommendations, and when trying
to resolve disagreements [14, 223]. Reason explanations have some history in philosophy,
having been first described by Davidson in the early 1960s:

“A reason rationalizes an action only if it leads us to see something the agent saw, or

thought he saw, in his action—some feature, consequence, or aspect of the action the

agent wanted, [. . . ], thought dutiful, [. . . ] or agreeable” [141, p. 685].

Let us first clarify what reasons are and which kinds of reasons figure in reason explanations.
In the philosophy of action, reasons are categorized by the distinction between normative
and motivating reasons [15, 223, 319]. Normative reasons are facts that objectively favor or
disfavor an action. All normative reasons, taken together, make the action right or wrong. For
example, the fact that eating vegetables is healthful counts in favor of one eating vegetables.

Although, ideally, a person has normative reasons available, reason explanations will
instead focus on motivating reasons, because people can make mistakes. A motivating reason
is a consideration that an agent relies on in acting, a consideration “for which someone does
something, a reason that, in the agent’s eyes, counts in favor of her acting in a certain way”
[15]—whether or not it is a fact and actually favors the action.
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Motivating reasons stand at the intersection between explanation and justification, as they
help to explain an action in the light of what the decider took to justify or favor it [223]. In
contrast to normative reasons, motivating reasons can include merely apparent facts, that is,
non-obtaining states of affairs or false propositions that the agent mistakenly believes to be
true [133, 416]. For instance, that spinach is a good source of iron is a merely apparent fact.
Even though it is not the case that spinach is a good source of iron, this can be the reason that
motivates a person to eat spinach—since that person mistakenly believes that spinach is a
good source of iron, this favors the action in their eyes, and it is the light in which they act. If
a motivating reason is not mistaken, we say that it corresponds to a normative reason.

Description
of an Action

Motivating
Reason(s) Rationalization

Reason Explanation

Figure 8: The model of reason explanation.

In reason explanation, an action is explained by the motivating reasons of the agent—
that is, the information or misinformation that led him or her to take that action. These
reasons rationalize the agent’s action. Although agents may be aware of numerous pro and
contra considerations, and may be led to an action by such a bundle of reasons, most reason
explanations of human actions focus on only one or a few contextually relevant motivating
reasons. Figure 8 visualizes reason explanations based on the general model of explanation.

8.2. From Explanations to Machine Explanations

There are many other accounts of explanation, and a comprehensive review is beyond the
scope of this thesis. These few accounts, however, should suffice to illuminate the con-
cept of explanation, and they will be used later when assessing the appropriateness of our
argumentation-based approach. In short, we will argue that, in principle, our approach can
be used to generate all of these kinds of explanations (see Section 11.1.1) and, thus, that it
harnesses their individual advantages.

8.2.1. Important Distinctions Concerning Explanations

As a step from explanations in general towards machine explanations, we will briefly distin-
guish between narrow vs. broad views of explanation, and between process and product.

Let us first discuss the distinction between process and product. Nouns ending in the
suffix, -tion38 can denote either of an activity or the result of this activity [115], and the term
“explanation” suffers the same fate. Achinstein writes the following on this ambiguity:

38These Latin-root words originate in verbs, nominalized in the third declension. For example, ago I act→
actus→ actio/actionis; explano I explain→ explanatus→ explanatio/explanationis.
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“Suppose that Dr. Smith explained Bill’s stomach ache by saying that Bill ate spoiled

meat. There is some act that has occurred, viz. the doctor’s explaining, which went on

for some period of time however short. There is also the product of this act, viz. the

explanation given by the doctor, which did not go on for any period of time but was

produced in or by the act of explaining” [2, p. 1].

As Achinstein illustrates, the expression “the explanation given by the doctor” can be used
to refer either to the act of explaining or to the product of this act [363].

Beside the process–product ambiguity of “explanation”, there is another distinction that is
worth highlighting [363]. Again, a quote from Achinstein serves as illustration:

“The terms ‘explain’ and ‘explanation’ can be used broadly to refer to explaining acts

and products that may or may not be good (adequate, successful, ‘scientific’). They can

also be used more narrowly to refer only to acts and products that are (regarded as) good.

In accordance with the broader, but not the narrower, use an atheist could admit that his

religious friends are explaining the origin of man when they assert that man was created

by God. And he could refer to the product of such acts as an explanation” [3, p. 4].

What Achinstein is outlining here is that there are at least two further uses of “explanation”
(primarily in the product sense): a narrow and a broad one [363]. When used broadly, the term
“explanation” refers to explanations that may or may not be “good”. In the narrow use, the
term refers only to the explanations that are judged to be “good”. So, in order to understand
what explanations are in the narrow sense, the question now arises as to what it means for an
explanation to be “good”.

With this question in mind, we can begin to approach machine explanations. More specifi-
cally, what can be taken to delineate machine explanations from other types of explanations is
the criterion for “goodness”. As described earlier, a scientific explanation is “good”, when it
accurately maps onto the world. The common view in the machine explainability community,
however, is that an explanation is “good” when it evokes understanding in an addressee (see,
e.g., [54, 99, 339, 393, 399]). This brings machine explanations close to reason explanations,
where the cited reasons are, ideally, ones that rationalize the action for an addressee.

Employing both of the above distinctions, discussions of machine explainability often
take the view that the explanation process is not finished until an addressee has gained an
understanding of what was intended to be explained [231, 232]. Let us again emphasize the
difference from scientific explanation: here, an explanation is a full-fledged product as soon
as it fulfills the form that is pertinent to, for instance, one of the presented accounts.

The next question that arises now is what it is that is to be invoked by machine explanations
to facilitate understanding. So far, we have introduced the system’s visible behavior, the
algorithm on which this behavior is based, and the input needed to produce a certain output as
possibilities for explanantia of machine explanations (see Section 1.2 and Section 3.2).
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8.2.2. The Explanans of (Machine) Explanations

We will now look in more detail at the possible explanantia for machine explanations and,
more generally, the problems associated with determining them. Since these problems are
not specific to machine explanations, we will again first describe the general picture and then
highlight characteristics particular to machine explanations.

Once more, Aristotle can serve as a good source for discussion. As mentioned above, he
noticed that the same “why”-question can be answered in very different ways. In this regard,
however, the distinction between rationes cognoscendi and rationes essendi is only one of
two important distinctions, and concerns what he called reasons or principles (ancient Greek:
archaí). The second distinction concerns what he called causes39 (ancient Greek: aitíai).
Aristotle distinguished four such causes, and his Four Causes model, also known as the Modes

of Explanation model, is still influential today. In the second book of Physics, Aristotle wrote:

“Knowledge is the object of our inquiry, and men do not think that they know a thing

till they have grasped the ‘why’ of it [. . . ]. In one sense, then, (1) that out of which a

thing comes to be and which persists, is called ‘explanation’ [. . . ]. In another sense (2)

the form or the archetype [. . . ] and its genera are called ‘explanations’ [. . . ]. Again (3)

the primary source of the change or coming to rest [. . . ]. Again (4) in the sense of end or

‘that for the sake of which’ a thing is done [. . . ]. This then perhaps exhausts the number

of ways in which the term ‘explanation’ is used [. . . ]. As the word has several senses, it

follows that there are several explanations of the same thing.” [210, Book II, Part 2]).

The bottom line of Aristotle’s observation is that there is nothing like a one-size-fits-all
explanation of a thing. Rather, the same thing can be explained in different ways, all of which
are equally valid. These different ways are nothing more than different aspects of the same
thing, each of which can serve as an explanation’s explanans:

• Material: The substance or material from which something is generated or of which it
is made. Material explanations are sometimes referred to as categorical explanations.

• Formal: The form, structure, or properties of something that make it what it is.

• Efficient: The proximal mechanisms or the cause responsible for the change in some-
thing. Efficient explanations are sometimes referred to as mechanistic explanations.

• Final: The what-it-does that makes it what it is; its purpose or what it serves for. Final
explanations are sometimes referred to as functional or teleological explanations.

39Aristotle’s use of the term “cause” does not refer to what we mean by the term today, nor to what modern
theories of causality mean by it. Only his efficient causes are the best fit with the modern use of “cause”.
[363, 364]
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Autonomous Vehicle #9

Let us illustrate the four causes using an autonomous vehicle.

• Material: Steel and aluminum are the material causes for the vehicle.

• Formal: Having a certain number of tires (e.g., four for a car), an engine, seats,
etc. arranged in a specific layout is the formal cause of an autonomous vehicle.

• Efficient: A vehicle manufacturer is an efficient cause of an autonomous vehicle.

• Final: Transporting people and cargo from one place to another without human
intervention is the the final cause of an autonomous vehicle.

According to Aristotle, one must grasp all four causes of a thing in order to fully understand
it. This, however, implies that we can gain a partial understanding of a thing by grasping one
or more causes of that thing. Indeed, different individuals might be more interested in one
Aristotelian cause than another.

Example #16

An artisanal carpenter, for example, might be more interested in the formal and material
causes of a chair, whereas a person uninvolved and uninterested in craftsmanship might
be interested only in the chair’s final cause: that one can sit on it.

The same is true for machine explainability. As we will make visible in Section 9.2.1,
depending on the goal that is pursued with explainability, the explanans of interest may change.
When it comes to these explanantia, however, a large variety can be observed.

To identify potential explanantia for machine explanations, we reviewed over 200 papers
on explainability from the last nearly 40 years and found the following options (see [105,
107]): the system in general (e.g., global aspects of a system) [99], and, more specifically, its
reasoning processes (e.g., inference processes for certain problems) [373], its inner logic (e.g.,
relationships between the inputs and outputs) [277], its model’s internals (e.g., parameters
and data structures) [236], its intention (e.g., pursued outcome of actions) [234], its behavior
(e.g., real-world actions) [190], its decision (e.g., in terms of underlying criteria) [4], its
performance (e.g., predictive accuracy) [304], and its knowledge about the user or the world
(e.g., user preferences) [190]. Given this multitude, we will continue to talk about “aspects of
a system” when it comes to the explanans.

One vital point that these possibilities show is that explanantia in machine explainability
are mostly linked to the system itself, rather than to processes outside of it. The aim can
be to explain why or how a certain prediction was made, why the system exhibits a certain
performance, why the system made a certain mistake, and many more outcomes.
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Digression #6

Imagine an artificial computing system that forecasts the weather. This system predicted
rain for a particular day and place. However, on the day in question, the weather at the
place in question (and also in a wide region around that place) is sunny.

In this case, we might want to know what went wrong with the forecast and ask for an
explanation. Obviously, this explanation should not be aimed at uncovering the process
that led to the weather being sunny at this particular place. Rather, the explanation
should aim to uncover one of the system’s aspects (e.g., its internal reasoning processes)
that led to its prediction of rainy weather.

Optimally, this reasoning process can be rendered intelligible to meteorologists, such
that they can check whether the system’s reasoning steps correlate with reasoning steps
they consider plausible for forecasting the weather at a particular place and time.

By saying that the explanans is rather linked to the system itself, we do not want to exclude
that the explanation can also be useful for gaining insights about processes outside of it. In
some cases, the explanations that are gained in this manner can be used to make predictions
about the world outside the system (more on this in Section 9.2.1).

It is by now clear that the concept of “explanation” is very complex, and a comprehensive
presentation would require a monograph of its own. We will conclude this section with one
last concept related to explanations, which will become interesting later (in Section 11.1.3).

8.2.3. Levels of Explanation

Several authors have proposed that, when explaining a complex system, one can choose to do
so at varying levels of abstraction. These levels of explanation, as they are sometimes called,
also concern the explanans and differ with respect to the entities that are invoked in it.

Dennett proposed that people can take three increasingly abstract stances towards explaining
objects: the physical stance, the design stance, and the intentional stance [144]. On the
physical stance, we are concerned with the physical laws that govern a system. We take
the physical stance, for instance, when we explain how an artificial system works based on
electrical currents, Ohm’s law, and so on. The design stance is more abstract than the physical
stance, and does not presuppose any knowledge of physical processes. Taking this stance,
we explain a system based on its design goal or purpose (similar to Aristotle’s final cause).
The intentional stance is the most abstract stance. Again, this stance does not presuppose any
knowledge of processes involved in either of the other stances. In the intentional stance, we
ascribe mental states and human intentions to a system, on the basis of which we explain it.

There are other scholars who advocated three-level models, especially in cognitive science.
Marr [320], building on earlier work with Poggio [321], introduced three levels of analysis

for computational problems: the hardware implementation level, the representation and
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algorithm level, and the computational theory level. These levels were intended to facilitate
the understanding of human neural circuits (particularly for the visual cortex) through an
understanding of artificial computation. Similarly, Newell [351, 352] proposed three levels

of description (physical/device level, program/symbol level, and knowledge level) for the
representation of knowledge. To the same end, Pylyshyn [387] distinguished three levels of

organization (physical/biological level, symbol level, and semantic/knowledge level). [363]
Plausibly, these levels of explanation are of particular importance in the field of machine

explainability. As emphasized above, the central goal in machine explainability is to evoke
understanding in addressees. Obviously, different addressees have different goals and back-
ground knowledge. Accordingly, it is likely that they also differ in what is needed to make
them understand. Using different levels to explain something is one way to tackle this issue.

Example #17

Let us return to the chair (Example #16). Here, we sketched how an artisanal carpenter
and a person uninterested in craftsmanship might differ in their primary interest in a
chair. This is because of their different backgrounds and goals. The woodworker, driven
by artistic ambition, might want to recreate a particular distinctive specimen of a chair.
To this end, at least knowledge about its material is required. The uninterested user,
however, will in most cases not care about a chair’s material, as long as one can sit
down on it.

Now, a similar divergence can be observed with respect to Dennett’s stances, although the
chair example does not work well here. So, let us return to our autonomous vehicle example:

Autonomous Vehicle #10

Imagine that an autonomous vehicle causes a serious accident by crashing into a wall.
Now, several parties are involved in finding out the cause of this accident.

Hardware experts could approach this task, for instance, by checking the vehicle’s
LiDAR using complex optical laws to find out whether it could detect the wall at all.
Accordingly, they take the physical stance towards explaining the accident.

Software experts, on the other hand, could approach this task by checking the vehicle’s
AI to see whether the collision-avoidance routines were working properly. Here, one
could argue that they take the design stance towards explaining the accident.

Finally, insurance agents might not be directly involved with the vehicle, but rely on
abstract reports by the hardware and software experts. In such reports, a misclassification
by the vehicle AI could be reframed so that the report states, for example, that the
vehicle thought the wall was heavy rain and, therefore, continued to drive to reach its
destination. In essence, such a description attributes human-like traits to the vehicle,
thereby adopting the intentional stance.
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This example illustrates that, based on their background, different addressees are likely to
need explanation on different levels. An insurance agent or a software expert will usually not
be able to understand the intricacies of optical theory that led the vehicle to crash. Likewise,
the insurance agent will most likely also not be able to understand certain code decisions that
led the vehicle’s algorithm deviate from its intended purpose.

This brings us back to the different types of explanation we introduced. To recall, a DNE
makes reference to physical laws and a CME to causal processes at play. For this reason, these
explanation accounts seem to be well-suited to give explanations conforming to the physical
stance. NMEs, on the other hand, seem to be better suited for explanations with respect to the
design stance. Finally, reason explanations are the perfect fit for the intentional stance, as they
refer to the beliefs and motivations of an agent.

8.3. What is Machine Explainability?

Now that we have a rough understanding of explanation per se and of machine explanations,
we can turn to machine explainability. As the term implies, machine explainability is the
ability to generate explanations of (certain aspects of) a machine. We will discuss this concept
in more detail later, after a short primer on machine explainability.

8.3.1. A Short Primer on Machine Explainability

Research on ways to explain and justify how artificial systems work has been going on since
at least the 1970s.40 While the goal at that time was to explain rule-based expert systems,
the focus later expanded to other types of systems. In the context of recommender systems,
for instance, the interest in explaining systems intensified in the early 2000s (see, e.g., [222,
463]).41 However, it was not until the advent of powerful ML techniques such as deep learning
(DL) that research on machine explainability attracted interest from a broader audience.42 We
will take a look at possible reasons for this development in Section 9.2.1.

Throughout these years, however, research in machine explainability has remained largely
uninfluenced by common (philosophical) theories of explanation. Instead of using theories
devised by philosophers or other scholars that are professionally involved in researching ex-
planations (e.g., psychologists and other social scientists), machine explainability researchers
have mostly developed their own approaches, and many publications contain the authors’ own
ideas of what explanations are [340].

40The earliest research paper on this topic that we found dates to 1975 (namely, [428]). The most famous project
in this early research phase (described in [91]) is to explain the expert system MYCIN.

41While we think that some notions of causation and accountability in computer science (not to be confused
with their legal or philosophical counterparts) can be seen as approaches to machine explanations (see, for
instance, [207, 208]), this must be explored in some other location since it is not relevant for our purposes.
[446]

42A Google Trends search for the terms “explainable” and “explainability” revealed a constant, but low, interest
from the earliest accessible date, with a rapidly increasing interest starting in 2017 (see Figure 32).
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Although some researchers have begun to call for more interdisciplinarity, even referring
to the current trend as “inmates running the asylum” [340], interdisciplinary approaches are
only spreading slowly across the research landscape. The lack of a common ground and the
sudden surge of interest in the topic have made machine explainability a vast field of research
in which it is difficult to keep track of proposed approaches and terms used [447].

Complicating matters further is the fact that research on the explanation of artificial systems
is not uniformly labeled. There are several competing terms and no consensus on their
meaning. With the term “machine explainability”, we aim to create an umbrella category
for these related terms. However, to avoid contributing to confusion in the landscape of
explainability research by introducing a new term, we will delineate some of the dominant
terminology below. This should also clarify what we conceive machine explainability to be.

8.3.2. Delineating Machine Explainability

The literature mentions, among other terms, “interpretability”, “explainability”, “explainable
artificial intelligence”, “perspicuity”, “explicability”, “transparency”, and “intelligibility”,
sometimes synonymously, sometimes not. A good overview of the number of terms related
to explainability is provided by Vilone and Longo, who collected 36 of them with their
associated descriptions as part of a literature review [480].

What connects these, at first sight, very different terms is the implicit assumption that
the transparency/intelligibility/perspicuity/etc. of a system is brought about by explanations.
However, this is where the similarity ends. Many authors have attempted to explicate one or
more of these notions, with contradicting results (see [102, 116, 399]), and a comprehensive
review of all these notions would warrant a work of its own. Nevertheless, we will address
two of the most important terms in what follows.

We will first briefly discuss explainable artificial intelligence (XAI). XAI is currently a very
prominent research area [54], concerned primarily with explaining (certain aspects of) systems
based on AI. However, while the opacity of many AI-based systems is one of the driving
forces behind the renewed interest in making systems explainable, even (aspects of) systems
that are not based on AI can exhibit a high degree of opacity. For this reason, we believe that
the scope of XAI is too narrow. Accordingly, a more general focus on machine explainability,
the goal of which is to make all kinds of artificial computing systems explainable, is more
beneficial in our eyes.

This should suffice as a comment on XAI. There is also another term that is important
to mention. In research concerning ML, the term “interpretability” is more common than
the term “explainability”. Although there is research trying to differentiate the use of these
two terms (e.g., [116, 263, 399]), the results are inconsistent, sometimes indicating that
“interpretability” is the more general term, sometimes indicating the same for “explainability”.

For illustration, we have extracted some visualizations from the literature that aim to show
the relationship between (at least) these two terms (see Figure 9). As can be seen, Figure 9a
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Figure 9: Different relationships between explainability and interpretability.

depicts interpretability as a prerequisite for explainability. Figure 9c, on the other hand,
depicts that explainability and interpretability only intersect. To better understand machine
explainability, it is beneficial to know how it differs from interpretability. To this end, we will
have a look at some quotes in what follows:

“As we explain in this section, a system’s level of explainability is created through

the interpretation the agent provides” [399, p. 674].
(1)

“To interpret means to give or provide the meaning or to explain and present

in understandable terms some concepts. Therefore, in data mining and machine

learning interpretability is defined as the ability to explain or to provide the meaning

in understandable terms to human” [201, p. 5] (see also [155, p. 2]).

(2)

“Interpretability is about the extent to which a cause and effect can be observed

within a system. Or, to put it another way, it is the extent to which you are able to

predict what is going to happen, given a change in input or algorithmic parameters.

[. . . ] Explainability, meanwhile, is the extent to which the internal mechanics of a

machine or deep learning system can be explained in human terms” [183].

(3)

“Systems are interpretable if their operations can be understood by a human, either

through introspection or through a produced explanation.” [73, p. 8].
(4)

“Although interpretability and explainability have been used interchangeably, we

argue there are important reasons to distinguish between them. Explainable models

are interpretable by default, but the reverse is not always true” [188, p. 80].
(5)

“We argue that interpretation is a relation between two explanations. During the

process of interpretation, one explanation gives rise to a more understandable

explanation” [171, p. 835].
(6)
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“I equate interpretability with explainability” [339, p. 8]. (7)

“‘Explainability’ is preferred here to ‘interpretability’ to highlight that the explana-

tion of a decision must be comprehensible not only to data scientists or controllers,

but to the lay data subjects (or some proxy) affected by the decision” [342, p. 17].
(8)

“Interpretability enables transparent AI models to be readily understood by users of

all experience levels. Explainable AI applied to black box models means that data

scientists and technical developers can provide an explanation as to why models

behave the way they do – and can pass the interpretation down to users” [299].

(9)

These examples should serve as a rough indication of the confusion that pervades the
literature. However, this confusion shall not be to our disadvantage. In contrast, it shall serve
as a stepping stone for us, as conceiving a clear distinction between interpretability and
explainability will allow us to better elaborate our understanding of machine explainability.
Of course, our proposed distinction will not adequately account for all uses in the literature,
as some of them are contradictory (see, e.g., Quote 8 versus Quote 9). Nevertheless, our
distinction will provide a basis for understanding a large part of the literature.

Before discussing the individual terms, let us first highlight a common feature of these
quotations, namely, their emphasis on human understanding (see, e.g., Quote 2, Quote 4,
Quote 6, Quote 8, and Quote 9). Indeed, these quotations confirm our earlier claim that the
common expectation in research on explanations of artificial systems is that these explanations
increase a human’s understanding of (certain aspects of) a system.

With this in mind, let us now turn to the distinction between the terms. We assume that the
goal of much research on interpretability is to map human comprehensible concepts to the
processes occurring in artificial systems. Research on explainability, on the other hand, is
concerned with communicating these concepts to different kinds of human recipients, so as to
evoke their understanding of the original processes. Let us elaborate.

What makes artificial systems so difficult for humans to understand is their way of reasoning.
This can easily be illustrated by examples. While it is possible for an expert to make sense
of the reasoning processes underlying knowledge-based systems, this is not necessarily the
case for laypersons. Furthermore, when it comes to systems using ANNs, even experts have
difficulties making sense of their reasoning processes. In the latter case, this is at least partly
due to their sub-symbolic nature. While knowledge-based systems are designed to work with
a representation of knowledge that is human interpretable, this is not the case for ANNs.

Research on interpretability aims to amend this problem. More specifically, this research
aims at devising methods and techniques to map human-understandable concepts to the sub-
symbolic processes in a system. Without an interpretation, we may only see certain activation
patterns of neurons in ANNs. With an interpretation, we can at least map the activation of
certain clusters of neurons to, say, the identification of curves in a picture.
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(a) Segmenting into inter-
pretable superpixels.

(b) Highlighting by using
a heatmap.

(c) Highlighting by show-
ing salient pixels.

Figure 10: Different techniques to assign an interpretation to a picture.

Figure 10 shows the approaches of several interpretability techniques. Note that, because
many ML-based systems contain sub-symbolic processes that are difficult for a human to
interpret, research on interpretability can be found predominately in the ML community.

Understood in this way, interpretability is a prerequisite for explainability. Linked to our
previous findings that if the result of an action is increased understanding, then the action
qualifies as an explanation, we can infer that only the use of humanly comprehensible terms
while explaining a system may succeed in increasing explainability (see also Section 10.2.2).

Interpretability, however, is just one step in understanding a system. In many cases, the
interpretations obtained using interpretability techniques are hard to parse for laypersons
and can only improve the understanding of experts (see, e.g., Figure 10c). Against this
background, one of the goals of explainability is to develop methods that further enhance such
interpretations such that they are also useful for increasing the understanding of non-experts.

Let us check our conceptualization of these two terms against the preceding figures and
quotations. Overall, a concept similar to ours is directly reflected in Figure 9a and in Quote 1,
Quote 5, and Quote 8. All these quotes can be construed in the sense that interpretability is a
prerequisite for explainability. Furthermore, the concept can be found indirectly in Figure 9b
and in Quote 2. In this quote, there is simply no reference to explainability that would allow
for a direct link. However, the description of interpretability is compatible with our concept.
Thus, most of the figures and quotations we extracted are consistent with our proposal.

However, this does not explain the other figures and quotations that make statements about
how interpretability and explainability are related. We conclude this discussion by briefly
commenting on these quotations. First, we can disregard Quote 7, since it does not purport to
make a distinction. Furthermore, while Quote 4 seems to make a valuable distinction, this
distinction seems to be shifted by a level: “explainability” is used to denote what we call
“interpretability”, and “interpretability” is used to denote a step even prior to what we call
“interpretability”. Accordingly, our distinction can also be found in this quote, only under a
different name. We will come back to Quote 6 and Quote 9 later.
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8.4. What to Expect from Machine Explainability

At this point, we have worked out that the explainability of systems should contribute to
their understandability. But what does this understanding bring us? We argue that there are
further, downstream, goals of explainability. Indeed, evoking understanding of (certain aspects
of) artificial systems is not the ultimate goal of machine explainability. We claim that this
understanding is in most cases only an intermediate step to achieve other goals: the desiderata.

In Section 3.2, we have already outlined some desiderata. For example, a greater under-
standing of a system should help attribute responsibility, or it should increase the system’s
maintainability. Overall, we have argued that machine explainability is essential to reap the
advantages associated with machine ethics while avoiding its drawbacks. There are more
desiderata than we have discussed so far, and we will review them in detail in Section 9.2.1.

Generally, however, desiderata arise from people who have interests, goals, expectations,
needs, and demands regarding artificial systems. There are many groups of such people, with
various interests. For example, various people operate the systems, try to improve them, are
affected by decisions based on their outputs, deploy the systems for everyday tasks, and set
the legal framework for their use. These people are commonly grouped as stakeholders (e.g.,
users, developers, etc.).43

Basically, the interests of these stakeholders (e.g., to have fair or trustworthy systems,
see [155, 172]) are nothing other than the desiderata. Generally, many desiderata call for
greater understandability of artificial systems, and it is assumed (as elaborated so far) that
explainability can lead to this understandability by providing individuals with the explanations
required to understand (certain aspects of) artificial systems [54, 105, 294, 490].

8.4.1. A Model of Machine Explainability

This process can also be presented in a more orderly and articulated way. To this end, we
present a conceptual model (see Figure 11) that organizes and makes explicit the central
concepts in machine explainability and their relations, and how they relate to satisfying the
desiderata. The main concepts in this model are: “explainability approach”, “explanatory
information”, “stakeholders’ understanding”, “desiderata satisfaction”, and “(given) context”.

At this point, however, two components of our model are still missing: explainability
approach and context. We introduce these components first, and then turn to the model itself.

The first missing component is the approaches that enable or provide insights into (certain
aspects of) artificial systems. These approaches (we call them “explainability approaches”)
encompass methods, procedures, and strategies for providing explanatory information that
help someone to understand artificial systems better [294]. A specific explainability approach
is characterized by all the steps and efforts taken to extract explanatory information from a
system, and to provide it adequately to an addressee in a given context [294].
43A stakeholder is, among others, someone “who is involved in or affected by a course of action” [336]. We use

this as a general term, but refer to specific stakeholder classes where appropriate.
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Figure 11: Our proposed model of the main processes in machine explainability.

We need to make two important comments here. First, by introducing the term “explainabil-
ity approach”, we want to avoid the confusion between interpretability and explainability by
effectively ignoring this distinction in what follows. In other words, an explainability approach
may or may not include interpretability techniques and methods. Second, by speaking of
“explanatory information”, we take into account that, in machine explainability research, a set
of propositions is not an explanation until it increases understanding.

The other missing component is the context. There is no agreed-upon definition of the term
“context” [64] (for discussions on this topic, see [64, 157]). Following Dourish [157], we
hold that context is determined by a given situation, in the interaction between a stakeholder,
an artificial system, a particular activity or task, and an environment. Without knowing the
specific situation, anticipating all the contextual influences that will affect the process of how
explainability approaches should satisfy desiderata is impossible.

The basic idea of our model is that the success of an explainability approach depends
on the satisfaction of desiderata (consisting of the substantial and the epistemic facets of
desiderata satisfaction; see below). Desiderata satisfaction, thus, motivates an explanation
process including explainability approaches, explanatory information, and understanding.

In the explanation process, we assume that explainability approaches provide explana-
tory information to human stakeholders. These stakeholders engage with the information to
facilitate their understanding of (certain aspects of) an artificial system. As a result, the stake-
holders’ adjusted understanding affects the extent to which their desiderata are satisfied. The
context in which the stakeholder and the artificial system act and interact affects the relations
between the other concepts (i.e., it affects the relation between explanatory information and
understanding, as well as the relation between understanding and desiderata satisfaction).

The upcoming sections are guided by this model, where we will begin by walking backwards
through the model and discuss desiderata. After that, we turn to explainability approaches,
survey some exemplary cases, and discuss what makes a good one. However, we will not
address the model’s intermediate steps, such as understanding and context. These are open
research topics that warrant (and have warranted) separate work of their own.

Before we can address desiderata individually, however, we must first clarify, in general
terms, what it means to fulfill a desideratum. To this end, we provide some practical examples.
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8.4.2. Desiderata Satisfaction

The stakeholders involved in explainability are diverse. Accordingly, the motivations for
acquiring explanations about (certain aspects of) artificial systems are at least equally diverse.
As the need for explainability arises when desiderata are not (sufficiently) satisfied [54, 173,
175, 341, 379], we have to clarify what it means for a desideratum to be satisfied.

We propose that the satisfaction of each desideratum comprises two facets. We call these
facets epistemic and substantial desiderata satisfaction, respectively. On the one hand, stake-
holders want systems to have certain properties that actually make them fair, transparent, or
usable. In line with this, the substantial facet of a desideratum (e.g., fairness) is satisfied if
a system sufficiently possesses the corresponding properties (e.g., if the system is, de facto,
fair).

On the other hand, stakeholders want to know or be able to assess whether a system
(substantially) satisfies a particular desideratum (i.e., whether the system has the desired
properties). Thus, the epistemic facet of the fairness desideratum is satisfied for a stakeholder
if they are in a position to assess or know whether and to what extent the system is fair.

Example #18

Take the desideratum of having usable systems. A successful explanation process, as
depicted in our model, can enable users to recognize whether a system is usable, and,
optimally, also increase the system’s usability to a certain degree. In this case, the
epistemic satisfaction consists in the stakeholders being able to assess whether a system
or its outputs are usable for the task at hand. To a lesser extent, however, an explanation
process can also contribute to the substantial satisfaction of the desideratum, since it
provides additional knowledge about the system that makes it more usable for the stake-
holder. For larger deficits in usability to be addressed, however, explanatory information
might not directly help; for this, the entire system may need to be redesigned.

Depending on the desideratum, the two facets are correlated to a certain degree (possibly
even completely if satisfying the epistemic facet to a certain degree satisfies the substantial
facet to the same degree).

Example #19

Consider the desideratum of retaining user autonomy in human-in-the-loop scenarios.
Suppose that an explanation process has helped to satisfy the epistemic facet of this
desideratum to some extent, since it has enabled the user to assess the extent to which
they can retain their autonomy in making decisions based on the system’s recommen-
dations. Additionally, the better a user understands the output of a system, the more
autonomously they can decide based on it. Thus, the explanation process has helped sat-
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isfy both the epistemic facet and the substantial facet of this desideratum. Accordingly,
in this case, the two facets of desiderata satisfaction are highly correlated.

Example #20

Let us consider the desideratum that systems adhere to certain moral principles.a

When they have sufficient information about a system, regulators can evaluate whether
this system meets moral standards. Again, the explanation process serves to satisfy
the epistemic facet of this desideratum. However, this does not directly make the
system’s processes and outputs comply with moral standards. Consequently, explanation
processes can at best indirectly satisfy the substantial facet of this desideratum: based on
the understanding gained through the explanation process, faults can be identified, and
steps taken to improve systems with respect to their moral properties. In this case, the
epistemic and the substantial facet of desiderata satisfaction are only loosely correlated.

aWe ignore here all considerations regarding a (moral) right to explanation [483].

Distinguishing between these two facets is important to highlight that the explanation
processes can contribute to satisfying all epistemic facets of desiderata concerning artificial
systems. This is also the reason why the epistemic facet is of particular interest for machine ex-
plainability: an explanation process alone is sometimes not sufficient to satisfy the substantial
facet of desiderata concerning artificial systems.

In many cases, however, the epistemic satisfaction enables the substantial one. That is, a
better understanding of systems, while not always directly leading to a substantial satisfaction
of desiderata, can provide the necessary foundation for it. Since epistemic satisfaction of a
desideratum is closely related to understanding a system better, understanding crystallizes as
the linchpin for all efforts to satisfy desiderata. With this knowledge, we can now move on to
the next section, where desiderata play a pivotal role.
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9. From Machine Explainability to Machine Ethics

In the first part of this thesis, we argued that the need for machine explainability is a by-
product of the need for machine ethics. Indeed, with the increasing societal significance of
intelligent systems and other circumstances, such as the fact that many of them still need
to be operated by humans, these systems are affecting people’s lives more and more, which
requires a more comprehensive consideration of human well-being and other human interests.

Machine explainability thus links back to machine ethics: Many desiderata that can be
satisfied by machine explainability are also related to machine ethics, such as more acceptance
and fairness of systems, or the possibility to assign responsibility in cases of failure. Further-
more, the satisfaction of legitimate (i.e., philosophically, legally, etc. justifiable) desiderata
can improve the lives of many people, which constitutes another link to machine ethics.

For this reason, and because stakeholders, in combination with their desiderata, motivate,
guide, and affect the explanation process (see Figure 11), identifying and clarifying the
desiderata and the different classes of stakeholders in the context of artificial systems is
crucial to fully explore the benefits of machine explainability. We will do so below by starting
with the stakeholders. Afterwards, we will come to the desiderata, and, for one desideratum
in particular, we will explore how, exactly, explainability contributes to its satisfaction.

9.1. Classes of Stakeholders

In previous research, varying classes of stakeholders have been discussed in the context of
explainability. For example, Preece et al. distinguish between four main classes of stakeholders:
developers, theorists, ethicists, and users [379].

Arrieta et al. categorize the main classes of stakeholders as domain experts/users, data

scientists/developers/product owners, users affected by model decisions, managers/executive

board members, and regulatory entities [54]. Other researchers have distinguished similar
classes of stakeholders (see, e.g., [173, 225, 490]). We follow these researchers and distinguish
five classes of stakeholders: (end) users, (system) developers, affected parties, deployers, and
regulators (see Figure 12 for a visualization of the stakeholders and their relationships).

Developer System

Deployer

User Affected Parties

Regulator

Figure 12: The classes of stakeholders associated with artificial systems and their relations.
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Clearly, one person can be a member of multiple stakeholder classes. A user, for instance,
may be affected by decisions made using the system they operate. Additionally, these are only
prototypical classes of stakeholders, and more finely grained distinctions into sub-classes
of stakeholders are possible [173]. For example, there is not one prototypical developer;
developers differ in their expertise and in other factors (e.g., personality). A novice developer
may desire different things compared to an expert. In a similar way, a lay user’s desiderata
might differ from those of an expert user. Moreover, we would like to emphasize that this
list of stakeholders is not necessarily exhaustive, since our distinction among stakeholder
classes is based on previous research that mainly has a computer science background, and
might, therefore, neglect other classes of stakeholders. Nevertheless, let us take a look at the
proposed classes.

Users Most works on stakeholders in machine explainability have this class of stakeholders
in common (see, e.g., [54, 379, 490]). Among others, users take recommendations of artificial
systems into account to make decisions [225]. Some prototypical members of this stakeholder
class are medical doctors, loan officers, judges, or human resource managers.

In general, users are not experts in the technical details and workings of the systems they
use. However, users can work most efficiently if they have reasonable expectations about how
a system will work. When users do not have reasonable expectations, or in cases where their
expectations are not met, they need information that goes beyond the knowledge needed to
operate the system.

Developers The individuals who design, program, and create systems are the developers.
Naturally, they count as a class of stakeholders because, without them, the systems (or the
programs running on them) would not exist in the first place. For this reason, developers are
also frequently found in papers on stakeholders in explainability (see, e.g., [54, 379, 490]).

In general, developers have a high level of expertise concerning systems. They need to
create systems that work reliably and correctly, and, in the case of systems that do not meet
these requirements, they sometimes need to improve them. To this end, they require as much
information about the system as possible, especially when it is a system that they did not
create themselves. For AI-based systems, they need ways to get behind the opaque workings
of ML models.

Affected Parties The influence of artificial systems is constantly growing, and decisions
about people are increasingly automated—often without their knowledge. Affected parties are
such (groups of) people in the scope of a system’s impact. Obviously, they are stakeholders,
as, for them, much hinges on the decision of a system. Patients, job or credit applicants, or
defendants in court are typical examples of this class.
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Affected parties can be from all kinds of backgrounds with all kinds of expertise in artificial
systems. What they have in common is that they have been affected—often negatively—by a
decision that was based, at least in part, on the outputs of an artificial system. These people
want information on how to get a more desirable outcome next time, so as to be not negatively
affected anymore, or they want information to assess whether the decision was correct, or at
least well justified, in the first place.

Deployers People who decide where to employ certain systems (e.g, a hospital manger
decides to bring a special kind of diagnosis system into use in their hospital) are the deployers.
We count them as another separate class of stakeholders because their decisions influence
many other classes of stakeholders. For example, users have to work with the deployed
systems and, consequently, new people fall inside of the range of affected parties.

Deployers, like the users, are usually not experts in artificial systems. Given the high level
of responsibility they bear, however, they need to be able to ascertain that the systems they
use do not have any negative consequences for individual users or the company as a whole. In
addition, they need to know about the performance of the systems in order to judge whether
these are fulfilling their purpose and their use is, thus, justified.

Regulators Finally, there are regulators who stipulate legal and ethical norms for the general
use, deployment, and development of systems. This class of stakeholders occupies a somewhat
extraordinary role in that regulators have a “watchdog” function not only with respect to the
systems, but to the entire interaction process between the system and the other stakeholder
classes. This class includes ethicists, lawyers, and politicians, who must have the expertise to
assess, control, and regulate the entire process of using artificial systems.

Regulators, again, are often people who do not know much about the particulars of artificial
systems, and the know-how needed to regulate such systems is usually acquired by consulting
experts. Members of this stakeholder class primarily require information about the general
functioning of systems. Furthermore, they are also interested in the provision of information
about systems to other stakeholder classes in order to preserve their general rights.

•

Given this diversity of stakeholders, it is clear that there is a wide variety of desiderata. In
particular, given the different interests and backgrounds of the stakeholder classes, we want to
improve the understanding of desiderata in general. Since desiderata are nothing more than
the goals and interests of stakeholders, we need to be aware of their idiosyncrasies when we
discuss desiderata below.



138 FROM MACHINE EXPLAINABILITY TO MACHINE ETHICS

9.2. Motivations and Risks of Machine Explainability

In the context of machine explainability, we have so far only spoken of desiderata in a positive
sense. However, the desiderata arising from the five classes of stakeholders are numerous and
diverse. In particular, stakeholders can also have desiderata that are undermined by machine
explainability—we will speak of desiderata frustration in such cases.

Here, we consider the desiderata, whose satisfaction or frustration is purportedly influenced
by explainability, extracted from a survey of more than 200 peer-reviewed journal and
conference publications on machine explainability (see Table 5; see also [105, 106]).44

The fact that explainability can also frustrate desiderata gives a reason against making
systems explainable. There are also other reasons that speak against doing so. As with machine
ethics, then, we must consider whether the advantages of machine explainability outweigh
its possible disadvantages. To this end, we will examine the reasons both for and against
pursuing the field of machine explainability.

9.2.1. Reasons in Favor of Machine Explainability

We will first start with an extensive discussion about the desiderata whose satisfaction is
claimed to be supported by machine explainability. In particular, we will outline each desider-
atum, depict how its satisfaction can achieved through explainability, and, whenever possible,
link it back to the motivations and risks of machine ethics.

Acceptance45 Deployers want the systems they bring into use to be accepted. In the eyes of
deployers, the worst-case scenario, in terms of acceptance, is that users reject appropriately
working systems, resulting in the systems never being used [477]. Therefore, low acceptance
undermines what deployers intend to achieve when providing systems to users.

Previous research claims that machine explainability can aid in this case by investigating
how to provide people with more insights into, and understanding of systems, which can
increase acceptance [201, 306, 393] (see also Section 3.2.2). In particular, a system that is
(perceived as) trustworthy can gain acceptance [190], and explainability is key to this.

The acceptance of artificial systems is also a primary motivation for machine ethics (Mo-
tivation 1.1). Given the potentially enormous benefits that artificial systems can bring to
our society, it is imperative that these systems (or at least some of them) be accepted. Both
machine ethics and machine explainability can help in this endeavor, augmenting each other.

Accountability46 Roughly speaking, accountability is the legal counterpart to the more
philosophical concept of responsibility. Researchers also refer to liability (e.g., [345]), culpa-

bility (e.g., [95]), or legal accountability (e.g., [72]).

44More details on this literature review and its results can be found in Appendix C. Appendix C contains all
quotes from which we have extracted desiderata, broken down by desideratum (Table 6–Table 39).

45Representative sources are [73, 188, 201, 306] (see Table 6 for all sources).
46Representative sources are [342, 365] (see Table 7 for all sources).
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In general, explainability can be used to provide information that allows for entities to
be held accountable for a particular outcome [345]. For more details, see the paragraph on
responsibility below, or our thorough discussion on responsibility in Section 9.3.

Accuracy47 Developers have a vested interest in a high accuracy of the systems they develop.
Accuracy is perhaps the most important performance measure for systems; it indicates how
close the actual result is to the envisioned one.

Although there are some claims that explainability and accuracy are difficult to combine
(see, e.g., [366, 399]), there is also the opposite view (see [126] for a discussion). In particular,
explainability is seen as a way to help developers estimate the accuracy of systems, and even
as a way to actually make systems more accurate (see, e.g., [280, 508]).

In the ML domain, the accuracy of models can benefit from explainability through model
optimization [322]. That is, by obtaining information of what leads to the results of an ML-
based system, developers can identify underrepresented or erroneous training data and, using
this, fine-tune the training process to achieve higher accuracy and correct biases.

Autonomy48 In a broader sense, preserving a person’s autonomy means that they have
enough information to make a justified decision between available courses of action [175]. If
users in the role of decision makers have too little information about how a system arrives
at its recommendations, they will hardly be able to make their own justified decisions based
on these recommendations; moreover, they will likely have problems explaining why they
followed or rejected a system’s recommendations (see also Section 9.3.3).

Machine explainability provides adequate means to let users preserve their autonomy
when interacting with intelligent systems by providing mechanisms for users to obtain
such information [175]. With information provided by explainability approaches, users are
empowered both to make justified decisions based on the outputs of artificial systems, and to
explain why they decided as they did.

The potential of machine explainability to let humans retain their autonomy when interact-
ing with artificial systems alleviates one risk of machine ethics, namely, that machine ethics
might undermine human agency (Risk 2.2.4). Together with machine explainability, human
agency can be preserved by enabling people to make autonomous decisions.

Confidence49 Typically, deployers want the systems they deploy to be used a lot, and
appropriately. In addition to trust and reliance, the users’ confidence in a system is an
essential prerequisite for this. If users have adequate confidence in a system, they will perform
better when working with it than if they have too little or too much confidence.

Confidence is similar to trust and reliance, and these terms are sometimes used synony-
mously in the literature. Roughly said, what differentiates these concepts is the type of

47Representative sources are [73, 137, 153, 280, 322, 389, 399, 478, 508] (see Table 8 for all sources).
48Representative sources are [83, 175, 246] (see Table 9 for all sources).
49Representative sources are [30, 51, 54, 73, 274, 348, 373, 508, 510] (see Table 10 for all sources).
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justification that one has in using a system. When someone is confident that a system works
well, they have found some kind of assurance that the system does so. In contrast, when one
trusts a system, they merely believe that the system works well without actual proof. Finally,
reliance does not require any form of justification. In other words, one would use the system
without having any evidence that it works well or without believing that it does so.

Explainability can support the users’ confidence in a system by allowing them to under-
stand how its reasoning mechanism works [30], while also preventing overconfidence by
highlighting the system’s shortcomings. For more details, see the paragraph on trust.

Controllability50 Deployers and users alike wish for the high controllability of artificial
systems. In particular, this includes being educated about the workings of the system, as well
as having the ability to detect and correct errors (i.e., debuggability).

Explainability contributes to controllability by helping to educate about and debug systems
(for more information, see the paragraphs on education and debuggability below). In addition,
explainability can also give users a greater sense of control by allowing them to understand
the reasons for decisions, and hence to decide whether or not to accept an output [399].

The potential to increase the controllability of artificial systems also aids in mitigating the
risk of machine ethics to undermine human agency (Risk 2.2.4). By being able to exert more
control over systems, being able to decide whether to accept their outputs or not, and by being
educated about their workings, people can retain and sometimes even enhance their agency
and autonomy when interacting with systems.

Debuggability51 One of the most important desiderata for developers is debuggability. Mod-
ern artificial systems, especially those based on AI, are increasingly hard to maintain. Not only
are the computer programs becoming larger and more complex, but the interaction between
systems is accelerating, making the identification and rectification of bugs a complicated
affair. Accordingly, developers crave ways to improve debuggability, that is, the identification
and correction of errors in systems.

Explainability has a positive influence on debugging because additional information about
a system can help developers identify and fix bugs [4]. Indeed, debuggability and verification

of systems motivated the first efforts for explainability in the 1980s. Specifically, in the case of
ML applications, explainability can enable developers to identify and fix biases in the learned
model (e.g., by making the training set more diverse), thereby increasing its accuracy (and,
hence, its performance) through model optimization.

Greater debuggability is essential for making systems less corruptible, thereby alleviating
Risk 2.1.1 of machine ethics (increased corruptability). With a higher debuggability, (mali-
ciously) introduced bugs can be better identified and fixed. Overall, the system can be better
checked for problematic behavior.

50Representative sources are [1, 4, 30, 222, 339, 342, 358, 397, 399] (see Table 11 for all sources).
51Representative sources are [4, 73, 131, 137, 341, 342, 391, 399, 497] (see Table 12 for all sources).
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Education52 Education is a very simple desideratum of users, which involves being educated
on how to use a system or its outputs.

Explainability can have a positive impact on education by providing information that allows
users to learn how a system works or how to use it or its outputs competently [137].

Effectiveness53 Effectiveness has both a system side and a user side, of interest to differ-
ent stakeholder classes. While deployers are interested in both sides, developers are more
interested in the system side. From a system’s point of view, effectiveness is a performance

measure that indicates how successfully a system is in achieving the results it is supposed to
achieve. The user side works according to the same principle, and is concerned with how well
a user comes to the envisioned results with the support of the system [466].

On the system side, explainability has a positive impact on system effectiveness since it
has a positive impact on system performance (see paragraph below). On the user side, an
explainable system can lead to greater decision accuracy by helping users to understand more
about a recommended option or product [137].

Efficiency54 Just as with effectiveness, efficiency has both a system side and a user side. On
the system side, efficiency is another performance measure; it concerns the resources (e.g.,
time, energy) required to arrive at a result. The user side is, again, very similar, indicating the
resources that a user needs to come to a decision, using (the output of) a system as an aid.

Similar to the other performance measures (see paragraph below), efficiency can benefit
from explainability. However, the gain is potentially less pronounced because making a
system explainable may require additional computational resources. Likewise, analyzing
and understanding explanations takes users’ time and effort [284], possibly reducing their
efficiency. Overall, however, the time needed to make judgments could also be reduced by
receiving supplementary information [466], thereby increasing user efficiency.

Fairness55 Considerations of fairness in the context of artificial systems have evolved, at
least in part, because, as artificial systems have become more prevalent in our everyday lives,
there are ever more affected parties. One hope in introducing automated decision-making
processes was that decisions would be less susceptible to human bias [384]. However, it
is generally acknowledged that artificial systems can reproduce and, in this process, even
reinforce human biases (see, e.g., [97, 303]; see also Digression #1).

Such bias can lead to discrimination against individuals (e.g., in the distribution of jobs,
credit, or healthcare), not on the basis of their own actions or characteristics, but on the
basis of actions or characteristics of social groups to which they belong (e.g., women, ethnic
minorities, etc.) [303]. Therefore, to counteract bias, it is crucial to enable its recognition.

52Representative sources are [30, 111, 137, 199, 222, 358, 444, 492] (see Table 13 for all sources).
53Representative sources are [30, 43, 82, 165, 199, 358, 452, 463, 485] (see Table 14 for all sources).
54Representative sources are [30, 51, 82, 236, 322, 348, 358, 463, 489] (see Table 15 for all sources).
55Representative sources are [155, 306, 341, 409] (see Table 16 for all sources).
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For a system to be fair, the influence of protected attributes (e.g., gender or ethnicity) in
the system’s decision-making processes must be appropriately limited or controlled. Machine
explainability can aid in this regard by providing means to track down factors that may have
contributed to unfair decision-making processes, either to help eliminate such factors [54], to
support mitigating them [304], or at least to raise awareness of them [399].

This complements Motivation 1.2 of machine ethics. Where machine ethics requires
that values used in decision making are made explicit, machine explainability can help
communicate those values to humans. Moreover, machine explainability can even help
machine ethics here, by enabling the identification of the values in question.

Informed Consent56 Informed consent is a legal concept in which regulators are interested
and which is closely linked to autonomy. In essence, informed consent is about the consent
that patients give to treatment in a healthcare setting. These patients should be sufficiently
informed about a treatment so that they can accept or refuse it autonomously.

With the rise of ML systems supporting diagnosis and treatment recommendations in
healthcare, informed consent is a desideratum that has extended from the everyday doctor–
patient relationship to more complex situations involving artificial systems. Such systems
promise to make more accurate predictions of an individual’s health status, but with the
drawback that these predictions are less traceable. The reduction in traceability threatens
patients’ ability to provide informed consent, as well as their autonomy.

Explainability can facilitate informed consent, similar to how it can facilitate autonomy (see
above): it helps to equip users with the necessary knowledge for making informed decisions.

Legal Compliance57 With the increasing proliferation of artificial systems, questions about
their regulatory compliance emerged. Indeed, the proliferation has become so rapid that
regulators are struggling to keep up with providing adequate laws for the use and deployment
of these systems, and legal gaps have started to emerge. Moreover, the opaque nature of many
systems makes it difficult to verify compliance with existing legislation.

Machine explainability can directly and indirectly contribute to legal compliance [189]. On
the one hand, machine explainability can contribute indirectly, by enabling deployers and
other stakeholders to verify whether a system satisfies certain lower-level desiderata, such
as safety and non-discrimination, that are essential for legal compliance. Since deployers
bear some responsibility for the systems they put into operation, they must ensure that these
systems are at least legally sound to guarantee a lawful use.

On the other hand, the European General Data Protection Regulation and its often discussed
right to explanation (arguably) explicitly require explanations (see [193] for a discussion).
Other upcoming regulations for artificial systems (e.g., the upcoming European AI act) also

56Representative sources are [173, 342, 373] (see Table 17 for all sources).
57Representative sources are [1, 4, 72, 73, 173, 189, 193, 302, 442, 503] (see Table 18 for all sources).
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contain formulations that seem to ask explicitly for explanations. Accordingly, explainability
may also contribute directly to legal compliance.

Morality58 We have already discussed the relationship between machine ethics and machine
explainability in detail in the first part of this thesis, in Section 3.2. Here, we will only briefly
present some considerations already made. In essence, for a system to be moral, its decision-
making processes must be based exclusively on morally permissible considerations.

Autonomous Vehicle #11

According to certain moral theories, an autonomous car in a dilemma situation should
never let affected parties’ age contribute to its decision-making processes [313].

Explainability can contribute to achieving moral decision making [417] and, in particular,
to so-called ethical AI. First, explaining a system’s choice can help ensure that moral decisions
are made [399]. Furthermore, providing explanations can itself be considered as morally
required [292, 483]. Finally, as discussed earlier, explainability can contribute to fair decision
making (see paragraph above), which is an essential aspect of moral decision making.

Performance59 There are many ways in which a system can achieve better performance,
and, just as with effectiveness and efficiency, we distinguish between a system side and
a user side of performance. On the system side, effectiveness, efficiency, and (predictive)
accuracy can be considered as performance measures. On the user side, “performance” can
be understood as the quality of interaction between the user and the system. The better users
can interact with a system, the better they, the system, and the user–system combination can
perform.

Explainability can positively influence the performance of a system, among others, by
helping developers to improve the system through an increased debuggability [393]. In this
way, explainability positively affects other performance measures, such as effectiveness,
efficiency, and accuracy. In particular, the case of accuracy is discussed in detail above.

For users, providing insights about a system, its functioning, and its outputs is a fruitful
way to improve user–system interaction [54, 510]. Similarly, explanations can help improve
user performance in problem solving and other tasks [274].

On the system side, increasing a system’s overall performance can also increase its moral
performance, which mitigates Risk 2.2.1 of machine ethics. The better a system’s performance
is and the easier it is to increase its performance, the more likely it is that its moral performance
is also high or can be further optimized. Moreover, better performance on the user side
contributes to Motivation 2.1 of machine ethics. With better overall user decision making
based on a system’s outputs, the system’s users will likely also make better moral decisions.

58Representative sources are [4, 54, 72, 165, 175, 189, 236, 322, 373, 391, 399] (see Table 19 for all sources).
59Representative sources are [54, 123, 137, 173, 199, 231, 274, 366, 503, 510] (see Table 20 for all sources).
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Persuasiveness60 Basically, persuasiveness is about the likelihood that the outputs of an
artificial systems will be leveraged by users to take further action. Persuasiveness is vital for
deployers because they want the systems that they bring into use to make a difference for the
users.

High persuasiveness can lead to good results if the system’s recommendations are better
than those made by humans. Too much persuasiveness, however, can also lead to bad results
for users, for example, if a company uses systems to nudge persons according to its will [114].

Explainability can contribute to persuasiveness, since it can increase the acceptance of a
system’s decisions and the likelihood that users adopt its recommendations [358].

Privacy61 Modern systems are notorious for collecting large amounts of data from their
users, and for thereby violating their privacy. However, users have an interest in preserving
their privacy so that their data cannot be exploited (whether by large companies or by
individual scammers).

Explainability can have a positive impact on privacy, as disclosing information can help
users figure out which features are correlated with sensitive information that should be
confidential [233].

Reliability62 Reliability is an essential desideratum of deployers, as they have an interest in
the system which they bring into use working well and safely. Accordingly, this desideratum
is also of interest to the users, since they want systems that perform as needed.

In the same way in which it can support safety, explainability can also help reliability, for
instance, as it helps to fix bugs and contributes to debuggability.

Reliance63 Similar to confidence and trust, it is an essential desideratum of deployers that
users rely on the systems they work with. For more information on the differences between
these three concepts, see the paragraph above on confidence. For more information on the
relationship between reliance and explainability, see the paragraph below on trust.

Responsibility64 The ability to determine who is blamable or culpable for a mistake is called
accountability or responsibility. With the advent of artificial systems, a responsibility gap has
emerged [323, 390]. For instance, when the use of an artificial system harms a person, it may
not be clear who is responsible because there are many parties that may have contributed to
the harm. Opacity of artificial systems only exacerbates this problem.

A person acting on the outputs of an artificial system may not (be able to) know that those
outputs were erroneous, so blaming the person for the ensuing problems might not take the
60Representative sources are [51, 111, 137, 165, 180, 339, 348, 358, 463] (see Table 21 for all sources).
61Representative sources are [54, 189, 233, 236] (see Table 22 for all sources).
62Representative sources are [1, 189, 362, 427] (see Table 23 for all sources).
63Representative sources are [72, 93, 231, 388] (see Table 24 for all sources).
64Representative sources are [130, 339, 342, 358, 365, 373, 388, 397] (see Table 25 for all sources).
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system’s contribution into sufficient account. Overall, regulators aspire to avoid situations
where existing legislation is difficult to apply or where no one is (or feels) responsible for a
mistake.

Explainability can restore responsibility by making the errors and causes of unfavorable
outcomes identifiable and attributable to the parties involved. Responsibility is an exemplary
case of a desideratum associated with explainability, and we will explore it in Section 9.3.

Machine explainability, with its potential to support responsibility attribution, mitigates the
risk, associated with machine ethics, of making the attribution of responsibility more difficult
(Risk 2.2.2). Even if there are more candidates who might bear responsibility, for example,
because new people devise moral codes for machines, machine explainability promises that it
is possible to determine exactly which party should be held responsible for a failure.

Robustness65 Robustness is desideratum of developers for ML-based systems. Basically,
robustness is about the change in prediction across similar inputs. Ideally, this change is
small; such a system is deemed robust. However, many ML-based systems suffer from poor
robustness, and human-imperceptible changes in input can lead to large changes in prediction
[192].

Explainability can contribute to robustness, for instance, through model optimization (for
more information, see the paragraph above on debuggability).

Safety66 Safety is a crucial desideratum across all stakeholder classes. Developers need to
design safe systems so as to minimize the occurrence and severity of failures. Additionally,
this limits the developers’ accountability in case of failures since the appropriate safety
measurements have been put in place. Users want only safe systems that do not expose them
to danger. Deployers want safe systems to be put into use, as they hold the responsibility for
many lives. Finally, regulators want safe systems to guarantee the best outcomes for society.

Many of the desiderata that we spoke about contribute to safety, and, thus, explainability
contributes, too. Among others, controllability, debuggability, education, legal compliance,
and robustness contribute to safety. Overall, explainability, thus, has a positive impact on
safety, helping to meet safety standards [399], or helping to create safer systems [201].

Satisfaction67 One desideratum that both developers and deployers have is that users are
satisfied with a system. For the deployers, a system that does not satisfy its users is likely to
be underused and, therefore, needs improvement. This is a reason for developers to make the
system satisfying from the outset, so as to avoid having to redevelop it.

Satisfaction has many facets that explainability can contribute to. For example, explain-
ability can have a positive effect on the usefulness of a system or recommendation to users
65Representative sources are [54, 73, 187, 322] (see Table 26) for all sources.
66Representative sources are [30, 153, 187, 236, 280, 391, 399] (see Table 27 for all sources).
67Representative sources are [51, 73, 137, 173, 199, 225, 348, 358, 388, 463, 478] (see Table 28 for all sources).
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[502] (see also the paragraph below), which contributes to the perceived value of a system,
increasing users’ perception of the competence [382] and integrity [274] of a system, and
leads to a more positive attitude towards the system [124].

Science68 In the natural sciences (e.g., biology, chemistry), the use of systems based on ML
has increased significantly in recent years. These systems are fed with large amounts of data
(e.g., from experiments), to detect associations between variables and to make predictions
about future experiments. Overall, many interesting systems could be created in this way (e.g.,
AlphaFold for protein structure prediction, see [256]).

However, the ultimate goal of science is not to prove association, but causality. Ideally,
researchers strive to form hypotheses based on the discovered associations, and to test the
hypotheses to gain insights into causality. Yet, because modern ML-based systems exhibit
a high degree of opacity, this process is exacerbated; it is often almost impossible to form
useful hypotheses.

Explainability can support scientific discovery [399]. For example, by making the decision
patterns in a system comprehensible, knowledge about the corresponding patterns in the real
world can be extracted. This can provide a valuable basis for forming useful hypotheses [304].

Security69 Given the increasing dependence of humans on artificial systems, exploitation of
these systems can lead to very negative consequences. Therefore, it is crucial to ensure the
security of these systems.

Explainability is seen as a means of bridging the gap between perceived and actual security

[373], helping users to understand the actual mechanisms in systems and adjust their behavior.
Higher system security helps to mitigate the potentially increased corruptability of systems

due to machine ethics components (Risk 2.1.1). By enabling users to adapt their behavior
according to a system’s security, and by helping developers to make systems more secure,
corruption is made more difficult, hence alleviating the potential consequences of corruption.

Transferability70 Transferability is a desideratum of developers in the ML domain, and
concerns the possibility of reusing a learned model in new contexts (in other words, it concerns
the portability of ML models). Training modern ML models is a very resource-intensive
process, taking quantities of, for instance, time and energy that should be reduced when
possible. However, training is often specific to definitive application domains, making it
difficult to transfer models to new contexts.

Explainability can help in this regard by enabling the identification of the context from, and
to which, the model can be transferred [109]. Furthermore, explainability can facilitate the
task of clarifying the boundaries that might affect a model, allowing for a better understanding
and implementation in new contexts [54].
68Representative sources are [4, 54, 73, 179, 341, 399, 441, 442, 454, 503] (see Table 29 for all sources).
69Representative sources are [236, 322, 373, 503] (see Table 30 for all sources).
70Representative sources are [54, 234, 497] (see Table 31 for all sources).
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Transparency71 Transparency is a desideratum about which one could discuss whether
it is facilitated at all by explainability. In the ML community, transparency is often used
synonymously with understandability. If one considers the term as such, however, a system
being transparent simply means that one has access to all of its parameters and processes.

In this latter sense, making a system explainable does, in principle, not change its trans-
parency. In the former sense, however, explainability can contribute to higher system trans-
parency [111], which is also illustrated by our model (see Figure 11). For more information,
see the paragraph below on understandability.

Trust72 The desideratum of adequately calibrating trust (confidence, reliance) in systems is
one of the most discussed in the literature [264]. Both undertrust and overtrust have a negative
impact on the appropriate use of systems [301]. In the case of undertrust, users may constantly
attempt to monitor a system’s behavior or even interfere with a system’s processes, thereby
undermining the effectiveness of human–system interaction [368]. In the case of overtrust,
people might use a system without questioning its behavior [230, 367, 368], which can also
undermine the effectiveness of human–system interaction, as people rely on the system’s
outputs even when they should question them [285, 301].

Trust is a complex desideratum, and the relationship between trust and explainability
is often overestimated, just as is the case for acceptance (see Section 3.2.2). In general,
explainability has the potential to allow users to appropriately calibrate their trust in artificial
systems [232], and the same is true for the related desiderata of confidence and reliance.

However, there are also more complex cases. Suppose the desideratum is not to calibrate
trust in a system, but to increase trust in it (as it often can be found in the literature, see
[264]). Acquiring a higher degree of understanding will increase a stakeholder’s epistemic
satisfaction of this desideratum (i.e. they can better assess whether and to what extent to trust
the system), but the substantial facet (i.e., their actual trust) may be negatively affected.

The reason for this is as follows. When a stakeholder still possesses a low degree of
understanding, they are likely to be unaware of problematic features a system has in certain
contexts (e.g., in complex environments) or for certain kinds of input data (e.g., noisy inputs).
So, with a low degree of understanding, a stakeholder is likely to trust a system (although
inadequately) [72, 274]. In contrast, a stakeholder with a higher level of understanding is able
to recognize or even explain the conditions under which a system tends to fail. Therefore,
they are more aware of the system’s problematic features, which may, consequently, decrease
their trust in it [113, 274]. It should be noted here, however, that this is an advantage, as the
blunt elevation of trust, without any justification, is not morally desirable.

71Representative sources are [43, 72, 137, 177, 189, 322, 373, 399, 442, 485] (see Table 32 for all sources).
72Representative sources are [72, 188, 393] (see Table 33 for all sources).
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Trustworthiness73 The concept of trustworthiness is only vaguely defined [331]. For
example, the high level expert group on artificial intelligence (HLEGAI) initiated by the
European Commission does not provide a general definition of trustworthiness, but merely
suggests that trustworthy systems have three characteristics: they are lawful, ethical, and
robust [172]. Without elaborating much on trustworthiness, the HLEGAI emphasizes the
significance of trustworthy artificial systems by stating that the trustworthiness of systems is
imperative for the realization of potentially large social and economic benefits.

Regulators such as the EU, as well as previous research on AI that calls for trustworthy
systems (e.g., as described in [175]), agree that explainability is a central way to test and
facilitate the trustworthiness of systems [172, 175]. In particular, explainability can contribute
to the three characteristics described by the HLEGAI, as we explore in the paragraphs on legal

compliance, morality, and robustness. Moreover, philosophical notions of trustworthiness
often have a justification component (i.e., a stakeholder must be justified that a system works
well) [331]—and explanations are a good way to provide justifications [264].

Understandability74 Sometimes understandability itself can also be a desideratum. As previ-
ously outlined, our model assumes that understanding is a step from explainability approaches
to the satisfaction of other desiderata. Of course, this does not preclude understandability itself
from being a desideratum. In this case, the relationship between explainability and desiderata
satisfaction is very simple, and as outlined above: by receiving explanations about (certain
aspects of) a system, a person’s understanding of the system is facilitated.

Usability75 In many cases, a system is more usable if it provides meaningful information
about the reasons underlying its outputs. This information can help users to adequately link
their knowledge and assessment of a given situation with the information used by a system. It
can help them to make decisions more quickly, or it can increase decision quality [170].

Explainability can influence the usability of a system by providing required information.
Explanations can increase a system’s ease of use [358], leading to more efficient use [508],
and making it easier for users to find what they want [464].

Usefulness76 All of the factors mentioned in the previous paragraph can contribute to the
usefulness (another important desideratum of users) of a system. Usefulness is important in
high-stakes scenarios where a user makes a decision based on a system’s recommendations.
In these situations, it is imperative that the recommendations are actually useful.

73Representative sources are [72, 73, 172, 188, 201, 306, 339, 393] (see Table 34 for all sources).
74Representative sources are [54, 99, 339, 393, 399] (see Table 35 for all sources).
75Representative sources are [1, 51, 137, 199, 236, 358, 373, 388, 442, 511] (see Table 36 for all sources).
76Representative sources are [165, 180, 199, 358, 388, 442] (see Table 37 for all sources).
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Verifiability77 To check whether a system works as intended is commonly referred to as
verification. Verifiability is a critical desideratum for developers, since they must ensure that
the systems they produce do, indeed, work as intended. Program verification can range from
empirical testing to formal proofs, both of which approaches have received intense interest in
the research community. However, new challenges are introduced by traditional verification
techniques not being applicable to ML-based systems; different paradigms are required.

Medical-Care Robot #29

Caruana et al. describe an example of potential issues with verification arising from
opaque systems [98]. They discuss a system that predicted asthmatic patients to have
a lower risk of dying from pneumonia than non-asthmatic patients. This prediction
arose because the training data were systematically biased: Asthmatic patients were
better monitored than other patients and, consequently, they died less frequently from
pneumonia, even though they were a high-risk group. If the system in question (e.g., as
part of our medical-care robot) were used to assess the treatment urgency of patients,
this could have fatal consequences—the system would assign low treatment urgency to
the high-risk group. For more examples of this kind, see [296].

Better insight into the system’s decision-making process through the use of certain explain-
ability approaches can help developers to identify, and potentially correct, such mistakes [344].
Not only can explanations help developers ensure the correctness of a system’s knowledge
base [137], they can also help users to evaluate the accuracy of a prediction [510]. Overall,
when people have access to the processes and data that lead to an output, they can better judge
whether the output is appropriate. Explainability is key to this.

By supporting verification, machine explainability provides a third factor that can help
mitigate the potentially increased corruptability of systems (Risk 2.1.1). In essence, by
enabling people to verify that the systems do what they should do, it is possible to exclude
that they are being used maliciously.

•

The various desiderata arising from the five classes of stakeholders are manifold and diverse;
presenting a comprehensive list lies beyond the scope of the current thesis. The above
examples have been drawn from numerous sources, all of which postulate explainability as an
an important ingredient for satisfying these desiderata.

However, in previous research, it has mostly remained unclear how explainability is sup-
posed to satisfy each of the desiderata coming from the various stakeholder classes. With our
conceptual model, we offer clarification in this regard.

77Representative sources are [66, 341, 344, 409] (see Table 39 for all sources).
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9.2.2. Reasons against Machine Explainability

Having discussed the overwhelming number of desiderata that can be satisfied in various
ways by explainability (thereby emphasizing its need), we now turn briefly to the desiderata
that might be frustrated by it (thereby hinting at its drawbacks).

Basically, some of the desiderata that may benefit from explainability may also suffer from
it. For some of them, we have already briefly touched upon this. Performance and, relatedly,
accuracy, effectiveness, and efficiency offer paradigmatic cases (see [126] for a discussion).
These desiderata may suffer on the system side because making a system explainable may
require additional computational resources which lower performance. On the user side, poorly
designed explanations can lead to confusion, which lowers user performance [96].

Other desiderata that could suffer are security and privacy. If different stakeholders are
provided with more information about the system and how it works, they could maliciously
exploit this information. However, security through obscurity is considered a poor design
decision among experts [335], which is why open software is often preferred.

Considering that the number of desiderata that might benefit from explainability is far
greater than the number that might suffer from it, and considering that even this suffering is
not inevitable, this reason against machine explainability alone seems rather weak. Therefore,
we will cite some other reasons that might speak against making systems explainable.

One reason sometimes cited is that machine explainability, as a research discipline, is too
inconsistent to be fruitfully pursued [397]. We have addressed some of the problems associated
with this reason above (Section 8.3.2; e.g., problems with the use of terms such as “explain-
ability” and “interpretability”). A more detailed discussion regarding such inconsistencies
and possible solutions to them can be found in [447].

Another reason portrays research on explainability as misdirected [280, 365]. According to
this line of argumentation, the time spent on researching machine explainability would be
better spent on other endeavors, such as finding ways to directly satisfy individual desiderata.
One claim is that there is no guarantee that explainability will ultimately contribute sufficiently
to satisfying these desiderata, so the whole endeavor may fail. Given the immense resources
invested in research on explainability, this could prove disastrous.

However, this reason can also be easily alleviated. Research on explainability has already
produced impressive result. For instance, when it comes to fairness, many biased ML-based
systems could be identified (see, e.g., [272, 297]). Furthermore, for some desiderata, ex-
plainability seems the best and most direct way to satisfy them (e.g., responsibility; see
below). Accordingly, pursuing explainability research is worthwhile because it does satisfy
the desiderata and there is no alternative method that seems nearly as promising.



9.3. THE RESPONSIBILITY DESIDERATUM 151

9.3. The Responsibility Desideratum

In the above descriptions of the desiderata and the purported influence of explainability
on them, we have remained rather general. On the one hand, detailed analyses of so many
desiderata would simply deviate too far from the crux of this thesis. On the other hand, for
many desiderata, the detailed connection to explainability remains to be explored. In this
section, we will outline one such connection, namely, to responsibility.

Even with such a focus on a single desideratum, we must limit ourselves to one specific
example, since the attribution of responsibility is such a complex issue. More specifically, we
will focus on a case where a human makes a decision based on results from a system. This is
a typical so-called human-in-the-loop case.

9.3.1. The Epistemic Condition for Moral Responsibility

Prima facie, a human in the loop is an excellent candidate to bear responsibility. However,
there are some requirements that have to be fulfilled to properly allocate responsibility to
them. This is where the demand for explainability comes into play. As Floridi et al. put it,
ensuring “that the technology—or, more accurately, the people and organizations developing
and deploying it—are held accountable in the event of a negative outcome [. . . ] would
require [. . . ] some understanding of why this outcome arose” [175, p. 700]. To gain such
an understanding, the human in the loop must have access to an explanation of an artificial
system’s recommendation, and possibly even its entire operation, at the time of the decision.

The basis for this idea lies in a necessary condition for moral responsibility that is widely
recognized in philosophical debate—the epistemic condition (EC) [354, 405]. According to
this condition, an agent is directly morally responsible for an action only if they are aware, or
in a position to be aware, of (a) what they are doing, (b) what the (probable) consequences of
their action are, (c) what moral significance it has, or (d) what alternatives are available to
them.

(EC) An agent is directly morally responsible for their action or decision only if they have
sufficient epistemic access to it. That they have sufficient epistemic access to it entails
at least that they are in a position to know the action under relevant descriptions.

Example #21

For example, an agent who flips the switch to turn on the light, and who thereby electro-
cutes their neighbor by an unfortunate and unforeseeable combination of circumstances
is not directly responsible for the harm caused.

To make this condition more tangible, we resort to a coarse-grained view of actions,
according to which the description of an action can be singled out among a number of
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different ones [32, 141] (note that this stands somewhat in tension with the assumptions in
our framework, where we have reduced similar actions to paradigmatic ones).

Example #22

In the example, the agent’s action can be described as flipping the switch, as turning on
the light, or as electrocuting the neighbor. Since the agent is not in a position to be aware
that their action is to electrocute their neighbor, they are not directly morally responsible
for it under that description, though they may still be responsible for flipping the switch.

The epistemic condition on moral responsibility can be used to provide two motivations for
artificial systems to be explainable. Let us make these explicit by means of examples.

9.3.2. Explainability for Bridging the Responsibility Gap

In particular, the first motivation is introduced using an initial case (Hiring System #2), and
the second is introduced using an extended version of that case (Hiring System #3).

Hiring System #2

Herbert, the human resources (HR) manager, is a human in the loop and makes the
final hiring decision, but has no explanation for the hiring system’s recommendation.
Let us assume that, prior to using the system as support, Herbert was an HR manager
who competently and responsibly made hiring decisions for his company, and that he
will continue to do so, using an artificial system’s output as one source of support.

Imagine that Herbert decides to exclude the application of April (a Black woman)
because the hiring system recommended doing so. Imagine further that the system’s
recommendation is due to its bias against Black female applicants, but, since it is an
accredited system, Herbert justifiably believes that it has no such problems.

In this example, Herbert is not responsible for discriminating against April—he is not to
blame for being unaware of the system’s bias. If he is to be responsible at all, he must be
directly responsible, which requires that he is in a position to know what it is that he is doing,
what its probable consequences are, and what its moral significance is.

If, as described, he does not have access to what moved the artificial system to make its
recommendation, then his AI-supported decision will be made without his being in a position
to know these things. Herbert is aware that he is rejecting April’s application, and so he is
aware of his action under that description. However, he is not in a position to know that
what he is doing, under another description, is discriminating against her. He is also not in
a position to know that he unfairly rejects her application and that this is an act of moral
wrongdoing. Consequently, he is not morally responsible for discriminating against April.
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Once a meaningful explanation of the recommendation is available to the decision maker,
we can more easily bridge the responsibility gap. Suppose that the system discriminates
against April on the basis of her race and gender. If Herbert has access to this fact, then he
also has access to the fact (in other words: he is in a position to know) that rejecting her
application on this basis is to discriminate against her; and that it is unfair and an act of moral
wrongdoing.

Even in the case where the system discriminates against April based on a learned correlation
involving some otherwise innocuous proxy variables such as April’s alma mater, her hobbies,
and her zip code, explanations may allow Herbert to gain the right kind of epistemic access.
This is because the proxies will typically be either suspicious or seemingly irrelevant. In
either case, Herbert should doubt the system’s recommendation: If the system indicates
that it considers the combination of April’s alma mater, hobbies, and current zip code to be
particularly crucial, this may catch Herbert’s attention. He might wonder: is this not one of the
historically Black colleges and universities? And is that not a primarily Black neighborhood?

In any case, an explanation allows Herbert to become suspicious and to pay particular
attention to the role played by other factors. Herbert can then check, if necessary, whether
candidates with otherwise similar profiles are rated similarly. In this case of proxy-based
discrimination, Herbert may not be sure that discrimination is present, but with sufficient
background knowledge and awareness of the danger of discrimination by models, he can
develop an initial distrust and at least begin to consider that other descriptions of the situation
might be relevant. He is, therefore, in a position to know at least that a decision following the
system’s recommendation may very well be discriminatory. Thus, even if explanations do not
guarantee that the EC will be fulfilled in all cases, they clearly facilitate its fulfillment.

9.3.3. Explainability for Resolving Cases of Disagreement

Let us turn to our second motivation. At least in one way of further spelling out Herbert’s
situation, his epistemological situation is even worse than has become clear so far.

Hiring System #3

Imagine that, at the end of a lengthy selection process, Herbert is presented with a list
of applicants that the artificial system ranks as the top three; the system recommends
keeping them in the running for the position. April did not make the list, but is in the top
ten. However, Herbert, who went through the top ten applications independently, placed
her among the top three applicants beforehand. So we have a case of disagreement
between the system’s recommendation and Herbert’s initial judgment. Since there is
no explanation for the system’s recommendation available, Herbert cannot reasonably
resolve the disagreement.
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This scenario shows that, when a decision maker cannot tell why an artificial system pro-
vided the recommendation it did, there can be situations, especially situations of disagreement
between system and decision maker, in which the decision maker cannot tell whether the
system’s recommendations bring them closer to their goals. As a consequence, they are unable
to guide their decisions so as to pursue these goals, or to execute their intentions in acting.
This gives rise to a particularly threatening way in which an agent lacks epistemic access to
their action, and, thereby, also lacks moral responsibility for it.

Hiring System #4

Suppose that Herbert’s own assessment of April’s qualities is due to good, but not
conclusive reasons—she has more relevant work experience than most, received great
grades in her studies at Yale, speaks a foreign language which is useful but not absolutely
necessary for the job, and has work experience abroad. (By saying that his reasons are
not conclusive, we mean that they are sufficiently weak that he can reasonably question
his own judgment if the system gives a contrary recommendation.)

On the other hand, the system was accredited as reliable by a trustworthy watchdog
organization, though Herbert is aware that systems of this kind may have hidden bugs or
biases. In this situation, the system’s countervailing recommendation leaves open both
the possibility that Herbert correctly assesses the situation and the system is mistaken,
and also the possibility that the system has a superior understanding of the situation and
Herbert has it wrong.

In the first possibility, the system’s recommendation could be due to some kind
of bug, or to its bias against women of color; in the second possibility, the system’s
recommendation could be due to having information that Herbert does not have, or that
it detects patterns that Herbert overlooked.

Suppose that the system relies on all of the reasons that led Herbert to see April
among the top three applicants (her excellent grades at Yale, her foreign language skills,
etc.). However, it has found that applicants with these qualifications, overall, tend to
move on very quickly to other, better jobs. So the system detects a pattern that turns
what would otherwise be good reasons for hiring an applicant into a reason against
hiring them.

This example illustrates that, in a particular situation, Herbert may be unable to tell whether
he is in one of two relevant cases:

Case 1 The system’s recommendation is mistaken and Herbert’s assessment is right.

Case 2 The system’s recommendation is correct and Herbert’s assessment is wrong.

Given that the two cases are indistinguishable to Herbert, he cannot reasonably resolve
the disagreement. This is because he cannot compare or reconcile his own and the system’s
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reasons for or against keeping April in the running, and, thus, cannot figure out which reasons
are superior, for instance, by weighing them against each other. Consequently, if he decides to
keep April on the shortlist, this decision is arbitrary; but if he decides to exclude her from the
shortlist, that decision is also arbitrary. The lack of access to the system’s reasons undermines
Herbert’s ability to arrive at a well-founded, all-things-considered judgment about which
applicants to keep in the running.

In light of this inability, Herbert is, then, unable to competently pursue his goal. Suppose
he is genuinely trying to find the best candidate for this prestigious, responsible position in
his company. Since he is unable to discern the proper means for doing so—keeping April
in the running or excluding her—he is unable to respond to pertinent reasons in pursuit of
his goal. In other words, he cannot properly guide his decisions in light of his goals, so as
to execute his intentions. This undermines his ability to find the best candidate or to achieve
various related goals.

Imagine that Herbert is instead trying to harm the company by hiring an unsuitable candi-
date. Again, since he cannot tell whether it is his or the system’s assessment of April that is
right, he is unable to tell whether excluding April would be a good means to achieving this
goal, which, again, undermines his ability to guide his hiring decision in response to pertinent
reasons.

In both of these scenarios, Herbert is epistemically impaired: He cannot know any of his
options under the relevant descriptions. He cannot tell whether he wrongs April by following
the system’s recommendation, but he also cannot tell whether his decision, if he sticks to
his own initial assessment, can be described as harmful to his company. In this version of
the scenario, then, Herbert’s access to his decision is undermined more severely. Because of
this wider-ranging epistemic disconnect, Herbert is not directly morally responsible for his
AI-supported decision.

Of course, one might object that cases of disagreement are insignificant outliers. Typically,
the decision maker will agree with the system’s recommendation. However, this objection
renders the use of artificial systems as decision support obsolete. If the system’s recommenda-
tion allows for well-founded decision making only where it supports what the decision maker
would choose anyway, then there is no point in combining an artificial system with a human
in the loop for the hiring decision. From Herbert’s perspective, adding the system does not
improve his decision making; from the perspective of the company, keeping a human in the
loop provides no advantage over employing a fully automated system.

The system can lead to better decision making precisely when the decision maker disagrees,
and there is room for changing his mind. So, it is precisely when it matters—when the
decision maker’s reasons are not conclusive, and the system’s recommendation is potentially
better—that the system undermines the decision maker’s epistemic access to their decision,
and, thus, their moral responsibility.
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9.3.4. The Dilemma of Lacking Explainability

Without explainability, we face a dilemma for human-in-the-loop scenarios: Either it is
pointless to have the system provide a recommendation to the human decision maker (in cases
where human and system agree, or when the decision maker has conclusive reasons anyway),
or the lack of explainability undermines their epistemic access to their decision and, thus, the
moral responsibility that the human in the loop is supposed to bear (in cases where human
and system disagree, while the human has non-conclusive reasons).

Now the second horn of this dilemma is because the decision maker has no access to why
the artificial system provided a particular recommendation. If they had a suitable explanation
for the system’s recommendation at their disposal, so that they could compare their reasons
with the system’s reasons, they would be in a better position to find out whether it is the
system’s or their own assessment of the situation that is correct. So, they would be able to
resolve the disagreement in a non-arbitrary way and, thus, be able to make the hiring decision
that best suits their goal (to find the right—or wrong—person for the job). Overall, they would
be in a position to know their decisions and actions under the relevant descriptions.

We conclude that, in many cases of disagreement, where the decision maker’s reasons are
non-conclusive, they are in a position to bear direct responsibility for their decision just in
case they have a suitable explanation of the system’s recommendation available.

Generally, it can be stated that a human decision maker requires explanations. These enable
responsible AI-supported decision making by enabling an agent to meet the EC. On the one
hand, this allows for bridging the responsibility gap that has arisen with the introduction of
artificial systems into human decision-making processes. On the other hand, it allows for the
resolutions of disagreement between machines and humans.

•

Through these illustrations, one can see how explainability can be specifically connected to a
desideratum. Furthermore, one can see that the effort to establish such a connection is very
high. Yet, we have looked at only a very limited example. To explore the whole range of
responsibility in the context of explainability would require a lot more space and additional
research. Nonetheless, the example discussed nicely illustrates the benefits of explainability,
and motivates further research on the connection of explainability to desiderata.
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10. What Makes for a Good Explainability Approach?

At this point, we have a good understanding of the various desiderata associated with machine
explainability. Now, recall our model (Figure 11). Desiderata satisfaction is intended to come
through increased stakeholder understanding. To this end, researchers in the field of machine
explainability are devising various approaches to provide explanatory information. So far, we
have not commented much on these approaches. In this section, that will change.

We will first review the main distinctions between these approaches, and present some
exemplary ones. In order to assess the quality of the approaches, we will then devise evaluation
criteria for explanatory information, and apply them to the information produced by the
presented approaches.

10.1. Exemplary Explainability Approaches

In order to get a better idea of explainability approaches, we will discuss some exemplary
ones. These examples represent only a selection of well-known approaches and should in no
way be taken as representative of the field as a whole. The number of proposed explainability
approaches is huge, and it is difficult to keep track of them all [54, 201, 447]. That being
said, in order better contextualize the presented approaches, we will first introduce the main
distinctions regarding them (see [442] and [447] for more distinctions).

10.1.1. Important Distinctions Concerning Explainability Approaches

Explainability approaches can take many guises, and the literature commonly distinguishes
them into two families (see, e.g., [4, 37, 54, 201, 442]): ante-hoc and post-hoc approaches.

Ante-hoc approaches aim at designing systems that are inherently transparent and explain-
able. They rely on systems being constructed on the basis of models that do not require
additional procedures to extract meaningful information about their inner workings or their
outputs. For example, decision trees, rule-based models, and linear approximations are com-
monly seen as inherently explainable (given they are not too large) [201, 341]. A human
can, in principle, directly extract information from these models in order to enhance their
understanding of how the system works, or of how the system arrived at a particular output.

Post-hoc approaches aim not at the design process of a particular system, but at procedures
and methods for extracting explanatory information from a system’s underlying model which
need not be inherently transparent or explainable in the first place [201, 306, 442]. Post-hoc
approaches are, for example, based on input–output analyses, or on approximating opaque
models by models that are ante-hoc explainable.

One can distinguish post-hoc approaches that work regardless of the underlying model
type (so-called model-agnostic approaches) from ones that only work for specific (types of)
models (so-called model-specific approaches). Model-agnostic approaches aim to deliver
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explanatory information about a system solely by observing input–output pairs [201, 393,
442]. Model-specific approaches do so while also factoring in specific features of the model
at hand (e.g., by creating prototype vectors in a support vector machine) [201, 442].

Finally, previous research distinguished the scope of an explainability approach. Some
approaches provide information about only single predictions of the model [201, 393, 442].
The scope of these approaches is local. Local approaches often offer visualized prototype
outcome examples (see, e.g., [270, 271]). The more general type of approaches has a global

scope. Global approaches are designed to uncover the overall decision processes in the model
[201, 442]. Here, the usual way to provide this information is by approximating complex
models with simpler ones that are inherently explainable.

10.1.2. Perturbation-Based Approaches

One big family of explainability approaches is the perturbation-based ones [447]. The idea
behind perturbation-based approaches is to change the inputs of a system to observe the
change in outputs. The information obtained from this observation can either be used directly
or processed further. We will discuss three approaches that belong to this category below.

Change impact analysis (CIA) One very straightforward perturbation-based approach is
CIA. This approach originally stems from software development, and is most commonly
described as “identifying the potential consequences of a change, or estimating what needs
to be modified to accomplish a change” [75, p. 3]. In the case of artificial systems, “change”
must be understood primarily as the change in a parameter (or several parameters) used as an
algorithm’s input, which, in turn, is used in the system to come to a result. The difference in
output when changing an input constitutes the explanatory information in CIA.

Example #23

Avati et al. [45] suggest an ANN for estimating mortality rates (see also Example #25).
To “explain” the network’s predictions, its inventors suggest tweaking every parameter
slightly to identify whether the prediction would change significantly. This “tweaking”
is precisely the type of change upon which the CIA is based.

Robustness A similar approach involves looking for robustness guarantees. Particularly in
ML-based systems, the behavior of trained classifiers can be hard to predict at times. Minor,
human-imperceptible changes of an input can lead to significant changes in the output (in
[192], Goodfellow et al. give a good example of what this can look like in ANNs). This
behavior can be disastrous in systems that interact with humans.
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Autonomous Vehicle #12

With observations like those made by Goodfellow et al. [192], it is plausible to assume
that a slight noise in a sensor (for instance, a pixel error in or dirt on a camera) can lead
to disastrous results in traffic sign recognition. Thus, the 50 km/h sign in a town could
be mistaken for a 90 km/h sign, leading to an accident.

Guarantees concerning the robustness of a classification are, thus, desired. Research inves-
tigating this was made, for example, by Hein et al. [216]. Given a specific prediction from a
classifier, they demonstrate a means of estimating the required change in an input that would
have led to a change in the output. Overall, one could, thus, also count this as a type of CIA.

(a) Original image. (b) Interpretable clusters. (c) Decisive clusters.

Figure 13: Local interpretable model-agnostic explanation (LIME) visualized.

LIME A well-known explainability approach is LIME (proposed by Ribeiro et al. in [393];
see Figure 13). With its conception in 2016, LIME was one of the triggering factors for the
renewed interest in machine explainability and has greatly influenced the field. The idea
behind LIME (discussed below) is quite simple, which most likely played a large part in its
popularity. As its name suggests, LIME is a local, post-hoc approach that is model-agnostic.

Figure 14: Different superpixel masks for LIME.

Let us describe LIME in simple terms. Since it is a local explainability approach, LIME
aims to explain single predictions. Given such a prediction of a particular input (be it an
image, a text, or something different; see Figure 13a for an example), the first step is to
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segment the input into interpretable clusters (see Figure 13b). Subsequently, some of these
clusters are replaced with dummy values (e.g., black in an image, see Figure 14). This is
repeated many times to create a large number of new inputs that differ in the clusters that
have been replaced. For all of these inputs, a prediction in the original model is made. Using
the difference between these predictions and the original prediction, it is now possible to
calculate which clusters contributed the most to the original prediction (see Figure 13c).

To understand on a more general level what LIME does, it is important to know that, in
principle, all that an ML model does is compute a function. Such functions can become very
complex, having a huge number of variables (e.g., 786432 for a model that takes images
of 512 × 512 pixels with three color channels as input). LIME approximates this complex
function for a given value by another, simpler function (e.g., a linear one). Figure 15 visualizes
this: Assuming that the blue graph represents the function computed by an ML model, the red
and the green graphs are each local, linear approximations to this function.

x

y

Figure 15: Linear approximations to a function.

With this information in mind, we can describe LIME in more complex terms. Ribeiro et al.
use the following mathematical equation to express this explainability approach [393]:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)

In this equation, g is the surrogate model (e.g., a linear regression model) out of the class G
of potentially ante-hoc explainable models. Notably, Ribeiro et al. consider this model to be
the explanation, readily presentable to an addressee with visual or textual artifacts. Moreover,
Ribeiro et al. are aware of the fact that purportedly ante-hoc explainable models may not
retain their intelligibility if they become too large. To prevent this from happening for LIME,
they introduce Ω(g) as the measure of complexity of a model (e.g., the depth of the tree for
decision trees, or the number of non-zero weights for linear models).

Other components are the original model f (e.g., a DNN) and the proximity measure πx. As
mentioned earlier, f is a function Rd → R (where d is the input’s dimensionality), and f(x)
expresses the probability that an instance x ∈ R belongs to a particular class. The proximity
measure defines locality around the instance x by being a way to calculate the distance
between x and other instances. The final component is L, which measures the infidelity of g
in approximating f in the locality defined by πx. Overall, the core idea is, thus, to produce
another ML model that is human-intelligible and locally fidelitous to the original model.
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10.1.3. Saliency Maps

While LIME can serve as a prime example of a model-agnostic explainability approach, we
will now briefly examine a number of mutually related, model-specific approaches. These
approaches are related in that they all produce saliency maps while leveraging a convolutional
neural network (CNN)’s structure. Moreover, some of them are even enhanced versions of
others.

(a) Guided backpropagation. (b) Integrated gradients. (c) Grad-CAM.

Figure 16: Different approaches to generate saliency maps.

Before we come to the individual approaches, let us first give some background on saliency
maps to better understand these approaches. Given a prediction for a certain input, a saliency
map visualizes that input, highlighting which parts or features are most relevant to that
prediction (see Figure 16). For simplicity, we will focus on images as inputs, although
saliency maps can be created for other input formats as well. Additionally, while there are
traditional computer vision algorithms for detecting saliency, we will deal exclusively with
explainability approaches producing saliency maps in the context of CNNs.

To understand how these explainability approaches create saliency maps, we need to dive
a bit into the specifics of how ANNs are created. In particular, we need to elaborate on the
backpropagation algorithm. Basically, the backpropagation algorithm is what allows ANNs to
be trained. For each training example, this algorithm determines how to adjust the individual
weights between the neurons in an ANN to reduce the error (i.e., the difference between
calculated and expected value), to increase the ANN’s predictive performance. Roughly, this
is done by computing the gradients of a function that is created based on said error. Moreover,
this process is performed starting from the last layer of the network and finishing with the
first, hence its name, “backpropagation”.

Based on the backpropagation calculations, the individual weights between the neurons are
adjusted following each training example. In the best case, the ANN’s performance reaches an
adequate standard by being confronted with many examples and having the weights changed
accordingly. At this point, the ANN has become useful for solving the problem posed to it
(e.g., distinguishing pictures of cats from pictures of dogs).
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Explainability approaches that produce saliency maps sometimes have “backpropagation”
or “gradient” in their name because they visualize some form of gradient calculated by
backpropagation. In general, gradients in ANNs indicate which inputs need to be changed the
least to affect the prediction the most (for saliency maps, these inputs are pixel values). In this
respect, these approaches are similar to LIME, whose goal is also to indicate what needs be
changed the least to affect the prediction the most.

Figure 16a and Figure 16b may serve as examples of saliency maps: the most salient pixels
are at the outline of the dome. This is to be expected, since having a semi-circular shape
is essential to being a dome. Accordingly, the underlying model seems to work reliably for
predictions of this type. How it behaves beyond that, however, this saliency map can not tell.

(a) Original image. (b) Activation mask. (c) Superimposed mask.

Figure 17: Vanilla backpropagation visualized.

Vanilla Backpropagation The first work on saliency maps in CNNs was published in 2013
(viz., [430]) and proposed an explainability approach that is now often referred to as “vanilla

backpropagation” (see Figure 17). Basically, this approach exploits the gradients used in the
backpropagation error function. These gradients indicate whether a pixel in the image was
important for a prediction or not. Accordingly, important pixels get highlighted.

To better put vanilla backpropagation into context, we need to comment on how it handles
the so-called ReLU function. The ReLU function is an activation function in ANNs. Activation
functions in ANNs try to simulate something similar to the excitation of human neurons.
ReLU does this by disregarding negative incoming values, and scaling positive ones to one
(see Figure 18a). In vanilla backpropagation, the values set to zero by the ReLU function are
remembered and, during the backpropagation, also set to zero (see Figure 18b).

Unfortunately, vanilla backpropagation usually generates images that are extremely difficult
to interpret, even by experts (see, e.g, Figure 17b). For this reason, there have been several
proposals to improve vanilla backpropagation or to generate saliency maps in an altogether
different way. In what follows, we will briefly discuss some of these approaches. However,
as laying out the technical details for each of these approaches would lead too far from this
thesis, we will only give a superficial account of how they work.
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(a) The ReLU activation function.
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(c) Guided backpropagation

Figure 18: Vanilla backpropagation and guided backpropagation explained.
When using an ANN to make predictions, the ReLU activation function disregards negative inputs (a). This
knowledge is exploited by vanilla backpropagation by setting values that were negative to zero during backprop-
agation (b). Guided backpropagation goes further and additionally ignores negative gradients (c).

Guided Backpropagation An approach similar to vanilla backpropagation is guided back-

propagation [450] (see Figure 16a), in which the focus lies on positive gradients and negative
ones are ignored (see Figure 18c). The reason for this change of focus is that negative gradients
indicate a decrease in probability of being predicted as a particular class (e.g., being a dome).
Thus, these gradients tell us that certain pixels did not contribute to the prediction in question.
However, as we are interested in what contributes to the prediction, we can disregard them.

Gradient-based techniques such as vanilla backpropagation and guided backpropagation
suffer from various problems. Among others, there is the problem of so-called “vanishing
gradients”, which concerns very small gradients. Although such gradients might indicate
important pixels, they tend to become smaller during backpropagation, ultimately vanishing.

Integrated gradients A technique that attempts to circumvent this problem by computing
the gradient differently is integrated gradients [455] (see Figure 16b and Figure 19a). It works
by taking derivatives of the value for the predicted class with respect to the input features.
This is done along a straight line from a given baseline (a representation of an input that
reflects the absence of a signal, such as a black image) to the actual input.

All previous saliency techniques suffer from artifacts that can make the resulting masks
very enigmatic. So, the question is how to reduce these artifacts.

SmoothGrad One way to reduce artifacts is to combine multiple outputs of the same
approach (e.g., of vanilla backpropagation), such as with SmoothGrad [438]. The idea behind
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SmoothGrad is as simple as it sounds odd: reducing noise by adding noise. What seems like a
contradiction at first glance makes a lot of sense upon closer inspection.

SmoothGrad interpolates between multiple saliency masks, each of which is created by
using one of the above approaches. This is done by applying the approach to slightly modified
version of the original image. These images are modified by the addition of Gaussian noise.
One type of noise (the artifacts) is, thus, reduced by adding another type of noise (the Gaussian
noise in the modified images). As can be seen in Figure 19, the diffuse attribution masks of
Vanilla Backpropagation (see Figure 17b) and Integrated Gradients (see Figure 19a) become
very clear with SmoothGrad (see Figure 19b and Figure 19c, respectively).

(a) Original mask of inte-
grated gradients.

(b) SmoothGrad mask of
integrated gradients.

(c) SmoothGrad mask of va-
nilla backpropagation.

Figure 19: SmoothGrad for integrated gradients and vanilla backpropagation.

After these approaches, which rely primarily on the gradient, let us turn to some alternatives.
To this end, we need to elaborate a bit on what distinguishes CNNs from other types of ANNs.
CNNs make use of the name-giving convolution. Basically, convolution is a mathematical
operation that allows the merging of two sets of information. In the case of CNNs, certain
layers use convolution to create feature maps of input images.

Class Activation Maps CAMs A technique that uses the last of these convolutional layers
to detect the features that contributed the most to a prediction is to create CAMs (proposed in
[507]). Unfortunately, CAMs have specific requirements on the structure of the CNN to be
explained. Thus, generalizations of CAMs have been developed.

Grad-CAM One such generalization is Grad-CAM (proposed in [420, 421]). The basic
idea is to combine gradient-based insights with CAMs. In this way, the most important CAMs
for a prediction can be detected, just as other saliency maps detect the most important pixels
for a prediction. Typically, the results of CAMs and Grad-CAM are heatmaps that can be
overlaid on top of the original image (see Figure 16c and Figure 20).
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(a) Grad-CAM (b) Grad-CAM++ (c) Score-CAM

Figure 20: Approaches that are based on CAMs.

Other CAM-Based Approaches As one might expect after seeing this variety of ap-
proaches, Grad-CAM is also not without problems, so alternatives have been developed.

Grad-CAM++ (proposed in [104]) builds directly on Grad-CAM, slightly changing the
way the derivatives are used to compute the most important CAMs (see Figure 20b).

Score-CAM (proposed in [486]) takes a different approach, combining the occlusion idea
of LIME with CAM to compute importance scores for features (see Figure 20c).

•

Figure 20 visualizes the three CAM-based approaches we have discussed with a condensed
heatmap. Although the difference is minimal, there is a recognizable shift of the highlighted
zone from the upper left to the lower right.

10.1.4. Further Approaches for (Convolutional) Neural Networks

The examples for explainability approaches we have given so far use feature-importance

attributions to explain black-box models (mostly CNNs). That is, the approaches highlight
specific features, such as the (clusters of) pixels that are most conducive to the prediction.
However, many approaches based on feature importance have limitations.

Among others, the presented features are not necessarily user-friendly in terms of intelli-
gibility. For example, the importance of a single pixel in an image generally conveys little
meaningful information [343]. In addition, many feature-importance approaches reach their
limits when the number of features is large. The more features there are that are important,
the less likely it is that feature-importance attributions will be accessible to users.

To conclude our presentation of explainability approaches, we want to introduce two
approaches that could also be considered feature relevance, but do not have the above problems:
testing with concept activation vectors (TCAV) and feature visualization (FV).
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TCAV TCAV circumvents the above limitations by allowing users to define the features
about whose importance they wish to learn. Accordingly, individuals using TCAV do not need
to struggle with a myriad of highlighted pixels, but can make targeted queries to the black box.
Overall, TCAV is a post-hoc, model-specific (it works only for ANNs), and global approach.
For any given so-called concept, TCAV measures the extent of that concept’s influence on
the model’s prediction with respect to a particular class. A concept here can be any kind of
abstraction, such as a color, an object, or even an idea (e.g., striped, female, etc.).

Because TCAV describes the relationship between a concept and a class, rather than
explaining a single prediction, it provides useful information on a model’s overall behavior
[343]. TCAV is also particularly well-suited to recognize biases in ANNs. To demonstrate
this, its inventors used TCAV to find out how important the concepts “male” and “female” are
for predicting “doctor” in an image, finding that “male” is significantly more important than
“female” [272]. Accordingly, the tested model is biased with respect to gender for doctors.

TCAV is intriguing because it makes use of the latent information that an ANN learned.
Normally, an ANN has a fixed feature space (i.e., the set of classes that can be predicted):
an ANN trained to distinguish images of cats from images of dogs cannot suddenly output
that an image is a rabbit. During training, however, the ANN learns more than just these two
classes; in particular, it learns features that can be used to distinguish the classes of interest.

Example #24

Whiskers may be a feature that distinguishes cats from dogs. With TCAV, we can find
out whether the concept of “whiskers” is indeed important for predicting “cat” instead
of “dog”, even though we have never directly tasked the CNN with detecting whiskers.

Figure 21: TCAV scores for three different concepts on the prediction “dome”.

Figure 21 visualizes the importance of the concepts “female”, “sky”, and “round” for
the class “dome” in specific layers of a CNN. As can be seen, the concept “female” is not
important, whereas the concepts “sky” and “round” are, matching our intuitions that domes
are round and often photographed against the sky.
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FV The final variety of explainability approaches that we wish to mention is FV. FV is only
applicable to ANNs classifying data that can be suitably visualized for humans (e.g., pictures
or sounds).78 In other words, it makes sense primarily for CNNs.

(a) Layer 5 (b) Layer 6 (c) Layer 7

Figure 22: FVs of neurons in different layers of a CNN.
The deeper the layer in the network, the more semantically meaningful the recognized things are. While in early
layers only abstract edges are recognized, neurons in later layers already seem to recognize things like ropes.

FV aims to make classification in ANNs visible to us, which is accomplished by refining
random noise until it fully activates a set of neurons or a single one (e.g., the noise becomes
classified as belonging entirely to the class in question) [360, 361]. Thus, the features that a
neural network decides upon become visualized (and act as the explanation; see Figure 22).

10.2. Criteria for Suitable Explainability Approaches

Given the great variety of approaches, the question arises as to what makes a good one.
Unfortunately, there is no consensus on what constitutes a good explainability approach [90,
480, 509]. There are several methods for evaluating explainability approaches, each of which
comes with its own underlying rationale for which criteria are essential for good system
explainability. However, these evaluation methods all have their limitations. We are not aware
of any theoretical considerations that motivate certain quality criteria over others. We will
now bridge this gap by distilling philosophically motivated quality criteria that information
provided by explainability approaches should meet.

10.2.1. The Three Dimensions of Explainability

We establish, here, three criteria by which to assess the quality of explanatory information
produced by an explanatory approach. These criteria are inspired by the three dimensions of
explainability described by Baum et al. [62] and Speith [446]:

• Compehensibility: Explanatory information must be conveyed in a way that is compre-
hensible to humans, for humans must understand (certain aspects of) the system based
on the information, and comprehensible information is best suited for this purpose.

78There are approaches trying to visualize data for all types of ML models, the simplest being nomograms (see
[310] for early work, see also [347]). These approaches are, however, not very paradigmatic.
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• Fidelity: Explanatory information must be fidelitous with respect to (the aspect of) the
system it is about. For instance, the information must describe the accurate (i.e., correct,
real) reasons for a system acting the way it did. Although some details may be omitted
or simplified for comprehensibility, outright lies should never be told.

• Assessability:79 Explanatory information must be such that one can assess the satisfac-
tion of a given desideratum. In other words, the quality of explainability depends on the
desideratum that one aims to satisfy with it.

While these criteria are inspired by previous work, it is easy to motivate them independently.
First, information that is incomprehensible or misleading (because it is not fidelitous) is
unlikely to help facilitate a person’s true understanding of a phenomenon. Considering the fact
that, in the field of explainability, explanations are considered as such only when they lead to
understanding (see Section 8.2.1), explainability approaches that produce incomprehensible
or infidelitous information are not of high quality and should not be used.

Let us now take a look at assessability. In Section 8.4.1, we argued that the ultimate goal
of receiving information about (certain aspects of) a system is to satisfy certain desiderata.
However, it is conceptually possible that explanatory information provided by an explainability
approach can be both comprehensible and fidelitous, but completely irrelevant to the desiderata
of interest. For this reason, we need a criterion that restricts the set of relevant pieces of
information to those that also serve the the targeted goal: satisfying these desiderata.

10.2.2. Arguments for Our Criteria

In what follows, we will provide arguments to further corroborate our criteria. In particular,
these arguments are based on satisfying certain often cited desiderata (see [105, 292, 294]).
Each argument is supported by examples and outlines which criterion it motivates.

Our primary argument is the need for acceptance and trustworthiness. As argued in the first
part of this thesis (see Section 3.1.1 and, specifically, Motivation 1.1), it is plausible to assume
that systems that are unable to explain their decisions, predictions, or behavior will lack
acceptance in the long run. However, the deployment of some kinds of autonomous systems
promises to bring about overall positive effects. Thus, as long as people do not accept these
systems, their presumably beneficial deployment is threatened [60, 61] (see also Autonomous
Vehicle #13).

79In the original source [62], the third dimension is permissibility. We deliberately deviate here, as we are
concerned with the desirable properties of explanatory information. The original source dealt with the
properties of computational systems that are necessary to make them trustworthy. Trustworthy systems
should, indeed, not only be be able to deliver assessable information, but they should, in fact, be permissible.
That is, they should be positively assessed concerning certain desiderata (e.g., morality, fairness, safety,
reliability). However, the information must be assessable with respect to these desiderata to allow somebody
to determine whether the system is de facto permissible.
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Autonomous Vehicle #13

Typical examples that illustrate this argument are autonomous cars. A broad deployment
of autonomous cars promises to reduce the number of car accidents, but as studies
indicate (e.g., [76]), the kinds of operational autonomous cars that promise to reduce
casualties the most would not be trusted today and thus would not gain market share.

For people to accept systems, trust is an essential prerequisite [190, 399]. However, not just
any kind of trust will be beneficial in the long run. Only adequate or justified trust in a system
will bring about the best consequences concerning it; inadequate trust can lead to disastrous
consequences [264]. Consequently, adequate trust is morally desirable.

So, to significantly increase the probability that autonomous systems will be used on
a large scale, they must be justifiably trusted. Justified trust is based on trustworthiness
[250, 264] (see Motivation 1.1). Furthermore, trustworthiness depends on a stakeholder’s
justification in believing that a system works properly, and explanations are one way in giving
these justifications [264]. Thus, explanations are an important factor in calibrating trust, a
connection that is often argued for (see, for example, [70, 222, 434, 457]).

Of course, not just any kind of explanation will do. To be trustworthy, software systems
must be able to justify their actions in the right way. A well-motivated means of doing so is to
provide information that at least meets the criteria above.

First, the information must be comprehensible, because incomprehensible information is
not sufficient to provide any justification. Furthermore, the information must be fidelitous,
since a lying system, even if otherwise functioning properly, cannot count as trustworthy.
Finally, the information must support the assessability of pertinent desiderata, as this allows
people to judge whether the system is working properly.80

Our second argument is the need for responsibility and autonomy in the interaction of
artificial systems and humans. It is foreseeable that in the future, humans will increasingly
depend on decisions by machines. Currently, there is a trend to use ML-based algorithms to
make recommendations in morally critical situations (e.g., for health diagnosis).

Example #25

Here is an example for this practice. Avati et al. [45] proposed a DNN for predicting
the 3–12 month mortality of a patient based on a certain number of vital parameters
recorded over the course of a year. Based on the system’s prediction, the patient receives
a recommendation of whether or not they should start palliative care.

In such morally critical situations, it is especially desirable that someone can be held
responsible or accountable, should something go wrong. However, as we have argued in the

80For further discussion of why the quality criteria we set out are good criteria to judge the trustworthiness of
an artificial system, see the original introduction of the three dimensions of explainability, [62].
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first part of this thesis (see Section 3.1.2 and, specifically, Risk 2.2.2), attributing responsibility
is often difficult with modern systems. To still allow for the attribution of responsibility in
these situations, it is often assumed that there must be a human in the loop who makes the
final decision and is the most probable bearer of responsibility (see Section 9.3).

As became clear in Section 9.3, for that human to properly bear responsibility for a decision,
the decision must be made autonomously. The human, however, if not able to comprehend and
assess a recommendation, loses autonomy. After all, when someone is to decide competently
and autonomously, they need more than just simple recommendations from a system. A
human in the loop needs reasons for the recommendations, so as to assess their correctness
and potentially challenge them (see Section 9.3.3). Explanatory information, thus, must be at
least comprehensible and assessable to properly allow for human autonomy.

Hiring System #5

Remember Herbert (Section 9.3, e.g., Hiring System #2). He receives a recommendation
for each and every applicant, stating whether to keep him or her in the running or
not, but nothing else. How can Herbert come to the kind of decision that makes him
a bearer of responsibility? If he decides solely in line with the recommendations,
he is just a submissive executor of the decision made by an algorithm. In this case,
one could simply dismiss the human in the loop altogether. If he decides against the
recommendation, he cannot have good reasons for doing so without knowing the reasons
for the recommendation in the first place.

The last argument is the need for fairness. In many situations, human beings are immediately
affected by the decisions made or supported by artificial systems [292, 294].

To ensure that no individual’s fundamental rights are violated, a purely statistical checking
of the systems is not sufficient. Instead, one needs to be able to assess the individual decisions
of such systems. In other words, one should not only be concerned with whether a system
overall did not discriminate against certain groups of people, but rather with whether each
individual decision did not do so. The reason for this is simple: different systems can arrive at
the same result in completely dissimilar ways.

Hiring System #6

Imagine that Herbert can choose between two systems that rank job applicants. Both
systems rank April last, but for different reasons. The first system does so because
she really is the least qualified for the job (e.g., she has no prior work experience, bad
grades, etc.). The second system does so just because she is Black and a woman.

While to some this point may seem to be practically unimportant under the assumption that
a statistical bias can be reasonably excluded, it is essential to make the system trustworthy
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and to establish public acceptance. In particular, it is crucial to guarantee that the fundamental
values of liberal societies are considered sufficiently. Statistical adherence to norms and rules
is important, but it should not be the only thing to be considered. Each individual case matters.
Explanatory information, thus, must be at least assessable and fidelitous.

10.2.3. Evaluating Contemporary Approaches

Having motivated and argued for our criteria, we will now turn to their application. In
particular, we will now look at the exemplary approaches we have introduced to check
whether they produce information that meets our criteria. In this regard, it should be noted that
we are mostly raising theoretical points, since, as stated above, there is little to no agreement
on evaluation methods. Still, this should show that our criteria are worthy of attention. Overall,
applying the criteria might reveal the shortcomings of the approaches and, thereby, allow us
to create an argument for our argumentation framework, which we will evaluate later.

Comprehensibility Most of the explainability approaches examined benefit from visually
representing the explanatory information they produce. One does not have to be an expert
to recognize that the highlighted areas of an image correspond to important parts. However,
it stands to reason that people without sufficient background in ML will, in many cases, not
comprehend what the highlighting means on a deeper (e.g., technical) level [189, 294].

In particular, pixel-oriented saliency masks (produced by, for instance, vanilla backpropa-
gation and integrated gradients) suffer from this. Additionally, these techniques have further
problems. First, they generate information that is very difficult to analyze even by experts [13,
189, 294]. For instance, for people without sufficient background, vanilla backpropagation
sometimes seems to produce saliency masks with random highlighting (see Figure 10c and
Figure 17c). Moreover, as mentioned above, these techniques suffer from computational
artifacts, often producing out-of-context highlighting that hinders comprehensibility.

FV also scores rather poorly with respect to comprehensibility, but for different reasons.
In particular, neurons responding to human-comprehensible concepts are rare. Thus, the
rope-like structures of Figure 22c are the exception, and it is much more common to find
something like Figure 22a or Figure 22b. Humans can do rather little with edges as noticed
by neurons in early layers. Furthermore, neurons in later layers can respond to multiple
higher-level concepts, resulting in strange blended concepts that might be beyond human
comprehension.

LIME and TCAV perform better in terms of comprehensibility. When it comes to LIME,
its inventors have confirmed the comprehensibility of the information it generates in several
studies [393]. TCAV, in contrast, has the advantage that the users themselves can define the
concepts for which an ANN is to be tested. On the other hand, TCAV has the disadvantage
that it requires at least some background knowledge of how ANNs work, since one must
specify which layers of an ANN to test and analyze the results accordingly. For example,
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one needs to know that deeper layers of the network are more likely to respond to complex
concepts (e.g., gender) than other layers that respond to simpler concepts (e.g., color).

Let us finish this discussion with the evaluation of approaches that do not visualize their
information. CIA is understandable because it provides explanatory information that could
have come from a human. Every person can clearly think of cases wherein they thought
something like “If feature X of this situation were not the case, then I would act differently”.
Explaining a system’s decision in such a counterfactual way seems rather comprehensible.

Fidelity Currently, there is not much research that assesses the fidelity of explanatory
information produced by explainability approaches. The reason for this shortcoming is,
among others, that it is not entirely clear, formally and technically, what it means for an
explainability approach to produce fidelitous information [5, 18, 343].

Despite this difficulty, there are some authors who try to address the issue. For instance,
Adebayo et al. [5] developed a sanity check for explainability approaches producing saliency
maps. Using this test, they evaluated several well-known approaches. They found that some
approaches pass their sanity check and produce fidelitous information (e.g., vanilla backprop-
agation and Grad-CAM); others do not (e.g., guided backpropagation).

Another notable work is that of Amparore et al. [18]. They found, for instance, that many
implementations of LIME do not satisfy the theoretical properties that this approach originally
promised. For instance, these implementations produce unstable and infidelitous information.
The infidelity of LIME was to be expected, since it is a model-agnostic approach. In other
words, the internals of the model to be explained are not taken into account in the generated
information: it is based solely on an input–output analysis [447].

Continuing with the previous example, plausibly stating that one would have acted other-
wise if a certain feature was not the case, does not mean that one really acted the way one
did because that feature was the case. Perhaps the person in the example simply uses the
learning excuse as a face-saver to avoid admitting that he or she is not sufficiently intelligent
to accomplish the task. Thus, with regard to fidelity, CIA does not yield anything.

Conceivably, this lack of fidelity might be rectified by trying all feasible inputs. Here, the
hope could be that, by doing so, one could ascertain that the result in question is accurate (i.e.,
only exactly the combination of parameters in question led to the result under examination).
There are, however, at least two problems with this idea. First, it is extremely likely that
ruling out all inputs is practically impossible. Having even one input variable with an infinite
domain would cause this. Second, even if it were possible to exclude all other inputs, this is
still insufficient because it is very plausible that different information can be provided for the
same result. Thus, merely excluding other explanations does not lead to finding the correct
one.
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Example #26

An excellent example for this problem is the honest merchant as proposed by Immanuel
Kant [261]. The merchant in Kant’s example is honest because he fears losing his
reputation if he is not honest, not because of his duty to be honest. Accordingly, there
are at least two explanations for his honesty (see also Hiring System #6).

Correlation (as learned during the training of an ANN) is not necessarily causation. Conse-
quently, CIA most likely only delivers correlations without causal components of the required
kind. Causation, however, is both desired and necessary here.

Example #27

Returning to the example used to introduce CIA (Example #23, see also Example #25),
in light of the above, it is highly debatable whether there can be a fidelitous CIA-based
explanation of the decision that a patient has less than a year to live.

As for the fidelity of FV, this is difficult to assess. However, since the goal of the approach
is to completely activate certain neurons, it seems to provide accurate, and thus faithful,
information for these neurons. In addition, there are mathematical restrictions that can be
incorporated in the FV algorithm so that it displays more robust images, which increases
fidelity.

Assessability It should be noted that assessability is a difficult criterion to test because there
are so many desiderata that could, in principle, be of interest. For this reason, we will only
make some general remarks, starting with CIA and LIME.

With the help of CIA, one can test impermissible configurations of parameters. For example,
one can check whether changing the variable “gender” influences a prediction. However,
ruling out all impermissible configurations of parameters in CIA is often unfeasible.

In addition to studies on the comprehensibility of the information generated by LIME,
Ribeiro et al. have also conducted studies on what participants could do with this information
[393]. Among other research outcomes, these studies showed that LIME enables individuals
to identify incorrect classifications, and even helps them improve the classifier. This suggests
that the provided information is useful for assessing at least some desiderata (e.g., fairness).

Kim et al. compare different approaches that generate saliency maps (viz., vanilla backprop-
agation, guided backpropagation, integrated gradients, and SmoothGrad) to check whether
the information they generate enables one to evaluate whether a given classification makes
sense [272]. Their goal is to show that these approaches do not fully suffice.

To this end, they add a visible label, which varies across trials, to the lower left corner of
input images. In one trial, the label is constant across individual classes (e.g., all cab images
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receive the label “cab”). In another trial, the label sometimes deviates within a class (e.g.,
some cabs are labeled “cucumber”). In yet another trial, the label is completely random (e.g.,
each cab image receives an arbitrary label). They found that, in all trials, the image’s lower
left corner was highlighted by the approaches to a non-negligible extent.

It is important to point out that this does not preclude the approaches from being fidelitous
to the classification algorithm, since the lower left corner might actually be used by it (it
has a prominent label, after all), even if only insignificantly. However, it does mean that it is
difficult to impossible to use the generated information for meaningful assessments.

Coming to the next approaches, Rudin argues that many heatmaps (including those pro-
duced by Grad-CAM) do not really allow for good assessments of predictions [404]. The
main reason for this is that the heatmap for the most probable class (e.g., wolf) is often
hardly distinguishable from that of a less probable class (e.g., flute) [404]. Accordingly, it is
questionable whether the obtained information allows for assessing certain desiderata.

Finally, let us talk about TCAV. In our opinion, TCAV performs best when it comes to
assessability. This is because it allows for hand-crafted concepts to be reviewed. In other
words, a person using TCAV is not simply confronted with an unchanging set of information,
as with other approaches, but can inquire after the information that is of interest (e.g., whether
gender played a role in the classification, which allows for fairness testing).

Next, we take a look at FV. The scope of FV is fairly restricted, placing no importance on
the properties of the feature visualized. Therefore, it is only a coincidence if it can be used to
assess a desideratum. Usually, the visualizations reveal nothing of interest.

•

Table 4: Contemporary explainability approaches evaluated.

Approach Comprehensibility Fidelity Assessability

CIA + − +

LIME + −− +

Vanilla Backpropagation −− + −
Guided Backpropagation − − −

Integrated Gradients − ? −
SmoothGrad + ? −
Grad-CAM + + −

TCAV + + ++

FV − + −−
“+” indicates a positive evaluation of a criterion, and “−” a negative one. “?” indicates that we did not find any
data. Note that we took Grad-CAM as prototypical for CAM-based approaches, and counted robustness to CIA.
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Summarizing the above, Table 4 offers an overview of how we believe the explanatory
information generated by the discussed approaches fare in terms of our criteria. Overall, we
think that TCAV fares best, as it is comprehensible, fidelitous, and allows for a wide range of
assessments. However, as already mentioned, using TCAV is not necessarily something for
laypersons, and the challenges of interpreting its outputs emphasize that there does not seem
to be a one-size-fits-all explainability approach.

10.3. Concluding Remarks on the Approaches

As we have demonstrated, except for TCAV, each of the current approaches fails to fulfill at
least one of our criteria. We further believe that it is difficult or even impossible to eliminate
the approaches’ flaws without significantly altering them. Still, we think that they are useful
in their own right, and can provide useful insights in some situations, especially for experts.

Comparing these approaches to our framework, one might wonder where the similarities
are, and why we spend so much space discussing them. There are several reasons for this.
On the one hand, these approaches are a sweep of the field of explainability and, thus, can
serve well to give an idea of it. Further, these approaches are largely visual, which gives them
intrinsic illustrative potential. In this regard, it should also be mentioned that some of the
approaches discussed (e.g., LIME and TCAV) can be used not only visually but also in other
modalities, which makes them more versatile than our depiction might suggest.

Additionally, it should be mentioned that all approaches listed here are post-hoc approaches.
In other words, they do not intervene in the architecture of a system and change it, but
try to explain a system that has already been created. Our framework, however, starts with
the architecture of a system and tries to design it in such a way that it is as well suited as
possible to generate explanations. While in doing so we do not quite meet the requirement
of an ante-hoc explainable system, since the explanations obtained are likely to still be very
complex (we will address this in the next section), our framework does also not qualify as a
post-hoc approach.

Rather, it may be that our framework needs to be supported by post-hoc explainability
approaches. We have already learned about one possible reason for this in Section 6.3.4: if
the moral principles have been acquired through an ML process, then we need techniques
like the ones above to make them intelligible. Furthermore, if, for example, sub-modules of a
system (e.g., the image recognition of a robot) are based on AI, the above approaches can
also come into play to make the system’s decision making understandable.

•

With this background now in place, we can finally discuss and evaluate our argumentative
framework (Part II of this thesis) based on all the information we collected until now.
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Part IV.
Building Bridges
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11. Our Framework Revisited

In the last section, we motivated three criteria for evaluating explainability approaches: fidelity,
comprehensibility, and assessability, and applied them to evaluate several contemporary
approaches. Most of those failed because they do not meet at least one of our criteria (or have
other problems). The question that now arises is whether the framework we constructed in
Part II of this thesis satisfies the criteria set out.

Before we get into answering this question, we should discuss what kind of explanations
we ideally want to extract from our framework.

Medical-Care Robot #30

The medical care robot enters a room with intent to answer a request, but as soon as
the robot notices that the patient requires resuscitation, it turns around and leaves, and
returns to its recharging station. What happened? Is the robot malfunctioning?

Assuming that the robot has made its decision on the basis of our decision-making
method, we could ask an expert to extract an explanation from the logged decision
graphs. The explanation we receive could be “The robot decided to go to the recharging
station because it realized that the task behind the request it planned to answer was
a resuscitation task. It ought to try to resuscitate whenever possible, but its internal
representation of its power supply indicated, with an overwhelmingly high probability,
that it would not have been able to complete the resuscitation. However, the robot
was certain that it could return to the charging station so that it would not run out of
power, something it ought to try to avoid whenever possible. Although its duty to try
to resuscitate has priority over its duty to avoid running out of power, it came to the
overall conclusion that it ought to recharge.”

This explanation may make us question the robot’s earlier decision. For instance,
we could ask why it was going into the room in response to the request at all when its
energy level was already so low. The answer we receive could be “The robot originally
decided to answer the request because its estimates regarding the tasks behind the
request were such that the expected utility of trying to execute the request was higher
than the expected utility of going directly to the recharging station. The task most likely
associated with the request was fetching water or providing medicine, each of which
the robot would have been able to perform and still return to the recharging station
afterward. Thus, overall it decided that it ought to execute the request, which came
down to the operation of walking to the room.”

At this point, we would have sufficient reason to believe that the robot is functioning
perfectly well and does not require any repairs. We could justifiably trust it and continue
to use it in the context of medical care.
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Summarizing our theoretical discussions so far, this example is intended to illustrate that
explanations are a crucial factor in our interactions with machines. Only when we receive
explanations can we engage appropriately with machines, for example, to develop an adequate
trust in them. Explanations are, thus, an essential factor for the acceptance of machines.

Having sketched the type of explanation that we hope to obtain from our framework
(although many details must be left for future research), we now examine the three criteria
that we set out for suitable explanations. In what follows, we will argue that our approach can,
in principle, satisfy them. However, there is some ground to be covered until we can say so.

First, the decision graphs do not come in the nice textual representation we give in Medical-
Care Robot #30. While all the information used in these two explanations can be found in the
graphs associated with the decisions, only an expert might come to a similar reasoning when
looking at the argumentation graphs generated, if at all.

11.1. Comprehensible Explanations through Mapping

With this in mind, the comprehensibility of our proposal seems to be a big issue, and one might
wonder how to make the decision graphs of our framework comprehensible to laypersons.
This is the first criterion that we tackle. While some parts of the framework are accessible to
human comprehension, this does not seem to be the case for others. For these other parts, we
propose a concept that we call “mapping” to make them comprehensible.81

11.1.1. The Comprehensibility of Our Framework Examined

Let us examine the parts of our framework step by step. First, the restrictions to which
the system adheres (i.e., the principles) are comprehensible, because, as we have already
mentioned, the principles are most likely based on some laws or societal considerations.
These considerations are linked to concepts that can be made available to different audiences.
Furthermore, the reasons for introducing a certain principle and not a different one can
reasonably be assumed to be saved inside the system. Doing so would yield a function
Permψ

mot(ω,Addressee): a function that explains the principle in question accordingly for the
stated addressee. Let us explain it via an example considering the health care robot.

Medical-Care Robot #31

There are at least two kinds of possible addressees relevant to the robot: the doctor and
the patient, together with his or her relatives.

Assuming that the patient has just been resuscitated, Permψ
mot(ω,Doctor) contains

something like this: “The subject’s cardiac function was in critical status A-78ZB.
Regulation BS-Z200-9 required me to try to resuscitate him.” Only persons with specific
training such as doctors can understand such a sentence.

81Unfortunately, we will only be able to treat this concept superficially, and we conceptualize it as a matter to
be developed in future research.
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Consequently, Permψ
mot(ω,Patient) differs from the equivalent oriented towards

the doctor. Now, this function would output something like “You had a heart attack.
Consequently, I tried to resuscitate you.” Here, we have a sentence that could later be
used when the robot attempts to justify its actions.

In the explanations of Medical-Care Robot #31, the robot made no gibberish statements for
the respective addressee, nor used terms that the addressee would not know. The explanations
are comprehensible for the corresponding recipients, and they are plausibly both encoded
in the same graph. Overall, it can be assumed that rational humans would come to the same
decision as the system, given the same data and a similar reasoning approach.

This is also why we opted for an argumentative approach in our framework (see Section 6.1).
Arguments are a rational tool that humans use to come to decisions. Therefore, if a decision-
making process is based on an argumentative process (as described in Section 6.2) this process
is, in principle, suitable for being comprehensible for a human being.

For this reason, we believe that it is justified to see promising grounds for rationalizing

explanation in the argumentation graphs. Recall that our goal has been to establish a close
connection between a system’s deliberative processes and its explanations. With this approach,
we aim to live up to Davidson’s idea: by appealing to the system’s information (i.e., its
knowledge and the principles) in the explanations, its outputs and behavior can be rationalized.

However, as mentioned above, the decision graphs resulting from our framework seem to be
too complex for laypersons to understand. In particular, the means to obtain comprehensible
textual representations as in Medical-Care Robot #30 and Medical-Care Robot #31 is unclear.
To pave the way, we will examine the concept of mapping explanations in what follows.

11.1.2. Mapping Explanations

To explain what we mean by “mapping”, we have to take a step back and examine the work
of Erasmus et al. [171]. They argue that, when it comes to the three accounts of scientific
explanation that we have previously discussed (i.e., DNE, CME, NME), all medical AI
systems are explainable in a certain sense.82 Their concept of explainability, however, differs
from the one that we are using in this thesis. For them, understanding as the pragmatic success
condition for explanations is not what constitutes an explanation. They believe that a set of
statements qualifying as an explanation depends merely on its form and the relation between
the individual statements. Taking this into account, computational systems are explainable by
means of, for example, DNEs. This is the case because such systems are traditionally based
on certain regularities that can take on the role of laws in the explanation. Thus, we can form
DNEs to explain the systems. Furthermore, for other types of scientific explanation the same
also holds true, and even complex systems based on DL are explainable in this way [171].

82They also argue the same for another type of explanation, namely inductive-statistical explanations.
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Now, despite their focus on the form of explanation, Erasmus et al. also hold that the
concept of understanding is of central importance, especially in the medical domain. To
this end, they draw a distinction between explainability and interpretability. For Erasmus
et al., the process of converting or translating a possibly complex explanation into a more
comprehensible one is the interpretation (see Quote 6). Now, while the verb “to interpret” can
be used in this way, that usage deviates from the use we have outlined above. However, since
we find their idea of translating possibly incomprehensible explanations into comprehensible
ones to be helpful for our purposes, we will make use of it, but refer to it as “mapping” instead.

Old Explanans Old Explanandum

New Explanans New Explanandum

Old Process of Explanation

New Process of Explanation

Interpretandum
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Figure 23: Interpretation (i.e., mapping) according to Erasmus et al. [171].

Erasmus et al. draw several different pictures of how such a mapping may come to be. The
most general form is depicted in Figure 23. In this case, all constituents of an explanation
(i.e., explanans, explanandum, and process of explanation) are replaced by alternative ones.
The new explanation is used to interpret the old one, facilitating its understanding. This is
what we call “mapping”.

As one can imagine, mapping explanations is interesting in our case, where we want to
make the complex explanations extracted from our argumentation graph comprehensible.
However, there are some problems. First and foremost, as all constituents of the explanation
are replaced during mapping, fidelity is at risk. Here, one implicit assumption is that the
explananda bear a certain similarity, and that the new explanation is directed at the same
phenomenon. We will come back to this later (in Section 11.2).

The concept of mapping brings us back to the distinction we made between interpretability
and explainability. Although we do not adopt Erasmus et al.’s usage here, their proposal
has some interesting implications that we will explore to revisit notions of interpretability,
explainability, and mapping, in order to connect these concepts.

11.1.3. Revisiting Interpretability

In the last section, we introduced the concept of mapping as a possible way to generate com-
prehensible explanations from our argumentation graph. While we have to leave the technical
details of such a mapping to future research, we will illuminate some theoretical considera-
tions linked to it in this section. In particular, we will outline how the concept of mapping is
linked to how we envision the distinction between explainability and interpretability.
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Let us first recap the distinction. For us, interpretability is concerned with associating
human-comprehensible concepts to the processes occurring in artificial systems. Explainabil-
ity, on the other hand, is concerned with communicating these concepts to different kinds of
human recipients, so as to evoke their understanding of the original processes.

But how exactly are interpretability, mapping, and explainability related, then? Basically,
our idea is that the internal workings of a system can naturally be described by scientific
explanations (e.g., DNEs). Such explanations would be consistent with Dennett’s physical
stance. Through an initial mapping to the same or a different kind of scientific explanation,
the inner workings are associated with concepts that are comprehensible for humans. This
would be “interpretability”. Afterwards, explainability comes into play via another mapping
process. The potentially still-complex scientific explanations are translated into another form
of explanation (e.g., reason explanations) that is more comprehensible to laypersons.

In terms of our framework, interpretability is trivial because the principles that underlie the
reasoning process are human-comprehensible (as described above). Moreover, the algorithm
by which the system arrives at its decision is deterministic, such that it has clearly defined
rules that can be used to form DNEs. What is left is the translation to a reason explanation.
Here, the Permψ

mot(ω,Addressee) function is a first step. However, there is the additional
need for efficient heuristics that help to tone down the argumentation graph’s complexity,
such that it does not overwhelm most addressees anymore. We leave such heuristics to future
research.

At this point, we would like to briefly anticipate the discussion on assessability. Conceiving
interpretability, mapping, and explainability in the way just described, we can make a perfect
connection to the satisfaction of desiderata. To this end, let us take trustworthiness as an
example. Kästner et al. [264] suggested trustworthiness to have two conditions: the system
has to be competent, and an addressee has to justifiedly believe that it is so.

Interpretability
Approaches

Scientific
Explanations

System’s
Competence

Explainability
Approaches

Reason
Explanations

Target Audience

provide
information

mapping

justified in
believing in

generate

lay open

generate

tailored for

Interpretability Explainability

Figure 24: The relationship between interpretability and explainability.
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Now, the DNEs that our framework generates are a perfect way to lay open a system’s
competence. In principle, they describe the system’s behavior with complete fidelity, neither
missing nor withholding anything. Furthermore, the mapped reason explanations are human-
comprehensible, providing an addressee with the perfect justification for believing in the
system’s competence, should it indeed be competent. With this, our approach (supported by
an adequate mapping mechanism) is a fitting way not only to assess, but even to facilitate, the
system’s trustworthiness. The whole process above is visualized in Figure 24.

11.2. The Other Criteria Examined

After tackling comprehensibility, we will now come to fidelity and assessability. Since these
two are interlinked, we will deal with them in the same section. First, our demand for fidelity
is, in principle, satisfied by the decision-making process of our framework, since the decisions
are truly based on the argumentative process. In other words, there are no unknown, black-box
components in the evaluative algorithm of our approach.

Medical-Care Robot #32

By assumption, the robot’s explanations were generated and extracted from the graphs
in the robot’s logs. Furthermore, by assumption, these graphs are the graphs that led to
the robot’s decisions (rather than being constructed afterwards). Thus, they are based
on the true deliberations of the robot and, consequently, are fidelitous.

However, fidelity suffers from the mapping process. As described above, it is likely that
we will need to map explanations to ensure comprehensibility, sacrificing some fidelity in
the process: the mapped explanations will inevitably omit some details or simplify facts in
order to be comprehensible. Still, we will argue that this is not a problem, at least from a
pragmatic point of view. To this end, we will take a look at another form of mapping proposed
by Erasmus et al. and its relation to limiting-case relationships in the philosophy of science.

11.2.1. Fidelity and Limiting-Case Relationships

Thinking back to the most general form of mapping (see Figure 23), all constituents of an
explanation (i.e., explanans, explanandum, and process of explanation) are replaced. This
obviously causes fidelity issues, as not even the explanandum is the same.

However, it is often not required to do such a radical form of mapping. In particular, to
ensure a minimal degree of fidelity, the explanandum should remain fixed (see Figure 25). As
we will outline, this mapping process is similar to limiting-case relationships in science.

A limiting case occurs when the predictions of a scientific theory can, under certain limiting
or boundary conditions, be estimated by using a less complex theory. The Newtonian laws of
motion, for instance, are approximately true in cases where we are not dealing with velocity
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Figure 25: A more specific form of interpretation (i.e., mapping) [171].

near the speed of light. For this reason, the Newtonian laws are a limiting case of the relativity
theory. Even simpler, Galilei’s law of falling body is a limiting case of the Newtonian laws
when it comes to falling processes near the earth’s surface (see Digression #7).

Digression #7

In order to infer Galilei’s law of falling bodies from the Newtonian laws, we need
Newton’s gravitational law and his so-called “second law of motion”.

Gravitational law Between any two (ideally) spherical bodies of masses m1 and m2

there is a mutual gravitational force, whose magnitude F is given by the equation

F = γ
m1 ·m2

dist(m1,m2)2
(2)

Here dist(m1,m2) is the distance between the centers of the bodies with the masses
m1 andm2, and γ is a constant of nature, the gravitational constant, with the approximate
value of 6.67 · 10−11 m3kg−1s−2.

Newton’s second law of motion If a force of magnitude F acts on a body of mass
m, and thereby causes an acceleration of magnitude a in this body in the direction of
the acting force, then the relation between force, mass, and acceleration is given by the
equation F = m · a.

•

The boundary case holds when we look at falling processes near the earth’s surface. We
want to calculate how much the earth’s gravitational force accelerates a falling object.
In order to do so, we equate the force described by Newton’s gravitational law with the
force in Newton’s second law in of motion order to calculate the acceleration a. We
write mobject for the falling object’s mass, and mearth for the earth’s mass.
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mobject · aobject = γ
mobject ·mearth

dist(mobject,mearth)2
(3)

Now we can cancel mobject from the left and from the fraction.

aobject = γ
mearth

dist(mobject,mearth)2
(4)

Finally, we insert the 5.9722 · 1024 kg for the earth’s mass and 6, 371, 000 m (the
earth’s radius) for the distance between the two objects. Here we make, taken strictly,
the mistakes: we do not factor in the falling object’s changing distance from the earth’s
surface. However, as we are concerned with falling processes near the earth’s surface,
this mistake is negligible.

a =
6.67 m3

1011 kg s2
· 5.97221024 kg
(6, 371, 000 m)2

≈ 9.814
m
s2

(5)

Overall, we arrive at an acceleration of roughly 9.814 ms2, which is the constant g in
Galilei’s law of falling bodies: d(t) = 1

2
· g · t2

Why does a limiting case qualify as a mapping process? Let us illustrate the similarities by
means of an example. Using a DNE, we can explain the same phenomenon (e.g., the falling
of a ball) by reference to at least three different scientific theories and their respective laws:
by reference to Galilei’s law of falling bodies, by reference to Newtonian mechanics, and by
reference to general relativity. Although Galilei’s law of falling bodies is, strictly speaking,
false,83 it is more comprehensible for laypeople than the other theories.

Through this digression on boundary case relations, we can illustrate why mapping has
pragmatic advantages that make up for the decreased fidelity. First, Galilei’s law of falling
bodies is indubitably useful for making reliable predictions in many everyday situations.
Furthermore, it is still taught in schools today, even though there are theories that are far
superior. This goes so far that the intricacies of general relativity are taught, if at all, only in
high school classes or advanced courses. Hence, Galilei’s theory suffices for most everyday
situations and makes vital parts of the falling process comprehensible for different recipients.

Likewise, one could argue that the infidelity we accept in return for a more comprehensible
argumentative process is justifiable, given the pragmatic benefits involved. As we have argued,
satisfying desiderata is the overarching goal of most explainability endeavors, and under-
standing the system is a necessary condition for doing so. Accordingly, only if the “thought
process” of a system can be made comprehensible for all participants, can explanations fulfill
their desiderata. This being said, we will briefly discuss a way to make the results more
comprehensible, while retaining fidelity, before coming to assessability.

83Most likely, all three of these theories are, strictly speaking, false, but this is outside of the scope of this thesis.
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11.2.2. Fidelity and Different Output Formats

While the mapping just discussed requires some arguments to still be considered fidelitous,
there is another type of mapping proposed by Erasmus et al. that does not require such
arguments. This last type of mapping solely changes the process of explanation; the explanans
and explanandum remain the same (see Figure 26). Against this background, questions now
arise as to what this might look like in terms of the explanations produced by explainability
approaches and, further, why the mapping can still be considered fidelitous.

Explanans Explanandum

New Process
of Explanation

Old Process
of Explanation

Process of
Interpretation

Figure 26: The final type of interpretation (i.e., mapping) [171].

Concerning the former question, one possibility for such a mapping could be the use of
different output formats. It is easy to see that presenting the same explanandum in different
ways can facilitate or impede understanding, depending on the situation and the recipient.
In situations that require quick decisions, an overly complex representation (e.g., a long
text with many instructions) could overwhelm a person and, thus, hinder comprehension,
whereas simple visual representations could have the opposite effect. Given recipients with
a lot of time on their hands, however, textual representations might be better at facilitating
understanding of more complex issues.

This type of mapping is interesting because it is frequently found in the explainability debate.
In particular, many explainability approaches allow for different forms of representation. Often
these are gradient-based, which usually have a numerical output. These numerical values are
then used to create heat maps for visualization (see Section 10.1.3).

As for the latter question, we believe that the form of representation does not change the
represented information as such. One can represent one and the same proposition in both
numerical and visual form without (significantly) changing its content. For this reason, this
form of representation does not affect the explanation’s fidelity.

11.2.3. Assessability

The final criterion is assessability. In our framework, the explanations we obtain are, in
principle, assessable for many desiderata. Since a representation of the world is embedded in
our framework, we can simulate new restrictions or circumstances before they are tested in
real situations. Therefore, we can assess whether the system behaves properly, given specific
restrictions or specific circumstances even before deployment.
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Medical-Care Robot #33

By assumption, the explanations delivered by the robot are based on the principles built
into the robot. The robot explicitly invokes them to justify its actions, which is one
of the crucial aspects of assessability. Another aspect is that the robot makes explicit
where instrumental reasoning was involved (i.e., in the expected utility statements).

Finally, we could, in principle, change the knowledge of the system—either directly
or by simulation—and compute the resulting graph offline in order to determine what the
robot would have decided, and for what reasons, in these alternate situations. Having the
ability to change the robot’s knowledge enables counterfactual checking, and is much
more than can ever be hoped for in assessing human beings—about whose behavior
only rough estimates can be made.

Let us come back to the link between fidelity and assessability. One motivation for fidelity as
a quality criterion for explanations is that the assessment we make, based on those explanations,
is correct. While we could mislead people by telling them how smoothly the system works,
this claim would be a blatant lie, were the system flawed. Accordingly, it would undermine
trustworthiness and acceptance, as stated above (see Section 10.2.2).

Now, as long as fidelity is ensured with respect to the desideratum one wants to assess,
fidelity with respect to other aspects is no longer that paramount. For this reason, slightly
infidelitous explanations, such as are likely to result from the mapping process, are unprob-
lematic in certain cases. Such explanations can still contribute to the goal of explainability,
and thus help with understanding the system to satisfy desiderata.

•

Our approach has been shown able to satisfy all three criteria, although we will have to leave
some details to future research (e.g., how exactly the mapping should be done). Thus, our
approach seems tailor-made to provide machine explanations. However, how well it performs
in real implementations needs to be evaluated in future research, too.

Unfortunately, the chances that our approach will find wide range application in the near
future seem slim. There is an increasing use of ML when it comes to the (moral) decision
making of artificial systems. It is easy to create systems in this way, and unfortunately,
economic considerations for development of systems are often the major driving force for the
development rather than any ethical considerations. Thus, from an economic point of view,
our approach would have to be much more advanced to have a real competitive advantage.
However, as scientists, we will always strive for an ideal solution which is socially and
ethically sound, and will promote that and improve it until it comes to be in use.
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12. Conclusion

In this thesis, we argued that machine ethics and machine explainability are necessary to
augment each other. The view that they are mutually reinforcing is not as widespread as we
feel it should be. Only in symbiosis can machine ethics and explainability achieve their full
potential.

12.1. Summary

Regarding machine ethics, we have argued that to align machines morally is currently more
pressing than to enable complete moral behavior. With respect to machine explainability, we
have outlined the field by differentiating some terms and presenting a model. In this regard,
we have also ordered the field per se, identifying that understanding is required to satisfy
desiderata. These desiderata, in turn, trace back to machine ethics.

As a practical connection point, we introduced a formal and general framework combining
machine ethics and machine explainability. The motivation of the framework was to provide a
method of morally constrained decision making that, at the same time, enables explanation.
To this end, we proposed an approach to decision making that is based on arguments. By
applying three criteria—comprehensibility, fidelity, and assessibility—we argued that our
approach is promising. As we have identified this approach as promising, we can envisage
many more aspects that should be subjects of future research.

12.2. Future Research

In our discussions, several details were deferred for future work. Regarding machine ethics, a
more thorough discussion of its advantages and potential disadvantages in light of the concept
of moral alignment seems a worthwhile idea.

For our framework, numerous questions remained unanswered. We did not address several
optimization issues. For example, there could be significantly fewer world states to consider
if some variables that make up ω are dependent. Also, we have ignored the fact that some
variables may have very large, continuous, or even infinite ranges, so considering all possible
cases could be practically infeasible or even impossible. Efficient heuristics are needed here
to limit the number of options to the most likely or important ones.

Additionally, there are at least five interesting and pressing interdisciplinary research
questions that remain open:

• There is the question of how to model the content and ordering of principles in a more
sophisticated manner, as well as how to quantify these orderings—and whether this is
even necessary. After all, in light of our results (especially those found in Section 7.1),
one could be inclined to switch to a framework that relies on something other than
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principles. Exploring the ideas of Dietrich [148], who bases decision making on reason,
could be an interesting avenue of further research in this case.

• The principle order might be context-dependent. This would essentially necessitate
particularism rather than generalism, particularism being the belief that there are no

general principles governing what ought to be done and that, instead, normative reasons
vary from context to context in an unsystematic manner [134, 135].

• Decisions must be made regarding the question of how to aggregate and weigh reasons
wherein the answer might well depend on the context of the application.

• We have also postponed the question of how to handle cases involving epistemic

uncertainty (i.e., pure non-determinism) to future research as well.

• Finally, we have left open exactly how the mapping of explanations should be done. To
find an answer to this question, researchers from computer science, philosophy, and
psychology should come together.

Coming to machine explainability, the most interesting tasks are further analysis and
ordering of the field. In this work we have taken first steps in this direction, but there is much
more to do because the current research landscape is so jumbled. In addition, it is imperative
to get a better understanding of the desiderata and, in particular, how machine explainability is
supposed to satisfy them. Machine explainability has, as we have shown, enormous untapped
potential to positively contribute to society—a little more research can make a huge difference
here.

ML is becoming increasingly important for the implementation of artificial systems. In
order to avoid dystopian situations where we no longer understand the actions of the machines
that surround us, we need to be able to explain artificial systems and even black-box systems.
This will be a difficult, but, in our opinion, not impossible, undertaking. Consequently, there
is certainly more than enough work to be done in terms of machine ethics and the machine
explainability.
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A. Code Listings

LIME

1 # Fix threading problems on macOS

2 import os

3 os.environ[’KMP_DUPLICATE_LIB_OK’]=’True’

4

5 # Read image

6 from skimage import io

7 from skimage import transform

8 Xi = io.imread("dome.jpg")

9 Xi = transform.resize(Xi, (299,299))

10 Xi = (Xi - 0.5)*2 # Pre-processing for InceptionV3

11 io.imshow(Xi/2+0.5) # Show image before pre-processing

12 io.show()

13

14 # Predict class for image using InceptionV3

15 import numpy as np

16 import keras

17 from keras.applications.imagenet_utils import decode_predictions

18 np.random.seed(222)

19 inceptionV3_model = keras.applications.inception_v3.InceptionV3()

20 preds = inceptionV3_model.predict(Xi[np.newaxis,:,:,:])

21 top_pred_classes = preds[0].argsort()[-5:][::-1]

22 print(decode_predictions(preds)[0]) # Print top 5 classes

23

24 # Generate segmentation for image

25 from skimage import segmentation

26 superpixels = segmentation.quickshift(Xi, kernel_size=4,max_dist=200,

ratio=0.2)

27 num_superpixels = np.unique(superpixels).shape[0]

28 io.imshow(segmentation.mark_boundaries(Xi/2+0.5, superpixels))

29 io.show()

30

31 # Generate perturbations

32 num_perturb = 150

33 perturbations = np.random.binomial(1, 0.5, size=(num_perturb,

num_superpixels))

34

35 # Create function to apply perturbations to images

36 import copy

37 def perturb_image(img,perturbation,segments):

38 active_pixels = np.where(perturbation == 1)[0]

39 mask = np.zeros(segments.shape)

40 for active in active_pixels:

41 mask[segments == active] = 1
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42 perturbed_image = copy.deepcopy(img)

43 perturbed_image = perturbed_image*mask[:,:,np.newaxis]

44 return perturbed_image

45

46 # Show examples of perturbations

47 io.imshow(perturb_image(Xi/2+0.5,perturbations[0],superpixels))

48 io.show()

49 io.imshow(perturb_image(Xi/2+0.5,perturbations[1],superpixels))

50 io.show()

51 io.imshow(perturb_image(Xi/2+0.5,perturbations[2],superpixels))

52 io.show()

53

54 predictions = []

55 for pert in perturbations:

56 perturbed_img = perturb_image(Xi,pert,superpixels)

57 pred = inceptionV3_model.predict(perturbed_img[np.newaxis,:,:,:])

58 predictions.append(pred)

59

60 predictions = np.array(predictions)

61

62 # Compute distances to original image

63 from sklearn import metrics

64 original_image = np.ones(num_superpixels)[np.newaxis,:]

65 distances = metrics.pairwise_distances(perturbations,original_image,

metric=’cosine’).ravel()

66

67 # Transform distances to a value between 0 an 1 using a kernel function

68 kernel_width = 0.25

69 weights = np.sqrt(np.exp(-(distances**2)/kernel_width**2))

70 print(weights.shape)

71

72 # Estimate linear model

73 from sklearn.linear_model import LinearRegression

74 class_to_explain = top_pred_classes[0]

75 simpler_model = LinearRegression()

76 simpler_model.fit(X=perturbations, y=predictions[:,:,class_to_explain],

sample_weight=weights)

77 coeff = simpler_model.coef_[0]

78

79 # Use coefficients from linear model to extract top features

80 num_top_features = 3

81 top_features = np.argsort(coeff)[-num_top_features:]

82

83 # Show only the superpixels corresponding to the top features

84 mask = np.zeros(num_superpixels)

85 mask[top_features]= True # Activate top superpixels

86 io.imshow(perturb_image(Xi/2+0.5,mask,superpixels))
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87 io.show()

Listing 1: LIME implemented in Python.

Saliency Maps

1 import tensorflow as tf

2 import numpy as np

3

4 from matplotlib import pylab as plt

5 from matplotlib.transforms import Bbox

6

7 import PIL.Image

8

9 import saliency.core as saliency

10

11

12 extent = 0, 300, 0, 300

13 bbox_inches = Bbox([[1.02, 0.26], [5.56, 4.48]])

14

15

16 def showImage(img, name=’image’):

17 plt.imshow(img, extent=extent)

18 plt.savefig(’results/’ + name + ’.png’, bbox_inches=bbox_inches)

19 plt.show()

20

21

22 def showAttributionImage(img, name=’attribution’):

23 plt.imshow(img, cmap=’inferno’, vmin=0, vmax=1, extent=extent)

24 plt.savefig(’results/’ + name + ’.png’, bbox_inches=bbox_inches)

25 plt.show()

26

27

28 def showSuperimposedImage(img1, img2, name=’superimposed’):

29 plt.imshow(img1, extent=extent)

30 plt.imshow(img2, cmap=’inferno’, alpha=0.5, extent=extent)

31 plt.savefig(’results/’ + name + ’.png’, bbox_inches=bbox_inches)

32 plt.show()

33

34

35 def showHeatMap(img, name=’heatmap’):

36 plt.imshow(img, cmap=’inferno’, extent=extent)

37 plt.savefig(’results/’ + name + ’.png’, bbox_inches=bbox_inches)

38 plt.show()

39

40

41 def loadImage(file_path):
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42 img = PIL.Image.open(file_path)

43 img = img.resize((299, 299))

44 img = np.asarray(img)

45 return img

46

47

48 def preprocessImage(img):

49 img = tf.keras.applications.inception_v3.preprocess_input(img)

50 return img

51

52

53 def loadModel():

54 return tf.keras.applications.inception_v3.InceptionV3()

55

56

57 m = loadModel()

58 conv_layer = m.get_layer(’mixed10’)

59 model = tf.keras.models.Model([m.inputs], [conv_layer.output, m.output])

60

61 class_idx_str = ’class_idx_str’

62

63

64 def call_model_function(images, call_model_args=None, expected_keys=None)

:

65 target_class_idx = call_model_args[class_idx_str]

66 images = tf.convert_to_tensor(images)

67 with tf.GradientTape() as tape:

68 if expected_keys == [saliency.base.INPUT_OUTPUT_GRADIENTS]:

69 tape.watch(images)

70 _, output_layer = model(images)

71 output_layer = output_layer[:, target_class_idx]

72 gradients = np.array(tape.gradient(output_layer, images))

73 return {saliency.base.INPUT_OUTPUT_GRADIENTS: gradients}

74 else:

75 conv_layer, output_layer = model(images)

76 gradients = np.array(tape.gradient(output_layer, conv_layer))

77 return {saliency.base.CONVOLUTION_LAYER_VALUES: conv_layer,

78 saliency.base.CONVOLUTION_OUTPUT_GRADIENTS: gradients

}

79

80

81 # Load the image

82 im_orig = loadImage(’./dome.jpg’)

83 im = preprocessImage(im_orig)

84

85 # Show the image

86 showImage(im_orig, name=’original’)
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87

88 _, predictions = model(np.array([im]))

89 prediction_class = np.argmax(predictions[0])

90 call_model_args = {class_idx_str: prediction_class}

91

92 print("Prediction class: " + str(prediction_class))

93

94 def vanillaGradients():

95 # Construct the saliency object. This alone doesn’t do anthing.

96 gradient_saliency = saliency.GradientSaliency()

97

98 # Compute the vanilla mask and the smoothed mask.

99 vanilla_mask_3d = gradient_saliency.GetMask(im, call_model_function,

call_model_args)

100 smoothgrad_mask_3d = gradient_saliency.GetSmoothedMask(im,

call_model_function, call_model_args)

101

102 # Call the visualization methods to convert the 3D tensors to 2D

grayscale.

103 vanilla_mask_grayscale = saliency.VisualizeImageGrayscale(

vanilla_mask_3d)

104 smoothgrad_mask_grayscale = saliency.VisualizeImageGrayscale(

smoothgrad_mask_3d)

105

106 # Render the saliency masks.

107 showAttributionImage(vanilla_mask_grayscale, name=’

vanillaGradientsMask’)

108 showAttributionImage(smoothgrad_mask_grayscale, name=’

smoothGradVanillaMask’)

109 showSuperimposedImage(im_orig, vanilla_mask_grayscale, name=’

vanillaGradients’)

110 showSuperimposedImage(im_orig, smoothgrad_mask_grayscale, name=’

smoothGradVanilla’)

111

112

113 def integratedGradients():

114 # Construct the saliency object. This alone doesn’t do anthing.

115 integrated_gradients = saliency.IntegratedGradients()

116

117 # Baseline is a black image.

118 baseline = np.zeros(im.shape)

119

120 # Compute the vanilla mask and the smoothed mask.

121 vanilla_integrated_gradients_mask_3d = integrated_gradients.GetMask(

122 im, call_model_function, call_model_args, x_steps=25, x_baseline=

baseline, batch_size=20)
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123 # Smoothed mask for integrated gradients will take a while since we

are doing nsamples * nsamples computations.

124 smoothgrad_integrated_gradients_mask_3d = integrated_gradients.

GetSmoothedMask(

125 im, call_model_function, call_model_args, x_steps=25, x_baseline=

baseline, batch_size=20)

126

127 # Call the visualization methods to convert the 3D tensors to 2D

grayscale.

128 vanilla_mask_grayscale = saliency.VisualizeImageGrayscale(

vanilla_integrated_gradients_mask_3d)

129 smoothgrad_mask_grayscale = saliency.VisualizeImageGrayscale(

smoothgrad_integrated_gradients_mask_3d)

130

131 # Render the saliency masks.

132 showAttributionImage(vanilla_mask_grayscale, name=’

integratedGradientsMask’)

133 showAttributionImage(smoothgrad_mask_grayscale, name=’

smoothGradIntegratedMask’)

134 showSuperimposedImage(im_orig, vanilla_mask_grayscale, name=’

integratedGradients’)

135 showSuperimposedImage(im_orig, smoothgrad_mask_grayscale, name=’

smoothGradIntegrated’)

136

137

138 vanillaGradients()

139 integratedGradients()

Listing 2: Different saliency methods implemented in Python.

Guided Backpropagation

1 import os

2

3 import tensorflow as tf

4 from matplotlib.transforms import Bbox

5 from tensorflow.keras.applications.inception_v3 import InceptionV3,

preprocess_input

6 import tensorflow.keras.backend as kb

7 from tensorflow.keras.models import Model

8 from tensorflow.keras.preprocessing import image

9 import numpy as np

10 import matplotlib.pyplot as plt

11

12 # Fix threading problems on macOS

13 os.environ[’KMP_DUPLICATE_LIB_OK’] = ’True’

14
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15

16 def build_model():

17 return InceptionV3()

18

19

20 # Load and preprocess image

21 def load_image(path):

22 x = image.load_img(path, target_size=(299, 299))

23 x = image.img_to_array(x)

24 x = np.expand_dims(x, axis=0)

25 x = preprocess_input(x)

26 return x

27

28

29 def deprocess_image(x):

30 # normalize tensor: center on 0., ensure std is 0.25

31 x = x.copy()

32 x -= x.mean()

33 x /= (x.std() + kb.epsilon())

34 x *= 0.25

35

36 # clip to [0, 1]

37 x += 0.5

38 x = np.clip(x, 0, 1)

39

40 # convert to RGB array

41 x *= 255

42 if kb.image_data_format() == ’channels_first’:

43 x = x.transpose((1, 2, 0))

44 x = np.clip(x, 0, 255).astype(’uint8’)

45 return x

46

47

48 @tf.RegisterGradient("GuidedRelu")

49 def _GuidedReluGrad(op, grad):

50 gate_f = tf.cast(op.outputs[0] > 0, "float32") # for f^l > 0

51 gate_R = tf.cast(grad > 0, "float32") # for R^l+1 > 0

52 return gate_f * gate_R * grad

53

54

55 @tf.custom_gradient

56 def guidedRelu(x):

57 def grad(dy):

58 return tf.cast(dy > 0, "float32") * tf.cast(x > 0, "float32") *

dy

59

60 return tf.nn.relu(x), grad
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61

62

63 # process example input

64 preprocessed_input = load_image("dome.jpg")

65

66 model = build_model()

67 gb_model = Model(inputs=[model.inputs], outputs=[model.get_layer(’mixed10

’).output])

68 layer_dict = [layer for layer in gb_model.layers[1:] if hasattr(layer, ’

activation’)]

69 for layer in layer_dict:

70 if layer.activation == tf.keras.activations.relu:

71 layer.activation = guidedRelu

72

73 with tf.GradientTape() as tape:

74 inputs = tf.cast(preprocessed_input, tf.float32)

75 tape.watch(inputs)

76 outputs = gb_model(inputs)

77

78 extent = 0, 300, 0, 300

79 bbox_inches = Bbox([[1.02, 0.26], [5.56, 4.48]])

80

81 grads = tape.gradient(outputs, inputs)[0]

82

83 plt.imshow(np.flip(deprocess_image(np.array(grads)), -1), extent=extent)

84 plt.savefig("results/guidedBackPropagationMask.png", bbox_inches=

bbox_inches)

85 plt.show()

86

87 plt.imshow(preprocessed_input[0], extent=extent)

88 plt.imshow(np.flip(deprocess_image(np.array(grads)), -1), alpha=0.75,

extent=extent)

89 plt.savefig("results/guidedBackPropagation.png", bbox_inches=bbox_inches)

90 plt.show()

91

92 img = preprocessed_input[0]

93

94 stdev = 0.15 * (np.max(img) - np.min(img))

95 h, w = 299, 299

96 arr = np.zeros((h, w, 3), np.float)

97 N = 25

98

99 for x in range(N):

100 noise = np.random.normal(0, stdev, img.shape).astype(np.float32)

101 img_plus_noise = img + noise

102 with tf.GradientTape() as tape:

103 tmp_inputs = tf.cast([img_plus_noise], tf.float32)
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104 tape.watch(tmp_inputs)

105 tmp_outputs = gb_model(tmp_inputs)

106 tmp_grads = tape.gradient(tmp_outputs, tmp_inputs)[0]

107 tmp_img = np.flip(deprocess_image(np.array(tmp_grads)), -1)

108 img_arr = np.array(tmp_img, dtype=np.float)

109 arr = arr + img_arr / N

110

111 arr = np.array(np.round(arr), dtype=np.uint8)

112 plt.imshow(arr, extent=extent)

113 plt.savefig("results/smoothGuidedBackPropagationMask.png", bbox_inches=

bbox_inches)

114 plt.show()

115

116 plt.imshow(img, extent=extent)

117 plt.imshow(arr, alpha=0.75, extent=extent)

118 plt.savefig("results/smoothGuidedBackPropagation.png", bbox_inches=

bbox_inches)

119 plt.show()

Listing 3: Guided backpropagation implemented in Python.

CAM

1 from tensorflow.keras.preprocessing.image import load_img

2 from tensorflow.keras.applications.inception_v3 import InceptionV3,

preprocess_input, decode_predictions

3 import matplotlib.pyplot as plt

4 import cv2

5 import numpy as np

6 from matplotlib.transforms import Bbox

7 from gradcamutils import GradCam, GradCamPlusPlus, ScoreCam,

build_guided_model, GuidedBackPropagation, superimpose, \

8 read_and_preprocess_img

9

10

11 def build_model():

12 return InceptionV3(include_top=True, weights=’imagenet’)

13

14

15 model = build_model()

16 layer_name = ’mixed10’

17

18 img_path = ’dome.jpg’

19 orig_img = np.array(load_img(img_path), dtype=np.uint8)

20 img_array = read_and_preprocess_img(img_path, size=(299, 299))

21

22 predictions = model.predict(img_array)
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23 top = decode_predictions(predictions, top=5)[0]

24 print(img_path)

25 print("class activation map for:", top[0])

26

27 grad_cam = GradCam(model, img_array, layer_name)

28 grad_cam_superimposed = superimpose(img_path, grad_cam)

29 grad_cam_emphasized = superimpose(img_path, grad_cam, emphasize=True)

30

31 grad_cam_plus_plus = GradCamPlusPlus(model, img_array, layer_name)

32 grad_cam_plus_plus_superimposed = superimpose(img_path,

grad_cam_plus_plus)

33 grad_cam_plus_plus_emphasized = superimpose(img_path, grad_cam_plus_plus,

emphasize=True)

34

35 score_cam = ScoreCam(model, img_array, layer_name)

36 score_cam_superimposed = superimpose(img_path, score_cam)

37 score_cam_emphasized = superimpose(img_path, score_cam, emphasize=True)

38

39 faster_score_cam = ScoreCam(model, img_array, layer_name, max_N=10)

40 faster_score_cam_superimposed = superimpose(img_path, faster_score_cam)

41 faster_score_cam_emphasized = superimpose(img_path, faster_score_cam,

emphasize=True)

42

43 guided_model = build_guided_model(build_model)

44 saliency = GuidedBackPropagation(guided_model, img_array, layer_name)

45 saliency_resized = cv2.resize(saliency, (orig_img.shape[1], orig_img.

shape[0]))

46

47 grad_cam_resized = cv2.resize(grad_cam, (orig_img.shape[1], orig_img.

shape[0]))

48 guided_grad_cam = saliency_resized * grad_cam_resized[..., np.newaxis]

49

50 grad_cam_plus_plus_resized = cv2.resize(grad_cam_plus_plus, (orig_img.

shape[1], orig_img.shape[0]))

51 guided_grad_cam_plus_plus = saliency_resized * grad_cam_plus_plus_resized

[..., np.newaxis]

52

53 score_cam_resized = cv2.resize(score_cam, (orig_img.shape[1], orig_img.

shape[0]))

54 guided_score_cam = saliency_resized * score_cam_resized[..., np.newaxis]

55

56 faster_score_cam_resized = cv2.resize(score_cam, (orig_img.shape[1],

orig_img.shape[0]))

57 guided_faster_score_cam = saliency_resized * faster_score_cam_resized

[..., np.newaxis]

58

59 img_gray = cv2.imread(img_path, 0)
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60 dx = cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3)

61 dy = cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)

62 grad = np.sqrt(dx ** 2 + dy ** 2)

63 grad = cv2.dilate(grad, kernel=np.ones((5, 5)), iterations=1)

64 grad -= np.min(grad)

65 grad /= np.max(grad) # scale 0. to 1.

66

67 grad_times_grad_cam = grad * grad_cam_resized

68 grad_times_grad_cam_plus_plus = grad * grad_cam_plus_plus_resized

69 grad_times_score_cam = grad * score_cam_resized

70 grad_times_faster_score_cam = grad * faster_score_cam_resized

71

72 extent = 0, 300, 0, 300

73 bbox_inches = Bbox([[1.02, 0.26], [5.56, 4.48]])

74

75

76 def showImage(img, name=’image’):

77 plt.imshow(img, extent=extent)

78 plt.savefig(’results/’ + name + ’.png’, bbox_inches=bbox_inches)

79 plt.show()

80

81

82 showImage(orig_img, name="original")

83

84 showImage(grad_cam, name="gradCamMask")

85 showImage(grad_cam_plus_plus, name="gradCamPlusPlusMask")

86 showImage(score_cam, name="scoreCamMask")

87 showImage(faster_score_cam, name="fasterScoreCamMask")

88

89 showImage(grad_cam_superimposed, name="gradCam")

90 showImage(grad_cam_plus_plus_superimposed, name="gradCamPlusPlus")

91 showImage(score_cam_superimposed, name="scoreCam")

92 showImage(faster_score_cam_superimposed, name="fasterScoreCam")

93

94 showImage(grad_cam_emphasized, name="gradCamEmphasized")

95 showImage(grad_cam_plus_plus_emphasized, name="gradCamPlusPlusEmphasized"

)

96 showImage(score_cam_emphasized, name="scoreCamEmphasized")

97 showImage(faster_score_cam_emphasized, name="fasterScoreCamEmphasized")

Listing 4: Different CAM methods implemented in Python

TCAV

1 import numpy as np

2 import keras

3 from keras.models import load_model
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4 from keras.models import model_from_json

5 import tcav.activation_generator as act_gen

6 import tcav.cav as cav

7 import tcav.model as tcav_model

8 import tcav.tcav as tcav

9 import tcav.utils as utils

10 import tcav.utils_plot as utils_plot # utils_plot requires matplotlib

11 import os

12 import tensorflow as tf

13 from skimage import io

14 from skimage import transform

15 from keras.applications.imagenet_utils import decode_predictions

16

17 # Fix threading problems on macOS

18 os.environ[’KMP_DUPLICATE_LIB_OK’] = ’True’

19

20 # The directories

21 working_dir = ’./tcav_class_test/’

22 activation_dir = working_dir + ’/activations/’

23 cav_dir = working_dir + ’/cavs/’

24 source_dir = "./image_net_subsets/"

25

26 bottlenecks = [’mixed8’, ’mixed9’, ’mixed10’]

27

28 utils.make_dir_if_not_exists(activation_dir)

29 utils.make_dir_if_not_exists(working_dir)

30 utils.make_dir_if_not_exists(cav_dir)

31

32 # this is a regularizer penalty parameter for linear classifier to get

CAVs.

33 alphas = [0.1]

34

35 target = ’dome’

36 concepts = [’female’, ’sky’, ’round’]

37

38 sess = utils.create_session()

39 model = keras.applications.inception_v3.InceptionV3()

40 model.summary()

41

42

43 def read_image(file_name):

44 img = io.imread(file_name)

45 img = transform.resize(img, (299, 299))

46 img = (img - 0.5)*2

47 return img

48

49
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50 def read_directory(directory):

51 images = []

52 for file_name in os.listdir(directory):

53 if file_name.endswith(".jpg"):

54 images.append(read_image(directory + file_name))

55 else:

56 continue

57 return images

58

59

60 images = read_directory(source_dir + target + "/")

61 print(len(images))

62 for img in images:

63 preds = model.predict(img[np.newaxis, :, :, :])

64 preds = decode_predictions(preds)[0]

65 if preds[0][1] != ’dome’ or preds[0][2] < 0.75:

66 print(preds)

67 io.imshow(img/2+0.5)

68 io.show()

69

70 print(’ready’)

71

72

73 # Modified version of PublicImageModelWrapper in TCAV’s models.py

74 # This class takes a session which contains the already loaded graph.

75 # This model also assumes softmax is used with categorical crossentropy.

76 class CustomPublicImageModelWrapper(tcav_model.ImageModelWrapper):

77 def __init__(self, sess, labels, image_shape,

78 endpoints_dict, name, image_value_range):

79 super(self.__class__, self).__init__(image_shape)

80

81 self.sess = sess

82 self.labels = labels

83 self.model_name = name

84 self.image_value_range = image_value_range

85

86 # get endpoint tensors

87 self.ends = {’input’: endpoints_dict[’input_tensor’], ’prediction

’: endpoints_dict[’prediction_tensor’]}

88

89 self.bottlenecks_tensors = self.get_bottleneck_tensors()

90

91 # load the graph from the backend

92 graph = tf.compat.v1.get_default_graph()

93

94 # Construct gradient ops.

95 with graph.as_default():
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96 self.y_input = tf.compat.v1.placeholder(tf.int64, shape=[None

])

97

98 self.pred = tf.expand_dims(self.ends[’prediction’][0], 0)

99 self.loss = tf.reduce_mean(

100 tf.compat.v1.nn.softmax_cross_entropy_with_logits_v2(

101 labels=tf.one_hot(

102 self.y_input,

103 self.ends[’prediction’].get_shape().as_list()[1])

,

104 logits=self.pred))

105 self._make_gradient_tensors()

106

107 def id_to_label(self, idx):

108 return self.labels[idx]

109

110 def label_to_id(self, label):

111 return self.labels.index(label)

112

113 @staticmethod

114 def create_input(t_input, image_value_range):

115 """Create input tensor."""

116 def forget_xy(t):

117 """Forget sizes of dimensions [1, 2] of a 4d tensor."""

118 zero = tf.identity(0)

119 return t[:, zero:, zero:, :]

120

121 t_prep_input = t_input

122 if len(t_prep_input.shape) == 3:

123 t_prep_input = tf.expand_dims(t_prep_input, 0)

124 t_prep_input = forget_xy(t_prep_input)

125 lo, hi = image_value_range

126 t_prep_input = lo + t_prep_input * (hi-lo)

127 return t_input, t_prep_input

128

129 @staticmethod

130 def get_bottleneck_tensors():

131 """Add Inception bottlenecks and their pre-Relu versions to

endpoints dict."""

132 graph = tf.compat.v1.get_default_graph()

133 bn_endpoints = {}

134 for op in graph.get_operations():

135 if ’ConcatV2’ in op.type:

136 name = op.name.split(’/’)[0]

137 bn_endpoints[name] = op.outputs[0]

138

139 return bn_endpoints
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140

141

142 # input is the first tensor, logit and prediction is the final tensor.

143 # note that in keras, these arguments should be exactly the same for

other models (e.g VGG16), except for the model name

144 endpoints_v3 = dict(

145 input=model.inputs[0].name,

146 input_tensor=model.inputs[0],

147 logit=model.outputs[0].name,

148 prediction=model.outputs[0].name,

149 prediction_tensor=model.outputs[0],

150 )

151

152 # instance of model wrapper, change the labels and other arguments to

whatever you need

153 labels = [OMITTED]

154 mymodel = CustomPublicImageModelWrapper(sess, labels, [299, 299, 3],

endpoints_v3, ’Inception_V3’, (-1, 1))

155

156 act_generator = act_gen.ImageActivationGenerator(mymodel, source_dir,

activation_dir, max_examples=100)

157

158 tf.compat.v1.logging.set_verbosity(0)

159

160 num_random_exp = 3 # folders (random500_0, random500_1)

161 mytcav = tcav.TCAV(sess, target, concepts, bottlenecks, act_generator,

alphas,

162 cav_dir=cav_dir, num_random_exp=num_random_exp)

163

164 results = mytcav.run(run_parallel=False)

165

166 utils_plot.plot_results(results, num_random_exp=num_random_exp)

Listing 5: TCAV implemented in Python.

FV

1 import numpy as np

2 import os

3 import tensorflow as tf

4 assert tf.__version__.startswith(’1’)

5

6 import lucid.modelzoo.vision_models as models

7 from lucid.misc.io import show

8 import lucid.optvis.objectives as objectives

9 import lucid.optvis.param as param

10 import lucid.optvis.render as render
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11 import lucid.optvis.transform as transform

12 import matplotlib.pyplot as plt

13

14 #InceptionV3/InceptionV3/Conv2d_1a_3x3/Relu

15 #InceptionV3/InceptionV3/Conv2d_2a_3x3/Relu

16 #InceptionV3/InceptionV3/Conv2d_2b_3x3/Relu

17 #InceptionV3/InceptionV3/Conv2d_3b_1x1/Relu

18 #InceptionV3/InceptionV3/Conv2d_4a_3x3/Relu

19 #InceptionV3/InceptionV3/Mixed_5b/concat

20 #InceptionV3/InceptionV3/Mixed_5c/concat

21 #InceptionV3/InceptionV3/Mixed_5d/concat

22 #InceptionV3/InceptionV3/Mixed_6a/concat

23 #InceptionV3/InceptionV3/Mixed_6b/concat

24 #InceptionV3/InceptionV3/Mixed_6c/concat

25 #InceptionV3/InceptionV3/Mixed_6d/concat

26 #InceptionV3/InceptionV3/Mixed_6e/concat

27 #InceptionV3/InceptionV3/Mixed_7a/concat

28 #InceptionV3/InceptionV3/Mixed_7b/concat

29 #InceptionV3/InceptionV3/Mixed_7c/concat

30 #InceptionV3/Predictions/Softmax

31

32 #model = models.InceptionV3_slim()

33 model = models.InceptionV1()

34 model.load_graphdef()

35

36 path = ’./test/’

37 os.makedirs(path, exist_ok=True)

38

39 # Test 1

40 #param_f = lambda: param.image(128, batch=2)

41 #obj = objectives.channel("mixed4a_pre_relu", 492, batch=1) - objectives.

channel("mixed4a_pre_relu", 492, batch=0)

42 #img = render.render_vis(model, obj, param_f)

43 #tf.keras.preprocessing.image.save_img(path + "test11.png", img[0][0])

44 #tf.keras.preprocessing.image.save_img(path + "test12.png", img[0][1])

45

46 # Test 2

47 #param_f = lambda: param.image(128, batch=4)

48 #obj = objectives.channel("mixed4a_pre_relu", 97) - 1e2*objectives.

diversity("mixed4a")

49 #img = render.render_vis(model, obj, param_f)

50 #tf.keras.preprocessing.image.save_img(path + "test21.png", img[0][0])

51 #tf.keras.preprocessing.image.save_img(path + "test22.png", img[0][1])

52 #tf.keras.preprocessing.image.save_img(path + "test23.png", img[0][2])

53 #tf.keras.preprocessing.image.save_img(path + "test24.png", img[0][3])

54

55 # Test 3
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56 neuron1 = (’mixed4b_pre_relu’, 111) # large fluffy

57 # neuron1 = (’mixed3a_pre_relu’, 139) # pointilist

58 # neuron1 = (’mixed3b_pre_relu’, 81) # brush strokes

59 # neuron1 = (’mixed4a_pre_relu’, 97) # wavy

60 # neuron1 = (’mixed4a_pre_relu’, 41) # frames

61 # neuron1 = (’mixed4a_pre_relu’, 479) # B/W

62

63 neuron2 = (’mixed4a_pre_relu’, 476) # art

64 # neuron2 = (’mixed4b_pre_relu’, 360) # lattices

65 # neuron2 = (’mixed4b_pre_relu’, 482) # arcs

66 # neuron2 = (’mixed4c_pre_relu’, 440) # small fluffy

67 # neuron2 = (’mixed4d_pre_relu’, 479) # bird beaks

68 # neuron2 = (’mixed4e_pre_relu’, 718) # shoulders

69

70 C = lambda neuron: objectives.channel(*neuron)

71

72 img1 = render.render_vis(model, C(neuron1))

73 img2 = render.render_vis(model, C(neuron2))

74 img3 = render.render_vis(model, C(neuron1) + C(neuron2))

75 tf.keras.preprocessing.image.save_img(path + "test31.png", img1[0][0])

76 tf.keras.preprocessing.image.save_img(path + "test32.png", img2[0][0])

77 tf.keras.preprocessing.image.save_img(path + "test33.png", img3[0][0])

78

79 #transforms = [

80 # transform.pad(16),

81 # transform.jitter(8),

82 # transform.random_scale([n/100. for n in range(80, 120)]),

83 # transform.random_rotate(list(range(-10, 10)) + list(range(-5, 5)

) + 10*list(range(-2, 2))),

84 # transform.jitter(2)

85 #]

86

87 #param_f = lambda: param.image(128, fft=True, decorrelate=True)

88

89 #for i in range(5):

90 # obj = objectives.channel("InceptionV3/InceptionV3/Mixed_4a/

concat", i)

91 # img = render.render_vis(model, obj, param_f, transforms=

transforms)

92 # img = render.render_vis(model, obj)

93 # tf.keras.preprocessing.image.save_img(path + "neuron" + str(i) +

".png", img[0][0])

Listing 6: FV implemented in Python.
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B. Further Images

(a) Original image with
prediction “lion”.

(b) Image segmented into
interpretable clusters.

(c) Most relevant clusters
for the prediction.

Figure 27: LIME visualized for the image of a lion.

(a) Original image with
prediction “lynx”.

(b) Image segmented into
interpretable clusters.

(c) Most relevant clusters
for the prediction.

Figure 28: LIME visualized for the image of a lynx.

(a) Original image with
prediction “elephant”.

(b) Image segmented into
interpretable clusters.

(c) Most relevant clusters
for the prediction.

Figure 29: LIME visualized for the image of an elephant.
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(a) Original feature acti-
vation mask.

(b) The activation mask
superimposed.

(c) The activation mask
condensed.

Figure 30: More images for Grad-CAM.

(a) Guided backpropaga-
tion mask.

(b) SmoothGrad of guided
backpropagation mask.

(c) SmoothGrad of guided
backpropagation.

Figure 31: More images for guided backpropagation.

Figure 32: Google Trends search for the terms “explainable” (blue) and “explainability” (red).
The large spikes around 2004 are likely due to inaccurate measurement methods and, thus, to be disregarded.
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C. Literature Review

To find out more about explainability, its facets and implications, we conducted a systematic
literature review together with Larissa Chazette and Wasja Brunotte. The procedure of this
review is described in [105] and [106]. In order to be able to use the results of this literature
review as our own contribution in this work, we did not adopt them one-to-one. Rather, we
have taken intermediate results of the literature review, and processed them in such a way that
they fit better into the context of this thesis. Thus, the results mentioned here should constitute
enough of our own work to count as an independent contribution.

More precisely, our own work starts right after the initial coding (see [105] for prior steps).
Starting from the initial coding, we completely re-coded all the extracted data from the more
than 200 papers. In other words, Larissa Chazette and Wasja Brunotte helped to select the
papers, and they also helped to extract relevant parts from these papers (initial coding), but
we have completely revised the use of these parts. Specifically, we used these parts to extract
information on the relationship between explainability and its related concepts (e.g., trans-
parency, interpretability) on the one hand, and desiderata on the other. Often, in the process,
we revisited the original articles to see if there were more interesting information to extract.
Overall, this re-coding was necessary for our purposes because the extracted information was
originally used to draw conclusions in the context of requirements engineering. However,
since this work is concerned with desiderata that support a link from machine explainability
to machine ethics, the focus of re-coding was on such desiderata.

All desiderata obtained by this, together with the sources supporting a link between machine
explainability and them, can be found in Table 5. Furthermore, all extracted citations from
which we read such a connection can be found in Table 6–Table 39. We also published a
subset of this research in an earlier version in [294]. There, additional information is added
on whether the claimed connection was supported by empirical investigations. Unfortunately,
due to the scope of the investigation in this thesis, we were unable to take this step again. In
addition, we would like to emphasize that we have extracted the quotes to the best of our
abilities. However, spelling errors cannot be ruled out due to the sheer volume of sources.

Table 5: Sources for all desiderata.
Desideratum Sources

Acceptance [29, 43, 48, 51, 70, 73, 103, 110, 111, 116, 123, 124, 127, 137, 152, 165, 166, 173, 179, 190, 199, 222, 234, 274,
280, 304, 305, 348, 358, 372, 373, 382, 383, 386, 388, 394, 395, 397, 399, 410, 412, 422, 465, 478, 488, 490,
501, 502, 510]

Accountability [1, 72, 95, 139, 156, 175, 189, 287, 302, 303, 311, 322, 341, 345, 349, 365, 388, 391, 395, 397, 425–427, 442,
443, 452, 476, 485, 490]

Accuracy [4, 29, 51, 73, 95, 118, 123, 131, 137, 179, 187, 203, 236, 274, 277, 280, 287, 303, 307, 322, 372, 389, 399, 425,
427, 465, 478, 508]

Autonomy [30, 175, 177, 222, 342, 373, 388, 397]

Continued on next page . . .
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Table 5 – continued from previous page

Quote Sources

Confidence [30, 51, 54, 73, 101, 123, 127, 150, 165–167, 173, 177, 179, 180, 199, 222, 274, 304, 348, 350, 358, 391, 422,
444, 464–466, 473, 479, 493, 501, 508, 510]

Controllability [1, 4, 30, 96, 112, 203, 222, 339, 342, 348, 358, 388, 397, 399, 417, 426, 465, 473]

Debuggability [4, 29, 30, 73, 95, 99, 101, 103, 131, 137, 139, 150, 165, 168, 189, 219, 221, 257, 267, 276, 277, 282, 283, 304,
305, 312, 322, 337, 341, 342, 345, 358, 391, 399, 400, 425–427, 441–443, 476, 485, 488, 490, 492, 497, 510]

Education [30, 108, 110, 111, 130, 137, 139, 199, 222, 225, 231, 281, 282, 308, 325, 339, 341, 345, 348, 357, 358, 386,
388, 426, 444, 471, 479, 492, 493]

Effectiveness [43, 51, 72, 82, 110, 111, 150, 165, 180, 199, 222, 229, 348, 358, 382, 385, 386, 452, 463–466, 478, 485, 489,
505, 508, 510]

Efficiency [4, 30, 51, 72, 82, 108, 110, 111, 113, 137, 151, 156, 229, 287, 291, 322, 348, 358, 366, 382, 425, 427, 463–466,
489]

Fairness [1, 4, 6, 54, 72, 92, 95, 99, 123, 139, 150, 155, 175, 188, 225, 227, 233, 236, 259, 274, 280, 302, 304, 322, 337,
342, 358, 388, 391, 397, 399, 417, 441–443, 472, 475, 481, 485, 503, 506]

Informed Consent [173, 342, 373]

Legal Compliance [1, 4, 30, 43, 48, 72, 103, 113, 127, 150, 165, 173, 177, 179, 189, 193, 201, 225, 231, 233, 241, 251, 277, 280,
302, 303, 322, 341, 342, 345, 349, 365, 386, 391, 394, 399, 427, 436, 441, 442, 476, 488, 490, 503, 506]

Morality [1, 54, 72, 155, 165, 175, 189, 234, 236, 304, 322, 342, 373, 397, 399, 417, 488]

Performance [30, 43, 54, 95, 108, 123, 124, 137, 173, 199, 222, 231, 236, 254, 274, 277, 304, 349, 366, 388, 389, 391, 394,
397, 427, 436, 442, 472, 476, 481, 482, 503, 510]

Persuasiveness [51, 70, 72, 110, 111, 124, 137, 165, 180, 199, 229, 304, 339, 348, 358, 394, 399, 410, 417, 426, 463–466, 487,
490]

Privacy [54, 99, 112, 127, 155, 189, 233, 236, 241, 287, 391, 417, 442, 443, 510, 512]

Reliability [1, 93, 99, 155, 189, 357, 362, 389, 475, 482]

Reliance [72, 93, 231, 388]

Responsibility [95, 130, 156, 175, 339, 349, 358, 365, 373, 388, 397, 426]

Robustness [54, 73, 77, 99, 155, 187, 322]

Safety [29, 30, 99, 155, 187, 201, 214, 236, 280, 288, 350, 373, 391, 399, 443, 490]

Satisfaction [51, 70, 72–74, 96, 110, 111, 137, 151, 152, 166, 173, 198, 199, 225, 229, 275, 291, 305, 348, 358, 388, 422,
436, 463–466, 473, 478, 487]

Science [4, 99, 155, 179, 234, 280, 304, 308, 394, 397, 399, 417, 441, 442, 454, 476, 485, 488, 497, 503]

Security [128, 236, 241, 277, 373, 399, 442, 443, 479, 503]

Transferability [54, 109, 234, 417, 497]

Transparency [1, 29, 30, 43, 51, 70, 72, 108, 110, 111, 118, 137, 150, 165, 177, 189, 199, 215, 222, 229, 234, 235, 241, 291,
302, 322, 326, 348, 358, 365, 373, 382, 383, 386, 394, 426, 427, 442, 444, 464–466, 478, 479, 485, 503, 511]

Trust [1, 4, 30, 43, 48, 51, 69, 72, 73, 77, 82, 93, 95, 96, 99, 101, 103, 110–112, 116, 118, 123, 124, 127, 128, 131,
137, 150, 151, 155, 156, 161, 165, 167, 173, 175, 177, 179, 180, 188, 190, 196, 198, 199, 201, 214, 215, 221,
222, 229, 231, 233–236, 241, 274, 275, 277, 280, 288, 289, 304, 305, 312, 316, 322, 337, 339, 341, 342,
348–350, 357, 358, 362, 365, 366, 373, 382, 383, 386, 389, 391, 393–395, 399, 410, 412, 415, 417, 422, 426,
427, 441, 442, 451, 456, 463–466, 478, 479, 485, 487–490, 492, 503, 505, 506, 508, 510, 511]

Trustworthiness [30, 54, 130, 137, 180, 187, 231, 274, 277, 326, 341, 393, 397]

Understandability [1, 4, 30, 43, 48, 51, 54, 71, 77, 93, 95, 96, 99, 108, 113, 116, 123, 124, 127, 131, 150, 151, 161, 165–167, 175,
177, 180, 182, 193, 203, 209, 219, 221, 222, 231, 233–235, 254, 274, 277, 282, 303, 312, 322, 325, 326, 339,
358, 372, 388, 389, 391, 394, 395, 399, 410, 412, 414, 422, 425–427, 441, 444, 451, 452, 454, 465, 476, 482,
485, 490, 493, 505, 508, 510, 511]

Usability [51, 70, 108, 112, 137, 155, 199, 201, 231, 236, 254, 277, 304, 358, 388, 427, 463–466, 473, 511]

Usefulness [70, 111, 165, 180, 198, 199, 221, 254, 382, 388, 410, 465, 502]

Validation [71, 99, 137, 156, 164, 165, 188, 189, 325, 365, 489]

Verification [71, 93, 123, 137, 173, 241, 322, 325, 341, 342, 350, 358, 427, 444, 490, 493]
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Table 6: Quotes for the desideratum Acceptance.
Quote Src.

Intelligent systems that are explaining their decisions to increase the user’s [. . . ] acceptance are widely studied. [29]

[. . . ] appropriate approaches and methods require [. . . ] appropriate explanation-aware techniques e.g. for increasing the
acceptance of the patterns and their evaluation [. . . ].

[43]

[. . . ] different aspects should be taken into account while producing an explanation in order to increase user acceptance. [48]

In addition to improving user acceptance of recommendations [. . . ], explanations can serve a multiplicity of aims [. . . ]. [51]

A system’s ability to explain its recommendations in a way that makes its reasoning more transparent can contribute
significantly to users’ acceptance of its suggestions.

[70]

[. . . ] systems’ ability to explain their reasoning has been found to be critical to users’ acceptance of their decisions [. . . ]. [70]

Explanation has been shown to be important for user acceptance [. . . ] in a number of studies. [73]

[. . . ] explanations in general and justifications in particular make the generated advice more acceptable to users [. . . ]. [73]

The ability to generate explanations holds the key [. . . ] towards acceptance of AI-based systems [. . . ]. [103]

The importance of explanation interfaces in providing system transparency and thus increasing user acceptance has been
recognized in a number of fields [. . . ].

[110]

The importance of explanation interfaces in [. . . ] increasing user acceptance has been recognized in a number of fields [. . . ]. [111]

[. . . ] explanation can cause users to overestimate item quality, which may [. . . ] stop users from using the system again [. . . ]. [111]

XAI will be key for both expert and non-expert users to enable them to have a deeper understanding and the appropriate level
of trust, which will hopefully lead to increased adoption of this vital technology.

[116]

If explanations can increase transparency and interpretability, this might improve [. . . ] acceptance from both students and
educators [. . . ]

[386]

Systems researchers have emphasized the importance of explanations as a means of influencing user acceptance [. . . ] in
systems by increasing confidence in systems’ abilities [. . . ].

[123]

[. . . ] explaining to the user why a recommendation was made increased acceptance of the recommendations. [124]

Increasing transparency of user-adaptive systems could thus increase [. . . ] acceptance of such systems [. . . ]. [124]

[. . . ] explanations that are too complex might actually negatively affect acceptance of a system. [124]

[. . . ] self-driving cars, which can demonstrate transparency in operations, will help promote trust, which is pivotal to its
acceptance by society [. . . ].

[127]

The perceptions arising from the use of explanation facilities include [. . . ] user acceptance [. . . ]. [137]

[. . . ] explanation can enhance the acceptability of expert systems. [137]

A common finding in most of these studies show that the inclusion of explanation helps improve user-acceptance in expert
systems [. . . ].

[137]

[. . . ] the inclusion of justification explanations had a profound impact on user acceptance of the system [. . . ]. [137]

[. . . ] user acceptance is very high when explanations are used and provided [. . . ]. [137]

[. . . ] benefit [of] explanation facilities [. . . ] include greater user acceptance of the recommender system as a decision making
aid.

[137]

Explanation [. . . ] can substantially affect [. . . ] acceptance [. . . ]. [137]

A common finding in most of these studies show that the inclusion of explanation helps improve user-acceptance in expert
systems, although the conclusions in a small number of studies run counter to these findings.

[137]

Explaining automatic recommendations [. . . ] has shown an important effect on users’ acceptance over the items
recommended.

[152]

[. . . ] studies [. . . ] often focus on how explanations can improve acceptance of recommender systems [. . . ]. [165]

[. . . ] previous research has established that explanations help users to [. . . ] accept a recommendation. [165]

AI rationalization has a number of potential benefits over other explainability techniques: [...] humanlike communication [. . . ]
may afford [. . . ] advantages such as higher degrees of [. . . ] willingness to use autonomous systems [. . . ].

[166]

[. . . ] they could show that transparency increased the acceptance of the recommendations. [173]

[. . . ] the user requires good explanations from the system as a requirement for model acceptance [. . . ]. [179]

[. . . ] explanation systems can address [. . . ] trust concerns [. . . ] and thus can help to move [. . . ] one step closer to [. . . ]
acceptance by end users [. . . ].

[190]

Continued on next page . . .
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Table 6 – continued from previous page

Quote Src.

Explanations, by virtue of making the performance of a system transparent to its users, are influential for user acceptance of
intelligent systems [. . . ].

[199]

Explanations that conform to Toulmin’s model should be more persuasive [. . . ]. Thus, they should lead to greater [. . . ]
acceptance.

[199]

[. . . ] providing explanations can improve the acceptance of ACF systems [. . . ]. [222]

Some of the benefits provided [by explanation facilities] are: [. . . ] Acceptance. Greater acceptance of the recommender
system as a decision aide [. . . ].

[222]

We believe that by providing transparency into the workings of the ACF process, we will [. . . ] increase [users’] willingness to
use the ACF system as a decision aid.

[222]

The result [from adding explanations] will be filtering systems that are more accepted [. . . ]. [222]

[. . . ] transparency and understanding of the AI systems’ behavior is inevitably, e.g., to increase user acceptance. [234]

Another experiment found ‘why’ explanations to increase recommendation acceptance [. . . ] [274]

To the extent that public acceptance of ML algorithms requires that end users have some grasp of the inner workings [. . . ], the
notion of interpretation acquires heightened importance.

[280]

"Explanation is often embraced as a cure for ""black box"" models to gain trust and adoption." [304]

[. . . ] we discuss how [. . . ] providing explanations [. . . ] has the potential to increase user satisfaction and thus acceptance [. . . ]. [305]

[. . . ] generating explanations of application behavior [. . . ] has been employed [. . . ] with the goal of increasing [. . . ]
acceptance of these systems.

[305]

The importance of [. . . ] explanation on improving user satisfaction (e.g., acceptance, trust) has been extensively discussed. [348]

How to visualize explanation about recommendations is important for user acceptance of recommender systems. [348]

[. . . ] Some benefits provided by explaining recommendations such as: [. . . ] acceptance. [348]

However, to be accepted by end users, the suggestions [. . . ] must be perceived to be fair and transparent [. . . ], and
explanations are key to this.

[358]

Explaining decisions returned by intelligent systems is [. . . ] essential for gaining acceptance [. . . ]. [372]

Lack of such explanations does not prevent users from being able to operate the devices, but may nevertheless make them
refrain from doing so.

[373]

The importance of explanation interfaces in providing system transparency and thus increasing user acceptance has been well
recognized in a number of fields [. . . ].

[382]

The importance of explanation interfaces in providing system transparency and thus increasing user acceptance has been well
recognized in a number of fields [. . . ].

[383]

Explanations [. . . ] promote [. . . ] acceptance of the system [. . . ]. [388]

[. . . ] in many, if not most, cases, the explanation is beneficial to the system’s acceptance [. . . ]. [394]

The ability to help people understand their decisions through explanations [. . . ] will [. . . ] make them more willing to continue
the use of AI systems.

[395]

With an explanation of the algorithm’s decision, it is possible for human beings to accept, disregard, challenge, or overrule
that decision.

[397]

[. . . ] the agent might need to provide information about its decision to help convince the human participant of the correctness
of their solution, aiding in the adoption of these agent based technologies [. . . ].

[399]

In both cases, the information the agent provides should build trust to ensure its decisions are accepted [. . . ]. [399]

To date, many reasons have been suggested for making systems explainable [. . . ]: [. . . ] To justify its decisions so the human
participant can decide to accept them [. . . ].

[399]

Explanations have various effects on users [. . . ]. They can [. . . ] increase the acceptance of recommendations [. . . ]. [410]

The intuition is that if a user can query the system’s decisions, s/he is less likely to abandon it and, indeed, may accept the
system’s choices over his/her own [. . . ].

[412]

[. . . ] explanations in a natural language are intuitive to humans, which can lead to a higher level of [. . . ] willingness to use
autonomous systems.

[422]

Explanations may increase user acceptance of the system or the given recommendations [. . . ]. [465]

When they did occur evaluations of explanations have largely focused on user acceptance of the system [. . . ] or acceptance of
the systems’ conclusions [. . . ].

[465]

Continued on next page . . .
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Table 6 – continued from previous page

Quote Src.

Cramer et al. have investigated the effects of transparency on other evaluation criteria such as [. . . ] acceptance of items [. . . ]. [465]

Explanations have been found to increase user [. . . ] acceptance of [. . . ] the overall recommender system [. . . ]. [465]

Research shows that explanations [. . . ] improve user acceptance of recommendations [. . . ]. [478]

Studies show that item-based explanations improve users’ acceptance of recommendations [. . . ]. [478]

Explanations describe the decision made by a machine learning model in order to gain user acceptance [. . . ]. [488]

We list several types and goals of transparency. [. . . ] To make a user (the audience) feel comfortable with a prediction or
decision so that they keep using the system.

[490]

[Explanation] helps increase ES users’ confidence in the system’s problem-solving competence and hence, the acceptability of
the conclusions.

[501]

[. . . ] explanations positively impact the users’ [. . . ] commitment to repeatedly use [the system] and recommend it to others. [502]

The findings show that the explanation feature can significantly increase a recommender system’s perceived usefulness and
thus contributes to increase users’ repeated usage intention and their commitment to recommend the service.

[502]

[. . . ] both the explanation of and trust in ML play significant roles in affecting the user acceptance of ML in practical
applications.

[510]

Table 7: Quotes for the desideratum Accountability.
Quote Src.

There has been increased attention into [. . . ] accountable [. . . ] algorithms [. . . ], with [. . . ] DARPA’s Explainable AI (XAI)
initiative [. . . ].

[1]

[. . . ] explanation approaches might serve regulatory goals of rendering algorithmic decision-making more [. . . ] accountable
[. . . ].

[72]

The potential for [. . . ] explanation systems to provide justice-related information, fulfilling the policy goals of [. . . ]
accountability [. . . ], has recently been noted [. . . ]

[72]

Counterfactuals are often used to determine legal culpability [. . . ]. [95]

[The] relevance [of counterfactuals] to a variety of AI applications has been known for some time, ranging [. . . ] from fault
diagnosis to the determination of liability [. . . ].

[95]

Algorithmic transparency provides several benefits. First, it is essential [. . . ] to hold entities in the decision-making chain
accountable [. . . ].

[139]

Obviously, intermediate oversight authorities are to retain full rights of transparency as far as the model and its proxies are
concerned, otherwise all accountability is gone.

[287]

[. . . ] the second option (of foregrounding interpretability) opens up possibilities for fully fledged accountability. [287]

While there are many approaches to increasing accountability in AI systems, we shall focus on one in this report: explanation
[. . . ].

[156]

[. . . ] this principle, which we synthesise as “explicability” [. . . ] in the ethical sense of “accountability” [. . . ]. [175]

The role of explanation has been examined to enforce accountability under the law [. . . ]. [189]

[. . . ] outcome explanation had mixed effects, [. . . ] reducing algorithmic accountability. [302]

[. . . ] outcome explanation [. . . ] increased perceived fairness: it [. . . ] made them attribute less accountability to algorithms in
distributive outcomes.

[302]

Transparency, which refers to the understandability of a specific model, can be a mechanism that facilitates accountability. [303]

Not only does provenance allow us to provide a form of explanation, it is a critical piece in achieving accountability as well. [311]

[. . . ] the increasingly widespread applicability of [. . . ] models necessitates the need for explanations to hold such models
accountable.

[322]

[. . . ] we argue that, if xAI is to produce methods that make algorithmic decision-making systems more trustworthy and
accountable, the field’s attention must shift to the development of interactive methods for post-hoc interpretability [. . . ].

[341]

[. . . ] being able to explain its decisions [...] allows the system to be held accountable. [345]

Transparency and the ability to explain AI decision making are core requirements for important aspects such as [. . . ]
accountability of algorithms.

[349]

Continued on next page . . .
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Finally, a purely functional understanding of a model would also impede legal accountability [. . . ] for the decisions of the
model.

[365]

Much of the literature on transparency also emphasizes the goal of governing a system through accountability [. . . ]. [388]

[. . . ] different functions that transparency is thought to serve ([. . . ] accountability). [388]

The owner is concerned with explainability questions about the capabilities of the application, e.g. [. . . ] aspects of
accountability, e.g. to what extent can application malfunction be attributed to the DNN component?

[391]

Transparency is normally also a precondition for accountability: i.e. the extent to which the responsibility for the actionable
outcome can be attributed to legally (or morally) relevant agents [. . . ].

[391]

Explanations may even be the first step toward remedy, a critical aspect of accountability. [395]

Only human beings can be held morally accountable so it should be human beings that are in control over these decisions
[given by explanation].

[397]

An intelligent robot that is explainable yields several important advantages. [. . . ] Accountability. As systems become more
mission-critical, society will increasingly want to know where the blame lies when things go wrong.

[426]

[. . . ] beyond debugging and accountability, explanations [. . . ] help a user to understand [. . . ]. [425]

It is vital to know if an explanation is Post-Hoc Rationalisation or Introspective when used for [. . . ] compliance and
accountability.

[427]

To be trusted, a system has to demonstrate [. . . ] that the process leading to the decision is transparent and accountable [. . . ].
Explanations form a vital part of satisfying these requirements.

[427]

[. . . ] some [explainability methods] can also be used to assess accountability of the underlying predictive model [. . . ]. [442]

The explainee can steer the explanatory process to [. . . ] assess accountability [. . . ]. [443]

[. . . ] there is renewed interest in understanding the decisions of these algorithms [through explanations] as a means to [. . . ]
promote accountability.

[452]

The issue of AI legal accountability has recently been broached [. . . ]. Interpretability and explainability of the system would
come to the forefront of AI requirements in such a circumstance.

[476]

Abdul had identified other goals for XAI, such as providing transparency for algorithmic accountability [. . . ]. [485]

We list several types and goals of transparency. [. . . ] To provide an expert (perhaps a regulator) the ability to audit a prediction
or decision [. . . ]. This [. . . ] will facilitate assignment of accountability and legal liability

[490]

Table 8: Quotes for the desideratum Accuracy.
Quote Src.

[. . . ] the most interpretable models usually are less accurate. [4]

[. . . ] intrinsic interpretable models come at a cost of accuracy. [4]

[. . . ] the technical challenge of explainability involving the tradeoff between accuracy and interpretability [. . . ]. [4]

Explanations also help users to evaluate the accuracy of the system’s predictions. [29]

How much recommendation accuracy would one need to sacrifice by making a recommender system both transparent and
scrutable?

[51]

Later studies [. . . ] showed that explanations significantly increase users’ [. . . ] ability to correctly assess whether a prediction
is accurate.

[73]

[. . . ] model-level explanation makes users more likely to correctly predict the model’s success with new samples. [73]

To increase [. . . ] accuracy in their training by designers, there is a need to enable AI systems to provide [. . . ] explanations
[. . . ].

[95]

This transparency [caused by explanations] however comes at the cost of some classification accuracy. [118]

"[. . . ] “how” explanations [. . . enable] users to verify that an algorithm has accurately [. . . ] ""produc[ed] and certif[ied]
knowledge""."

[123]

Future research in software analytics should explicitly address the trade-off between explainability and prediction accuracy. [131]

The use of simple models improves explainability but requires a sacrifice for accuracy. [131]

Continued on next page . . .
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Quote Src.

[. . . ] studies [. . . ] found a positive relationship between frequency of novice use of explanations and problem solving
performance – [. . . ] in terms of accuracy of the quality of the decisions made [. . . ].

[137]

[. . . ] explanation [. . . ] can lead to greater accuracy in the ensuing decision making [. . . ]. [137]

[. . . ] studies [. . . ] show that explanation [. . . ] can lead to greater accuracy in the ensuing decision making [. . . ]. [137]

[. . . ] in machine learning, one either goes with the flow of increasing accuracy and thereby sacrifices explanatory power [. . . ]. [287]

We focus on the comprehensibility of classification models, rather than on the trade-off between predictive accuracy and
comprehensibility.

[179]

[. . . ] a rule-based classification system [i.e., an interpretable model] was proposed to trade-off classification accuracy and
interpretability [. . . ]

[187]

[. . . ] they often achieve high interpretability with minimal sacrifice in classification accuracy [. . . ]. [187]

Several other visualizations focus on improving the accuracy of recommendations with both explanations and support for user
control.

[203]

There is an inherent tension between ML performance (predictive accuracy) and explainability [236]

Often the best-performing methods such as DL are the least transparent, and the ones providing a clear explanation [. . . ] are
less accurate [. . . ].

[236]

[. . . ] transparency in design [. . . ] may foster a better understanding of [. . . ] the extent to which [the system] is fair and
accurate.

[274]

However, explainability requirements may conflict with other softgoals such as [. . . ] precision [. . . ]. [277]

A number of motivations one might have in seeking explicability were cited earlier, such as [. . . ] assurance of accuracy [. . . ]. [280]

Concerns about [. . . ] reassuring oneself about the accuracy of one’s program all center around the epistemological notion of
justification.

[280]

[. . . ] models that are easy to interpret by humans [. . . ] might yield lower accuracy [. . . ]. [303]

The experimental results [. . . ] have shown that In2Rec can effectively improve the [. . . ] recommendation accuracy [. . . ]. [307]

[. . . ] (Intrinsic) explainability involves using a simpler model to fit data which can negatively affect predictive accuracy [. . . ]. [322]

More generally, interpretability could contribute to the design of more accurate [. . . ] classifiers. [322]

Indeed, there is a well-known trade-off between accuracy and explainability [. . . ]. [372]

In this paper, we use visual explanation for improving the accuracy of VQA systems. [389]

It has been previously noted that an inverse relationship often exists between machine learning algorithms’ accuracy and their
explainability [. . . ].

[399]

The goal [. . . ] is to allow developers of XAI agents to trade off the need for explainability against other factors such as [. . . ]
predictive accuracy [. . . ] of the underlying ML systems.

[425]

The contribution of our work is a set of categories that enable [. . . ] to trade off the need for explainability against other factors
such as [. . . ] predictive accuracy [. . . ] of the underlying ML systems.

[427]

Cramer et al. found that transparency led to changes in user behavior that ultimately decreased recommendation accuracy [. . . ]. [465]

Research shows that explanations help users make more accurate decisions [. . . ]. [478]

Studies show that item-based explanations [. . . ] help users make accurate decisions [. . . ]. [478]

Explanation also shows the ability to correctly assess whether a prediction is accurate [. . . ]. [508]

Table 9: Quotes for the desideratum Autonomy.
Quote Src.

In particular, [explanations] were presented to determine the level of autonomy to grant to an agent [. . . ] [30]

[. . . ] for AI to promote and not constrain human autonomy, our “decision about who should decide” must be informed by
knowledge of how AI would act instead of us [. . . ].

[175]

Human-Autonomy Teaming (HAT) is required, where humans interact with the AI systems, and for this humans need to
understand why the AI system is suggesting something that the human would not do: this requires interaction [and interaction
requires explainable AI].

[177]

Continued on next page . . .
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Quote Src.

Some of the benefits provided [by explanation facilities] are: [. . . ] allowing the user to add his knowledge and inference skills
to the complete decision process.

[222]

[. . . ] failure to render the processing logic comprehensible to data subject’s disrespects their agency [. . . ]. [342]

The analysis of explanation [. . . ] has ethical consequences when we connect it to the notion of informed consent, which can
be defined as “an autonomous authorisation by a patient or subject”

[373]

Transparency can empower users to make informed choices about how they use an algorithmic decision-making system [. . . ]. [388]

[. . . ] for AI to promote and not constrain human autonomy, our ‘decision about who should decide’ must be informed by
knowledge of how AI would act instead of us [. . . ].

[397]

AI will constrain rather than promote human autonomy unless we have the “knowledge of how AI would act instead of us”
[. . . ].

[397]

Table 10: Quotes for the desideratum Confidence.
Quote Src.

The studies show that transparency and trust are going hand in hand to increase the user’s confidence in the system by
understanding how its reasoning mechanism works [. . . ].

[30]

[. . . ] purposes motivating the need for interpretable AI models, such as [. . . ] confidence [. . . ]. [54]

[. . . ] explanations can serve a multiplicity of aims, such as inspiring the user’s confidence in the system [. . . ]. [51]

Later studies [. . . ] showed that explanations significantly increase users’ confidence [. . . ]. [73]

[. . . ] medical students [. . . ] were more confident about disagreeing with [a system] when the explanations did not account
adequately for all of the aspects of the case.

[101]

Systems researchers have emphasized the importance of explanations as a means of [. . . ] increasing confidence in systems’
abilities [. . . ].

[123]

[. . . ] explanations allow users to make inferences about a system’s abilities and underlying motives, which form the basis of
confidence [. . . ] in a system.

[123]

[. . . ] transparency [. . . ] is necessary to build confidence in the system. [127]

[. . . ] global explanations seem to render more confidence in understanding the model [. . . ]. [150]

Studies have explored [. . . ] benefits related to providing explanations [. . . ] many focusing on the advantage of earning users’
[. . . ]confidence in the systems [. . . ].

[165]

Explainability [. . . ] can help build [. . . ] confidence [. . . ]. [167]

AI rationalization has a number of potential benefits over other explainability techniques: [...] humanlike communication [. . . ]
may afford [. . . ] advantages such as higher degrees of [. . . ] confidence [. . . ].

[166]

[. . . ] transparency of music recommendations increased participants’ [. . . ] confidence [. . . ]. [173]

If doctors want to use a neural network to make a diagnosis, they need to be confident that there is a clear rationale for the NN
to diagnose a cancer [. . . ].

[177]

Understanding a very accurate classification model might give us more confidence that the model is really capturing the
correct patterns in the target domain [. . . ].

[179]

[. . . ] explanations [. . . ] promote objectives such as [. . . ] confidence in decision making [. . . ]. [180]

[. . . ] the intention behind disclosing the reasoning process of the system could be to increase the user’s confidence in making
the right decision [. . . ].

[180]

"Indeed, explanations can differ significantly; for instance, they may attempt to maximize the user’s confidence throughout the
shopping experience [. . . ]."

[180]

[. . . ] confidence [. . . was] strongly affected by the presence of justification-type explanations [. . . ]. [199]

We believe that by providing transparency into the workings of the ACF process, we will build users’ confidence in the system
[. . . ].

[222]

Some of the benefits provided [by explanation facilities] are: [. . . ] User understanding of the reasoning behind a
recommendation, so that he may decide how much confidence to place in that recommendation.

[222]

[. . . ] explainable-AI calls for confidence [. . . ]. [236]

Continued on next page . . .
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Quote Src.

[. . . ] explanations [. . . ] help users understand its reasoning and instill confidence [. . . ]. [274]

Increased transparency is also associated with [. . . ] higher confidence in system recommendations [. . . ]. [274]

[. . . ] explanations could help enhance decision confidence for follow-up actions [. . . ]. .
[304]

[. . . ] motivations for explanations in recommender systems: [. . . ] trust, which increases users’ confidence towards
recommendations.

[348]

The question of what kinds of explanation a human can utilize implies the presence of a downstream task. [. . . ] extrinsic tasks
include goals such as [. . . ] trust – given the input, output, explanation, and observations of the world, does the explanation
increase the human user’s confidence in the agent?

[350]

Explanation Purposes Identified in Primary Studies [. . . ]: [. . . ] Increase users’ confidence in the system. [358]

The aim of local explanations is to strengthen the confidence and trust of users [. . . ]. [391]

[. . . ] explanations in a natural language are intuitive to humans, which can lead to a higher level of [. . . ] confidence [. . . ]. [422]

This is the goal of increasing confidence in the advice or solution offered by the system by giving some kind of support [in
form of explanations] for the conclusion suggested by the system.

[444]

They suggest three major explanation goals. [. . . ] Finally, the goal of ratification is to increase the end user’s confidence in the
system’s conclusion.

[444]

Possible aims for explanations: [. . . ] Increase users’ confidence in the system. [464]

Explanatory criteria and their definitions: [. . . ] Increase users’ confidence in the system. [465]

Explanatory aims: [. . . ] Increase users’ confidence in the system. [466]

[. . . ] a detailed, full explanations may be “excessive” to the users [. . . ], which had a negative impact on user confidence and
enjoyment [..].

[473]

He contrasts explanation-for-trust [. . . ] with explanation-for-confidence (i.e., explanation to make the user feel comfortable in
using the system, by providing information on its external communications).

[479]

[. . . ] non-expert users will need an explanation that increases their confidence and trust [. . . ]. [479]

[. . . ] an explanation for an end-user is intended to increase the user’s confidence in the system [. . . ]. [493]

There are three major explanation goals, namely [. . . ] ratification. [. . . ] in the context of ratification, the goal [. . . ] is to
increase the user’s confidence in the expert system.

[493]

[Explanation] helps increase ES users’ confidence in the system’s problem-solving competence [. . . ]. [501]

Other studies [. . . ] consistently showed that explanations significantly increase users’ confidence and trust [. . . ]. [508]

Other studies [. . . ] consistently showed that explanations significantly increase users’ confidence and trust [. . . ]. [510]

Table 11: Quotes for the desideratum Controllability.
Quote Src.

[. . . ] people should [. . . ] feel in control. [. . . ] prior work has identified issues [. . . ] when this is not the case. [. . . ] To address
these problems, machine learning algorithms need to be able to explain how they arrive at their decisions.

[1]

Explainability [. . . ] can also help prevent things from going wrong. Indeed, understanding more about system behavior [. . . ]
helps to rapidly identify and correct errors in low criticality situations (debugging). Thus enabling an enhanced control.

[4]

Explanations are also useful for control purposes. [30]

Prior work shows that explanations [. . . ] can increase [. . . ] perception of control [. . . ]. [96]

[. . . ] information transparency enable[s] users to control their interactions more actively [. . . ]. [112]

[. . . ] interface features that inform users about the overt personalization mechanism [. . . ] can increase perceived control [. . . ]. [112]

In recent years, several interactive visualizations have been elaborated to support both explanations and user control over
recommendations [. . . ]

[203]

Several other visualizations focus on improving the accuracy of recommendations with both explanations and support for user
control.

[203]

The result [from adding explanations] will be filtering systems [. . . ] which give greater control to the user. [222]

Continued on next page . . .
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Quote Src.

[. . . ] people look for explanations to improve their understanding [. . . ] so that they can derive stable model that can be used
for prediction and control.

[339]

Transparency is generally desired because algorithms that are poorly predictable or explainable are difficult to control, monitor
and correct [. . . ].

[342]

Traditionally, computer programmers have had “control [. . . ] ” insofar as they can explain its design and function to a third
party [. . . ].

[342]

The proposed visualization helps to create [. . . ] control of personalized filtering to alleviate the "filter bubble" problem [. . . ]. [348]

[. . . ] explanations can represent a starting point for better user control [. . . ]. [358]

Transparency mechanisms can convey a sense of iterative control [. . . ]. [388]

I argue that a principle of explicability is primarily for the maintaining of meaningful human control over algorithms. [397]

The idea is that an explanation of an algorithm’s output will allow a human being to have meaningful control over the
algorithm [. . . ]

[397]

To date, many reasons have been suggested for making systems explainable [. . . ]: [. . . ] To justify its decisions so the human
participant can decide to accept them (provide control) [. . . ].

[399]

Explainable artificial intelligence presented [. . . ] mentions [. . . ] control [. . . ]. [417]

Explanations can help to teach users to [. . . ] control a robot to achieve [a] task. [426]

Explanations should be part of a cycle, where the user understands what is going on in the system and exerts control over the
type of recommendations made [. . . ].

[465]

[users’] perception of system explainability. However, the improvement comes with a price of reducing the user perception of
control [. . . ].

[473]

[. . . ] a possibly overwhelming amount of information caused the users to decrease the perception of controllability [473]

The finding of controllability and explainability trade-off is surprising, but not an uncharted area in the field of HCI. [473]

When the overwhelming amount of information was provided [. . . ] it impaired the user perception on controllability. [473]

Table 12: Quotes for the desideratum Debuggability.
Quote Src.

Explainability [. . . ] can also help prevent things from going wrong. Indeed, understanding more about system behavior [. . . ]
helps to rapidly identify and correct errors in low criticality situations (debugging).

[4]

"[. . . ] explainable AI planning (XAIP) is mostly algorithm dependent and serve more as a debugging system for an expert
user."

[4]

Education and debugging were identified as the motivations of explanations, [. . . ] the latter is considered for notifying users
about the defects in the system [. . . ].

[30]

Explanations were initially discussed [. . . ] to support developers for system debugging. [29]

Other related work [. . . ] proposed generating explanations as a debugging tool. [73]

[The] relevance [of counterfactuals] to a variety of AI applications has been known for some time, ranging [. . . ] from fault
diagnosis to the determination of liability [. . . ].

[95]

Interpretability enables MLs models to be [. . . ] debugged [. . . ]. [99]

Interpretability also enables detection of faulty model behavior, through debugging [. . . ]. [99]

Explanation can also play an important role in refining and debugging probabilistic systems. [101]

These explanation generation techniques served more as a debugging system for an expert user [. . . ]. [103]

Explainability is [. . . ] potentially a trigger for new insights in the minds of practitioners. For example, a developer would want
to understand why a defect prediction model suggests that a particular source file is defective so that they can fix the defect.

[131]

[. . . ] trace explanations [. . . ] are more likely to be used for debugging [. . . ]. [137]

Explanation facilities can be of benefit in such systems because they can assist the user in either detecting or estimating the
likelihood of errors in the recommendation.

[137]

[. . . ] transparency can help detect errors in input data which resulted in an adverse decision [. . . ]. Such errors can then be
corrected.

[139]

Continued on next page . . .
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Quote Src.

In order to debug the procedure, he asks why the procedure led to the error, and not to the desired result (P-contrast question). [497]

Explainable AI (XAI) is a field broadly concerned with making AI systems more transparent so people can [. . . ] accurately
troubleshoot it [. . . ].

[150]

[. . . ] using global explanations to understand and evaluate the model, and local explanations to scrutinize individual cases. [150]

A key issue is whether explanations of system reasoning make it easier to detect erroneous recommendations—by, for
instance, letting users discover flaws in the system’s reasoning [. . . ].

[165]

[. . . ] it will be important to study whether and how explanations support users in reliably identifying system inaccuracies [. . . ]. [165]

Employing such an abstraction [i.e., a form of explanation] showed potential for aiding program analysis [. . . ]. [168]

Questions that experts in artificial intelligence (AI) ask opaque systems provide inside explanations, focused on debugging
[. . . ].

[189]

Explanations of visual systems could also aid in understanding network mistakes and provide feedback to improve classifiers. [219]

The explanations can be useful [...] to allow him to understand how to modify its parameters if it does not behave as expected. [221]

"[. . . ] significant insights about an agent’s behavior can be gained, e.g. explaining strange behavior, identifying ""bugs"" in
preferences [. . . ]."

[257]

"We provided case studies [. . . ] to illustrate the potential of our visual explanations [. . . ]. This allowed for spotting certain
""bugs"" [. . . ]."

[257]

Explanations are also used in diagnosis. One might ask why a system failed and then repair a part to bring it back to its normal
function.

[267]

These anecdotes [about an explanation tool] suggest that it may be possible to train developers to be more objective and
careful about their debugging efforts by using the tool.

[276]

Explanations enable understanding and thereby [. . . ] help in locating sources of error [. . . ]. [277]

Part of enabling end users to “debug” their intelligent agents is explaining these agents to users well enough for them to build
useful mental models.

[282]

To directly support end-user “debugging” of assistant behaviors [. . . ], we present a Why-oriented approach which allows users
to ask questions about how the assistantmade its predictions [and] provides answers to these “why” questions [. . . ].

[283]

Our Why-oriented approach allows end users to debug such assistants by manipulating their underlying logic, not just their
predictions [. . . ].

[283]

Several informants [. . . ] considered explanations as an integral part [. . . ] to improve AI performance. Such needs are not only
seen in debugging tools [. . . ].

[304]

[. . . ] generating explanations of application behavior [. . . ] has been employed in [. . . ] end-user debugging [. . . ]. [305]

Our method generates contrastive explanations [. . . ] and aims to help users understand (1) what contributed to the large error,
and (2) what would be needed to produce a prediction with an acceptable error.

[312]

Our work also showcases the fact that interpretability is [. . . ] a powerful tool for detecting flaws in the model [. . . ]. [322]

The benefits of our proposed explainability framework are three-fold. We can [. . . ] fix or delete adversarial examples [. . . ]. [322]

[. . . ] undesirable inferences can be subsequently debugged by users through machine coaching [i.e., a type of explainability]. [337]

Transparency is generally desired because algorithms that are poorly predictable or explainable are difficult to control, monitor
and correct [. . . ].

[342]

Explanations can be necessary to [. . . ] verify and improve the functionality of a system (i.e. as a type of ‘debugging’ [. . . ])
[. . . ].

[341]

[. . . ] explanations are vital in safety-critical systems, [. . . ] to determine errors and faults in the system and to ensure that
problems are fixed.

[345]

[. . . ] such explanations were [. . . ] being used in many cases only to support system debugging. [358]

Explanation Purposes Identified in Primary Studies [. . . ]: Debugging. [. . . ] Allows users to identify that there are defects in
the system.

[358]

[. . . ] engineers are interested in explanations [. . . ] that can be used for model debugging. [391]

The information is used to [. . . ] debug or repair the functioning of a system. [391]

[. . . ] explainability of this type is more appropriate for system debugging than for other uses. [399]

To date, many reasons have been suggested for making systems explainable [. . . ]: To explain the agent’s choices to better [. . . ]
debug the system in previously unconsidered situations.

[399]

Continued on next page . . .
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For debugging purposes, such developers must dig through the accumulated robot logs to find out about the robot experience
in great detail.

[400]

An intelligent robot that is explainable yields several important advantages. [. . . ] Ease of Debugging. [426]

By making the decision processes transparent, it becomes easier for developers to discover and fix failures. [426]

[. . . ] the agent should be able to [. . . ] give the user enough information to correct the error and understand its scope. [426]

[. . . ] beyond debugging and accountability, explanations [. . . ] help a user to understand [. . . ]. [425]

It is vital to know if an explanation is Post-Hoc Rationalisation or Introspective when used for correcting faults, predicting
behaviour in critical systems [. . . ].

[427]

Approaches that seek to explain such systems [. . . ] are helpful to at least detect and identify the problem [of adversarial
manipulation].

[427]

Furthermore, our explainability approach can help to identify errors [. . . ] in the underlying machine learning model. [441]

[. . . ] some [explainability methods] can also be used to assess accountability of the underlying predictive model, e.g., debug
and diagnose it [. . . ].

[442]

The explainee can steer the explanatory process to [. . . ] debug predictive models [. . . ]. [443]

[. . . ] goals in the ML domain, namely [. . . ] diagnosis and refinement, [. . . are] related to the problems of interpretability of the
ML results and comprehensibility of the obtained models.

[476]

If the system behaved unexpectedly or erroneously, users would want explanations for [. . . ] debugging to be able to identify
the [. . . ] fault and [. . . ] make corrections.

[485]

Explanations describe the decision made by a machine learning model [. . . for] debugging the machine learning system to
identify flaws and inadequacies or distributional drift [. . . ].

[488]

We list several types and goals of transparency. [. . . ] For a developer, to understand how their system is working, aiming to
debug or improve it [. . . ].

[490]

Essentially, we want the robot to have “conversation” with a human so failures can be prevented [and] errors can be resolved
[. . . ]. There are two things that a human user can do here: Fully debugging the learned robot’s plan [. . . ].

[492]

ModelTracker [. . . ] provides an intuitive visualization interface for [. . . ] debugging. [510]

Table 13: Quotes for the desideratum Education.
Quote Src.

Education and debugging were identified as the motivations of explanations, the former is referred to as allowing users to learn
something from the system [. . . ]

[30]

[Explanations] can guide the user during the use of the system, working as a tutorial, to introduce the software features. [108]

Explanations may also help to improve the usability of the system, [. . . ] teaching the user how to better operate it. [108]

The goal of explanation in such system should thus be to educate users about product knowledge by explaining what products
do exist [. . . ].

[110]

[. . . ] the explanation for such system should be able to educate users about product knowledge [. . . ] [111]

If explanations can increase transparency and interpretability, this might improve [. . . ] the pedagogical effectiveness [. . . ]. [386]

[. . . ] users will nonetheless benefit if some relevant details are made transparent because they will better be able to tell the
uses and roles in inquiry for which the device is suited.

[130]

Learning is inhibited by a lack of time [. . . ] – something that could be improved by easy access to explanations. [137]

[. . . ] by explaining why an adverse decision was made, it can provide guidance on how to reverse it [. . . ]. [139]

Explanations, when suitably designed, have been shown to improve [. . . ] learning. [199]

Use of explanations aids learning (transfer of knowledge to non-KBS contexts). [199]

Explanation use has been shown to have positive outcomes – [. . . ] in some cases, improved learning. [199]

Some of the benefits provided [by explanation facilities] are: [. . . ] Education. Education of the user as to the processes used in
generating a recommendation [. . . ].

[222]

Educates Consumer: The process of providing good training explanations will help properly set expectations for what kind of
explanations the system can realistically provide.

[225]

Continued on next page . . .
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[. . . ] self-explanation improves learning [. . . ]. [231]

This suggests in situ explanations are a necessary condition to help end users learn how a machine learning system operates. [281]

Our most complete explanations were associated with the highest perceived benefits and lowest perceived costs of learning
about the system.

[282]

Engaging in explanation can facilitate learning [. . . ]. [308]

And during learning, explanations are used to justify whether the newly solved cases should be learned, to determine which
part of the case should be learned [. . . ].

[325]

It is clear that the primary function of explanation is to facilitate learning [. . . ]. [339]

[. . . ] explanations have several functions other than the transfer of knowledge, such as [. . . ] learning [. . . ]. [339]

[. . . ] explanation is good for learning and generalisation. [339]

Explanations can be necessary to [. . . ] help developers and humans working with a system learn from it [. . . ]. [341]

[. . . ] being able to explain its decisions allows the humans to learn [. . . ]. [345]

[. . . ] some benefits provided by explaining recommendations such as: [. . . ] education [. . . ]. [348]

Explanations are given to clarify, change or impart knowledge [. . . ]. [357]

Explanation Purposes Identified in Primary Studies [. . . ]: Education. [. . . ] Allow users to learn something from the system. [358]

Transparency mechanisms also function to help users to learn about how the system works [...]. [388]

Explanations can help to teach users to perform a similar task or control a robot to achieve this task. [426]

[. . . ] it is often beneficial for learning if the user participates in the formation of explanations [. . . ]. [444]

They suggest three major explanation goals. [. . . ] The system should [. . . ] help the user learn the methods and knowledge
used in the problem solving process.

[444]

After all, a true explanation teaches us something, or, if you like, we learn from it. [471]

[. . . ] non-expert users will need an explanation [. . . ] that also teaches them how to use the system correctly and securely [. . . ]. [479]

Essentially, we want the robot to have “conversation” with a human so [. . . ] learning time can be reduced. [492]

There are three major explanation goals, [. . . ] duplication [. . . ]. [. . . ] In the context of duplication, the goal [. . . ] is [. . . ] to
transfer [the expert system’s] knowledge to the user.

[493]

Table 14: Quotes for the desideratum Effectiveness.
Quote Src.

Explainable recommendation methods [. . . ] improve effectiveness [. . . ]. [43]

[. . . ] explanations can serve a multiplicity of aims, such as [. . . ] helping users make good decisions (effectiveness) [. . . ]. [51]

Tintarev and Masthoff identify seven purposes for recommender system explanations, namely: [. . . ] effectiveness [. . . ]. [72]

[. . . ] a machine-learning based information system that can explain itself may allow more efficient and effective use of the
technology.

[82]

[. . . ] explanatory aim (e.g., [. . . ] users’ decision effectiveness). [110]

We also performed an online user study [. . . ], which shows our [explanation interface] can significantly increase users’
decision effectiveness [. . . ].

[111]

Users’ objective decision effectiveness is also increased [by explanation interfaces] because almost half of them can make
better choices [. . . ].

[111]

[. . . ] explanations are shown useful to improve users’ decision effectiveness [. . . ]. [111]

explanation purpose (e.g., [. . . ] users’ decision effectiveness)[. . . ]. [111]

[. . . ] explanations may be useful for increasing an intelligent system’s overall effectiveness [. . . ]. [386]

Critically, explanations [. . . ] provide a more effective interface for the human in-the-loop [. . . ]. [150]

[. . . ] improved decision efficacy is an expected benefit for at least some explanations [. . . ]. [165]

[. . . ] the possible objectives of explanations are manifold, including aims such as increasing [. . . ] effectiveness [. . . ]. [180]

[. . . ] effectiveness [. . . was] strongly affected by the presence of justification-type explanations [. . . ]. [199]

Poorly designed explanations can actually decrease the effectiveness of a recommender system. [222]

Continued on next page . . .
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The result [from adding explanations] will be filtering systems that are [. . . ] more effective [. . . ]. [222]

[. . . ] motivations for explanations in recommender systems: [. . . ] effectiveness [. . . ]. [348]

Explanation Purposes Identified in Primary Studies [. . . ]: Effectiveness. [. . . ] Help users make good decisions. [358]

[. . . ] explanations can help users make better decisions [. . . ]. [358]

The second most frequent purpose of explanations [. . . ] is effectiveness [. . . ]. [358]

"[. . . ] an organization-based explanation interface is likely to be more effective than the simple ""why"" interface [. . . ]" [382]

Initial evidence suggests that explanations may be useful for increasing an intelligent systems overall effectiveness [. . . ]. [385]

Robots can collaborate more effectively with humans if they can describe their decisions, the underlying beliefs, and the
experiences that informed these beliefs.

[452]

[. . . ] possible aims when explaining the outcomes of an algorithm to users: [. . . ] effectiveness[. . . ]. [229]

Explanations can have many advantages, [. . . ] helping users make good decisions. [463]

Among other things, good explanations could [. . . ] make it [. . . ] easier for users to find what they want [. . . ]. [463]

Among other things, good explanations could [. . . ] make it [. . . ] easier for users to find what they want [. . . ]. [464]

Possible aims for explanations: Effectiveness. Help users make good decisions. [464]

In this way, we distinguish between different explanation such as e.g. [. . . ] explaining why the user may or may not want to try
an item (effectiveness).

[465]

Explanatory criteria and their definitions: Effectiveness [. . . ]. Help users make good decisions. [465]

[. . . ] good explanations may help users make better decisions. [465]

Rather than simply persuading users to try or buy an item, an explanation may also assist users to make better decisions. [465]

Explanatory aims: Effectiveness. Help users make good decisions. [466]

[. . . ] explanations can be more focused on helping users make decisions (about the items) that they are happy with:
effectiveness.

[466]

Our design of tagsplanations is motivated by three goals: justification, effectiveness, and mood compatibility. [478]

Explanations provide many benefits, from improving user satisfaction to helping users make better decisions. [478]

[. . . ] the effectiveness of these systems will be limited by the machine’s inability to explain its thoughts and actions to human
users [. . . ].

[485]

To enable end users to [. . . ] effectively manage their intelligent partners, [. . . ] researchers have produced many [. . . ] algorithm
visualizations, interfaces and toolkits [. . . ].

[485]

We contend explaining why a recommended article is relevant will increase efficacy [. . . ] in the generation of literature
reviews [. . . ].

[489]

However, in order for humans to [. . . ] effectively manage the emerging AI systems, an AI needs to be able to explain its
decisions and conclusions.

[505]

Thus, it is important to build more explainable AI, so that humans can [. . . ] effectively manage the emerging AI systems [. . . ]. [505]

Explainable ML aims to [. . . ] enable human users to understand, appropriately trust, and effectively manage the ML-based
solutions [. . . ].

[508]

[. . . ] both interaction with and transparency of the system help humans make effective uses of the AI system for trusting
decisions.

[510]

Table 15: Quotes for the desideratum Efficiency.
Quote Src.

In fact, requiring every AI system to explain every decision could result in less efficient systems [. . . ]. [4]

For collaborative tasks, explanations were deemed essential to increase efficiency [. . . ]. [30]

[. . . ] explanations can serve a multiplicity of aims, such as [. . . ] helping users [. . . ] make decisions faster (efficiency) [. . . ]. [51]

Tintarev and Masthoff identify seven purposes for recommender system explanations, namely: [. . . ] efficiency [. . . ]. [72]

[. . . ] a machine-learning based information system that can explain itself may allow more efficient and effective use of the
technology.

[82]

Continued on next page . . .
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[Explanations] may also help users to understand better all available features and support in completing tasks faster. [108]

[. . . ] explanatory aim (e.g., [. . . ] users’ decision efficiency [. . . ]). [110]

As for decision efficiency, [the study] shows users spent more time in making decisions [with explanation interfaces]. [111]

[. . . ] explanation purpose (e.g., [. . . ] users’ decision efficiency [. . . ])[. . . ]. [111]

Although the interactive approach is more effective at improving comprehension, it comes with a trade-off of taking more
time.

[113]

[. . . ] studies [. . . ] found a positive relationship between frequency of novice use of explanations and problem solving
performance – [. . . ] in terms of [. . . ] time taken to make decisions.

[137]

[. . . ] explanation [. . . ] can [. . . ] reduce time in decision making. [137]

[. . . ] studies [. . . ] show that explanation [. . . ] can [. . . ] reduce time in decision making. [137]

[. . . ] user performance (i.e., time to make a decision [. . . ]) [. . . are] likely benefits of explanation facilities for recommender
systems.

[137]

Secondly, full transparency concerning the machine learning models in use may invite those concerned to game the system
and thereby undermine its efficiency.

[287]

[. . . ] explainable interfaces also have a positive effect on time [. . . ]. [151]

However, society cannot demand an explanation for every decision, because explanations are not free. Generating them takes
time and effort

[156]

The proposed concept performed significantly better compared to [. . . ] simple explanations in terms of our [. . . ] side goals to
increasing perceived efficiency [. . . ].

[291]

More generally, interpretability could contribute to the design of more [. . . ] efficient classifiers [322]

[. . . ] motivations for explanations in recommender systems: [. . . ] efficiency [. . . ]. [348]

Looking at the historical developments, we can observe [. . . ] that other potential purposes [of explanations], like [. . . ]
efficiency, received more attention in the recent past.

[358]

Explanation Purposes Identified in Primary Studies [. . . ]: Efficiency. [. . . ] Help users make decisions faster. [358]

[. . . ] explanations increase the user’s ability to predict the classifier decision, while decreasing the time needed to reach a
judgement.

[366]

[. . . ] participants felt that [an organization-based explanation interface] would be easier for them to [. . . ] make a quicker
decision.

[382]

The goal [. . . ] is to allow developers of XAI agents to trade off the need for explainability against other factors such as
efficiency [. . . ] of the underlying ML systems.

[425]

The contribution of our work is a set of categories that enable [. . . ] to trade off the need for explainability against other factors
such as efficiency [. . . ] of the underlying ML systems.

[427]

[. . . ] possible aims when explaining the outcomes of an algorithm to users: [. . . ] efficiency [. . . ]. [229]

Among other things, good explanations could [. . . ] make it quicker [. . . ] for users to find what they want [. . . ]. [463]

Among other things, good explanations could [. . . ] make it quicker [. . . ] for users to find what they want [. . . ]. [464]

Possible aims for explanations: Efficiency. Help users make decisions faster. [464]

Explanations can also serve other aims such as [. . . ] make it quicker [. . . ] for users to find what they want [. . . ]. [465]

Explanatory criteria and their definitions: Efficiency [. . . ]. Help users make decisions faster. [465]

Explanations may make it faster for users to decide which recommended item is best for them. [465]

Explanatory aims: Efficiency. Help users make decisions faster. [466]

We contend explaining why a recommended article is relevant will increase [. . . ] efficiency in the generation of literature
reviews [. . . ].

[489]

Table 16: Quotes for the desideratum Fairness.
Quote Src.

There has been increased attention into [. . . ] fair [. . . ] algorithms [. . . ], with [. . . ] DARPA’s Explainable AI (XAI) initiative
[. . . ].

[1]

Continued on next page . . .



227

Table 16 – continued from previous page

Quote Src.

Using XAI systems [. . . ] ensures that there is [. . . a] way to defend algorithmic decisions as being fair [. . . ]. [4]

It starts with with the initial set of available discriminatory paths and generates other inputs belonging to nearby execution
paths, thereby systematically performing local explainability while banking on the adversial robustness property.

[6]

Interpretability helps ensure impartiality in decision-making, i.e. to detect, and consequently, correct from bias in the training
dataset.

[54]

[. . . ] explainability can be considered as the capacity to reach and guarantee fairness in ML models. [54]

[. . . ] purposes motivating the need for interpretable AI models, such as [. . . ] fairness [. . . ]. [54]

[. . . ] an explainable ML model suggests a clear visualization of the relations affecting a result, allowing for a fairness [. . . ]
analysis of the model at hand [. . . ].

[54]

The literature also exploses [sic!] that XAI proposals can be used for bias detection. [54]

[. . . ] explanation approaches might serve regulatory goals of rendering algorithmic decision-making more fair [. . . ]. [72]

The potential for [. . . ] explanation systems to provide justice-related information, fulfilling the policy goals of [. . . ] fairness,
has recently been noted [. . . ].

[72]

Requiring organisations to explain the logic behind their algorithmic decision-making systems [. . . ] enables affected
individuals to assess whether the logic of the system is just [. . . ], which in turn might moderate their assessments of fairness of
the decision outcomes [. . . ].

[72]

Finding ways to reveal something of the internal logic of an algorithm can address concerns about lack of ‘fairness’ and
discriminatory effects, sometimes with reassuring evidence of the algorithm’s objectivity.

[92]

Careful constraints on counterfactuals are required to provide interpretable models of the decisions of AI systems that people
can [. . . ] consider to be fair [. . . ].

[95]

[. . . ] explaining a ML model’s decisions provides a way to check [. . . ] fairness [. . . ]. [99]

[. . . ] explanations are of uttermost importance to ensure algorithmic fairness, to identify potential bias/problems in the training
data [. . . ].

[99]

[. . . ] desiderata that can be optimized through interpretability: [. . . ] Fairness — Ensure that predictions are unbiased and do
not implicitly or explicitly discriminate against protected groups.

[99]

"[. . . ] “how” explanations [. . . enable] users to verify that an algorithm has [. . . ] fairly ""produc[ed] and certif[ied]
knowledge""."

[123]

Algorithmic transparency provides several benefits. First, it is essential to enable identification of harms, such as
discrimination, introduced by algorithmic decision-making [. . . ].

[139]

Critically, explanations [. . . ] provide a more effective interface for the human in-the-loop, enabling people to identify and
address fairness and other issues.

[150]

Our results highlight the need to provide different styles of explanation tailored for exposing different fairness issues. [150]

[. . . ] we show that local explanations are more effective in exposing fairness discrepancies between different cases, while
global explanations seem to [. . . ] generally enhance the fairness perception.

[150]

Explainable AI (XAI) is a field broadly concerned with making AI systems more transparent so people can [. . . ] accurately
troubleshoot it, fairness issues included.

[150]

Interpretability is used to confirm other important desiderata of ML systems: [. . . ] Notions of fairness or unbiasedness imply
that protected groups (explicit or implicit) are not somehow discriminated against.

[155]

[. . . ] we argue that interpretability can assist in qualitatively ascertaining whether other desiderata such as fairness, privacy,
reliability, robustness, causality, usability and trust are met.

[155]

Develop auditing mechanisms for AI systems to identify unwanted consequences, such as unfair bias [. . . ]. [175]

These explanations are important to ensure algorithmic fairness, identify potential bias/problems in the training data [. . . ]. [188]

May Reduce Bias: Providing explanations will increase the likelihood of detecting bias in the training data [. . . ]. [225]

Uncovering the bias of the ranking algorithm [via explantions] will help researchers to better support their research results. [227]

Without good models and the right tools to interpret them, data scientists risk making decisions based on hidden biases,
spurious correlations, and false generalizations.

[233]

Lacking an explanation for how models perform can lead to biased and ill-informed decisions [. . . ]. [233]

[. . . ] explainable-AI calls for [. . . ] fairness [. . . ]. [236]

We explained how to measure discrimination in data or decisions output by a classifier by explicitly considering explainable
and illegal discrimination.

[259]

Continued on next page . . .
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[. . . ] we presented the local techniques that remove exactly the illegal discrimination, allowing the differences in decisions to
be present as long as they are explainable.

[259]

[. . . ] transparency in design [. . . ] may foster a better understanding of [. . . ] the extent to which [the system] is fair and
accurate.

[274]

Many reasons have been given to explain why “explicability,” “interpretability,” and/or “transparency” are important
desiderata: [. . . ] If we do not know how ML algorithms work, we cannot check or regulate them to ensure that they do not
encode discrimination against minorities [. . . ].

[280]

A number of motivations one might have in seeking explicability were cited earlier, such as [. . . ] non-discrimination. [280]

[. . . ] outcome explanation had mixed effects, increasing or decreasing perceived fairness [. . . ]. [302]

[. . . ] outcome explanation [. . . ] increased perceived fairness: it allowed people to understand equalities in utility distribution
and the role of individual input [. . . ].

[302]

[. . . ] outcome explanation had mixed effects, increasing or decreasing perceived fairness [. . . ]. [302]

[. . . ] transparency decreased perceived fairness: outcome explanation made participants recognize uneven distributions and
revealed differences in strategies across participants.

[302]

[. . . ] users also deem explanations of the AI’s decision as potential mitigation of their own decision biases. [304]

Our work also showcases the fact that interpretability is [. . . ] a powerful tool for detecting [. . . ] biases in data [. . . ]. [322]

Explainability in general also helps to identify bias in raw data [. . . ]. [322]

Such debugging [based on explanation] will [. . . ] not fully eliminate bias, but will, instead, replace it with bias that aligns
better with each user’s own preferences and beliefs.

[337]

[. . . ] auditing can [. . . ] detect discrimination or similar harms. [342]

[. . . ] the suggestions [. . . ] must be perceived to be fair [. . . ], and explanations are key to this. [358]

Transparency mechanisms also enable users to identify biases that may result in negative consequences [. . . ]. [388]

The aim of local explanations is to strengthen the confidence and trust of users that the system is not (or will not be)
conflicting with their values, i.e. that it does not violate fairness or neutrality.

[391]

It is unfair that we can receive a low credit score, end up on a police watch list, get higher prison sentences, etc. without
explanation about the considerations that led to those decisions.

[397]

To date, many reasons have been suggested for making systems explainable [. . . ]: To explain the agent’s choices to ensure fair
[. . . ] decisions are made [. . . ].

[399]

[. . . ] explanations include those designed for legal and policy experts to confirm that the decisions/actions of agent fulfill legal
requirements such as being fair [. . . ].

[399]

[. . . ] reasons why ML interpretability is desired, namely [. . . ] fair [. . . ] decision making. [417]

Sokol, Kacper, and Peter A. Flach - Conversational Explanations of Machine Learning Predictions Through Class-contrastive
Counterfactual Statements (2018)

[441]

[. . . ] some [explainability methods] can also be used to assess accountability of the underlying predictive model, e.g., [. . . ]
demonstrate its fairness [. . . ].

[442]

The explainee can steer the explanatory process to inspect fairness (e.g., identify biases towards protected groups) [. . . ]. [443]

[. . . ] this meta-analysis shows that explanations do affect perceptions of fairness [. . . ]. [472]

Exploratory fairness analysts might manually examine mechanisms behind a model’s core logics and ask if they made sense. [475]

The question is where does discrimination occur? The answer lies in the explainability [. . . ]. [481]

[. . . ] we developed five explanation strategies to mitigate decision biases [. . . ]. [485]

Abdul had identified other goals for XAI, such as providing transparency for [. . . ] detecting model bias [. . . ]. [485]

We selected a subset of heuristic biases for which we identify how XAI can play a role to mitigate them [. . . ]. [485]

Legally, opacity prevents regulatory bodies from determining whether a particular system processes data fairly and securely
[. . . ]. [. . . ] Investigators within the Explainable Artificial Intelligence [. . . ] research program intend to ward off these
consequences [. . . ].

[503]

Often knowing the reasons why a particular decision has been taken [through explanations . . . ] can engender [. . . ] confidence
that the people in charge of the process acted fairly and reasonably [. . . ].

[506]
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Table 17: Quotes for the desideratum Informed Consent.
Quote Src.

The importance given to the information requirement, associated with transparency in the GDPR, reflects underlying
assumptions about the value of informed consent for technology users.

[173]

Meaningful consent to data-processing is not possible when opacity precludes risk assessment [. . . ]. [342]

The analysis of explanation [. . . ] has ethical consequences when we connect it to the notion of informed consent [. . . ]. [373]

Only if the right kind of information is given can informed consent on using the system and its outputs be established [. . . ]. [373]

The security of a system thus needs to be explained to the user in order to allow her to make an informed decision on whether
to use it.

[373]

Table 18: Quotes for the desideratum Legal Compliance.
Quote Src.

Recently, the European Union approved a data protection law [. . . ] that includes a “right to explanation” [. . . ] [1]

[. . . ] AI needs to provide justifications in order to be in compliance with legislation [. . . ]. [4]

[. . . ] the “right to explanation”, which is a regulation included in the General Data Protection Regulation (GDPR) [. . . ]. [4]

[. . . ] the [. . . ] recent General Data Protection Regulation (GDPR) law [. . . ] underlines the right to explanations [. . . ]. [30]

[. . . ] the European Union’s new General Data Protection Regulation (GDPR), which also enforces a “right to explanation”
(regarding specific algorithmic decisions) [. . . ].

[43]

[Explainable Artificial Intelligence] is part of a context where laws reinforce the right of users [. . . ]. [48]

[. . . ] explanation approaches might serve regulatory goals [. . . ]. [72]

In so far as these notions of justice capture the aims of the regulatory requirements, they may provide appropriate ways of
measuring the adequacy of different explanation systems for these purposes.

[72]

Indeed, in many cases, [the ability to generate explanations] may even be required by law [. . . ]. [103]

[. . . ] we seek to learn design principles for explanation interfaces that communicate how decision-making algorithms work, in
order to [. . . ] support users’ “right to explanation”.

[113]

[...] explanations may be useful for [. . . ] increased compliance [. . . ]. [386]

[Having Transparency] may play a significant role in litigation. [127]

For example, the EU General Data Protection Regulation (GDPR) requires organizations deploying ML systems to provide
affected individuals with meaningful information about the logic behind their outputs.

[150]

[. . . ] it is imperative – for [. . . ] legal reasons [. . . ] – that intelligent decision support systems provide users with access to the
underlying models [. . . ].

[165]

The importance given to the information requirement, associated with transparency in the GDPR, reflects underlying
assumptions about the value of informed consent for technology users.

[173]

Within data protection law, notice and consent refers to providing information about the envisaged data processing to an
individual [. . . ].

[173]

There are growing legal implications in the use of AI, and in the cases where the AI system makes the wrong decision, or
simply disagrees with the human, it is important to understand why a wrong or different decision was made: this is
transparency.

[177]

[. . . ] in some application domains users need to understand the system’s recommendations enough to legally explain the
reason for their decisions to other people.

[179]

These outside explanations can be used to [. . . ] comply with regulatory and policy changes [. . . ]. [189]

Similar recommendations in using explanations in law have been examined in promoting [. . . ] liability for machines [. . . ]. [189]

[. . . ] the European Union’s General Data Protection Regulation (GDPR) creates obligations for automatic decision making
processes [. . . ], with a provision including right to explanation.

[189]

When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of
an algorithmic decision that significantly affects them.

[193]

The GDPR’s policy on the right of citizens to receive an explanation for algorithmic decisions highlights the pressing
importance of human interpretability in algorithm design.

[193]

Continued on next page . . .



230 LITERATURE REVIEW

Table 18 – continued from previous page

Quote Src.

Explanation technologies are an immense help to companies for creating [. . . ] products, and better managing any possible
liability they may have.

[201]

[. . . ] there is a growing demand that these systems provide explanations for their decisions, so that [. . . ] a citizen’s due process
rights are respected [. . . ].

[225]

"Indeed, a proposed regulation before the European Union [. . . ] asserts that users have the ""right to an explanation""." [231]

Articles 13 and 22 state a “right to explanation” for any algorithm whose decision impacts a person’s legal status [. . . ]. [233]

AI and policy scholars expect explanations to be important in future regulations of AI systems [. . . ]. [233]

Moreover, transparency can be viewed as a regulatory or voluntary requirement. [241]

Transparency might be seen as a regulatory requirement because laws and regulations may require organisations to be
transparent for certain reasons and on certain processes [. . . ].

[241]

What mattered [. . . ] was to make sure that the information needed for rational self-governance was not concealed or unjustly
controlled [. . . ] – hence the recurrent campaigns for transparency and the right to know in many democratic societies.

[251]

[. . . ] it is not obvious what policymakers or other stakeholders actually mean when they demand explainability and enshrine it
in laws or guidelines.

[277]

Many reasons have been given to explain why “explicability,” “interpretability,” and/or “transparency” are important
desiderata: [. . . ] If we do not know how ML algorithms work, we cannot check or regulate them to ensure that they do not
encode discrimination against minorities [. . . ].

[277]

People have a right to know why an ML algorithm has produced some verdict (such as lack of creditworthiness) about them
[. . . ].

[280]

More recently, European privacy law codified the “right to an explanation” for users of platforms [. . . ]. [302]

[. . . ] secrecy [as the opposite of explainability][. . . ] prevents violations of legal restrictions on disclosure of data. [303]

The European Union introduced a right-to-explanation in GDPR as an attempt to remedy the potential problems given the
rising importance of ML algorithms.

[322]

These are not mundane regulatory tasks, the provisions highlighted above can be interpreted to mean automated decisions
must be explainable to data subjects.

[342]

Explanations can be necessary to comply with relevant legislation [. . . ]. [341]

[. . . ] explanations are vital in safety-critical systems, particularly where explanations are necessary for compliance [. . . ]. [345]

Transparency and the ability to explain AI decision making are core requirements for important aspects such as [. . . ] liability
[. . . ] of algorithms.

[349]

Finally, a purely functional understanding of a model would also impede legal accountability [. . . ] for the decisions of the
model.

[365]

Currently there is much debate regarding the safety of and trust in data processes in general, leading to investigations
regarding the explainability of AI-supported decision making. The level of concern about these topics is reflected by offcial
regulations such as the General Data Protection Regulation (GDPR)

[391]

[. . . ] the offered explanations should match (within certain limits) the particular user’s capacity for understanding [. . . ], as
indicated by the GDPR.

[391]

[. . . ] the system’s explanation is [. . . ] to confirm that a secondary, legal, requirement is being met. [394]

Furthermore, these explanations might be necessary for legal considerations [. . . ]. [399]

To date, many reasons have been suggested for making systems explainable [. . . ]: To explain the agent’s choices to ensure
[. . . ] legal decisions are made [. . . ].

[399]

[. . . ] explanations include those designed for legal and policy experts to confirm that the decisions/actions of agent fulfill legal
requirements [. . . ].

[399]

It is vital to know if an explanation is Post-Hoc Rationalisation or Introspective when used for [. . . ] compliance and
accountability.

[427]

In the new age of GDPR [. . . ], automated systems are now legally required (in Europe) to be able to explain how
recommendations were computed.

[436]

[. . . ] decisions about humans without them knowing drawn attention of lawmakers and regulators leading to DARPA’s
Explainable AI (XAI) project and European Union’s General Data Protection Regulation (GDPR) [. . . ].

[441]

Continued on next page . . .
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This [...] will be of particular importance [. . . ] for [. . . ] explainability methods, especially if compliance with best practices or
legal regulations is required, e.g., the “right to explanation” introduced by the European Union’s General Data Protection
Regulation (GDPR) [. . . ].

[442]

[. . . ] interpretability might be seen as the way to make model performance and guidelines compliance compatible. [476]

Enforced in May 2018, [the GDPR] mandates a right to explanation of all decisions made by automated or artificially
intelligent algorithmic systems [. . . ].

[476]

Explanations describe the decision made by a machine learning model [. . . for] legality purposes that come from [. . . ] the
right to be informed about the basis of the decision [. . . ].

[488]

We list several types and goals of transparency. [. . . ] To provide an expert (perhaps a regulator) the ability to audit a prediction
or decision [. . . ]. This [. . . ] will facilitate assignment of accountability and legal liability

[490]

Legally, opacity [. . . ] may hinder end users from exercising their rights under the European Union’s General Data Protection
Regulation [. . . ]. [. . . ] Investigators within the Explainable Artificial Intelligence [. . . ] research program intend to ward off
these consequences [. . . ].

[503]

"Transparency can thus [. . . ] come to embody an end or democratic value in its own right, a ""right to know"" [. . . ]." [506]

Table 19: Quotes for the desideratum Morality.
Quote Src.

Using XAI systems [. . . ] ensures that there is [. . . a] way to defend algorithmic decisions as being [. . . ] ethical. [1]

[. . . ] an explainable ML model suggests a clear visualization of the relations affecting a result, allowing for a[n . . . ] ethical
analysis of the model at hand [. . . ].

[54]

Work on perceptions of justice reveals much about the role of explanations in ethical assessments of human decisions. [72]

We argue that the need for interpretability stems from an incompleteness in the problem formalization [. . . ]. Below are some
illustrative scenarios: Ethics: The human may want to guard against certain kinds of discrimination, and their notion of fairness
may be too abstract to be completely encoded into the system (e.g., one might desire a ‘fair’ classifier for loan approval).

[155]

[. . . ] it is imperative – for ethical [. . . ] reasons [. . . ] – that intelligent decision support systems provide users with access to the
underlying models [. . . ].

[165]

[. . . ] this principle, which we synthesise as “explicability” [. . . ] in the ethical sense [. . . ]. [175]

Similar recommendations in using explanations in law have been examined in promoting ethics for design [. . . ]. [189]

The main purpose to provide explainability of a model also varies, e.g., ethical reasons [. . . ]. [234]

[. . . ] explainable-AI calls for [. . . ] ethics [. . . ]. [236]

Last but not least, informants reflected on their ethical responsibilities to provide explanation. [304]

[. . . ] XAI is a key part of applying ethics to AI [. . . ]. [322]

[. . . ] transparency is often naively treated as a panacea for ethical issues arising from new technologies. [342]

The analysis of explanation [. . . ] has ethical consequences [. . . ]. [373]

This points to the ethical issue of ensuring that the outputs of algorithms are not made based upon ethically problematic or
irrelevant considerations. We expect, for example, a rejection for a loan not to be based on the color of the applicant’s skin (or
a proxy thereof). An explanation of the algorithm’s decision can allow for someone to accept, disregard, challenge, or overrule
the rejection.

[397]

It should be clear that explicability is considered to be an important part of achieving so-called ‘ethical’ [. . . ] AI. [397]

Microsoft, Google, the World Economic Forum, the draft AI ethics guidelines for the EU commission, etc. all include a
principle for AI that falls under the umbrella of ‘explicability’.

[397]

To date, many reasons have been suggested for making systems explainable [. . . ]: To explain the agent’s choices to ensure
[. . . ] ethical [. . . ] decisions are made [. . . ].

[399]

[. . . ] explanations include those designed for legal and policy experts to confirm that the decisions/actions of agent fulfill legal
requirements such as being [. . . ] ethical [. . . ].

[399]

[. . . ] reasons why ML interpretability is desired, namely [. . . ] ethical decision making. [417]

Continued on next page . . .
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Table 19 – continued from previous page

Quote Src.

Explanations describe the decision made by a machine learning model [. . . for] legality purposes that come from ethical
standards [. . . ].

[488]

Table 20: Quotes for the desideratum Performance.
Quote Src.

For collaborative tasks, explanations were deemed essential to increase [. . . ] team performance [. . . ]. [30]

This is true in the sense that there is a trade-off between the performance of a model and its transparency [. . . ]. [54]

Explainability will also enhance trust in the system at the level of the users, and due to that improve the quality and
performance of human-machine systems.

[43]

An explanation of a decision intended to help the user understand the AI system and make inferences about its future
performance could best rely on better-world counterfactuals.

[95]

Software engineers need to pay attention to how the explanations will be integrated, without undermining system performance. [108]

Providing an explanation [. . . ] results in [. . . ] enhanced user performance when using a system [. . . ]. [123]

[. . . ] making adaptive systems more transparent to the user could lead to [. . . ] increases in system performance [. . . ]. [124]

The main benefits arising from the use of explanation facilities are [. . . ] user performance. [137]

[. . . ] studies [. . . ] found a positive relationship between frequency of novice use of explanations and problem solving
performance [. . . ].

[137]

[. . . ] user performance [. . . are] likely benefits of explanation facilities for recommender systems. [137]

[. . . ] transparency also appears as occluding performativity [. . . ]. [173]

Explanations, when suitably designed, have been shown to improve performance [. . . ]. [199]

Use of explanations improves the performance achieved with a KBS as an aid. [199]

[. . . ] explanations of all types was related to improved problem solving performance. [199]

Explanation use has been shown to have positive outcomes – better performance [. . . ]. [199]

Explanation capabilities [. . . ] may improve the filtering performance of people using ACF systems. [222]

We believe that explanations can increase the filtering performance. [222]

[. . . ] explanations must present easy-to understand coherent stories in order to ensure [. . . ] good performance of the
human-machine work system.

[231]

There is an inherent tension between ML performance [. . . ] and explainability. [236]

The benefits we see for including explanations is more information and knowledge for the user, thus [. . . ] improving [. . . ] task
performance.

[254]

Providing explanations can increase performance on information retrieval tasks [. . . ]. [274]

However, explainability requirements may conflict with other softgoals such as performance [. . . ]. [277]

A less explainable system [. . . ] could offer a higher performance. [277]

Several informants [. . . ] considered explanations as an integral part [. . . ] to improve AI performance. [304]

[. . . ] explainability will also enhance trust at the user side, and because of that improve the human-machine interaction
performance.

[349]

[. . . ] explanations have a positive effect for the ability to predict the system’s performance correctly [. . . ]. [366]

Explanations improve [. . . ] overall performance [. . . ]. [388]

Explanation can be helpful in [. . . ] leveraging systems for improving performance. [389]

[. . . ] engineers are interested in explanations of a functional nature, e.g. the effects of various hyperparameters on the
performance of the network [. . . ].

[391]

[. . . ] an explainable model might even be done a a sacrifice to the system’s performance. [394]

[. . . ] such a requirement [of explicability would] trade off the power of AI in terms of performance [. . . ]. [397]

However, explainability is a trade-off, often occurring at the expense of other factors such as performance or development
effort.

[427]

Continued on next page . . .
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Quote Src.

We examine the results in an attempt to ascertain whether explanation can be correlated with improved performance and/or
user satisfaction. Our earlier results demonstrated clearly that the use of argumentation-based dialogue improves both of these
measures.

[436]

[. . . ] sometimes the decrease in predictive performance that is associated with making a particular system more explainable
may not be worth it.

[442]

All of the explainability approaches should be accompanied by a critical discussion of performance – explainability trade-offs
that the user has to face.

[442]

[. . . ] this meta-analysis shows that explanations do affect [. . . ] test performance. [472]

[. . . ] interpretability might be seen as the way to make model performance and guidelines compliance compatible. [476]

Often we constrain the model to derive explanations. [. . . ] This decreases the predictive power [. . . ]. [481]

[. . . ] users who are recipients of system-generated recommendations [. . . ] prefer information that indicate the systems prior
performance [. . . ].

[482]

[. . . ] software developers may be unable to intervene in order to quickly and systematically improve performance [. . . ]. [. . . ]
Investigators within the Explainable Artificial Intelligence [. . . ] research program intend to ward off these consequences [. . . ].

[503]

ModelTracker [. . . ] provides an intuitive visualization interface for ML performance analysis [. . . ]. [510]

Table 21: Quotes for the desideratum Persuasiveness.
Quote Src.

In addition to improving user acceptance of recommendations (persuasiveness), explanations can serve a multiplicity of aims
[. . . ].

[51]

Arguably, the most important contribution of explanations is not to convince users to adopt recommendations [. . . ]. [70]

Tintarev and Masthoff identify seven purposes for recommender system explanations, namely: [. . . ] persuasiveness [. . . ]. [72]

[. . . ] explanation can be [. . . ] for increasing [. . . ] persuasiveness [. . . ]. [110]

[. . . ] explanatory aim (e.g., [. . . ] system persuasiveness [. . . ]). [110]

[. . . ] explanation can be [. . . ] for increasing [. . . ] persuasiveness [. . . ]. [111]

[. . . ] explanation purpose (e.g., [. . . ] system persuasiveness [. . . ])[...] [111]

Explanations could also help convince users of a system’s competence, if an explanation itself is acceptable to them. [124]

The perceptions arising from the use of explanation facilities include [. . . ] persuasiveness about the quality of the expert
system.

[137]

[. . . ] persuasiveness [. . . are] likely benefits of explanation facilities for recommender systems. [137]

[. . . ] feedback explanation facilities can be of benefit to expert decision making – leading to greater adherence to the system
recommendation.

[137]

[. . . ] the degree to which a user would be convinced to buy [are] likely benefits of explanation facilities for recommender
systems.

[137]

Numerous studies have demonstrated the benefits of explanations in intelligent systems [. . . ], including [. . . ] making
recommendations more persuasive [. . . ].

[165]

[. . . ] studies [. . . ] may focus on how explanations enhance perceived [. . . ] credibility of advice [. . . ]. [165]

A key issue is whether explanations [...] make both correct and erroneous recommendations appear more plausible. [165]

[. . . ] the possible objectives of explanations are manifold, including aims such as increasing [. . . ] persuasiveness [. . . ]. [180]

Explanations that conform to Toulmin’s model should be more persuasive [. . . ]. [199]

[. . . ] explanations could also convince users to invest in the system [. . . ]. [304]

[. . . ] explanations have several functions other than the transfer of knowledge, such as persuasion [. . . ]. [339]

With respect to explanation in AI, persuasion is surely of interest: if the goal of an explanation from an intelligent agent is to
generate trust from a human observer, then persuasion that a decision is the correct one could in some case be considered more
important than actually transferring the true cause.

[339]

[. . . ] motivations for explanations in recommender systems: [. . . ] persuasiveness, which convinces users to form target attitude
[. . . ].

[348]

Continued on next page . . .



234 LITERATURE REVIEW

Table 21 – continued from previous page

Quote Src.

[. . . ] explanations can [. . . ] persuade [users] to make one particular choice [. . . ]. [358]

Explanation Purposes Identified in Primary Studies [. . . ]: Persuasiveness. [. . . ] Convince users to try or buy. [358]

Persuasiveness [. . . ] was also in the focus of a number of studies [examining the purposes of explanation]. [358]

In this commercial context, the potential persuasive nature of explanations [. . . ] also attracted more research interest recent
years.

[358]

Traum et al. explained the justification within choices of their training agent to better convince the trainee [. . . ]. [394]

Rosenfeld and Kraus created agents that use argumentation to better persuade people to engage in positive behaviors [. . . ]. [394]

[. . . ] the information will likely need to persuade the person to choose a certain action. [399]

[. . . ] the agent might need to provide information about its decision to help convince the human participant of the correctness
of their solution [. . . ].

[399]

The expected impacts of [. . . ] explanations are as follows: [. . . ] persuasiveness: recognition of a suitable context for usage
motivates users to consume items [. . . ].

[410]

We further confirmed that the hybrids of the context style and other explanation styles improve persuasiveness and usefulness. [410]

With respect to personalization, we add the goal of persuasion, which aims at changing someone’s beliefs through reasoning
and argument.

[417]

An intelligent robot that is explainable yields several important advantages. [. . . ] the agent should be able to [. . . ] convince the
user that the agent is correct [. . . ].

[426]

[. . . ] possible aims when explaining the outcomes of an algorithm to users: [. . . ] persuasiveness[. . . ]. [229]

Among other things, good explanations could [. . . ] persuade [users] to try or purchase a recommended item. [463]

Among other things, good explanations could [. . . ] persuade [users] to try or purchase a recommended item. [464]

Possible aims for explanations: Persuasiveness. Convince users to try or buy. [464]

Explanations can also serve other aims such as [. . . ] persuade [users] to try or purchase a recommended item. [465]

Explanatory criteria and their definitions: Persuasiveness [. . . ]. Convince users to try or buy. [465]

Rather than simply persuading users to try or buy an item, an explanation may also assist users to make better decisions. [465]

Cramer et al. have investigated the effects of transparency on other evaluation criteria such as [. . . ] persuasion (acceptance of
items) [. . . ].

[465]

Explanatory aims: Persuasiveness. Convince users to try or buy. [466]

[. . . ] the most important contribution of explanations is not to convince users to accept the customized results [. . . ] [487]

We list several types and goals of transparency. [. . . ] To lead a user (the audience) into some action or behavior [. . . ]. [490]

Table 22: Quotes for the desideratum Privacy.
Quote Src.

[. . . ] one of the byproducts enabled by explainability in ML models is its ability to assess privacy. [54]

[. . . ] explaining a ML model’s decisions provides a way to check [. . . ] privacy [. . . ]. [99]

[. . . ] desiderata that can be optimized through interpretability: [. . . ] Privacy — Ensure that sensitive information in the data is
protected.

[99]

[. . . ] designers may [. . . ] increase system transparency to [. . . ] lower privacy concerns toward the application [. . . ]. [112]

[. . . ] transparency can both help and hurt privacy [. . . ] [127]

[. . . ] transparency can both help and hurt privacy [. . . ] [127]

First, for the sake of privacy it would be unwise to make underlying datasets freely available to anyone [287]

Interpretability is used to confirm other important desiderata of ML systems: [. . . ] Privacy means the method protects sensitive
information in the data.

[155]

[. . . ] we argue that interpretability can assist in qualitatively ascertaining whether other desiderata such as fairness, privacy,
reliability, robustness, causality, usability and trust are met.

[155]

Similar recommendations in using explanations in law have been examined [. . . ] for privacy [. . . ]. [189]

Continued on next page . . .
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Quote Src.

[. . . ] a few participants said that interpretability also ensures customer privacy is upheld, by discovering what features are
correlated with identifiable information so they can be removed.

[233]

[. . . ] explainable-AI calls for [. . . ] privacy [. . . ]. [236]

Revealing the hidden information of stakeholders is in conflict with secrecy practices [. . . ] [241]

Concerning data transparency, it is also important to know whether it reveals any identity, self (i.e., personal), or hidden
information [. . . ]. Revealing identity information can diminish, if not demolish, the anonymity of stakeholders [. . . ].

[241]

This is where transparency and privacy intersect and transparency may threaten stakeholders’ privacy [. . . ]. [241]

[. . . ] it can threaten both privacy and security, even though transparency is seen as a positive concept [. . . ]. [241]

As revealing self information can endanger stakeholders’ privacy requirements, it must be ensured at early stages of system
analysis that the revealed data complies with privacy regulations [. . . ].

[241]

This should be noted that transparency is not the opposite of privacy, but there are occasions where the two concepts get at
odds with each other, leading to conflicting demands between transparency and privacy [. . . ].

[241]

Transparency could be even twinned with privacy and data protection in the sense of being transparent about the regulations
about the right to hide or the obligation to reveal information [. . . ].

[241]

However, transparency may also have negative consequences, e.g. regarding privacy [. . . ]. [391]

Privacy is a key concern if information could become available to “adversaries”, ie. malicious parties. [417]

Every explainability approach should be accompanied by a critical evaluation of its privacy and security implications and a
discussion about mitigating these factors.

[442]

This exchange of knowledge between the explainee and the explainability system [. . . ] poses a significant [. . . ] privacy risk. [443]

A weakness of this training data based influence interpretation approach is the privacy issue of training data. [510]

To operationalize [. . . ] Transparency [. . . ] one may need to disclose a large amount of information that could jeopardize
Privacy.

[512]

Table 23: Quotes for the desideratum Reliability.
Quote Src.

Specific concerns that require explanations include [. . . ] reliability [. . . ]. [1]

It has been suggested that the intelligibility of system behavior is an important factor in ensuring that the user understands how
the CDSS operates [. . . ]. This in turn could [. . . ] ensure that the clinician forms a more accurate picture of the system’s
reliability.

[93]

[. . . ] desiderata that can be optimized through interpretability: [. . . ] Reliability [. . . ] — Ensure that small changes in the input
do not cause large changes in the prediction.

[99]

Interpretability is used to confirm other important desiderata of ML systems: [. . . ] Properties such as reliability and robustness
ascertain whether algorithms reach certain levels of performance in the face of parameter or input variation.

[155]

[. . . ] we argue that interpretability can assist in qualitatively ascertaining whether other desiderata such as fairness, privacy,
reliability, robustness, causality, usability and trust are met.

[155]

Explanations can be used to help assess the reliability of systems [. . . ]. [475]

Questions that experts in artificial intelligence (AI) ask opaque systems provide inside explanations, focused on [. . . ]
reliability [. . . ].

[189]

Providing justifications seemed to benefit the perceived reliability regardless of gender. [357]

This limitation is a serious roadblock for applications in which trust and reliabiltiy are critical. In order to solve this problem,
researchers have begun developing techniques to [. . . ] provide explanations as to why the agent chose a particular action [. . . ].

[362]

[. . . ] a system that generates an explanation that is not coherent with its output is not reliable. [389]

[. . . ] users who are recipients of system-generated recommendations [. . . ] prefer information that indicate the systems prior
performance, such as reliability data [. . . ].

[482]
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Table 24: Quotes for the desideratum Reliance.
Quote Src.

In some cases, explanation increases [. . . ] reliance [. . . ]. [72]

In some cases, explanation increases [. . . ] reliance [. . . ], but in others an explanation may have the opposite effect if the level
of detail it contains is deemed insufficient [. . . ].

[72]

Whilst a more detailed explanation may promote over-reliance, we argue that providing no explanation at all is not a viable
option [. . . ].

[93]

[. . . ] without providing explanations there is a danger that users will rely too much on themselves because they do not
understand how the system works.

[93]

[. . . ] a more detailed explanation may promote over-reliance [. . . ]. [93]

[. . . ] less detailed explanations made participants question the system’s reliability and led to self-reliance problems. [93]

[. . . ] there is a need to explain how they work so that users and decision makers can develop appropriate [. . . ] reliance. [231]

Greater transparency allows people to question and critique a system in order to develop appropriate reliance [. . . ]. [388]

[Explanations] also help users to know what the limitations of a system are, and when they can rely on it [. . . ]. [388]

Table 25: Quotes for the desideratum Responsibility.
Quote Src.

[. . . ] counterfactuals [. . . ] increase people’s ascriptions of blame and fault to the action [. . . ]. [95]

Counterfactuals [. . . ] can amplify judgments of blame. [95]

[. . . ] since responsible inquiry on the web requires that users be aware of certain key details, the opacity of those details bars
us from using the devices responsibly.

[130]

[. . . ] society still will not demand on explanation unless the explanation can be acted on in some way. This could mean [. . . ]
assigning a blame and providing compensation for injuries caused by past decisions.

[156]

[. . . ] this principle, which we synthesise as “explicability” [. . . ] (as an answer to the question: “who is responsible for the way
it works?”) [. . . ].

[175]

[. . . ] explanations have several functions other than the transfer of knowledge, such as [. . . ] assignment of blame. [339]

Transparency and the ability to explain AI decision making are core requirements for important aspects such as [. . . ]
responsibility [. . . ] of algorithms.

[349]

[. . . ] “[the] human user bears the ultimate responsibility for action” and, therefore, she should be able to explain the decision. [358]

Finally, a purely functional understanding of a model would also impede [. . . ] public responsibility for the decisions of the
model.

[365]

In AI, a user of an expert system can be held responsible for a decision made with use of the system, as long as the user has a
reasonable way of knowing whether the decision proposed by the system is sensible (explanation-for-confidence).

[373]

Only if the right kind of information is given can informed consent on using the system and its outputs be established, and can
responsibility be clearly allocated.

[373]

Transparency mechanisms can convey a sense of [. . . ] individual users feeling like they are in some way responsible for the
outputs of the algorithm.

[388]

The idea is that an explanation [. . . ] will allow a human being to have meaningful control [. . . ]—enabling the ascription of
moral responsibility to that human being (or set of human beings).

[397]

It should be clear that explicability is considered to be an important part of achieving so-called [...] ‘responsible’ [. . . ] AI. [397]

An intelligent robot that is explainable yields several important advantages. [. . . ] know where the blame lies when things go
wrong.

[426]
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Interpretability facilitates the provision of robustness by highlighting potential adversarial perturbations that could change the
prediction.

[54]

[Explanations] can help a domain expert intuitively assess how solid the prediction is. [73]

[. . . ] explanation-generating algorithms will be instrumental in developing more robust systems for use in [. . . ] critical
domains.

[77]

[. . . ] desiderata that can be optimized through interpretability: [. . . ] Robustness — Ensure that small changes in the input do
not cause large changes in the prediction.

[99]

Interpretability is used to confirm other important desiderata of ML systems: [. . . ] Properties such as reliability and robustness
ascertain whether algorithms reach certain levels of performance in the face of parameter or input variation.

[155]

[. . . ] we argue that interpretability can assist in qualitatively ascertaining whether other desiderata such as fairness, privacy,
reliability, robustness, causality, usability and trust are met.

[155]

To enable [. . . ] robust [. . . ] integration of such systems, the end users require them to support interpretability [. . . ] in
decision-making [. . . ].

[187]

The benefits of our proposed explainability framework are three-fold. We can identify [. . . ] fix or delete adversarial examples
[. . . ] in order to improve model robustness.

[322]

Table 27: Quotes for the desideratum Safety.
Quote Src.

These explanations would [. . . ] incite the user to understand [. . . ] the agents, thereby improving the levels of [. . . ] safety [. . . ]. [30]

These explanations would [. . . ] incite the user to understand [. . . ] the agents, thereby [. . . ] avoiding failures [. . . ]. [30]

Explanations are particularly essential for intelligent systems in [. . . ] safety-critical industry [. . . ]. [29]

Interpretability enables MLs models to be tested, audited, and debugged, which is a path towards increasing their safety [. . . ]. [99]

We argue that the need for interpretability stems from an incompleteness in the problem formalization [. . . ]. Below are some
illustrative scenarios: Safety: For complex tasks, the end-to-end system is almost never completely testable [. . . ].

[155]

To enable safe [. . . ] integration of such systems, the end users require them to support interpretability [. . . ] in decision-making
[. . . ].

[187]

Explanation technologies are an immense help to companies for creating safer [. . . ] products [. . . ]. [201]

The results show a clear and consistent order of the three visualizations regarding the efficiency to increase trust [. . . ]. [214]

[. . . ] explainable-AI calls for [. . . ] safety [. . . ]. [236]

A number of motivations one might have in seeking explicability were cited earlier, such as safety [. . . ]. [280]

Explanations can help increase [. . . ] safety by identifying when the recommendation is reasonable and when it is not. [288]

Examples include improving safety, where a user might use the explanation to determine when the machine learning system
will make a mistake [. . . ].

[288]

The question of what kinds of explanation a human can utilize implies the presence of a downstream task. [. . . ] extrinsic tasks
include goals such as safety – given the input, output, explanation, and observations of the world, does the explanation help
the human user identify when the agent is going to make a mistake?

[350]

[. . . ] designers of secure websites need to explain to the banking client why they can safely do their transactions online [. . . ]. [373]

Currently there is much debate regarding the safety of [. . . ] data processes in general, leading to investigations regarding the
explainability of AI-supported decision making.

[391]

To date, many reasons have been suggested for making systems explainable [. . . ]: [. . . ] To explain the agent’s choices to
guarantee safety concerns are met [. . . ].

[399]

Additional goals [of explanation] include [. . . ] guaranteeing safety concerns [. . . ] [399]

This exchange of knowledge between the explainee and the explainability system [. . . ] poses a significant safety [. . . ] risk. [443]

We list several types and goals of transparency. [. . . ] To facilitate monitoring and testing for safety standards. [490]
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Table 28: Quotes for the desideratum Satisfaction.
Quote Src.

[. . . ] explanations can serve a multiplicity of aims, such as [. . . ] increasing the ease of use of a system (satisfaction) [. . . ]. [51]

Arguably, the most important contribution of explanations is [. . . ] to allow [users] to make more informed and accurate
decisions about which recommendations to utilize (satisfaction).

[70]

Tintarev and Masthoff identify seven purposes for recommender system explanations, namely: [. . . ] satisfaction [. . . ]. [72]

Explanation has been shown to be important for user [. . . ] satisfaction in a number of studies. [73]

Other studies [. . . ] have also shown that users are overwhelmingly more satisfied with systems that contain some form of
justification [. . . ].

[73]

Our approach helps users [. . . increase] their satisfaction with the explanation. [74]

Other studies have also shown that users are overwhelmingly more satisfied with systems that contain some form of
justification [. . . ].

[74]

Algorithmic explanations have been found to [. . . ] increase user satisfaction [. . . ]. [96]

Prior work shows that explanations [. . . ] can increase user satisfaction [. . . ]. [96]

[. . . ] explanatory aim (e.g., [. . . ] user satisfaction [. . . ]). [110]

content-based tag cloud explanations are more effective and helpful to increase users’ satisfaction [. . . ]. [110]

[. . . ] explanation purpose (e.g., [. . . ] user satisfaction [. . . ])[. . . ]. [111]

User studies showed that this [explanation method] is helpful to [. . . ] increase [user] satisfaction with the system [111]

The perceptions arising from the use of explanation facilities include [. . . ] user satisfaction [. . . ]. [137]

[. . . ] user satisfaction [. . . are] likely benefits of explanation facilities for recommender systems. [137]

[. . . ] the interfaces with explanations have a positive effect on understandability, which then has a positive effect on
satisfaction [. . . ].

[151]

"[. . . ] users are ""more satisfied with explanation facilities which provide justifications for the recommendations""." [151]

[. . . ] explainable interfaces also have a positive effect on time, that also has a positive effect on satisfaction. [151]

[. . . ] explanations of recommendations in the image domain are useful and increase user satisfaction [. . . ]. [152]

AI rationalization has a number of potential benefits over other explainability techniques: [...] humanlike communication [. . . ]
may afford [. . . ] advantages such as higher degrees of satisfaction [. . . ]

[166]

[. . . ] transparency of music recommendations increased participants’ satisfaction with the recommendation [. . . ]. [173]

[. . . ] good explanations can [. . . ] increase user satisfaction [. . . ]. [198]

Explanations that conform to Toulmin’s model should be more persuasive [. . . ]. Thus, they should lead to greater [. . . ]
satisfaction [. . . ].

[199]

[. . . ] satisfaction [. . . was] strongly affected by the presence of justification-type explanations [. . . ]. [199]

[. . . ] explanations will help properly set expectations [. . . ]. Setting customer expectations correctly [. . . ] is important to their
satisfaction with the system.

[225]

The justifications have a significant impact on perception of [. . . ] self-anticipated satisfaction with the system. [275]

The proposed concept performed significantly better compared to [. . . ] simple explanations in terms of our [. . . ] side goals to
increasing perceived [. . . ] satisfaction.

[291]

[. . . ] we discuss how [. . . ] providing explanations [. . . ] has the potential to increase user satisfaction [. . . ]. [305]

The importance of [. . . ] explanation on improving user satisfaction [. . . ] has been extensively discussed. [348]

[. . . ] motivations for explanations in recommender systems: [. . . ] satisfaction, which increases users’ willingness to continue
use.

[348]

Looking at the historical developments, we can observe [. . . ] that other potential purposes [of explanations], like user
satisfaction [. . . ] received more attention in the recent past.

[358]

Explanation Purposes Identified in Primary Studies [. . . ]: Satisfaction. [. . . ] Increase the ease of use or enjoyment. [358]

Explanations that help users understand how a system works have demonstrated a positive relationship with user satisfaction
with the system [. . . ].

[388]

Sevastjanova, Rita, et al. - Going beyond Visualization - Verbalization as Complementary Medium to Explain Machine
Learning Models (2018)

[422]

Continued on next page . . .
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"We examine the results in an attempt to ascertain whether explanation can be correlated with improved performance and/or
user satisfaction; Our earlier results demonstrated clearly that the use of argumentation-based dialogue improves both of these
measures"

[436]

We show several examples of explanations and ask participants to judge the examples on four [. . . ] dimensions: [. . . ]
satisfaction [. . . ].

[229]

[. . . ] possible aims when explaining the outcomes of an algorithm to users: [. . . ] satisfaction. [229]

Among other things, good explanations could [. . . ] increase satisfaction [. . . ]. [463]

Among other things, good explanations could [. . . ] increase satisfaction [. . . ]. [464]

Possible aims for explanations: Satisfaction. Increase the ease of usability or enjoyment [464]

Explanations may help users enjoy movies more, rather than serve merely as decision aids. [464]

Explanations can also serve other aims such as [. . . ] increase satisfaction [. . . ]. [465]

[. . . ] in our work we have found that [. . . ] personalized explanations may lead to greater user satisfaction [. . . ]. [465]

[. . . ] one can measure how understandable an explanation is, which can contribute to e.g. [. . . ] satisfaction [. . . ]. [465]

Explanatory criteria and their definitions: Satisfaction [. . . ]. Increase the ease of use or enjoyment. [465]

Explanations can increase satisfaction by clarifying or hinting that the system considers changes in the user’s preferences. [465]

Cramer et al. have investigated the effects of transparency on other evaluation criteria such as [. . . ] satisfaction [. . . ]. [465]

Explanations have been found to increase user satisfaction with [. . . ] the overall recommender system [. . . ]. [465]

Explanatory aims: Satisfaction. Increase the ease of use or enjoyment. [466]

[. . . ] explanations can be more focused on helping users make decisions (about the items) that they are happy with [. . . ] [466]

[. . . ] providing an explaining icon [. . . ] plays a crucial role in contributing to the factor of user satisfaction. [473]

Explanations provide many benefits, from improving user satisfaction to helping users make better decisions. [478]

[. . . ] recent work suggests a broader set of goals including trust, user satisfaction, and transparency [. . . ]. [478]

[. . . ] the most important contribution of explanations is [. . . ] to allow [users] to make more informed and accurate decisions
about which results to utilize (i.e., satisfaction) [. . . ].

[487]

Table 29: Quotes for the desideratum Science.
Quote Src.

Asking for explanations is a helpful tool to learn new facts, to gather information and thus to gain knowledge. [. . . ] It will
come as no surprise if, in future, XAI models taught us about new and hidden laws in biology, chemistry and physics.

[4]

[. . . ] desiderata that can be optimized through interpretability: [. . . ] Causality — Ensure that only causal relationships are
picked up.

[99]

Possible incentives for asking a plain fact question, are sheer intellectual curiosity, and a desire to causally connect object a
having property P to events with which we are more familiar.

[497]

Interpretability is used to confirm other important desiderata of ML systems: [. . . ] Causality implies that the predicted change
in output due to a perturbation will occur in the real system.

[155]

[. . . ] we argue that interpretability can assist in qualitatively ascertaining whether other desiderata such as fairness, privacy,
reliability, robustness, causality, usability and trust are met.

[155]

We argue that the need for interpretability stems from an incompleteness in the problem formalization [. . . ]. Below are some
illustrative scenarios: Scientic Understanding: The human’s goal is to gain knowledge. [. . . ] the best we can do is ask for
explanations we can convert into knowledge.

[155]

[. . . ] in some application domains users need to understand the system’s recommendations enough to legally explain the
reason for their decisions to other people.

[179]

The main purpose to provide explainability of a model also varies, e.g., the goal might be to support [. . . ] causality [. . . ]. [234]

The use of ML algorithms by scientists for the purpose of generating causal explanations is one such case. [280]

Algorithms whose inner workings are not interpretable will not enable us to produce causal explanations of the world. [280]

Ratti and López-Rubio [. . . ] have emphasized a connection between interpretability and causal explanation in molecular
biology.

[280]

Continued on next page . . .
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[. . . ] explanations could help [. . . ] generate hypothesis about the causality. [304]

[. . . ] it could be that explanations [. . . ] play a role in discovery and confirmation, which in turn produces theories that support
future prediction and intervention.

[308]

[. . . ] explanations in these cases can be helpful for knowledge discovery [. . . ]. [394]

[. . . ] an agent that provides an explanation for its decision might further human understanding of a medical phenomenon. [394]

Explicable AI may be extremely valuable to researchers and others who would be able to use explanations to better understand
their domain.

[397]

Explanations geared beyond the immediate user can also be those geared for researchers to help facilitate scientific knowledge
discovery [. . . ].

[399]

Additional goals [of explanation] include [. . . ] knowledge/scientific discovery. [399]

To date, many reasons have been suggested for making systems explainable [. . . ]: [. . . ] Knowledge/scientific discovery [. . . ]. [399]

[. . . ] reasons why ML interpretability is desired, namely [. . . ] causality [. . . ]. [417]

Explainable artificial intelligence presented [. . . ] mentions [. . . ] discover. [417]

Interpretability of the machine learning predictions is important for a variety of reasons. Scientists [. . . ] may be driven by a
scientific curiosity hoping to use machine learning to elicit new knowledge from data.

[441]

Most [explainability methods] are designed for transparency: explaining [. . . ] ([. . . ] to [. . . ] elicit knowledge form a predictive
model or the data used to build it, or extract a causal relation).

[442]

We can expect more visualizations of this type to be created and used with other kinds of computational models in systems
biology.

[454]

[. . . ] visualization can itself be a knowledge generator as it intuitively leads the analyst from observed model outcomes to
potential hypothesis about the observed data.

[476]

Interpretation in this case is used to acquire new knowledge through visualization. [476]

[. . . ] we further argue that XAI should support abductive and [hypothetico-deductive] reasoning i.e., in addition to providing
counterfactuals to help users find causes, we should provide explanations to allow users to generate and test hypotheses to
further narrow down potential causes.

[488]

Explanations describe the decision made by a machine learning model [. . . ] for an increase in insight to the domain area for
instance uncovering causality [. . . ].

[485]

Theoretically, the Black Box Problem makes it difficult to evaluate the potential similarity between artificial neural networks
and biological brains [. . . ]. [. . . ] Investigators within the Explainable Artificial Intelligence [. . . ] research program intend to
ward off these consequences [. . . ].

[503]

Table 30: Quotes for the desideratum Security.
Quote Src.

[. . . ] cyptography brings some transparency problems, because they can improve security [. . . ] by bringing lack of
transparency [. . . ]

[128]

[. . . ] explainable-AI calls for [. . . ] security [. . . ]. [236]

Similarly, security and transparency are sometimes viewed as two antagonistic requirements [. . . ]. [241]

[. . . transpanency] can threaten both privacy and security, even though transparency is seen as a positive concept [. . . ]. [241]

However, explainability requirements may conflict with other softgoals such as [. . . ] security. [277]

Whether transparency also contributes to the security of the system itself is heavily debated: some would argue that making
the protection mechanisms public will enhance the capabilities of the attackers [. . . ].

[373]

Explanations are thought to bridge the gap between ‘actual security’ and ‘perceived security’. [373]

Transparency is [. . . ] considered essential for allowing the users to understand what the designers have done to protect them. [373]

Whether transparency also contributes to the security of the system itself is heavily debated: some [. . . ] would argue that
protection mechanisms can be improved by public scrutiny.

[373]

"[. . . ] the explanation must be provided for a given user while also considering the implications on the system’s security
goals."

[399]

Continued on next page . . .
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Every explainability approach should be accompanied by a critical evaluation of its privacy and security implications and a
discussion about mitigating these factors.

[442]

Another example can be a security trade-off between ante-hoc [explainability] approaches that reveal information about the
predictive model itself [. . . ].

[442]

This exchange of knowledge between the explainee and the explainability system [. . . ] poses a significant [. . . ] security [. . . ]
risk.

[443]

[. . . ] non-expert users will need an explanation [. . . ] that also teaches them how to use the system correctly and securely [. . . ]. [479]

Legally, opacity prevents regulatory bodies from determining whether a particular system processes data fairly and securely
[. . . ]. [. . . ] Investigators within the Explainable Artificial Intelligence [. . . ] research program intend to ward off these
consequences [. . . ].

[503]

Table 31: Quotes for the desideratum Transferability.
Quote Src.

[. . . ] purposes motivating the need for interpretable AI models, such as [. . . ] transferability [. . . ]. [54]

Explainability is also an advocate for transferability, since it may ease the task of elucidating the boundaries that might affect a
model, allowing for a better understanding and implementation.

[54]

The explanations lead to insights of feature transfer for users without ML expertise, and in turn allow them to further improve
a transfer learning approach with more optimized settings.

[109]

Answering plain fact questions can also serve other purposes [. . . ]. One such purpose is related to the development of a new
program by using components of an outdated program.

[497]

If our engineer prefers creating a new program [. . . ], and he wants to reuse [. . . ] components [. . . ], he has to know which [. . .
fulifll] this function. The corresponding knowledge-seeking question can be reformulated into the plain fact
explanation-seeking question.

[497]

The main purpose to provide explainability of a model also varies, e.g., the goal might be to support [. . . ] transferability [. . . ]. [234]

[. . . ] reasons why ML interpretability is desired, namely [. . . ] transferability [. . . ]. [417]

Table 32: Quotes for the desideratum Transparency.
Quote Src.

There has been increased attention into [. . . ] transparent algorithms [. . . ], with [. . . ] DARPA’s Explainable AI (XAI) initiative
[. . . ].

[1]

[. . . ] eXplainable Artificial Intelligence (XAI) emerged with the aims of fostering transparency [. . . ]. [30]

[. . . ] transparency [. . . is] among the listed motivations for the explanations. [30]

Explanations are particularly essential [. . . ] as it [sic!] raises [. . . ] transparency in the system. [29]

Explainable recommendation methods [. . . ] improve [. . . ] transparency [. . . ]. [43]

Explanations can serve a multiplicity of aims, including transparency [. . . ]. [51]

Indeed, one of the aims that explanations can serve is to provide transparency [. . . ]. [51]

A system’s ability to explain its recommendations [. . . ] makes its reasoning more transparent [. . . ]. [70]

[. . . ] explanation approaches might serve regulatory goals of rendering algorithmic decision-making more [. . . ] transparent. [72]

The potential for [. . . ] explanation systems to provide justice-related information, fulfilling the policy goals of transparency
[. . . ], has recently been noted [. . . ].

[72]

Tintarev and Masthoff identify seven purposes for recommender system explanations, namely: transparency [. . . ] [72]

While considering the integration of explanations in a system, the goal may be to add transparency [. . . ] but it may result in
the opposite effects.

[108]

While considering the integration of explanations in a system, the goal may be to add transparency [. . . ]. [108]

Continued on next page . . .
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Explanations may also benefit the auditability of a system, mainly related to its technical aspects and data transparency. [108]

[. . . ] explanation can be [. . . ] for increasing system transparency [. . . ]. [110]

The importance of explanation interfaces in providing system transparency [. . . ] has been recognized in a number of fields
[. . . ]

[110]

[. . . ] explanatory aim (e.g., increasing system transparency [. . . ]). [110]

[. . . ] explanations can significantly increase [. . . ] perceived recommendation transparency [. . . ]. [111]

[Users] perceived the system to be significantly better at [. . . ] transparent and good recommendations. [111]

[. . . ] explanation can be [. . . ] for increasing system transparency [. . . ]. [111]

The importance of explanation interfaces in providing system transparency [. . . ] in a number of fields [. . . ]. [111]

[. . . ] explanation purpose (e.g., increasing system transparency [. . . ]) [. . . ] [111]

Such a classification model offers transparency: each prediction can be explained trivially by analyzing the terms that were
present in the text [. . . ].

[118]

[. . . ] explanations can increase transparency [. . . ]. [386]

[. . . ] explanations can be useful to expose the inner workings of an AI system to its users, thus fostering transparency [. . . ]. [386]

[. . . ] transparency [. . . are] likely benefits of explanation facilities for recommender systems. [137]

Explainable AI (XAI) is a field broadly concerned with making AI systems more transparent [. . . ] [150]

This lack of transparency drives a sweeping call for explainable artiicial intelligence (XAI) in industry, academia, and public
regulation.

[150]

Numerous studies have demonstrated the benefits of explanations in intelligent systems [. . . ], including [. . . ] increasing
transparency of system reasoning [. . . ].

[165]

[. . . ] some approaches for increasing the transparency of filtering process [. . . ] involve explanations [. . . ]. [165]

The need for explainable AI is motivated mainly by three reasons: the need for trust [. . . ]. [177]

[. . . ] an explainable system may be transparent [. . . ]. [189]

Explanations, by virtue of making the performance of a system transparent to its users [. . . ]. [199]

[. . . ] the recommendation process is transparent by explaining its recommendations [. . . ]. [215]

An explanation behind the reasoning of a ACF recommendation provides transparency into the workings of the ACF system. [222]

Building an explanation facility into a recommender system [. . . ] removes the black box from around the recommender
system, and provides transparency.

[222]

We present work in progress on explainability to support transparency in human AI interaction. [234]

[. . . ] explainability provides transparency [. . . ]. [234]

The presence of explanations assisted participants in the conception of an accurate mental model, increasing perceived
transparency [. . . ]

[235]

[. . . ] the same explanation [. . . ] with every HR request [. . . ] ([. . . ] may cause unnecessary transparency). [241]

The proposed concept performed significantly better compared to [. . . ] simple explanations in terms of our main goals to
increase transparency [. . . ].

[291]

[. . . ] outcome explanation, the input and output visualization, which made everyone’s preferences and outcomes transparent
[. . . ].

[302]

Explainability is the first step in achieving a transparency goal [. . . ]. [322]

[. . . ] we introduced Bart, an algorithm for jointly personalizing recommendations and associated explanations for providing
more transparent [. . . ] suggestions to users.

[326]

[. . . ] motivations for explanations in recommender systems: [. . . ] transparency [. . . ]. [348]

[. . . ] the most common explanation purpose is to provide transparency [. . . ]. [358]

[. . . ] the suggestions [. . . ] must be perceived to be [. . . ] transparent [. . . ], and explanations are key to this. [358]

Explanation Purposes Identified in Primary Studies [. . . ]: Transparency. [. . . ] Explain how the system works. [358]

The main goal of Explainable Artificial Intelligence (XAI) has been variously described as a search for explainability,
transparency and interpretability [. . . ].

[365]

[. . . ] explanations of what procedures are built into the design and what procedures exist if something goes wrong would then
contribute to transparency.

[373]

Continued on next page . . .
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The importance of explanation interfaces in providing system transparency [. . . ] has been well recognized in a number of fields [382]

The importance of explanation interfaces in providing system transparency [. . . ] has been well recognized in a number of
fields [. . . ].

[383]

Furthermore, if the agent makes a mistake, the generated reasons could provide transparency [. . . ]. [394]

An intelligent robot that is explainable yields several important advantages. [. . . ] making the decision processes transparent
[. . . ].

[426]

To be trusted, a system has to demonstrate [. . . ] that the process leading to the decision is transparent and accountable [. . . ].
Explanations form a vital part of satisfying these requirements.

[427]

Every explainability approach should be accompanied by a list of its intended applications [. . . ]. Most of them are designed
for transparency [. . . ].

[442]

[. . . ] an explanation in the form of a reasoning trace [. . . ] would be presented. This would offer the user a degree of
transparency into how the system reached its conclusions.

[444]

We show several examples of explanations and ask participants to judge the examples on four [. . . ] dimensions: transpareny
[. . . ].

[229]

[. . . ] possible aims when explaining the outcomes of an algorithm to users: transparency [. . . ]. [229]

Possible aims for explanations: Transparency. Explain how the system works. [464]

Explanations can provide that transparency, exposing the reasoning and data behind a recommendation. [465]

In this way, we distinguish between different explanation such as e.g. explaining the way the recommendation engine works
(transparency) [. . . ].

[465]

Explanatory criteria and their definitions: Transparency [. . . ]. Explain how the system works. [465]

[. . . ] explanations can provide transparency, exposing the reasoning and data behind a recommendation. [466]

Explanatory aims: Transparency. Explain how the system works. [466]

[. . . ] recent work suggests a broader set of goals including trust, user satisfaction, and transparency [. . . ]. [478]

Pieters also discusses two main goals that an explanation may have: transparency (e.g., to allow users to understand what the
designers have done to protect them) [. . . ].

[479]

Explanations are provided to support transparency, where users can see some aspects of the inner state or functionality of the
AI system.

[485]

Abdul had identified other goals for XAI, such as providing transparency [. . . ]. [485]

Investigators within the Explainable Artificial Intelligence [. . . ] research program [. . . ] use [. . . ] analytic techniques capable
of rendering opaque computing systems transparent.

[503]

It is generally agreed upon that the goal of XAI is to [. . . ] improve the transparency of the system [. . . ]. [511]

Table 33: Quotes for the desideratum Trust.
Quote Src.

Specific concerns that require explanations include [. . . ] trust [. . . ]. [1]

[. . . ] people should be able to [. . . ] trust [the technology. . . ]. [. . . ] prior work has identified issues [. . . ] when this is not the
case. [. . . ] To address these problems, machine learning algorithms need to be able to explain how they arrive at their
decisions.

[1]

XAI aims to “enable human users to [. . . ] appropriately trust [. . . ] the emerging generation of artificially intelligent partners”. [4]

Using XAI systems [. . . ] ensures that there is [. . . a] way to defend algorithmic decisions as being fair and ethical, which leads
to building trust.

[4]

These explanations would [. . . ] incite the user to understand [. . . ] the agents, thereby improving the levels of trust [. . . ]. [30]

Increasing user’s trust in the system [. . . is] among the listed motivations for the explanations. [30]

Explanations are particularly essential [. . . ] as it [sic!] raises trust [. . . ] in the system. [29]

Intelligent systems that are explaining their decisions to increase the user’s trust [. . . ] are widely studied. [29]

[. . . ] explanation and interpretation are required to enable domain experts and users to [. . . ] trust [. . . ] the [. . . ] model [. . . ]. [43]

Continued on next page . . .
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Explainable recommendation methods [. . . ] improve [. . . ] user trust [. . . ]. [43]

[. . . ] explainability will also enhance trust in the system at the level of the users [. . . ] [43]

[Explainable Artificial Intelligence] aims at producing intelligent systems that reinforce the trust of the users [. . . ]. [48]

[. . . ] explanations can serve a multiplicity of aims, such as inspiring the user’s confidence in the system (trust) [. . . ]. [51]

The approach we present to increase trust in these systems consists in providing the user with semantic and context-dependent
information as well as logical information about plans.

[69]

In some cases, explanation increases trust [. . . ]. [72]

Tintarev and Masthoff identify seven purposes for recommender system explanations, namely: [. . . ] trust [. . . ]. [72]

In some cases, explanation increases trust [. . . ], but in others an explanation may have the opposite effect if the level of detail
it contains is deemed insufficient [. . . ].

[72]

Later studies [. . . ] showed that explanations significantly increase users’ [. . . ] trust [. . . ]. [73]

In order to engender trust in AI, [. . . ] the underlying AI process must produce justifications and explanations that are both
transparent and comprehensible to the user.

[77]

Lee and See provide an extensive description of the need for and methods to achieve user trust in a computer system:
comprehensible information.

[82]

[. . . ] giving a fuller explanation of the facts used in making a diagnosis had a positive effect on trust [. . . ] [93]

[. . . ] XAI may have the overall goal of improving trust in decisions made by AI systems [. . . ]. [95]

Careful constraints on counterfactuals are required to provide interpretable models of the decisions of AI systems that people
can trust [. . . ].

[95]

To increase trust in such systems by human users, [. . . ] there is a need to enable AI systems to provide [. . . ] explanations [. . . ]. [95]

[. . . ] comparative explanations could help establish a more appropriate level of trust. [96]

Algorithmic explanations have been found to [. . . ] increase user [. . . ] trust [. . . ]. [96]

Prior work shows that explanations [. . . ] can increase user [. . . ] trust [. . . ]. [96]

However, some found that too much explanation can create confusion and degrade trust [. . . ]. [96]

[. . . ] explaining a ML model’s decisions provides a way to check [. . . ] trust. [99]

desiderata that can be optimized through interpretability: [. . . ] Trust [99]

[. . . ] medical students [. . . ] trusted the system more when presented with an explanation [. . . ]. [101]

We can see that most people seem to agree that the explanations were helpful and easy to understand. In fact, the majority of
people strongly agreed that their trust of the robot increased during the study [. . . ].

[103]

[. . . ] explanatory aim (e.g., [. . . ] user trust [. . . ]). [110]

[. . . ] explanation purpose (e.g., [. . . ] user trust [. . . ])[. . . ]. [111]

[. . . ] explanation can cause users to overestimate item quality, which may lead to mistrust [. . . ]. [111]

[. . . ] trust of a personalized mobile application depends highly on perceived information transparency [. . . ]. [112]

[. . . ] designers may [. . . ] increase system transparency to breed trust [. . . ]. [112]

[. . . ] XAI will be key for both expert and non-expert users to enable them to have [. . . ] appropriate level of trust [. . . ]. [116]

Understanding the reason behind a classification allows us to establish trust in further predictions [. . . ]. [118]

[. . . ] explanations can be useful to expose the inner workings of an AI system to its users, thus fostering [. . . ] trust [. . . ]. [386]

"[. . . ] “how” explanations open the black box and instill trust by enabling users to verify that an algorithm has accurately and
fairly ""produc[ed] and certif[ied] knowledge""."

[123]

[. . . ] explanations allow users to make inferences about a system’s abilities and underlying motives, which form the basis of
[. . . ] trust in a system.

[123]

Systems researchers have emphasized the importance of explanations as a means of influencing user [. . . ] trust in systems by
increasing confidence in systems’ abilities [. . . ].

[123]

Increasing transparency of a system can help users decide whether they can trust the system. [124]

Increasing transparency of user-adaptive systems could thus increase trust [. . . ] of such systems [. . . ]. [124]

[. . . ] transparency in many cases may be essential to assure trust. [128]

[. . . ] self-driving cars, which can demonstrate transparency in operations, will help promote trust [. . . ]. [127]

[Having transparency] would [. . . ] increase trust [. . . ]. [127]
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The lack of explainability results in the lack of trust [. . . ]. [131]

Explainability is [. . . ] a pre-requisite for practitioner trust [. . . ]. [131]

If software practitioners do not understand a model’s predictions, they would not blindly trust those predictions, nor commit
project resources or time to act on those predictions.

[131]

We have argued for explainable software analytics to facilitate human understanding of machine prediction as a key to warrant
trust from software practitioners.

[131]

The perceptions arising from the use of explanation facilities include trust [. . . ]. [137]

People gather more reliable information about abilities and mental states. As a result, people will correctly calibrate their trust
in such systems.

[196]

When people trust the explanation, it follows that they would be more likely to trust the underlying ML systems. [150]

Explainable AI (XAI) is a field broadly concerned with making AI systems more transparent so people can confidently trust
an AI system [. . . ].

[150]

Both effects are mediated by understandability, which could mean that users only trust something they understand [151]

Interpretability is used to confirm other important desiderata of ML systems: [. . . ] trusted systems have the confidence of
human users.

[155]

[. . . ] we argue that interpretability can assist in qualitatively ascertaining whether other desiderata such as fairness, privacy,
reliability, robustness, causality, usability and trust are met.

[155]

By exposing the logic behind a decision, explanation can be used to prevent errors and increase trust. [156]

[. . . ] access to an explanation might decrease observers’ trust in some decisions [. . . ]. [156]

We find that including certain transparency features [. . . ] does improve user trust [. . . ]. [161]

Numerous studies have demonstrated the benefits of explanations in intelligent systems [. . . ], including building user trust
[. . . ].

[165]

Studies have explored [. . . ] benefits related to providing explanations [. . . ] many focusing on the advantage of earning users’
trust [. . . ] in the systems [. . . ].

[165]

[. . . ] some approaches for increasing [. . . ] the users’ trust in recommender systems involve explanations [. . . ]. [165]

[. . . ] participants preferred rationales with transparency so that they can [. . . ] trust the robot in a situation where expectations
are violated.

[167]

[. . . ] some studies [. . . ] reveal how transparency can also undermine trust [. . . ]. [173]

[. . . ] studies [. . . ] tend to find positive outcomes for organizations, for example, positive effects on organizational trust [. . . ]. [173]

[. . . ] explicability is a critical tool to build public trust in [. . . ] the technology. [175]

The need for explainable AI is motivated mainly by three reasons: the need for trust [. . . ]. [177]

First, understanding a computer-induced model is often a prerequisite for users to trust the model’s predictions [. . . ]. [179]

[. . . ] explanations [. . . ] promote objectives such as trust [. . . ]. [180]

In order for humans to trust black-box methods, we need explainability [. . . ]. [188]

These outside explanations can be used to build trust [. . . ]. [189]

[. . . ] transparency is particularly useful in building trust in a system [. . . ]. [190]

[. . . ] transparency can provide a building block on which to establish trust in systems for which no other basis already exists
[. . . ].

[190]

[. . . ] the use of complex explanation systems can address the majority of the trust concerns [. . . ]. [190]

Several users reported that explanations [. . . ] would enable them to trust results without the need for extensive further
verification.

[190]

[. . . ] good explanations can help inspire trust in a recommender [. . . ]. [198]

Explanations, by virtue of making the performance of a system transparent to its users, are influential [. . . ] for improving
users’ trust [. . . ].

[199]

Possibly one would feel more comfortable and trusting of an agent if it is able to explain what it is doing and why. [199]

Explanations that conform to Toulmin’s model should be more persuasive [. . . ]. Thus, they should lead to greater trust [. . . ]. [199]

Explanation technologies are an immense help to companies for creating [. . . ] more trustable products [. . . ]. [201]

Another property that influences the trust level of a model is usability: people tend to trust more models providing information
that rassist them to acocmplish a task [. . . ].

[201]

Continued on next page . . .
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The results show a clear and consistent order of the three visualizations regarding the efficiency to increase [. . . ] perceived
safety [. . . ].

[214]

To improve [. . . ] trust, transparency and explainability become increasingly important for practical recommender systems. [215]

[. . . ] explanations [. . . ] can play a key role [. . . ] to enhance trust in the system [. . . ]. [221]

The explanations can be useful to enhance his trust in the classifier [. . . ]. [221]

Explanation capabilities provide a solution to building trust [. . . ]. [222]

Users will be more likely to trust a recommendation when they know the reasons behind that recommendation. [222]

[. . . ] there is a need to explain how they work so that users and decision makers can develop appropriate trust [. . . ]. [231]

Using human trust as a metric of evaluation for the effectiveness of explanations has also been studied [. . . ]. [233]

[. . . ] explainability [. . . ] contributes to trust [. . . ]. [234]

The main purpose to provide explainability of a model also varies, e.g., the goal might be to support trust [. . . ]. [234]

The trust levels of participants in the with-explanation group were influenced strongly by the perceived ability of the
AutoCoder. [. . . ] Without the presence of explanations, [. . . ] their level of trust did not increase.

[235]

[. . . ] explainability of AI could help to enhance trust of medical professionals in future AI systems. [236]

[. . . ] explainable-AI calls for [. . . ] trust [. . . ]. [236]

Such a shift in transparency provision can lead to positive side effects, such as more trust. [241]

[. . . ] transparent design of algorithmic interfaces can promote awareness and foster trust [. . . ]. [274]

Transparency may promote [. . . ] users’ trust in a system by changing beliefs about its trustworthiness. [274]

However, providing too much information eroded this trust [. . . ]. [274]

Transparency may [. . . ] erode users’ trust in a system by changing beliefs about its trustworthiness [274]

The justifications have a significant impact on perception of [. . . ] trust [. . . ]. [275]

Explanations enable understanding and thereby foster trust [. . . ]. [277]

If algorithms lack transparency, domain experts or the public will not trust them [. . . ]. [280]

Likewise, there is the case of public trust. To the extent that public acceptance of ML algorithms requires that end users have
some grasp of the inner workings [. . . ], the notion of interpretation acquires heightened importance.

[280]

Such summaries have been shown to [. . . ] facilitate trust [. . . ]. [289]

Explanations can help increase trust [. . . ] by identifying when the recommendation is reasonable and when it is not. [288]

Examples include [. . . ] increasing trust, where a user might be convinced to use a machine learning system if it justifies its
actions in plausible ways.

[288]

"Explanation is often embraced as a cure for ""black box"" models to gain trust and adoption." [304]

[. . . ] generating explanations of application behavior [. . . ] has been employed [. . . ] with the goal of increasing user trust [. . . ]. [305]

We aim to evaluate the effect of explaining model outputs, specifically large errors, on users’ attitudes towards trusting [. . . ]. [312]

An appropriate explanation can promote trust in the system [. . . ]. [316]

Driven by lack of trust [. . . ] , there are many calls for Artificial Intelligence (AI) systems to become more transparent,
interpretable and explainable.

[316]

Explainable Machine Learning (XAI) [. . . ] enables human users to [. . . ] appropriately trust [. . . ] emerging generation of
artificially intelligent partners.

[322]

[. . . ] XAI is a key part of applying ethics to AI because it increases trust in model decisions [. . . ]. [322]

[. . . ] a transparency goal [. . . ] can be achieved by checking systems explanations to determine whether they satisfy desirable
trust criteria.

[322]

[. . . ] building machines that are able to explain and be explained to facilitates humans to gradually build trust [. . . ]. [337]

The running hypothesis is that by building more [. . . ] explainable systems, users will be better equipped to understand and
therefore trust the intelligent agents [. . . ].

[339]

[. . . ] providing simpler explanations [. . . ] may increase trust better than giving more likely explanations. [339]

Transparency disclosures by data processors and controllers may prove crucial in the future to maintain a trusting relationship
with data subjects.

[342]

Explanations can be necessary to [. . . ] enhance the trust between individuals subject to a decision and the system itself [. . . ]. [341]

The proposed visualization helps to [. . . ] increase the users’ trust in the system. [348]
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The importance of [. . . ] explanation on improving user satisfaction (e.g., acceptance, trust) has been extensively discussed. [348]

[. . . ] motivations for explanations in recommender systems: [. . . ] trust [. . . ]. [348]

[. . . ] explainability will also enhance trust at the user side [. . . ]. [349]

Transparency and the ability to explain AI decision making are core requirements for important aspects such as trust [. . . ]. [349]

The question of what kinds of explanation a human can utilize implies the presence of a downstream task. [. . . ] extrinsic tasks
include goals such as [. . . ] trust [. . . ].

[350]

[. . . ] we present our work on using explanations to maintain the trust relationship between human and computer [. . . ]. [357]

[. . . ] explanation facilities have been widely investigated as a means of establishing trust in these systems since the early years
of expert systems.

[358]

Transparency is also seen as key for users to develop trust toward the system [. . . ]. [358]

[. . . ] automatically generated explanations have been considered as a fundamental mechanism to increase user trust in
suggestions made by the system.

[358]

[. . . ] trust-building is explicitly mentioned as the goal of the explanations. [358]

Explanation Purposes Identified in Primary Studies [. . . ]: Trust. [. . . ] Increase users’ confidence in the system. [358]

This limitation is a serious roadblock for applications in which trust and reliabiltiy are critical. In order to solve this problem,
researchers have begun developing techniques to [. . . ] provide explanations as to why the agent chose a particular action [. . . ].

[362]

The main goal of Explainable Artificial Intelligence (XAI) has been variously described as [. . . ] generating trust in the model
and its predictive performance.

[365]

Several authors have argued that post hoc interpretability [. . . ] is a necessary condition for trust [. . . ]. [365]

[. . . ] minimum explanations can potentially harm, but not improve user trust. [366]

Artificial agents need to explain their decision to the user in order to gain trust [. . . ]. [373]

Depending on the goal, an explanation can [. . . ] aim at acquiring [. . . ] trust. [373]

[. . . ] explanations may be an important prerequisite for the building of e-trust. [373]

[. . . ] bad explanation-for-trust may fail to create trust, and even lead to distrust. [373]

[. . . ] we have shown that explanation interfaces have the greatest potential to build a competence-inspired trust relationship
with its users.

[382]

Participants on average built more trust in the organization-based explanation interface [. . . ]. [383]

Transparency is also important in order to build human trust in systems. [389]

Currently there is much debate regarding the [. . . ] trust in data processes in general, leading to investigations regarding the
explainability of AI-supported decision making.

[391]

The aim of local explanations is to strengthen the confidence and trust of users. [391]

[. . . ] explaining individual predictions is important in assessing trust. [393]

Our experiments demonstrated that explanations are useful for a variety of models in trust-related tasks in the text and image
domains [. . . ]: [. . . ] assessing trust [. . . ].

[393]

[. . . ] in many, if not most, cases, the explanation is beneficial [. . . ] to forster better trust [. . . ]. [394]

Interpretability is sometines beneficial to instill feelings of trust and understanding within the system’s users. [394]

[. . . ] human-like rationales, despite being true reflections of the internal processes of a black-box intelligent system, promote
feelings of trust [. . . ].

[395]

The ability to help people understand their decisions through explanations or other means accessible to nonexperts will
provide people with greater sense of trust [. . . ].

[395]

Explainability can be important for other reasons, including building trust between the user and system [. . . ]. [399]

In both cases, the information the agent provides should build trust [. . . ]. [399]

To date, many reasons have been suggested for making systems explainable [. . . ]: [. . . ] To build trust in the agent’s choices
[. . . ].

[399]

Additional goals [of explanation] include [. . . ] guaranteeing [. . . ] trust [. . . ]. [399]

Explanations have various effects on users [. . . ]. They can help gain users’ trust [. . . ]. [410]

[. . . ] explanations show a significant improvement in user trust [. . . ]. [412]
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Participants that considered themselves very familiar with the task domain reported higher than average trust in the Dining
Guru [. . . ]. Presenting explanations [. . . ] in some cases led these users to automation bias.

[415]

[. . . ] reasons why ML interpretability is desired, namely trust [. . . ] [417]

[. . . ] insights into the inner workings of a trained model allow users and analysts [. . . ] to [. . . ] gain trust in the systems they
inform.

[422]

An intelligent robot that is explainable yields several important advantages. Trust. Humans tend to trust systems that they
understand – or at least believe that they understand.

[426]

To be trusted, a system has to demonstrate competence [. . . ], honesty [. . . ] and alignment [. . . ]. Explanations form a vital part
of satisfying these requirements.

[427]

[. . . explanation] techniques [. . . ] attempt to analyse the behaviour of the network in a black-box fashion for the purpose of
increasing trust in the system.

[427]

Interpretability of the machine learning predictions is important for a variety of reasons. [. . . ] in some applications [. . . ] the
users have to trust the predictions [. . . ].

[441]

[. . . ] some [explainability methods] can also be used to assess accountability of the underlying predictive model, e.g., debug
and diagnose it to engender trust [. . . ].

[442]

By large, explainability can improve users’ trust in a predictive system [. . . ]. [442]

[. . . ] computing separate explanations [. . . ] for each agent can result in situations where the explanations [. . . ] are not
consistent [. . . ]. In the case of multiple teammates being explained to, this may cause confusion and loss of trust.

[451]

Such techniques [of explanation] can thus be essential contributors to the dynamics of trust and teamwork in human-agent
collaborations by significantly lowering the communication overhead between agents [. . . ].

[451]

Trust in a system is developed not only by the quality of its results, but also by clear description of how they were derived. [456]

We show several examples of explanations and ask participants to judge the examples on four [. . . ] dimensions: [. . . ] trust
[. . . ].

[229]

[. . . ] possible aims when explaining the outcomes of an algorithm to users: [. . . ] trust [. . . ]. [229]

Explanations can have many advantages, [. . . ] inspiring user trust [. . . ]. [463]

Among other things, good explanations could help inspire user trust and loyalty [. . . ]. [463]

Among other things, good explanations could help inspire user trust and loyalty [. . . ]. [464]

Possible aims for explanations: Trust. Increase users’ confidence in the system. [464]

Explanations can also serve other aims such as helping to inspire user trust and loyalty [. . . ]. [465]

[. . . ] one can measure how understandable an explanation is, which can contribute to e.g. user trust [. . . ]. [465]

Explanatory criteria and their definitions: Trust. Increase users’ confidence in the system. [465]

Cramer et al. have investigated the effects of transparency on other evaluation criteria such as trust [. . . ]. [465]

Trust is sometimes linked with transparency: previous studies indicate that transparency [. . . ] increases user trust [. . . ]. [465]

Explanatory aims: Trust. Increase users’ confidence in the system. [466]

[. . . ] recent work suggests a broader set of goals including trust, user satisfaction, and transparency [. . . ]. [478]

Research shows that explanations [. . . ] increase trust in the recommender system [...]. [478]

He contrasts explanation-for-trust (i.e., explanation of how a system works, by revealing details of its internal operations) with
explanation-for-conficence [. . . ].

[479]

[. . . ] non-expert users will need an explanation that increases their confidence and trust [. . . ]. [479]

Finally, explanations are often proposed to improve trust in the system [. . . ]. [485]

[. . . ] explanations can improve trust because of increased user understanding [. . . ]. [485]

We selected [. . . ] biases for which we identify how XAI can play a role to mitigate them, and hence improve [. . . ] trust. [485]

To enable end users to [. . . ] trust [. . . ] their intelligent partners, [. . . ] researchers have produced many [. . . ] algorithm
visualizations, interfaces and toolkits [. . . ].

[485]

[. . . ] they initially found that Why and Why Not explanations were most effective in promoting [. . . ] trust. [485]

[. . . ] we developed five explanation strategies to [. . . ] moderate trust. [485]

Finally, explanations are often proposed to [. . . ] moderate trust to an appropriate level [. . . ]. [485]

[. . . ] showing explanations of low confidence can further decrease this trust [. . . ]. [485]
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[. . . ] in order [. . . ] to adopt the system’s customized results, he/she needs to first build trust over the system. Explaining the
automatically generated recommendations would bridge the gap.

[487]

Explanations describe the decision made by a machine learning model in order to gain user [. . . ] trust [. . . ]. [488]

We contend explaining why a recommended article is relevant will [. . . ] possibly foster user trust. [489]

We list several types and goals of transparency. [. . . ] For a user, to [. . . ] build a sense of trust in the technology. [490]

Human user needs to know why (or why not) an AI agent makes such decisions, so he can trust it. [492]

Practically, end users are less likely to trust and cede control to machines whose workings they do not understand [. . . ]. [. . . ]
Investigators within the Explainable Artificial Intelligence [. . . ] research program intend to ward off these consequences [. . . ].

[503]

However, in order for humans to [. . . ] trust [. . . ] the emerging AI systems, an AI needs to be able to explain its decisions and
conclusions.

[505]

Thus, it is important to build more explainable AI, so that humans can [. . . ] effectively manage the emerging AI systems [. . . ]. [505]

Often knowing the reasons why a particular decision has been taken [through explanations . . . ] can engender trust in the
process that led to it [. . . ].

[506]

Other studies [. . . ] consistently showed that explanations significantly increase users’ confidence and trust [. . . ]. [508]

Explainable ML aims to [. . . ] enable human users to understand, appropriately trust, and effectively manage the ML-based
solutions [. . . ].

[508]

However, too much explanation information on algorithms eroded user trust. [508]

[. . . ] explanation[s . . . ] are presented to end users [. . . ] to boost user trust [. . . ]. [510]

[. . . ] participants had significantly higher trust in predictions when influences [. . . ] were presented than those without
influence information presentation [. . . ].

[510]

Kizilcec [. . . ] proposed that the transparency of algorithm interfaces can [. . . ] foster user trust. [510]

Other studies [. . . ] consistently showed that explanations significantly increase users’ confidence and trust [. . . ]. [510]

However, too much explanation information on algorithms eroded user trust. [510]

[...] explanations serve to build understanding and possibly trust between the AI and the user or beneficiary of the AI. [511]

It is generally agreed upon that the goal of XAI is to increase users’ trust [. . . ]. [511]

Table 34: Quotes for the desideratum Trustworthiness.
Quote Src.

[. . . ] eXplainable Artificial Intelligence (XAI) emerged with the aims of fostering [. . . ] trustworthiness. [30]

Several authors agree upon the search for trustworthiness as the primary aim of an explainable AI model [. . . ]. [54]

One way to know is to learn why the device is trustworthy by inspecting its inner workings. [130]

[. . . ] trustworthiness [. . . are] likely benefits of explanation facilities for recommender systems. [137]

[. . . ] the possible objectives of explanations are manifold, including aims such as increasing trustworthiness [. . . ]. [180]

To enable [. . . ] trustworthy integration of such systems, the end users require them to support interpretability [. . . ] in
decision-making [. . . ].

[187]

Humans are motivated to “understand the goals, intent, contextual awareness, task limitations, [and] analytical underpinnings
of the system in an attempt to verify its trustworthiness” [. . . ].

[231]

Transparency may promote or erode users’ trust in a system by changing beliefs about its trustworthiness. [274]

Explanations enable understanding and thereby foster [. . . ] trustworthiness [. . . ]. [277]

Explanations help the user better understand and interpret the rationale of the recommender system, thereby making it more
trustworthy and engaging.

[326]

Explanations help the user better understand and interpret the rationale of the recommender system, thereby making it more
trustworthy and engaging.

[341]

Our experiments demonstrated that explanations are useful for a variety of models [. . . ]: [. . . ] improving untrustworthy
models [. . . ].

[393]
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It should be clear that explicability is considered to be an important part of achieving so-called [. . . ] ‘trustworthy’ [. . . ] AI. [397]

Table 35: Quotes for the desideratum Understandability.
Quote Src.

Specific concerns that require explanations include [. . . ] understanding system behavior. [1]

[. . . ] people should be able to understand how the technology may affect them [. . . ]. [. . . ] prior work has identified issues [. . . ]
when this is not the case. [. . . ] To address these problems, machine learning algorithms need to be able to explain how they
arrive at their decisions.

[1]

"XAI aims to ""[. . . ] enable human users to understand [. . . ] the emerging generation of artificially intelligent partners”." [4]

These explanations would [. . . ] incite the user to understand the capabilities and the limits of the agents [. . . ]. [30]

[. . . ] intent communication is one of the main drives for explanations in order to make the robot’s internal state (e.g. goals &
intentions) understandable to humans.

[30]

Explainability [. . . ] may ease the task of elucidating the boundaries that might affect a model, allowing for a better
understanding and implementation.

[54]

[. . . ] explanation and interpretation are required to enable domain experts and users to understand [. . . ] the [. . . ] model [. . . ]. [43]

[. . . ] explainability – which is necessary for comprehensive human computing – targeting and enabling the human-in-the-loop. [43]

[Explainable Artificial Intelligence] aims at producing intelligent systems that reinforce the trust of the users [. . . ], who desire
to understand automatic decision [. . . ].

[48]

Explanations can serve a multiplicity of aims, including transparency (helping users to understand how the system works)
[. . . ].

[51]

Explanations can help a user understand the system’s reasoning [. . . ]. [71]

[. . . ] work within the realm of explainability aims to help humans understand the elements of a plan suggested by the system
[. . . ].

[77]

It has been suggested that the intelligibility of system behavior is an important factor in ensuring that the user understands how
the CDSS operates [. . . ].

[93]

Previous work has shown that providing explanations can increase users’ understanding of how the system operates [. . . ] [93]

An explanation of a decision intended to help the user understand the AI system [. . . ] could best rely on better-world
counterfactuals [. . . ].

[95]

"To address these problems, growing work in “Explainable AI"" aims to make opaque algorithms more understandable." [96]

Algorithmic explanations have been found to improve user understanding of the system [. . . ]. [96]

In other words, causability is the property of the human to understand the system explanations [. . . ]. [99]

[Explanations] may also help users to understand better all available features [. . . ]. [108]

Explainability was shown to be a way of achieving informativeness [. . . ]. By considering this NFR, [. . . ] interpretability can
be provided, facilitating the understanding of the system or the situation presented.

[108]

[. . . ] explanations can be an advantage, facilitating the understanding of a system [. . . ]. [108]

Results have shown that explanations can [. . . ] hinder understanding if they are not displayed in a language appropriate to the
specific needs of the user.

[108]

[. . . ] explanations may add more obscurity to the understanding of the information, instead of helping to mitigate it. [108]

[. . . ] explanations [. . . ] can improve users’ comprehension. [113]

[. . . ] XAI will be key for both expert and non-expert users to enable them to have a deeper understanding [. . . ]. [116]

Providing an explanation [. . . ] results in better user understanding [. . . ]. [123]

Transparency aims to increase understanding and entails offering the user insight in how a system works, for example by
offering explanations for system behaviour.

[124]

Transparency can aid in the understanding of an automated vehicle’s function [. . . ]. [127]

We have argued for explainable software analytics to facilitate human understanding of machine prediction [. . . ]. [131]

Critically, explanations are not just for people to understand the ML system [. . . ]. [150]
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[. . . ] global explanations seem to render more confidence in understanding the model and generally enhance the fairness
perception.

[150]

[. . . ] using global explanations to understand and evaluate the model [. . . ]. [150]

[. . . ] the interfaces with explanations have a positive effect on understandability [. . . ]. [151]

We find that including certain transparency features [. . . ] does improve [. . . ] understandability [. . . ]. [161]

[. . . ] previous research has established that explanations help users to understand [. . . ] a recommendation [. . . ]. [165]

Explainability [. . . ] can help build [. . . ] understanding [. . . ]. [167]

[. . . ] explanations help the human collaborator understand the circumstances that led to the behavior [. . . ]. [167]

[. . . ] participants preferred rationales with transparency so that they can understand [. . . ] the robot in a situation where
expectations are violated.

[167]

Explanations help the human operator understand why an agent failed to achieve a goal [. . . ]. [166]

[. . . ] explicability is a critical tool to build [. . . ] understanding of [. . . ] the technology. [175]

[. . . ] it is important to understand why a wrong or different decision was made: this is transparency. [177]

[. . . ] explanations [. . . ] can help users to better understand the system’s output [. . . ]. [180]

[. . . ] the explanation autonomously acquired by the IBE enriched people’s understandings of the agent’s future behavior [. . . ]. [182]

[. . . ] appropriate solutions will require an understanding [. . . ]. This highlights the need for human-intelligible explanations of
algorithmic decision making.

[193]

Besides, interaction with visualizations can strongly infuence users’ understanding of complex data [. . . ]. [203]

Thus, explanations in terms of beliefs and goals are expected to enhance trainees’ understanding of the training situations. [209]

Explanations of visual systems could also aid in understanding network mistakes [. . . ]. [219]

[. . . ] explanations [. . . ] can play a key role to allow its users to better understand its outputs [. . . ]. [221]

The explanations can be useful [...] to allow him to understand how to modify its parameters if it does not behave as expected. [221]

The result [from adding explanations] will be filtering systems that are [. . . ] more understandable [. . . ]. [222]

Some of the benefits provided [by explanation facilities] are: [. . . ] User understanding of the reasoning behind a
recommendation [. . . ].

[222]

Explanations will help users understand the process of ACF, and know where its strengths and weaknesses are. [222]

Some of the benefits provided [by explanation facilities] are: [. . . ] Education of the user as to the processes used in generating
a recommendation, so that he may better understand the strengths and limitations of the system.

[222]

[. . . ] self-explanation improves [. . . ] understanding. [231]

[. . . ] interactive explanations will be key for understanding models better [. . . ]. [233]

[. . . ] data scientists use interpretability to understand the feature importance of a dataset. [233]

[. . . ] explainable artificial intelligence (AI) has emerged [. . . ] to create and evaluate effective explanations for model decisions
to better understand what a model has learned [. . . ].

[233]

[. . . ] explainability is seen as a toolset to understand the underlying technicalities and models [. . . ]. [234]

The presence of explanations assisted participants in the conception of an accurate mental model, increasing [. . . ] high-level
understanding [. . . ].

[235]

The benefits we see for including explanations is more information and knowledge for the user, thus [. . . ] improving user
understanding [. . . ].

[254]

[. . . ] transparency in design [. . . ] may foster a better understanding of the system [. . . ]. [274]

[. . . ] explanations [. . . ] help users understand its reasoning [. . . ]. [274]

[. . . ] explainability is concerned with enabling human understanding of various aspects of software-driven systems. [277]

Explanations enable understanding [. . . ]. [277]

Participants had more difficulty understanding the agent’s reasoning process than the features it used, but abstract explanations
of the model intelligibility type helped overcome this obstacle.

[282]

Transparency, which refers to the understandability of a specific model [. . . ]. [303]

Our method generates contrastive explanations [. . . ] and aims to help users understand [. . . ] what contributed to the large error
[. . . ].

[312]
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Explainable Machine Learning (XAI) [. . . ] enables human users to understand [. . . ] the emerging generation of artificially
intelligent partners.

[322]

With the power of XAI or IML, new machine-learning systems will [. . . ] provide an understanding of their future behaviour. [322]

Explanations have an important role to play in helping users to understand the suggestions made by recommender systems. [325]

Explanations help the user better understand and interpret the rationale of the recommender system [. . . ]. [326]

The running hypothesis is that by building more [. . . ] explainable systems, users will be better equipped to understand [. . . ]
intelligent agents [. . . ].

[339]

[. . . ] people look for explanations to improve their understanding of someone or something [. . . ]. [339]

In many cases, an explanation [. . . ] will [. . . ] create a shared understanding of the decision that was made between itself and a
human observer [. . . ].

[339]

The provided explanations in these studies [. . . ] make the recommended decision understandable. [358]

Explaining decisions returned by intelligent systems is [. . . ] helpful for understanding their reasoning process [. . . ]. [372]

Explanations that help users understand how a system works have demonstrated a positive relationship with user satisfaction
with the system [. . . ].

[388]

Recently, there has been some work by the deep learning community on generating explanations as a way to better understand
[. . . ] the decisions made by deep neural networks.

[389]

Explanation can be helpful in [. . . ] understanding and interpreting systems’ output [. . . ]. [389]

DNN developers are interested in explanation methods that allow them to understand the behavior of the DNN [. . . ]. [391]

[. . . ] an agent that provides an explanation for its decision might further human understanding of a medical phenomenon. [394]

Interpretability is sometines beneficial to instill feelings of trust and understanding within the system’s users. [394]

The ability to help people understand their decisions through explanations or other means accessible to nonexperts will
provide people with greater sense of trust [. . . ].

[395]

[. . . ] explanations were needed to help understand a system malfunction [. . . ]. [399]

Explaining the reason for recommendations [. . . ] helps a user understand why an item is recommended. [410]

[. . . ] explanations show a significant improvement in [. . . ] understanding [. . . ]. [412]

[. . . ] more explanation facilities appeared to help participants understand [. . . ] Clarisense’s search strategy. [414]

[. . . ] insights into the inner workings of a trained model allow users and analysts, [. . . ] to understand the models [. . . ]. [422]

An intelligent robot that is explainable yields several important advantages. [. . . ] systems that [users] understand – or at least
believe that they understand.

[426]

[. . . ] explanations [. . . ] help a user to understand the history and experience behind the decision. [425]

The role of explanation is to help the user to better understand the agent’s behaviour [. . . ]. [427]

Interpretability of the machine learning predictions is important for a variety of reasons. [. . . ] the users have to [. . . ]
understand the underlying decisive mechanisms [. . . ].

[441]

The goal of an explanation of this kind is to impart an understanding of how the system found an answer. [444]

Such techniques [of explanation] can thus be essential contributors to [. . . ] providing [. . . ] information to keep the agents on
the same page with respect to their understanding of each others’ tasks and capabilities [. . . ].

[451]

There is considerable work on making the decisions of an existing learned model or reasoning system more interpretable [. . . ]
to make decisions that are easier for humans to understand.

[452]

[. . . ] computer-generated visualizations can increase our understanding of the models they depict. [454]

Explanations should be part of a cycle, where the user understands what is going on in the system [. . . ]. [465]

[. . . ] goals in the ML domain, namely understanding, [. . . are] related to the problems of interpretability of the ML results and
comprehensibility of the obtained models.

[476]

Users who are using the system to accomplish personal end goals [. . . ] will likely seek information that assists their
understanding of how the system processes data to arrive at its outputs [. . . ].

[482]

[. . . ] explanations can improve trust because of increased user understanding [. . . ]. [485]

To enable end users to understand [. . . ] their intelligent partners, [. . . ] researchers have produced many [. . . ] algorithm
visualizations, interfaces and toolkits [. . . ].

[485]

[. . . ] they initially found that Why and Why Not explanations were most effective in promoting system understanding [. . . ]. [485]

Continued on next page . . .
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Table 35 – continued from previous page

Quote Src.

We list several types and goals of transparency. [. . . ] For a developer, to understand how their system is working [. . . ]. [490]

We list several types and goals of transparency. [. . . ] For society broadly to understand and become comfortable with the
strengths and limitations of the system [. . . ].

[490]

We list several types and goals of transparency. [. . . ] For a user to understand why one particular prediction or decision was
reached [. . . ].

[490]

Human interpretability – that is helping humans to understand machines – is of great importance [490]

[. . . ] an explanation for an end-user is intended [. . . ] to aid the user in understanding the consequences of the system’s
conclusion.

[493]

For an end-user audience, this purpose is to help the end-user better understand the domain in which the expert system is
operating

[493]

However, in order for humans to understand [. . . ] the emerging AI systems, an AI needs to be able to explain its decisions and
conclusions.

[505]

Thus, it is important to build more explainable AI, so that humans can [. . . ] effectively manage the emerging AI systems [. . . ]. [505]

Explainable ML aims to [. . . ] enable human users to understand, appropriately trust, and effectively manage the ML-based
solutions [. . . ].

[508]

[. . . ] explanation [. . . ] was investigated to allow users to understand why a classification/prediction is made. [510]

[. . . ] explanations serve to build understanding [. . . ] between the AI and the user or beneficiary of the AI. [511]

Table 36: Quotes for the desideratum Usability.
Quote Src.

Specific concerns that require explanations include usability [. . . ]. [1]

[. . . ] explanations can serve a multiplicity of aims, such as [. . . ] increasing the ease of use of a system [. . . ]. [51]

The ability of recommender systems to effectively explain their recommendations is a potentially crucial aspect of their [. . . ]
usability.

[70]

Explanations may also help to improve the usability of the system, easing the use and teaching the user how to better operate it. [108]

[. . . ] explanations can be a good way to mitigate the complexity of the system and help the user to better operate it. [108]

[. . . ] usability [. . . ] of a personalized mobile application depends highly on perceived information transparency [. . . ]. [112]

Explanation [. . . ] can substantially affect [. . . ] usability [. . . ]. [137]

Interpretability is used to confirm other important desiderata of ML systems: [. . . ] Usable methods provide information that
assist users to accomplish a task.

[155]

[. . . ] we argue that interpretability can assist in qualitatively ascertaining whether other desiderata such as fairness, privacy,
reliability, robustness, causality, usability and trust are met.

[155]

[. . . ] ease-of-use [. . . was] strongly affected by the presence of justification-type explanations [. . . ]. [199]

[. . . ] subjects receiving justification explanations rated the system significantly easier to use [. . . ]. [199]

Another property [. . . ] is usability: people tend to trust more models providing information that rassist them to acocmplish a
task [. . . ].

[201]

[. . . ] explanations must present easy-to understand coherent stories in order to ensure good use of the AI [. . . ]. [231]

[. . . ] explainable-AI [. . . ] brings usability [. . . ] into a new and important focus [. . . ]. [236]

The benefits we see for including explanations is more information and knowledge for the user, thus hopefully easing the
interaction [. . . ].

[254]

Explanations enable understanding and thereby [. . . ] improve usability [. . . ]. [277]

The third theme of motivation for explainability is to adapt usage or interaction behaviors to better utilize the AI. [304]

Explanation Purposes Identified in Primary Studies [. . . ]: [. . . ] Increase the ease of use [. . . ]. [358]

Explanations improve system usability [. . . ]. [388]

The role of explanation is to help the user to better understand the agent’s behaviour, [. . . ] to make better use of it by
performing “model reconciliation” [. . . ].

[427]

Continued on next page . . .
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Table 36 – continued from previous page

Quote Src.

Among other things, good explanations could [. . . ] make it quicker and easier for users to find what they want [. . . ]. [463]

Possible aims for explanations: [. . . ] Increase the ease of usability or enjoyment. [464]

Among other things, good explanations could [. . . ] make it quicker and easier for users to find what they want [. . . ]. [464]

Explanations can also serve other aims such as [. . . ] make it quicker and easier for users to find what they want [. . . ]. [465]

Explanatory criteria and their definitions: Satisfaction [. . . ]. Increase the ease of use or enjoyment. [465]

The presence of longer descriptions of individual items has been found to be positively correlated with [. . . ] ease of use of the
recommender system [. . . ].

[465]

Explanatory aims: [. . . ] Increase the ease of use [. . . ]. [466]

[. . . ] on-demand explanation [. . . ] increases [users’] perception of system explainability. However, the improvement comes
with a price of reducing [. . . ] the sense of ease of use [. . . ].

[473]

[. . . ] the goal of XAID includes investigating the actual usability of XAI in terms of how it supports game designers in
specific design tasks.

[511]

Table 37: Quotes for the desideratum Usefulness.
Quote Src.

The ability of recommender systems to effectively explain their recommendations is a potentially crucial aspect of their utility
[. . . ].

[70]

[. . . ] explanations can significantly increase [. . . ] perceived information usefulness [. . . ]. [111]

[..] studies [. . . ] may focus on how explanations enhance perceived usefulness [. . . ]. [165]

[. . . ] explanations [. . . ] promote objectives such as [. . . ] utility. [180]

[. . . ] good explanations can [. . . ] make it easier for users to find what they want. [198]

[. . . ] perceptions of usefulness [. . . ] were [. . . ] strongly affected by the presence of justification-type explanations [. . . ]. [199]

[. . . ] explanations [. . . ] can play a key role [. . . ] to allow its users to better understand its outputs and therefore to make a
better use of it.

[221]

The system [. . . ] provides knowledge and explanations necessary for the user to carry out his or her task [. . . ]. [254]

[. . . ] participants felt that [an organization-based explanation interface] would be easier for them to compare different
products and make a quicker decision.

[382]

How explanations can also increase [. . . ] the perceived usefulness of a system [. . . ]. [388]

The expected impacts of [. . . ] explanations are as follows: [. . . ] usefulness: envisioning a context helps users to make the right
choices [. . . ].

[410]

We further confirmed that the hybrids of the context style and other explanation styles improve persuasiveness and usefulness. [410]

The presence of longer descriptions of individual items has been found to be positively correlated with both the perceived
usefulness [. . . ].

[465]

[. . . ] knowledgeable explanations significantly increase the perceived usefulness of a recommender system [. . . ]. [502]

The findings show that the explanation feature can significantly increase a recommender system’s perceived usefulness [. . . ]. [502]

Table 38: Quotes for the desideratum Validation.
Quote Src.

Explanations [. . . ] provide a way to verify the validity of a decision. [71]

[. . . ] explanations are of uttermost importance [. . . ] to ensure that algorithms are performing as expected [. . . ]. [99]

[Explanation facilities] were perceived as being better suited to knowledge engineers - for validating system knowledge [. . . ]. [137]

Explanations can also be used to ascertain whether certain criteria were used appropriately or inappropriately in case of a
dispute.

[156]

Continued on next page . . .
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Table 38 – continued from previous page

Quote Src.

While some might wholesale reject the schema of classifications used, others might want to know if such a decision was made
soundly. For these decision subjects, an explanation might help.

[164]

Numerous studies have demonstrated the benefits of explanations in intelligent systems [. . . ], including [. . . ] supporting the
evaluation of system conclusions [. . . ].

[165]

These explanations are important [. . . ] to ensure that the algorithms perform as expected. [188]

Questions that experts in artificial intelligence (AI) ask opaque systems provide inside explanations, focused on [. . . ]
validation.

[189]

These outside explanations can [. . . ] act as external validation [189]

[. . . ] classification systems may generate explanations in order to [. . . ] satisfy the user of its validity. [325]

The main goal of Explainable Artificial Intelligence (XAI) has been variously described as [. . . ] validating the decision
process of an opaque AI system [. . . ].

[365]

[. . . ] another reason is quality, which an explanation can help validate. [489]

Table 39: Quotes for the desideratum Verification.
Quote Src.

Explanations [. . . ] provide a way to verify [. . . ] a decision. [71]

[. . . ] study participants wanted better explanations to help them [. . . ] verify that the disorder fit the suggestion [. . . ]. [93]

"[. . . ] “how” explanations [. . . enable] users to verify that an algorithm has accurately and fairly ""produc[ed] and certif[ied]
knowledge""."

[123]

[. . . ] system developer [. . . ] may use an expert system explanation facility during the development phase to verify the
correctness of the knowledge base [. . . ].

[137]

[. . . ] studies applying the transparency as verifiability approach tend to find positive outcomes for organizations. [173]

Revealing the reasoning makes it possible for stakeholders to spot possible flaws and also to identify whether the line of
reasoning results in outcomes that match the disclosed data.

[241]

Our work also showcases the fact that interpretability is [. . . ] a powerful tool [. . . ] for verifying predictions [. . . ]. [322]

[. . . ] explanations are used to evaluate the proposed solution and to justify changes to this solution. [325]

For all types of algorithms, auditing is a necessary precondition to verify correct functioning. [342]

Explanations can be necessary to [. . . ] verify and improve the functionality of a system [. . . ]. [341]

The question of what kinds of explanation a human can utilize implies the presence of a downstream task. [. . . ] Intrinsic tasks
include goals such as verification – given an input, output, and explanation, can the human user verify that the output is
consistent with the input and provided explanation?

[350]

The [. . . ] purpose of explanations [. . . ] to help users assess if the recommended alternative is truly adequate for them. [358]

[. . . ] the use of AI techniques that do not readily provide these [explanation] capabilities should be used with extreme caution
as verification of their performance is going to be at least in part dependent on statistical behaviour.

[427]

Experts tend to require explanations to verify the reasoning of the system and explain away surprising results. [444]

They suggest three major explanation goals. Verification is the goal of the knowledge engineer in verifying that the system
works as it should.

[444]

The goal of an explanation [. . . ] is to impart an understanding of how the system found an answer. This allows the users to
check the system by examining the way it reasons [. . . ].

[444]

We list several types and goals of transparency. [. . . ] For a user [. . . ] to allow a check that the system worked appropriately
[. . . ].

[490]

There are three major explanation goals, namely verification [. . . ]. Within the context of verification, the goal [. . . ] is to verify
the knowledge of the expert system.

[493]
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D. Deutsche Zusammenfassung

Einleitung

Ob Pflegeroboter in Japan, selbstfahrende Busse in Deutschland oder automatisierte Perso-
nalauswahlsysteme in den Vereinigten Staaten von Amerika—komplexe, künstliche Rech-
nersysteme84 sind aus unserem Alltag nicht mehr wegzudenken. Aus dieser Entwicklung
ergeben sich zwei große Herausforderungen: Maschinenethik und Maschinenerklärbarkeit.
Maschinenethik befasst sich mit Verhaltensbeschränkungen für solche Systeme, um ein einge-
schränktes, moralisch akzeptables Verhalten zu gewährleisten; Maschinenerklärbarkeit sucht
nach Möglichkeiten, die Handlungen und Entscheidungsprozesse von Systemen zufriedenstel-
lend zu erklären, so dass ihre menschlichen Benutzer diese Systeme verstehen und sich ihrer
gesellschaftlich nützlichen Auswirkungen sicher sein können.

Maschinenethik und Maschinenerklärbarkeit erweisen sich nur in Symbiose als besonders
effizient. Vor diesem Hintergrund zeigen wir in dieser Arbeit, wie Maschinenethik Maschi-
nenerklärbarkeit voraussetzt und wie Maschinenerklärbarkeit Maschinenethik einschließt.
Wir entwickeln diese beiden Facetten anhand der oben genannten Beispiele. Anhand dieser
Beispiele argumentieren wir für eine spezifische Sichtweise der Maschinenethik, die soge-
nannte moralische Ausrichtung, und schlagen vor, wie diese in einem Framework formalisiert
werden kann. Im Hinblick auf Maschinenerklärbarkeit legen wir dar, wie das von uns vorge-
schlagene Framework durch die Verwendung eines argumentationsbasierten Ansatzes für die
Entscheidungsfindung eine Grundlage für Maschinenerklärbarkeit bieten kann.

Obwohl einige Forscher glauben, dass fest verdrahtete moralische Einschränkungen in
Bezug auf das Verhalten von Maschinen eine ausreichende Voraussetzung dafür sind, dass
Menschen vernünftiges Vertrauen in künstliche Systeme entwickeln können, möchten wir
erörtern, warum dies nicht der Fall ist. Stattdessen halten wir es für notwendig, die Ma-
schinenethik durch Mittel zu ergänzen, mit denen wir feststellen können, ob das Vertrauen,
das wir in solche Systeme setzen, gerechtfertigt ist und ob sie andere wünschenswerte Ei-
genschaften haben. Nachdem wir dargelegt haben, warum dies wichtig ist, argumentieren
wir, dass es mindestens eine passende Ergänzung für die Maschinenethik zu diesem Zweck
gibt: Maschinenerklärbarkeit—die Entwicklung von Mitteln, mit denen die Handlungen und
Entscheidungsprozesse künstlicher Systeme erklärt werden können.

Maschinenerklärbarkeit trägt also zur Maschinenethik bei. Diese Beziehung besteht auch
umgekehrt: Maschinenethik trägt zu Maschinenerklärbarkeit bei, da Maschinenerklärbarkeit
besonders gut mit einem moralischen System als Grundlage für die Erzeugung von Erklärun-
gen gedeihen kann. Eingebettet in ein moralisches System können Erklärungen auf moralische
Erwägungen Bezug nehmen und so einen hervorragenden Ausgangspunkt für Vertrauen (und
andere wünschenswerte Eigenschaften) bieten.

84Im Rahmen dieser Zusammenfassung benutzen wir die Begriffe “Künstliches Rechnersystem”, “künstliches
System” und “Maschine” synonym (genauso wie die entsprechenden Englischen Begriffe in der Arbeit).
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Das übergeordnete Ziel dieser Arbeit ist es, genau eine solche Verbindung zwischen
Maschinenethik und Maschinenerklärbarkeit herauszuarbeiten. Es gibt jedoch auch andere
Ziele, die wir untersuchen. Die Arbeit ist zu diesem Zweck in vier Teile gegliedert, von
denen die ersten drei weitgehend unabhängig voneinander gelesen werden können. Jeder
Teil trägt nicht nur zum übergeordneten Ziel dieser Arbeit bei, sondern hat auch eigene,
untergeordnete Ziele. Im Folgenden wollen wir die vier Teile der Arbeit kurz zusammenfassen,
um einen Überblick über die Arbeit zu gewährleisten. Es sollte angemerkt sein, dass diese
Zusammenfassung die Gesamtarbeit natürlich nur unzureichend widerspiegeln kann.

Maschinenethik

Der erste Teil dieser Arbeit beschäftigt sich mit Maschinenethik. Maschinenethik hat sich
in den letzten Jahren zu einem ernstzunehmenden Forschungsgebiet entwickelt, zu dem
mittlerweile auch die ersten systematischen Arbeiten veröffentlicht wurden (z.B. [22, 484]).
Insgesamt ist der genaue Forschungsgegenstand der Maschinenethik jedoch eine offene Frage.

Vor diesem Hintergrund wies James H. Moor darauf hin, dass der Begriff “Maschinenethik”
recht weit gefasst werden kann. Ihm zufolge reicht das Verständnis von der Implementierung
moralisch motivierter Beschränkungen für das Verhalten komplexer und möglicherweise auto-
nomer künstlicher Systeme bis hin zur Implementierung vollwertiger moralischer Fähigkeiten
[346]. Einerseits ist die erste Sichtweise bereits heute von großer praktischer Bedeutung, da
der moralische Einfluss, der durch künstliche Systeme sowohl direkt als auch indirekt ausge-
übt wird, stetig zunimmt. Andererseits befasst sich die letztgenannte Sichtweise mit Szenarien,
die Science–Fiction bleiben, und beinhaltet Diskussionen über tiefgreifende philosophische
Konzepte von Autonomie und freiem Willen.

Der erste Teil dieser Arbeit setzt sich mit Maschinenethik auseinander. Insbesondere
untersuchen wir, ob Maschinenethik ein lohnendes Unterfangen ist. Dabei argumentieren wir
für eine bestimmte Sichtweise der Maschinenethik: moralische Ausrichtung. Darüber hinaus
untersuchen wir auch die Verbindung zwischen Maschinenethik und Maschinenerklärbarkeit
genauer. Schließlich erörtern wir, wie eine sinnvolle Implementierung von Maschinenethik
aussehen sollte. Im Einzelnen sieht dieser Teil der Arbeit wie folgt aus.

In Kapitel 2 stellen wir Maschinenethik anhand eines allgemeinen Überblicks über das
Forschungsgebiet der Ethik als einen Zweig der angewandten Ethik vor. Zudem geben wir
einen Überblick über die beiden Hauptforschungsströmungen der Maschinenethik. Den
Abschluss des Kapitels bildet eine kurze Vorstellung einiger Ansätze, die in den letzten Jahren
im Bereich der Maschinenethik entwickelt worden sind.

Darauf aufbauend untersuchen wir Maschinenethik in Kapitel 3 genauer. Insbesondere
diskutieren wir, ob es sich lohnt, zu diesem Thema zu forschen, oder ob eine solche Forschung
mehr Nachteile als Vorteile bringen könnte. Indem wir unseren eigenen Standpunkt zur
Maschinenethik darlegen, zeigen wir, dass sich diese Forschung in der Tat lohnt, vor allem,
wenn sie durch Forschung zur Erklärbarkeit von Maschinen unterstützt wird.
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Kapitel 4 bildet den Abschluss unserer Diskussion zur Maschinenethik. Hier schlagen
wir eine Brücke zu dem von uns im zweiten Hauptteil der Arbeit angestrebten Framework,
indem wir erste Überlegungen dazu anstellen, wie ein solches Framework aussehen sollte.
Konkret plädieren wir für einen prinzipienbasierten Ansatz und liefern Argumente für einen
solchen. Darüber enthält dieses Kapitel direkte Forschung zur Maschinenethik, indem es eine
Diskussion über die Vorteile und Nachteile der Programmierung eines künstlichen Systems
mit einer der traditionellen normativen Theorien beinhaltet.

Formale Maschinenethik

Im zweiten Teil dieser Arbeit bauen wir auf den vorherigen Argumenten auf und skizzieren ein
entsprechendes prinzipienbasiertes Framework für Maschinenethik. Unser Framework ist im
mathematischen Sinne formal, indem es eine Sammlung systematisch ausgearbeiteter Ideen
und Strukturen bietet, die es ermöglichen, ein künstliches System mit einem instrumentellen

Ziel und normativen Einschränkungen zu beschreiben. Darüber hinaus ist unser Framework
generell, in dem Sinne, dass wir versuchen, es unabhängig von den Annahmen bestimmter
theoretischer Perspektiven der normativen Ethik zu motivieren.

Wir denken, dass es von entscheidender Bedeutung ist, dass wir keine spezifischen nor-
mativen Einschränkungen vorschlagen, um so wenige Einschränkungen wie möglich zu
haben. Unser Framework ist dadurch flexibel genug, um später mit spezifischen normativen
Einschränkungen ausgefüllt zu werden. Dieser Ansatz ist unter anderem dadurch motiviert,
dass wir der Meinung sind, dass die Frage nach der Angemessenheit von normativen Ein-
schränkungen von der Domäne abhängen kann, in der ein System eingesetzt werden soll.

Über das formale Framework hinaus, aber auf diesem aufbauend, schlagen wir einen argu-
mentationsbasierten Ansatz zur Entscheidungsfindung von künstlichen Systemen vor. Dieser
Ansatz hat den Vorteil, dass er zur Generierung von Erklärungen verwendet werden kann.
Indem das Framework dadurch sowohl Maschinenethik gewährleistet als auch Maschinen-
erklärbarkeit ermöglicht, bildet es einen wichtigen Baustein für unser Argument, dass die
beiden Bereiche eng miteinander verbunden sind. Im Einzelnen sieht Teil 2 wie folgt aus.

Wir beginnen den zweiten Teil dieser Arbeit in Kapitel 5 mit der Entwicklung unseres
Frameworks für Maschinenethik. Dieses Framework basiert im Kern auf frei nach Anwen-
dungsfall wählbaren moralischen Prinzipien, die eine wesentliche Rolle bei der Entscheidungs-
findung spielen sollen. Zudem enthält das Framework die Möglichkeit, die instrumentellen
Ziele eines Systems bei der Entscheidungsfindung unter Unsicherheit zu berücksichtigen.
Dadurch soll ein normativ eingeschränktes System erreicht werden, welches nützlich bleibt.

Auf diesem Framework aufbauend beschreiben wir in Kapitel 6 einen detaillierte Entschei-
dungsfindungsprozess. Dieser Prozess stützt sich auf Argumente in einem graphenbasierten
Ansatz, der eine fruchtbare Grundlage für die Erstellung von Erklärungen bietet. Ziel ist es
dabei, die instrumentelle und normative Eignung des Systems gleichzeitig zu optimieren.
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Den Abschluss des zweiten Teils der Arbeit bildet Kapitel 7 mit einigen zusätzlichen
Gedanken und Ideen zum Framework. Insbesondere diskutieren wir Ansätze zur Modellierung
der moralischen Prinzipien, auf denen das Framework aufgebaut ist. Zudem skizzieren wir
eine alternative, auf STIT-Logik aufbauende Formalisierung für das Framework.

Maschinenerklärbarkeit

Über Maschinenethik hinausgehend ergibt sich die Notwendigkeit von Maschinenerklärbar-
keit. Insbesondere im Zusammenhang mit künstlichen Systemen (die oft positive gesellschaft-
liche Auswirkungen versprechen) sollte man Black-Box-Systemen, deren Entscheidungen,
Vorhersagen oder Verhalten wir nicht genau erklären können, auf Dauer nicht vertrauen. Viele
Anwendungen künstlicher Systeme—zum Beispiel als Berater von Politikern und Richtern—
setzen mehr als undurchsichtige Ergebnisse wie Zahlen (und insbesondere Wahrscheinlichkei-
ten) voraus, zumindest im Kontext liberaler Demokratien. Diese Systeme müssen überprüfbar
sein, und ihre Ergebnisse müssen zumindest prinzipiell und auf Anfrage begründbar sein.

Selbst unter der Prämisse, dass der Einsatz einiger künstlicher Systeme aus moralischer
Sicht wünschenswert ist (z.B. wegen ihrer Gesamtwirkung), und selbst wenn sich diese
Systeme tatsächlich so moralisch gut verhalten würden, wie es logisch und konzeptionell
möglich ist, solange die Menschen diesen Systemen nicht gerechtfertigt vertrauen können
und keinen Zugang zu den Gründen für ihre Entscheidungen haben, ist der Einsatz dieser
Systeme selbst dort gefährdet, wo er wünschenswert wäre, und kann in vielen potenziell
vielversprechenden Anwendungsbereichen nicht mit gutem Gewissen gefördert werden.

Der dritte Teil der Arbeit beschäftigt sich daher mit Maschinenerklärbarkeit. Da die For-
schung zur Maschinenerklärbarkeit noch sehr jung ist, geht es in diesem Teil der Arbeit vor
allem um Klarstellungen. Insbesondere extrahieren wir die Ziele der Maschinenerklärbarkeit
aus der Literatur und fassen sie in einem Modell zusammen. Diese Ziele sind wiederum
mit der Maschinenethik verknüpft und bilden den dritten Bestandteil unserer Argumentation
für die enge Verbindung zwischen Maschinenethik und Maschinenerklärbarkeit. Zum Ab-
schluss der Darstellung der Maschinenerklärbarkeit stellen wir einige Ansätze vor, die auf
Erklärbarkeit abzielen, und entwickeln Qualitätskriterien für diese Ansätze.

In Kapitel 8 geben wir einen Überblick über die Forschung zu Erklärungen im Allgemeinen,
um diese zur Forschung zu Maschinenerklärbarkeit abzugrenzen. Das Konzept der Erklärung
im Bereich der Maschinenerklärbarkeit scheint ein pragmatisches zu sein. Basierend auf
dieser Erkenntnis stellen wir unser Modell der Hauptprozesse in der Maschinenerklärbarkeit
vor und zeigen, wie sie miteinander in Beziehung stehen. Unsere Vorstellung ist es, dass
Ansätze zur Förderung der Erklärbarkeit im Einklang mit dem pragmatischen Begriff der
Erklärungen im Bereich der Maschinenerklärbarkeit darauf abzielen, das Verstehen von
verschiedenen Adressaten zu erhöhen. Dies ist jedoch nicht das übergeordnete Ziel solcher
Ansätze. Wir gehen davon aus, dass Erklärbarkeitsansätze letztlich darauf abzielen, bestimmte
übergeordnete Ziele zu erreichen, wie z.B. Fairness und gerechtfertigtes Vertrauen.
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Zur weiteren Vertiefung des Modells kommen wir in Kapitel 9 auf die Verbindungen
zur Maschinenethik zurück. Anhand einer umfangreichen systematischen Literaturanalyse
von mehr als 200 Publikationen zeigen wir die Ziele der Forschung im Bereich der Maschi-
nenerklärbarkeit auf, von denen viele eine moralische Komponente haben. Bei dem Ziel,
Verantwortung für Entscheidungen, die auf den Empfehlungen von künstlichen Systemen
beruhen, adäquat zuschreiben zu können, gehen wir näher darauf ein, wie Maschinenerklär-
barkeit zu ihm beitragen soll. Dazu gucken wir uns einen spezifischen Fall an, in dem ein
Personaler mithilfe eines Vorauswahlsystems eine Person einstellen soll.

Den Abschluss der Diskussion zur Maschinenerklärbarkeit bildet Kapitel 10, in dem wir
Ansätze vorstellen, die künstliche Systeme erklären sollen. Nachdem wir einige exemplarische
Ansätze vorgestellt haben, wenden wir uns der Bewertung solcher Ansätze zu. Dazu entwi-
ckeln und motivieren wir unsere eigenen Qualitätskriterien für Erklärungen. Diese Kriterien
sind Treue (d.h. die Erklärung sollte sich auf die realen Gründe für die Entscheidung eines
Systems beziehen), Verständlichkeit (d.h. die Erklärung sollte verständlich sein), und Bewert-
barkeit (d.h. die Erklärung sollte es ermöglichen, zu überprüfen, ob das System bestimmte
Kriterien, wie beispielsweise Fairness, erfüllt). Als Argument für diese Qualitätskriterien
führen wir an, dass sie besonders gut dazu geeignet sind, die übergeordneten Ziele der Ma-
schinenerklärbarkeit zu erreichen. Abschließend wenden wie die Kriterien auf die diskutierten
Ansätze an und stellen fest, dass die meisten Ansätze die Kriterien nicht erfüllen.

Abschließender Brückenschlag

Der vierte und letzte Teil der Arbeit verbindet die ersten drei Teile miteinander. Unter Berück-
sichtigung unserer Ansichten über Maschinenethik und Maschinenerklärbarkeit wenden wir
die Qualitätskriterien, die wir für Erklärbarkeitsansätze entwickelt haben, auf die potenziell
durch unser Framework generierbaren Erklärungen an. Dadurch können wir für die Angemes-
senheit unsere Frameworks argumentieren und seine Vergleichbarkeit mit anderen Ansätzen
aufzeigen. Trivial ist diese Argumentation jedoch nicht, da die Erklärungen, die mithilfe des
Frameworks generiert werden können, höchstwahrscheinlich sehr formal sein werden und so
insbesondere für Laien unbrauchbar sein dürften. Hier bildet die Forschung zu Idealisierung
und Abstraktion aus der Wissenschaftstheorie einen wichtigen Argumentationsbestandteil.

Im letzten Kapitel dieser Arbeit fassen wir kurz unsere Hauptstandpunkte zusammen. Dar-
auf folgt ein größerer Überblick über Möglichkeiten für zukünftige Forschung. Insbesondere
beim Framework mussten wir viele Vereinfachungen vornehmen, die in einer zukünftigen
Version des Frameworks ausgearbeitet werden sollten. Zudem mussten wir viele Annahmen
machen, beispielsweise darüber, wie man Gründe gegeneinander gewichtet, die es weiter zu
untersuchen und zu fundieren gilt. Schließlich hat die Effizienz unseres Entscheidungsfin-
dungsalgorithmus noch Optimierungsbedarf, den es zukünftig durch sinnvolle Heuristiken
auszuloten gilt.
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E. Supplementary Information about the Thesis

Origin of the Sections In order to meet scientific standards and make transparent all sources
used in this thesis, please find below a comprehensive overview of how each (sub)section has
been influenced by other works of mine. Please refer to the foreword for more information on
how this thesis differs from these works.

Abstract The thematic proximity alone makes it inevitable that parts of the abstract are
based on the abstract of my master’s thesis [446].

Section 1 This section is a revised and modified version of Section 1 of my master’s thesis
[446]. My master’s thesis, in turn, builds on the publications highlighted in the foreword.
A more detailed breakdown can be found in the foreword of my master’s thesis.

Section 4 The introduction of this section builds in part on Section 1.1 of my master’s thesis
[446]. In addition, a few arguments in Section 4.1.2 were adapted from arguments
presented in Section 3.1.2 of my master’s thesis.

Section 5 This section revises, improves, and expands upon the considerations I present in
Section 2 and Section 3 of my master’s thesis [446]. In particular, Section 5.1 builds on
parts of Section 2.1 (excluding Section 2.1.2 and Section 2.1.3), Section 5.2 builds on
Section 2.2, Section 5.3 builds on Section 3.1, and Section 5.4 builds on Section 3.2.

Section 6 This section revises, improves, and expands upon the considerations I present in
Section 5 of my master’s thesis [446]. In particular, Section 6.1 builds on Section 5.1,
Section 6.2 builds on Section 5.2, and Section 6.3 builds on Section 5.3.

Section 7 Section 7.1 builds on Section 6.1, Section 6.2, and Section 6.3 of my master’s
thesis [446]. Section 7.2 brings together ideas that Kevin Baum and I had for revising
the AMAI paper (see the foreword) for the first time in a sufficiently mature version.

Section 8 The introduction of Section 8.1 builds on Section 4.1 of my master’s thesis [446].
While Section 8.1.1 is new, Section 8.1.2 builds on Section 5 of [63]. Finally, Section 8.4
builds on smaller parts of each Section 1, Section 2, and Section 3 of [294]. In particular,
Section 8.4.2 builds in larger parts on Section 2.1 of [294].

Section 9 The introduction of Section 9 and parts of Section 9.1 build on Section 2 of [294].
While the basis for Section 9.2.1 is the systematic literature review I conducted with
other researchers for [105], it should be noted that I have revised and re-evaluated this
literature review to a significant extent. More information on this revision can be found
in Appendix C. Nevertheless, some parts of Section 6 of [105] have still been used as a
basis for Section 9.2.1 of this thesis. The same is true for Section 2.2 and Section 3.3 of
[294]. Finally, Section 9.3 builds on Section 4 of [63].



262 SUPPLEMENTARY INFORMATION ABOUT THE THESIS

Section 10 Section 10.1.1 originates from Section 5 of [294]. The rest of Section 10.1 is
slightly enriched with content from Section 4.4 of my master’s thesis [446]. Section 10.2
builds on [448], but is enriched in Section 10.2.2 by content from Section 4.2 of my
master’s thesis and in Section 10.2.3 by content from Section 4.5 of my master’s thesis.

Section 11 The introduction of Section 11 builds on Section 5.4 of my master’s thesis [446],
as does Section 11.1.1, the introduction of Section 11.2, and Section 11.2.3.

Section 12 As with the abstract, it is unavoidable that this section is a revised and updated
version of Section 9 of my master’s thesis [446] due to its thematic proximity.

Origin of the Figures Next, I would like to turn to the figures and show for each its origin.
Figure 1 is inspired by slides from the lecture “Ethics for Nerds” by Kevin Baum and Sarah
Sterz. Figure 2 was created together with Kevin Baum for [60]. Figure 3 was created together
with Kevin Baum for [61]. Figure 4 was created together with Kevin Baum for the initial
version of the AMAI paper. Figure 5 is taken from [332]. Figure 6, Figure 7, Figure 23,
Figure 25, and Figure 26 are adapted from [171]. Figure 8 and Figure 15 are my own creation.
The subfigures of Figure 9 are adapted from the sources indicated at them respectively (viz.,
[399], [263], and [116]). Figure 11 and Figure 12 were created together with Markus Langer,
Daniel Oster, and Kevin Baum for [294]. Figure 18 is adapted from [450]. Figure 24 was
created together with Daniel Oster for research purposes. Finally, Figure 32 is a screenshot of
a Google Trends search, made on the 20th of November, 2022.

Figure 10, Figure 13, Figure 14, Figure 16, Figure 17, Figure 19, Figure 20, Figure 21,
Figure 22, Figure 27, Figure 29 and Figure 28 were created by the Python programs listed
in Appendix A (more on the origin of these programs in the paragraph below). In particular,
Figure 10a, Figure 13, Figure 14, Figure 27, Figure 28, Figure 29 were created by the program
described in Listing 1; Figure 10c, Figure 16b, Figure 17, and Figure 19 were created by
the program described in Listing 2; Figure 16a and Figure 31 were created by the program
described in Listing 3; Figure 10b, Figure 16c, Figure 20, and Figure 30 were created by the
program described in Listing 4; Figure 21 was created by the program described in Listing 5;
and Figure 22 was created by an unrecoverable version of the program described in Listing 6.

The underlying original images are all taken from unsplash.com. Thus they are under the
unsplash license, which permits free use, even for commercial purposes. The dome image is
available under https://unsplash.com/photos/kQ80v_7PjRs and courtesy by Nik Nikolla. The
lion image is available under https://unsplash.com/photos/BBzTMPUSAO0 and courtesy by
Joshua J. Cotten. The lynx image is available under https://unsplash.com/photos/ToP7JBTcsfY
and courtesy by Zdeněk Macháček. Finally, the elephant image is courtesy by Brianna R. and
available under https://unsplash.com/photos/5dsApXnqtEk.

https://unsplash.com
https://unsplash.com/license
https://unsplash.com/photos/kQ80v_7PjRs
https://unsplash.com/@nik_nikolla_
https://unsplash.com/photos/BBzTMPUSAO0
https://unsplash.com/@jcotten
https://unsplash.com/photos/ToP7JBTcsfY
https://unsplash.com/@zmachacek
https://unsplash.com/@blreak14
https://unsplash.com/photos/5dsApXnqtEk
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Origins of the Code Listings The Python programs used to create the example images for
the different explainability approaches can be found in Appendix A. These programs originate
from various internet sources and I have adapted them for my purposes. In particular, I have
adapted them to use Google’s InceptionV3 model [458] as the AI model whose predictions
are explained. By using the same model for all explainability approaches, the explanatory
information generated by these approaches is nicely comparable.

The exact origins are as follows: Listing 1 is adapted from [36]; Listing 2 is adapted from
[194]; Listing 3 is adapted from [353]; Listing 4 is adapted from [459]; Listing 5 is adapted
from [491]; and Listing 6 is adapted from [87]. In each case, the licenses of the originals are
preserved and can be looked up in the indicated sources.
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Glossary
artificial intelligence (AI) is the set of theories and techniques used to create machines

capable of simulating human intelligence (e.g., understanding language, recognizing
pictures). 20, 33, 76, 93, 125, 127, 136, 140, 142, 143, 148, 152, 175, 181, 263, 265,
266, X

artificial neural network (ANN) is a type of AI that tries to imitate the human brain. 18,
19, 129, 158, 161–164, 166, 167, 171, 173, 265, 266, X

autonomous vehicle (AV) is a self-driving vehicle. 21, 24, 28, 29, X

class activation map (CAM) is an explainability approach that produces heatmaps for
classifications of CNNs. 161, 164, 165, 172, 174, 201, 203, 211, V, IX, X

change impact analysis (CIA) is an explainability approach that analyzes counterfactual
situations. 158, 159, 172–174, X

causal-mechanical explanation (CME) is a form of scientific explanation based on
causal relationships. 116, 117, 126, 181, X

convolutional neural network (CNN) is a type of ANN specifically fit for image recog-
nition. 161, 162, 164–167, 265, X

deep learning (DL) is a type of ML for creating DNNs. 126, 181, X

deductive-nomological explanation (DNE) is a form of scientific explanation based
on laws and regularities. 116–118, 126, 181, 183, 184, 186, X

deep neural network (DNN) is a type of ANN with many (hidden) layers. 35, 38, 52, 160,
169, 265, X

feature visualization (FV) is an explainability approach that reveals what (clusters of)
neurons in an ANN respond to by generating an input that fully activates them. 165,
167, 173, 174, 207, 209, V, IX, X

high level expert group on artificial intelligence (HLEGAI) is the expert group on
AI appointed by the European Commission. 148, X

human resources (HR) are intangible resources that a company derives from its employ-
ees. 152, X

local interpretable model-agnostic explanation (LIME) is a well-known explainabil-
ity approach for all types of models that explains individual predictions. 159–162, 165,
171–175, 193, 195, 210, V, IX, X

machine learning (ML) is a field of study in AI that relies on mathematical and statistical
approaches to give computers the ability to “learn” from data, that is, to improve their
performance in solving tasks without being explicitly programmed for each. 17, 19, 22,
23, 44, 45, 51–53, 93, 126, 127, 130, 136, 139, 140, 142, 145–147, 149, 150, 158, 160,
167, 169, 171, 175, 188, 190, 265, X

new mechanist explanation (NME) is a form of scientific explanation based on the
interplay of mechanisms. 116, 117, 126, 181, X
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standard deontic logic (SDL) is the most cited and studied system of deontic logic [332].
101–104, X

testing with concept activation vectors (TCAV) is a peculiar explainability approach
for ANNs that allows to examine the importance of so-called “concepts” on prediction
classes. 165, 166, 171, 174, 175, 203, V, X

explainable artificial intelligence (XAI) is the research field concerned with making AI
explainable. 127, X

moral agency is the property of being a moral agent (i.e., the property of being an entity
that can act based on morals). 14, 15

moral agent is an entity that can act based on morals. 14, 15, 25, 41–43

moral patiency is the property of being a moral patient (i.e., the property of being an entity
that should be included in moral considerations). 15, 16, 24

moral patient is an entity that has moral relevance and should be factored in when making
moral judgments. 9, 15, 17, 24, 27, 33, 47, 51, 54

superintelligence is a hypothetical entity that possesses intelligence far surpassing that of
the brightest and most gifted human minds. 22, 24, 29, 33, 34, 38
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