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Abstract

Adaptive experiences have been an active area of research in the past few decades, accom-

panied by advances in technology such as machine learning and artificial intelligence. Whether

the currently ongoing research on adaptive experiences has focused on personalization algorithms,

explainability, user engagement, or privacy and security, there is growing interest and resources in

developing and improving these research focuses. Even though the research on adaptive experiences

has been dynamic and rapidly evolving, achieving a high level of user engagement in adaptive ex-

periences remains a challenge. This dissertation aims to uncover ways to engage users in adaptive

experiences by incorporating interactivity and explanation through four studies.

Study I takes the first step to link the explanation and interactivity in machine learning

systems to facilitate users’ engagement with the underlying machine learning model with the Tic-

Tac-Toe game as a use case. The results show that explainable machine learning (XML) systems

(and arguably XAI systems in general) indeed benefit from mechanisms that allow users to interact

with the system’s internal decision rules.

Study II, III, and IV further focus on adaptive experiences in recommender systems in

specific, exploring the role of interactivity and explanation to keep the user “in-the-loop” in recom-

mender systems, trying to mitigate the “filter bubble” problem and help users in self-actualizing by

supporting them in exploring and understanding their unique tastes.

Study II investigates the effect of recommendation source (a human expert vs. an AI

algorithm) and justification method (needs-based vs. interest-based justification) on professional

development recommendations in a scenario-based study setting. The results show an interaction

effect between these two system aspects: users who are told that the recommendations are based on

their interests have a better experience when the recommendations are presented as originating from

an AI algorithm, while users who are told that the recommendations are based on their needs have
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a better experience when the recommendations are presented as originating from a human expert.

This work implies that while building the proposed novel movie recommender system covered in

study IV, it would provide a better user experience if the movie recommendations are presented as

originating from algorithms rather than from a human expert considering that movie preferences

(which will be visualized by the movies’ emotion feature) are usually based on users’ interest.

Study III explores the effects of four novel alternative recommendation lists on participants’

perceptions of recommendations and their satisfaction with the system. The four novel alternative

recommendation lists (RSSA features) which have the potential to go beyond the traditional top N

recommendations provide transparency from a different level — how much else does the system learn

about users beyond the traditional top N recommendations, which in turn enable users to interact

with these alternative lists by rating the initial recommendations so as to correct or confirm the

system’s estimates of the alternative recommendations. The subjective evaluation and behavioral

analysis demonstrate that the proposed RSSA features had a significant effect on the user experience,

surprisingly, two of the four RSSA features (the “controversial” and “hate” features) perform worse

than the traditional top-N recommendations on the measured subjective dependent variables while

the other two RSSA features (the “hipster” and “no clue” items) perform equally well and even

slightly better than the traditional top-N (but this effect is not statistically significant). Moreover,

the results indicate that individual differences, such as the need for novelty and domain knowledge,

play a significant role in users’ perception of and interaction with the system.

Study IV further combines diversification, visualization, and interactivity, aiming to en-

courage users to be more engaged with the system. The results show that introducing emotion as

an item feature into recommender systems does help in personalization and individual taste explo-

ration; these benefits are greatly optimized through the mechanisms that diversify recommendations

by emotional signature, visualize recommendations on the emotional signature, and allow users to

directly interact with the system by tweaking their tastes, which further contributes to both user

experience and self-actualization.

This work has practical implications for designing adaptive experiences. Explanation solu-

tions in adaptive experiences might not always lead to a positive user experience, it highly depends

on the application domain and the context (as studied in all four studies); it is essential to carefully

investigate a specific explanation solution in combination with other design elements in different

fields. Introducing control by allowing for direct interactivity (vs. indirect interactivity) in adaptive
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systems and providing feedback to users’ input by integrating their input into the algorithms would

create a more engaging and interactive user experience (as studied in Study I and IV). And cumu-

latively, appropriate direct interaction with the system along with deliberate and thoughtful designs

of explanation (including visualization design with the application environment fully considered),

which are able to arouse user reflection or resonance, would potentially promote both user experience

and user self-actualization.
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Chapter 1

Introduction

1.1 Problem Motivation

With the growth of the Internet and the development of new technologies such as machine

learning (ML), artificial intelligence (AI), and the Internet of Things (IoT), adaptive experience

which seeks to create a personalized experience for each user by adapting to their individual charac-

teristics, behaviors, and preferences [81] has been an active area of research in the past few decades.

Personalization algorithms are among the most popular research trends and developments in adap-

tive experiences. There is a continued focus on developing and improving personalization algorithms

that can provide a customized experience which creates relevant and personalized recommendations

such as targeted advertising [77, 210, 239].

However, despite the potential benefits of adaptive experiences enabling personalization

and context-aware interactions with users, achieving high levels of user engagement in such adaptive

systems remains a challenge. For example, most users do not understand the rationale behind

the recommendations made by adaptive systems, which can negatively impact their trust in the

system [44, 2]; some users may even perceive adaptive systems as intrusive, which can lead to a

decrease in their trust and overall satisfaction with the system [213].

The lack of transparency and control in these systems can have a significant impact on

users’ trust, engagement, and satisfaction with the systems. Thus, finding solutions to improve

transparency and control into adaptive systems is beneficial to build positive user experience with

these systems.Transparency refers to the degree to which system behavior is visible and under-

1



standable to users [214]. This includes providing clear explanations of how a system works, what

data is being collected, and how it is being used [25, 14, 111]. Transparency can help users make

informed decisions about technology use and build trust in the system [67, 247]. Control, on the

other hand, refers to the ability of users to influence the system’s behavior, such as providing users

with customization options, settings and preferences, and the ability to adjust system behavior to

suit their needs [13, 136]. Control can help users feel empowered and in charge of their interactions

with technology [57, 150, 64, 185]. While both transparency and control have been identified as

important factors for user trust and user satisfaction in other domains such as social media and

online privacy [247, 246, 219, 21, 217, 130], their potential role in adaptive experience remains

underexplored.

Providing explanation and allowing interactivity provide potential solutions to the lack of

transparency and control in adaptive systems. Explanation promotes transparency by providing

clear and comprehensive information. When explanations are provided, it increases transparency by

shedding light on the underlying factors, processes, or decisions. This enables stakeholders to gain a

deeper understanding of the subject matter.By incorporating interactivity into a system, designers

and developers provide users with the means to actively engage with and exert control over the

system. Interactivity enables users to provide input, manipulate elements, make decisions, explore,

and actively participate in shaping the system’s behavior. This interactive control enhances user

experiences, promotes customization, and empowers users to achieve their desired outcomes within

the system.

Therefore, this dissertation seeks to improve user experience by incorporating explanation

and interactivity into the design of adaptive systems so as to help users better understand how the

experience is catered to them and, in the meanwhile, allow users to provide feedback or adjust the

personalization; ultimately leading to creating a better user experience with adaptive systems.

1.2 Research Objectives — Proposed Solutions

Providing explanation and accommodating interactivity individually have been shown to

offer significant benefits in machine learning (ML) systems regarding supporting decision-making

and building users’ trust in systems [178, 229]. Explanations can help users better understand how

a system works. When users have a clear understanding of how a system operates, they can make
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more informed decisions about how to interact with it. Further, when users have a sense of control

over their experiences, they are more likely to trust the system. This trust can increase the user’s

confidence in the system and lead to a better user experience.

Thus, my research endeavors to create a better user experience by incorporating explanation

and interactivity into the design of adaptive systems. To achieve the research goal, I posit the

following research questions:

Overall RQ1: How do interactivity designs contribute to better user experience in

adaptive systems? (Chapter 3, 5 and 6)

Overall RQ2: How do explanation solutions influence user experience with adaptive

systems? (Chapter 3, 4, 5 and 6)

Overall RQ3: How do the effects of explanation and interactivity on user experiences

depend on personal (chapter 3, 5 and 6) and situational context? (chapter 4 and 6)

1.3 Summary of Studies

To answer the research questions, I conducted four studies focusing on different angles to

understand the effects of explanation and interactivity on adaptive experiences.

Study I: Building trust in interactive machine learning via user contributed in-

terpretable rules (in Chapter 3). Machine learning technologies are increasingly being applied

in many different domains in the real world. Recommender systems are one of the most popular

applications of machine learning. As autonomous machines and black-box algorithms began making

decisions previously entrusted to humans, great academic and public interest has been spurred to

provide explanations that allow users to understand the decision-making process of the machine

learning model. Besides explanations, Interactive Machine Learning (IML) seeks to leverage user

feedback to iterate on an ML solution to correct errors and align decisions with those of the users.

Despite the rise in explainable AI (XAI) and Interactive Machine Learning (IML) research, the links

between interactivity, explanations, and trust have not been comprehensively studied in the machine

learning literature. Thus, in this study, we develop and evaluate an explanation-driven interactive

machine learning (XIML) system with the Tic-Tac-Toe game as a use case, to understand how an

XIML mechanism improves users’ satisfaction with the machine learning system. We explore dif-

ferent modalities to support user feedback through visual or rules-based corrections. Our online
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user study (n = 199) supports the hypothesis that allowing interactivity within this XIML system

causes participants to be more satisfied with the system, while visual explanations play a less promi-

nent (and somewhat unexpected) role. Finally, we leverage a user-centric evaluation framework to

create a comprehensive structural model to clarify how subjective system aspects, which represent

participants’ perceptions of the implemented interaction and visualization mechanisms, mediate the

influence of these mechanisms on the system’s user experience.

This study takes the initial exploratory step in the investigation of the effect of interactivity

and explanation in the context of a Tic-Tac-Toe XIML system. The results show that explainable

machine learning (XML) systems (and arguably XAI systems in general) indeed benefit from mech-

anisms that allow users to interact with the system’s internal decision rules. While the Tic-Tac-Toe

game example system serves a relatively simple scenario (i.e., determining the outcome of a Tic-Tac-

Toe game), I find that even in this simple scenario, explanation-driven interactive machine learning

(XIML) systems have a better user experience, partially because they encourage users to engage in

a mutual feedback loop that helps improve the system’s performance. Specifically, XIML systems

that allow users to edit the decision rules (as compared to only give feedback on the decision itself)

make users feel more in control over the system, which increases the perceived quality of the system’s

feedback and, in turn, the overall system satisfaction.

The finding of this study demonstrates that introducing explanation and interactivity sig-

nificantly increases users satisfaction with a machine learning system, especially when users perceive

more control over the system. In the remaining studies in this work, I further explore this effect in

recommender systems which are a common application of adaptive experiences.

Study II: Studying the effect of recommendation source and justification on

professional development recommendations (in Chapter 4). This study was conducted in

the process of building a recommender system that provides personalized professional development

pathways for high school teachers seeking to increase their disciplinary knowledge and/or their

teaching skills. A controlled experiment (N = 190) was conducted to study the effects of the presented

justification for the recommendations (teachers’ needs vs. their interests) and the presented source of

the recommendations (a human expert vs. an AI algorithm) on users’ perceptions of and experience

with the system. Our results show an interaction effect between these two system aspects: users who

are told that the recommendations are based on their interests have a better experience when the

recommendations are presented as originating from an AI algorithm, while users who are told that
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the recommendations are based on their needs have a better experience when the recommendations

are presented as originating from a human expert.

This study focuses on explanation in a recommender system, it suggests that the presen-

tation of recommendations should emphasize their algorithmic nature, and the justification of rec-

ommendations should relate back to users’ interests over their needs. It implies that while build-

ing entertainment-oriented recommender systems, it would provide a better user experience if the

entertainment-oriented recommendations are presented as originating from algorithms rather than

from a human expert considering that entertainment-oriented preferences are usually based on users’

interest.

Study III: Preference Exploration and Development: The Role of Individual

Differences (in Chapter 5).

Traditional recommender systems typically align closely with users’ current preferences

with the sole purpose of appeasing users through easy to consume suggestions. However, this

perspective can lead to complacency which hinders opportunities for taste development. To ad-

dress this, we adopted a multidisciplinary approach by applying psychological insights surrounding

self-actualization to the design of alternative exploration features that help users examine and un-

derstand their own tastes and preferences. In an online experiment (n=488), I investigated the

effect of four novel alternative recommendation lists (RSSA features) on participants’ perceptions of

the recommendations and the system regarding perceived diversity, recommendation quality, recom-

mendation conformity, taste coverage, system satisfaction, and choice satisfaction. The subjective

evaluation and behavioral analysis demonstrate that the proposed RSSA features had a significant

effect on the user experience, surprisingly, two of the four RSSA features perform worse than the

traditional top-N recommendations on the measured subjective dependent variables while only one

of the RSSA features performs slightly better than the traditional top-N, but this effect is not sta-

tistically significant. Moreover, the results indicate that individual differences, such as need for

novelty and domain knowledge, play a significant role on users’ perception of and interaction with

the system.

This study considers explanation and interactivity from a different level: the RSSA features

reflect transparency of the recommender system by considering four new alternative recommenda-

tion lists to reflect what the system learns from users’ preferences, rather than just the traditional

top-N recommendations; the design of allowing users to correct or confirm the system’s estimates
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of the alternative recommendations by rating the initial recommendations (so as to get updated

recommendations from the system) enables users to indirectly interact with the system.

Even though the results is out of our expectation that the RSSA features do not perform

significantly better on users’ experience with the system, users do spend more time on interacting

with the alternative recommendations and they prefer to select items from the alternative lists.

Considering the effect of RSSA features on user experience with the system, I decided to shift away

from these RSSA features and focus on using emotion (from the perspective of item feature) for

diversification and visualization to investigate the associated effect on the user experience.

Study IV: Testing a diverse, transparent, and controllable movie recommender

system (in Chapter 6). Based on the findings from the above three studies, I decided to integrate the

explanation-driven (in the form of visualization) interactive mechanisms into a movie recommender

system, and present the movie recommendations as originating from algorithms rather than from

a human expert (in terms of the findings from study II), and introduce emotion as the movie

feature for diversification, which performs as a prerequisite for incorporating visualization (visualized

explanation) and interactivity. Online reviews for products and services provide a representation

of the emotions that the product/service evoked. Dr. Mokryn has leveraged the content of such

reviews to develop an eight-dimensional emotional vector describing every product/service on each

of the eight emotions of Plutchik’s wheel of emotions [191]. This vector represents the “emotional

signature” of the item, which can be considered as a feature of the item. Therefore, I explored

whether emotional signatures can be used as a novel selection criteria for users to find, evaluate, and

select products and services that meet their preferences in this study. I do this by integrating the

emotional signatures into a movie recommender system for diversification, visualization, and user

interaction.

While considering emotions for diversification, visualization, and interactivity with the pri-

mary goal to optimize user experience, this study also seeks to help users on self-actualizing by

supporting them in exploring and understanding their unique tastes by combining three distinct

directions into a novel emotion-based recommender systems1, which can be a potential solution to

the ”filter bubble” problem.

The results show that introducing emotions for diversification, visualization, and interactiv-

1The emotion-based recommender here refers to a recommender that re-ranks and diversifies the recommendations
based on their emotional signatures

6



ity indeed benefits recommender systems in individual taste exploration which further contributes

to both user experience and self-actualization.

Overall Contribution. I conducted four studies to explore ways to understand the role

of explanation and interactivity in adaptive experience. The overall contributions of this disserta-

tion are fourfold: 1) I built different forms of explanations both in a simplified and objective ML

application (the Tic-Tac-Toe game) and in complicated and subjective recommender systems; 2) I

implemented three interaction elements to encourage user engagement with systems: allowing users

to edit (direct control) the system provided rules and responding to their inputs on the fly, enabling

users to rate (indirect control) on the initial recommendations to correct or conform the recommen-

dations, and designing a panel to allow users to specify (direct control) their emotion preferences on

movies and get the updated recommendations immediately; 3) I show that integrating users’ input

into adaptive systems and providing feedback to the user accordingly increase users’ engagement

with the system, which finally contributes to their overall satisfaction with the system; 4) I argue

that appropriate direct interactivity along with deliberate and thoughtful designs of explanation

would potentially promote both user experience and user self-actualization in adaptive experiences.
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Chapter 2

Background and Related Work

2.1 Explanation in Adaptive Systems

An explanation provided by the system can be presented in the form of visualized explana-

tion, textual explanation, or a hybrid explanation design to provide transparency, convey additional

information, or justify the system’s prediction to the decision maker [184].

2.1.1 Explainable Machine Learning

Given the reliance on Artificial Intelligence (AI) for important decision making problems,

the area of explainability has become a crucial subject of research in this area. Explainable Artificial

Intelligence (XAI) [90] aspires that an interpretable explanation is available to support any predic-

tion provided by the system. Although AI algorithms often cannot be directly explained [4], XAI

methods aim to provide human-readable and interpretable explanations of the decisions taken by

these algorithms. Research has shown that, both explainability and interpretability can increase user

trust in the system [245]. In recent research, a variety of concrete XAI methods and implementations

have been proposed, some of which involve new predictive algorithms where explainability is built

in, and others which focus on post-hoc explanations agnostic to the underlying algorithms where

the aim is to approximate a supervised ML algorithm by a simpler and more interpretable model.

These techniques include calculating feature importance [87, 202], finding similar data instances

from past predictions [94], identifying what features are present or missing to support the prediction
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for building contrastive explanations [53], and generating interpretable rule-based representations

[47, 203]. Rule sets are regarded as an interpretable model class [71] and in the solution of Study I,

I have chosen to use the BRCG algorithm [47] as a rule-based explainer, which aims to optimize the

trade-off between accuracy and rule set complexity. I go beyond this work in Study I (Chapter 3),

though, by explicitly testing the effect of allowing users to interact with the rule-based system, i.e.

by creating new rules or editing or removing existing rules.

2.1.2 Visualization in Machine Learning

Visualization is an important aspect of ML systems. Hohman et al. presented a survey of

the role of visual analytics in deep learning research [102]. Importantly, visualization helps with

interpretation and promotes trust. For instance, Kaur et al. [118] mentioned that visualizations may

help data scientists uncover issues with datasets or models, although the existence of visualizations

can also lead to cases of over-trust. Furthermore, Hohman et al. [101] argued that data scientists

have different reasons to interpret models, often balancing competing concerns of simplicity and

completeness. Herlocker et al. presented an evaluation of a “white box” conceptual model of

recommendations, as opposed to the typical black box approach [98]. Their results demonstrate that

explaining recommendations through some form of visualized interfaces improves users’ acceptance

of a predicted rating, which is in line with Middleton et al.’s findings [166].

Visualization supports explainability and enables interactivity with the underlying ML

model. In this light, Gretarsson et al. introduced an interactive graph-based interface for a movie

recommender system and conducted a user study focusing on the interactive visualization design.

Their findings highlight that the visual interactive interface helps to produce recommendations with

higher accuracy and make the predictions more acceptable [83]. Bostandjiev et al. conducted an

evaluation to compare different interactive and non-interactive hybrid strategies for computing rec-

ommendations over diverse semantic and social web APIs [33]. They found [120] that integrating

explanation and interaction in a visual representation of the hybrid system improves the relevance

of predicted content, thereby increases users’ satisfaction.

In comparison with existing work on visualization, the solution presented in Chapter 3

(Study I) uses visualization not only to explain the ML model’s decisions, but also for allowing users

to interact with the underlying model through Boolean rules. In Study I, I aim to investigate if

intuitively visualizing the decision-making process of an ML model and allowing users to interact
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with it increases their engagement with the underlying system and improves their overall satisfaction.

2.1.3 Justifying Recommendations

Most recommender systems are black boxes, giving users little insight into how the system

has modeled and acted upon their preferences. Providing explanations in recommender systems can

increase users’ perception of transparency and trust [231, 232]. Initial efforts to explain recommenda-

tions can be traced back to recommender systems for news articles, books, and movies [28, 173, 99].

In the two decades following these works in [28, 173, 99], a wide variety of different types of expla-

nations has been developed and tested [72, 73].

An important distinction must be made between explanations and justifications of recom-

mendations: explanations describe the mechanism by which the recommender system arrived at the

recommendations, while justifications provide a reason for the recommendation that is independent

of the underlying algorithm [225]. Another important distinction considers the goal of the justifi-

cations: they could be employed in an attempt to promote the recommendations (i.e., convincing

users to adopt the recommendations), or they could be designed to increase users’ knowledge about

the recommendations (i.e., allowing them to make more informed decisions about the recommen-

dations) [27]. The idea that the goal of “good explanation should not be to ‘sell’ the user on a

recommendation, but rather, to enable the user to make a more accurate judgment of the true

quality of an item” [27] is more in line with the goal of recommendations for self-actualization.

In Study I (Chapter 3), I investigated the effect of explainability together with interactivity

in the context of machine learning; in Study II (Chapter 4), I have examined the effect of justification

together with recommendation source in recommending personalized professional pathways in a

scenario-based online user study. I consider justifications in that study since it is neither realistic

nor necessary for the end-user to understand the exact mechanism by which the recommendations

are derived. I specifically aim to help the target users (i.e., high school teachers) make a more

accurate judgment of the quality of the recommended pathways.

2.1.4 Visualization in Recommender Systems

Visualization leverages visual representations to facilitate human perception [96], this section

specifically focuses on the application of visualization as explanation in recommender systems.
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Past research have investigated to increase transparency by explaining the recommenda-

tions [98, 27, 244, 233, 6]. Explanations have proven to be helpful in users’ decision making and

even building trust into the recommendation systems. Zhang and Chen categorized the explainable

recommendations into six types: user or item explanation (or example-based explanation), feature-

based explanation, opinion-based explanation, sentence explanation, visual explanation, and social

explanation [260]. Among this six categories of the explanations in recommender systems, feature-

based explanations are explanations of recommendations focused on features relevant to a user or an

item [260], Herlocker et.al. showed that a feature-based explanation (an explanation referring to a

particular movie feature) can strongly convince the movie consumption [98]. While visual explana-

tions focus on the presentation style of recommendations [39], such as using graphs or other visual

elements to explain the recommendations. The presentation style of explanation plays a key role

in system credibility, a graph can be interpreted by human eyes much faster than plain text since

human eyes can process many visual cues [8]. Al-Taie et. al argued that visualizing explanations

with simple graphs performs better than textual explanations [8].

As mentioned above, the work covered in Study IV built a recommender system by introduc-

ing movie emotions as a key feature, and subsequently implement the diversification and interaction

functions based on this new feature. Also, I consider combining the feature-based explanation and

visual explanation to present the recommendations to the end user.

2.2 Interactivity in Adaptive Systems

2.2.1 Interactive Machine Learning

The advent of interpretability mechanisms into machine learning (ML) solutions has opened

the opportunity for users to interact with the system in order to provide feedback. Although humans

have their own limitations, human expertise can provide complementary perspectives. Therefore,

researchers have explored interactivity in ML in different domains.

Fails and Olson presented an interactive ML framework [63, 13], where the ML model was

intentionally trained quickly and the results were presented to the user, allowing the user to give

feedback, explore the impact of their changes, and then tune their feedback accordingly. This work

first popularized the phrase interactive machine learning (IML). The work in [115] allowed users to

interact with a classifier’s confusion matrix in order to support users to specify their preferences for
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classifications at the decision boundaries. However, the level of influence the user has on the ML

model is limited to the data points that fall along the decision boundaries. The approach in [196]

considered predictive variance for the human and machine at each point to allocate human effect.

The findings demonstrate how the role of algorithmic triage in allocating human and computational

effort has the potential to yield substantial benefits for the task of automation. ML systems can

be optimized to complement humans via the use of discriminative and decision-theoretic modeling

methodologies, and the work presented at [251] provides the first systematic investigation of how

ML systems can be trained to complement human reasoning.

2.2.2 Combining Interactivity and Explainability in Adaptive Systems

Interpretable and interactive systems have been shown to offer significant benefits for users

with respect to factors such as transparency, control, decision support, and trust [178, 229]. In order

for a user to correct a system, they must first understand it. The study of integrating interactivity

into XAI systems is gaining increased attention. Sangdeh et al. presented the results of a sequence

of pre-registered experiments that focus on the number of features and the transparency of the

model [192]. They discussed that people can better simulate the predictions of a clear model with

few features compared to the predictions of a clear model with more features or the predictions of a

black-box model. Madumal et. al. developed a framework to allow a user to interrogate and probe an

explanation [151], where their goal is to allow the user to interact with the explanation to ensure the

user understands the ML prediction. However, these two solutions focus on comprehensive model

understanding, but do not allow the user to provide modifications or corrections to the system.

In [139], authors built an explainable version of a model and allowed users to interact with the

explanations. The explanations are in the form of key words leading to an email being predicted

as spam, and users are given the opportunity to add or remove keywords or adjust the weight each

word has on the predicted label. This work demonstrates the potential of explanations to increase

the understandability of the model behavior and to serve as a vehicle for interaction.

In comparison with the research detailed above, the solution presented in Study I (Chapter

3) combines interpretability and interactivity through a rule-based, explanation-driven interactive

ML system, which allows its users to inspect the reasoning behind the predictions made by the

underlying ML model in the form of Boolean rules, and allows them to update these rules so as

to align the system’s predictions with the user’s decision making process. Study II (Chapter 4)
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addresses explainability through needs- vs. interest-based explanations. Study III (Chapter 5)

offers transparency through reflection upon the alternative lists that motivated by self-actualization,

as well as (indirect) interactivity through interaction with the alternative lists. Study VI (Chapter

6), on the other hand, incorporates explainability and interactivity in a movie recommender system.

The visualized explanation and interactivity were able to implemented through the introduction of

emotion, these implements thus allow users to understand the novel feature of movies (i.e., emotion)

and recognize the diversification nature of the algorithm, as well as enabling users to actively specify

their individual emotion tastes on movies.

2.3 Application Context in Recommender Systems

2.3.1 The Source of Recommendations

Past research has found conflicting results on whether it would be better to present the

recommendations as originating from an AI algorithm or from a human expert—some have carefully

documented cases of “algorithm aversion”, where users tend to prefer to receive recommendations

from a human rather than an algorithm [34, 114], while others have found situations where algo-

rithmic suggestions are preferred to human suggestions [89, 146, 215]. Research does not reach a

consensus regarding the existence of algorithm aversion. On the one hand, a sizable body of work

has shown or acknowledged the existence of algorithm aversion [193, 62, 12, 142, 34, 114]. This

work shows that individuals are more likely to delegate strategic decisions to other humans rather

than to an AI system [142]. A potential reason for this phenomenon may be that the emotional

responses to the outcomes of delegated decisions are more intense when responsibility is delegated

to another human being rather than to an AI-enabled system. For example, Promberger et al.[193]

compared computer-generated recommendations against physician-generated recommendations in

the context of physical health. They found that patients trust a physician more, and consequently,

are more likely to follow the physician’s advice. On the other hand, the same researchers found that

patients feel less responsible when following a physician’s recommendation rather than an AI agent’s

recommendation. Such inconsistency makes algorithm aversion an important topic for research.

Contrasting the work on algorithm aversion is a growing body of empirical evidence sug-

gesting that users actually prefer algorithmic advice [54, 89, 146, 215]. For example, Dijkstra et al.

found that individuals find expert systems more rational than human advisors [54]. Gunaratne et
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al. studied human decisions in the context of an online retirement saving system [89], they found

that while both types of advice increase users’ saving performance, users are more likely to follow

advice coming from an algorithmic source rather than crowd-source advice.

More recent studies suggest that the occurrence of algorithm aversion or algorithm seeking

behaviors crucially depends on external factors. For example, Beger et al. revealed that users do not

prefer human advice to algorithmic advice when they are unfamiliar with the human advisor [24].

Similarly, Castelo et al. explored the ’algorithm aversion’ phenomenon in 6 studies with different

tasks [35] and found that the algorithm aversion phenomenon is task-dependent. The findings of

their 6 studies were demonstrated in a conceptual model suggesting that the objectivity of the

tasks decreases users’ discomfort with the algorithms and increases their perceptions of algorithm

effectiveness and willingness to rely on algorithms—for objective tasks, users prefer the algorithm,

while for subjective tasks, they prefer human advice. Castelo et al. note, though, that if the

algorithm exhibits high affective human-likeness, this reduces the effect.

As a result of a literature review, Jussupow et al. [114] concluded that the existence of algo-

rithm aversion may relate to other parameters such as performance, perceived capabilities, human

involvement, human agents’ expertise, as well as social distance. Therefore, research needs to inves-

tigate these various different parameters and domains to better understand the algorithm aversion

phenomenon. Indeed, one of the goals of Study II (Chapter 4) is to understand how users’ percep-

tions of AI algorithm-based recommendations differentiate from those of human expert-suggested

recommendations in an educational setting, with either interest-driven justification or needs-driven

justification for the recommendations. As Logg et al. pointed out, ”algorithm appreciation” may

appear in some domains where the algorithm has been historically used and popularly accepted by

most people such as weather forecasts [146], which means the prior experience with the algorithmic

or human advice could be a confounding factor in the phenomenon of algorithm aversion. Since

Study II (Chapter 4) considers such a system recommending personalized professional development

pathways that specifically targets high school teachers, it avoids the possible additional effects that

come from prior experiences. Arguably, Study II (Chapter 4) reveals implications for the design of

recommender systems for professional development and beyond.
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2.3.2 Diversifying Recommendations

Diversity has been proven to be one of the effective ways to address the “filter bubble”

problem (see more details in 2.4.2.1) in recommender systems [238, 171, 74, 222]. Given that recom-

mender systems have been applied in different context and different algorithms have been developed

in recommender systems, the effects of diversification cannot be generalized.

Treviranus et al. studied the effect of artificially incorporating popularity into recommender

systems on diversity, the results showed that emphasizing popularity contributes to user homoge-

nization increase [238]. Chaney et al. demonstrated that algorithmic confounding can lead to

homogenization of user behavior without increase utility [37]. Gharahighehi and Vens empirically

studied balancing diversity and accuracy in session-based recommendation systems and validated

this performance on music recommender systems [75]. Their results demonstrated a personalizing

diversification idea that hybridizing diversity and accuracy is effective in music recommendations

where emphasizing accuracy for the focused sessions ( i.e. the user is interested in more focused

content) and emphasizing diversity for the broader sessions (i.e., the user is interested in broader

content). However, this idea is domain-dependant, it does not apply to news recommender systems

[74]. The authors further conducted another study making neighborhood-based session-based rec-

ommender systems diversity-aware, aiming to address the ”filter bubble” phenomenon in the context

of news [74]. They did see evidence of improvement of the diversity measures, however, they did not

perform a user study to measure the actual users’ perceived diversity since this might differ from the

diversity that they measured [60]. Similarly, an empirical study was conducted to examine the effect

of multiple news recommender systems on different diversity dimensions. The results demonstrated

that the personalized news recommendations did not reduce the diversity [171]. However, the study

relies on specific diversity measure that only associates limited users behavior data such as number

of articles read or the time spent on, and it was tested on simulated data, which makes the finding

less convincing.

While there are evidence showing the positive effects of diversification on “pricking” the ”fil-

ter bubbles”, some research shows signs of negative effect of diversification. Lunardi et al. checked

the effects of collaborative filtering algorithms on generating ”filter bubbles” in the domain of news

content by comparing different diversification strategies [149]. The results reveal that diversifica-

tion approaches would not always decrease homogeneity of items, one of the reasons relies on the
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items’ features which have a detrimental role in the diversification process. Sun et al. proposed a

cross-domain matrix factorization [133] model leveraging social tags to address the ”filter bubble”

problem by balancing the recommendation accuracy and diversity and alleviating the recommenda-

tion polarity [222]. However, their diversity dimension is complicated for users without expertise.

Although diversity has been extensively studied in recommendation systems with appli-

cations in different contexts, limited attention has been put in diversifying on dimensions (such as

emotions of items) that are easy to understand by users (since they are the end objective to consume

the recommendations) and users’ actual perception of the diversity.

In comparison with existing work on diversity, my solution in Study IV (Chapter 6) diversi-

fies the recommendations by the item emotions, which is an intuitive feature for users to understand

the diversification mechanism. In the work presented in Study IV (Chapter 6), I aim to investigate

if diversifying recommendations by item emotions increases users perceived diversity of the provided

options and thus mitigate the feeling of being in the trap of the ”filter bubble”.

2.3.3 Emotions in Recommender Systems

2.3.3.1 Emotions in Recommender Systems

Some studies have introduced emotions into recommender systems. Moshfeghi et al. con-

sidered two emotion spaces extracted from the movie synopsis and the movie reviews together with

three semantic spaces to predict the rating of a movie of a given user, aiming to tackle the cold start

problem where there is no past rating for an item [174]. Their results shows significant improvement

in the accuracy of prediction. Instead of extracting emotions from movie information, Ho et al.

consider emotions to recommend movies in a different way. Based on some research findings that

colors are strongly correlated to emotions [97] and human emotions can be represented in a natural

form of color [152], they built a emotion-based recommender system capturing user emotions by

using a sequence of three colours [100]. They introduced the emotions from the perspective of user

profile.

Different from the above work, I consider emotions from the perspective of item features ex-

tracted from online reviews and only using the emotion feature for diversifying the recommendations

instead of using it for predicting.
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2.3.3.2 Emotions Evoked from Online Reviews

Online reviews for products or services have become an important source for users to refer

to when making a decision as the internet technology permeates our everyday life [175, 68, 56].

Online reviews not only convey information about products’ or services’ attributes but also users’

actual experience with the products or services [9], which reflects users’ opinion about the products

or services. Ullah et al. argued that online reviews is likely to convey emotional experiences (the

evoked emotions during the experience) of the users with the products or services [241]. Compared

with face-to-face communication, users can express emotions of their experiences with the products

or services in online reviews more freely and completely [230]. Thus, emotions evoked in the online

reviews of products or services can be treated as a feature of these products or services.

Mokryn et al. adopted a conceptualization that considers the emotions that the item evokes

in users in the form of online review of the item. This conceptualization of emotions as an attribute

of the item is used in affective information retrieval, especially multimedia retrieval [169]. They

further extracted emotions elicited by the movie from the online reviews, and created an emotional

signature — consisting of the eight emotions of the Plutchik’s wheel [191] — of the movie by using

NRC lexicon for emotion detection in a text [19]. They carefully conducted an online experiment with

real participants to validate the convergent validity of the emotional signature (i.e., if the emotional

signature actually captures what users perceive it to be from the perspective of emotions), they did so

by asking participants the emotions elicited in certain movies, the results demonstrated a significant

correlation between the emotional signatures and the participants-stated explicit emotions of the

tested movies [169]. Cohen-Kalaf et al. further developed a novel Movie Emotion Map system

that enables to view and browse through a large collection of movies according to the movies’

emotional characteristics [42]. They performed a qualitative evaluation with 18 target users to

examine the effectiveness, efficiency, and users’ satisfaction associated with browsing and exploring

through movies according to emotions. Their results indicate that users could easily browse through

movies according to the visualized landscape in the system and that the tool enabled them to search,

filter, and find movies based on their emotional characteristics.
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2.3.3.3 Introducing Emotion as an Item Attribute

Based on this prior work of extracting emotional signature from online reviews of movies

and verifying it being able to represent one feature of movies [169], Dr. Mokryn’s team has sought

to collaborate with us to apply emotional signature to recommender systems. We had proposed to

build an actual movie recommender system and conduct an online user experiment to test the effect

of emotion-based diversification and visualization on user experience with this system. The proposal

I have written is available at this link1. In this project, I took the lead of designing the user interfaces

of the systems and implementing all the algorithms for generating different recommendations. The

work of this collaborated study was submitted to RecSys 2023.

Partially motivated by this collaborated project, I was further interested in introducing emo-

tions for diversification, visualization, and interactivity in a recommender system, with the primary

goal to optimize user experience. To the best of my knowledge, little research has investigate the

combination of these three components in recommender systems. Thus, I also expected experimen-

tal designs in the final study (Study IV) would help users on self-actualizing by supporting them

in exploring and understanding their unique tastes by combining three distinct directions into a

novel emotion-based recommender systems2, which can be a potential solution to the ”filter bubble”

problem.

2.4 User Experience with Adaptive Systems

2.4.1 User Experience and User-centric Evaluation in Adaptive Systems

While there is ample work in ML on improving algorithms, few studies investigate ways to

make interactive ML systems easy, effortless, and enjoyable to use. This is problematic, as poor user

experience can diminish the use of an ML system, even if it provides highly accurate ML results. The

user experience model proposed in [95] describes how the user perceives certain objective aspects

of the system, such as its interaction and presentation style, from the perspective of pragmatic

attributes and hedonic attributes. These user perceptions in turn cause an empirical evaluation in

terms of satisfaction. Forlizzi’s work proposed a framework that can be applied in different domains

1https://docs.google.com/document/d/1vNvhtSODiT5rrcsVq0Ew9gSOiooPUcZPJpc4ZiPMBNE/edit?usp=sharing
2The emotion-based recommender here refers to a recommender that re-ranks and diversifies the recommendations

based on their emotional signatures
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to benefit new products and system designs in terms of interactions and user experiences [69].

In this dissertation, however, I use the validated user-centric evaluation framework developed

by Knijnenburg et al. [128] to evaluate the user experience with the proposed systems covered in all

the four studies. This framework explains the user experience of recommender systems—a typical

application area of machine learning—and provides an excellent platform for studies of interactive

ML systems. I extend this framework from recommender systems to the XIML context covered in

Study I (Chapter 3), and apply it to the results of the user study to understand the user experience

of the XIML Tic-Tac-Toe game system. The Tic-Tac-Toe game has been considered in previous

works studying AI application due to its simplicity [116, 3]. In Study I, the Tic-Tac-Toe game is

used because it is easy to learn how to play the game in real-time, hence no “domain expertise” is

needed to understand the basic operations of the implemented system. This setup allows us to target

the evaluation towards non-expert XAI users. That said, users’ analytical skills, their familiarity

with the Tic-Tac-Toe game, and/or their familiarity with XAI systems may very well still have an

effect on the system’s user experience (cf. [123]).

2.4.2 Filter Bubble and Self-actualization

2.4.2.1 The Filter Bubble Problem in Recommender Systems

Recommender systems have penetrated into every aspect of our daily activities online, es-

pecially e-commerce, social networking, and search engines, through which people experience most

of their day-to-day online activities. For example, Amazon has increased the number of products

that the customer has never purchased before up to 40% with the Amazon Personalize service [216];

Facebook heavily relies on algorithms with their News Feed to predict what the user wants to see

[1]; Google offered the personalized search for sign-in users when they have the web history enabled

on their accounts, they even have expanded this service for signed-out users since around 2009 [104].

Algorithms have been implemented into recommender systems to learn from users’ behavior data

and browser history about relevant content of their preference, so as to personalize information to

individual taste [5, 131].

With the increasing permeation of personalized recommendation, a potential problem of

recommendation systems has gradually surfaced: online users get stuck in a ”filter bubble” [187]

which isolates users from a diversity of viewpoints, content, and experiences, and thus prevents them
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from discovering new and unknown areas of their own taste [124]. This issue has attracted widespread

attention from popular opinion [36, 186], and a growing number of researches have investigated in

it in different domains [182, 105, 66, 171, 86].

Nguyen et. al validated the occurrence of ”filter bubble” in the domain of movie recom-

mender systems through measuring the longitudinal influence of collaborative filtering algorithms,

they found that the collaborative filtering algorithms did narrow set of movies over time slightly;

however, users who actually consumed the recommended movies experienced less of the narrowing

effects [182]. Aridor et al. went further and explained the empirical results of Nguyen et. al’s findings

by analyzing a model of user decision-making in recommender systems with four central components

[15]. Grossetti and Mouza proposed a community-aware model based on the similarities between

communities on a large Twitter data set to generate re-ranked lists of recommendations, aiming to

weaken the ”filter bubble” effect for the affected users [86]. Flaxman et al. examined web browsing

histories of 50 thousand online users located in the US in the news domain, they found that the mean

ideological distance between individual users did increase in news consumption in social networks

and search engines [66]. Another research has investigated the effect of recommendation algorithms

on amplification of extremist content, which supports the policy concerns regarding ”filter bubbles”

in the context of extremist content online [250]. The findings suggest that the recommendation algo-

rithms on YouTube showed signs of promoting far-right materials via the provided recommendations

after users view the corresponding videos.

The existence of the ”filter bubble” problem has attracted the attention of many researchers.

In view of the fact that the recommender system has been applied in different domains, and the

negative impact it produces also varies greatly depending on the domain. Therefore, I provide a

possible solution to the ”filter bubble” problem in the domain of movie recommender systems.

2.4.2.2 Self-Actualization in Recommender System

Theories of Self-Actualization. The concept of self-Actualization was originally intro-

duced by Kurt Goldstein, a German Neurologist and Psychiatrist in the 20th Century. He defined it

as ”man’s’ desire for self-fulfillment, and the propensity of an individual to become actualized in his

potential” [80]. This concept of Self-Actualization adopted in the context of recommender system

is inspired by Abraham Maslow’s hierarchy of needs that details five phases of personal develop-

ment: the physiological needs, the safety needs, the love needs, the esteem needs, and the need for
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self-actualization [157]. In his 1965 publication ”Self-Actualization and Beyond”, Maslow defined

self-actualizing people as individuals who ”learn through the process of intrinsic learning”. He pur-

sues that they ”listen to their own voices, take responsibility, are honest, and who work” [156]. In

this publication, Maslow further pointed out that of the two types of learning: intrinsic and extrinsic,

self-actualizing individuals usually rely of the former. This claim, especially pertaining to the high

information retention associated with intrinsic motivation in learning, has since been supported by

theories in all areas of human goal pursuit, including the goal content theory (GCT) [49] and the

self-determination theory (SDT) [48, 50]. Maslow further pursues that the self-actualizing process

is one of finding out who one is, what one is, what one likes and dislikes, what one deems good

or bad to them, where one is going and what is one’s mission [156]. Recommender Systems, as

informational navigation systems par excellence, constitute the perfect tool to assist individuals in

successfully completing the above described self-actualization process.

Recommender Systems for Self-actualization (RSSA). As most residents of the

developed world are at the highest levels in Maslow’s hierarchy of needs [80], the goal of recommender

systems for self-actualization (RSSA) is to help users with what Maslow calls their “metamotivation”:

their motivation to go beyond the need itself and create a situation of constant betterment. Besides,

according to Rogers, individuals have an innate drive towards self-actualization, which he defined

as the inherent motivation to grow, develop, and strive for personal fulfillment. The actualizing

tendency emphasizes the importance of self-awareness, authenticity, and the alignment of one’s

thoughts, feelings, and actions [206].Thus, by leveraging recommendation algorithms to encompass

all aspects of Jameson’s ARCADE model — a model of choice support strategies suggests that

systems can help users to access (A), represent (R), combine and compute (C), advise about (A),

design (D), or evaluate (E) a choice situation [110], RSSA can help users construct preferences

based on their long-term goals, which provides them with a plan to more confidently make their life

decisions. Moreover, RSSA may help users develop long-term goals that reflect their unique personal

tastes by departing from the status quo of turning recommenders into traps.

Gaining insight into users’ perceptions of recommender systems for self-actualization (RSSA)

will enable us to better support users’ preference exploration and development. To this effect, I have

completed another research study to develop a validated instrument — the OPAD Scales — that

measures user’s perceptions of recommendation in the context of online personalized advertising

including the perceived self-actualization(see Section 2.5). Particularly, self-actualization refers to
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the perception of the extent to which personalized ads are attuned to help the consumer meaningfully

improve their own lives [124]. A focus on self-actualization encourages ad personalization algorithms

to go beyond tailoring the ads to users’ short-term likes by simply optimizing the “click-through

rate” (CTR) of the presented ads [61, 256]. Among the validated OPAD Scales, some of them were

finally used in the final study (Study IV), see more details in Section 2.5.

2.5 The OPAD-Perception Scales

2.5.1 Study Overview

Gaining insight into users’ perceptions of online personalized advertising will enable adver-

tisers and social media platforms to better support users’ privacy expectations and provide user-

friendly interfaces for controlling the ad personalization process. To this effect, I have developed a

reliable and validated measurement instrument (the OPAD-Perception scales) to understand users’

perceptions online personalized advertising. The OPAD-Perception scales provide useful tools to

measure users’ experience with mechanisms that specifically allow them to inspect and control the

ad personalization process, some of the scales were also used in Study IV (Chapter 6).

2.5.2 Study Background

2.5.2.1 Challenges with Online Personalized Ads

Online advertising has become central to the business model of virtually all social media

platforms. To increase the relevance of presented ads, social media platforms tailor the advertised

content to consumers’ desires. This process is, in essence, an application of recommender systems

that find appealing items for each user among an abundance of available options—the difference

being that the recommended content is sponsored by an advertiser and pushed by the platform

rather than requested by the user. Prior work has shown that consumers assess the appeal of an

advertised product by conducting a comparison of its fit with their own needs or desires [7, 172, 226].

Thus, in theory, personalized ads should be more representative of consumers’ needs which may

result in increased ad effectiveness. Indeed, personalization has been shown to increase ad click-

through rates [255] and purchase intentions [20] considerably when compared with non-personalized

advertisements.

22



While personalization can increase ad effectiveness, it simultaneously causes privacy con-

cerns about the substantial amount of tracking and targeting needed to drive the personalization

process [159, 195, 240]. For one, researchers have shown that extensive data collection and person-

alization creates an experience that is “creepy” [242, 20, 258, 237]. Moreover, social media users

could become trapped in echo chambers and filter bubbles—once they engage with specific ads,

the personalization process may create a self-perpetuating tailored experience [205, 257, 187]. Re-

cent work has argued for the inclusion of epistemic goals when considering users’ desires [61]. As

such, incorporating “self-actualization” would surface advertisements that are more aligned with

consumers’ long-term ambitions, which could support them in developing, exploring, and under-

standing their own unique tastes and preferences [124]. Furthermore, recent media attention to

the prevalence of data breaches, and the ability of targeted ads to spread misinformation, discrim-

inate, and impact politics, has increased consumer awareness of the risks associated with online

advertising [55, 41, 52, 259, 220]. These developments require further academic investigation, and

this current study provides researchers with useful tools to measure both the negative and positive

perceptions consumers may have of online personalized ads.

2.5.2.2 Providing Transparency and Control

Online personalized advertising is basically a recommender system that dynamically takes in-

put details about an advertisement and the past website viewing behavior of an individual user [243].

To avoid the downsides of personalized ads without losing their benefits, businesses must commit

themselves to transparency in how they gather customer data and how they use it to provide value.

Indeed, regulators have started to enforce policies that force companies to disclose how they collect

and use consumer information [180]. Moreover, businesses must provide consumers with adequate

mechanisms to manage the ad personalization process. Indeed, a research study shows that 85% of

consumers want more information and greater control over the data that companies collect on them

[207].

To address this desire, social media companies have created transparency tools that give

insight into the recommendation process. Platforms like Twitter, Facebook, and Instagram have

a “why am I seeing this ad?” feature which offers an explanation for being shown a specific ad.

On the research front, a number of studies has investigated bringing transparency into online ad-

vertising [188, 144], but research on ad transparency and control is still in its infancy [252], as is
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transparency and control in movie recommendations.

2.5.2.3 Measuring Users’ Experience with Personalized Ads

While most HCI research on personalized ads has employed single-item measures, researchers

in other fields have investigated the underlying factors that contribute to acceptable ad experiences

in a more systematic manner. For example, Soh et al. presented the ADTRUST Scale [218],

which measures trust in advertising with four distinct factors: reliability, usefulness, affect, and

willingness to rely on. They argued that within the context of advertising, trust is composed of

beliefs that significantly influence consumers’ willingness to act on ad-conveyed information. Trust

is an important element of users’ perceptions of online ads. For example, John et al. found that trust

enhances users’ experience with personalized ads [113]. Moreover, Kim et. al found that platform

trust and acceptable information flow played a major role in engagement with ads [119].

Taking trust into account may thus contribute to the creation of ads that inform consumers

of items of personal interest in a manner they deem acceptable. But a thorough understanding of

consumers’ perceptions of online personalized ads requires a measurement instrument that moves

beyond trust in the ads themselves, and explicitly covers users’ perceptions of the ad personaliza-

tion process. In an effort to reach that goal, this study builds on prior work by acknowledging

different aspects of the interaction with online ads that impact the balance between privacy and

personalization.

2.5.3 Methodologies

Inspired by prior work in Human-Computer Interaction (HCI) that has developed survey

scales as a practical resource for researchers and practitioners (e.g. [58]), in this work I employed a

three-stage scale development procedure outlined in Figure 2.1.

2.5.3.1 Initial Qualitative Evaluation of the Scale Items

At the first stage of the study, we reviewed the related literature to identify the dimensions

and aspects related to users’ perceptions of online personalized ads addressed by others to develop

a set of candidate items, generating 58 initial items. Then we proceed to a card sorting study

where 35 social media users were asked to sort the proposed initial item set with 58 candidate

items into appropriate groups (i.e., factors) so as to replace and restructure ambiguous items. We
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Identification

Reliability

Validation

Review prior literature to identify the dimensions and aspects 
related to users' perceptions of online personalized ads addressed 
by others
Goal: develop a set of candidate survey items

Conduct a card sorting exercise where 35 social media users 
are asked to sort the proposed item sets into appropriate groups 
(i.e., factors)
Goal: replace and restructure ambiguous items

Conduct an expert review where practitioners working on 
personalized ad experiences provide feedback on each item and 
factor and, if needed, list missing items or factors
Goal: establish content validity

Conduct an online survey study administering the scale to 325 
participants; finalize the measurement scales based on item fit 
metrics
Goal: establish scale reliability and measurement validity

Validate the measurement scales with another sample of 303 
participants; analyze the data using the established measurement 
structure
Goal: confirm scale reliability and measurement validity

Test the predictive ability of the measurement scales to 
distinguish between ad experiences with different levels of 
personalization, sensitivity, granularity, and control
Goal: establish predictive and concurrent validity

Figure 2.1: Employed three-stage scale development procedure (based on Soh et al. [218]).

proposed three metrics (i.e., misclassification rate, discriminant ratio, and misfit index) to analyze

classification results. With the fine-analysed resulting classifications, we further conducted an expert

review where practitioners working on personalized ad experiences provide feedback on each item

and factor and, if needed, list missing items or factors, in order to establish content validity of the

item set.

This stage ended up with 60 items representing ten dimensions/factors describing users’

perceptions of online personalized advertising that are ready for the next stage of building reliability.

2.5.3.2 Online User Experiment

At the reliability stage, we conducted an online survey study by administering the scales to

325 participants and finalized the measurement scales based on item fit metrics, aiming to estab-

lish the scale reliability and measurement validity. This stage generated a final 10-factor 49-item

measurement instrument.
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To validate the final measurement instrument resulting from the above reliability stage,

we conducted a CFA on the validation sample with 303 online participants, using the exact same

measurement structure as the final outcome of the reliability stage. With the CFA analysis on the

validation data sample, we confirmed the scale reliability and measurement validity; concurrently,

we also tested the predictive ability of the measurement scales to distinguish between ad experiences

with different levels of personalization, sensitivity, granularity, and control on the same validation

sample, to establish predictive and concurrent validity.

2.5.3.3 The Validated/Resulting Scales

This study resulted in the Online Personalized Advertising-Perception (OPAD-

Perception) Scales. These scales consist of 49 items that measure users’ self-reported perceptions

across 10 dimensions (i.e., constructs): OPAD Reliability, OPAD Usefulness, OPAD Transparency,

OPAD Interactivity, OPAD Targeting accuracy, OPAD Accountability, OPAD Creepiness, Willing-

ness to rely on OPADs, OPAD Self-Actualization, and OPAD Persuasion.

2.5.4 Scales to Apply to the Final Study

The contributions of this measurement study are threefold: 1) we developed a reliable

instrument based on qualitative and quantitative input from end-users and experts; 2) we showed

that these OPAD-Perception Scales can robustly capture users’ multi-faceted perceptions of online

personalized ads and their delivery mechanisms; 3) the OPAD-Perception Scales can help researchers,

advertisers, and social media platform developers evaluate solutions designed to better meet users’

privacy expectations and improve their understanding of and engagement with the ad personalization

process on social media platforms. The transparency, interactivity, persuasion, and self-actualization

scales were also used in the Study IV in Chapter 6 (the transparency and persuasion scales were

integrated to the understandability and choice-satisfaction scales, respectively) to measure users’

perceptions of these dimensions on the movie recommender system.
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Chapter 3

Study I: Building Trust in

Interactive Machine Learning via

User Contributed Interpretable

Rules

(Note: This work has been published in the 27th International Conference on Intelligent

User Interfaces (IUI ’22) [92]. )

This work takes the initial exploratory step in the investigation of the effect of the combining

explanation (Overall RQ2) and interactivity (Overall RQ1) in Machine Learning systems on user

experience in the context of a Tic-Tac-Toe XIML system.

3.1 Introduction

Machine learning (ML) is increasingly being applied in domains like data mining, computer

vision, natural language processing, biometric recognition, search engines, medical diagnosis, de-

tection of credit card fraud, securities market analysis, DNA sequencing, speech and handwriting

recognition, strategic games, and robotics. Despite the broad application of ML and its apparent
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efficiency and high accuracy, ML often remains a “black box”, hiding its inner workings from its

users. This is not surprising: after all, most end users are not experts in probability theory, statistics,

approximation theory, convex analysis, computational complexity theory, and other disciplines that

are involved in machine learning, thereby making it difficult to explain how a machine learner works.

This lack of explanation can be problematic, though, in situations where human users are expected

to give feedback to the ML system—human decision-making is driven by forms of observation, ex-

perience and logical thinking, and explanation is at the core of these cognitive processes [103, 147].

Thus, in these situations, it becomes necessary for ML mechanisms to explain their operation to the

end user. There are some successful applications of explanatory machine learning (XML) mecha-

nisms, including in the area of music and movie recommendation, mortgage qualification, visual cues

to find the “focus” of deep neural networks in image recognition, and proxy methods to simplify the

output of complex systems [78].

While these improvements in explainability and interpretability may assist in allowing the

user to trust an ML system [79, 29], they do not resolve the often limited ability of ML systems to

consume user feedback. When ML systems use data to learn a decision-making process such as a

classification task, the accuracy of these systems is dependent on the quality of knowledge captured

in the input training dataset. In many cases, though, the available data only have a partial view of

the domain. When this is the case, user feedback may be used to improve the underlying solution.

Typical mechanisms for supporting user feedback involve allowing users to provide feedback through

relabelling instances via active learning, or by adjusting feature importance. However, the knock-on

effect and expected impact of such feedback is less transparent to the user, and thus does not allow

the user to correct errors or add domain logic. Rule-based models [138, 47] provide an excellent

opportunity for domain logic feedback, but their logic is usually static—either crafted by the data

scientist into the solution through data selection or as a set of post processing logic rules1. While

such rule-based models have the advantage of being interpretable, in order to achieve coverage, the

model must also provide control to allow end-users to inspect add rules.

Teso et al. argued that interaction and understandability are central to trust in machine

learners [229]. However, few researches have investigated the combination of explanation and interac-

tion in machine learning systems. In this paper, we seek to develop and evaluate a machine learning

1One can of course add a new rule for each newly provided ground truth value, but this solution would cover
increasingly narrow slices of the realm of possible input parameters, which negatively impacts interpretability.
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solution that is both interactive and interpretable. We draw on existing work by Fails and Olson,

who were the first to introduce the term Interactive Machine Learning (IML) to better integrate the

user into the ML solution [63, 13]. IML seeks to include the domain expert in the model generation

process by providing a model to the user and allowing them to give feedback on this model, explore

the impact of their changes to the model, and then tune their feedback accordingly [13]. We further

draw on existing research on eXplainable Machine Learning (XML) mechanisms that present the

machine learning model to the user in an intuitively understandable format.

In many XML solutions, visualization plays a crucial role. An analogy can be drawn with

how people create a mental representation of their reading when they read a text—this practice helps

them improve their critical comprehension, and provides them a chance to interact with the text

and make it their own. Likewise, when considering explainability in rule-based machine learning

models, intuitive visualizations can improve not only users’ basic comprehension of the machine

learning rules but also their understanding of how the rules work together, allowing them to make

connections between rules. This ability to make connections is extremely important in providing

users comprehensive tools to interact with and make changes to machine learning models, i.e. by

creating new rules or editing or removing existing rules [22].

In this chapter, I aim to provide such comprehensive means to interact with machine learning

models by combining (and thereby taking a step beyond the existing work on) XML and IML. I

build upon the user editable AI solution proposed in [45, 11], which enables user feedback through

boolean rules, by explicitly testing the effect of allowing users to interact with an intuitively visualized

machine learning mechanism. This study makes the following contributions:

1. I develop an eXplanation-driven Interactive Machine Learning (XIML) system that adjudicates

the outcome of a Tic-Tac-Toe game which includes:

(a) an intuitive visualization of the learned rules (as opposed to a textual description of the

rules), and

(b) a mechanism that allows users to interact with the system by editing existing rules (as

opposed to only allowing them to indicate the correctness of the rules). More specifi-

cally, our eXplanation-driven Interactive Machine Learning (XIML) system allow users

to correct or remove the system provided rules, and even add their own rules to the

system. Our system will then take these user-provided rules and evaluate how much im-

29



provement/decreases the user have made to the system’s performance and provide this

feedback to the use (see more details in Section 3.3.

2. I conduct an online user experiment that independently manipulates the two XIML components

outlined above in a between-subjects manner.

3. I evaluate the effect of the visualization and the interaction mechanism on the user’s experience

by extending the user-centric evaluation framework proposed by Knijnenburg et al. [128] to

the domain of XIML.

3.2 User-Centric Evaluation

While there is ample work in ML on improving algorithms, few studies investigate ways to

make interactive ML systems easy, effortless, and enjoyable to use. This is problematic, as poor user

experience can diminish the use of an ML system, even if it provides highly accurate ML results. The

user experience model proposed in [95] describes how the user perceives certain objective aspects

of the system, such as its interaction and presentation style, from the perspective of pragmatic

attributes and hedonic attributes. These user perceptions in turn cause an empirical evaluation in

terms of satisfaction. Forlizzi’s work proposed a framework that can be applied in different domains

to benefit new products and system designs in terms of interactions and user experiences [69]. In this

work, however, I use the validated user-centric evaluation framework developed by Knijnenburg et

al. [128]. This framework explains the user experience of recommender systems—a typical application

area of machine learning—and provides an excellent platform for studies of interactive ML systems.

I extend this framework from recommender systems to the XIML context, and apply it to the

results of my user study to understand the user experience of this XIML Tic-Tac-Toe game system.

The Tic-Tac-Toe game has been considered in previous works studying AI application due to its

simplicity [116, 3]. In our case, the Tic-Tac-Toe game is used because it is easy to learn how to play

the game in real-time, hence no “domain expertise” is needed to understand the basic operations

of this system. This setup allows me to target the evaluation towards non-expert XAI users. That

said, users’ analytical skills, their familiarity with the Tic-Tac-Toe game, and/or their familiarity

with XAI systems may very well still have an effect on the system’s user experience (cf. [123]).
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3.3 Online User Experiment

3.3.1 System

This section outlines the system, its algorithm, and its interaction and visualization mech-

anisms. The system designed for running the user study is based on an ML algorithm that learns

to adjudicate the end states of a basic Tic-Tac-Toe game. It consists of two main components: the

algorithm used to generate the Boolean rules and the Web application the users interact with.

3.3.1.1 Algorithm

The initial set of rules of the Tic-Tac-Toe algorithm is generated using the Boolean Deci-

sion Rules via Column Generation (BRCG) approach [47]. More precisely, I used the open-source

implementation available in the AI Explainability 360 library2. The algorithm generates a Boolean

rule in disjunctive normal form (DNF, i.e., an OR of ANDs) for binary classification, where a data

instance that satisfies the DNF rule belongs to the positive class. As DNF classification rules are

equivalent to decision rule sets, where each conjunction within the DNF constitutes an individual

rule of the rule set, the terms “clause”, “conjunction”, and (single) “rule” (within a rule set) are

used interchangeably.

BRCG was trained on the UCI Tic-Tac-Toe dataset3. For the initial training phase I only

used 20% of the dataset, so as to produce a rule set with an ample room for improvement. The

full dataset consists of the complete set of possible board configurations at the end of Tic-Tac-Toe

games, where each configuration is labelled either as “X wins” or “X does not win”. A rule set was

generated for each one of these two labels. The two rule sets together form the rule-based model

of this interactive ML system; users of the system are asked to improve the model by providing

feedback on its classifications and/or by tweaking the rules themselves.

Table 3.1 lists the rules generated for the two classes. The accuracy score, which provides

the users with a measure on how much they were able to improve the AI system at each turn, is

computed by replacing the original rule with the user-modified version and evaluating the new rule

set against the entire Tic-Tac-Toe dataset.

2https://github.com/Trusted-AI/AIX360
3https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
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Table 3.1: DNF rules generated with the Light BRCG method implemented in the AI Explainability
360 toolkit2. Each variable in the rule represents a cell of the board (e.g. mm for the middle-middle
cell, tl for the top-left cell, br for the bottom-right cell etc.). The possible values that a variable can
assume are b (blank), x and o.

Class DNF rules

X does not win

(mm = ‘o’ ∧ml ̸= ‘o’ ∧ br = ‘o’ ∧ bm ̸= ‘b’ ∧ bl ̸= ‘x’)∨
(tl ̸= ‘x’ ∧mm = ‘o’ ∧ br = ‘o’)∨
(tl = ‘x’ ∧mm = ‘b’ ∧ml ̸= ‘b’ ∧ bm = ‘x’)∨
(tm = ‘b’ ∧mr = ‘x’ ∧mm ̸= ‘b’ ∧ml = ‘o’)∨
(tm = ‘b’ ∧ tl ̸= ‘b’ ∧mm ̸= ‘b’ ∧ br = ‘o’ ∧ bm = ‘x’)∨
(tm = ‘o’ ∧mr ̸= ‘b’ ∧mm = ‘o’ ∧ml = ‘o’)∨
(tm = ‘o’ ∧mr = ‘o’ ∧ bl = ‘b’)∨
(tr ̸= ‘x’ ∧mm = ‘o’ ∧ bl ̸= ‘x’)∨
(tr ̸= ‘x’ ∧ tl = ‘o’ ∧mm = ‘o’)∨
(tr = ‘b’ ∧mr ̸= ‘o’ ∧ml = ‘o’ ∧ br = ‘x’ ∧ bm ̸= ‘x’)∨
(tr ̸= ‘o’ ∧ tl ̸= ‘o’ ∧ br ̸= ‘x’ ∧ bl ̸= ‘b’)∨
(tr = ‘o’ ∧ tm = ‘o’ ∧ tl = ‘o’ ∧ bm ̸= ‘o’)

X wins

(mm ̸= ‘o’)∨
(tr = ‘o’ ∧ tl ̸= ‘o’ ∧ br ̸= ‘o’ ∧ bl = ‘x’)∨
(tr = ‘x’ ∧ br ̸= ‘o’)∨
(tr = ‘x’ ∧ tm = ‘x’ ∧ tl = ‘x’)

3.3.1.2 Web Application: Interaction and Visualization

The front-end Web application of this XIML system presents users with an end-state of

a Tic-Tac-Toe game (the “input”), the outcome that follows from the rule set (the “prediction”)

and the rule that triggered the predicted outcome (the “explainer”). The Web application has two

optional features (manipulated between-subjects in this study, see section 3.3.3.3): interaction and

visualization.

The “interaction” feature allows users to correct the system-estimated predictions by al-

lowing the user to modify the triggered rule if they disagree with the prediction provided by the

system—without interaction, the system only asks the user whether they agree with the rule or not.

The system will take users’ feedback and evaluate how the updated rule increases or decreases the

accuracy of the model. Users can then further modify the rule based on this feedback, or skip to

the next instance to be evaluated.

The “visualization” feature shows users an intuitive grid-based version of the applied DNF

rule (right side of Figure 3.1). Without the visualization feature, the DNF rule is displayed as

text. Note that the display of the interaction feature also depends on the visualization feature: the

interactive version of the grid-based visualization allows the user to edit the rule in the grid, while
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Figure 3.1: The visualization manipulation of textural explained rules (left) and grid-visualized
explained rules (right) conditions.

the interactive version of the text-based visualization asks the user to construct the rule using text

(see Figure 3.4). More details are provided in section 3.3.3.3.

3.3.2 User-centric Evaluation Framework

Knijnenburg et al. [128] proposed a user-centric evaluation framework to evaluate how

users experience recommender systems. I adopt this framework to set up a user experiment to

evaluate this XIML system from the perspective of the user. The framework provides a set of

structurally related concepts measuring the user experience of the system, which are subdivided into

five categories: objective system aspects (OSA), subjective system aspect (SSA), user experience

with the system(EXP), personal characteristics (PC), and situational characteristics (SC; not present

in this work). I propose to instantiate the framework with the following concepts for the user-centric

evaluation of XIML systems:

• In terms of objective system aspects (OSA), I consider the visual design of the explanation

and the interaction mechanism by which the user gives feedback to the system.

• I posit that the OSAs influence the understandability of the system, the user’s perception of

control, the difficulty of giving feedback, and the quality of said feedback—these act as the

subjective system aspects (SSA) in the model.

• The user experience (UX) goal of the XIML system is to build the user’s trust in the system

and increase their satisfaction with the system, hence I propose this as the main user experience
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(EXP) construct.

• As noted by Knijnenburg and Willemsen [126, 123], the effectiveness of interaction mechanisms

for adaptive systems may crucially depend on the users’ personal characteristics (PC), such as

age, gender, education level, familiarity with ML/AI, familiarity with XAI in particular, and

familiarity with the Tic-Tac-Toe game.

The resulting framework (Figure 3.2) allows us to conduct an empirical evaluation in a

more integrative fashion than most existing evaluations of explainable machine learning or artificial

intelligence systems. The next subsection describes how I set up and conducted this online user

experiment based on the user-centric evaluation framework.

Figure 3.2: The user-centric evaluation framework, based on [128].

3.3.3 Study Setup

In this study, 237 Amazon Mechanical Turk participants answered 6 questions measuring

their personal characteristics, interacted with ten instances of the Tic-Tac-Toe game, and answered

34 questions about their user experience and 3 attention check questions. The study took 10-20

minutes to complete.

3.3.3.1 Participants

I conducted the study on Amazon Mechanical Turk, limiting the recruitment to adult users

living in the US. Each participant received 3 US dollars as compensation at the end of the study.
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Three attention check questions in the style of “Please select ‘agree’ for this question” were

randomly placed among the 34 user experience questions to track if participants were actually paying

attention to what they are doing during the completion of the study. I used these questions plus the

time taken to complete the study to filter out participants who clearly rushed through the study.

Of the 237 recruited participants, 199 were used in the data analysis. 12 participants were between

the ages of 18 and 24, 84 between 25 and 34, 60 between 35 and 44, 26 between 45 and 54, and 17

older than 54. The sample included 122 female participants and 115 male participants.

3.3.3.2 Procedure

I randomly assigned the participants to one of the four conditions as mentioned below.

Participants were presented a welcome page with an introduction to the study and a consent form

containing statements of possible risks, discomforts, and incentives. Participants were then asked

to answer six questions about their personal characteristics: gender, age, education level, famil-

iarity with machine learning methods or artificial intelligence (ML/AI familiarity), familiarity with

explanatory artificial intelligence (XAI familiarity), and familiarity with the Tic-Tac-Toe game (Tic-

Tac-Toe familiarity). The ML/AI familiarity and the XAI familiarity are both on a 5-point famil-

iarity scale4 while the Tic-Tac-Toe familiarity is on a 4-point familiarity scale5.

Next, the system presented each participant with ten different simulated Tic-Tac-Toe game

instances (as shown in Figure 3.3) with a corresponding classification outcome (the system prediction

of the game instance with explained rules) provided by the machine learner. Eight of the ten instances

had either an incorrect prediction or an explanation with an incorrect rule, while the other two

instances have both a correct prediction and a correct explanation. Following each game instance,

participants were asked to answer to correct the prediction and/or to modify the proposed rule,

depending on the experimental condition (see below). The system used the participant’s corrected

prediction and (where applicable) their updated rule to evaluate the impact on the overall correctness

of the system. This impact was subsequently shown to the participant as feedback (e.g. “Awesome!

Your input has improved the system’s correctness by 8.6% on providing the correct prediction and

explanation!”), and the participant was then given the opportunity to either edit their input or to

4Scale: None, Some familiarity (aware of basic concepts but no hands-on experience), Familiar (some hands-on
experience, taken an introduction class, and/or read some literature), Very familiar (published papers on these topics,
active ongoing projects), Expert (developed new algorithms, wrote a book chapter, wrote numerous papers)

5Scale: None, Some familiarity (aware of it, no playing experience), Familiar (have played at it), Very familiar(good
at playing it)
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skip to the next instance, until all ten instances were completed.

Figure 3.3: Ten different simulated Tic-Tac-Toe game instances with the system-provided grid-
visualized explanations.

After each participant completed the action steps for each instance, they were asked to

answer the final survey containing 34 questions reflecting on their user experience, plus the three

attention check questions.

3.3.3.3 Experimental Conditions

My goal is to evaluate the two inventions described in Section 3.3.1.2: an intuitive grid-based

visualization of the rule applied to determine the outcome prediction for the current instance and

an interaction mechanism that allows users to modify the triggered rule if they disagree with the

prediction provided by the system. I test these two inventions against reasonable baseline conditions:

the grid-based explanation is tested against a textual explanation of the applied rule, as shown in

Figure 3.1; the “interaction” version, where participants are allowed to correct the system-provided

prediction of the instance and edit the applied rule (displayed in Figure 3.4), is tested against a

version where participants are only allowed to correct the prediction.

This experiment thus includes two manipulations with two experimental conditions in each

manipulation, resulting in a 2 × 2 experimental design. The manipulations are assigned using a

between-subjects design, in which participants are randomly assigned to one of the four experimental

conditions. This ascertains that the manipulation remains hidden from the participants, since each
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Figure 3.4: The experimental conditions allowing ”interaction”, with textural explained rule (top)
and grid-visualized explained rule (bottom) provided.

participant can see only one condition. Since users of real systems usually only see a single version

of a system, such a between-subjects experiment makes the study more realistic [128].

3.3.3.4 Measurements

I measure participants’ perceptions of the subjective system aspects (SSA) and user expe-

rience with the system (EXP) with six measurement scales, adopted from [128]:

• Understandability: participants’ perception of the understandability of the XIML system.

• Perceived control: participants’ perception of their control over the XIML system.
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• Perceived feedback quality: participants’ perception of the quality of the feedback given

by the XIML system.

• Perceived feedback difficulty: participants’ perception of the difficulty of giving feedback

to the XIML system.

• Perceived system trust: participants’ trust in the XIML system.

• System satisfaction: participants’ satisfaction with the XIML system.

Each scale consists of multiple statements—34 in total (see Table 3.2—that participants

are asked to rate on a 5-point agreement scale (strongly disagree, disagree, neutral, agree, strongly

agree). An analysis of the validity of these constructs is presented in Section 3.4.

I integrate the experimental manipulations and the measured constructs in a hypothesized

path model (Figure 3.5). I hypothesize that the grid-based visualization increases the understand-

ability of the machine learning rules and that it reduces the difficulty of providing feedback to the

system (perhaps mediated by understandability). I further hypothesize that participants’ ability to

edit the rules of the machine learner increases the understandability and makes them feel more in

control of the system (again, perhaps mediated by understandability). Understandability is further

hypothesized to increase perceived feedback quality, and both feedback quality and control are hy-

pothesized to increase participants’ perception of trust in the system. Finally, I hypothesize that

perceived control, feedback quality, and trust ultimately increase participants’ satisfaction with the

system.

I do not formulate specific hypotheses regarding the personal characteristics of the partic-

ipants; in the results section, these effects are added to the model where significant in an ad-hoc

manner.

3.4 Results

I first validated the measurement model regarding the SSA and EXP constructs using a

Confirmatory Factor Analysis (CFA) and then fitted a Structural Equation Model (SEM) that

describes the hypothesized and ad-hoc causal relationships between the two manipulations, the

subjective constructs, and the measured personal characteristics. An SEM can be conceptualized as

a series of linear regressions between latent (SSA, EXP) and observed (OSA, PC) variables.
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Table 3.2: Items presented in the final survey. Items without a factor loading were excluded from
the analysis.

Considered aspects Items Factor loadings

Understandability (SSA)

AVE: NA

I liked the explanations provided by the system.
I found the explanations appealing.
The explanations unravel my confusion with the system.
The explanations were necessary.
The system provided too many unnecessary explanations.
I did not like any of the provided explanations.

Perceived control (SSA)

AVE: 0.657

I had limited control over the way the machine learner made predictions. 0.829
The system restricted me in my interactions with the machine learner. 0.814
Compared to how I normally get predictions, this system was very limited. 0.789
I would like to have more control over the interactions.
I decided which information was used for predictions.

Perceived feedback
quality (SSA)

AVE: 0.614

I liked the feedback options provided by the system. 0.868
I found the option of giving feedback appealing. 0.831
The ability to provide feedback unravels my confusion with the system. 0.630
The ability to provide feedback was necessary.
The system provided too many unnecessary means to provide feedback.
I did not like any of the provided feedback processes.

Perceived feedback
difficulty (SSA)

AVE: 0.657

I was in doubt between several feedback options the system provided. 0.776
I changed my mind several times before providing feedback. 0.801
The task of providing feedback was overwhelming. 0.819
It was easy to decide how to provide feedback.
Providing feedback to the machine learner took a lot of effort. 0.844

Perceived system
trust[88] (EXP)

AVE: NA

I believe that there could be negative consequences when using the system.
I feel I must be cautious when using the system.
I believe that the system will act in my best interest.
I think that the system is competent and effective in its interaction.

System satisfaction (EXP)

AVE: 0.781

I would recommend the system to others. 0.869
I like using the system. 0.934
Using the system is a pleasant experience. 0.888
Overall, I am satisfied with the system. 0.885
I would quickly abandon using the system.
I could quickly abandon using this system.
Using the system is annoying.
The system is useful. 0.841

Table 3.3: Factor-fit metrics. Off-diagonal values are correlations, diagonal values are the square

roots of the average variance extracted
(√

AV E
)
per factor.

Perceived control Perc. feedback quality Perc. feedback difficulty System satisfaction

Perceived control 0.811 -0.323 0.288 -0.238
Perceived feedback quality -0.323 0.783 0.122 0.792
Perceived feedback difficulty 0.288 0.122 0.811 0.042
System satisfaction -0.238 0.792 0.042 0.884
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Figure 3.5: The hypothesized research path model.

3.4.1 Measurement model (CFA)

In fitting the initial CFA, I found that the understandability scale was too highly correlated

with both the perceived feedback quality scale (r = 0.838) and the satisfaction scale (r = 0.873),

thereby violating the principle of discriminant validity (rs larger than the
√
AV E of understand-

ability, which is 0.781). Similarly, the trust scale is too highly correlated with the satisfaction scale

(r = 0.901, while the
√
AV E of trust is only 0.809). I therefore remove understandability and trust

from the initial CFA model to guarantee that the resulting CFA model meets the requirement of

discriminant validity. I also removed 2 items from the perceived control scale, 1 item from the

perceived feedback difficulty scale, and three items from the perceived satisfaction scale, due to low

commonality (< 0.3) or high modification indices (both of which indicate misfit). Table 3.2 displays

the item fit metrics and Table 3.3 displays the factor fit metrics of the resulting CFA model.

3.4.2 Structural model (SEM)

The remaining subjective constructs (i.e., perceived control, perceived feedback difficulty,

perceived feedback quality, and system satisfaction) are then structurally related to each other and

to the experimental manipulations (i.e. the “interaction” and “visualization” manipulations) in a

structural model based on the hypothesized path model (Figure 3.5). In line with suggestions by

Knijnenburg and Willemsen [127], I created a saturated model (with as many estimated parame-

ters linking OSAs to EXP variables via SSAs as there are constructs included in the model) and
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then trimmed the non-significant effects from the saturated model iteratively. Significant effects of

personal characteristics are subsequently added on an ad-hoc basis.

The resulting structural model is displayed in Figure 3.6. This model has a good overall

model fit with χ2(161) = 232.852, p < 0.001, CFI = 0.980, TLI = 0.989, RMSEA = 0.047 with a

90% confidence interval of [0.033, 0.060]. According to Bentler et al., theoretically, a good model is

not statistically different from the fully specified model (i.e., the p-value of the χ2 should be > 0.05),

but this statistic is commonly regarded as too sensitive [23]. As such, Hu and Bentler proposed

cut-off values for the alternative fit indices to be: CFI > 0.96, TLI > 0.95, and RMSEA < 0.05,

with the upper bound of its 90% CI falling below 0.10 based on extensive simulations [106].

In the model in Figure 3.6, the path coefficients in the final SEM model are standardized.

This means that coefficients on all arrows (A → B) denote the standardized increase or decrease

in B, given a one standard deviation (1 SD) increase or decrease in A (except for the effects of

OSAs, where the coefficients represent the standardized difference between the two experimental

conditions). The number in the parentheses denotes the standard error of this estimate, and the

asterisk marks beside the parentheses denote the statistical significance of the effect. The R2 of each

subjective construct denotes the proportion of variance of that construct that is explained by the

model. The significant paths in the model are explained in more detail below.

Figure 3.6: The structural equation model for the data of the experiment.
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3.4.3 Subjective Experience

As shown in Figure 3.6, the manipulation “interaction” has a significant effect on the per-

ceived control: Participants who were able to edit the rules scored 1.129 standard deviations higher

on perceived control than participants who were only able to give feedback on the outcomes—a large

effect. The manipulation “visualization” does not have a significant main effect on the subjective

system aspects. However, there is a significant interaction effect of visualization and education level

(a personal characteristic variable) on the perceived control: participants whose education was lim-

ited to high school perceived less control during their interaction with the system if they were shown

the grid-based explanation style (see Figure 3.7).

Figure 3.7: Marginal effects of visualization and education on the perceived control, the effect of
the “text” condition at ”high school” education level is set to zero, and the y-axis is scaled by the
sample standard error.

Participants’ perception of control is significantly related to their perception of the quality

of the feedback given by the system. Moreover, participants’ perception of the difficulty of giving

feedback to the system also has a significant positive effect on both the perceived control and the

perceived feedback quality. Finally, participants’ perception of the feedback quality is significantly

related to their satisfaction with the system. Feedback quality fully mediates all other system-related

effects on satisfaction.
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3.4.4 Personal Characteristics

In terms of personal characteristics, participants’ age, gender, and their familiarity with

ML/AI do not have any significant influences on the other variables in the model, nor do they

interact with the experimental manipulations to mediate any of their effects.

Aside from the aforementioned interaction effect, participants’ education level does have a

significant main effect on their perceived control: participants with a high school education feel less

in control compared to participants at other education levels.

Participants’ familiarity with the Tic-Tac-Toe game has a positive effect on participants’

perception of feedback difficulty and a negative effect on their perception of control over the system,

suggesting that participants who are more familiar with the Tic-Tac-Toe game find it more difficult to

give feedback and feel less in control during their interaction with the system. Finally, participants’

familiarity with XAI has a negative effect on perceived feedback difficulty but a positive effect on

both perceived feedback quality and system satisfaction, showing that experienced XAI participants

have an easier time giving and receiving feedback, and that they have a higher overall satisfaction.

3.5 Discussion

Based on the results of this online user study, I can describe in detail how the benefits of

interaction and visualization in explanatory interactive machine learning come about. I can also

describe these results in the light of participants’ personal characteristics.

3.5.1 Interaction and Visualization

Both the “interaction” and “visualization” manipulations influence the user’s experience

with the system, primarily due to their effects on users’ perception of control over the system.

Allowing users to give feedback on the rules increases their perception of control, which in turn causes

them to perceive higher quality feedback from the system, thereby increasing their satisfaction with

the system. Perceived control increases feedback quality arguably because the feedback of the system

is in response to participants’ input : the more effective this input is judged to be (perceived control),

the more effective the feedback is judged to be as well (perceived feedback quality). The quality of

this feedback loop is essential for the successful of systems that employ “human-ML teaming” [165],

and my results thus suggest that such systems should allow users to give feedback not only on the
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output of the ML system, but on the actual rules that govern its behaviors. Arguably, the ability

to engage with the system’s rules can support the formation of “team cognition” in human-ML

teams [51].

The “visualization” manipulation works differently depending on users’ personal character-

istics. Specifically, high school educated participants who were shown the grid-based explanation of

the machine learning rules perceived less control over the system. This is surprising, as the grid-based

visualization was meant to improve the ease of understanding the system, especially for users with

no training in formal logic. Arguably, though, compared to the more formal textual explanations,

the grid-based visualization obscures the workings of the system to these users, to the extent that it

might make it more difficult for them to understand how the edits influence the system (users with

a higher level of education may, on the other hand, have an intuitive idea of how their feedback to

the grid-based rule is translated into machine rules). Again, further research in the area of “team

cognition” could investigate how visualizations can more effectively create a shared understanding

of the task and the workings of the system at hand [51].

3.5.2 Personal Characteristics

The results of this experiment demonstrate that users’ personal characteristics have a sig-

nificant influence on their experience with this system. Participants with a high school education

may feel less in control because they understand that predictions are the outcome of complex inter-

dependencies between multiple rules—this system only allows them to interact with the rule that

currently applies, not with the full body of learned rules.

Likewise, people who are familiar with the Tic-Tac-Toe game rate their perceived control

lower and the feedback difficulty higher because they understand that the intricacies of the game are

impossible to capture by tweaking a single rule. Additionally, they may be more likely to attempt to

interpret the game instances according to their own set of rules, rather than trying to engage with

(and optimize) the system-provided rules. This implies that it would be beneficial to users if we

could distinguish targeted users by their familiarity with the ML model or AI application and serve

them the different specialized interfaces accordingly (cf. Knijnenburg and Willemsen [126, 123]), so

as to avoid a situation where a unified interactive interface is too complicated for novice users but

too redundant to ML experts, which helps on the acceptance of the ML application among different

user groups.
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Conversely, experienced XAI users may have had an easier time giving and receiving feedback

due to their ability to reflect on their past experiences using such systems. Moreover, this system

moves beyond existing XAI systems in several ways, which may be the reason for their increased

satisfaction with the system. Arguably, then, familiarity with XAI may be an important precondition

for a fluent user experience when using XIML systems, and this may raise questions regarding the

equitable distribution of the benefits of XIML systems: if only users who are well-versed in the

concept of XAI can benefit from such systems, XIML could become the context for a new digital

divide between expert and novice users (cf. [82]).

3.5.3 Systems with Direct Control

Norman’s foundational theory of Human-Computer Interaction suggests that systems should

aim to provide a direct mapping between the user interface and the underlying system mechanisms

it controls [183]. In ML systems, the underlying mechanisms may be too complex for end-users to

understand, hence real-world user-facing ML systems tend to provide a user interface that offers an

indirect mapping to the underlying system. In this study, I added two types of control interfaces

to a rule-based ML system: one version allowed users to interact with text-based rules, while the

other version mapped the rules onto what we thought would be a more intuitive visualization. The

visualization turned out not to be as effective as we expected—perhaps because it constitutes a less

direct mapping to the underlying system than the text-based version.

The text based version offered more direct control over the ML mechanisms, and once

end-users figure out how these mechanisms work, interacting with them ultimately resulted in a

higher satisfaction with the system. This outcome suggests that there is a benefit in providing

control interfaces with direct mappings to the underlying system, even if these may initially feel less

intuitive to the user. Future work could explore optimal means of explaining such direct control

interfaces to novice end-users.

3.6 Conclusion, Limitations, and Future Work

The results of this empirical online user experiment show that explainable machine learning

(XML) systems (and arguably XAI systems in general) indeed benefit from mechanisms that allow

users to interact with the system’s internal decision rules. While this example system serves a
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relatively simple scenario (i.e., determining the outcome of a Tic-Tac-Toe game), I find that even in

this simple scenario explanation-driven interactive machine learning (XIML) systems have a better

user experience, partially because they encourage users to engage in a mutual feedback loop that

helps improve the system’s performance. Specifically, XIML systems that allow users to edit the

decision rules (as compared to only give feedback on the decision itself) make users feel more in

control over the system, which increases the perceived quality of the system’s feedback and, in turn,

the overall system satisfaction.

The simplicity and the relatively objective nature of this scenario is a limitation that I care-

fully considered in setting up the study. The field of interactive ML/AI has repeatedly shown that

tackling simple, objective tasks is a good way to study co-interaction mechanisms before implement-

ing more complicated interactive AI systems that optimize more subjective decisions. As a recent

example, Colella et al. designed a simplified interactive optimization task—a 1-dimensional function

optimization setting—to study how humans interact with an interactive intelligent system. Due to

the simplicity of the task, the study actually works well in making the intelligent system’s behavior

transparent to the user [43]. Future work could investigate how interaction and visualization as

presented by Colella et al. and the current study would translate to more complex tasks, and to

optimization for more subjective scenarios (e.g., loan application).

Despite the simplicity of the task domain, this study shows that the effects of XIML systems

are not universal, but depend on participants’ personal characteristics. This is true regardless of this

somewhat limited sample (US-based Mechanical Turk participants), and would likely be exacerbated

if I had studied a more diverse global audience. I found that the intuitive grid-based visualization did

not improve the user experience, and actually made things worse for users with a high school educa-

tion level. This finding suggests that visualizations developers may deem “intuitive” are perceived

as the opposite by end-users without any training in formal logic, and emphasizes the needs for

user-centric research (e.g., participatory design, usability studies) in the field of Machine Learning.

This evaluation framework can support such studies.

Likewise, I found that participants who were more familiar with the Tic-Tac-Toe game felt

less in control over this XIML system and found it more difficult to give feedback. Familiarity with

XAI, however, had positive effects, suggesting that XAI may be a useful—if not necessary—stepping

stone towards XIML.

The lack of a positive effect of the grid-based visualization may be an artifact of the partic-
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ular domain (Tic-Tac-Toe) or of the quality of the visualization. Intuitive visualizations may indeed

make a positive difference in the future—the current study is an initial cautionary step in the inves-

tigation of the effect of such visualizations in the context of a Tic-Tac-Toe XIML system. I propose

that future work should iterate on these ideas, and/or implement them in a more complex XIML do-

main that may require a more complex visual design. I do caution future researchers not to take the

benefit of their visualization solutions for granted, but to instead carefully evaluate how participants

perceive the difference such visualizations make from the perspective of user experience.

3.7 Summary

While the Tic-Tac-Toe game example system serves a relatively simple scenario (i.e., deter-

mining the outcome of a Tic-Tac-Toe game), I find that even in this simple scenario, explanation-

driven interactive machine learning (XIML) systems create a better user experience, partially be-

cause they encourage users to engage in a mutual feedback loop that helps improve the system’s

performance (Overall RQ1).

The findings of this study motivate me to take a step further to apply the combination of

interactivity and explanation in recommender systems that serve a more complex and subjective

scenario (Overall RQ3) compared to the rule-based Tic-Tac-Toe game.
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Chapter 4

Study II: The Effect of

Recommendation Source and

Justification on Professional

Development Recommendations

for High School Teachers

(Note: This work has been published in the 33rd ACM Conference on Hypertext and Social

Media (HT ’22) [93]. )

In this work I conducted a scenario-based study to understand the effect of justification

method (needs-based vs. interest-based justification) and recommendation source (a human expert

vs. an AI algorithm) on professional development recommendations. In Chapter 2 I have clarified the

distinction between explanations and justifications of recommendations. The effect of explanations

together with interactivity on Machining Learning systems has been studied in Chapter 3; in this

chapter, I will dig into the effect of justification method (Overall RQ2) together with recommendation

source (Overall RQ3) in recommending personalized professional pathways in a scenario-based online

user study. This study implies how we should consider the recommendation source design when
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designing a recommender systems for different purpose.

4.1 Introduction

The continued improvement of teaching professionals throughout their careers is an essen-

tial consideration for modern school systems. Past efforts have often targeted generic professional

development methods that only aim to reach required standards, rather than try to fill the specific

professional gaps of each individual teacher [46]. Targeting those specific gaps ultimately provides

teachers with more effective professional development, which in turn increases the quality of ed-

ucation for the students they teach [32]. While personalized professional development has been

implemented on a smaller scale, it has been found difficult to expand to wider audiences due to

its reliance on experts collecting and evaluating user data to create personalized education plans

[153]. Recommender systems can provide a means of expanding these expert decisions to wider au-

diences in an efficient manner by rapidly considering user data and recommending those professional

development resources that are most beneficial and relevant to each individual teacher [200].

While the fields of entertainment and e-commerce were the first to adopt recommender

systems in a commercial setting [212, 18, 249, 211], recommenders have more recently found their

way to professional settings as well. Our project considers a system that recommends personal-

ized professional development pathways to high school teachers seeking to increase their disciplinary

knowledge and/or their teaching skills. The recommendations provided serve as promoted sug-

gestions when signing up for professional development activities with the goal of guiding teachers

towards development opportunities they will both enjoy and highly benefit from.

The first iteration of our recommender system, while simplistic compared to the state-of-

the-art in this area, uses real-world teacher data to provide recommendations that benefit their

professional development: teachers indicate their interests and needs by filling out a “needs assess-

ment” questionnaire, which gets processed by a rule-based system that assigns weights to various

professional development options (ranging from single-course microcredentials, to multi-course en-

dorsements and comprehensive master programs) based on teachers’ answers to the needs assessment

questions, subsequently listing the Top 3 options as recommendations. While these recommenda-

tions originate from our system, a lot of work by human experts has gone into the development of

the “algorithm”—which is essentially a formalization of a vast body of expert knowledge about how
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teachers’ needs and interests would translate into professional development options that meet these

needs and interests.

In addition to the content of the recommendations provided, our system must also con-

sider the presentation of the recommendations: the characteristics of the interface that presents the

recommendations to the teachers are critical for ensuring that they carefully consider the recommen-

dations as valid and useful professional development options [26]. In this paper, we investigate two

important design considerations regarding the way recommendations are presented to the end-users.

Firstly, we acknowledge that teachers’ professional development decisions are driven by their inter-

ests (What courses would I like to take?) and their needs (What courses would be most beneficial

for me to take?), and these may not always be perfectly aligned. The trade-off between these two

possible considerations, especially when justifying the recommendations to the user, provides an

important avenue for improving the perception of the recommendations provided. Hence, we posit

the following research question:

Study II - RQ1: Do teachers have more favorable perceptions of professional devel-

opment recommendations that are presented as items they would like, or as items that

would be most beneficial to them?

Secondly, given that the recommendations originate from a system that embeds a vast

amount of human expert knowledge, we ask ourselves whether it would be better to present the

recommendations as originating from an AI algorithm or from a human expert. Past research

has found conflicting results on this topic—some have carefully documented cases of “algorithm

aversion”, where users tend to prefer to receive recommendations from a human rather than an

algorithm [34, 114], while others have found situations where algorithmic suggestions are preferred

to human suggestions [89, 146, 215]. Given that in our case, one could argue either way about the

source of the recommendations, we posit the following research question:

Study II - RQ2: Do teachers have more favorable perceptions of professional develop-

ment recommendations that are presented as originating from an AI algorithm or from

a (human) expert?

Finally, recent research has suggested that the “algorithm aversion” phenomenon is task-

dependent: it is stronger for subjective tasks and/or hedonic decisions than for objective tasks
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and/or utilitarian decisions [35]. In this light, one could argue that presenting the recommendations

as something the user would like frames the decision as a subjective task and focuses them on the

hedonic aspects of the decision, while presenting the recommendations as something that would

benefit the user frames the decision as a more objective task and focuses them on the utilitarian

aspects of the decision. This could result in an interaction effect between the justification and the

source of the recommendations:

Study II - RQ3: Does the effect of recommendation source (AI vs. human) on teach-

ers’ perceptions differ depending on the justification for the recommendations (interest

vs. needs)?

Our work is the first to reconcile the “algorithm aversion” phenomenon (and its inverse)

with research on explainable AI (xAI). In particular, whereas the existing research suggests that “al-

gorithm aversion” depends on the recommendation domain, our study investigates the interaction

between the recommendation source and the type of justification within a single domain. A signif-

icant effect in our study has considerable practical implications: for one, it would give researchers

the opportunity to overcome algorithm aversion—or its inverse—by justifying the recommendations

in a needs- or interest-oriented manner. Conversely, our results would provide guidance for recom-

mender system developers to present the recommendations as stemming from either an AI system

or a human, depending on how the recommendations are justified.

We answer the stated research questions in the context of our professional development

recommender for high school teachers but argue that our core findings are likely applicable to a

broader spectrum personalized professional development scenario and perhaps even to recommender

systems in general.

4.2 Study Design

We tested the effect of recommendation source (AI vs. human) and justification type (in-

terest vs. needs) on teachers’ perceptions of the system in a scenario-based controlled experiment

using a prototype of the real system. Testing users’ reactions to AI-based systems with prototypes is

a common practice in HCI research [43]. While we plan to eventually test the effects of recommen-

dation source and justification in our field trial where teachers receive real personalized professional
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development pathway recommendations, we decided to first run a more tightly controlled experi-

ment to study these effects outside the inherently noisy environment of a field trial. In our controlled

experiment, all participants receive the same recommendations after reading a scenario describing

the abilities, needs and preferences that ostensibly served as input for these recommendations (more

details in Section 4.2.3). By using this scenario-based study setup, we can benefit from not having in-

dividual recommendation quality interfere with the effect of the presentation of the recommendations

(i.e., recommendation source and justification). This setup also makes it possible to manipulate the

justification type, as it allowed us to create a scenario where both interests and needs may conceiv-

ably underlie the recommendations. Conversely, in the real world some teachers’ recommendations

follow only their interests or only their needs, making it impossible to claim otherwise (and thus

difficult to manipulate the justification type).

Furthermore, the sample of our study is recruited via Prolific, and is thus different from the

teachers in our real-world field trial. We took special care, though, that the participants in this study

also identified as teachers, and that the recommendations were accompanied by a realistic scenario

for which the presented recommendations would be appropriate. This ascertained that participants

would be able interpret the quality of the provided recommendations and (more importantly) the

justifications, as their background as teachers would allow them to personally relate to the presented

scenario. The remainder of this section outlines the setup of the controlled experiment. We note

that our study procedures were approved by our Institutional Review Board (IRB).

4.2.1 Participants

We recruited participants for our experiment on Prolific, an online recruitment platform that

has a set of detailed filters that can be used to target a particular sample of participants. Using these

filters, we limited participation to adult teachers with a completed undergraduate degree or higher,

so that the participants would closely match the users of the actual system under development. 207

participants took part in the study, yielding 190 usable data points after filtering out 17 participants

who did not carefully read the presented information. Of the 190 participants, 120 identified as

women, 66 as men, 3 as non-binary, and 1 participant preferred no to answer our gender question.

The sample includes 13 participants between the ages of 18 and 24, 82 between 25 and 34, 55 between

35 and 44, 24 between 45 and 54, and 16 older than 54. Most participants completed the study in

6 minutes. They each received USD 1.20 for their participation.
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4.2.2 Procedure

Participants were shown a welcome page with an introduction to our study and a con-

sent form containing statements of possible risks, discomforts, and incentives. We then presented

them with a scenario asking them to imagine being a teacher with certain professional development

needs/interests (see below), followed by a reading comprehension check question (“Which of the

following is not true based on the scenario?”).

Next, participants were shown two screenshots of the proposed system: an information

screen and a recommendation screen. The information screen (Figure 4.1) welcomed the participant

to the system and explained that the recommendations were provided by either a human expert or AI-

based-algorithm. The recommendation screen (Figure 4.2) displayed the recommended professional

development pathways, including justifications for the recommendation process, as well as each of

the individual recommendations, based on either the interests or the needs of the imagined teacher.

This screen was followed by another reading comprehension check question1 (“Which of the following

is not one the recommendations?”).

Finally, participants were asked to answer a survey containing 38 questions (see below)

measuring their opinions about and user experience with the presented system. The user study

procedure is shown in 4.3.

4.2.3 Scenario

To provide enough context for participants to understand the recommendations, we created

a scenario asking participants to imagine that they are a teacher with a carefully selected set of

professional development needs and interests (Figure 4.4). To make the scenario match the source

of the recommendations, it emphasized the teacher’s interests for participants in the “interests”

conditions, while emphasizing the teacher’s needs for participants in the “needs” conditions. Note

that this difference is merely one of presentation—the content of the two versions of the scenario

remained the same. Also note that the participants all identified as teachers themselves, making the

scenario (which was rooted in real-world teacher data) easily relatable.

1The two reading comprehension check questions each had 4 options. Participants were allowed to fail each question
twice before answering correctly. If they failed the question a third time, they would be redirected to the end of the
survey, and we would discard their data.
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Figure 4.1: The information screen in the two source conditions: AI algorithm (left) and human
expert (right).

4.2.4 Experimental Manipulations

The experiment involved two between-subjects manipulations: recommendation source and

justification. The recommendation source was presented as either an AI algorithm or a human

expert. The source was printed in bold and accompanied by a robot or human avatar on both the

information screen (Figure 4.1) and the recommendation screen (Figure 4.2). The recommendation

source manipulation only manipulated whether the recommendations were provided by an AI algo-

rithm or a human expert—all other information on the screens was kept as similar as possible, so as

to be able to particularly test the effect of the source of the recommendations.

The justifications for the recommendations were presented on the recommendation screen

(Figure 4.2) as either the teacher’s interests (“The [source] thinks you would like the following

recommendations based on the information you provided.”) or their needs (“The [source] thinks

the following recommendations would be most beneficial to you based on the information you

provided.”). Furthermore, the “reason” listed for each recommendation also reflected the teacher’s

interests or their needs, depending on the experimental condition. Finally, as mentioned above, the

scenario was framed in such a way that these reasons would match the reasons presented in the

scenario.

We randomly assigned participants to one of the four experimental conditions in a 2 × 2
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Figure 4.2: The recommendation screen in the four conditions. Top left: recommendations based
on interests presented by an AI algorithm; top right: recommendations based on needs presented by
an AI algorithm; bottom left: recommendations based on interests presented by a human expert;
bottom right: recommendations based on needs presented by a human expert.

between-subjects design—a between-subjects manipulation was used to increase ecological validity

and to prevent “demand characteristics” from influencing the study [127].

4.2.5 Dependent Variables

We used the following eight scales (adopted from related work) to measure participants’

perceptions of the system attributes and user experience with the system presented in the scenarios
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Figure 4.3: The structural equation model for the data of the experiment.

Figure 4.4: The scenario presented to participants was manipulated alongside the justification ma-
nipulation: on the left, interests are presented as the primary source preferences and needs are
presented as secondary; on the right, needs are presented as the primary source of preferences and
interests are presented as secondary.

with eight subjective measurement constructs:

• Understandability: participants’ self-reported understanding of the recommendation pro-

cess, as derived from the justifications (adopted from [122, 120]).

• Perceived recommendation quality: participants’ perception of the recommendation qual-

ity (adopted from [128]).

• Perceived system effectiveness: participants’ perception of the effectiveness of the system

(adopted from [128]).

• Explainability: participants’ perception how well the provided justifications explained the

recommendations.

• Fit with preference: the perceived fit of the recommendation with the participant’s pref-

erences (adopted from [84]).
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• Competence belief: participants’ perception of the ability, skills, and expertise of the system

to perform effectively in its specific domain (a sub-scale of trust, adopted from [248]).

• Benevolence belief: participants’ perception that the system cares about the consumer and

acts in the consumer’s interest (a sub-scale of trust, adopted from [248]).

• Integrity belief: participants’ perception that the system adheres to a set of principles

(e.g., honesty and keeping promises) that are generally accepted by consumers (a sub-scale of

trust, adopted from [248]).

Each scale consists of multiple items, and a total of 38 items were administered in the

questionnaire. Participants were asked to rate each item on a 5-point agreement scale (from strongly

disagree to strongly agree).

4.3 Results

Confirmatory Factor Analysis (CFA) was performed to validate the subjective scales that

serve as dependent variables in our experiment. We subsequently fitted a Structural Equation Model

(SEM) that demonstrates the causal relationships between the manipulations and the validated

subjective constructs, as well as mediation effects.

4.3.1 Measurement Model (CFA)

Our CFA indicated 4 questionnaire items with either low loadings (< 0.70) or high modifi-

cation indices (both of which indicate misfit). These items were removed from subsequent analyses.

While all factors had an adequate convergent validity (AVE > 0.50)2, we found that several factors

showed a lack of discriminant validity3. Particularly, we found that explainability was too highly

correlated with perceived recommendation quality, perceived system effectiveness, competence belief,

and benevolence belief ; Perceived recommendation quality was too highly correlated with fit with

preference; and competence belief was too highly correlated with perceived system effectiveness and

benevolence belief. To avoid multicollinearity in our subsequent SEM model, we removed explain-

2Average Variance Extracted (AVE) is an indicator of the convergent validity of the measurement scales, with the
recommended lower bound threshold of 0.5.

3Discriminant validity is established when the
√
AV E of a factor is larger than its correlations with each of the

other factors
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Table 4.1: Items of the 4-factor model. Items without a factor loading were excluded from the
analysis.

Considered aspects Item Factor loading

Understandability
AVE: 0.748
Cronbach’s α: 0.91

I understand how the system came up with the recommendations. 0.871
The recommender explained the reasoning behind the recommendations. 0.812
I am unsure how the recommendations were generated. -0.888
The recommendation process is clear to me. 0.878
The recommendation process is not transparent. -0.874

Effectiveness
AVE: 0.745
Cronbach’s α: 0.92

I would recommend the system to others. 0.954
The system is useless. -0.904
The system makes me more aware of my choice options. 0.768
I make better choices with the system. 0.884
I can find better pathways without the help of the system. -0.789
I can find better pathways using the recommender system.
The system showed useful pathways. 0.904

Fit with preference
AVE: 0.885
Cronbach’s α: 0.86

The recommended pathways reflect what I want. 0.938
The recommended pathways suit my needs. 0.964
The recommended pathways are exactly what I want. 0.919

Integrity
AVE: 0.757
Cronbach’s α: 0.83

This system provides unbiased pathway recommendations. 0.770
This system is honest. 0.879
I consider this system to be of integrity. 0.952

ability, perceived recommendation quality, competence belief, and benevolence belief from subsequent

analyses4.

We again performed a CFA with the remaining four factors (i.e., understandability, fit with

preference, perceived system effectiveness, and integrity belief ). In this analysis, one additional item

was dropped from the model due to a low loading (< 0.70). The consistency coefficients (Cronbach’s

α) of the final four factors showed high to excellent scale reliabilities5 and the AVE of the four factors

ranged from 0.745 to 0.885, indicating that the 4 constructs meet convergent validity requirements

(see Table 4.1). The final 4-factor model also meets the discriminant validity requirements (see Table

4.2).

4.3.2 Structural Equation Model (SEM)

A Structural Equation Model (SEM) was fitted to the four constructs and the experimental

manipulations (i.e., recommendation source and justification). An SEM enables one to specify

4Note that the concept of explainability is still represented in the model by its close analog understandability, and
the concept of perceived recommendation quality is represented by fit with preference. In addition, while we removed
two trust factors (competence and benevolence), one trust factor (integrity) remains in the model.

5A commonly used rule of thumb is that an α of 0.7 indicates acceptable reliability, 0.8 or higher indicates good
reliability, and 0.9 or higher indicates excellent reliability [209].
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Table 4.2: Factor-fit metrics. Off-diagonal values are correlations, diagonal values are the square

roots of the average variance extracted
(√

AV E
)
per factor.

U E F I

Understandability 0.865 0.651 0.582 0.609
Effectiveness 0.651 0.863 0.780 0.779
Fit with preference 0.582 0.780 0.941 0.720
Integrity 0.609 0.779 0.720 0.870

the relationships between exogenous variables (the manipulations) and latent constructs (the CFA

factors) as a structured model of regressions [127]. An important benefit of SEM is that fit statistics

are provided for the model as a whole, as well as for the individual regression coefficients. We built

our model following two principles:

1. Justification (RQ1), recommendation source (RQ2) and their interaction (RQ3) were hypoth-

esized to influence understandability, fit with preference, integrity, and system effectiveness.

2. Each effect outlined in (1) is allowed to mediate the subsequent effects (e.g., understandability

is allowed to mediate the effect of justification and/or recommendation source on fit with

preference).

We first specified a saturated model with all hypothesized effects and mediations. We then

iteratively trimmed non-significant effects. The resulting model is displayed in Figure 4.5. This

model has a good overall fit with χ2(158) = 246.918, p < 0.001, CFI = 0.990, TLI = 0.991, RMSEA

= 0.055 with a 90% confidence interval of [0.041, 0.067]6.

The model shows that the recommendation source and justification manipulations have

significant interaction effects on the dependent variables. Particularly, the manipulations have a

significant interaction effect on the understandability of the system (p = .036) and a marginally

significant effect on participants’ perceived system effectiveness (p = .098); understandability medi-

ates the interaction effects on the perceived fit of the recommendations with the teacher’s presented

preferences and on participants’ perception of the integrity of the system.

Figure 4.6 displays the total (mediated + direct) effects of the two manipulations on the

dependent variables. The total interaction effect between source and justification is significant for

6Theoretically, a good model is not statistically different from the fully specified model (i.e., the p-value of the χ2

should be > 0.05), but this statistic is commonly regarded as too sensitive [23]. As such, Hu and Bentler proposed
cut-off values for the alternative fit indices to be: CFI > 0.96, TLI > 0.95, and RMSEA < 0.05, with the upper bound
of its 90% CI falling below 0.10 based on extensive simulations [106].
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Figure 4.5: The structural equation model for the data of the experiment.

all dependent variables—understandability (p = .036), fit with preference (p = .036), integrity

(p = .040), and effectiveness (p = .011). In particular, Figure 4.6 shows that when participants were

told that the source of the recommendation is a human expert, there was no significant difference in

understandability, fit with preference, integrity, or effectiveness between participants who were told

that the recommendations were based on the teacher’s interests vs. the teacher’s needs. However,

among participants who were told that the source of the recommendation is an AI algorithm, those

who were told that the recommendations are based on the teacher’s interests perceived a significantly

higher level of understandability (a large, significant effect; Cohen’s d = 0.78, p < .001), fit with

preference (a medium-sized, significant effect; Cohen’s d = 0.56, p < .001), integrity (a large,

significant effect; Cohen’s d = 0.74, p < .001), and effectiveness (a large, significant effect; Cohen’s

d = 1.12, p < .01) than participants who were told that the recommendations are based on the

teacher’s needs.

4.4 Discussion

4.4.1 Revisiting the Research Questions, and Comparison to Related

Work

We set out to test the effects of justification (interests vs. needs, Study II - RQ1), recom-

mendation source (human expert vs. AI algorithm, Study II - RQ2), and their interaction (Study

II - RQ3) on teachers’ perceptions of and experience with a personalized professional development

pathway recommender in a 2 × 2 between-subjects controlled experiment. In light of our research

60



Figure 4.6: Total effects of recommendation source and justification on the perceived understand-
ability (left) and the system effectiveness (right). The effect of the “Human” source with the ”Needs”
based justification condition is set to zero, and the y-axis is scaled by the sample standard error.

questions, the results show that an interest-based justification outperforms a needs-based justifica-

tion (Study II - RQ1), but only for users who are told that the recommendations originate from

an AI algorithm rather than a human expert (Study II - RQ3). Conversely, the effect of present-

ing a human expert vs. an AI algorithm as the source of the recommendations (Study II - RQ2)

completely depends on the presented justification (Study II - RQ3): users who are told that the

recommendations are based on their interests have a better experience when the recommendations

are presented as originating from an AI algorithm, while users who are told that the recommenda-

tions are based on their needs have a better experience when the recommendations are presented as

originating from a human expert.
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Notably, the uncovered interaction effect runs counter to existing research, which shows

that the “algorithm aversion” phenomenon is stronger for subjective tasks and/or hedonic decisions

than for objective tasks and/or utilitarian decisions [35]—assuming that interest-based justifications

align with a perception of the recommendations as subjective/hedonic while needs-based justifica-

tions align with a perception of the recommendations as objective/utilitarian, our results show that

subjective/hedonic recommendations actually perform better when presented by an AI algorithm,

while objective/utilitarian recommendations perform worse. Perhaps, then, there is no clear connec-

tion between interest vs. needs-based justifications and subjective vs. objective tasks. Research has

shown that lay people perceive a task that can be approached by measuring and analyzing relevant

quantitative variables as objective, while perceiving a task that can be approached using intuition or

gut feelings as subjective [109]. From this perspective, both types of justifications can be considered

objective, as each version portrays the system as taking a decidedly calculative approach to the

recommendation process.

A possible alternative explanation for our findings is that while both interest and needs-based

justifications are considered objective (and hence principally better suited for an AI system), users

find a needs-based justifications condescending when coming from an AI system—if so, needs-based

recommendations would indeed best be presented as originating from a human expert. Alterna-

tively, one could argue that needs-based recommendations for teachers’ professional development

(i.e., recommendations that may have a serious impact on their career) are more consequential than

interest-based recommendations (i.e., recommendations that simply align with what they enjoy)—if

so, teachers may be less willing to trust in algorithms for (high-risk) needs-based recommenda-

tions [193] than for (low-risk) interest-based recommendations [146].

4.4.2 Design Implications

Overall, users are most satisfied with interest-based recommendations presented by an AI

algorithm—according to the results in Figure 4.6, users find this system the most understandable,

they find that the recommendations better fit their preferences, they find that the system has a

higher level of integrity, and they find the system more effective. Arguably, users are most excited

about interest-based recommendations, but they may believe that only an AI algorithm would be

able to handle the complexity of translating their nuanced interests into a series of recommended

professional development activities.
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Given these results, we suggest that, when both are possible, the presentation of recommen-

dations should emphasize their algorithmic nature, and the justification of recommendations should

relate back to users’ interests over their needs. In our study, this presentation was implemented both

visually and textually, with the system displaying a robot-like icon and the text explicitly stating

that “the AI algorithm thinks you would like the following recommendations”, and the justifi-

cation was implemented with each individual recommendation having a reference to the teacher’s

interests (see Figure 4.2). Furthermore, while the design elements chosen were not designed to be

overly distracting, the medium to large effect sizes of our study would indicate that more subtle

designs implementations could still be effective.

Conversely, an AI algorithm based presentation of recommendations justified by users’ needs

performed the worst. As mentioned above, one possible explanation for this could be that users find

a needs-based explanation condescending when presented by an AI system; another possible expla-

nation is that needs-based explanations are too consequential to trust to an AI system. Regardless,

needs-based recommendations are best presented as originating from a human expert.

This finding has implications for situations where recommendations are exclusively based

on needs—e.g., in situations where interests are not elicited, or where the recommender system is

built to prioritize needs in cases where a system prioritizes targeting a user’s deficiencies or needs

over their interests. In these cases, it would be disingenuous to justify the recommendations by

referring to the user’s interests. Instead, when justifying recommendations with a user’s needs,

the system’s presentation should downplay the algorithmic nature of the recommendation selection

process. In our study, we did this by displaying a human-like icon on the recommendation page,

and by explicitly mentioning that “the expert thinks the following recommendations would be

most beneficial to you” (see Figure 4.2). Note that one does not have to completely hide the

involvement of a recommender system—on the introduction page of the human source condition,

we did explicitly mention that “the expert has entered your preferences and information into the

system and calculated the most relevant professional development options for you.” (see Figure 4.1).

Rather the presentation of these recommendations (i.e., the delivery of them to the user) should be

perceived as coming from a human expert rather than an algorithmic system.

63



4.4.3 Limitations and Future Work

An obvious limitation of this work is that in an effort to control the quality of the recommen-

dations and the justification between subjects, the manipulations were introduced in a scenario-based

experiment rather than a real recommender system. To some extent, this limits participants’ deeper

understanding of the personal relevance of the presented recommendations, and the justifications

alike. To mitigate this limitation, we carefully outlined a scenario explaining the fictitious teacher’s

needs and interests. Moreover, we made sure to recruit participant among actual teachers, who are

arguably more qualified to understand the presented scenario and recommendations than the general

population.

In our future work, we will confirm these effects in the real personalized professional de-

velopment pathway recommender and attempt to verify these potential reasons for the uncovered

effects. The deployment of this study in the “live” system will also give us the opportunity to test

the effects on users’ choice behavior: do the recommendation source and justification type have an

effect on which and how many professional development items they agree to enroll in? And are

there perhaps differences between conditions in terms of users’ attrition rates (e.g. dropping classes

or abandoning them mid-semester—something that tends to happen frequently, as teachers have to

balance their professional development commitments with the demands of their teaching job and

their personal lives)? While our current study focused on opinions, the upcoming study with the

real system will provide a unique opportunity to carefully study these behavioral effects as well.

That said, experimental control will be more difficult in the “live” system, since the teachers will

approach the system with different goals, constraints, and ambitions. Hence, the current, more

carefully controlled study provides valuable insights into the attitudinal effects of recommendation

source and justification type—the “live” system study will complement these results.

Another limitation of our study is that in order to carefully single out the effect of the rec-

ommendation source (i.e., to not ascribe differing capabilities to either source), the recommendations

are presented as the outcome of a system supporting the recommendation calculation process, even

in the “human expert” condition. This may have given our scenario a more calculative emphasis,

regardless of the recommendation source or the justification type. To further emphasize the differ-

ence between human and AI recommendations, future work could present the recommendations in

the “human expert” condition as manually curated rather than calculated. One must however be

64



careful about the ethical ramifications of misrepresenting the true source of the recommendations.

4.5 Conclusion

In this study, we presented a study to investigate the best way to present recommendations

to teachers seeking to advance their professional development. In a carefully controlled, scenario-

driven experiment, we tested the effect of the justification behind the recommendations (i.e., the

teachers’ personal interests vs. their needs) and the source of the recommendations (i.e., a human

expert vs. an AI algorithm). The results show that this recommender system benefits teachers

most if they are told that the recommendations originate from an AI algorithm and are based on

their interests. In our future work, we will confirm the uncovered interaction effect in the real

recommender system and attempt to verify its underlying cause.

4.6 Summary

The findings of this study suggest that the presentation of recommendations should empha-

sise their algorithmic nature, and the justification of recommendations should relate back to users’

interests over their needs (Overall RQ2). This implies that while building the movie recommender

systems, it would provide a better user experience if the movie recommendations are presented

as originating from algorithms rather than from a human expert considering that movie preferences

(which will be visualized by the movies’ emotion feature) are usually based on users’ interest (Overall

RQ3).
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Chapter 5

Study III: Preference Exploration

and Development: The Role of

Individual Differences

(Note: Part of his work (the algorithms) has been published in the Doctoral Symposium of

the 12th ACM conference on recommender systems (RecSys ’22).)

In this work, I developed four alternative algorithms that go beyond the traditional top-

N recommendations and build them into a recommender system that recommends items for self-

actualization. Instead of only focusing on the traditional top-N recommendations which suggest

items the system thinks users will like, we also provide transparency and control with the system.

Specifically, transparency was implemented by developing algorithms to dig into users’ expressed

preference and discover new recommendations from the following four different perspective:

1. Items users might hate. This shows recommendations with a low predicted rating, allowing

users to confirm or correct the potential “false negatives”;

2. Items they might be among the first to try. This suggests items that haven’t been rated by

many users yet, recommending new items to try out for users who are open to novelty;

3. Items the system has no clue about. This composes of items for which the system has the

lowest confidences in the personalized predicted rating for the current user, helping users to
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discover their unexplored potential preferences;

4. Items that are controversial. This shows recommendations which are polarizing among like-

minded users, allowing the user to explore tastes that go beyond the mainstream.

With regard to the control element, I designed two rounds of recommendations in the experiment,

users are allowed to rate the initial recommendations to refine the estimates from the recommender.

This rating process enables users to interact with the system by indirectly correct their preference

or confirm the systems’ estimates of the alternative recommendations.

I ran an online user study to test if this system creates a better user experience through trans-

parency (Overall RQ1) and interactivity (Overall RQ2) specifically by improving self-actualization

(motivates the alternative recommendation lists), which help overcome the “filter bubble” problem.

5.1 Introduction

Recommender Systems that help users handle the abundance of information and choices

are available on today’s websites (e.g., e-commerce, streaming). These systems filter the catalog of

products, suggesting possible relevant items to a user based on e.g., previous behavior or explicitly

stated preferences [201].

Past research has focused on making these recommendations as accurate as possible, thereby

inevitably ignoring the items that the system thinks the user will not like. Although this approach

has been shown to improve the user experience [129], some scholars have argued that this creates a

“Filter Bubble” that traps users in their comfort zone [187, 176, 198]. This filter bubble prevents

them from discovering new and unknown areas of their own taste, and limits the diversity of presented

content.

In previous work Knijnenburg et al. argued that the “filter bubble” problem can be overcome

by building “Recommender Systems for Self-Actualization” [125, 253]. These systems concentrate

on the more complex situation of helping users in developing their preferences rather than only

suggesting accurate items [125, 253]. They focus on exploring previously unknown taste areas instead

of enforcing already known preferences. Recommender Systems for Self-Actualization (RSSA) keep

the user “in-the-loop” by providing alternative recommendation lists that go beyond the traditional

Top-N list which purely concentrates on the algorithm accuracy.
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More and more scholars have noticed that accuracy is not the only criterion for evaluating

the effectiveness of recommender systems [223, 96, 132], the shift of the focus of recommendation

systems from algorithm accuracy to user experience has been the interest of many researchers in

recent years. Many scholars’ studies have shown that user experience accounts more for a larger

proportion of system satisfaction [155, 96, 132], high accuracy metrics may even hurt recommender

systems [163]. Thus the evolution from research concentrated purely on accuracy to solutions that

improve the user interaction experience with the recommender becomes necessary, as McNee et al.

have suggested, recommender systems need a deeper understanding of users and their preference

seeking task to improve the recommendation quality through investigating the interactions between

human and the recommenders [164].

Although prior work have acknowledged the importance of going beyond accuracy in order

to achieve the effectiveness of recommender systems, these work did not develop a real recommender

system that really focuses on improve the effectiveness of the system through user experience, for

instance, McNee et al. proposed a Human-Recommender Interaction (HRI) framework to understand

users, their tasks, and recommender algorithms using a common language [164]; He et al. argued

for the importance of other user-centered factors beyond accuracy through presenting an interactive

visualization framework that combines recommendation with visualization techniques to support

human-recommender interaction [96]. In this work, we fulfilled the concept of Recommender Systems

for Self-Actualization (RSSA) in a real recommender system through providing four alternative

recommendation lists that go beyond accuracy to help users examine and understand their own

tastes and preferences.

With our four RSSA features (i.e., the four novel alternative recommendation lists in Rec-

ommender Systems for Self-Actualization), we aim to achieve this goals: a) supporting rather than

replace decision making so as to help users develop and express their preferences; b) focusing on

exploration rather than consumption (in other words, the four RSSA features do not focus on op-

timizing the probability that the user will like recommendations, but instead focus on exploring

underdeveloped recommendations); c) attempting to cover users’ tastes. Because users’ preferences

are not singular, but rather multifaceted and loosely connected, and an ideal recommender should

be able to fit any part of a users’ preferences.

The effectiveness of a recommender system is likely to be affected by users individual differ-

ences [112]. Psychologically, personality accounts for the individual differences in users’ preferences
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and behaviour [234]. Past research have indicated that personality quizzes can be a viable and

promising way to build user profiles to recommend entertainment products [107]. For instance,

domain knowledge has an influence on users’ perception of the recommender system [108]. The per-

sonality factors for an observed user can be explicitly acquired through questionnaires [234]. Hence,

other than testing the effect of the four novel RSSA features on users experience, we were also trying

to explore the role of individual difference acquired from the personality questionnaire while users

interacting with the system.

In this work, we designed and developed a novel recommender system providing the four

RSSA features and conducted an online user study to subjectively evaluate of the effect of the novel

RSSA features and the role of individual difference in this system.

5.2 Algorithms

In this section, we first describe the data that was used in our experiment. Then, we explain

our approach employed to develop the algorithms used in the system.

5.2.1 Data

The MovieLens 25M dataset1 was used for this study. This dataset contains around 25

million 1 to 5 star ratings on 62000 movies by 162000 users. Users were selected at random for

inclusion, all selected users had rated at least 20 movies. We enrich the dataset with additional

movie information (e.g. synopsis, cast, genre, poster, etc) that were extracted from IMDB database

site2 with the open-source code from GitHub3,4.

In our recommender system, the observed data will be managed as a user-item matrix

(Figure 5.1, i.e., matrix with user IDs as row indices, item IDs as column indices and the user’s item

rating as the value for each cell. In Figure 5.1, the question mark represents the fact that an item

has not yet been rated by the user.

1The dataset was accessible at https://grouplens.org/datasets/movielens/
2https://datasets.imdbws.com/
3https://github.com/alberanid/imdbpy
4https://github.com/babu-thomas/movielens-posters
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Figure 5.1: User-item matrix.

5.2.2 Recommender System Approaches

Our algorithms are based on collaborative filtering, an approach that identifies user-item

associations by detecting the interdependencies between items and relations between users. Collab-

orative filtering has been widely used in both commercial applications [143] and academic studies

[199, 221]. Among collaborative filtering approaches, the neighborhood-based approach and latent

factor models are the two primary methods.

The neighborhood-based approach can be further classified into item-based and user-based

approaches. Item-based collaborative filtering exploits the relationship between items to identify

“neighboring items” to those items that are known to match the user’s preferences, neighboring

items are items that have similar ratings when rated by the same user. User-based collaborative

filtering works similarly, but exploits the relationship between users.

Latent factor modeling, on the other hand, is a technique that characterizes both items

and users by vectors of “feature factors” inferred from item rating patterns through dimensional

reduction. Recommended items have a vector that shows a high correspondence with the current

user’s vector [133]. Matrix factorization is the most common realization of latent factor models,

which is widely used in recommender systems as well.

5.2.3 Recommendation Lists Algorithms

The first two of our proposed alternative recommendation lists, i.e., “Things we think you

will hate” and “Things you will be among the first to try”, use the matrix factorization method to

get the predictions for unrated movies, but use these ratings in alternative ways rather than simply

reporting the Top-N predicted ratings.
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We use the SVD (Singular Value Decomposition) technique to get the latent feature factors,

reducing the high-dimensional user-item rating matrix R into two lower-dimensional matrices P and

Q that describe users and items as vectors in a latent feature space [133, 254]. Then the user-item

rating matrix can be approximated by the product of these two lower-dimensional matrices P and

Q, which produces the predicted ratings:

R̂ = P ×Qt

Since we use exactly the same algorithm as specified in [133] to get the predicted ratings,

we do not address the realization of the basic matrix factorization algorithm in detail in the current

chapter. Instead, we focus on specifying why and how to use the predicted ratings for the unrated

movies in the user-item matrix to construct alternative lists of ‘Things we think you will hate” and

“Things you will be among the first to try”.

5.2.3.1 Things we think you will hate

Since recommender systems usually recommend items with high predicted ratings, items

with low personalized predicted ratings are rarely ever shown to users. However, it is possible that

the recommender systems mislabeled certain items as something the user dislikes, and it would be

useful for the user to be able to correct such mistakes. Moreover, exposure to items that the system

predicted they will dislike may give the user interesting insights into their tastes and preferences.

Therefore, we propose, as our first alternative list of recommendations, a list of “things we

think you will hate”. Rather than simply selecting the items that have the lowest predict ratings

based on our matrix factorization approximations, we select movies that have a predicted rating that

is much lower than the average rating. The reasoning is that these items are generally appreciated

(i.e., not universally bad items) but simply do not match the user’s tastes. This algorithm is

addressed in Table 5.1.

5.2.3.2 Things you will be among the first to try

Most recommender systems have to deal with an influx of new items. As these items

initially have no or only a few ratings, they have a relatively low probability to be in any user’s

Top-N recommendations. For example, if a new movie on Netflix happens to get rated by a few
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Table 5.1: Things We Think You Will Hate

Algorithm 1: Last 10 items

Input: Personalized predicted ratings {R̂ui} set
Get mean predicted rating R̄i over all observed ratings
For uϵU :

Sort R̄i − R̂ui for unrated items in ascending order
Get the last 10 items

users that do not like its genre, then the initial lower ratings will make it less likely to show up

among any Top-N recommendations, even for users who really like that genre. Most recommender

systems solve this cold start problem through content-based filtering: in the absence of ratings, they

resort to item attributes (e.g. genre) to make initial recommendations. However, these cold start

solutions ignore the fact that users may actually like to try new items.

Taking this situation into account, we propose a list of “Things you will be among the first

to try”, which lists items that have personalized predicted ratings in the Top-200 (or some other

number larger than N, allowing for some good-but-not-great items) that were rated by the fewest

number of other users. We get this list with the algorithm specified in Table 5.2.

Table 5.2: Things You Will Be Among the First to Try

Algorithm 2: Novel items

Input: Personalized predicted ratings {R̂ui} set
For uϵU :

Sort R̂ui for unrated items in descending order
Get the top 200 items
Get the numbers of observed ratings for those top 200 items
Get 10 items with lowest number of observed ratings
Sort them in descending order based on predicted ratings

5.2.3.3 Things we have no clue about

It is difficult for recommender systems to predict the rating of an item when there is not

sufficient information about whether the user will like the item or not. For example, if a Netflix

user happens to rate only movies in one particular genre, then the system will have a hard time

predicting the rating of movies of a different genre, and such movies will rarely get a high enough

predicted rating to be featured in the user’s Top-N. As such, recommender systems often end up

targeting a specific subset of the user’s preferences, and struggle to get a more holistic representation
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of the user’s tastes.

To remedy this situation, we propose to show a list of hard-to-predict items, i.e. “Things

we have no clue about”, that may be used to identify unexpressed preferences. This list is composed

of movies for which the system has the lowest confidence in the personalized predicted rating for

the current user. The algorithm producing this list thus has to go beyond a single predicted rating

and consider the confidence of the prediction as well. Whereas the predicted rating represents the

algorithm’s best guess on what the user’s actual rating will be, the confidence of the corresponding

predicted rating indicates how certain the algorithm is that the prediction is in close vicinity to

the actual rating. Mazurowski [158] has created an algorithm that can estimate the confidence of

individual rating predictions in item-based collaborative filtering recommender systems. We use this

algorithm on top of a standard item-based collaborative filtering algorithm (Table 5.3) to generate

a list of “Things we have no clue about” (Table 5.4).

Table 5.3: Item-based Collaborative Filtering Algorithm

Algorithm 3: Item-based CF

Input: Observed ratings {Rui} set
Get general mean of observed ratings µ
For uϵU :

Get mean ratings R̄u over all rated items
Get user bias by bu = R̄u − µ

For iϵI:
Get mean ratings R̄i over all observed ratings
Get item bias by bi = R̄i − µ

For uϵU and iϵI:
Get bui = µ+ bu + bi

For i, jϵI:

S(i, j) =
∑

uϵU ((Rui−bui)(Ruj−buj))√∑
uϵU (Rui−bui)2

√∑
uϵU (Ruj−buj)2

For iϵI:
Get nearest neighbors Ns(i) set
For uϵU :

R̂ui =

∑
nϵNs(i)

(S(i,n)(Run−bun))∑
nϵNs(i)

|S(i,n)| , n =
∣∣Ns(i)

∣∣

5.2.3.4 Things that are controversial

As mentioned in Section 5.2.2, recommender systems based on neighborhood-based collab-

orative filtering provide recommendations based on the preferences of the user’s nearest neighbors.

These recommendations usually consist of items that the neighbors unanimously like. However, it
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Table 5.4: Confidence of Predicted Ratings

Algorithm 4: RESAMPLE

Input: Observed ratings {Rui} set
m - number of repetitions
α - portion of Rui to be re-sampled each time

Get N - the number of observed ratings in {Rui}
Get n = α×N - sample size
For j = 1 : m:

Randomly select n observed ratings {R(j)
ui } ⊂ {Rui}

Execute Item-based CF on {R(j)
ui } to get {R̂(j)

ui }
Get Cui =

1

sd(R̂
(j)
ui )

, confidence of R̂ui

For uϵU :
Sort Cui in descending order
Get the last 10 items

is possible that for certain items, these neighbors are divided into two groups with different prefer-

ences: some of them love the disputed item, while others hate it. These items usually do not get

recommended though, because their predicted rating is an average over all neighbors, resulting in

a relatively low score. However, these disputed items may be of special interest to users who want

to explore items that go beyond the “mainstream”, allowing them to further develop their unique

tastes. Moreover, a recommender system can learn much more about a user’s preferences by learning

their rating on such a contested item rather than an item that is already universally liked among

the user’s nearest neighbors.

In our final list, we therefore propose to show these disputed items. The algorithm to gener-

ate this list of “Things that are controversial” is a variant of the traditional item-based collaborative

filtering algorithm, but focuses on finding items that show the largest variance among the user’s

nearest neighbors (Table 5.5).

5.3 Experimental Setup

In this section, we first offer details into the design and development of the movie recom-

mender. Then, we lay out the procedure that guided the experiment.
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Table 5.5: User-based Similarity and Controversial Items

Algorithm 5: Controversial items

Input: {Rui} set and {R̂ui} set
Get the same µ, bu, bi, bui with Item-based CF
For u, vϵU :

S(u, v) =
∑

iϵI((Rui−bui)(Rvi−bvi))√∑
iϵI(Rui−bui)2

√∑
iϵI(Rvi−bvi)2

For uϵU :
Get nearest neighbors Ns(u) set
For i in unrated items by the user:

Sort var(R̂vi), vϵNs(u) in ascending order
Get the last 10 items

5.3.1 Design Rationale

We developed a new movie recommender system to answer our research questions. Prior

studies within the RS community have used the movie domain to explore preference alignment [162,

117, 228, 40, 10] and by extension taste development [31, 17, 208, 16, 141]. Thus, we implement and

test our RSSA features alongside traditional Top-N recommendations. As displayed in Figure 5.2,

our system had the ability to seamlessly display items from both a traditional Top-N recommender

as well as one of our RSSA features (i.e., Things we think you will hate (the “hate” items), Things

you will be among the first to try (the “hipster” items), Things we have no clue about (the “no-clue”

items), and Things that are controversial (the “controversial” items)). As a comparison, we have two

baselines: a) we only show a single list of the top-N recommendations (the single list condition); b)

we display More things you may like (the “next N” items) which presents the additional N movies

ranked righted after the top-N recommendations (the next-N recommendations). This ended up

with one manipulation with six conditions (two baselines plus four RSSA lists). We randomly

assigned participants to one of the six experimental conditions in a between-subjects design—a

between-subjects manipulation was used to increase ecological validity and to prevent “demand

characteristics” from influencing the study [127].

On the recommendation lists, each recommended movie featured the corresponding movie

poster and synopsis. Figure 5.2 shows traditional Top-N items on the left while simultaneously

providing RSSA items or the baseline items in the list (for example, ”Things that are controversial”)

on the right.
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Figure 5.2: The recommendation page of the ”Things that are controversial” condition: top-7 list
on the left and 7 items of ”Things that are controversial” on the right.

5.3.2 Participants

This study was submitted to our Institutional Review Board and considered exempt. We

conducted the study on the Prolific platform 5, limiting our recruitment to adult users living in the

US. One attention check question (”Regardless of your answer, choose ”disagree” to the following”)

was randomly placed among the 37 user experience questions to track if participants were actually

paying attention to what they are doing during the completion of the study. We used these questions

plus the time taken to complete the study to filter out participants who clearly rushed through the

study.

488 participants took part in the study, yielding 483 usable data points after filtering out

5 participants who did not carefully read the presented information. Of the 483 participants, 223

identified as women, 245 as men, 9 as non-binary, and 6 participant preferred not to answer our

gender question. The sample includes 111 participants between the ages of 18 and 24, 143 between

25 and 34, 122 between 35 and 44, 64 between 45 and 54, 42 older than 54, and 1 participant prefers

not to disclose. Most participants completed the study in 13 minutes. They each received USD 2.75

for their participation.

5.3.3 Procedure

The procedure, summarized in figure 5.3, contained the following steps:

1. Introduction and consent: Upon joining the study, participants were shown a welcome message

5https://www.prolific.co/
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Figure 5.3: The figure above summarizes the key procedural steps of the experiment. ”R” denotes
random assignment to the experimental conditions.

that provided introductory information about the study to provide insights into expectations.

They were then shown the consent information related to the study.

2. Pre-study questionnaire: In this section, participants were asked about personal characteristics

that could influence users’ decision-making when interacting with an online movie recommender

such as movie expertise, need for novelty, the extent to which people fear of missing out, and

people’s perception of their maximizing tendencies. These questions were presented at this

stage to avoid confounding effects after interacting with the system. These factors of personal

characteristics are described in section 5.3.4.1.

3. Instructions: Once the pre-study questionnaire was completed, participants were then offered

an overview of all of the steps in the study. Our system also clearly labeled an updated progress

bar prominently at the top of the interface to allow users to keep track of the stage in the

experiment.

4. Preference Elicitation: To provide a personalized experience, we need to first collect a sub-

set of ratings to better understand user preferences. Participants were asked to rate at least
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ten movies that they have seen before on a scale of five. 24 movies distributed in a gallery

of three rows and five columns were displayed for users to rate; users can scroll through the

gallery for more movies rate with a next-functioned button. At this step, it is possible that

users (especially who are not movie lovers) may not find movies that they have seen on the

first few pages; to avoid users clicking through the movies to rate the required ten movies

they have seen in this situation, I developed a randomization algorithm to display the movies

from our database by popularity, as shown in Table 5.6; for example, on second page of the

movie gallery, two random movies were drawn from the top-200 movies (ranked by popularity),

seven movies ranking between 201 and 1000, seven movies ranking between 1001 to 2000, three

movies ranking between 2001 and 5000, three movies ranking between 5001 and 10000, and 2

movies from the remaining ranking tail.

After rating at least the minimum, they were allowed to proceed to the next page. We added

a buffering page before the next page which asked participants to ”please hang on while we

find the recommendations for you”. This was done enhance perceptions of a personalized

experience as well as to normalize the wait time between conditions.

5. Interaction with recommender: Based on the selections from the preference elicitation stage,

the system generated two lists. On the left, the recommendations were from traditional Top-N

recommender, whereas, the list on the right included items from one of our six conditions.

We iterated the recommendations on three progressive recommendation pages. On the first

page, the two lists of recommendations were generated based on the preference elicitation.

Participants were asked to rate all the recommended movies, even the ones they have not

watched (read the description and guess how they would rate them). On the second page, two

lists of recommendations were generated based on the preference elicitation and the ratings

they submitted on the previous recommendation page. And then they were again asked to rate

all the recommended movies on this page. The system then took the new ratings and fine-tune

the final recommendations, and generated the third round of recommendation in the same two

lists on the third recommendation page, on this third recommendation page, participants were

asked to select one movie that they would like to watch right away if they could.

6. Post-study questionnaire: Lastly, participants were asked to evaluate their perception of their

interaction with the system. All of the factors that were evaluated are described in section
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Table 5.6: The randomization algorithm for the preference elicitation step.

Page 1 Page 2 Page 3 Page 4 Page 5

Top 200 0 2 4 6 6
200 – 1k 5 7 9 9 9
1k – 2k 5 7 9 9 9
2k – 5k 5 3 1 0 0
5k – 10k 5 3 1 0 0

10k+ 4 2 0 0 0

5.3.4.1. Demographic questions were asked towards the end of the study.

5.3.4 Measurements and Hypotheses

5.3.4.1 Measurement scales

As mentioned above, we measure participants’ personal characteristics on the following four

aspects:

• Movie expertise: participants’ perception of their movie expertise (adopted from [121]).

• Need for novelty: participants’ perception of their need for novelty (adopted from [38]).

• Fear of Missing Out (FOMO): the extent to which participants fear of missing out about

movies (adopted from [194]).

• Maximization tendency: participants’ perception of their maximizing tendencies (adopted

from [70]).

We used the following six scales (mostly adopted from [128]) to measure participants’ per-

ceptions of the subjective system aspects (SSA) and user experience with the system (EXP) in the

post-study questionnaire:

• Diversity: participants’ perception of the diversity of the recommendation (adopted from [254]).

• Recommendation quality: participants’ perception of the quality of the recommendation

(adopted from [121]).

• Taste coverage: participants’ perception of the extent that the recommender system reflects

their tastes.
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• Conformity: participants’ perception of the ability that the recommender system can distin-

guish between different preferences.

• Choice satisfaction: participants’ perception of the satisfaction of the recommendation

(adopted from [30, 254]).

• System satisfaction: participants’ perception of the satisfaction of the recommender system

(adopted from [121]).

Each scale consists of multiple items, and a total of 61 items were administered in the ques-

tionnaire (i.e., 24 items measuring personal characteristics in the pre-study questionnaire and 37

items measuring their subjective opinion and experience with the system in the post-study question-

naire). Within the six scales presented in the post-study survey, Diversity, recommendation quality,

and Conformity were measured for the items on the left only. Participants were asked to rate each

item on a 5-point agreement scale (from strongly disagree to strongly agree). We also measure

participants’ interactions (INT) with the system by logging their clicks when they interacted with

the system. In this study, we logged their ratings on the first two recommendation pages, the time

spent on selecting a movie to watch on the third recommendation page, and number of movies they

have watched on the third recommendation page.

Figure 5.4: The conceptual model of the study based on the user experience framework by Knijnen-
burg et al. The following are explanations for abbreviated terms above: OSA means objective system
aspects, SSA means subjective system aspects, INT means interactive components, PC stands for
personal characteristics, and EXP relates to the user experience.
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5.3.4.2 Hypotheses

We integrate our experimental manipulation (the RSSA features), personal characteristics,

interaction variables, and the subjective constructs in the hypothesized path model (Figure 5.4). We

hypothesize that the RSSA features increase the perceived recommendation quality, the perceived

diversity, and the perceived taste coverage. Diversity is further hypothesized to increase the con-

formity of the system; recommendation quality, taste coverage, and conformity are hypothesized to

increase users’ satisfaction with the provided RSSA recommendations and the recommender system

itself (the effect perhaps mediated by the choice satisfaction).

Finally, we hypothesize that there are correlations between need for novelty and perceived

diversity, between movie expertise and perceived recommendation quality, between fear of missing

out (FOMO) and perceived taste coverage, and between maximization tendency and choice satis-

faction. We further hypothesize that there are differences on the recommendation ratings among

different RSSA recommendation lists, and this differences may be mediated by the recommendation

quality. We also hypothesize that the time spent on selecting one movie on the last recommendation

will reflect the recommendation quality of the RSSA features to some extent.

In the results section 5.4, these effects are added to the model where significant in an ad-hoc

manner.

5.4 Results

We first validated our measurement model regarding the PC, SSA and EXP constructs

using a Confirmatory Factor Analysis (CFA) and then fitted a Structural Equation Model (SEM)

that describes the hypothesized and ad-hoc causal relationships between our RSSA features, the

subjective constructs(SSA, EXP), the measured personal characteristics(PC), and the interactive

components (INT). An SEM can be conceptualized as a series of linear regressions between latent

(SSA, EXP) and observed (OSA, PC, INT) variables.

5.4.1 Measurement Model (CFA)

The validated CFA model indicated that 21 questionnaire items with either low factor

loadings (< 0.6) or high modification indices, which indicate misfit of the CFA model, those items

were removed from the subsequent analyses. Surprisingly, all the six items of the diversity factor
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Table 5.7: The factors of personal characteristics with the Average Variance Extracted (AVE) and
the consistency coefficients (Cronbach’s α), and the items per construct with item factor loadings.
Removed items are colored in grey

Considered aspects Items Factor loadings

I am a movie lover. 0.886
Compared to my peers I watch a lot of movies. 0.926
Compared to my peers I am an expert on movie. 0.857

Movie expertise
AVE: 0.723
Cronbach’s: 0.87

I only know a few movies . -0.717

When I see a new or different brand on the shelf, I often pick it up just to
see what it is like.

0.815

I like introducing new brands and products to my friends. 0.853
I enjoy taking chances in buying unfamiliar brands just to get some variety in
my purchase.

0.701

I often read the information on the packages of products just out of curiosity.
I get bored with buying the same brands even if they are good.

Need for novelty
AVE: 0.628
Cronbach’s α: 0.8

I shop around a lot for my clothes just to find out more about the latest styles.

I fear others may find more entertaining movies than me.
I get worried when I find out others are finding better movies than me.
I get anxious when I think about all the possible movies that are out there.
Sometimes, I wonder if I spend too much time trying to make sure I have
checked out every interesting movie.

0.635

It bothers me when I miss an opportunity to learn about new available movies. 0.943
When I miss out on an opportunity to watch a good movie, it bothers me. 0.826

Fear of missing out (FOMO)
AVE: 0.658
Cronbach’s α: 0.79

Once I decide to go watch a certain movie, I still check on other movies that are
playing to see if there is anything better available.

No matter what I do, I have the highest standards for myself. 0.781
I never settle for second best. 0.895
No matter what it takes, I always try to choose the best thing. 0.758
I don’t like having to settle for “good enough.” 0.746
I am a maximizer. 0.712
I will wait for the best option, no matter how long it takes. 0.695

Maximization tendency
AVE: 0.596
Cronbach’s α: 0.88

I never settle. 0.801

are among the 21 removed items, three of them show low loadings on diversity, while the other two

show high modification indices due to the high correlations between these two items themselves.

All the other nine factors with the remaining 40 questionnaire items had an adequate con-

vergent validity (AVE > 0.50)6; the consistency coefficients (Cronbach’s α) of the final nine factors

(four PC factors and five SSA, EXP factors) showed acceptable to excellent scale reliabilities7 Table

5.7 and Table 5.8 reflect all the factors and corresponding items along side the Average Variance

Extracted (AVE), the consistency coefficients (Cronbach’s α), and the respective factor loadings

from the CFA. The validated CFA model also meets the discriminant validity requirements8 (see

Table 5.9).

6Average Variance Extracted (AVE) is an indicator of the convergent validity of the measurement scales, with the
recommended lower bound threshold of 0.5.

7A commonly used rule of thumb is that an α of 0.7 indicates acceptable reliability, 0.8 or higher indicates good
reliability, and 0.9 or higher indicates excellent reliability [209].

8Discriminant validity is established when the
√
AV E of a factor is larger than its correlations with each of the

other factors
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Table 5.8: The factors of subjective system aspects (SSA) and the user experience (EXP) with the
Average Variance Extracted (AVE) and the consistency coefficients (Cronbach’s α), and the items
per construct with item factor loadings. Removed items are colored in grey.

Considered aspects Items Factor loadings

I liked the movies recommended by the movie recommender. 0.964
I found the recommended movies appealing. 0.97
The recommended movies fit my preference. 0.95
The recommended movies were relevant. 0.892
The system recommended too many bad movies. -0.851

Recommendation quality
AVE: 0.821
Cronbach’s α: 0.94

I did not like any of the recommended movies. -0.794

The movie recommender catered to all of my potential interests. 0.861
The movies that were recommended did not reflect my diverse taste in movies. -0.871
The movie recommender seemed to target only a small subset of my interests. -0.599
The movie recommender treated me as a one-dimensional person. 0.883
The lists of recommendations matched a diversity of my preferences.
The recommended movies were a perfect fit for me on many different levels. 0.914

Taste coverage
AVE: 0.695
Cronbach’s α: 0.89

The movie recommender seemed to stereotype me in a particular category of viewers.

I feel like I was recommended the same movies as everyone else.
I think the recommendations are unique to me. 0.927
I believe that the system is giving me a one of a kind experience. 0.916
I believe that the movies recommended to me are rather different from the movies
recommended to others.

0.761

Conformity
AVE: 0.671
Cronbach’s α: 0.86

I would not be surprised if the system recommended the same movies to many other users. -0.638

I like the movie I’ve chosen from the final recommendation list.
The chosen movie fits my preference.
I would recommend my chosen movie to others/friends. 0.767
I was excited about my chosen movie. 0.926
I think I chose the best movie from the options.
I know several items that are better than the one I selected.

Choice satisfaction
AVE: 0.643
Cronbach’s α: 0.78

I would rather watch a different movie from the one I selected. -0.695

I like using the system. 0.86
Using the system is a pleasant experience.
I would recommend the system to others. 0.908
I can find better movies using the system. 0.757
I would quickly abandon using the system. -0.854

System satisfaction
AVE: 0.737
Cronbach’s α: 0.91

I would use the system more often if possible. 0.903

Table 5.9: Factor-fit metrics. Off-diagonal values are correlations, diagonal values are the square

roots of the average variance extracted
(√

AV E
)
per factor.

MOVE NOV FOMO MAXT QUAL COVE CONF ChoSAT SysSAT

Movie expertise (MOVE) 0.85
Need for novelty (NOV) 0.346 0.792
Fear of missing out (FOMO) 0.422 0.393 0.811
Maximization tendency (MAXT) 0.171 0.326 0.168 0.772
Recommendation quality (QUAL) 0.317 0.185 0.169 0.065 0.906
Taste coverage (COVE) 0.204 0.141 0.098 0.067 0.766 0.834
Conformity (CONF) 0.211 0.231 0.109 0.108 0.679 0.755 0.819
choice satisfaction (ChoSAT) 0.309 0.183 0.096 0.125 0.608 0.597 0.512 0.802
System satisfaction (SysSAT) 0.238 0.344 0.237 0.115 0.654 0.72 0.705 0.553 0.858

5.4.2 Structural Equation Model (SEM)

A Structural Equation Model (SEM) was fitted to the nine constructs(SSA, EXP), the

experimental manipulation (i.e., the RSSA recommendation lists), and the interactive components

(INT). We built our model following the hypotheses formulated in section 5.3.4.2.

We first specified a saturated model with all hypothesized effects and mediations. We then
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iteratively trimmed non-significant effects. The resulting model is displayed in Figure 5.5. This

model has a good overall fit with χ2(627) = 1411.430, p < 0.001, CFI = 0.982, TLI = 0.985,

RMSEA = 0.45 with a 90% confidence interval of [0.42, 0.48]9.

Figure 5.5: The resulting SEM model for the data of the experiment. Significance levels: solid
arrows p < .05, dashed arrows p < 0.1. R2 is the proportion of variance explained by the model.
Minus symbol beside the arrows represent negative effects.

5.4.2.1 Subjective Experience

As shown in Figure 5.5, the RSSA features have a significant effect on users’ perceived quality

of the recommendations: Participants who received movies of Things we think you will hate and

Things that are controversial on the right scored significantly lower on perceived recommendation

quality than participants who only received the single traditional top-N movies (see Figure 5.10 as

well). The perceived recommendation quality has a significant effect on participants’ satisfaction

with the recommendations, this effect is significantly dependent on which recommendation lists

participants received (see Figure 5.6): the effect of recommendation quality on choice satisfaction

is significantly stronger for participants in the ”controversial” condition (p = 0.092) but weaker for

participants in the ”next N” condition (p = 0.037) compared to participants who received only the

9Theoretically, a good model is not statistically different from the fully specified model (i.e., the p-value of the χ2

should be > 0.05), but this statistic is commonly regarded as too sensitive [23]. As such, Hu and Bentler proposed
cut-off values for the alternative fit indices to be: CFI > 0.96, TLI > 0.95, and RMSEA < 0.05, with the upper bound
of its 90% CI falling below 0.10 based on extensive simulations [106].
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single top-N recommendations.

Figure 5.6: The interaction effect of recommendation quality and RSSA features on choice satisfac-
tion.

Participants’ decreased perception of the recommendation quality decreases the recommen-

dation conformity, this effect is partially mediated by the perceived taste coverage of the recom-

mendations. The perceived taste coverage is in turn related to participants’ satisfaction with the

recommendation choices. The perceived conformity and taste coverage of the recommendations

finally determine participants’ satisfaction with the system.

Figure 5.15 to 5.20 display the total (mediated + direct) effects of the RSSA features on

the dependent variables, which presents the influence of RSSA features on users’ experience more

intuitively. The total effects of the“controversial” condition and the “hate” condition are significantly

lower for all dependent subjective variables compared to the single list condition.

5.4.2.2 Personal Characteristics

Participants with higher movie expertise perceived higher recommendation quality and

choice satisfaction. Participants who are in higher need for novelty perceived higher in recom-

mendation quality, recommendation conformity, and system satisfaction. Particularly, the effect of

need for novelty on perceived recommendation quality is significantly dependent on which recom-

mendation lists participants received (see Figure 5.7): the effect of need for novelty on participants’

perceived recommendation quality is significantly less stronger for participants in the ”next N” con-

dition (p = 0.024) and in the ”no clue” condition (p = 0.018) compared to participants who received

only the single top-N list. However, the extent to which people fear of missing out (FOMO) and
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people’s perception of their maximizing tendencies (maximization tendency) do not significantly

impact participants subjective perceptions of their experience with this study.

Figure 5.7: The interaction effect of need for novelty and RSSA features on recommendation quality
.

5.4.2.3 User Behaviors

Participants who received the recommendations of Things we think you will hate, Things

you will be among the first to try, and Things that are controversial indicated that they knew less

of the recommendations (on the left list) than those who only received the single traditional top-N

recommendations. In turn, the less recommendations the participant already knows, the lower is

the perceived recommendation quality, but the higher is the perceived taste coverage.

The perceived recommendation quality and the number of known recommendations deter-

mine the average rating participants give to the final top-N recommendations. As shown in Figure

5.9), the marginal effects of the RSSA features on the average ratings of the final top-N recommenda-

tions (the left list only) indicate that the average ratings of the final top-N recommendations in the

controversial condition (mean: 3.160, p = 0.005) and the hate condition (mean: 3.091, p < 0.001)

are significantly lower than the single condition (mean: 3.446).

The pick duration (the amount of time participants took to select one movie to watch right

away) mediate the effects of the RSSA features on participants’ perceived choice satisfaction as well

as the system satisfaction. In the controversial condition, participants take more time to choose

one movie to watch right away ((about 24 seconds more, see Figure 5.8) compared to the next-N

condition (I did not compare the pick duration against the single list condition since the total amount
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Figure 5.8: The main effect of RSSA features on the amount of time participants took to select one
recommendation to consume right away.

of movies to inspect is different).

Figure 5.9: The main effect of RSSA features on the average ratings of the final top-N recommen-
dations.

5.5 Discussion

Based on the results of our experiment, we can describe in detail how the benefits of the

RSSA features in movie recommenders come about. We can also describe these results in the light

of users’ personal characteristics. Finally, we can provide some preliminary suggestions on the

performance of the RSSA features.
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Figure 5.10: The main effect of RSSA features on recommendation quality.

Figure 5.11: The main effect of RSSA features on taste coverage.

Figure 5.12: The main effect of RSSA features on recommendation conformity.
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Figure 5.13: The main effect of RSSA features on choice satisfaction.

Figure 5.14: The main effect of RSSA features on system satisfaction.

Figure 5.15: The total effects of RSSA features on recommendation quality.
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Figure 5.16: The total effects of RSSA features on taste coverage.

Figure 5.17: The total effects of RSSA features on recommendation conformity.

5.5.1 RSSA Features

The RSSA features have a significant effect on the user experience, primarily because the

“controversial” items (Things that are controversial) and “hate” items (Things we think you will

hate) decrease the perceived quality of the recommendations. The decreased recommendation quality

in turn causes users to feel less in taste coverage and recommendation conformity, also indicated by

the decreased average ratings of the final top-N recommendations. Finally, the lower taste coverage

and recommendation conformity cause users to be less satisfied with both the recommendations and

the system.

RSSA features work partially due to a direct effect on recommendation quality, and par-

tially due to its influence on user behavior. Specifically, users in the “hate” (Things we think you

90



Figure 5.18: The total effects of RSSA features on choice satisfaction.

Figure 5.19: The total effects of RSSA features on system satisfaction.

will hate), “controversial” (Things that are controversial), and “hipster” (Things you will be among

the first to try”) conditions already know less of the recommendations while users in the “no clue”

(Things we have no clue about) condition already know more of the recommendations (the less the

recommendations were already known, the lower of the perceived quality of the recommendations,

but the higher of the taste coverage). These effects of RSSA features on the number of recommen-

dations that the participant already know is intuitive, because the idea of “hate” , “controversial”,

“hipster”, and “no clue” algorithms seeks to recommend items that are unrelated to the Top-N from

different angles: the “hate” recommendations present a list of items the system predicts the user

will hate; the “controversial” recommendations present a list of items that are polarized with the

Top-N; the “hipster” items present a list of yet-to-be-rated items to users that are identified (using
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Figure 5.20: The total effects of RSSA features on pick duration (the amount of time participants
took to select one movie to watch right away).

a “hipster measure”) as having a high willingness to try out new items (thus users knew less of the

final top-N recommendations generated after the three algorithms had taken users’ confirmation or

correction of the recommended items in these three conditions); while the “no clue” recommenda-

tions present a list of hard-to-predict items that may be used to identify unexpressed preferences

(which shows efficiency of the “no clue” algorithm that the users know more items in the final top-N

recommendations after the algorithm took their ratings on the prior two iterations of recommenda-

tions). These effects in line with our goal of attempting to support users in developing, exploring,

and understanding their unique tastes and preferences [124].

Unsurprisingly and consistently, users take more time to choose a recommendation to con-

sume in the “hate” , “controversial”, and “hipster” conditions, since they need more time to inspect

the recommendations due to less familiarity with them before picking one to consume. which de-

creases choice satisfaction, but increases system satisfaction.

From the total effects of the RSSA features on the subjective variables displayed in Fig-

ure 5.15, 5.16, 5.17, 5.18, and 5.19, the “hate” and “controversial” items indeed negatively affect

the recommendation quality, taste coverage, recommendation conformity, choice satisfaction, and

system satisfaction, while the “hipster”, the “no clue”, and the “next N” items do equally well

compared to the single list condition (even though the “hipster” items performs a little bit better

on participants’ perception of recommendation quality, taste coverage, recommendation conformity,

and system satisfaction, but these effects are not statistically significant).

Even though the “hate” and “controversial” items negatively affect user experience with the
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system while the “hipster” and the “no clue” items performs equally well compared to the “next N”

items and the single list condition, they do support rather than replace decision making (as shown in

Figure 5.20). In the follow-up studies, it will be quite interesting to measure three more subjective

variables: taste clarification potential (i.e., participants’ perception of how well the recommender

helps users understand their preferences), taste development potential (i.e., participants’ perception

of the ability that the recommender helps users develop their unique taste), and self-actualization

(i.e., participants’ perception of the extent to which the recommendations are attuned to helping

them meaningfully improve their own lives [124]) to actually measure the potential of taste clarifica-

tion and taste development of the RSSA features and participants’ perception of self-actualization.

5.5.2 Personal Characteristics

Out of the four personal characteristics we have tested in the prior-study survey — movie

expertise, need for novelty, the extent to which people fear of missing out (FOMO), and people’s

perception of their maximizing tendencies (maximization tendency), two of them have an effect

on users’ subjective experience when using the systems. Movie expertise has a positive effect on

recommendation quality and choice satisfaction, the explanation could be that movie experts are

better at judging the quality of the recommendations than non-movie-experts, which are in line with

the similar findings in [30, 128, 254, 122].

Moreover, users in higher need for novelty feel higher quality and conformity of the RSSA

recommendations, which may be due to the fact that our RSSA features display items outside the

Top-N, thus users have more options of items they might hate, yet-to-be-rated items they might be

highly willing to try out, and items they have not expressed preferences for [124]. When digging into

the perceived recommendation quality together with need for novelty, the “no clue” (Things we have

no clue about), the “hipster” (Things you will be among the first to try), and the “next N” (More

items you may like) lists work better on the perceived recommendation quality for users with low

need for novelty, while the single list works best for users with high need for novelty. Users’ need

for novelty also has a positive effect on the system satisfaction, which is consistent with the findings

in [161].

Surprisingly, maximization tendency and fearing of missing out (FOMO) turn out to have

no significant effects on the subjective variables (recommendation quality, taste coverage, recom-

mendation conformity, choice satisfaction, and system satisfaction).
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5.5.3 Differences among the RSSA Features

Other than comparing the RSSA features against the “single” condition, we are also in-

terested in comparing the RSSA features against each other. Figure 5.10 and 5.11 show that the

perceived recommendation quality and taste coverage are consistently lower for the “controversial”

and “hate” conditions than for the “no clue” and “hipster” conditions, these differences are statis-

tically significant. Figure 5.12 shows that the perceived recommendation conformity is significantly

higher for the “hate” condition than for the other three conditions (i.e., the “controversial”, “hip-

ster”, and “no clue” conditions), but only the differences between the “hate” condition and the

“controversial” condition is not statistically significant, the other two differences are statistically

significant. While the system satisfaction is lower in the “hate” condition than the other three

conditions, but only two of differences (”hate” vs. “hipster” and “hate” vs. “no clue ) are statisti-

cally significant. In Figure 5.13, the choice satisfaction is significantly lower for the “controversial”

condition than for the other three conditions, these difference are statistically significant (the differ-

ence of the “controversial” condition and the “hate” condition are only marginally significant). The

differences between the “hipster” condition and the “no clue” condition is consistently small in all

subjective variables and even in the average rating of the final top-N recommendations. The only

marginal significant difference between the two control conditions is in duration users took to pick

one recommendation to consume right away (p = 0.06).

5.6 Conclusion

The results show that the effects of the RSSA features on users’ perceptions of recommen-

dation quality, taste coverage, recommendation conformity, and system satisfaction are contrary to

our expectation. Items from the “controversial” (Things that are controversial) and “hate” (Things

we think you will hate) perspective are not a good idea according to the results of this empirical

experience. Visiting back to the idea of the “hipster” and “no clue” features, however, items from

these two perspectives focus more on diversity: the “hipster” items present a list of yet-to-be-rated

items to users that are identified (using a “hipster measure”) as having a high willingness to try

out new items (thus users knew less of the final top-N recommendations generated after the three

algorithms had taken users’ confirmation or correction of the recommended items in these three

conditions); the “no clue” recommendations present a list of hard-to-predict items that may be used
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to identify unexpressed preferences (which shows efficiency of the “no clue” algorithm that the users

know more items in the final top-N recommendations after the algorithm took their ratings on the

prior two iterations of recommendations). Our results show that these two lists perform at least as

good as the traditional top-N recommendations, the element of diversity in these two lists is more

fruitful than from the perspective of “controversial” and “hate” items. Thus, I shifted away from

these RSSA features and focus on diversity of the recommendations instead in the next study (Study

IV).

Based on the out-of-expectation results of this study, it could be possible that the features

that focus on recommending items diversified by emotions in Study IV may not have an effect

on recommendation quality but that could highly potential to help people explore their prefer-

ences. To this end, I will measure the taste clarification potential, taste development potential, and

self-actualization (which were not measured in this current RSSA study) to actually measure the po-

tential of taste clarification and taste development of the proposed features, as well as participants’

perception of self-actualization.

5.7 Summary

The findings of this study suggest that the recommender system with the four alternative

recommendation lists (motivated by self-actualization) implemented does not create a better user

experience, which implies that providing transparency (Overall RQ2) implicitly (the 4 alternative

recommendation lists were embedded in the back-end algorithms in this study) and allowing indirect

interactivity (Overall RQ1) might lead to a negative user experience, even though they were designed

with a highly promising motivation (i.e., self-actualization, which helps overcome the “filter bubble”

problem). Thus in the next study (Study IV), I will design the interactivity and explanation in a

more intuitive manner.
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Chapter 6

Study IV: Testing a Diverse and

Controllable Movie Recommender

System

(Note: We plan to submit this chapter to CHI ’24 or IUI ’24.)

In the previous studies, I described the phases of understanding the effects of explanation

(in the forms of visualized explanation, justification, and alternative recommendations revealed from

users’ preferences) and interactivity on recommender systems (and even on intelligent systems in

general).

In Chapter 3, I investigated the effect of interactivity and explanation in the context of a

Tic-Tac-Toe XIML system. I found that even in the simple scenario, explanation-driven interactive

machine learning (XIML) systems have a better user experience, partially because they encourage

users to engage in a mutual feedback loop that helps improve the system’s performance. Specifically,

XIML systems that allow users to edit the decision rules (as compared to only give feedback on the

decision itself) make users feel more in control over the system, which increases the perceived quality

of the system’s feedback and, in turn, the overall system satisfaction. In Chapter 4, the findings

suggest that the presentation of recommendations should emphasise their algorithmic nature, and

the justification of recommendations should relate back to users’ interests over their needs. This

implies that it would provide a better user experience if the movie recommendations are presented
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as originating from algorithms rather than from a human expert considering that movie preferences

(which will be visualized by the movies’ emotion feature) are usually based on users’ interest. In

Chapter 5, I studied the effects of the four novel RSSA features on recommender systems for self-

actualization, however, the results is out of my expectation that the RSSA features do not perform

significant better on users’ experience with the system. Thus I decided to shift away from these

RSSA features and focus on using emotion (from the perspective of item feature) for diversification,

interactivity, and visualization to investigate the associated effect on the user experience.

Thus, in this final study, I integrated the explanation-driven (in the form of visualization)

interactive mechanisms into a movie recommender system that features using emotions for diversifi-

cation. By allowing users to explicitly input their emotion preference on movies and immediately get

the updated recommendations, accompanied by the implementation of diversification and the infor-

mation assistance of visualization (which reflects the emotion attributes of the recommendations),

the direct interactive process between the user and the system has the potential to improve users’

overall experience with the system, and in particular, help users on self-actualizing by supporting

them in exploring and understanding their unique personal tastes.

I conducted an online study with this novel system to explore the effects of interactivity

(Overall RQ1) and visualization (visualized explanation, Overall RQ2) on user experience and how

do they depend on the diversification and personal characteristics (Overall RQ3).

6.1 Overview

Users are faced with endless options to choose from while searching products/services online.

One way that would potentially benefit users in making decisions is reading the online reviews,

especially for experience products and services – products and services where users do not know

how much they like them until they actually experience them. Online reviews for products and

services provide a representation of the emotions that the product/service evoked. Dr. Mokryn has

leveraged the content of such reviews to develop an eight-dimensional emotional vector describing

every product/service on each of the eight emotions of Plutchik’s wheel of emotions [191]. This eight-

dimensional vector represents the “emotional signature” of the item. This triggered my interest in

exploring whether emotional signatures can be used as a novel selection criteria for users to find,

evaluate, and select products and services that meet their preferences. I did this by integrating the
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emotional signatures into online recommender systems.

Recommender Systems that help users handle the abundance of information and choices are

available on today’s websites (e.g., e-commerce, streaming). These systems filter the catalog of prod-

ucts, suggesting possible relevant items to a user based on e.g., previous behavior or explicitly stated

preferences [201]. However, traditional recommender systems that provide users with personalized

recommendations can result in “choice overload” when users are provided with large lists of attrac-

tive products or services, especially when users do not have conspicuous preferences. Diversifying

the recommendations has been shown to be an effective means to overcome “choice overload” and

to provide a balanced set of recommendations. Existing diversification strategies are based on either

objective (e.g. author, genre) or latent features [254, 149]. However, diversification based on items’

latent features limits the average user’s perception of diversity [137, 60] due to the complexity and

opaqueness of the diversification algorithm as well as the lack of expert knowledge of the diversity

dimensions such as the latent feature [254, 149] that extracted from the matrix factorization [133].

Based on the existing work that Mokryn et al. have done on extracting emotional signatures

from the online reviews of movies, I consider using emotion as an item attribute to diversify movie

recommendations. Considering the tangible characteristic nature of emotion, diversifying movie rec-

ommendations by emotion would potentially help users to perceived the diversity. Over the past

two decades, the field of psychology has dedicated significant attention to investigating the influence

of emotions on the decision-making process [65, 145, 189, 190]. More recently, researchers have put

forth the hypothesis that users’ emotions and personalities play a crucial role in understanding the

variations in their preferences. This understanding has the potential to contribute to the enhance-

ment of personalized systems [236]. The relevance of the emotions evoked from item reviews and

their importance to viewers’ experience have long been recognized in the movie domain [85, 227].

In this study, my goal is to develop a novel recommender system that diversifies its recom-

mendations based on the emotional signature of items. I thus built this diversification mechanism

in line with our original intention of creating “recommender systems for self-actualization” [124, 91]

– systems that follow a more holistic human-centered personalization practice by supporting users

in developing, exploring, and understanding their unique tastes and preferences [124]. The diver-

sified recommendations enable the recommender to gain a more holistic view of the user from the

perspective of emotions and allow the user to learn more about themselves as well.

Recommender systems have appeared to users as black boxes due to the complex algorithms
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and techniques implemented. This opaqueness can lead to feelings of discomfort or even creepiness

despite the recommendation matching a user’s interest and shows high accuracy [128]. Explanations

are an important mechanism to promote trust, as they provide human-understandable interpreta-

tions of the inner working of the system [76], and visualization leverages visual representations to

facilitate human perception [96]. Thus, I consider making the emotion-based recommender system1

more intuitive by visualizing the emotions of movies to reveal the novelty of this system. In the

meanwhile, for the purpose of self-actualization, I believe that allowing users to take control over

the diversification process would benefit users in exploring their unique tastes from the perspective

of emotions. This is approachable in this emotion-based recommender system by allowing users to

interactively specify which emotional dimensions they want the system to prioritize. Making the rec-

ommendation process transparent and controllable has the potential to alleviate the negative effects

caused by the opaqueness of the complex algorithms and techniques implemented in recommender

systems. This effect aims to make recommendations more aligned with users’ long-term goals and

ambitions.

For my final study, I designed, developed, and evaluated these means of leveraging emotional

signatures for recommender systems by combining three distinct directions (diversification, visual-

ization, and interactivity). My ultimate goal is to support users in exploring and understanding their

unique personal tastes from the perspective of emotions extracted from the online reviews of items.

Although existed works have investigated individually or in combinations of the three directions

in the area of recommender systems [76, 254, 181], to the best of my knowledge, no research has

explored the interplay of these directions in emotion-based recommender systems.

With a movie recommender system with the above ideas integrated, I aim to address the

following research questions:

Study I - RQ1: Does using the evoked emotions from movie reviews for diversification

contribute to users’ perceived diversity of the recommendations?

Study II - RQ2: How does the visualization influence the transparency of the recom-

mender system that leverages the emotional signature?

Study III - RQ3: Does users’ control over the recommender system improve their

perceived interactivity of the system and thus increase their satisfaction with the system?

1The emotion-based recommender here refers to a recommender that re-ranks and diversifies the recommendations
based on their emotional signatures
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Table 6.1: Data used in the system.

Data Source Original Dataset Used Dataset

IMDB & Movie Lens
Ratings 24,702,320 15,056,975
Movies 57,533 9,064
Users 162,541 133,969

Study IV - RQ4: How do users’ personal characteristics moderate the effects of the

main features of the movie recommender on users’ experience with the system?

6.2 Data and Recommendation Algorithms

6.2.1 Data

In this final study, both the movie rating dataset from MovieLens 2 and movie emotional

signature dataset were used. The MoviesLens 25M rating dataset — contains around 25 million

1 to 5 star ratings on 62,423 movies by 162,541 users (users were selected randomly for inclusion,

and all selected users had rated at least 20 movies) — was used to generate the traditional top-N

recommendations, and the associated movie information such as synopsis, cast, genre, and poster

were enriched from the IMDB database that can be accessed on the public IMDB database web-

site3. The emotional signatures of the movies — eight-dimensional vectors represents the “emotional

signature” of the movies, generated by a system built by an IS Capstone Project group which Dr.

Mokryn guided [19, 170] — were used for diversification, visualization, and interactivity.

These two data sets consist of two different movie sets with ratings and emotional signatures.

I merged the two data sets by excluding movies without emotional signatures extracted (due to some

technical reasons such as insufficient review numbers) from the rating dataset in other words, only

movies with both valid user ratings and valid emotional signatures, as well as movie information

extracted were used in the database for this proposed work (as shown in Table 6.1). The final dataset

contains a total of 15,056,975 ratings on 9064 movies by 133, 969 users.

2accessible at https://grouplens.org/datasets/movielens/
3https://datasets.imdbws.com/
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6.2.2 Recommendation Algorithms

6.2.2.1 Matrix Factorization

The algorithms for recommending in this system are based on collaborative filtering, an ap-

proach that identifies user-item associations by detecting the interdependencies between items and

relations between users. Collaborative filtering has been widely used in both commercial applica-

tions [143] and academic studies [199, 221]. Among collaborative filtering approaches, latent factor

modeling is a technique that characterizes both items and users by vectors of “feature factors” in-

ferred from item rating patterns through dimensional reduction. Recommended items have a vector

that shows a high correspondence with the current user’s vector [133]. Matrix factorization is the

most common realization of latent factor models, which is widely used in recommender systems as

well.

I adopted the LensKit for Python4 [59] that was developed by Ekstrand as a supporting

platform to generate the traditional top-N recommendations with the matrix factorization algorithm

applied.

6.2.2.2 Diversification Algorithm

The diversification algorithm from Willemsen et al. [254] was adopted for diversifying in

this system. Willemsen et al. used latent features extracted from matrix factorization for diversi-

fication while I used the emotional signatures instead for diversification. The pseudo-code of the

diversification algorithm using emotional signature is shown in Table6.2, I applied the exact same

diversification technique when diversifying the the traditional top-N recommendation by emotional

signatures. I implemented this diversification algorithm on the LensKit for Python platform.

6.2.2.3 Taking Users’ Emotion Input

As mentioned above, each movie has the emotion feature reflected on an 8-dimension vector

termed emotional signature, which describes every movie on each of eight emotions of Plutchik’s

wheel of emotions [191]. We allow users to specify their emotion taste in movies, more specifically,

of all the 8 emotions (anticipation, anger, trust, disgust, fear, joy, sadness, and surprise), users can

specify either ’more’ or ’less’ on each emotion (corresponds to a positive weight ’0.125’ for ’more’

4https://lkpy.readthedocs.io/en/stable/
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Table 6.2: Diversification Algorithm

Algorithm: Diversification

Input: Top-N predicted items T ,
Item emotional signatures QT = {iϵT, qiϵQT },
h (number of diversified item set H) }

Set H = {}, an empty set;
Get centroid(QT ), take the average along each dimension of the emotional signatures

over all the candidate top-N items;
first-item = the iϵT for which d(Qi, centroid(QT )) is minimal;

Add first-item to H and Remove it from T ;
while num(H) < h :

next-item = the iϵT for which
∑

jϵH d(Qi, Qj) is maximal
Add next-item to H and Remove it from T
End

and a negative weight ’-0.125’ for ’less’, respectively) to indicate how much extent they would like

the recommended movies to have on the emotion if possible. Among the eight emotions, users can

choose to specify only some of the 8 emotions and leave others unspecified.

In the diversification version where the diversified recommendations are shown,

• Step 1: the algorithm takes the predicted top 200 movies — generated from the traditional

top-N algorithm with Matrix Factorization applied — as candidates;

• Step 2: the algorithm diversifies the 200 candidates by the unspecified emotions to generate a

diversified ranking;

• Step 3: the algorithm calculates a new ranking score for each item by integrating the weights

of the specified emotions and the diversified ranking;

• Step 4: the algorithm recommends the seven movies with the highest new ranking scores.

the pseudo-code of this algorithm is shown in Table 6.3.

In the non-diversified version where the top-N recommendations are shown, the only differ-

ence in taking users emotion input is that in step 2, the algorithm does not diversify the top 200

movies (candidates) by the unspecified emotions, instead, the algorithm generates a top-N rank-

ing sorted by the original predictions from the Matrix Factorization algorithm for the follow-up

calculations stated in step 3 and step 4.
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Table 6.3: Tuned-Diversification Algorithm

Algorithm: Tuned Diversification

Input: Top-N predicted items T ,
User-unspecified emotion set Eu,
Item emotional signatures QT = {i ∈ T, qi ∈ QT },
h (number of diversified item set H).

Apply the above diversification algorithm described in Table 6.2 to the item candidate set
T on the user unspecified emotion set Eu, generate a new diversified ranking for the item candidate set rd;

For for the specified emotions ei (i ∈ {1, 2, 3, ..., 8}), the ’high’ label corresponds to a positive
weight of wi = 0.125 while the ’low’ label corresponds to a negative weight of wi = −0.125;

Apply the following formula to each candidate item to calculate a new ranking score rn:
rn(item) =

∑8
i=1(wi ∗ ei) + (1 −

∑8
i=1 |wi|) ∗ rd(item)

Sort items by the new ranking score and get the top 7 items as the new recommendations;
End

6.3 Study Setup

6.3.1 Procedure

This study was submitted to our Institutional Review Board (IRB) and considered exempt.

Participants were recruited from the Prolific platform 5. Participants were limited to adult users

located in the United States and to be fluent in English.

The procedure, summarized in figure 6.1, contained the following steps:

1. Introduction and consent: Upon joining the study, participants were shown a welcome message

that provided introductory information about the study to provide insights into expectations.

They were then shown the consent information related to the study. After the participants

agreed to participate in this study, they were then offered an overview of all of the steps in the

study: pre-survey, indicating preference, interacting with the system, and post-survey.

2. Pre-study survey: In this section, participants were asked about personal characteristics that

could influence users’ decision-making when interacting with an online movie recommender

such as movie expertise, need for novelty, and their familiarity with visualization. These

questions were presented at this stage to avoid confounding effects after interacting with the

system.

3. Preference Elicitation: To provide a personalized experience, we need to first collect a sub-set

of recommendations to better understand user preferences. Participants were asked to rate

at least 10 movies that they have seen before on a scale of five. After rating at least the

minimum (10 movies), they were allowed to proceed to the next page. We added a buffering

5https://www.prolific.co/

103



Figure 6.1: The key procedural steps of the experiment. “R” denotes random assignment to the
experimental conditions.

page before the next page which asked participants to “please wait while the system prepares

your recommendations”. This is done to enhance perceptions of a personalized experience.

4. Interaction with the recommender: Based on the ratings from the preference elicitation stage,

the system generated recommendations for the participants “lively”. For the conditions with-

out the control panel which allows participants to specify their tastes on emotions of the

movies, each participant was asked to inspect the movies by hovering the recommendation list

and select one movie that they would like to watch right away if they could. For the conditions

with the control panel, we iterated the recommendations on two progressive recommendation

pages: on the first page, after participants finished inspecting the recommended movies, they

were asked to specify their tastes in movie emotions and play around with the control panel

to interact with the recommender to get recommendations based on their emotion tastes in

movies; on the second page, the control panel was locked off and participants were asked to

select one movie that they would like to watch right away if they could.

5. Post-study survey: Lastly, participants were asked to evaluate their perceptions of their in-
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teractions with the system. We firstly presented one feedback page to allow users to inform

us issues if any by asking participants “Did anything go wrong while using the system?”,

which also serves as an attention check. The page were then followed by pages of the post-

survey questionnaire. All of the factors that were evaluated are described in section 6.3.4.

Demographic questions were asked towards the end of the study.

6.3.2 Participants

A power analysis with a 0.25 effect size and a 0.85 power shows that a total of 146participants

are needed for this study. Each participant received 2.75 US dollars as compensation at the end of

the study.

Other then the feedback page following the recommendation mentioned above, there are two

extra attention checks in the style of “Please select ’agree’ for this question regardless” randomly

placed among the questionnaires, one was in the pre-study survey and the other in user experience

questions, to track if participants were actually paying attention to what they are doing during the

completion of the study. We used these questions plus the time taken to complete the study to filter

out participants who clearly rushed through the study.

In the actual online study, 282 participants were collected from the Prolific platform, 6

participants failed the attention checks, which ended up with 276 usable data points for data analysis.

The sample includes 52 participants between the ages of 18 and 24, 93 between 25 and 34, 62 between

35 and 44, 46 between 45 and 54, and 23 older than 54. Most participants completed the study in

15 minutes. Among these 276 participants, 148 identified as women, 118 as men, 8 as non-binary,

and 2 participant preferred not to answer our gender question.

6.3.3 Experimental Design

As aforesaid, this recommender system features emotion-based diversification, visualization,

and interactivity, so the experiment involves these three between-subjects manipulations: diversi-

fication, visualization, and interactivity. The emotion-based diversification technique were tested

against the traditional top-N recommendations as the baseline, as shown in Figure 6.2), the middle

panel (panel 1) displayed either the top N recommendations or the recommendations diversified by

emotional signatures (i.e., diverse N recommendations). The visualization focused on the emotion
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feature of the movies, which explicitly displays the emotions of a movie on eight dimensions (the bar

graph of emotional signature, i.e., panel 2 in Figure 6.2) so that the users can intuitively understand

the movie’s tone on the perspective of emotions. The visualization was tested against not to show

any visualization of the emotions.

The interactivity was tested by either allowing or not allowing users to interact with the

system by specifying the relative weight of the emotional dimensions underlying their preferences

(the default values of the weights are included in Table 6.3). The design of the emotion preference

panel is labeled as panel 3 in Figure 6.2. In the conditions where users were allowed to interact

with the system (i.e., specify the relative weight of the emotion dimensions by tweaking the toggle

buttons on the emotion preference panel as shown in Figure 6.2), the system took their inputs and

recommend items based on the conditions they are assigned to (more details described in Section

6.2.2.3).

Our experiment thus includes two experimental conditions in each manipulation, resulting

in a 2× 2× 2 between-subjects controlled experiment (as shown in Table 6.4).

Table 6.4: Manipulations and conditions.

Manipulations Diverse Recommendations Top-N Recommendations

Allow Input
Visualization

C1:
Diverse items
With emotion input panel
With visualization panel

C5:
Top-N items
With emotion input panel
With visualization panel

No Visualization

C2:
Diverse items
With emotion input panel
Without visualization panel

C6:
Top-N items
With emotion input panel
Without visualization panel

No Input
Visualization

C3:
Diverse items
Without emotion input panel
With visualization panel

C7:
Top-N items
Without emotion input panel
With visualization panel

No Visualization

C4:
Diverse items
Without emotion input panel
Without visualization panel

C8:
Top-N items
Without emotion input panel
Without visualization panel

6.3.4 Measurements and Hypothesized Structural Equation Model (SEM)

We measured both participants’ personal characteristics (i.e., movie expertise, need for

novelty, visualization familiarity; reflecting participants individual differences) and their perceptions

of the subjective system aspects and user experience with the system with the following measurement

scales:

• Movie expertise(PC): participants’ perception of their movie expertise (adopted from [121]).
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Figure 6.2: The interface with the three experimental manipulations of the recommendation page
in the actual system.

• Need for novelty(PC): participants’ perception of their need for novelty (adopted from [38]).

• Visualization familiarity(PC): participants’ familiarity with visualization (adopted from [135,

134]).

• Perceived interactivity: the extent to which participants perceive that they are able to

interact with the recommendation process.

• Understandability: participants’ perception of the understandability of the emotion-based

recommendations (adopted from [121]).

• Perceived diversity: participants’ perception of the diversity of the recommendations (adopted

from [254]).

• recommendation quality: participants’ perception of the quality of the recommendations

(adopted from [121]).

• Taste coverage: participants’ perception of the extent that the recommender system reflects

all of their tastes
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• Taste clarification potential: participants’ perception of how well the recommender

helps users understand their preferences.

• Taste development potential: participants’ perception of the ability that the recommender

helps users develop their unique taste.

• Choice difficulty: participants’ perception of the difficulty of selecting movies from the

recommendations (adopted from [30, 254]).

• System satisfaction: participants’ satisfaction with the recommender system (adopted from [121]).

• Choice satisfaction: participants’ satisfaction with the selected recommendations (adopted

from [30, 254]).

• Self-actualization: refers to participants’ perception of the extent to which the recommen-

dations are attuned to helping them meaningfully improve their own lives [124].

The experimental manipulations and the measured constructs were integrated into the fol-

lowing path model (as shown in Figure 6.3). I hypothesize that:

Hypothesis 1: The diverse recommendations based on emotions increase the perceived

diversity.

Hypothesis 2: The emotion visualization of the recommendations increases the under-

standability.

Hypothesis 3: Users’ ability to edit the emotional preference of the movies increases the

understandability and perceived interactivity.

Hypothesis 4: The perceived diversity reduces the difficulty of the selection of the rec-

ommendations and increases the perceived recommendation quality (perhaps mediated by the choice

difficulty).

Hypothesis 5: Understandability of the recommendations is hypothesized to reduces the

choice difficulty and increases the taste development potential.

Hypothesis 6: The perceived interactivity is then hypothesized to increase the perceived

recommendation quality.

Hypothesis 7: The increased perceived diversity and recommendation quality is hypothe-

sized to increase the perceived taste coverage as well as the taste clarification potential.
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Hypothesis 8: The perceived interactivity, choice difficulty, perceived recommendation

quality, and taste coverage ultimately have significant effects on choice satisfaction.

Hypothesis 9: The taste clarification potential and taste development potential are hypoth-

esized to increase users’ satisfaction with the system.

Hypothesis 10: The choice satisfaction and system satisfaction are expected to increase

users’ perception of self-actualization.

Hypothesis 11: Users’ need for novelty contributes to their perceived diversity of the

diverse recommendations.

Hypothesis 12: Users’ familiarity of visualization as well as their movie expertise increase

the perceived recommendation quality (perhaps mediated by understandability).

Hypothesis 13: Users’ education level is correlated with the understandability.

Figure 6.3: The hypothesized path model.

6.4 Results

With the collected survey data, I first verified the the diversity of the diversified recommen-

dations with the defined AFSR metric (more details in Section 6.4.1). I validated our measurement
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model regarding the PC, SSA and EXP constructs using a Confirmatory Factor Analysis (CFA) and

then fitted a Structural Equation Model (SEM) that describes the hypothesized and ad-hoc causal

relationships between the objective system manipulations (OSA), the subjective constructs(SSA,

EXP) and the measured personal characteristics(PC).

6.4.1 Objective Diversity of the Initial Recommendations

Among the three manipulations (i.e., diversification, visualization, and interactivity), visu-

alization and interaction were intuitively reflected on the interface of the recommendation page (see

Figure 6.2) through the design of the emotion input panel (panel 3) and the bar graph visualization

panel of emotional signature (panel 2), while diversification was implicitly reflected in the algorithm

integrated in the back end of the system, thus I firstly check on the objective diversity of the initial

recommendations (generated before the system took into account participants’ emotion preferences)

of all the experimental conditions. Referring to the metric AFSR (Average Feature Score Range)

used to measure the objective diversity of recommendations diversified by the item latent features

[254], I applied this same metric but replaced the latent feature with emotion signature since I di-

versified the recommendations by the emotion signatures of movies, hereby, I labelled this metric as

AESR (Average Emotion Score Range). The statistical result shows that the AESR of the diverse N

recommendations is significantly higher than the AESR of the traditional top N recommendations

( M = 0.069, β = 0.051, p < .001, which verifies that the diverse N recommendations significantly

differs from the traditional top N recommendations from the perspective of emotional signature (see

Figure 6.4).

6.4.2 Confirmatory Factor Analysis (CFA)

I ran a CFA model on the collected data to validate the reliability and validity of the

measured 14 scales (3 PC factors and 11 SSA and EXP factors). Items with low factor loadings

(< 0.6) or high modification indices (both indicate misfit of the CFA model) were excluded from

the subsequent analyses. The consistency coefficients (Cronbach’s α) were also calculated to check

the reliability of the constructs, the results show all the constructs (3 PC factors and 11 SSA and

EXP factors) have at least acceptable reliability metrics6. I checked the convergent validity and the

6A commonly used rule of thumb is that an α of 0.7 indicates acceptable reliability, 0.8 or higher indicates good
reliability, and 0.9 or higher indicates excellent reliability [209].
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Figure 6.4: The Averaged Emotion Score Range (AESR) of the initial recommendations.

discriminant validity of the CFA model as well — the convergent validity was assessed by checking

if the average variance extracted (AVE) are greater than 0.5 7, all the measured factors have AVEs

greater 0.5; while the discriminant validity was assessed by comparing the average variance extracted

(AVE) of each factor against its correlation with other factors. I found that the taste development

potential construct is high correlated with taste clarification potential, system satisfaction, and self-

actualization, so I removed taste development potential from the CFAmodel to avoid multicollinearity

in the subsequent SEM modeling.

I again ran the CFA model with the remaining 13 factors, no more items were further

trimmed (all the remaining items have factor loadings greater than 0.6), this final 13-factor CFA

model also meets the convergent validity and discriminant validity (see Table 6.5, 6.6, 6.7).

6.4.3 Structural Equation Model (SEM)

With the build 13-factor CFA model, I then fitted a Structural Equation Model (SEM)

to the 13 constructs and the experimental manipulations (i.e., interactivity, diversification, and

visualization). An SEM enables one to specify the relationships between exogenous variables (the

manipulations) and latent constructs (the CFA factors) as a structured model of regressions [127].

An important benefit of SEM is that fit statistics are provided for the model as a whole, as well as

7Average Variance Extracted (AVE) is an indicator of the convergent validity of the measurement scales, with the
recommended lower bound threshold of 0.5.
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Table 6.5: The factors of Personal Characteristics (PC) with the Average Variance Extracted (AVE)
and the consistency coefficients (Cronbach’s α), and the items per construct with factor loadings.
Items removed from the CFA model are colored in grey

Considered aspects Items Factor loadings

When I see a new or different brand on the shelf, I often pick it up just to see what
it is like.

0.704

I like introducing new brands and products to my friends. 0.862
I enjoy taking chances in buying unfamiliar brands just to get some variety in my
purchase.

0.685

I often read the information on the packages of products just out of curiosity.
I get bored with buying the same brands even if they are good.

Need for novelty (NOV)
AVE: 0.516
Cronbach’s α: 0.76

I shop around a lot for my clothes just to find out more about the latest styles. 0.597

I am a movie lover. 0.938
Compared to my peers I watch a lot of movies. 0.886
Compared to my peers I am an expert on movies. 0.887

Movie expertise (MOVE)
AVE: 0.755
Cronbach’s α: 0.89

I only know a few movies. -0.752

I am competent when it comes to graphing and tabulating data. 0.832
I frequently tabulate data with computer software. 0.918
I have graphed a lot of data in the past. 0.934
I frequently analyze data visualizations. 0.915
I am familiar with data visualization. 0.859

Visualization familiarity
(VizF)
AVE: 0.783
Cronbach’s α: 0.93

I am an expert at data visualization. 0.846

for the individual regression coefficients. We built our model following three principles:

1. The experimental manipulations (ie. diversification (RQ1), visualization (RQ2), and inter-

activity (RQ3) were hypothesized to influence understandability, Perceived interactivity, Per-

ceived diversity.

2. Each effect outlined in (1) is allowed to mediate the subsequent effects of the manipula-

tions on the subsequent SSA and EXP constructs (i.e. recommendation quality, taste cov-

erage, taste clarification potential, choice difficulty, system satisfaction, choice satisfaction,

self-actualization).

3. The personal characteristics (RQ4) were hypothesized to moderate users’ perceptions of the

system.

We first specified a saturated model with all hypothesized effects and mediations. We then

iteratively trimmed non-significant effects. The resulting model is displayed in Figure 6.5. This

model has a good overall fit with χ2(1780) = 2488.651, p < 0.001, CFI = 0.974, TLI = 0.979,

RMSEA = 0.38 with a 90% confidence interval of [0.34, 0.42]8.

8Theoretically, a good model is not statistically different from the fully specified model (i.e., the p-value of the χ2

should be > 0.05), but this statistic is commonly regarded as too sensitive [23]. As such, Hu and Bentler proposed
cut-off values for the alternative fit indices to be: CFI > 0.96, TLI > 0.95, and RMSEA < 0.05, with the upper bound
of its 90% CI falling below 0.10 based on extensive simulations [106].
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Table 6.6: The factors of Subjective System Aspects (SSA) and User Experience (EXP) with the
Average Variance Extracted (AVE) and the consistency coefficients (Cronbach’s α), and the items
per construct with factor loadings. Items removed from the CFA model are colored in grey

Considered aspects Items Factor loadings

I felt in control of the movies shown to me. 0.912
I felt in control of the movie recommendation process. 0.901
I feel unable to intervene in the movie recommendation process. -0.758
I was able to interact with the movie.
I was able to manage the movies shown to me. 0.796
I was able to supervise the process through which the movies are shown to me.
I had limited control over the way the movie recommender made recommendations. -0.801
The system restricted me in my choice of movies.
Compared to how I normally get recommendations, this movie recommender was
very limited.
I would like to have more control over the recommendations.

Perceived interactivity
(INT)
AVE: 0.648
Cronbach’s α: 0.88

I decided which information was used for recommendations. 0.630

The recommendation process is clear to me.
I understand how the system came up with the recommendations. 0.911
The movie recommender explained the reasoning behind the recommendations. 0.769
I am unsure how the recommendations were generated. -0.941

Understandability (UND)
AVE: 0.771
Cronbach’s α: 0.90

The recommendation process is not transparent. -0.882

The recommended list of movies suits a broad set of tastes. 0.944
The recommended movies were from many different genres. 0.836
The recommendations contained a lot of variety. 0.965
None of the movies in the recommended list were alike.
All the recommended movies in the final list were similar to each other.

Perceived diversity (DIV)
AVE: 0.841
Cronbach’s α: 0.88

Most movies were from the same genre.

I liked the movies recommended by the movie recommender. 0.960
I found the recommended movies appealing. 0.975
The recommended movies fit my preference. 0.947
The recommended movies were relevant. 0.911
The system recommended too many bad movies.

Recommendation quality
(QUAL)
AVE: 0.900
Cronbach’s α: 0.94

I did not like any of the recommended movies.

The lists of recommendations matched a diversity of my preferences. 0.865
The movie recommender catered to all of my potential interests.
The recommended movies were a perfect fit for me on many different levels.
The movies that were recommended did not reflect my diverse taste in movies. -0.840
The movie recommender seemed to target only a small subset of my interests. -0.868
The movie recommender treated me as a one-dimensional person. -0.779

Taste coverage (COVE)
AVE: 0.681
Cronbach’s α: 0.89

The movie recommender seemed to stereotype me in a particular category of viewers. -0.768

6.4.3.1 Subjective Experience

The SEM model (as shown in Figure 6.5) shows significant interaction effects from the in-

teractivity, diversification, and visualization manipulations on the dependent variables (the 10 SSA

and EXP factors). Particularly, the three experimental manipulations have a direct significant inter-

action effect on the participants’ perceived interactivity of the system (p = 0.035): for participants

who were not shown the visualization of emotional signatures, when they received the traditional

top N recommendations, there was no significant difference in perceived interactivity of the system

between participants who were able to specify their emotion preferences on movies vs. not being

able to specify their emotion preferences. However, among participants who received the diverse N

recommendations, those who were being able to specify their emotion preferences perceived signifi-

cantly higher interactivity (a large, significant effect; Cohen’s d = 1.13, p < 0.001) than participants
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Table 6.7: Continuing table 6.6.

Considered aspects Items Factor loadings

Thanks to the movie recommender, I now know what kinds of movies I like. 0.912
After using the movie recommender, I have no better idea about what different types
of movies I like.
The movie recommender made me more uncertain about my own preferences.
The movie recommender helped me understand what kind of movies I like. 0.958
Thanks to the movie recommender, I can now better express my preferences in terms
of movies.

0.972

Taste clarification
potential (CLAR)
AVE: 0.908
Cronbach’s α: 0.95

The movie recommender helped me figure out what kind of movies I like. 0.969

I was in doubt between several movies on the list.
I changed my mind several times before making a decision.
The task of making a decision was overwhelming. 0.793
It was easy to select a movie. -0.822

Choice difficulty (DIFF)
AVE: 0.584
Cronbach’s α: 0.76

Comparing the movies took a lot of effort. 0.669

I would recommend the system to others.
The system is useless.
The system makes me more aware of my choice options. 0.840
I make better choices with the system. 0.888
I can find better items using the recommender system. 0.819
Using the system is a pleasant experience.

System satisfaction
(SysSAT)
AVE: 0.738
Cronbach’s α: 0.89

The system has no real benefit for me. -0.888

I like the movie I’ve chosen from the final recommendation list. 0.929
The chosen movie fits my preference. 0.903
I would recommend my chosen movie to others/friends. 0.899
I was excited about my chosen movie. 0.877
I think I chose the best movie from the options. 0.619
I know several items that are better than the one I selected.

Choice satisfaction
(ChoSAT)
AVE: 0.692
Cronbach’s α: 0.89

I would rather watch a different movie from the one I selected. -0.715

The movie recommender taught me something about myself.
The movie recommender helped me get a new perspective on life. 0.928
The movie recommender helped me reflect on who I want to be. 0.941
The movie recommender helped me reflect on who I am as a person. 0.954

Self-actualization (ACTL)
AVE: 0.886
Cronbach’s α: 0.93

The movie recommender would improve my quality of life.

Table 6.8: Factor-fit metrics. Off-diagonal values are correlations, diagonal values are the square

roots of the Average Variance Extracted
(√

AV E
)
per factor.

NOV MOVE VizF INT UND DIV QUAL COVE CLAR DIFF SysSAT ChoSAT ACTL

NOV 0.718
MOVE 0.513 0.869
VizF 0.147 0.157 0.885
INT 0.330 0.247 -0.015 0.805
UND 0.289 0.204 -0.043 0.647 0.878
DIV 0.235 0.140 0.173 0.375 0.278 0.917
QUAL 0.337 0.291 0.022 0.659 0.371 0.388 0.949
COVE 0.247 0.156 0.009 0.577 0.355 0.688 0.549 0.825
CLAR 0.306 0.097 0.146 0.591 0.319 0.488 0.532 0.570 0.953
DIFF -0.007 -0.145 0.081 -0.224 -0.245 -0.167 -0.297 -0.263 -0.015 0.764
SysSAT 0.431 0.189 0.058 0.601 0.337 0.410 0.607 0.588 0.790 0 0.859
ChoSAT 0.326 0.255 0.020 0.485 0.301 0.371 0.776 0.468 0.395 -0.41 0.435 0.832
ACTL 0.289 0.097 0.223 0.351 0.167 0.328 0.281 0.301 0.677 0.223 0.639 0.201 0.941

who were not being able to specify their emotion preferences. For participants who were shown the

visualization of the emotional signatures of movies, when they received the diversified recommenda-

tions, there was no significant difference in perceived interactivity of the system between participants

being able to vs. not being able to specify their emotion preferences; while among participants who

received the traditional top N recommendations, those who were able to specify their emotion prefer-
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Figure 6.5: The resulting structural equation model (SEM) model of study IV.

ences on movies perceived a higher level of interactivity (a large, significant effect; Cohen’s d = 0.77,

p < 0.001) than participants who were not being able to specify their emotion preferences.

This interaction effect among the three experimental manipulations is displayed in Figure

6.6.

Figure 6.6: The marginal effects of interactivity (emotion input on/off), diversification (top-
N/diverse-N), and visualization (Viz on/off) on participants’ perceived interactivity of the system,
the effect of the “Diverse N” condition with neither the emotion input (“Emo input off”) nor the
visualization of emotion signature (“Viz off”) is set to zero, and the y-axis is scaled by the sample
standard error.

Other than the interaction effects of the manipulations on perceived interactivity, the diver-

sification manipulation also has a marginally significant effect on participants perceived diversity of

the recommendations (p = 0.074): participants who received the diverse N recommendations scored

0.433 standard deviation higher on perceived diversity than participants who received the traditional
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top N recommendations.

Perceived interactivity mediates the interaction effects on participants’ understandability of

the system, on participants’ perceived diversity of the recommendations, on participants’ perceived

quality of the recommendations, on participants’ perception of taste coverage, and on participants’

perception of taste clarification potential. Understandability is in turn related to participants’ per-

ception of choice difficulty. Participants’ perceived diversity of the recommendations has a significant

positive effect on their perceptions of recommendation quality and taste coverage. The perceived

recommendation quality is further significantly related to participants’ perception of choice difficulty;

participants’ increased taste coverage is significantly related to their perception of taste clarification

potential. Finally, participants’ perception of taste clarification potential is significantly related to

participants’ satisfaction with the system; the perceived recommendation quality and the perceived

choice difficulty are significantly related to participants’ satisfaction with the recommendations; the

perceived recommendation quality and the perceived taste clarification potential have significant

effects on participants’ perception of self-actualization.

6.4.3.2 Personal Characteristics

With the resulting SEM model presented in 6.5, I found that participants’ personal charac-

teristics play a role in participants subjective perceptions of the interaction with the system (Study

IV - RQ4).

Participants with a 1 standard deviation higher need for novelty have an 0.443 standard

deviation higher perceived interactivity and an 0.255 standard deviation higher on the recommenda-

tion quality, and 0.386 standard deviation higher on taste coverage. Participants’ need for novelty

has a moderated effect on the effect of the diversification manipulation on their perceived diversity

of the recommendations (see Figure 6.7(a): for participants with higher need for novelty, there is

no significant difference in perceived diversity between participants who received the traditional top

N recommendations vs. the diverse N recommendations. However, for participants with lower need

for novelty, those who were presented the diverse N recommendations perceived higher diversity

than participants who received the traditional top N recommendations. Digging into this interest-

ing interaction effect on participants perceived diversity, one possible reason is that the perceived

diversity might depends on the objective diversity of the initial recommendations and/or final rec-

ommendations, some participants in the top N conditions might get more diverse recommendations

116



if they had already rated more diverse movies on the rating pages. To verify this possible reason,

I calculated the objective diversity (i.e., the AESR metric, more details in Section 6.4.1) of both

the initial recommendations and final recommendations (these two list of recommendations are the

same for participants in the conditions without the emotion preference control panel). Surprisingly,

it is not the case that participants with higher level of need for novelty received recommendations

with higher objective diversity in the top N conditions, as shown in Figure 6.7. The other possible

explanation for this interesting interaction effect is participants perception of diversity. It could be

just that people with higher need for novelty perceived higher diversity in general; it could also be

that people judge the diversity of the recommendations — especially if the recommendations that

are not artificially diversified (i.e., the top N recommendations) — differently depending on how

they inspected the details of the recommendations (i.e., the poster, synopsis, and/or the visualized

emotion signature of the recommended movies).

Figure 6.7: The interaction effect of diversification algorithm and need for novelty on participants’
perceived diversity (left), objective diversity of the initial recommendations(middle), and objective
diversity of the final recommendations (right).

Participants with higher movie expertise perceived lower taste clarification potential (un-

surprisingly, because movie experts already know their tastes on movies), while participants’ visual-

ization familiarity contributes to their perception of taste clarification potential: participants with

1 standard higher deviation higher visualization familiarity scored 0.231 standard deviation higher

on taste clarification potential. These effects are displayed in Figure 6.5

6.5 Discussion

In this study, introducing emotional signature for diversification(Study IV- RQ1), visual-

ization (Study IV- RQ2), and interactivity (Study IV- RQ3) has a significant effect on the user

experience, primarily because the significant three-way interaction effect of the three manipulations

on participants’ perceived interactivity and the marginally significant effect of diversification on
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participants’ perceived diversity. Perceived interactivity mediates the three-way interaction effects

of the manipulations on participants’ perceptions of diversity, understandability, recommendation

quality, taste coverage, taste clarification potential, and choice difficulty; these outcomes in turn

leads to a significant higher satisfaction with both the recommendations and the system, as well as

contributing to participants’ perception of self-actualization.

6.5.1 Incorporating Emotion as an Item Feature

The improvement in user experience in this study can be attributed to to the introduction

of emotions as item feature (Study IV- RQ1). Emotions play a significant role in shaping users’

preferences and reactions to content. By introducing emotion as an item feature for diversification,

the recommender can recommend items that respond to users’ diverse emotional needs. This emo-

tional resonance can lead to a deeper connection between users and recommended items, resulting in

higher engagement and satisfaction. In the meanwhile, visualizing emotions of items provides users

with a contextual understanding of the emotional tone with each item. By visually representing

emotions, users can quickly grasp the emotional attributes of the recommendations, allowing for

better comprehension and interpretation of the recommendations.

Emotions are highly subjective and can vary greatly from person to person. By considering

emotion as an item feature and thus allowing users to specify their unique tastes on movies from the

perspective of emotion, the recommender can tailor recommendations to the emotion preferences

of individual users in this study. This personalization allows users to discover content that aligns

with their unique emotional needs and enhances their overall viewing or consumption experience,

which supports the claim that taking emotions as an user-centric information would be a promising

research for personalization [235]. On the other hand, emotions evoked from item reviews are often

closely tied to uesrs’ mood states, and users’ preferences can vary depending on their current mood.

By using emotions for interactivity, the recommender can take into account users’ mood-based

preferences and suggest content that matches their desired emotional state at a given time. This

capability adds a new dimension to recommendation personalization, which in turn enhances users’

satisfaction with the system.
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6.5.2 Benefits of Interactivity

One of the innovations of this study is the introduction of the interactivity element: allowing

users to actively interact with the recommendations by specifying their emotion preferences to

the system and receive responses (updated recommendations) from the system immediately. Even

though the overall effects of the three manipulations on user experience, primarily on perceived

interactivity, also depend on the visualization and diversification as reported in section 6.4.3.1, the

interactivity manipulation plays a leading role in this interaction effects, because among the three

manipulations, allowing users to interact with the recommendations significantly increases (t(274)

= 5.248, p < .001) participants’ perceived interactivity with the system, while no significant main

effects on perceived interactivity from diversification and visualization were found.

I hereby argue that introducing interactivity into recommender systems can provide benefits

in personalization, engagement, and adaptability. Firstly, the interactivity feature allows users to

provide explicit preferences as input, the system takes the input and updates the personalized

recommendations accordingly, which increases the relevance and accuracy of the recommendations,

thus leading to higher user satisfaction. In the meanwhile, the interactivity feature encourages users

to actively participate in the recommendation process by tweaking the emotions, making them feel

more involved and in control over the system. Users can both express their preferences and refine

their recommendations. This engagement improves the overall user experience and strengthens the

user-system interaction. Thirdly, the interactivity feature enables the recommender system to adapt

and learn from user input over time (taking into account both the rating inputs and the emotion

preference inputs of this study). By taking these inputs, the system can continuously refine its

recommendations, adapting to users’ evolving preferences and ensuring that the recommendations

remain relevant and up to date.

6.5.3 Self-actualization

In the resulting SEM model of this study (see Figure 6.5), we note that the effects of

using emotions for diversification, visualization, and interactivity on participants’ perception of

recommendation quality and taste clarification potential, which are mediated by perceived in-

teractivity, perceived diversity, and/or taste coverage, finally determine their perception of self-

actualization. This finding is in line with our original intention of creating “recommender systems
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for self-actualization” [124, 91] – systems that follow a more holistic human-centered personalization

practice by supporting users in developing, exploring, and understanding their unique tastes and

preferences [124].

Introducing emotions for diversification help users explore a broader range of items beyond

their usual preferences, expose them to a variety of items that they might not have been recom-

mended otherwise, which enables users to discover items that aligns with their emotional interests

and supports their self-discovery process, which in turn prompts them to clarify their preferences

and refine their taste by discovering new and unexpected content. In addition, visualizing emotional

signatures presents the recommendations in a intuitive manner, helps users to understand, evalu-

ate, and compare the recommendations effectively. With enhanced comprehensibility via visibility,

users can make more informed decisions based on their individual emotion preferences, resulting in

improved recommendation quality; in the meanwhile, it enables users to articulate their preferences

regarding the emotional aspects of items, allowing them to fine-tune their taste according to their

own criteria and interests related to item emotions. On the other hand, by allowing users to actively

engage with the recommender system and explicitly express their unique tastes on item emotions,

the system can better understand users’ preferences and refine the recommendations accordingly.

This iterative interacting loop leads to higher recommendation quality since the system learns from

the interactions and hereby adapts to their evolving tastes. Additively, this process encourages users

to reflect on their tastes and preferences, helping them gain a deeper understanding of their own

preferences and further develop and shape their self-identity.

The combination of interactivity, diversification, and visualization in this study does not

show effects in an additive manner: visualizing emotional signatures help users perceive higher

interactivity (Study IV- RQ2), but only for the traditional top N recommendations; allowing users

to actively indicate their emotion preferences on items also helps on the perceived interactivity

(Study IV- RQ3) without the visualization of the emotional signatures. The possible reason is that

the visualization of the emotional signature was designed in an item-by-item manner, lacking the

ability to show the spread of emotion values (on each dimension) across the whole recommendation

lists; this design limitation in the visibility of the overall emotions spread in turn negatively impact

users’ subjective perceptions of the system.

By combining interactivity, diversification, and more proper visualization (which requires

a more careful design), recommender systems would empower users to actively engage with the

120



system, explore diverse content, and gain insights into their preferences. This process supports self-

actualization by enabling users to polish their taste, clarify their preferences, and ultimately curate

a personalized content experience that aligns with their individuality and self-expression.

6.6 Conclusion, Limitations, and Future Work

This final study was motivated by my existing works of eXplanation-driven Interpretable

Machine Learning (XIML) (presented in Chapter 3), the effect of recommendation source and justi-

fication method on professional development recommendations (presented in Chapter 4), and alter-

native recommendations beyond the traditional top-N recommendations (presented in Chapter 5).

This study highlights the following aspects: a) combining visualization and interactivity on a more

complex machine learning task, which takes a step further based on the findings from the existing

work of chapter 3; b) diversifying the traditional top-N recommendation by the emotion feature of

movies, which provides a potential way that supports users in exploring and understanding their

unique personal tastes from the perspective of the evoked emotions.

The results show that introducing emotion as an item feature into recommender systems does

help in personalization and individual taste exploration; this benefits are greatly optimized through

the mechanisms that diverse recommendations by emotional signature, visualize recommendations

on the emotional signature, and allow users to directly interact with the system by tweaking their

tastes, which further contributes to both user experience and self-actualization.

Based on the potential findings explored in this work, designers, developers, and practi-

tioners could consider how to integrate the explanation and interactivity features into recommender

systems for better user experience (Overall RQ1 and Overall RQ2) and supporting taste exploration.

Additionally, this work offers additional contributions to the limited literature on how the idea of

interactive explainable machine learning systems can be applied in the context of recommender

systems with the diversification algorithm implemented (Overall RQ3) to improve users subjective

experience as well as supporting self-actualization.

One downside of this work is that I didn’t record users interaction behaviors when they were

interacting with the emotion preference panel, future work could investigate more into the details

of users’ interaction process, such as which emotions users are more interested in tweaking, which

emotions users are prefer to have high values on; there could be some interesting findings of how users
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react on the item emotions, and probably there is a possibility to come up with emotional preference

signatures from the investigation as a new user feature that can be applied in recommender systems.
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Chapter 7

Discussion over All the Four

Studies

7.1 Revisiting the Overall Research Questions

In this dissertation, I conducted four studies to investigate the effects of explanation (Overall

RQ2) and interactivity (Overall RQ1) on user experiences in adaptive experiences as well as how

these effects depend on personal and situational context (Overall RQ3).

The Effect of Interactivity (Overall RQ1). In light of the Overall RQ1, allowing

users to edit the rules in Study I (Chapter 3) and implicitly indicate their emotion preferences to

get updated recommendations in Study IV (Chapter 6) have significant effects on user experiences,

however, allowing users to interact with the alternative recommendation lists in Study III (Chapter

5) doesn’t contribute to better user experience.

The Effect of Explanation (Overall RQ2). In light of the Overall RQ2, the grid-

visualized explanation in Study I (Chapter 3) does not have a significant main effect on the subjective

system aspects compared to the textual explanation. The proposed alternative recommendation

lists in Study III (Chapter 5) which reflect how much else does the system learn about users beyond

the traditional top-N recommendations doesn’t create a positive user experience. The provided

justification of recommendations in Study II (Chapter 4) has a significant effect on user experience,

but this effect differs in the sources that the recommendations were originated from. The effect of
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the visualization in Study IV (Chapter 6) also depends on the other two experimental manipulations

(i.e., interactivity and diversification).

How does the above effects of interactivity and explanation depend on personal

and situational context(Overall RQ3)? Study I (Chapter 3) shows that participants whose ed-

ucation was limited to high school perceived less control during their interaction with the system if

they were shown the grid-based explanation style. In Study II (Chapter 4), the results show that an

interest-based justification outperforms a needs-based justification, but only for users who are told

that the recommendations originate from an AI algorithm rather than a human expert. In Study III

(Chapter 5), participants with higher movie expertise perceived higher recommendation quality and

choice satisfaction. Participants with higher need for novelty perceived higher in recommendation

quality, recommendation conformity, and system satisfaction. Particularly, the effect of need for nov-

elty on participants’ perceived recommendation quality is significantly less stronger for participants

received “More things you will like” and “Things we have no clue about” compared to participants

who received only the single top-N list (see Figure 5.7). In Study IV (Chapter 6), the effect of the

“interactivity” manipulation on participants perceived interactivity depends on the nature of diver-

sification: participants who were allowed to specify their emotion preferences perceived significantly

higher interactivity when they were shown the diversified items. Participants with lower need for

novelty perceived higher diversity on the diversified recommendations vs. on the traditional top N

recommendations, but participants with higher need for novelty perceived similarity on both the

traditional top N recommendations and the diversified recommendations; participants with higher

movie expertise perceived lower taste clarification potential; participants’ visualization familiarity

contributes to their perception of taste clarification potential.

7.2 Interactivity

I note that allowing direct control over the system results in improved user experiences. In

Study I (Chapter 3), the interactivity manipulation influence users’ experience with the system by

encourage users to engage in a mutual feedback loop that helps improve the system’s performance.

Participants perceived higher level of control primarily because they were allowed to provide feedback

on the system provided rules, which in turn increases their perceptions of the feedback quality and

thus results in a higher system satisfaction. In Study IV (Chapter 6), allowing users to explicitly

124



indicate their emotion preferences significantly increases participants’ perceived interactivity of the

design, and thereby contributes to a positive user experience with the system. However, allowing

for the indirect control through interaction with the alternative recommendation lists (against the

traditional top-N recommendations) leads to a negative user experience (see study III in Chapter

5).

I argue interacting directly with adaptive systems creates a more engaging and interactive

user experience. This aligns with Moggridge’s [168] claim on the importance of direct interaction in

creating engaging user experiences. Introducing control by allowing direct interaction (cf. [168]), such

as providing feedback and specifying preferences, users become active participants in the predict-

ing/recommendation process, stimulating their curiosity and encouraging them to be more engaged

in the process. Additionally, through this direct interaction, users can learn more about the ratio-

nality of the system, their own preferences, discover new items, and gain insights into their interests,

fostering a sense of discovery and self-improvement.

7.3 Explanation

The effect of explanation on the user experience depends on how the explanation was de-

signed and implemented. The intuitive visualization (visualized explanation) element in Study I

(Chapter 3) turned out not to be as effective as I expected, it works differently depending on users’

personal characteristics, probably due to the simplicity and the relatively objective nature of the

application(i.e., the Tic-Tac-Toe game). In Study II, the justification of recommendations plays

a role in users’ experiences, but it also depends on the recommendation source, overall, users are

most satisfied with interest-based recommendations presented by an AI algorithm (demonstrated in

Chapter 4). The visualization of the emotional signature overall helps on users understandability

of the system, even though this main effect is marginally significant (t(274) = 1.66, p = 0.097), it

performs best when participants received the top N recommendations and were allowed to interact

with the recommender by specifying their unique tastes.

Thus, I advise future researchers to be cautious and not overestimate the value of expla-

nation solutions, but instead carefully investigate a specific explanation solution in combination

with other design elements in different fields. Research has indicated that explanations may not

always lead to improved understanding or user outcomes [154, 177]. In some cases, excessive or
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complex explanations can overwhelm users or lead to cognitive overload [197, 167].Cognitive load

theory, proposed by John Sweller, suggests that instructional materials should be designed to man-

age the cognitive load imposed on learners [224]. This theory emphasizes the importance of carefully

evaluating the value and impact of explanations.

7.4 Taste Clarification and Self-actualization

The traditional top N recommendations created by recommender systems that focus on

accuracy inevitably ignore the items that the system thinks the user will not like, which creates a

“filter bubble” that prevents users from discovering new and unknown areas of their own taste, and

limits the diversity of presented content. The idea of recommender systems for self-actualization

(RSSA) can help overcome the “filter bubble” problem by supporting rather than replace decision

making so as to help users develop and express their preferences and focusing on exploration rather

than consumption, which motivates the alternative recommendation lists (see Study III in Chapter

5), however, the proposed alternative lists do not contribute a better user experience. Instead of

taking the taste Clarification and self-actualization as a motivation, introducing new item features

that are reflective on users (such as emotion) for diversification in a recommender system (see Study

IV in Chapter 6)) provides a potential solution to mitigate the “filter bubble” problem: participants

who received the diverse N recommendations perceived significant higher diversity than participants

who received the traditional top N recommendations, the perceived diversity in turn has a significant

positive effect on participants’ perceptions of taste coverage, which in turn increases participants’

perceptions of taste clarification potential and self-actualization.

Arguably, being exposed to a wide range of content from the perspective a novel reflective

item feature (such as emotion), users have the opportunity to discover new interests, expand their

horizons, and challenge their existing preferences based on their experiences and reactions to the

diverse content [254, 140]. This plays a causal role in the taste clarification potential. Combining

diversification together with the interactivity, users are able to both actively engage with content

and actively seek out new experiences, through which they acquire knowledge, develop new skills,

and evolve their understanding of themselves and the world around them. This ongoing growth and

learning process leads to a deeper understanding of personal preferences and contributes to taste

clarification and self-actualization.
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7.5 The Dual-route Approach Supporting both User Expe-

rience and Self-actualization

The idea of “Recommender Systems for Self-Actualization (RSSA)” provides a potential

solution to the “filter bubble” problem [124], which aims not to optimize recommendation quality or

user experience with the system, but instead cover the crucial process of users discovering their own

unique tastes and preferences. This motivated me to come up with the alternative recommendation

lists (i.e., RSSA features, see Study III in Chapter 5) that go beyond the traditional Top-N list

(which purely concentrates on the algorithm accuracy) to keep the user “in-the-loop” with the

goal of supporting rather than replace decision making so as to help users develop and express

their preferences and focusing on exploration rather than consumption. The study results turn out

that the alternative recommendation lists do not contribute to a better user experience with the

system. This is not surprising, on one hand, users often have ingrained expectations: users expect

a recommender system to give them good recommendations, not items that “make them think”;.

on the other hand, machine learning (including recommendation algorithms [184]) often remains a

“black box” for the end-users, hiding its inner workings from its users due to the complexity of the

algorithms; and thus in the design of study III (Chapter 5) we implicitly embedded the solutions

motivated by self-actualization (the RSSA features) in the back-end algorithms; besides, in order to

particularly examine the effect of those RSSA features (which serves an initial cautionary step in the

investigation of “Recommender Systems for Self-Actualization (RSSA)”), we chose not to introduce

the explanation element yet — which is able to potentially reveal the implicitly embedded essence

of the RSSA features to the user — to avoid confounding effects. The

While in Study IV (Chapter 6), introducing emotions for diversification, visualization, and

interactivity increases both user experiences and self-actualization. Arguably, compared to study III

with implicitly embedded RSSA features for taste developing and thus for self-actualizing, the role of

emotion in the algorithm is for diversification in study IV, similarly, it is also implicitly embedded in

the back-end algorithm; however, other than the increased user engagement and understandability,

the design of interactivity and visualization (visualized explanation) also plays a part in revealing

users the novel attribute of items (i.e., emotion), which helps users to become reflective. Thus, the

reasonable fusion of those elements (i.e., emotion, diversification, visualization, and interactivity)

finally contributes to both user experience and self-actualization.
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Research has demonstrated that when designing explanations and interactivity in recom-

mender systems, it is important to take into account not only the specific application domains but

also the individual differences among stakeholders [135, 179, 39, 160, 148]. Ribera and Lapedriza

argue that, for domain experts, providing interactive visualizations allow the experts to lead the

self-discovery [204]; while for lay users, providing briefer explanations as well as allowing users to

select one argument that is most interesting to their case [204]. From this perspective, combining

the findings of these four studies in this dissertation, I hereby argue that deliberate and thought-

ful designs of explanation with the application domains and individual differences fully considered,

along with appropriate direct interactivity, which are able to arouse user reflection or resonance,

would potentially promote both user experience and user self-actualization in adaptive experiences.

7.6 Contribution in Recommender Systems
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