368 research outputs found

    Cortical resting state circuits: connectivity and oscillations

    Get PDF
    Ongoing spontaneous brain activity patterns raise ever-growing interest in the neuroscience community. Complex spatiotemporal patterns that emerge from a structural core and interactions of functional dynamics have been found to be far from arbitrary in empirical studies. They are thought to compose the network structure underlying human cognitive architecture. In this thesis, we use a biophysically realistic computer model to study key factors in producing complex spatiotemporal activation patterns. For the first time, we present a model of decreased physiological signal complexity in aging and demonstrate that delays shape functional connectivity in an oscillatory spiking-neuron network model for MEG resting-state data. Our results show that the inclusion of realistic delays maximizes model performance. Furthermore, we propose embracing a datadriven, comparative stance on decomposing the system into subnetworks.Últimamente, el interĂ©s de la comunidad cientĂ­fica sobre los patrones de la continua actividad espontanea del cerebro ha ido en aumento. Complejos patrones espacio-temporales emergen a partir de interacciones de un nĂșcleo estructural con dinĂĄmicas funcionales. Se ha encontrado que estos patrones no son aleatorios y que componen la red estructural en la que la arquitectura cognitiva humana se basa. En esta tesis usamos un modelo computacional detallado para estudiar los factores clave en producir los patrones emergentes. Por primera vez, presentamos un modelo simplificado de la actividad cerebral en envejecimiento. TambiĂ©n demostramos que la inclusiĂłn del desfase de transmisiĂłn en un modelo para grabaciones magnetoencefalogrĂĄficas del estado en reposo maximiza el rendimiento del modelo. Para ello, aplicamos un modelo con una red de neuronas pulsantes (’spiking-neurons’) y con dinĂĄmicas oscilatorias. AdemĂĄs, proponemos adoptar una posiciĂłn comparativa basada en los datos para descomponer el sistema en subredes

    Alpha and gamma-band oscillations in MEG-data: networks, function and development

    Get PDF
    Die Adoleszenz, d.h. die Reifungsphase des Jugendlichen zum Erwachsenen, stellt einen zentralen Abschnitt in der menschlichen Entwicklung dar, der mit tief greifenden emotionalen und kognitiven VerĂ€nderungen verbunden ist. Neure Studien (Bunge et al., 2002; Durston et al., 2002; Casey et al., 2005; Crone et al., 2006; Bunge and Wright, 2007) machen deutlich, dass sich die funktionelle Architektur des Gehirns wĂ€hrend der Adoleszenz grundlegend verĂ€ndert und dass diese VerĂ€nderungen mit der Reifung höherer kognitiven Funktionen in der Adoleszenz assoziiert sein könnten. Messungen des Gehirn-Volumens mit Hilfe der Magnet-Resonanz-Tomographie (MRT) zum Beispiel zeigen eine nicht-lineare Reduktion der grauen und eine Zunahme der weißen Substanz wĂ€hrend der Adoleszenz (Giedd et al., 1999; Sowell et al., 1999, 2003). Des weiteren treten in dieser Zeit VerĂ€nderungen in exzitatorischen und inhibitorischen Neurotransmitter-Systemen auf (Tseng and O’Donnell, 2005; Hashimoto et al., 2009). Zusammen deuten diese Ergebnisse darauf hin, dass wĂ€hrend der Adoleszenz ein Umbau der kortikalen Netzwerke stattfindet, der wichtige Konsequenzen fĂŒr die Reifung neuronaler Oszillationen haben könnte. Im Anschluss an eine EinfĂŒhrung im Kapitel 2, fasst Kapitel 3 der vorliegenden Dissertation die Vorbefunde bezĂŒglich entwicklungsbedingter VerĂ€nderungen in der Amplitude, Frequenz und Synchronisation neuronaler Oszillationen zusammen und diskutiert den Zusammenhang zwischen der Entwicklung neuronaler Oszillationen und der Reifung höhere kognitiver Funktionen wĂ€hrend der Adoleszenz. Ebenso werden die anatomischen und physiologischen Mechanismen, die diesen VerĂ€nderungen möglicherweise zu Grunde liegen könnten, theoretisch vorgestellt. Die in Kapitel 4-6 vorgestellten eigenen empirischen Arbeiten untersuchen neuronale Oszillationen mit Hilfe der Magnetoencephalographie (MEG), um die FrequenzbĂ€nder und die funktionellen Netzwerke zu charakterisieren, die mit höheren kognitiven Prozessen und deren Entwicklung in der Adoleszenz assoziiert sind. Hierzu wurden drei Experimente durchgefĂŒhrt, bei denen MEG-AktivitĂ€t wĂ€hrend der Bearbeitung einer ArbeitsgedĂ€chtnisaufgabe und im Ruhezustand aufgezeichnet wurde. Die Ergebnisse dieser Experimente zeigen, dass Alpha Oszillationen und Gamma-Band AktivitĂ€t sowohl task-abhĂ€ngig als auch im Ruhezustand gemeinsam auftreten. DarĂŒber hinaus ergĂ€nzen die vorliegenden Untersuchungen Vorarbeiten, indem sie eine Wechselwirkung zwischen beiden FrequenzbĂ€ndern aufgezeigt wird, die als ein Mechanismus fĂŒr das gezielte Weiterleiten von Informationen dienen könnte. Die in Kapitel 6 vorgestellten Entwicklungsdaten weisen weiterhin darauf, dass in der Adoleszenz spĂ€te VerĂ€nderungen im Alpha und Gamma-Band stattfinden und dass diese VerĂ€nderungen involviert sind in die Entwicklung der ArbeitsgedĂ€chtnis-KapazitĂ€t und die Entwicklung der FĂ€higkeit, Distraktoren zu inhibieren. Abschliessend werden in Kapitel 7, die in dieser Dissertation vorgestellten Arbeiten, aus einer ĂŒbergeordneten Perspektive im Gesamtzusammenhang diskutiert

    Multi-modal and multi-model interrogation of large-scale functional brain networks

    Get PDF
    Existing whole-brain models are generally tailored to the modelling of a particular data modality (e.g., fMRI or MEG/EEG). We propose that despite the differing aspects of neural activity each modality captures, they originate from shared network dynamics. Building on the universal principles of self-organising delay-coupled nonlinear systems, we aim to link distinct features of brain activity - captured across modalities - to the dynamics unfolding on a macroscopic structural connectome. To jointly predict connectivity, spatiotemporal and transient features of distinct signal modalities, we consider two large-scale models - the Stuart Landau and Wilson and Cowan models - which generate short-lived 40 Hz oscillations with varying levels of realism. To this end, we measure features of functional connectivity and metastable oscillatory modes (MOMs) in fMRI and MEG signals - and compare them against simulated data. We show that both models can represent MEG functional connectivity (FC), functional connectivity dynamics (FCD) and generate MOMs to a comparable degree. This is achieved by adjusting the global coupling and mean conduction time delay and, in the WC model, through the inclusion of balance between excitation and inhibition. For both models, the omission of delays dramatically decreased the performance. For fMRI, the SL model performed worse for FCD and MOMs, highlighting the importance of balanced dynamics for the emergence of spatiotemporal and transient patterns of ultra-slow dynamics. Notably, optimal working points varied across modalities and no model was able to achieve a correlation with empirical FC higher than 0.4 across modalities for the same set of parameters. Nonetheless, both displayed the emergence of FC patterns that extended beyond the constraints of the anatomical structure. Finally, we show that both models can generate MOMs with empirical-like properties such as size (number of brain regions engaging in a mode) and duration (continuous time interval during which a mode appears). Our results demonstrate the emergence of static and dynamic properties of neural activity at different timescales from networks of delay-coupled oscillators at 40 Hz. Given the higher dependence of simulated FC on the underlying structural connectivity, we suggest that mesoscale heterogeneities in neural circuitry may be critical for the emergence of parallel cross-modal functional networks and should be accounted for in future modelling endeavours

    A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks

    Get PDF
    Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP

    Dwelling Quietly in the Rich Club: Brain Network Determinants of Slow Cortical Fluctuations

    Full text link
    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously -- elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala, and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow time scales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding "feeder" cortical regions show unstable, rapidly fluctuating dynamics likely crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.Comment: 35 pages, 6 figure

    Mean-Field Models for EEG/MEG: From Oscillations to Waves

    Get PDF
    Neural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population synchrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves

    Dynamics of biologically informed neural mass models of the brain

    Get PDF
    This book contributes to the development and analysis of computational models that help brain function to be understood. The mean activity of a brain area is mathematically modeled in such a way as to strike a balance between tractability and biological plausibility. Neural mass models (NMM) are used to describe switching between qualitatively different regimes (such as those due to pharmacological interventions, epilepsy, sleep, or context-induced state changes), and to explain resonance phenomena in a photic driving experiment. The description of varying states in an ordered sequence gives a principle scheme for the modeling of complex phenomena on multiple time scales. The NMM is matched to the photic driving experiment routinely applied in the diagnosis of such diseases as epilepsy, migraine, schizophrenia and depression. The model reproduces the clinically relevant entrainment effect and predictions are made for improving the experimental setting.Die vorliegende Arbeit stellt einen Beitrag zur Entwicklung und Analyse von Computermodellen zum VerstĂ€ndnis von Hirnfunktionen dar. Es wird die mittlere AktivitĂ€t eines Hirnareals analytisch einfach und dabei biologisch plausibel modelliert. Auf Grundlage eines Neuronalen Massenmodells (NMM) werden die Wechsel zwischen Oszillationsregimen (z.B. durch pharmakologisch, epilepsie-, schlaf- oder kontextbedingte ZustandsĂ€nderungen) als geordnete Folge beschrieben und ResonanzphĂ€nomene in einem Photic-Driving-Experiment erklĂ€rt. Dieses NMM kann sehr komplexe Dynamiken (z.B. Chaos) innerhalb biologisch plausibler Parameterbereiche hervorbringen. Um das Verhalten abzuschĂ€tzen, wird das NMM als Funktion konstanter EingangsgrĂ¶ĂŸen und charakteristischer Zeitenkonstanten vollstĂ€ndig auf Bifurkationen untersucht und klassifiziert. Dies ermöglicht die Beschreibung wechselnder Regime als geordnete Folge durch spezifische Eingangstrajektorien. Es wird ein Prinzip vorgestellt, um komplexe PhĂ€nomene durch Prozesse verschiedener Zeitskalen darzustellen. Da aufgrund rhythmischer Stimuli und der intrinsischen Rhythmen von NeuronenverbĂ€nden die EingangsgrĂ¶ĂŸen hĂ€ufig periodisch sind, wird das Verhalten des NMM als Funktion der IntensitĂ€t und Frequenz einer periodischen Stimulation mittels der zugehörigen Lyapunov-Spektren und der Zeitreihen charakterisiert. Auf der Basis der grĂ¶ĂŸten Lyapunov-Exponenten wird das NMM mit dem Photic-Driving-Experiment ĂŒberein gebracht. Dieses Experiment findet routinemĂ€ĂŸige Anwendung in der Diagnostik verschiedener Erkrankungen wie Epilepsie, MigrĂ€ne, Schizophrenie und Depression. Durch die Anwendung des vorgestellten NMM wird der fĂŒr die Diagnostik entscheidende Mitnahmeeffekt reproduziert und es werden Vorhersagen fĂŒr eine Verbesserung der Indikation getroffen

    Understanding the effects of cortical gyrification in tACS: insights from experiments and computational models

    Get PDF
    The alpha rhythm is often associated with relaxed wakefulness or idling and is altered by various factors. Abnormalities in the alpha rhythm have been linked to several neurological and psychiatric disorders, including Alzheimer's disease. Transcranial alternating current stimulation (tACS) has been proposed as a potential tool to restore a disrupted alpha rhythm in the brain by stimulating at the individual alpha frequency (IAF), although some research has produced contradictory results. In this study, we applied an IAF-tACS protocol over parieto-occipital areas to a sample of healthy subjects and measured its effects over the power spectra. Additionally, we used computational models to get a deeper understanding of the results observed in the experiment. Both experimental and numerical results showed an increase in alpha power of 8.02% with respect to the sham condition in a widespread set of regions in the cortex, excluding some expected parietal regions. This result could be partially explained by taking into account the orientation of the electric field with respect to the columnar structures of the cortex, showing that the gyrification in parietal regions could generate effects in opposite directions (hyper-/depolarization) at the same time in specific brain regions. Additionally, we used a network model of spiking neuronal populations to explore the effects that these opposite polarities could have on neural activity, and we found that the best predictor of alpha power was the average of the normal components of the electric field. To sum up, our study sheds light on the mechanisms underlying tACS brain activity modulation, using both empirical and computational approaches. Non-invasive brain stimulation techniques hold promise for treating brain disorders, but further research is needed to fully understand and control their effects on brain dynamics and cognition. Our findings contribute to this growing body of research and provide a foundation for future studies aimed at optimizing the use of non-invasive brain stimulation in clinical settings

    Next-generation neural mass and field modeling

    Get PDF
    The Wilson-Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. Here we consider a neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event related syn-chronisation and de-synchronisation. This derived mean field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter , in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson-Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex valued population synchrony measure. To highlight the usefulness of this next generation Wilson-Cowan style model we deploy it in a number of neurobiological contexts, providing understanding of the changes in power-spectra observed in EEG/MEG neuroimaging studies of motor-cortex during movement, insights into patterns of functional-connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex
    • 

    corecore