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Abstract

EXPLAINABLE NEURAL NETWORKS BASED ANOMALY DETECTION FOR

CYBER-PHYSICAL SYSTEMS

By Kasun Amarasinghe

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2019.

Director: Milos Manic,

Professor, Department of Computer Science

Cyber-Physical Systems (CPSs) are the core of modern critical infrastructure

(e.g. power-grids) and securing them is of paramount importance. Anomaly detection

in data is crucial for CPS security. While Artificial Neural Networks (ANNs) are

strong candidates for the task, they are seldom deployed in safety-critical domains

due to the perception that ANNs are black-boxes. Therefore, to leverage ANNs in

CPSs, cracking open the black box through explanation is essential.

The main objective of this dissertation is developing explainable ANN-based

Anomaly Detection Systems for Cyber-Physical Systems (CP-ADS). The main ob-

jective was broken down to three sub-objectives: 1) Identifying key-requirements that

an explainable CP-ADS should satisfy, 2) Developing supervised ANN-based explain-

able CP-ADSs, 3) Developing unsupervised ANN-based explainable CP-ADSs.

In achieving those objectives, this dissertation provides the following contribu-

tions: 1) a set of key-requirements that an explainable CP-ADS should satisfy, 2) a

xi



methodology for deriving summaries of the knowledge of a trained supervised CP-

ADS, 3) a methodology for validating derived summaries, 4) an unsupervised neural

network methodology for learning cyber-physical (CP) behavior, 5) a methodology

for visually and linguistically explaining the learned CP behavior.

All the methods were implemented on real-world and benchmark datasets. The

set of key-requirements presented in the first contribution was used to evaluate the

performance of the presented methods. The successes and limitations of the presented

methods were identified. Furthermore, steps that can be taken to overcome the

limitations were proposed. Therefore, this dissertation takes several necessary steps

toward developing explainable ANN-based CP-ADS and serves as a framework that

can be expanded to develop trustworthy ANN-based CP-ADSs.
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CHAPTER 1

INTRODUCTION

The desire to create machines that can think dates back centuries [1]. In the present

day, we have made great strides toward creating intelligent machines with a thriving

research area dubbed artificial intelligence (AI). AI has enabled smart assistants that

understand speech, software that translates languages, and cars that drive themselves

(see Figure 1).

At the core of modern AI-based systems are algorithms that enable machines to

learn from experience and use that knowledge to perform new tasks without explicit

instructions. In the early days of AI, the focus was on solving problems that can be

described in a list of mathematical rules. It was soon recognized that the real challenge

was in solving problems that cannot be formalized into a set of rules but are easy

for humans to solve intuitively. The solution was building machines that learn from

prior experience—learn from data. Therefore, AI became data-driven and spawned

the field of machine learning. The recent rapid progress in AI is largely owed to a class

(a) (b) (c) (d)

Fig. 1. Ubiquity of AI in the modern world. (a) ‘Siri’ [2], (b) ‘Google Assistant’ [3] ,

(c) Self-driving cars [4], (d) Google translator [5]

1



of machine learning algorithms named Artificial Neural Networks (ANNs). ANNs are

biologically inspired and use their multi-layered structure to learn high-level abstract

representations of data. Further, they are capable of learning higher-order features

with minimal human intervention [1]. Therefore, ANNs are capable of learning very

complex patterns that exist in data. As a result, ANNs have transformed fields such

as image recognition, speech recognition, and natural language processing [6].

Despite the recent improvements in AI, there is a lack of trust in AI among hu-

mans [7]. As a result, there is a reluctance to fully adopt AI in safety-critical systems

such as medical diagnoses and cybersecurity [8]. In safety-critical applications, often

automation needs to collaborate with humans-in-the-loop, and trust in deployed AI is

extremely important. Therefore, garnering the benefits of modern AI in safety-critical

applications depends on how well the humans and AI systems co-exist. Therefore,

building ‘trustworthy AI’ is necessary to ensure a harmonious relationship between

AI systems and human operators in these systems. Accordingly, as ANNs are the

core of modern AI, developing trustworthy ANN-based systems is necessary.

The principal reason behind the lack of trust is ANNs’ inability to explain their

decisions and being perceived as black-boxes [7–9]. The black-box nature prevents

users from understanding the reasons behind a decision made by the ANN and what

the ANN has learned from data. As a result, users have no indications of whether

the ANN makes predictions based on strong evidence or artifacts in data [10], [11].

Therefore, an essential step to build trust in AI/ANN systems is to crack open the

said black box. Revealing what the ANN/AI has learned and the reasons behind

ANN/AI outputs is essential in achieving the goal of trustworthy AI/ANNs. This

desired quality of explaining the knowledge and decision-making process of ANNs is

named ‘explainability’ of ANNs [12].

Developing explainable AI systems has become a highly popular research topic.

2



Explainable AI research can take two main approaches: 1) developing novel machine

learning algorithms that learn explainable features, 2) developing methodologies that

explain existing machine learning algorithms. Defense Advanced Research Projects

Academy (DARPA) spawned an array of projects named Explainable Artificial In-

telligence (XAI). This initiative mainly takes the first approach to explainable AI

research [12]. This involves designing and implementing novel machine learning algo-

rithms that combine the learning capability of complex ANNs and the explainability

of models such as Decision Trees. This dissertation takes the second approach to

explainable AI research.

The most popular type of XAI research is generating visualizations of saliency

maps (heat-maps) for image classification problems [13–15]. However, humans are

more inclined to justify things verbally [16]. Hence, textual explanations would res-

onate more with humans than visualizations. There hasn’t been much work in deriv-

ing linguistic explanations for ANNs or ANN predictions. Hendricks et al. presented

a methodology for generating textual explanations for image classifications using a

combination of ANN algorithms [17]. However, the method couldn’t guarantee that

the ANN used the features described in the explanation for classification [18]. There-

fore, to the best of our knowledge, there is a gap in existing research for generating

textual explanations of ANNs.

The theoretical focus of this dissertation is developing explainable ANNs. How-

ever, this dissertation argues that the notion of explainability and requirements of

explainability are highly domain and problem-dependent. Therefore, this disserta-

tion focuses on a specific application domain. The application domain of choice is

anomalous behavior detection in Cyber-Physical Systems (CPSs). Therefore, the fo-

cus of this work is developing methodologies for explaining ANN-based anomalous

behavior detection in CPSs.

3



1.1 Motivations

This section presents the motivations for the theoretical focus and the application

domain focus in the dissertation.

Motivations for theoretical focus: Creating trustworthy AI systems is one of

the grand challenges of AI and would impact the way we adopt AI in the future. Black-

box models are the biggest factors standing in the way of developing trustworthy AI

and reaping the benefits of AI in fields with direct human impact. Therefore, opening

the black-boxes through explanation is essential. As ANNs are the core of modern

AI, developing explainable ANNs serves the grand objective of creating trustworthy

AI systems.

Motivations for application domain focus:

CPSs integrate computational and physical resources for the optimized manage-

ment of physical resources. CPSs are at the core of modern critical infrastructure

ranging from transportation systems, power grids to space exploration systems [19–

21]. Their significance makes CPSs prime targets of adversaries with malicious intent

and any successful intrusion could result in catastrophic consequences. Not only ma-

licious intrusions but also benign faults (e.g. equipment failure) could lead to similar

results. Therefore, monitoring for any anomalous behavior—malicious or benign—is

crucial for ensuring security, reliability, and resiliency of CPSs. Data-driven tech-

niques are well-suited for such dynamic environments and the vast amounts of data

produced by CPSs make it possible. ANNs’ superior pattern recognition capability

makes them ideal candidates for the task. However, deployed methods being ex-

plainable is a necessity for the domain. Therefore developing explainable and ANN

algorithms for CPS anomaly detection serves the grand objective of securing our

infrastructure.
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1.2 Objectives of the Dissertation

The main objective of this dissertation: Development of explainable ANN

based Cyber-Physical anomaly detection systems (CP-ADSs).

The main objective is broken down into three sub-objectives:

1. Identification of key desired features of an explainable CP-ADS

2. Development of supervised ANN-based explainable CP-ADSs

3. Development of unsupervised ANN-based explainable CP-ADSs

The first sub-objective of this dissertation is to identify a set of key requirements

that an explainable CP-ADS should satisfy. Once these features/requirements are

identified, they can be used to evaluate “explainability”. In this dissertation, we

argue that the desired features in an explainable system can’t be generalized and

should be defined by taking into account end-users and the unique properties of the

problem domain. Despite increasing interest in explainability, there is no consensus

on what explainability in machine learning is, how to evaluate it, or what well-formed

evaluation strategies are [22], [23]. Therefore, this is a crucial first step in achieving

the main objective of the dissertation.

CP-ADSs often use a combination of supervised and unsupervised algorithms

[24], [25]. Therefore, this dissertation considers both cases. Accordingly, the second

sub-objective is developing supervised ANN-based explainable CP-ADS. The focus of

the work is narrowed to classification based supervised CP-ADS. The role of the gen-

erated explanations is to help the end-users understand what the CP-ADS has learned

about each anomaly type in its training phase and answer the following question:

“What system behavior is considered by the CP-ADS to detect a certain

anomaly type?”
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The third sub-objective is developing and testing unsupervised ANN-based ex-

plainable CP-ADS. CPSs generate massive amounts of data that are mostly unlabeled.

These unlabeled data streams can be leveraged with unsupervised learning and the

CP-ADS is trained to identify clusters of behavioral patterns. The role of the expla-

nations is to help the user understand the different behavioral patterns in the CPS

and answer the following question:

“What system behavior is prominent in a certain CPS behavioral pat-

tern?”

1.3 Contributions of the Dissertation

In the process of achieving the said objectives, five contributions are presented

in this dissertation.

First, the requirements for an explainable CP-ADS are presented. The set of

requirements is discussed based on the end-user requirements and unique properties

of the problem domain.

Second, a methodology for summarizing the knowledge of a supervised ANN

trained as a CP-ADS is presented. The presented methodology enables deriving a

linguistic summary of what the neural network has learned about each anomaly type

in its learning phase. Further, several metrics are presented that can be used to assess

the quality of the derived summaries.

Third, a methodology for quantitatively validating the derived explanations is

presented. The presented methodology creates artificially perturbed input instances—

adversarial examples—to validate the derived explanations. The introduced perturba-

tions based on the generated explanations and the CP-ADS’ response to the artificially

perturbed input instances are used to validate the explanations.

Fourth, a novel unsupervised ANN algorithm for identifying behavioral patterns
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of a CPS is presented. The presented methodology enables using unlabeled data to

learn the different states that the CPS goes through. Furthermore, the methodology

enables the generation of visualizations to explain the behavioral patterns.

Fifth, a methodology for linguistically explaining the identified behavioral pat-

terns using the unsupervised neural network is presented. The derived explanations

describe the different behavioral states to the user and help the users understand

why the behavioral patterns are clustered. The visualizations generated through the

unsupervised ANN are combined with the linguistic explanations.

1.4 Organization of the Dissertation

Chapter 2 provides an overview of CPSs and ANNs. First, the chapter introduces

deep neural networks, outlines the general learning algorithm and how neural networks

can be used for anomaly detection in CPS. Next, the chapter briefly overviews the

prior work in explaining neural networks and identifies the gap in research. Then,

the chapter introduces CPSs, their general architecture and the problem of anomaly

detection in CPS.

Chapter 3 presents the first contribution of the dissertation. This chapter presents

a discussion about explainability and its requirements in the context of CPS anomaly

detection. The chapter identifies the unique properties of CPS anomaly detection and

discusses what it means to be ‘explainable’ in that context. The chapter concludes

with recognizing a set of key requirements an explainable CP-ADS should satisfy.

Chapter 4 elaborates on the second and third contributions of this dissertation,

i.e. the methodology for explaining what a supervised neural network has learned

and the methodology for validating the explanations. First, the overall methodology

for deriving linguistic explanations from the trained neural network is presented.

Then, the methodology for evaluating the explanations is discussed. Next, the results
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obtained by testing the methodologies on several datasets are presented. Finally, the

presented methodology is evaluated against the requirements identified in Chapter 3

and, the successes, limitations of the method and possible next steps to overcome the

next steps are presented.

Chapter 5 elaborates on the fourth and fifth contributions of the dissertation,

i.e. the novel unsupervised neural networks algorithm for learning behavioral pat-

terns of a Cyber-Physical System and the methodology for explaining the identified

behavioral patterns. First, the basis of the novel deep unsupervised neural network,

Self-Organizing Maps (SOMs) is introduced and the learning algorithm of SOM is

presented. Then, the chapter elaborates on the novel Deep Self-Organizing Maps

(DSOMs) algorithm and its usage for identifying behavioral patterns of a CPS. Next,

the methodology for explaining the knowledge gained by the DSOM is presented. The

chapter is concluded by presenting results obtained by implementing the methodolo-

gies on several real-world datasets.

Chapter 6 presents the overall conclusions of the dissertation and discusses future

directions of the work. Furthermore, this chapter presents a brief discussion about

the future of explainable intelligence and how related machine learning research areas

could coincide with the goals of explainability from the author’s point of view.
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CHAPTER 2

BACKGROUND

This chapter discusses the background information required to follow the work pre-

sented in this dissertation. In addition, this chapter presents a succinct overview of

literature with respect to explainability of Deep Neural Networks.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs), more recently rebranded as Deep Neural Net-

works (DNNs), are biologically inspired algorithms that can learn high-level abstract

representations in data. ANNs have the ability to learn from data with a hierarchy

of concepts that builds from simple concepts to generate larger concepts. This ca-

pability enables the machine to learn complex concepts or patterns in data starting

from raw data. Conventional machine learning algorithms had limited capability in

dealing with data in their raw form. Pattern recognition tasks involved feature en-

gineering to transform the raw data into a suitable representation for the machine

learning algorithms. Conversely, in DNNs, the ability to learn high-level abstract

representations in data with multiple layers enables learning very complex patterns

in data with minimal human intervention. As a result, DNNs have revolutionized AI

research and has become the most important area of research in building intelligent

machines.

ANNs are layered architectures with input, hidden and output layers. While

traditional ANNs were commonly used with a single hidden layer, DNNs of today are

capable of learning with a large number of hidden layers, due to the advancements in
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Fig. 2. An artificial neuron

Fig. 3. Neurons arranged in layers—input, hidden and output

neural networks research, advancement in computing power and data storage capa-

bilities. Therefore, essentially, DNNs are ANNs with a large number of hidden layers.

Today, the terms ANN and DNN are used synonymously.

The building block of a DNN is an ‘artificial neuron and ANNs/DNNs are loosely

based on biological neural networks. Similar to a biological neuron, an artificial

neuron receives a set of inputs and produces an output based on inputs (Figure 2).

The weighted sum of the inputs is generally transformed with a nonlinear function

to generate the input. This function is called the activation function or the transfer

function. The output is called the activation of the neuron. These neurons are

arranged in layers to make up a neural network. As mentioned, these neurons are

arranged in layers, namely input, hidden, and output (See Figure 3).
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DNNs are trained using a training dataset and their learning is entirely data-

driven. The knowledge of a DNN is stored in its weights. The neural networks learn

by adjusting their weights to optimize a cost function. The most popular learning

algorithms for neural networks is error back-propagation [26]. The DNNs learn it-

eratively and at each step, the error between the produced output of the DNN and

the target output is calculated and the error is propagated through the layers to

change the weights accordingly to minimize the error. This optimization process is

usually performed by a gradient-based approach such as gradient descent or ADAM

[27]. Therefore, the calculations are done in a forward pass, and the learning of the

weights is done in a backward pass. For a detailed description about the learning in

DNNs, readers are referred to [1].

2.2 Explaining Neural Networks

This section presents the concept of explainability in DNNs and briefly overviews

the recent efforts in literature toward explaining DNNs.

It has been widely agreed upon that the main reason behind the lack of trust in

modern AI systems is the black-box nature of the models and the lack of explainability

stemming from that [8], [7]. David Gunning of DARPA stressed the importance of

developing explainable AI systems and DARPA has been working on developing a

new suite of explainable AI (XAI) algorithms [12]. In the XAI project, the focus

is to develop new algorithms that have the learning capability of a DNN and the

explainability of models like decision trees.

It is important to distinguish that there are two types of explanations for AI

systems: 1) explaining an individual prediction and 2) explaining the overall model.

In a similar vein, there are two definitions of trust in the context of AI: 1) trusting an

individual prediction, i.e. whether a user trusts a specific output from the model so
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that an action can be based on it, and 2) trusting a model, i.e. whether the user trusts

the model to act in the expected way to deploy it. The XAI project aims at developing

AI models that can answer the following questions system as one that answers the

following questions: 1) Why did it do that? 2) Why didnt it do something else? 3)

When does it succeed? 4) When does it fail? 5) When can it be trusted? and 6) how

can an error be corrected? [12]. In terms of the two types of trust/explanations, the

first two questions fall under explaining an individual prediction, and the rest falls

under explaining an overall model.

Since the modern AI systems are primarily driven by DNNs, creating explainable

DNNs has been a topic that has received much attention in recent years. Despite

the interest, explaining DNNs effectively remains to be an open research area. In

the literature, the words explainability and interpretability are used interchangeably.

However, in this dissertation, we remain consistent with the definitions given in Chap-

ter 1. The notion of explainability of machine learning models is not a monolithic

concept. Explainability can be viewed from two angles, 1) model transparency and

2) model functionality [18], [16].

Transparency of the model refers to understanding what the network has learned

and the reasons behind the concepts it has learned. Transparency can be viewed in

three parameters: 1) decomposability, 2) simulatability, and 3) algorithmic trans-

parency [18]. Decomposability is whether there is an intuitive explanation for the

model parameters. Algorithmic transparency relates to the ability to explain the in-

ner workings of the learning algorithm. Simulatability refers to the ability of a human

using the input data together with the model to reproduce every calculation thats

necessary to make the prediction, allowing a human to understand the changes in

the model parameters during the training process. Given the complexity of DNNs,

achieving these three components is not a trivial task. Further, it is assumed that
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the simulatability is very low in DNNs and hence most of the research is focused on

improving decomposability and algorithmic transparency [18].

Model functionality explanations can be used to explain predictions by the model.

This facet of interpretable DNNs is also called post hoc explanation generation [16].

Post-hoc explanation generation entails understanding a pre-trained model, i.e. the

trained model is available and methods attempt to gain a functional understanding

of the trained model [28]. Post-hoc explanations can be generated in three different

ways. The first method is to provide textual justifications of the DNN predictions.

This involves providing a semantically meaningful description of the models output

and the reasons behind the output. Therefore, it requires a combination of models.

The second method is to provide justifications through different visualizations of

parameters. In the third method, local explanations are used to gain insight into the

models behavior. For instance, in DNNs the gradient of the output with respect to

the inputs can be used to identify the local changes that are influenced by the input

vector [29]. This type of explanations are the most explored in the literature.

One of the first attempts to explain DNNs through visualization was made by

Erhan et. al. [13]. The authors developed a methodology where the function of each

hidden neuron could be visualized using a method called activation maximization.

The method facilitated a way to visually analyze the hidden units of the DNN by

finding the input records that maximize the activation of the hidden unit in question.

The authors implemented this method on Deep Belief Networks and Autoencoders

to compare and contrast the features the hidden units of the networks were learning.

After Erhans study, there were several other methods proposed to generate heat

maps especially for image classification, to understand the most important parts of an

image for classification. Sensitivity analysis was the first method to be proposed for

identifying the inputs that the output was most sensitive to [29]. In this method, the
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sensitivity of a pixel is calculated by calculating the partial derivatives of the output

with respect to the pixel. This results in a local sensitivity score where it indicates

how much a small change in the pixel would affect the output. This method was used

to analyze Convolutional Neural Networks in [14]. This heat map is not generating

an explanation as to why the output was generated but gives an indication of the

inputs that the output is sensitive to.

Zeiler and Fergus proposed another heat map visualization technique for CNNs

using deconvolution operations [15] called deconvolutional heat maps [30]. In this

method, deconvolution operations are carried out in a backward pass to map the

activations from the network back to the pixel space of the image. This results in a

heat map where pixel values indicate their relevance to the output activations. This

method is limited to CNNs with ReLU units and max-pooling.

Layer-wise relevance propagation is a method that was proposed by Bach et al

[10] for decomposing a classification decision into pixel-wise relevance scores. These

relevance scores is a measurement of their contribution to the output classification

score. This methodology can be used for any DNN with monotonous activation

functions [11]. This method can be used to generate pixel-wise relevance for each

individual classification decision.

In non-visual explanation generation methodologies, one of the most leading

methods is Local Interpretable Model-Agnostic Explanations (LIME) proposed by

Ribeiro et al. [8]. LIME provides a method to explain any classifier and gives the

user a binary vector with the same length as the input vector. A one indicates that the

corresponding input feature was used in the classification by the model and vice versa.

LIME generated explanations for an individual classification decision by generating

samples in the local vicinity of the input record in question and approximating an

interpretable discriminator (E.g. linear classifier) that is faithful to those points.
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That interpretable discriminator is not globally faithful. LIME deals with explaining

individual predictions and is slow because of the example points generation.

Textual explanations tend to resonate more with humans because we often justify

things verbally. In one of the first attempts to generate textual explanations of

image classification, Hendricks et. al proposed a method to classify the image and

provide an explanation of the image [17]. The methodology was inspired by the

automatic caption generation methodologies [31]. The method uses a combination

of CNNs and RNNs to perform the classification and the explanation. The network

jointly optimizes the classification and selecting the optimal explanation for the for

the image. Even though the model has shown impressive results, the method does

not guarantee that the classification is done using the features that are described in

the explanation. The explanation is the textual description that best matches with

the identified features. Therefore, the method cannot be used for gaining insight into

algorithms that will be deployed in safety-critical systems.

The above review presented the most notable contributions in the field of ex-

plaining DNNs. In the interest of brevity, only the notable contributions that help

gauge the state-of-the-art in the field were presented. A more comprehensive review

can be found in [16] and [18]. It can be seen that most of the work available in the

literature is focused on explaining individual classification decisions and generating

visual explanations. The only textual explanation generation study for DNNs does

not guarantee that the explanation will reflect the reasons behind the classification.

In contrast, the goal of this dissertation is to develop methodologies to provide textual

explanations of the overall model prior to deployment.
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2.3 Cyber-Physical Systems

Cyber-Physical Systems (CPSs) are systems with highly integrated physical and

computing resources that can interact with humans through a range of methods [20],

[32]. The operations of the physical resources are monitored, controlled, and managed

by computing resources such as embedded computers with a communication network

playing the role of integrator. The control strategies usually contain feedback loops

where the physical processes and embedded controllers affect each others function

[33]. CPSs enable physical entities to collaborate and communicate with each other

to optimize the control of each component based on knowledge of each other.

The development in physical resources and the ability to seamlessly connect with

the rapid growth in networking technologies have created opportunities for CPSs

in every stratum of modern society. Smart grids, traffic control, medical devices,

smart buildings are just a few of examples of systems with tightly integrated physical

resources and computing [34], [35]. Further, The highly interconnected nature of

CPSs enable technological advances in a multitude of areas, including personalized

healthcare; emergency response, manufacturing, and energy management [32], [20],

[36]. Almost all CPS are geographically distributed and as a result, employ distributed

control and management strategies, contain a plethora of sensors for sensing the CPS

state, actuators for controlling physical processes, communication devices and control

units.

CPSs encompass a multitude of existing technologies such as embedded sys-

tems, distributed control systems, and communication networking systems. There-

fore, CPSs contain the attributes of its components. It is recognized that the CPSs

have attributes that mainly include, distributed control, heterogeneity, real-time oper-

ation (timeliness), security, reliability, scalability, and autonomy [37], [38]. Therefore,
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technologies that are developed to monitor and control CPSs should satisfy the unique

requirements of CPSs.

2.3.1 General Architecture of Cyber-Physical Systems

CPS architectures are very application specific and highly complex [38]. However,

given the general components that are present in all CPSs, a general architecture can

be presented. As mentioned above, the CPS consists of physical resources, computing

resources, and communication networks. The operations of a CPS can be broken

down to four operational layers; 1) Physical layer, 2) Sensors and actuators layer,

3) Network layer, and 4) Control layer [39], [38]. In addition to the four layers, an

information layer can be thought of as encapsulating all four layers as information

flows through all the layers [38]. Figure 4 shows the general architecture of a CPS

with its five layers and their connections to one another.

The physical layer consists of the resources in the physical world. These resources

are the ones being monitored and controlled by the CPS. Examples for physical

layer components would be power generators, transmission lines for a power system,

buildings and their components for modern buildings in smart grids and connected

buses and trains in an intelligent transportation system of the future.

The sensor-and-actuator layer sits directly on top of the physical layer. Sensors

fulfill the role of measuring the state the physical system. These measurements are

sent through the information layer to the above layers. The actuators are responsible

for translating the control signals from the above layers to the physical system. For

a power grid, the sensor information can be currents, voltages and phase angles of

buses while the actuator control signals can be open/close breaker.

The networking layer is responsible for connecting the sensor actuator layer to the

control layer. This layer contains the communication network with communication
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Fig. 4. General architecture of a Cyber-Physical System with four operational layers.

The information layer encapsulates the four operational layers. Adapted from

[38]

devices and protocols. This layer handles networking protocols such as TCP-IP,

DNP3, and MODBUS. The network layer is responsible for delivering the sensor

information to the control layer and delivering control signals to the actuators.

The control layer makes the control decisions about controlling physical resources

through distributed control practices and supervisory control. Since most CPSs are

geographically distributed, distributed controllers create local feedback control loops

for their local physical resources with the use of remote terminal units, programmable

logic controllers and intelligent electronic devices. The supervisory control layer cre-

ates a system-wide global feedback control loops by aggregating data from multiple

points in the network. In addition to the feedback control loop, the supervisory

control layer incorporates human-in-the-loop control strategies where the global CPS

measurement data are monitored by human operators.
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The information layer is an abstract layer that encapsulates all the other layers

in the CPS. Sensor measurements and the control decision are the main types of infor-

mation that traverses through the CPS and uninterrupted and accurate information

flow is paramount to ensure optimal function of the CPS.

2.3.2 Anomaly Detection in Cyber-Physical Systems

Anomaly detection is the process of detecting data points that do not conform to

the expected behavior of data and is also named outlier detection, novelty detection,

deviation detection and exception mining [40]. An anomaly is defined as a set of

observations that are inconsistent with the other observations in data [41]. Anomalous

observations in data can be caused by a multitude of reasons such as system faults,

human error, changes in system behavior and fraudulent activity.

In the context of CPSs, and anomalous behavior in data can be a result of a ran-

dom disturbance such as an equipment failure, or it could be the result of a malicious

attack from an adversary to the communication network or the physical resources. As

CPS are ubiquitous in most industrial systems, including critical infrastructure such

as the nations power grid, any disruption in their performance could lead to catas-

trophic and cascading damages. Therefore, regardless of the cause, it is of utmost

importance that all measures are taken to prevent such disruptions.

In order to minimize random equipment failure, CPSs maintain preventive main-

tenance procedures and fault-tolerant algorithms. Threats from malicious adversaries

can be categorized into physical attacks and cyber attacks. As the names suggest,

physical attacks refer to direct attacks on the physical resources and cyber attacks

refer to adversaries gaining access to the communication network(s) of the CPS. For

both these attacks/intrusions types, rigorous prevention methodologies are imple-

mented by CPSs. For example, to prevent physical attacks, mechanisms such as
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access control and surveillance are in place. In order to prevent cyber attacks, CPSs

employ prevention techniques based on cryptography.

While intrusion prevention techniques are necessary to secure CPSs, they alone

are not sufficient. For example, adversaries who gain legitimate privileges to the

system will not be caught using preventive measures alone. Therefore, no matter

how strong the intrusion prevention systems are, detection systems are necessary to

catch any intrusion or failure that slips through the prevention mechanisms. It has

been identified that CPSs require ability to detect and report anomalous behavior

[42]. Therefore, anomaly detection is an crucial area of research in CPSs.

Anomaly Detection System design for CPSs need to take into account the unique

properties of CPSs such as their distributed nature. For instance, large-scale CPSs

will require an ensemble of methods detecting anomalies due to their heterogeneity

and distributed nature. In resource-constrained components, simple and fast detec-

tion anomaly detection methodologies will have to be used. The more complex and

highly accurate anomaly detection methodologies can be deployed in components

with fewer resource constraints, such as controllers in the control layer. Therefore,

DNN based anomaly detection methodologies can serve the complex detection process

while simple techniques are deployed in individual components.

Existing CPS anomaly detection techniques can be broadly categorized into

two categories: 1) knowledge-based and 2) behavior-based. In knowledge-based ap-

proaches, the anomaly detection happens by pattern matching of anomalies [43]. This

approach is also referred to as misuse detection and supervised detection [44, 45]. The

main advantage of this method is the low false positive rates. However, knowledge-

based methods rely on having a predefined set of misbehavior signatures to perform

pattern matching. With evolving adversaries, this is an almost impossible task, and

thus knowledge-based methods are not suitable for anomaly detection in CPSs.
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Behavior-based anomaly detection techniques look for out of the ordinary behav-

ioral patterns in run-time features [45]. Typically the ordinary behavior is learned

using data-driven techniques. Machine learning based anomaly detection techniques

fall under this category. Supervised learning methods, unsupervised learning methods

or semi-supervised learning methods could be used in this type of anomaly detection.

Several machine learning algorithms such as genetic programming [46], Bayesian clas-

sifiers [47] and neural networks [48], unsupervised clustering algorithms [49], [50] have

been proposed for anomaly detection. In addition to the machine-learning based ap-

proaches, graph-based approaches [51–53] , statistical approaches [54–56], and signal

and image processing techniques [57], [58] have been applied in CPS anomaly detec-

tion.

The main advantage of behavior-based approaches is that they are not looking

to match specific misbehaviors. This eliminates the need for maintaining an exhaus-

tive list of attack signatures. Further, behavior-based methods have the capability of

detecting previously unseen intrusions or failures. However, the main disadvantage

of this type is the relatively high false positive rate. Therefore, behavior-based tech-

niques should be developed to minimize the false positive rate while maximizing the

detection rate.

21



CHAPTER 3

EXPLAINABILITY OF CYBER-PHYSICAL ANOMALY DETECTION

SYSTEMS

As mentioned, explaining black-box models has received a considerable amount of

attention in the recent years. However, overwhelming majority of the literature focus

on developing new methodologies for generating explanations using the developer’s

intuitions without much emphasis on the intended end-users [59], [60], [22]. As a

result, there is no consensus on what explainability in machine learning is, how to

evaluate it, what well-formed evaluation strategies are, or the desiderata [22], [23].

In this dissertation, we argue evaluation strategies and desired features differ

across application domains and user groups, and hence, it is very difficult to design

a set of generalized requirements for explainable machine learning. Therefore, in this

chapter, we attempt to identify a set of necessary requirements of an ’explainable’ CP-

ADS. It should be noted that defining an exhaustive set of requirements is a process

where the actual system users need to weigh in. Therefore, we are not claiming these

conditions to be sufficient.

This chapter attempts to identify the requirements of an explainable CP-ADS

with respect to the type of machine learning algorithm, the point in time where the

explanation is generated, the target end-user, and the medium of explanation. In

other words, this discussion will be around the following questions:

1. What is being explained?

2. When is the explanation generated?
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3. To whom is it being explained?

4. How is the explanation communicated?

3.1 Explanations and the Type of Machine Learning Algorithm: What?

In this section, how the type of learning algorithm (unsupervised vs supervised)

used in CP-ADS affects the explanation process is discussed.

In the context of CP-ADS, usually, a combination of supervised and unsuper-

vised machine learning techniques are used in tandem [24], [25], [61]. Therefore, it

is important to discuss the notion of explainability for both supervised and unsuper-

vised methods. In this work, for simplicity, we consider supervised methods to be

classifiers and unsupervised methods to be clustering methods. These terms are used

interchangeably in this dissertation.

Supervised CP-ADS are trained to classify between normal behavior classes and

anomalous behavior classes and results in low false positive rates compared to unsu-

pervised methods [62], [63]. Labeled training data are required for all the intrusion
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types (concepts) it is trained to detect. Therefore, the model is learning a specific

set of patterns (concept). Therefore, the explanations have to be related to the con-

cepts that the CP-ADS is being trained to identify. The explanations should enable

end-users to understand what the CP-ADS has learned about each intrusion type it

is trained to detect.

Unsupervised CP-ADSs learn from unlabeled data. Obtaining labeled data to

train supervised methods is costly [64]. Further, it is virtually impossible to an-

ticipate every anomaly type (malicious or benign) that could happen to a system.

Unsupervised CP-ADSs learn behavioral patterns using data and then flag any previ-

ously unseen behavior as an anomaly [65], [25]. In this scenario, there are no clearly

defined concepts. Therefore, the goal of explainability is to understand the data [66].

The explanations should enable users to understand the different behavioral patterns

the model has learned.

3.2 Explanations and the Timeline of CP-ADS: When?

In this section, we discuss the timeline of a CP-ADS and the different types of

explanations that should be generated at different points in that timeline.

Figure 6 shows the general process of a CP-ADS. The complete process has four

main steps: 1) training the CP-ADS using historical data, 2) testing and validating the

model, 3) deploying the model, and 4) monitoring the CPS through live predictions.

As mentioned, the main objective of generating explanations is making human

operators trust the CP-ADS. It is important to note that, this context, there are two

type of trust: 1) trust in the overall model, and 2) trust in the individual predictions

[8]. Accordingly, two types of explanations need to be generated: 1) explanations

of the overall model, and 2) explanations of the individual prediction. These two

types are directly related to the timeline of a CP-ADS process. With respect to the
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two phases. It should be noted that the explanation and action process during

deployment is very time sensitive.

four-step process, the overall model explanations are generated in the second step

and individual prediction explanations will be a part of the fourth step.

CPSs are safety-critical systems and human operators should be able to trust

an the overall CP-ADS prior to deploying it in the system. Therefore, overall model

explanations are extremely crucial in this context. Once deployed, when CP-ADS

detects and anomaly, evasive mitigation steps need to be taken [67]. Since safety is

paramount, this is very time sensitive and does not permit a thorough examination of

a prediction explanation. Therefore, out of the two explanation types, we argue that

overall model explanations are more important in the context of CP-ADS. It should

be noted that this is not the case for all application domains. For instance, consider

the case where an AI model is used to determine the eligibility of an applicant for

a loan. If the loan is rejected, there should be an explanation about that individual
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prediction. In such applications, individual predictions are more important than

overall model predictions.

When the CP-ADS algorithm is highly non-linear such as a neural network, gen-

erating overall model explanations is very difficult [8], and the state-of-the-art meth-

ods mainly focus on explaining individual predictions (Chapter 2). It is important to

discuss the two types of explanations in terms of the two types of CP-ADS.

Supervised CP-ADS: In a supervised CP-ADS, the concepts are well defined.

Therefore, the overall model explanations should summarize what the CP-ADS has

learned about the intrusion types it is trained to detect. For instance, the cyber-

network behavior that generally influence the CP-ADS to detect a Denial-of-Service

(DoS) attack can be an explanation for the DoS concept. For individual prediction

explanation, the input features that contributed most to that prediction can be used

as the explanation (feature attribution). As mentioned in Chapter 2, there are several

methodologies that can provide this E.g. LRP [28], LIME [8].

Unsupervised CP-ADS: As mentioned, the explanation goal of an unsu-

pervised CP-ADS is to understand data. Therefore, the overall model explanations

should summarize what the CP-ADS has learned about the clusters it identified. For

instance, this could be a summary of the input feature behavior patters in the cluster.

Individual prediction explanations, input features that contributed most to assigning

the instance to a particular cluster can be used as the explanation.

It should be noted that due to the contextual importance and the gap in research,

the focus of this dissertation is generating overall model explanations.

3.3 Explanations and the End-user: To whom?

In this section, we discuss the explanation requirements from the end-user’s point

of view.
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The goal of generating explanations in the context of this dissertation is building

trust in the human operators. Thus, the intended end-user is the human operator that

monitors and controls the CPS. Therefore, the explanations should be understood by

the human operators.

It is worth noting that the explaining and understanding are two different con-

cepts [23]. The process of explaining is dependent on the model that is being ex-

plained, and understanding completely depends on the person receiving the explana-

tion. That means, the expertise level and the cognitive process of the user is directly

tied into how the explanation is being perceived, and the specific user group (operator

vs engineer vs manager) should be taken into account when explanations are being

generated.

First and foremost, the explanations should be tied to the real system compo-

nents. For instance, in a ANN model, the components that has a tie to the real

system are the inputs and the outputs of the system. Therefore, the explanation has

to be presented to the user in terms of the inputs to the ANN (E.g. sensor readings

from the physical system, network-traffic attributes). If the inputs to the ANN are

high level or abstract features, there should be a methodology to trace it back to the

real-system components .

A few recent papers called for using social science models in conjunction with

machine learning research to generate human-friendly explanations [68] [59], [69].

Miller argued that for explanations to simulate human cognitive process, explainable

AI community should learn from human sciences. In his extensive study, Miller

presented two major findings from explanations in human sciences that can be applied

to CP-ADS: 1) explanations should be contrastive, and 2) explanations are selective

and should focus on one or two possible causes, not all causes [68]. These findings

lead to the notion that explanations need to be interpretable.
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The terms interpretation/interpretability and explanation/explanability are used

interchangeably in a majority of research. However, it is important to distinguish

between the two.

According to the merriam-webster dictionary, to interpret is to “explain the

meaning of” or “present in understandable terms” 1. Since the goal is to distinguish

between the terms explain and interpret, the latter definition is more applicable in

this context. A formal definition was presented by Montavon et. al [28]:

“An interpretation is the mapping of an abstract concept (e.g., a predicted

class) into a domain that the human can make sense of”

Therefore, in this work, interpretability is defined as a desired quality of a gener-

ated explanation, i.e. answering the question ”is the generated explanation presented

in understandable terms to the human?”.

While Miller argued that explanations need not have all the causes but should

focus on a one or two causes [59], Gilpin et al. argued that there is a tradeoff between

interpretability and completeness [69]. When explanations become more complete,

the interpretability of the explanations decrease. Therefore, Gilpin et al. suggest

that there should be a mechanism for the user to choose the balance between the

two. In this context, we agree with [69] and argue that the user should be able to

choose the complexity of the explanations generated. This leads to addressing the

need of addressing different expertise levels of different user types. For instance, a

cyber-security expert might be able to grasp a highly complex and long explanation

with all causes but a high-level manager might just need one or two causes.

Therefore, the ultimate human-friendly explanations for CP-ADS need to be 1)

mapped to the real-system, 2) contrastive, and 3) should enable the users to balance

1https://www.merriam-webster.com/dictionary/interpret
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the completeness with the interpretability of the explanations.

3.4 Explanations medium: How?

Another important aspect that is closely related with the human-friendliness is

the medium which the explanation is presented. In existing methods for explaining

individual predictions, visualization methods are used in terms of saliency maps and

heat maps [28].

However, when generating overall model explanations, we argue that textual ex-

planations make it more interpretable since humans often justify decisions verbally

[16]. More complete an explanation gets, more information the explanation will con-

tain. However, a visualization limits the number of different dimensions that can be

presented to the user. Therefore, a textual explanation can contain more information.

However, visualizations are quickly grasped by humans over text [70]. Therefore,

for individual prediction explanations, due to the time sensitivity we discussed in the

previous section, a simplified explanation presented in terms of a visualization can

help build trust while meeting the urgency requirement.

In an ideal system, the user should be able to choose the medium which the

explanation is delivered. In this work, we argue that for overall model explanations,

textual explanations are more suitable and for individual prediction explanations,

visual explanations are more suitable.

3.5 Desired Features of an Explainable Cyber-Physical Anomaly Detec-

tion System

In this section we summarize the above discussions to come up with a succinct

set of necessary requirements that a CP-ADS should satisfy to be explainable.

1. The CP-ADS should be able to generate two types of explanations. 1) expla-

29



nations of the overall model, 2) explanations of individual predictions

(a) Supervised CP-ADS: Summarize what the model has learned about each

concept (class) and explain each classification decision through feature

attribution

(b) Unsupervised CP-ADS: Summarize the input feature behavior in each clus-

ter and explain the features that contribute most to individual cluster

assignment

2. All explanations should be human-friendly

(a) Explanations should be presented in terms of the real system behavior

(b) Explanations should be contrastive

(c) User should be able to choose the balance between interpretability and

completeness

3. All explanations should be delivered as a visualization or textual explanation

(a) Overall model explanations should be textual due to high dimensionality

of information

(b) Individual prediction explanations should be visualizations and simple to

facilitate immediate understanding

(c) In an ideal framework, the user should be able to pick the explanation

medium they want

4. An evaluation strategy should accompany the explanation methodologies

(a) A quantitative evaluation strategy to evaluate the correctness of the ex-

planations
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(b) A qualitative evaluation strategy with end-user groups to evaluate the

effectiveness in the real-world

3.6 Conclusions

This chapter attempted to identify a set of key requirements that an explainable

CP-ADS should satisfy. The discussion was based on explainable machine learning

research and social science research. The unique properties of the problem domain

were considered and four key requirements were identified in terms of timeline, human-

friendliness, explanation medium and the evaluation requirements of the generated

explanations. It has to be noted that these requirements are not exhaustive and we

don’t claim them to be sufficient. However, we argue them to be necessary conditions

and a much-needed starting point. To identify the requirements of specific systems,

it is crucial to have end-users’ input as they are the main stake-holder of the expla-

nations. These key areas identified in this chapter should be expanded with further

inter-disciplinary research.
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CHAPTER 4

EXPLAINING SUPERVISED NEURAL NETWORKS TRAINED FOR

ANOMALY DETECTION

In this dissertation, supervised CP-ADS systems are considered to be classifiers, i.e. in

this chapter, ANN based classification is considered the CP-ADS methodology. ANN

classification has been shown to be a potent form of anomaly detection in a range

of domains [48], [71], [72]. If labeled data are available for normal and anomalous

behavior, the superior pattern recognition capabilities of supervised neural networks

can detect anomalies with high detection rates and low false positive rates [62], [63].

An ANN based anomaly detection system (NN-ADS) is trained to distinguish one or

more specific anomaly types from one or more normal scenarios. As mentioned, the

concepts the NN-ADS learns are well defined with labeled data.

This chapter presents a methodology for explaining what the NN-ADS has learned

in its training phase. As mentioned in Chapter 3, the focus of the work is generat-

ing overall model explanations. The presented explanation methodology summarizes

what the NN-ADS has learned about each anomaly type (concept) that it was trained

to detect. The presented methodology derives linguistic explanations about each

anomaly type.

The methodology presented in this chapter assumes an already trained NN-ADS.

For simplicity, the methodology assumes a Feed-Forward Neural Network (FFNN)

based NN-ADS. However, the methodology extends to other neural network archi-

tectures as well. As mentioned, in CPSs, anomaly detection entails detecting cyber-

physical (CP) anomalous behavior that could indicate a malicious intrusion or a be-
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nign fault. However, for simplicity, the presented methodology is discussed in terms

of cyber anomaly detection (intrusion detection) in this chapter. The methodology

applies to physical anomaly detection and cyber-physical anomaly detection.

In addition to the explanation methodology, this chapter presents a methodology

for validating the derived explanations. The validation methodology is based on

systematically introducing perturbations to data. The presented explanation and

explanation validation methodologies were implemented on several datasets and the

results are discussed in this chapter.

Further, the presented CP-ADS methodology is evaluated against the set of

requirements that Chapter 3 presented to identify the successes and limitations of

the presented method. Steps are proposed to overcome the identified limitations.

Furthermore, we present a discussion on how to extend and scale the method.

This chapter first, presents the methodology for summarizing what the NN-ADS

has learned. Second, the presented explanation validation methodology is elaborated.

Next, the experimentation details are presented. Then, a discussion of the explanation

methodology’s capabilities, its limitations, and further methods to extend and scale

is presented. Finally, the chapter is concluded with conclusions and possible next

steps.

4.1 Methodology for Explaining What the Neural Network has Learned

As mentioned, the supervised NN-ADS is a classifier and is trained to detect a

predefined set of intrusions. Each intrusion type is a class/concept of the NN-ADS.

In this work, the goal of the explanation process is to summarize what the NN-

ADS has learned about each concept. The output of the methodology is a linguistic

description for each concept (concept description). Each concept description contains

a set of system behavior that is considered to be relevant by the NN-ADS to detect
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that concept. In other words, the concept description reflects which input features and

values indicate the presence of that intrusion type according to the trained NN-ADS.

The final concept descriptions are derived from IF-THEN type linguistic sum-

maries generated using a test dataset. The IF-THEN linguistic summaries indicate

the association between feature values and the relevance of that feature to the pres-

ence of a certain intrusion. First, a brief background on Linguistic Summarization

and Layer-wise relevance propagation is presented. Next, the methodology of deriving

IF-THEN linguistic summaries is presented. Then, the method of creating the final

concept description is presented.

4.1.1 Linguistic Summarization

This section briefly introduces Linguistic Summarization (LS). If the reader is

familiar with the basics of LS techniques, this section can be skipped.

Linguistic Summarization (LS) was introduced by Yager [73]. LS enables extrac-

tion of useful patterns in large multi-dimensional datasets and presenting them in

human friendly linguistic descriptions. LS has been shown to be extremely useful in

a range of applications [74], [75], [76].

Consider a dataset D with M instances, where each instance is a collection of

input features X = {xd}, where d is the dth feature of the dataset. LS techniques

can be used to extract patterns that exist for X ∈ D. Linguistic summaries are

derived using Type-1 fuzzy sets introduced by Zadeh [77]. First, all the features of

the dataset are fuzzified into a preset number of fuzzy set by mapping input values

x to a degree of belonging to each fuzzy set (membership degree), which is denoted

as µs(x). The number, shape, and limits of fuzzy sets are defined to satisfy the user

and domain requirements. Higher the number of fuzzy sets used, more descriptive

the summaries are. However, if the number of fuzzy sets is increased beyond a certain
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point, understandability of the summaries is reduced [78].

There are two types of linguistic summaries: 1) IF-THEN type and 2) Yager

type. In this work, we use IF-THEN type linguistic summaries. An IF-THEN type

linguistic summary takes the following form:

IF da IS S1 AND db IS S2 THEN dc IS S3 (4.1)

where a 6= b 6= c and da, db and dc are dimensions of the dataset. da and db are the

antecedents with fuzzy sets S1 and S2, respectively, and dc is the consequent with

fuzzy set S3.

The µs(x) values are used for assessing the quality of the linguistic summaries.

There are several quality measurements proposed in literature that can be used to

rank the derived summaries. The quality measures used in this paper are introduced

in the next section.

4.1.2 Feature attribution for individual predictions using Layer-wise Rel-

evance Propagation

This section briefly introduces the layer-wise relevance propagation (LRP) method-

ology used to quantify the relevance of each input feature to each classification decision

made by the NN-ADS.

In this work, linguistic summaries are derived based on the input features and

their local relevance to classification decisions. The local relevance score is a quanti-

tative measure of the contribution each input feature made, to the detection of each

class/concept. The input feature local relevance is calculated for individual classifi-

cation decisions using the LRP method.

LRP was introduced by Bach et al. as an approach for understanding pixel-

wise contributions to image classification [10]. LRP assumes that the classification
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Fig. 7. Layer-wise relevance propagation method. The relevance score for each neuron

is backpropagated through the layers

algorithm can be decomposed into several layers of computation. Inputs layer is

considered the first layer and the classification layer is considered the last layer. Each

neuron of each layer has a relevance score (R
(l)
d ) where d is the neuron (dimension)

and the l is the layer. In the input layer, the neuron becomes an input feature.

The relevance scores are propagated backward through the layers, i.e. the goal is

to calculate relevance scores for layer l when relevance scores for layer (l + 1) are

available. Figure 7 depicts the process of propagating relevance scores through the

layers.

As mentioned, the multi-layered architecture of the NN is leveraged to propa-

gate the relevance scores in a single backward pass, by expressing lower level rel-

evance scores as a function of upper-level relevance scores. Relevance scores are

back-propagated in “messages”, R
(l,l+1)
i←j (from neuron j in l+ 1 to neuron i in l). The

relevance propagation has to satisfy the following relevance conservation properties.

f(x) = · · · =
∑
d∈l+1

R
(l+1)
d =

∑
d∈l

R
(l)
d = · · · =

∑
d

R
(l)
d (4.2)
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∑
i

R
(l,l+1)
i←j = R

(l,l+1)
j (4.3)

f(x) is the output and R
(1)
d is the relevance score of the dth dimension of the input

layer. The relevance score of the ith neuron in layer l can be expressed as:

R
(l,l+1)
i =

∑
j

R
(l,l+1)
i←j (4.4)

This relevance scores are distributed based on the ratio of pre-activations as

follows:

R
(l,l+1)
i←j =

(
a
(l)
i w

(l,l+1)
ij

Σia
(l)
i w

(l,l+1)
ij + b

(l+1)
j

)
·R(l+1)

j (4.5)

One drawback of the above rule is a small activation in the j th neuron makes

the relevance scores unboundedly large. The αβ method [10] is used to counter that

drawback:

R
(l,l+1)
i←j =

(
α

aiw
+
ij

Σiaiw
+
ij + b+j

+ β
aiw

−
ij

Σiaiw
−
ij + b−j

)
·R(l+1)

j (4.6)

Where aiw
+
ij and b+j are the positive portions of the activations and the negative

portion is indicated by a superscripted “-”. It has to be noted that the superscripted

layer notations have been stripped off in the above equation to help the readability ,

but notations i and j are considered to be indices associated with layers l and l + 1

respectively.

Therefore, with the above propagation rule, the relevance scores can be propa-

gated to the first/input layer, i.e. the relevance score of each input feature d;R
(l)
d can

be obtained. A positive R
(l)
d indicates that dimension d supports the existence of the

detected concept and vice versa. This results in a quantitative measurement of the

contribution of each individual input feature to the classification decision made by
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the NN-ADS.

4.1.3 Deriving IF-THEN Type Associative Linguistic Summaries

LS techniques are used for deriving IF-THEN type linguistic summaries. The

summaries are derived with respect to one concept. A single linguistic description

expresses the association between input feature values and their influence to detecting

the selected concept. The antecedents of the description represent feature values and

the consequent represents the level of influence. An example linguistic description is

given below.

IF f1 IS low AND f2 IS low THEN inf IS high (4.7)

where f1 and f2 are input features and the low is a Type-1 fuzzy set that indicates

feature values. The fuzzy set configuration is entirely at the discretion of the users.

The consequent inf is the influence of the antecedent behavior on detecting the intru-

sion type. Therefore, the linguistic descriptions can be viewed as a list of sub-regions

in the feature space that are prioritized by the NN-ADS to detect each intrusion.

Several quality measures can be calculated for each IF-THEN type linguistic

summary. Quality measures indicate the ’goodness’ of each summary. These measures

are used to filter the ’good’ summaries for creating the final concept descriptions. As

mentioned in before, the quality measures are calculated using membership degree

values of the fuzzy sets. Two main quality measures are considered in this work: 1)

degree of truth, 2) degree of coverage.

Degree of truth (dt) is a measure of correctness. dt indicates how true the sum-

mary is given the test dataset. As with any machine learning task, biases in the test

data can affect this metric and will affect the quality of the explanations. Antecedent

membership degrees are calculated w.r.t the fuzzified input feature values. Conse-
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quent membership degrees are calculated w.r.t to fuzzified influence scores. A high dt

would imply that the summary is correctly identifying the specific feature behavior

as influential in detecting the intrusion type. dt is calculated as follows:

dt =

∑Mc

m=1min(µ1
a(v

1
m,a), . . . , µ

n
a(vnm,a), µc(rm,c))∑Mc

m=1max(µ1
a(v

1
m,a), . . . , µ

n
a(vnm,a))

(4.8)

where rm,c =
n∑

d=1

Id (4.9)

where, µi
a(v

i
m,a), are degrees of membership of the mth test instance’s input feature

values to their respective antecedent fuzzy sets, µi
c(rm,c) is the degree of membership

of the mean local influence scores of the antecedent input features for the mth test

prediction, and Mc is the number of data records classified as the concept in question.

Correctness alone is not sufficient for identifying high-quality summaries. A mea-

surement of generality is necessary. Degree of coverage dc is used as the generalization

measurement. dc indicates how much of the dataset is correctly represented by the

summary. A low dc can indicate outlier linguistic summaries. dc is calculated as a

non-linear mapping of fraction of data that satisfies the summary. A high dc would

imply good generalization. dc is calculated as follows:

dc = fc

(∑Mc

m=1 tm
Mc

)
(4.10)

where:

tm =


1, if min(µ1

a(v
1
m,a), . . . , µ

n
a(vnm,a), µc(rm,c)) > 0

0, otherwise

(4.11)

In this work, the sigmoid function is used as the fc. This maps the ratio of data

points that satisfy the LD to a value between 0 and 1. The shape of the function can

be fine-tuned to match the user requirements.

39



These summaries are derived using a test dataset. Existing methodologies for ex-

plaining individual predictions (e.g. heat-mapping and saliency mapping techniques

mentioned in Chapter 2) can be used to quantify the influence levels of each feature

for each test instance. Therefore, as the first step, the test dataset is used to query

the trained NN-IDS and a heat-mapping methodology is used to quantify the rele-

vance of each input feature to each prediction. Multiple test datasets can be used to

improve generalizability. The relevance scores derived from heat-mapping methods

can take positive or negative values. A positive score indicates a feature supporting

the classification, and vice-versa. Before descriptions are generated, the relevance

scored are normalized to an ‘influence score’. This influence quantity is referred as

the local influence score in this dissertation. The normalization can be done in several

different ways [79]. In this work, the positive relevance scores are scaled between 0

and 1. Therefore, only the features that supporting the classification are considered.

How the negative relevance scores can be used is discussed later in the Chapter.

Id =


Rd−min(R)

max(R)−min(R)
; if Rd > 0

0 ; otherwise

(4.12)

Where, Id is the local influence score of the dth input feature, Rd is the relevance score

from the heat-mapping method, and R is the set of relevance scores for all dimension

for a prediction.

Once the local influence scores for all features are calculated for all the test

predictions, the IF-THEN type linguistic summaries are derived. The derivation

algorithm is presented in Table 1. First, all the input features and their influence

scores are fuzzified and mapped to a membership degree. Then, for all possible

combinations of fuzzy sets, the linguistic summaries are derived and quality metrics

40



are calculated. This is done with a brute force approach. Finally, the linguistic

summaries are filtered based on the preset quality thresholds. These thresholds are

set by the user and can be changed to match user and domain requirements.

4.1.4 Deriving Concept Descriptions

Once the high quality linguistic summaries are extracted for an intrusion type,

the concept descriptions are created. The user has the flexibility to adjust the thresh-

olds for dt and dc to fit the domain and user requirements. The input feature behavior

contained in the high-quality summaries are used to generate the final concept de-

scriptions. The concept descriptions formats explanations into a more comprehensible

format.

For example, in a neural network trained to detect Denial-of-Service (DoS) at-

tacks, an example concept description for DoS can be expressed as follows:

“High values for communication speed, number of packets per host,

and number of sources are considered as evidence of a DoS attack by

the NN-ADS”

where, high communication speed, number of packets per host, number of sources

are feature behavior that indicate the occurrence of a DoS attack to the NN-ADS.

The concept descriptions can be adjusted semantically and syntactically to match

different user requirements. The feature behavior summarized in the concept descrip-

tions translate to the system behavior that indicate a specific type of intrusion to the

NN-ADS.
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Table 1. Algorithm for deriving linguistic summaries

Inputs:

Test data: X := {Xd}

Trained NN-IDS: ANN

Feature FS: Fa := {Ai : i = 1, . . . n}

Influence FS: Fc := {Cj : j = 1, . . .m}

Quality thresholds: (T,C)

Outputs:

List of high-quality linguistic summaries

1: getSummaries (X,ANN,Fa, Fc, T, C)

2: list← {(a, c) : a ∈ Fa, Fc ∈ C} % cartesian product

3: ŷ ← ANN(X) % test data predictions

4: {Rd} ← LRP (ŷ) % local relevance

5: description list← empty − list

6: for d ∈ X % for each feature in X

7: for all (a, c) in list

8: S ← IF d IS a THEN inf IS c

9: // Fuzzification of crisp values

10: µa ← Fuzzify(Xd, a)

11: µc ← Fuzzify(Xc, c

12: // Quality measures for the LD

13: truth← Equation 4.8

14: cov ← Equation 4.10

15: If truth >= T & cov >= C then

16: description list.append(S)

17: end if

18: end for

19: end for

20: end function
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4.2 Adversarial Approach for Validating the Explanations

Adversarial machine learning is used to exploit weaknesses of machine learning

systems by conducting ’adversarial attacks’. Adversarial attacks use modified input

instances called adversarial examples. Adversarial examples are input records with

intentionally perturbed input features [80]. Adversarial examples help test the ro-

bustness/stability of a trained machine learning algorithm such as a neural network

[80], [81]. Typically, the perturbations for adversarial examples are introduced using

gradient based optimization methodologies [80], [81] and the idea is to capture a small

perturbation in the input that ‘tricks’ the classifier. These methods have been mostly

demonstrated in image classification algorithms and it has been shown that a single

perturbed pixel could trick a NN [82]. The success of an adversarial attack indicates

that the NN’s decision function is actually influenced by the pixel(s) in making the

decision.

In this work, we use the principle behind adversarial attacks for validating the

derived linguistic explanations. As mentioned, if a perturbation to an input (e.g.

pixel in an image) causes the NN to change the output, it is safe to assume that the

NN considers that input to be relevant to making the decision. The derived concept

descriptions outline the input features and their behavior relevant to each intrusion

type. Therefore, these relevant input features can be used to create the adversarial

examples. If the identified relevant behavior are correct, the NN-ADS decision should

be affected by the perturbed examples.

The adversarial example generation algorithm is presented in Table 2. To validate

the summaries derived for a certain concept (intrusion type), the instances classified

by the NN-ADS as ‘normal’ are selected and perturbed As the first step, the input

records classified as “normal” are extracted. It is worth noting that the perturbations

43



Table 2. Algorithm for generating the adversarial examples

Require:

ŷ, X, map(d, Sd)

1: function adversarialExamples (ŷ, X,map)

2: Xnorm ← X[ŷ == 0] % Data predicted as normal

3: x← rand(Xnorm) % randomly sampling records

4: for d, s in map do

5: v ← p s.t. µs(p) = 1

6: x[d] = v % Perturbations

7: end for

8: return x

9: end function

are applied to instances that are classified as ‘normal’ by the NN-ADS, not necessarily

the actual normal instances. Then, extracted instances are perturbed by introducing

the feature behavior deemed to be relevant by the derived concept description. If the

identified relevant behavior is correct, the NN-ADS should flip the classification label

of these perturbed examples from normal to the intrusion type. That is empirical

evidence that the NN-ADS actually considers these behavior as relevant in detecting

intrusions of that type.

4.3 Experiments

In this section, the experiments that were conducted to implement the presented

explanation and validation methodologies are discussed. First, the fuzzy system con-

figuration used for explanation generation is presented. This section is organized with

respect to each dataset. For each dataset, different case studies are presented. Each
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experiment is organized into sections describing the data set, classification results,

derived explanations, and adversarial validation results.

4.3.1 Fuzzy System used for Explanation

In NN-ADS explanation process, two types of crisp values are fuzzyfied: 1) input

feature values, 2) input feature influence scores. In this work, all input features were

fuzzyfied into three fuzzy sets—low, medium, and high. In an ideal implementation,

the number and shape of fuzzy sets should be individually tailored to each input

feature in each dataset. For simplicity, we used the same fuzzy set configuration for

all the input features in all datasets. Determining the optimal fuzzy set configuration

is discussed later in this chapter.

The low, medium and high was set in terms of the quantiles of input feature

distribution. The fuzzy set configuration is given in Figure 8(a).

Influence scores were fuzzyfied using two fuzzy sets–influential and highly influ-

ential. Ideally, for different datasets, the fuzzy set configuration should be tweaked.

But for simplicity, the same fuzzy sets were used for all features and datasets. The

fuzzy set configuration is given in Figure 8(b).

4.3.2 NSL-KDD Experiment

The NSL-KDD dataset is arguably the most popular intrusion detection dataset

used literature and is an improved version of the KDD Cup 99 dataset [83]. The data

were captured during the DARPA IDS evaluation program 1998 and was used in

the Third International Knowledge Discovery and Data Mining Tools Competition.

Tavallaee et al. created the NSL-KDD dataset by making improvements such as

removing redundant records [83].

Each data record in the dataset is a TCP connection and they fall under five
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Fig. 8. Type-1 Fuzzy sets used for explaining the supervised CP-ADS (a) Fuzzy sets

used to fuzzify features values, (b) Fuzzy sets used to fuzzify local influence

classes: normal, denial-of-service (DoS), probing, user-to-root (U2R), and root-to-

local (R2L). The data distribution in the train and test datasets can be seen in Fig 9.

It can be observed that the U2R and R2L classes are extremely underrepresented in

the dataset. Therefore, the data records from R2L and U2R classes are not considered

in this study.

Each TCP connection record consists of 41 input features. These features consist

of basic features acquired from the TCP connection, traffic features acquired from a

window of two seconds and content featured acquired from the application layer data.

In terms of data types, the 41 features contain 7 categorical features (four of them

binary) and 34 continuous features. The complete feature set is given in Table 3.

The categorical features pose a challenge in algorithms such as ANNs. In this

work, the binary features were unchanged. The other three categorical features were

converted to numerical features by using a simple label encoding scheme. Label

encoding is used over one-hot encoding to preserve the number of input features

and to avoid making the data sparse. In order to make sure that the features are

considered in the same ranges, the input features were standardized to a zero mean
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Fig. 9. NSL-KDD: Data distribution across classes. R2L and U2R classes are signifi-

cantly underrepresented

and unit variance distribution.

4.3.2.1 Classification Results

Using the dataset, two different test-cases were considered to demonstrate the

presented explanation methodology. First, a binary classifier was implemented to

classify between normal and intrusion data, where all DoS and Probe instances were

relabeled as intrusions. Second, a multi-class classifier was implemented to classify

instances into three classes—normal, DoS and Probe.

Table 4 shows the classification accuracy achieved by the NN-ADSs for all test

cases. It was observed that the FFNN based NN-ADS was able to classify the data

with relatively high accuracy levels. It should be noted that these results are presented

for completeness. The explanation process is not hinged on the achieved accuracy.

In this work, the NN-ADSs are assumed to be sufficiently accurate—in terms of the

accuracy scores—to proceed to the explanation stage. In other words, if a NN-ADS

does not meet the desired classification accuracy bar, the explanation process could

be used as a diagnostics tool rather than a trust building tool.

47



Table 3. Complete set of features of the KDD-NSL Dataset

No. Feature Name Description

1 Duration Time length of connection

2 Protocol type Protocol used

3 Service Destination network service used

4 Flag Connection Status of the connection

5 Src bytes Bytes transferred in a single connection

6 Dst bytes Data bytes in a single connection

7 Land Is the source and destination port numbers same

8 Wrong fragment Number of total fragments in the connection

9 Urgent urgent packets in the connection

10 Hot Number of Hot indicators (e.g. entering a system directory)

11 Number of failed logins failed login attempts

12 Logged in Login status: Is logged in

13 Num compromised Compromised conditions

14 Root shell 1 if root shell is obtained, 0 otherwise

15 Su attempted Is superuser attempted

16 Num root operations performed as root

17 Num file creations Number of file creations

18 Num shells Number of shell prompts

19 Num access files operations on access controlled files

20 Num outbound cmds outbound commands in an ftp session

21 Is hot login is the login in the hot list (e.g. root/admin)

22 Is guest login Whether the login is a guest

23 Count No. of connections to the same dest as current in the past two seconds

24 Srv count No. of connections to the same port as the current in the last two seconds

25 Serror rate connections with flags S0-S3 among the connections in count (23)

26 Srv error rate connections with flags S0-S3 among connections in Srv count (24)

27 Rerror rate connections with Flag REJ among the connections in count (23)

28 Srv error rate connections with flag REJ among connections in srv count (24)

29 Same srv rate connections to the same service among connections in count (23)

30 Diff srv rate connections to diff services among the connections in count (23)

31 Srv diff host rate connetions to different dest among the connections in srv count(24)

32 Dst host count Number of connections with the same destination IP

33 Dst host srv count Connections with the same port

34 Dst host same srv rate Connections to the same service among the ones in dst host count (32)

35 Dst host diff srv rate Connections to different services among the ones in dst host count (32)

36 Dst host same src port rate Connections to the same source port among the ones in dst host srv count (33)

37 Dst host same diff host rate Connections with diff destinations, among ones in dst host srv count (33)

38 Dst host serror rate Connections with flag S0-S3 among ones in dst host count (32)

39 Dst host srv serror rate Connections with flag S0-S3 among ones in dst host srv count (33)

40 Dst host rerror rate Connections with Flag REJ among ones in dst host count (32)

41 Dst host srv rerror rate Connections with Flag REJ among ones in dst host srv count (33)
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Table 4. Accuracy NN-ADS implemented for NSL-KDD test cases

Classifier Train Accuracy Test Accuracy

Intrusion vs Normal 99.38 97.34

DoS vs Probe vs Normal 99.2 94.72

4.3.2.2 Derived Explanations

This section presents the explanations derived for each of the test cases. It should

be noted that the explanations are presented with a focus on the anomaly concepts in

their respective test cases. First, the IF-THEN linguistic summaries and their quality

measures are presented. Then, example concept descriptions are presented using the

high-quality IF-THEN linguistic summaries.

Explanations: Binary Classification–Intrusion vs Normal

Linguistic descriptions were generated for the concept ‘Intrusion’. Table 5 shows

the linguistic summaries derived from the NN-ADS system for the ‘Intrusion’ concept.

In this work, single-antecedent-single-consequent linguistic summaries were derived.

In order to filter the linguistic summaries, dt and dc thresholds were set as 0.9. These

linguistic summaries can be used to generate a concept description for ‘Intrusion’. If

the ‘highly-influential’ linguistic summaries are used to generate the concept descrip-

tion, the concept description for ‘Intrusion’ can be expressed as follows:

—High values for count, rerror rate, dst host serror rate, dst host srv serror rate,

serror rate, srv error rate and a Low value for same srv rate are con-

sidered as evidence for an ‘Intrusion’ by the NN-ADS

Explanations: Multi-class Classification: DoS vs Probe vs Normal
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Table 5. Top 10 Linguistic descriptions for NSL-KDD dataset, ’Intrusion’ concept

Feature
Influence dt dc

Name Value

count high highly influential 0.98 1.00

rerror rate high highly influential 0.97 1.00

dst host serror rate high highly influential 0.96 1.00

same srv rate low highly influential 0.96 1.00

dst host srv serror rate high highly influential 0.92 1.00

serror rate high highly influential 0.92 1.00

srv error rate high highly influential 0.90 1.00

hot low influential 0.99 1.00

srv rerror rate high influential 0.99 1.00

dst host count high influential 0.98 1.00

For DoS attacks, it was observed that the medium to high relevance was given

to host based traffic features and time related features when the values of those were

high.

—Medium and High values for count, High values for dst host rerror rate,

srv error rate, dst host srv serror rate, dst host serror rate and Low

values for duration src bytes dst bytes land are considered as evidence

for an ‘DoS’ by the NN-ADS

For Probe attacks, it was noticed that time related features and host based traffic

features were being considered for detection by the NN-ADS. In the two highest

confidence linguistic summaries that indicate high influence, it can be seen that the

NN-ADS is prioritizing traffic that are going out to different destinations or services.
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Table 6. Top 10 Linguistic descriptions for NSL-KDD dataset, ’DoS’ concept in multi

class classification

Feature
Influence dt dc

Name Value

count high highly influential 0.9986 1.0000

dst host rerror rate high highly influential 0.9875 1.0000

srv error rate high highly influential 0.9753 1.0000

dst host srv serror rate high highly influential 0.9420 1.0000

count med highly influential 0.9255 1.0000

dst host serror rate high highly influential 0.9093 1.0000

duration low influential 1.0000 1.0000

src bytes low influential 1.0000 1.0000

dst bytes low influential 1.0000 1.0000

land low influential 1.0000 1.0000
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Table 7. Top 10 Linguistic descriptions for NSL-KDD dataset, ’DoS’ concept in multi

class classification

Feature
Influence dt dc

Name Value

dst host rerror rate high highly influential 0.98 1.00

rerror rate high highly influential 0.97 1.00

dst host serror rate high highly influential 0.96 1.00

same srv rate low highly influential 0.96 1.00

dst host srv serror rate high highly influential 0.92 1.00

serror rate high highly influential 0.92 1.00

srv error rate high highly influential 0.90 1.00

hot low influential 0.99 1.00

srv rerror rate high influential 0.99 1.00

dst host count high influential 0.98 1.00
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—High values for dst host rerror rate, rerror rate, dst host serror rate,

dst host srv serror rate, serror rate srv error rate srv rerror rate dst host count

and Low values for hot same srv rate are considered as evidence for an

‘Probe’ by the NN-ADS

4.3.2.3 Adversarial Validation

Once the top feature behavior were identified, the proposed adversarial approach

was used to validate them. As mentioned, the identified feature behavior for ‘Intru-

sion’ was simulated in the data records classified as ‘Normal’ to create the adversarial

examples. In addition, for performance comparison, the complement of the identified

feature behavior was simulated in the data classified as ‘Normal’. Therefore three

cases were created: 1) simulating low in low feature, med in medium features and

high in high features, 2) simulating medium in all, 3) simulating high in low features,

and low in high features. It should be noted that these values are simulated in the

features identified by the linguistic summaries.

As an example, Figure 10 shows a 2D projection of the test samples from NSL-

KDD dataset. The figure depicts samples classified as normal, samples classified as

intrusion, and the perturbed adversarial examples created only using the ’highly in-

fluential’ linguistic summaries. It can be observed that the perturbed normal samples

are among the samples classified as intrusions. The 2D projection was obtained using

the t-Distributed Stochastic Neighborhood Embedding (TSNE) method.

Further, to verify the relevance of perturbed input features, the relevance scores

of the input features were observed for the adversarial samples. Figure 11 shows the

input feature relevance scores for a random adversarial sample created using ’highly

influential’ linguistic summaries. The highlighted features are the perturbed features.

The adversarial sample successfully ‘tricked’ the classifier and the perturbed input
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normal
intrusion
adversarial

Fig. 10. NSL-KDD: TSNE projection of adversarial examples created using ‘highly

influential’ linguistic summaries

features were the most relevant features. To observe relevance over a large sample, a

randomly sampled 1000 records were used. Figure 12 shows the average local relevance

of each input feature across the 1000 samples. It can be observed that the perturbed

features (highlighted) are consistently supporting the detection of an intrusion. That

means, not only the NN-ADS flips the classification label, but also uses the perturbed

features to base its decision.

Further, to observe the effect of using different sets of linguistic summaries to ad-

versarial samples, adversarial samples were created by incrementally adding linguistic

summaries. Linguistic summaries were sorted by their level of influence, dt, and dc,

respectively. 5% of high quality linguistic summaries were added to the adversarial

examples in each step. At each step, a 1000 instances were randomly sampled and the

percentage of labels flipped to ‘Intrusion’ was observed. In this experiment, the three

types of adversarial examples were considered. For each test case, at each level, the

percentage of adversarial examples that tricked the NN-ADS was observed. Figure
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Fig. 11. Feature relevance of a randomly sampled perturbed ‘normal’ record (originally

classified as ‘normal’) of the NSL-KDD dataset. After the perturbation, the

instance was classified as an ’Attack’. It can be seen that the NN-ADS is

classifying the instance as an attack based on the features that were perturbed

(highlighted ones)

13 shows the results for the three test cases.

4.3.3 CICDS2017 Experiment

CICDS2017 dataset was created by the Canadian Institute of Cybersecutiy as a

dataset for comparing different IDS algorithms. The dataset contains communication

records for several attack types and normal communication collected over five days.

In this work, in order to observe the explanations of a specific intrusion type, Dis-

tributed Denial-of-Service (DDoS) was selected. Therefore, the classifier performed

binary classification between ’normal’ and DDoS. CICDS2017 dataset contains 78

input features and the explanations were derived with respect to all features.
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Fig. 12. Average feature relevance of 1000 randomly sampled and perturbed ’Normal’

records of NSL-KDD dataset. From the error bars it can be seen that the

perturbed features are always positively influencing the decision toward the

detection of an attack. 99.2% of the instances were classified as ’Intrusion’

Table 8. Accuracy NN-ADS implemented for the CICDS2017 test cases

Classifier Train Accuracy Test Accuracy

DDoS vs Normal 99.38 98.71

4.3.3.1 Classification Results

As with the NSL-KDD experiment, the classification results are reported for

completeness. It was observed that the NN-ADS was able to successfully classify the

data set with a held out test data accuracy of 98.71%. Table 8 shows the training

and testing accuracy scores achieved in the CICDS2017 experiment.
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(a)

(b)

(c)

Fig. 13. Flipping of classification labels with adversarial samples created with different

number of linguistic summaries for NSL-KDD Dataset (a) Using values of LD

fuzzy sets, (b) using medium value for all linguistic summaries, (c) switching

’low’ and ’high’ values in linguistic summaries
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Table 9. Top 10 Linguistic descriptions for CICDS2017 dataset, ’DDoS’ concept

Feature
Influence dt dc

Name Value

Packet Length Std high highly influential 0.99 1.00

Avg Bwd Segment Size high highly influential 0.99 1.00

Bwd Packet Length Mean high highly influential 0.98 1.00

Bwd Packet Length Std high highly influential 0.98 1.00

Idle Max high highly influential 0.96 0.91

Bwd Packet Length Max high highly influential 0.95 1.00

Max Packet Length high highly influential 0.91 1.00

Subflow Bwd Bytes high influential 1.00 0.98

Total Length of Bwd Packets high influential 1.00 1.00

Flow Duration high influential 1.00 0.92

4.3.3.2 Explanation and Validation Results

In CICDS2017, the classification was carried out between ’Normal’ and ’DDoS’.

Therefore, linguistic summaries were derived for ’DDoS’. Table 9 lists the top 10 de-

rived linguistic summaries. Similar to NSL-KDD, the threshold for filtering linguistic

summaries were used as 0.9. In the interest of brevity, only the top 10 linguistic

summaries are shown. However, there were 30 linguistic summaries that satisfied the

thresholds. For adversarial testing, the complete set of linguistic summaries above

the thresholds was used. Therefore, similarly to NSL-KDD, a concept description

can be generated for ’DDoS’. Using the highly influential linguistic summaries, the

concept description can be expressed as follows.

Intrusion Concept Description : High values for Pkt Len Std, Avg Bwd Seg Size,
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normal
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Fig. 14. CICDS2017: TSNE projection of adversarial examples created using ‘highly

influential’ linguistic summaries

Bwd Pkt Len Mean, Bwd Pkt Len Std, Idle Max, Bwd Pkt Len Max, Max Pkt Len

are considered as evidence to detect a ‘DDoS’ attack by the NN-ADS

4.3.3.3 Adversarial Validation

Similar to NSL-KDD, the linguistic summaries were validated using adversarial

examples. Relevant feature behavior for DDoS was simulated in ’normal’. Figure

14 shows a TSNE projection of CICDS test samples. Records classified as ’Normal’,

records classified as DDoS and the created adversarial samples using only the highly

influential linguistic summaries are shown in the projection. In CICDS, the data

didn’t show clear groupings as it did in NSL-KDD. However, amidst the scatter, it

can be observed that the adversarial samples tend to be closer to DDoS records, than

to ’normal’ records.

Furthermore, to verify the relevance of perturbed input features, local relevance

scores of adversarial records were observed. Figure 15 shows the relevance of one ran-
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Fig. 15. Feature relevance of a randomly sampled perturbed ’normal’ record for the

CICDS2017. The instance was classified as an ’Attack’ afer the perturbations.

It can be seen that the NN-ADS perturbed features are influencing the the

decision of the NN-ADS. (highlighted ones)

domly sampled adversarial record. The perturbed input features (highlighted) were

the features with highest relevance. Figure 16 shows the mean relevance (standard

deviation as error bars) for a 1000 randomly sampled adversarial records. It can be

seen that perturbed input features consistently support the detection of a ’DDoS’

attack, empirically proving the validity of the linguistic summaries.

Similarly to NSL-KDD, an incremental analysis was carried out to observe the

effect of different linguistic summaries. From the 30 linguistic summaries, starting

from 5%, the number of linguistic summaries used for adversarial examples was in-

cremented by 5%. At each step, 1000 random adversarial samples were created and

the percentage of success was observed. This process was repeated for all three types

of adversarial records. The Figure 17 shows the percentage of success at each step
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Fig. 16. Average feature relevance of 1000 randomly sampled and perturbed ’Normal’

records of CICDS2017. From the error bars it can be seen that the perturbed

features are always positively influencing the decision toward the detection of

an attack

for the three cases. It was observed that the highest success percentage was achieved

when all ’highly influential’ linguistic summaries were used. Then interestingly, once

the others were added, the success percentage reduced to 0%. This needs further

analysis and implications are discussed in the next subsection. Further, for Case II, a

similar trend was observed but with a lower peak. This is more indication that when

the highly influential input feature value increase, the probability of an DDoS attack

increases. For Case III, it can be seen that the success rate is 0% throughout. These

results are empirical evidence that the derived linguistic summaries are valid.

4.4 Discussion

This section discusses the features of presented methodology, its limitations and

the ways to extend the functionality. First, the methodology is compared against the
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Fig. 17. Flipping of classification labels with adversarial samples created with different

number of linguistic summaries for CICDS 2017 Dataset (a) Using values

of LD fuzzy sets, (b) using medium value for all linguistic summaries, (c)

switching ’low’ and ’high’ values in linguistic summaries
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requirements identified in Chapter 3. Next, the limitations of the methodology and

applicable use-cases beyond CP-ADSs are discussed. Then, methods to extend and

scale the presented methodology is presented.

4.4.1 Evaluation of the Explanation Methodology

The presented methodology was evaluated against the requirements presented in

Chapter 3. Table 10 summarizes the evaluation.

In terms of the types of explanations, the presented methodology only gener-

ates overall model explanations. As per individual prediction explanations, existing

saliency mapping (e.g. LRP) techniques can be used to explain individual decisions.

However, those methods should be customized to generate easily understood expla-

nations given the time sensitivity in this domain.

In terms of the human friendliness of the explanations, the presented methodol-

ogy generates explanations that consist of input features of the CP-ADS. Therefore,

the explanations are tied to the real-system behavior. The complexity of the expla-

nations depends on the number of antecedents in the IF-THEN linguistic summaries

generated. The higher the number of antecedents, the precision of summaries in-

creases and completeness of the explanations increases. However, at the same time,

the comprehensibility of the summaries decreases. In this presented method, the user

can control the number of antecedents in the generated summaries. Therefore, the

user can control the balance between interpretability and completeness by control-

ling the number of antecedents in the IF-THEN summaries. However, the gener-

ated explanations are not contrastive. Therefore, to make the summaries completely

human-friendly, the explanations need to be made contrastive.

The explanations are generated in textual form and therefore communicated in

an understandable form. In terms of evaluation, a quantitative evaluation methodol-
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Table 10. Evaluating the presented supervised explainable CP-ADS methodology

against the identified key-requirements

Requirements This Methodology...

Type of Exp.
Overall Model Successfully generated

Individual Predictions Future work

Human-friendliness

Real-system behavior Reflects the real-system

Contrastive Future work

interpretability vs. completeness User can adjust complexity

Exp. medium Textual or visual Textual

Evaluation
Quantitative A methodology presented

Qualitative Future work

ogy is presented. The presented methodology used systematically introduced input

perturbations based on the generated explanations and an accuracy score is obtained

from the CP-ADS for the perturbed input instances. The accuracy score can be used

as a quantitative measure of correctness of the explanations. However, the presented

methodology does not include a qualitative evaluation methodology that includes the

end-users. A strategy should be developed to involve end-users in the evaluation

process to determine how much the generated explanations help the users trust the

trained CP-ADS.

In addition to the above features, it should be noted that the presented method-

ology does not extend to explaining any classification based task in the real-world.

For instance, this methodology cannot be applied directly to explain image classifiers

at pixel-level. In order to use this method in such a problem, the features will need to

be in a higher order, so that the position of the object of interest is consistent in the

input space. Therefore, the presented method is not suitable for generating linguistic
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explanations in domains such as computer vision.

4.4.2 Extending the methodology

When considering the scalability of the system, in complex real-world scenarios

CPSs typically consist of very high dimensional data (E.g. sensor readings from a

thermo-chemical plant). In such cases, explanations based on individual features can

be incomprehensible. As a solution, input features can be grouped into categories

(or a hierarchy of categories) as a preprocessing step. Then, the explanations can be

derived using the input feature categories instead of using individual features. The

grouping of features are highly domain dependent and the end-user could be heavily

involved.

A qualitative evaluation strategy is essential for deploying this methodology in

the field. The goal of the evaluation process is to identify whether the presented

explanation methodology actually help the end-users trust the trained CP-ADS. This

could be achieved by running randomized control trials with a end-user group. One

or multiple questionnaires could be designed to gauge the end-users’ trust in the sys-

tem. One portion of the user group can be shown the system and it in action in a

simulated environment without the explanations and asked to answer the question-

naire, whereas the other group would be given the system, and the explanations. The

results of the questionnaire(s) could gauge the effectiveness of the derived explana-

tions. Further, these evaluations can help expand the list of desired requirements and

identify problem/user specific requirements.

4.5 Conclusions and Future Work

This chapter presented a methodology for generating explanations of a trained,

supervised ANN-based CP-ADS—referred to as NN-ADS. The methodology focused
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on deriving explanations about what the ANN had learned about each anomaly-type

(concept) in its training phase. The derived explanations were presented to the user

in terms of linguistic concept descriptions. In addition to the explanation methodol-

ogy, this chapter presented a methodology for validating the generated explanations.

Input instances were intentionally perturbed using the derived explanations and the

NN-ADS’s responses to those perturbed examples were used to validate the system.

The methodologies were tested in several experiments. The results from the validation

step empirically verified the validity of the generated explanations. Furthermore, the

presented explainable CP-ADS system was evaluated against the requirements iden-

tified in Chapter 3 and the limitations of the method were discussed. Three main

limitations were identified: 1) individual prediction explanations are not generated,

2) explanations are not contrastive, 3) no qualitative evaluation strategy designed.

Further, it was identified that the presented method would create too complex ex-

planations for very-high dimensional spaces, and the methodology will not apply to

domains where the object of interest is not static in the feature space, e.g. com-

puter vision. Methodologies were proposed to generate contrastive explanations and

to adapt explanations to very-high dimensional spaces as future work.
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CHAPTER 5

EXPLAINING UNSUPERVISED NEURAL NETWORKS BASED

ANOMALY DETECTION

In general, pattern recognition tasks are dominated by supervised learning algorithms

[84], [85]. However, the main drawback of these state-of-the-art pattern recognition

algorithms is that they depend on the availability of large labeled datasets. The

scarcity of labeled data in the real world, due to the cost of acquiring sufficiently

large datasets is a major hurdle to deploy supervised ANNs in the real world [86], [87].

Therefore, any suite of algorithms aimed at the industry, should consider unsupervised

learning techniques to leverage abundantly available unlabeled data [87], [88], [89].

CPSs generate massive amounts of data are and unsupervised learning techniques can

be used to learn behavioral patterns in CPSs.

Unsupervised learning in neural networks is mainly used to learn better repre-

sentation from raw data [90]. Learning happens through non-linear approximations

between raw data and their reconstructions using methods such as auto-encoders [91].

One of the unsupervised neural network algorithms that have proven its usability in

pattern recognition is Self-Organizing Maps (SOMs) [92]. SOMs have been used in a

multitude of real-world applications for learning patterns in unlabeled data [93], [94].

However, the main drawback of the SOM is its inability to learn features with

multiple layers of abstraction like ANNs [95], [96], [97]. In this work, a multi-layered

SOM architecture, named Deep Self-Organizing Maps (DSOM) is presented for learn-

ing CPS behavioral patterns. The main advantage of the presented algorithm is that

it adds the capability of high-level feature abstraction to the single layer SOM. This
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chapter presents the algorithm details, how to explain the DSOM and experimental

details on its pattern recognition capability and explanation capability.

This chapter first introduces single layer SOMs and the learning algorithm of a

SOM. Second, the idea of DSOM, its architecture and the algorithm for learning the

behavioral patterns of a CPS using the DSOM is presented. Third, the explainability

of the algorithm is discussed. Next, the methodology for visually and linguistically

explaining the patterns learned by the DSOM is presented. Then, experiments and

results are shown to demonstrate the pattern recognition and explanation method-

ologies. Finally, the chapter is concluded with the main findings and possible next

steps.

5.1 Self-Organizing Maps

The Self-Organizing Map (SOM) algorithm was developed in by Kohonen [98],

[92]. SOM is a neural network algorithm that employs unsupervised learning to re-

arrange (re-organize) its structure to mimic the topological properties of data. It

is frequently used as a dimensionality reduction and a data compression tool. The

SOM is a very popular technique for exploratory data analysis [99], [100]. The SOM

is capable of mapping high-dimensional data distributions onto low-dimensional dis-

tributions while preserving the most important topological relationships of input data

[101]. SOMs have been used in various engineering applications for anomaly detec-

tion [93], [101], system identification [102], [103], time-series analysis [94], [104], [105],

speech recognition, robotics and process control [103, 106], [107–113]

5.1.1 Training Self-Organizing Maps

SOM uses unsupervised “winner-takes-all” (WTA) competitive learning and co-

operative adaptation to adjust itself to the topological properties of the input dataset.
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Fig. 18. Self-Organizing Map displayed in the output space (a), and in the input space

adapted to a 2D distribution of data points (b)

The SOM consists of a topological grid of neurons typically arranged in 1D or 2D

lattice [114]. Each neuron has a position in input space as well as a fixed position in

output space. The fixed grid defines the spatial neighborhood of each neuron. Each

neuron maintains a synaptic weight vector ~w, with the dimensionality of the input

space. The input dataset consists of input patterns that can be denoted as ~d. The

structure of a 2D SOM is depicted in Figure 18. First, all neurons are first randomly

initialized and then iteratively adapted based on the training set of input data. The

training process can be described in several steps as follows [114]:

Step 1 – Initialization: Randomly initialize all synaptic weight vectors of the neu-

rons.

Step 2 – Sampling: Select a random input pattern from the training dataset.

Step 3 – Competitive Learning: Find the Best Matching Unit (BMU) for the

current input instance ~d. The BMU the neuron with the minimum Euclidean
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distance between its synaptic weight vector and the ~w:

BMU(~d) = argmin
k
‖~(d)− ~wk‖, k = 1, 2, . . . , K (5.1)

where, BMU(~d) is the BMU of the input instance ~d, ‖ · ‖ operator denotes the

Euclidian distance norm, and K is the number of neurons in the SOM.

Step 4 - Cooperative Updating: Update the synaptic weight vectors of all neu-

rons in SOM using the cooperative update rule:

~wk(t+ 1) = ~wk(t) + α(t) ∗ hk,BMU(~d)(t) ∗ (~d− ~wk(t)) (5.2)

where, t denotes the current epoch, α is the learning rate and hk,BMU(~d) is

the degree of membership of the unit to the defined neighborhood centered at

BMU(~d). The neighborhood function is typically implemented as a Gaussian

function centered at the selected wining neuron. Its amplitude applied to neuron

k is calculated as follows:

hk,BMU(~d) = e
‖~d−~w‖
2σ2 (5.3)

The neighborhood size is determined by the σ. In order to enforce convergence,

the size of neighborhood is reduced by decreasing the parameter σ. Typically,

the exponential decay rule is applied. The learning rate controls the rate of

adaptation of individual neurons. Like the size of the neighborhood function,

its value also exponentially decays with the elapsed training time.

Step 5 Convergence Test: Until a specified convergence criterion is met go to

Step 2.

Once the training process is completed, the number of times each neuron k was

70



selected as the BMU is stored as NBMU,k:

K∑
k=1

NBMU,k = M (5.4)

where K is the number of neurons and M is the total number of data points. This

value was calculated after the convergence of the SOM.

The relatively simple unsupervised learning algorithm of SOMs together with the

visualization and feature reduction capabilities, make them an attractive algorithm

for real-world applications, where labeled data are scarce. The ability to mimic the

topological properties of the dataset, leads to the SOM producing a generalized repre-

sentation of the data distribution, i.e. clustering the dataset [92], [115]. Further, the

SOM has the capability of mapping a high-dimensional dataset to a low dimensional

grid, making SOMs powerful tools for visualizing high dimensional data [103], [97,

116, 117]. Other advantages of SOMs include understandability [118], [106], ease of

optimization [119], and better capability of revealing overlapping structures in clus-

ters compared to traditional clustering methods [120]. These capabilities make SOMs

a very useful tool for exploratory data analysis.

As mentioned, the major drawback of SOMs is its limited capability of high-level

feature abstraction due to the shallow structure [95]. One of the recent attempts at

alleviating this limitation was to explore a deep architecture of SOMs, named Deep

Self-Organizing Maps (DSOM) by Liu et al. [117]. The authors tested the DSOM on

the MNIST dataset and were able to achieve a better classification accuracy compared

to the single layer SOM. Since DSOM architecture uses the same learning mechanism

as SOMs, it inherits all the advantages of SOMs mentioned above. However, the

authors of [117] explored a supervised learning algorithm with DSOM and thus relied

on the availability of labeled data. An unsupervised DSOM architecture has the fol-

lowing main advantages: 1) the ability to leverage unlabeled datasets, 2) hierarchical

71



Kernel
Stride

Input
Image

Hidden Layer2Input Layer Hidden Layer1 Output Layer

Output
SOM

Output
SOM

SOM
Phase

SOM
Phase

Sampling
Phase

Sampling
Phase

Fig. 19. The multi-layered Deep Self-Organizing Map

feature abstraction based unsupervised learning, and 3) the ability to deploy without

special hardware [96].

5.2 Deep Self-Organizing Maps

The concept of Deep Self-Organizing Maps was initially proposed to provide the

SOM with high-level feature abstraction capability [117]. The DSOM is a multi-

layered architecture which consists of an input layer, hidden layers, and an output

layer.

DSOMs were initially designed by merging the concepts of SOMs and Convo-

lution Neural Networks (CNNs). SOMs provide the underlying learning mechanism

to DSOM whereas the high-level feature abstraction process in DSOM is inspired by

Convolutional Neural Networks (CNNs). In CNNs, in each hidden layer, each unit

(neuron) receives inputs from a subset of units in the preceding layer (local receptive

fields/patch) [84]. The lower-level features learned in the preceding layer are com-

bined in the current hidden layer to generate higher-level features. This idea was

incorporated into the DSOM architecture so that higher-level layers are capable of

learning more abstract information than its preceding layer.

We proposed an improved version of the proposed architecture of the initially

proposed Deep SOM in our previous work [64, 96, 97]. The learning methodology
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was improved in two ways: 1) the learning algorithm was made completely unsuper-

vised and 2) the architecture was modified to learn features of different resolutions

in parallel in a single hidden layer. This algorithm was initially proposed for pat-

tern recognition in images [64]. The algorithm was modified to be explainable and

usable for the CP-ADS domain. First, the architecture proposed for image pattern

recognition is presented. Then, the explainability and modification of algorithm is

presented.

5.2.1 Architecture

This section discusses the architecture of the algorithm we presented for image

pattern recognition. This is necessary background to discuss the algorithm used for

CP-ADS. The DSOM consists of an input layer, hidden layers, and an output layer. It

should be noted that, since DSOM uses the notion of the local-receptive fields, inputs

are structured as a 2-D image. When using numerical data, such as CPS sensors, the

data need to be restructured into a 2-D format to be fed into the DSOM. This can

be viewed as a re-sampling of the feature space in the learning process.

Input Layer: Forwards the input images to the DSOM

Hidden Layer: Hidden layer consists of parallel layers. Each parallel layer consists

of two phases: 1) SOM phase and 2) sampling phase. In the SOM phase, each

input record is segmented into subsets of smaller feature spaces (patch). Then,

each patch is sent to its own SOM unit. Each SOM finds the best matching

unit for the input patch using the learning algorithm discussed in the previous

section.

In the sampling phase, two sampling processes take place. First, a feature map

for each parallel layer. In order to create the feature map, BMUs for each image
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Fig. 20. The proposed architecture of the Deep Self-Organizing Map

74



patch is combined into a 2D grid. Second, those feature maps are combined to

create a single feature map. This single feature map acts as the input for the

next hidden layer.

Output Layer: The output layer of the proposed DSOM consists of a single SOM.

It receives the output from the sampling phase of the last hidden layer. This

representation contains the extracted abstract and pertinent information for

classification.

The presented algorithm uses different sized patches (multi-scaled patches) in

parallel SOM layers of the hidden layers. It has been shown that multiscale patch

approaches can be used to good effect in improving classification accuracy by extract-

ing complementary information in other classification algorithms [121–123]. Figure

20 shows an example DSOM architecture with two parallel layers, where the sizes of

patches in the parallel layers are different from each other.

The above modification enables the algorithm to learn feature spaces of different

sizes and resolutions by using different map sizes and patch sizes in the parallel layers.

We hypothesized that this ability will lead to improved pattern recognition capability

and robustness to noise.

5.2.2 Training Algorithm

Training algorithm of the DSOM is presented in Table 11. Similar to the SOM,

weights of the network are randomly initialized. In a hidden layer, the SOM phase

consists of P parallel SOM layers with P different patch sizes. For each patch size,

the number of patches along one dimension is calculated as follows:

Nmap = ceil
(M −K

S

)
+ 1 (5.5)
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where ceil(·) calculates the smallest integer upper, M is the pixel width/height of

the input image X ( M ∗M image), K is the width/height of the patch (K ∗K patch)

and S is the stride of the patch. Therefore, for a 2-D input, Nmap ∗Nmap number of

patches are created form the input image for each patch size, i.e. Nmap∗Nmap number

of SOMs are created for each parallel layer.

First, in all the parallel SOM layers, the BMU selection for its respective patches

is carried out using the SOM learning algorithm discussed earlier in the chapter.

Then, the sampling process is carried out for each parallel SOM layer. Therefore,

P feature maps are created. The subroutine of the parallel layer is given in Table

12. Then, the P parallel feature maps are combined to create a single feature map.

This subroutine is given in Table 13. In this, parallel feature maps are converted

into one-dimensional arrays and concatenated into a single array. Then, the resultant

array is reshaped to a 2D grid which acts as the input image to the next hidden layer.

After the processing, the hidden layers, the combined feature map generated from

the last hidden layer acts as the input to the output SOM layer which consists of a

single SOM. The output SOM BMU is found SOM using the SOM learning algorithm.

This process is carried out for all the input patterns for a single epoch and is repeated

for the desired number of epochs or until a specific convergence criterion is met.

5.3 Explainability of Deep Self-Organizing Maps

This section analyses the explainability of the DSOM algorithm we presented for

image classification. If the DSOM is to be adapted to CP-ADS domain, the algorithm

needs to be explainable.

As mentioned in Chapter 3, the explanations presented to the user should be

presented in terms of the real system, as it’s the end-users’ domain. Therefore, when

input data are processed through multiple layers, there should be a way to trace the
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Table 11. Algorithm for training the Deep Self-Organizing Map

Algorithm: DSOM Training

Inputs: Data (X), Number of hidden layers (L), Number of Parallel layers (P )

Output: Trained DSOM

1: Random Weight initialization

2: for each epoch e do

3: for number of training samples do

4: x← pick random input record from X

5: for each hidden layer l do

6: featureMapList← empty list of length P

7: for each parallel SOM layer p do

8: featureMapList[p]← ParallelLayer(x)

9: end for

10: x← CombinedSampling(featureMapList)

11: end for

12: OutputSOM ← Find BMU for x using SOM learning

13: end for

14: end for
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Table 12. Subroutine for processing a parallel layer in the Deep Self-Organizing Map

Subroutine: ParallelLayer

Inputs: Input record (x), Number of patches (p)

Output: Sampled feature map

1: featureMap← empty list of length p

2: for each patch x‘ do:

3: indexx ← the location of x‘ w.r.t. x

4: BMUx‘ ← get BMU index for x‘ on corresponding SOM

5: featureMap[index]← BMUindex

6: end for

Table 13. Subroutine for generating the combined sampling feature map in the Deep

Self-Organizing Map

Subroutine: CombinedSampling

Inputs: List of feature maps from each parallel layer (featureMapList)

Output: Combined feature map

1: comFeatureMap← Append featureMapList to a single list

2: l← length of comFeatureMap

3: if
√
l /∈ N fo; N = {1, 2, 3, 4, ...}

4: Use zero-padding on comFeatureMap until
√
l ∈ N

5: CFM ← Reshape comFeatureMap to a 2D vector of size
√
l ∗
√
l

6: return CFM
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output back to the inputs. This is especially necessary when abstract features are

being learned in the hidden layers. Then, the contribution of each input feature can

be quantified, resulting in an explanation of why a certain output is reached by the

network.

As mentioned, the goal of explaining in an unsupervised CP-ADS context is

to understand the data. In a single layer SOM, the neurons of the SOM acts as a

generalized representation of the training-data, where each neuron is a representation

of the training instances it was selected as the BMU. Therefore, the ‘knowledge’ of

the SOM is stored in the neuron weights of the SOM. When we draw a parallel to

the DSOM, the neurons of the output layer SOM is what contains the generalized

representations of the training data. However, unlike the single layer SOM, the DSOM

output layer is learning from abstract inputs and neurons represent a compressed

dimensional space. Therefore, it is necessary to trace back and map the compressed

dimensional space to the real-system data (the original input space).

In the presented DSOM algorithm, the inputs are processed through SOM and

sampling phases in each hidden layer. If we recall, the sampling phase takes the

indexes of the BMUs in the SOM phase to make up the abstract feature space. This

is a non-continuous transfer and it prevents from tracing the abstract features to the

previous layer. This is an obstacle in mapping the compressed feature space in the

output layer to the original input feature space. Since, it is required to generate

explanations in terms of the input feature space, this is an obstacle to explainability.

5.3.1 Modifying the Algorithm for Explainability

The explainability drawback can be fixed by either changing the algorithm to

preserve the original dimensionality of data through the layers, or by changing the

algorithm to process inputs through the layers with continuous transfer functions. In
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the first method, the output SOM contains the dimensionality of the original feature

space and thus the neurons can be used as generalized representations of the training

data. In the second method, the output SOM neurons are of a compressed feature

space but due to the continuous transfer functions in the hidden layer, the compressed

feature space can be mapped back to the original feature space.

In this work, the first method is implemented and the algorithm is modified to

preserve the original dimensionality. The modification is done in the sampling and

combined-sampling phases of the algorithm.

Modified Sampling layer: In the modified algorithm, the sampling layer sam-

ples the weight vector of the BMU instead of the index. Note that the weight vector of

the BMU has the same dimensionality as the input patch that the SOM is processing.

Therefore, the BMU weight is a generalized representation of that patch according

to the SOM. Once the BMU weight vectors are extracted from all the SOMs, they

can be used to reconstruct the original input dimensional space. It should be noted

that if the stride is not equal to the patch size, there is an overlap in input patches.

This should be considered when reconstructing the space. In this work, the weights

of overlapping regions are averaged in the reconstruction step. Figure 21 illustrates

the process of the sampling layer before and after the modification.

Modified combined sampling layer: Before, the combined sampling layer

received P features maps with BMU indexes. After the modification, the combined

layer receives P images of the size of the image. In this work, the combined sampled

feature map is the average across the P images.

5.4 Explaining Deep Self-Organizing Maps

This section presents the methodologies for explaining the identified Cyber-

Physical System behavioral patterns using the DSOM. Explanations are generated in
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Fig. 21. Modifying the Sampling layer to preserve the dimensionality through the hid-

den layers for explainability. (a) The sampling layer before the modification,

the feature map is the indexes of the BMUs, (b) sampling layer after the mod-

ification. The input space is reconstructed using the weights of the BMUs.
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two forms: 1) linguistic and 2) visual. The overall explanation framework is given in

Figure 22.

First, the unlabeled Cyber-Physical data are used to train a DSOM. In this step,

separate DSOMs can be used for cyber data and physical data or a combined data

can be used on a single DSOM, or three DSOMs could be deployed to learn cyber

behavior, physical behavior, and cyber-physical behavior respectively. In the rest of

the description, it is assumed that only one DSOM is trained to learn cyber-physical

behavior. Once the DSOM is trained, the trained output SOM is used to explain the

learned Cyber-Physical behavior.

Once the DSOM is trained, the output SOM neuron weight vectors can be con-

sidered as generalized representations of the training dataset. Therefore, the proposed

method identifies each neuron in the output SOM as a data point, thereby compress-

ing the number of data points used for explaining the CPS behavior. Since neurons

are a generalized representation of data, using the weight vectors of the neurons to ex-

plain the behavior makes the method more robust. However, since some neurons are

selected as the BMU more frequently than others, the number of times each neuron

was selected as a BMU needs to be considered in the explanation process. Therefore,

once the DSOM is trained, the training dataset is processed through the DSOM as

an inference step to count the number of times a neuron was selected as the BMU

(NBMU,k). This value is used as a weight in generating linguistic explanations.

Since the set of weight vectors of output SOM neurons can be used as generalized

representations of the dataset, the weight vectors are fed to a traditional clustering

algorithm to identify the clusters in the SOM weights. This clustering algorithm can

be chosen as seen fit to the application or through cross-validation. For instance,

K-Means clustering algorithm can be used as to identify a predefined set of clusters,

Fuzzy C-Means algorithm can be used to identify a fuzzified cluster space for the
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Fig. 22. Framework for explaining Deep Self-Organizing Maps

data, Gaussian Mixture Models can be used to identify a probabilistic cluster space,

and methods like DBSCAN can be used for density based clustering. Once the SOM

weights are clustered and the cluster distribution across the map is identified, the

visual and linguistic explanation of the CPS behavior are generated.

5.4.1 Explaining through Linguistic Descriptions

Similar to the previous chapter, linguistic summarization techniques are used

for generating the explanations of the CPS behavior. As mentioned in the previous

section, the weight vectors in the output SOM is clustered to assign a label to each

neuron. This, in turn, applies labels to every data point based on the label of its BMU.

The linguistic summaries are generated with respect to the clusters of neurons.

As with the previous chapter, all the features are fuzzified into a preset number of

fuzzy sets. For instance, the same fuzzy set configuration that is given in Figure 8(a)

can be used for fuzzification of features. It has to be noticed that the configuration

is completely adaptable to the application, feature values and the desired level of

precision of the explanations.

For each cluster, Yager linguistic summaries [73] can be used to identify input

features that show a clear pattern of behavior in the cluster. This results in a de-
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scription of the cluster with respect to individual features with clearly distinguishable

behavior. An example Yager type summary can be expressed as follows:

Q records have S y values (5.6)

Where Q is a quantifier, S is a property and y is the object. The above expla-

nation can be written in terms of fuzzy sets:

Sq recods have Sy y values (5.7)

Where Sq is the fuzzy set of the quantifier and Sy is the fuzzy set of the property.

For example, a potential summary of a cluster can look like, “most data records in

the cluster have high thermal capacity values”. The generated summary with fuzzy

sets to represent that would be as follows:

most datarecords have high “thermal − capacity” values (5.8)

SOMs tend to interpolate between the map units and thus the neurons in the

cluster boundaries can have little to no data points associated with them. In order

to take this factor into consideration, the quality assessment of a Yager summary is

modified to fit the DSOM based method as follows:

Tyager = µSq

[∑L
n=1 µSy(wl,y)×NBMU,l

D

]
(5.9)

Where, dt is the degree of truth of the summary, L is the number of neurons in the

DSOM output layer, D is the number of data points in the cluster and, wl,y is the

weight of neuron k for dimension i, and NBMU,l is the number of times neuron l was

selected as the best matching unit.
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5.4.2 Explaining through Visualization

One of the main benefits of the SOM-based methods is the ability to visualize

high-dimensional data. The visualizations combined with the linguistic explanations

presented in the previous section can be used to explain the Cyber-Physical behavior

space. Similar to the linguistic explanations, output layer SOM of the DSOM is used

to generate the visualizations. The following visualization techniques can be used to

visually explain the DSOM [124]. It should be noted that these techniques are well

established techniques to visualize data and are not contributions of this dissertation.

Hitmaps: Hitmap visualizations show the 2D grid of the DSOM output layer with

the colors representing the NBMU,k values. Usually, a grayscale map is used to

show the dispersion of data across the map. If proper clusters are identified,

data should be grouped in certain areas of the map with space in between

groups.

Component plane visualizations: Each component plan, i.e. the behavior of each

input feature can be visualized with respect to the DSOM. The spread of values

of an input feature can be identified using these visualizations. Further, these

enable a user to identify correlated input features given the cluster space.

Distance matrices: Distance matrices are popularly used for presenting the clusters

in a SOM. The most popular distance matrix type is the U-Matrix [99]. In the U-

Matrix, each square of the map contains the average distance to its neighbors.

The U-Matrix can be used to observe the separation between the identified

clusters using the clustering algorithm.

Manifold Projections: t-Distributed Stochastic Neighbor Embedding (t-SNE) is

a dimensionality reduction technique [125]. t-SNE can be used to map the
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weight vectors of the trained DSOM to a 2D or a 3D space to visually observe

the separation of clusters.

5.5 Experimental details: Analysis of Pattern Recognition Capability

This section discusses the details of the experiments conducted on the presented

DSOM algorithm to investigate its pattern recognition capability. Since DSOM is a

novel algorithm, establishing its pattern recognition capability was important prior

to explanation. The experimentation conducted on its explainability is presented in

the next section.

The presented DSOM algorithm was tested on several datasets and it was com-

pared against other state-of-the-art unsupervised learning algorithms on the same

datasets.

5.5.1 Datasets

Three datasets were used for experimentation: 1) MNIST [126], 2) Gas Sensor

Array Drift (GSAD) dataset [127], and 3) Smart Phone dataset for Human Activity

Recognition (SP-HAR) [128]. For all datasets, balanced subsets of the data records

were selected to alleviate the class imbalance problem.

The MNIST dataset contains images of hand-written characters (digits from

0-9), each 28× 28 pixels in size. The complete MNIST dataset contains 55000 train

images and 10000 test images. We used a significantly smaller training set of 3000

images was used to reduce the classifier training time. The complete testing set (10000

images) was used to test the accuracy of the algorithms.

The GSAD dataset contains 13910 records collected from 16 chemical sensors

from a gas delivery facility. The dataset contains data about 6 gases collected over

36 months. We considered only the first 21 months were used to avoid concept drift
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in data. Since each data record consists of 121 dimensions, each data record was

arranged to an 11× 11 image.

The SP-HAR dataset consists of 10299 smartphone sensor records of 30 subjects

performing six different daily living activities. A balanced dataset of 4792 records was

selected and the train/test split of 3300/1492 was chosen. Since the dataset contained

561 dimensions, the features were reduced to the closest square number (529) using

information gain based feature selection. Then, each record was re-arranged into a

23× 23 image.

5.5.2 Hyper-Parameter and Model Selection

As mentioned, we hypothesize that due to the parallel architecture of the pre-

sented DSOM, a shallower model compared to the original proposed deep SOM can

be used to achieve the same pattern recognition capability. This results in a reduction

of serial operations, resulting in reduced training time. In order to test this, for all the

tests, a the original deep SOM with two hidden layers and an the novel DSOM with

only one hidden layer were implemented. In the DSOM hidden layer, two parallel

layers were implemented.

5.5.3 Experimental Results: Pattern Recognition Accuracy

In this section, to quantify the capability of pattern recognition, the labels of

the test datasets were used. Each neuron of the output layer of DSOM was assigned

a class label based on the frequency which it was picked as the winning neuron for

each class. The class with the highest frequency was assigned as the label of the

output neuron. Then, the classification accuracy scores were calculated for the three

datasets. In addition, the generalization capability was analyzed by adding noise to

the test data, and observing the change in classification accuracy. The presented
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DSOM was compared to the originally proposed DSOM in [117]. All accuracy scores

are given in 14. It should be noted that these results were published in [64].

MNIST

The original deep SOM was able to achieve the best test accuracy of 83.468%

while the presented DSOM was able to achieve 87.118 % (A 3.65% improvement).

In terms of generalization capability, there was no significant difference in classi-

fication accuracy for both models until the noise level increased beyond 20%. Despite

the drop in accuracy beyond 20% noise, it was observed that the presented DSOM

consistently outperformed the original DSOM. Further, the presented method showed

a lower generalization error at all the noise levels.

GSAD

DSOM achieved 57.24% as its best classification accuracy while presented DSOM

achieved 72.73% (A 15.49% improvement).

Generalization capability: It was observed that presented DSOM outperformed

DSOM at all noise levels. Further, the presented DSOM showed a lower generaliza-

tion error at noise levels of 0%-20%.

SP-HAR

Original DSOM was able to achieve a maximum test accuracy of 57.88% while

presented DSOM was able to achieve 64.36 (6.48% improvement).

In terms of generalization capability, presented DSOM outperformed the original

DSOM at all noise levels except at 40% and 60% . Further, presented DSOM showed

a lower generalization error for 0%-10% noise levels.
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Table 14. Classification Accuracy comparison between the original DSOM and the

DSOM presented in this dissertation. This establishes the pattern recogni-

tion capability of the presented methodology

Dataset Model Test Acc.
Test Acc. for Noise Level (%)

2 5 10 20 40 50 60

MNIST
Original 83.47 83.37 83.14 83.14 82.39 74.46 62.0 20.37

Presented 87.12 87.12 87.15 86.88 86.51 79.91 69.34 23.63

GSAD
Original 57.24 49.76 45.20 38.08 32.59 27.12 23.84 21.88

Presented 72.73 66.82 61.19 50.01 37.86 28.59 24.12 22.45

SP-HAR
Original 57.88 56.90 55.60 52.58 44.81 27.17 19.52 17.78

Presented 64.36 63.22 61.90 58.22 48.51 24.14 19.69 17.35

5.6 Experimental Details of Explainabile DSOMs

This section presents the experiments conducted to test the explanation pre-

sented explanation methodology for the DSOM. This section uses the KDD-NSL

dataset used in Chapter 4. Similarly to experiments conducted in Chapter 4, only

data from Normal communication, Denial-of-Service and Probe were used in the test-

ing. Several test cases were carried out to examine the explanation methodology. 1)

Using all data to train the DSOM 2) Using only normal data and DoS to train the

DSOM, 3) Using only normal data and probe data to train the DSOM. As mentioned,

once the DSOM is trained, the output layer SOM is subjected to the explanation pro-

cess to discover the learned behavior patterns.

Test case 1: Using all the data

In this test case, all the data from three classes were used to train the DSOM.

Then, the output layer SOM was clustered using K-Means. Then, each cluster was
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explained using the presented methodology.

Figures 23 and 25 shows the cluster label map and the feature behavior across

the map for clustering the data into two clusters. This choice was made to have an

unsupervised analysis akin to binary classification in Chapter 4. Upon examining

Figure 25 it can be noticed that several features are behaving similarly and corre-

lating with the cluster map. Tables 5.6 and 5.6 shows the top 20 Yager summaries

generated for the clusters ‘0’ and ‘1’ respectively. It can be seen that, two clusters

don’t accurately represent the pattern in the data appropriately. The top summaries,

while true, are summaries that indicate general behavior across the SOM. Therefore,

the number of clusters that the SOM is clustered is crucial to ensure useful explana-

tion. This can be viewed as a hyper-parameter that needs to be optimized through a

form of cross-validation.

Figure 24 shows the cluster distribution when clustered three clusters. It can

be observed that the cluster map correlates more with certain features when the

granularity is increased. Tables 5.6 and 5.6 show the top 20 yager summaries in cluster

‘1’ and ‘2’ respectively. It can be seen that the yager summaries corresponding to

high error rates appear in cluster ‘2’. Furthermore, it can be seen that certain features

show the same behavior across multiple clusters. This means that the features are not

contributing heavily to differentiate between the clusters. Therefore, those features

can be filtered out when the final cluster descriptions are generated.

Test case 2: Using Normal and DoS data

In this test, the Probe data were not used to train the DSOM. Figures 26 and 27

show the cluster distribution across the DSOM and the feature behavior across the

DSOM. It can be seen that features such as same srv rate show a correlation to the

cluster map. Note that same srv rate was a feature that was highly influential for

detecting DoS attacks in Chapter 4.
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Fig. 23. Cluster distribution of the output SOM of the DSOM trained with all data.

Weights of the SOM clustered to two classes using K-Means
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Fig. 24. Cluster distribution of the output SOM of the DSOM trained with all data.

Weights of the SOM clustered to three classes using K-Means
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Fig. 25. Distribution of feature values across the DSOM. Trained using all data
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Table 15. All data KDD-NSL, two-class clustering Yager Linguistic Summaries for

cluster label ‘0’

Quantifier Feature Feature Value Truth

almost all land low 1

almost all urgent low 1

almost all hot low 1

almost all num compromised low 1

almost all root shell low 1

almost all su attempted low 1

almost all num root low 1

almost all num shells low 1

almost all num access files low 1

almost all is guest login low 1

almost all srv diff host rate low 1

almost all dst host srv diff host rate low 1

almost all is host login low 0.999958

almost all num file creations low 0.999958

almost all num failed logins low 0.999874

almost all dst host same srv rate low 0.999786

almost all dst bytes low 0.999714

almost all logged in low 0.998906

almost all srv count low 0.998904

almost all dst host srv count low 0.991329
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Table 16. All data KDD-NSL, clustering with two clusters Yager Linguistic Summaries

for cluster label ‘1’

Quantifier Feature Feature Value truth

almost all diff srv rate low 1

almost all dst host srv serror rate low 0.999933

almost all srv error rate low 0.999908

almost all serror rate low 0.999907

almost all dst host serror rate low 0.999906

almost all src bytes low 0.999429

almost all dst bytes low 0.999316

almost all dst host srv rerror rate low 0.998422

almost all dst host rerror rate low 0.997876

almost all srv rerror rate low 0.997732

almost all rerror rate low 0.997448

almost all srv count low 0.994397

almost all same srv rate high 0.993734

almost all wrong fragment low 0.99222

almost all is host login low 0.987672

almost all num compromised low 0.986643

almost all dst host srv diff host rate low 0.986028

almost all num access files low 0.985798

almost all num failed logins low 0.985685

almost all num root low 0.98564
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Table 17. All data KDD-NSL, clustering with three clusters, Yager Linguistic Sum-

maries for cluster label ‘1’

Quantifier Feature Feature Value truth

almost all duration low 1

almost all src bytes low 1

almost all dst bytes low 1

almost all land low 1

almost all wrong fragment low 1

almost all urgent low 1

almost all hot low 1

almost all num failed logins low 1

almost all num compromised low 1

almost all root shell low 1

almost all su attempted low 1

almost all num root low 1

almost all num file creations low 1

almost all num shells low 1

almost all num access files low 1

almost all is host login low 1

almost all is guest login low 1

almost all rerror rate low 1

almost all srv rerror rate low 1

almost all srv diff host rate low 1
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Table 18. All data KDD-NSL, clustering with three clusters, Yager Linguistic Sum-

maries for cluster label ‘2’

Quantifier Feature Feature Value truth

almost all land low 1

almost all urgent low 1

almost all hot low 1

almost all logged in low 1

almost all num compromised low 1

almost all root shell low 1

almost all su attempted low 1

almost all num root low 1

almost all num shells low 1

almost all num access files low 1

almost all is guest login low 1

almost all srv count low 1

almost all srv diff host rate low 1

almost all dst host same srv rate low 1

almost all is host login low 0.999854

almost all dst host count high 0.987903

almost all srv rerror rate high 0.986946

almost all rerror rate high 0.986625

almost all dst host srv rerror rate high 0.986511

almost all dst host rerror rate high 0.985315
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Fig. 26. Test Case 2: Cluster distribution of the output SOM of the DSOM trained

with Normal and DoS data. Weights of the SOM clustered to two classes

using K-Means

Tables 5.6 and 5.6 show the top 20 Yager summaries for the two clusters.

Test Case 3: Using Normal and Probe data

In this test case, DoS were not used in training the DSOM. The goal was to

identify the behavior differences between Normal and Probe Figures 28 and 29 show

the cluster distribution and feature behavior.

5.7 Evaluating the Features of the Explanation Methodology

Similar to the previous chapter, the presented methodology’s features were eval-

uated against the requirements presented in Chapter 3. Table 23 summarizes the

features of the presented unsupervised explainable CP-ADS methodology.

In terms of the types of explanations, the presented methodology only generates

overall model explanations. A novel methodology needs to be developed to explain
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Fig. 27. Test Case 2: Distribution of feature values across the DSOM. Trained with

Normal and DoS data
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Table 19. DoS and Normal data KDD-NSL, clustering with two clusters, Yager Lin-

guistic Summaries for cluster label ‘0’

Quantifier Feature Feature Value truth

almost all dst host srv serror rate low 0.999498

almost all same srv rate high 0.998967

almost all srv error rate low 0.997574

almost all dst host srv rerror rate low 0.997478

almost all serror rate low 0.997452

almost all dst host diff srv rate low 0.996753

almost all is guest login low 0.996403

almost all dst host serror rate low 0.996369

almost all dst host rerror rate low 0.996007

almost all duration low 0.995521

almost all num file creations low 0.99542

almost all is host login low 0.995073

almost all dst host srv diff host rate low 0.994933

almost all srv rerror rate low 0.994551

almost all rerror rate low 0.994431

almost all num failed logins low 0.99123

almost all land low 0.990816

almost all urgent low 0.990002

almost all root shell low 0.990002

almost all su attempted low 0.990002
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Table 20. DoS and Normal data KDD-NSL, clustering with two clusters, Yager Lin-

guistic Summaries for cluster label ‘1’

Quantifier Feature Feature Value truth

almost all src bytes low 1

almost all dst bytes low 1

almost all land low 1

almost all wrong fragment low 1

almost all urgent low 1

almost all num failed logins low 1

almost all logged in low 1

almost all num compromised low 1

almost all root shell low 1

almost all su attempted low 1

almost all num root low 1

almost all num file creations low 1

almost all num access files low 1

almost all srv diff host rate low 1

almost all dst host count high 1

almost all dst host srv diff host rate low 1

almost all dst host srv count low 0.999691

almost all num shells low 0.999602

almost all dst host same srv rate low 0.999346

almost all srv count low 0.997363
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Table 21. Probe and Normal data KDD-NSL, clustering with two clusters, Yager Lin-

guistic Summaries for cluster label ‘1’

Quantifier Feature Feature Value truth

almost all wrong fragment low 1

almost all urgent low 1

almost all hot low 1

almost all num failed logins low 1

almost all num compromised low 1

almost all root shell low 1

almost all su attempted low 1

almost all num root low 1

almost all num shells low 1

almost all num access files low 1

almost all is host login low 1

almost all is guest login low 1

almost all srv count low 1

almost all dst host srv serror rate low 0.998945

almost all dst host serror rate low 0.998677

almost all land low 0.976562

almost all num file creations low 0.974245

almost all srv error rate low 0.974107

almost all logged in low 0.972524

almost all serror rate low 0.969225

101



Table 22. Probe and Normal data KDD-NSL, clustering with two clusters, Yager Lin-

guistic Summaries for cluster label ‘0’

Quantifier Feature Feature Value truth

almost all duration low 1

almost all src bytes low 1

almost all dst bytes low 1

almost all land low 1

almost all wrong fragment low 1

almost all dst host srv serror rate low 1

almost all num file creations low 0.999881

almost all diff srv rate low 0.999879

almost all hot low 0.999817

almost all is guest login low 0.999331

almost all num failed logins low 0.999154

almost all su attempted low 0.999154

almost all is host login low 0.999154

almost all num access files low 0.999143

almost all urgent low 0.999129

almost all dst host rerror rate low 0.999105

almost all num compromised low 0.999097

almost all dst host srv diff host rate low 0.999042

almost all srv count low 0.998957

almost all num root low 0.998889
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Fig. 28. Test Case 3: Cluster distribution of the output SOM of the DSOM trained

with Normal and Probe data. Weights of the SOM clustered to two classes

using K-Means

individual clustering decisions made by the presented algorithm. This is a future

research area proposed in this work. As with the supervised case, the explanations

of individual predictions should be easily and quickly understood given the time

sensitivity.

In terms of human friendliness, the presented methodology is capable of gener-

ating explanations that are connected to the real-system behavior and helps the user

understand the behavioral patterns of the CPS. In terms of completeness, the user

can control the number of summaries are used to describe the CP behavior. However,

more rigorous method of defining completeness should be defined and this requires

further research. Furthermore, currently generated explanations are not contrastive

and requires further research for generating contrastive explanations for unsupervised

learning.

The explanations are generated in textual and visual form and thus, is commu-
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Fig. 29. Test Case 3: Distribution of feature values across the DSOM. Trained with

Normal and Probe data
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Table 23. Evaluating the presented unsupervised explainable CP-ADS methodology

against the identified key-requirements

Requirements This Methodology

Type of Explanation
Overall Model Successfully generated

Individual Predictions Future work

Human-friendliness

Real-system behavior Reflects the real-system

Contrastive Future work

interpretability vs. completeness Partially achieved

Explanation medium Textual or visual Textual and visual

Evaluation
Quantitative Partially achieved with quality measures

Qualitative Partially achieved with visual validation

nicated in an understandable medium. In terms of evaluation, the presented quality

measures are the only quantitative evaluation method presented in this dissertation

and it is necessary to define a more rigorous one. The adversarial example genera-

tion methodology presented in Chapter 4 could be adapted to the unsupervised case,

to generate perturbed examples to ‘trick’ the trained DSOM. The generated visual-

izations, the cluster map and the feature behavior heat-maps, can be viewed as a

qualitative evaluation of the linguistic summaries. However, a more rigorous strategy

involving end-users should be defined. Therefore, both evaluation requirements are

only partially fulfilled.

5.8 Conclusions and Future work

This chapter presented a novel unsupervised neural network algorithm that can

identify different behavioral patterns of a CPS. Unsupervised algorithms are used in

tandem with supervised algorithms in CP-ADS to help identify previously-unseen in-

trusions/anomalies. The presented methodology is a multi-layered (deep) version of
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Kohonen’s Self-Organizing Map (DSOM). The presented DSOM algorithm retains all

the advantages of SOMs and alleviates the limited feature abstraction capability of

single-layer SOMs. The novel DSOM algorithm was implemented on several datasets

and compared against other unsupervised neural networks. Experimental results ver-

ified the pattern recognition capability of DSOM. However, it was observed that the

presented learning algorithm didn’t support explainability. Therefore, the learning al-

gorithm modified to preserve the dimensionality of the data throughout the network.

Experimental results showed that the modification enabled deriving explanations of

the trained DSOM and explaining the learned CP behavior of a CPS. It should be

noted that the presented methodology does not support individual prediction expla-

nation due to the noncontinuous transfer functions in the hidden layers.

The features of the presented methodology were evaluated against the require-

ments of explainability identified in Chapter 3 and future research needs were iden-

tified. In terms of the unsupervised learning algorithm, it will be further modified to

enable continuous propagation of inputs throughout the network, enabling individ-

ual prediction explanations. In terms of explanations, future research would consider

generating contrastive explanations and designing rigorous evaluation strategies, both

quantitative and qualitative.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter presents the overall conclusions of the presented work and proposes

directions for future work.

6.1 Final Conclusions

The main objective of this dissertation was developing explainable, ANN-based

CP-ADS methodologies, with the corollary of helping human operators trust ANN-

based systems. The main objective was broken down into three sub-objectives: 1)

identification of key requirements an explainable CP-ADSs should satisfy, 2) devel-

opment of explainable supervised CP-ADS, and 3) development of explainable unsu-

pervised CP-ADS.

Identification of explainability requirements: This dissertation argued that

identifying context/domain-based desired features/requirements of explainability is

an essential first step in the research. This step is often overlooked in existing ex-

plainable machine learning research. Furthermore, this dissertation argued that it is

not possible to define domain-agnostic requirements for explainability since the ex-

plainability requirements are domain specific. Therefore, a set of requirements was

discussed taking into account the unique properties of the domain. The requirements

were discussed in terms of four factors: 1) what is explained, 2) when it is explained,

3) to whom it is explained, and 4) how it is explained. The identified requirements,

though necessary, are not sufficient. To specify sufficient requirements, the end-users

have to play a crucial part, and a collaboration between machine learning and social
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science research is important. However, the presented set of requirements provides a

base that can be expanded and refined. Further, the presented set of requirements

lay the groundwork for building a framework to evaluate explainable algorithms.

This dissertation considered two cases of CP-ADSs: 1) supervised and 2) unsu-

pervised, i.e. ANN-based classification and clustering. It was important to consider

both cases for two reasons: 1) it is common to use both types of CP-ADSs in tandem

to detect anomalies, and 2) from an explainability perspective, the approach and

goals of explanation are different for supervised and unsupervised algorithms.

Explaining Supervised CP-ADS: This dissertation presented a methodology

for deriving summaries of what the ANN classifier has learned about each anomaly

type. The presented explanation methodology was successful in generating overall

model explanations for the ANN classifier. Further, this dissertation presented a

methodology for quantitatively validating the derived summaries. The validation

methodology empirically validated the generated summaries. The presented method-

ology was evaluated against the set of explainability requirements identified in this

dissertation. The methodology satisfied 5 out the 8 requirements. The disserta-

tion proposed steps toward satisfying the other three–namely, individual prediction

explanation, contrastive explanation generation and qualitative evaluation of the ex-

planations. Steps were proposed to generate contrastive explanations and perform

qualitative evaluations.

The summaries generated in this work help end-users gain insight into what

the ANN-based CP-ADS has learned, and how it detects anomalies. This enables

qualitative evaluation of the ANN-based CP-ADS. Before generating explanations,

the evaluation was purely quantitative with accuracy scores. Accuracy scores enable

answering the question “Is the CP-ADS doing the right thing?”. Explanations make

it possible to answer the question “Is the CP-ADS doing the right thing for the right
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reasons?”.

Explaining Unsupervised CP-ADS: This dissertation presented a novel ANN

clustering methodology. It was designed to embed hierarchical feature abstraction

capabilities to the single-layer Self-Organizing Maps (SOMs). The presented usu-

pervised ANN, named Deep Self-Organizing Maps (DSOMs), was trained to learn

Cyber-Physical behavioral patterns in a CPS using unlabeled data. The pattern

recognition capability of the DSOM was established empirically through extensive

experimentation. In addition to the DSOM, this dissertation presented a method-

ology for explaining the learned Cyber-Physical behavior to the user. The explana-

tions summarized the feature behaviors (real-system behavior) that were dominant

in the identified clusters. As with the supervised case, the presented methodology

was evaluated against the explainability requirements from Chapter 3. The presented

methodology satisfied three requirements and partially satisfies another three. The

user’s ability to adjust the interpretability vs completeness, and the evaluation of

explanations—both, quantitative and qualitative—should be more rigorously defined

and augmented. Further, the current methodology does not satisfy two requirements–

namely, individual prediction explanation and contrastive explanation generation.

The explanations generated in this work enable an end-user to understand the

different CP behaviors a system goes through and understand how each input fea-

ture (typically a system component) behave in that system operational state. Since

visualizations and linguistic explanations are generated together, the user has the

capability of validating the linguistic summaries visually.

Developing explainable CP-ADS systems is a process that requires research ef-

forts from different areas to converge. This dissertation contributed with foundational

methodologies for explaining supervised and unsupervised CP-ADS and laid out the

foundation for an evaluation strategy by identifying explainability-requirements in
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the domain of CP-ADS. Therefore, the contributions of this dissertation serve as a

framework that can be expanded to further improve explainable ANN-based methods

for CP-ADS. Furthermore, it should be noted that the overall approach of identifying

requirements of explainability around the specified four criteria can be transferred to

other problem domains that require explainable machine learning models.

6.2 Future Research Directions

There are several possible future research directions for the presented work. This

section attempts to enumerate several immediate next steps to further develop the

presented work.

In terms of generated explanations, one important improvement is deriving con-

trastive explanations. The derived explanations provide insight into the factors that

influence CP-ADS’s decision toward a certain intrusion type. It doesn’t provide in-

sight into what factors influence the decision toward the intrusion type over another

class. Lipton pointed out that humans tend to reason using not just ”why this?”

but also ”why not something else?” [129]. Therefore, the explanation methodology

presented in Chapter 4 needs to be extended to support this. First, the negative

relevance scores that were ignored in the work can be used to summarize the feature

behavior that negatively influences the detection of a certain intrusion type. These

summaries can be combined with the positive influence summaries to generate con-

trastive explanations. Second, the IF-THEN summary evaluation methodology using

adversarial examples presented in Chapter 4 can be extended to generated counter-

factual explanations. Counterfactual explanations answer the question ”how would

the predictions change if feature behavior was different?” [130]. In the adversarial

examples based method, the feature behavior was changed to empirically prove that

the derived explanations are correct. This principle can be extended to strengthen
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the contrastive explanations with counterfactual explanations.

The unsupervised learning algorithm presented in Chapter 5 (DSOM) employs

winner-take-all (WTA) competitive learning to learn the weights of the self-organizing

neurons. While this helps organize the neuron grid to mimic the topological properties

of the data, the current method of picking the ”winning neuron” or the best-matching-

unit, doesn’t allow a continuous propagation of the input features through the multiple

layers. If a continuous propagation could be achieved, gradient-based optimization

methodologies could be utilized in conjunction with WTA to potentially improve the

learning capabilities of the DSOM. There have been several attempts to combine

WTA with gradient descent methodologies with Kohonen’s SOMs [131], [132]. These

studies could be extended to the DSOM algorithm to improve it further.

In the current explanations methodology presented in Chapter 5, it is possible to

generate only model-level explanations that are capable of summarizing the clusters.

With the current methodology, it is not possible to observe how each input feature

contributes to the clustering decisions through the layers. As mentioned above, the

current WTA methodology propagates the data with non-continuous transfer func-

tions preventing the back-propagation of relevance similar to the LRP method used in

Chapter 4. If the learning algorithm is modified as mentioned above, a new relevance

propagation method could be defined to identify how each feature contributes to each

clustering decision.

The methodologies presented in this dissertation focused on deriving summaries

of the overall knowledge of neural networks. Further, the explanations were deliv-

ered to the user in a linguistic format. However, not much was discussed about

explanations of individual predictions made by the CP-ADS. While there are sev-

eral saliency-mapping techniques available in the literature (for the supervised case),

this is a non-trivial task as responding to an alert from the CP-ADS is an extremely
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time-sensitive matter. Hence, it requires explanations that could be easily and quickly

grasped. Therefore, devising strategies to optimally present explanations of individual

predictions is another multi-disciplinary research direction. If successful, it could help

end-users trust the predictions made by CP-ADS and make more informed actions.

The intersection of human-factors and machine learning could be explored to develop

methodologies to quickly convey the most important reasons behind a prediction.
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