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Abstract
Neural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. 
They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological 
considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses 
seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit 
an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form 
to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population syn-
chrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised 
spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can 
be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves.

Keywords Neural mass · Neural field · Brain rhythms · Synchrony · Waves · Synaptic coupling · Gap-junction coupling

Introduction

The use of mathematics has many historical successes, espe-
cially in the fields of physics and engineering, where math-
ematical concepts have been put to good use to address chal-
lenges far beyond the context in which they were originally 
developed. Physicists in particular are well aware of the “The 
Unreasonable Effectiveness of Mathematics in the Natural 
Sciences” (Wigner 1960). One recent breakthrough in the 
field of large-scale brain modelling has come about because 
of advances in obtaining exact mean-field reductions of cer-
tain classes of coupled oscillator networks via the so-called 
Ott–Antonsen (OA) ansatz (Ott and Antonsen 2008). This 

is especially important because the mathematical step from 
microscopic to macroscopic dynamics has proved elusive 
in all but a few special cases. Indeed, many of the current 
models used to describe coarse-grained neural activity, such 
as the Wilson-Cowan (Wilson and Cowan 1972), Jansen-Rit 
(Jansen and Rit 1995), or Liley (Liley et al. 2002) model are 
phenomenological in nature. Nonetheless they have been 
used extensively to study and explore the potential mecha-
nisms that coordinate brain rhythms underlying cognitive 
processing and large scale neuronal communication (Fries 
2005). For example, such neural mass models have recently 
been used to understand cross-frequency coupling between 
brain areas (Jedynak et al. 2015), understand how patterns 
of functional connectivity may arise in brain imaging studies 
(Forrester et al. 2020), and are a key ingredient of the Virtual 
Brain project that aims to deliver the first open simulation of 
the human brain based on individual large-scale connectiv-
ity (Sanz-Leon et al. 2015). Moreover they have been used 
to uncover how hyper- and hypo-synchrony of neuronal 
network firing may underpin brain dysfunction including 
epilepsy (Wendling et al. 2016).

Making use of the OA reduction Luke and colleagues 
(Luke et  al. 2013; So et  al. 2014) were able to obtain 
exact asymptotic dynamics for networks of pulse-coupled 
theta-neurons (Ermentrout and Kopell 1986). Although 
the theta-neuron model is simplistic, it is able to capture 
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some of the essential features of cortical firing pattern, 
such as low firing rates. As such, this mean-field reduc-
tion is a candidate for a new type of cortical neural mass 
model that makes a stronger connection to biological real-
ity than the phenomenological models mentioned above. 
The theta-neuron is formally equivalent to the quadratic 
integrate-and-fire (QIF) model (Latham et al. 2000), a 
mainstay of many studies in computational neuroscience, 
e.g. Dipoppa and Gutkin (2013). Interestingly an alterna-
tive to the OA approach has been developed by Montbrió 
et al. (2015) that allows for an equivalent reduction of 
networks of pulse-coupled QIF neurons, and establishes 
an interesting duality between the two approaches. In the 
OA approach the complex Kuramoto order parameter 
is a fundamental macroscopic variable and the popula-
tion firing rate is a function of the degree of dynamically 
evolving within-population synchrony. Alternatively in 
the approach of Montbrió et al. average voltage and fir-
ing rate couple dynamically to describe emergent popula-
tion behaviour. Given that both approaches describe the 
same overall system exactly (at least in the thermodynamic 
limit of an infinite number of neurons) there must be an 
equivalence between the two macroscopic descriptions. 
Montbrió et al. have further shown that this relationship 
takes the form of a conformal map between the two physi-
cal perspectives. This correspondence is very useful when 
dealing with different types of neuroimaging modality. For 
example, when looking at power spectrograms from elec-
tro- or magneto-encephalograms (EEG/MEG), it is use-
ful to contemplate the Kuramoto order parameter since 
changes in coherence (synchrony) of spike trains are likely 
to manifest as changes in power. On the other hand the 
local field potential recorded by an extracellular electrode 
may more accurately reflect the average population volt-
age. A model with a perspective on both, simply by a 
mathematical change of viewpoint, is not only useful for 
describing experimental data, it may also help the brain 
imaging community develop new approaches that can 
exploit a non-intuitive link between seemingly disparate 
macroscopic variables. Importantly, for this to be relevant 
to the real world some further features of neurobiology 
need to be incorporated, as purely pulsatile coupling is not 
expected to capture all of the rich behaviour seen in brain 
oscillations and waves. In particular synaptic processing 
and gap-junction coupling at the level of localised popu-
lations of neurons, and axonal delays at the larger tissue 
scale are all well known to make a major contribution to 
brain rhythms, both temporal and spatio-temporal (Nunez 
and Srinivasan 2005; Buzsáki 2011). Fortunately, these 
biological extensions, that generalise the initial theta-neu-
ron and QIF network models with pulsatile coupling, are 
natural and easily accommodated. Work in this area has 
already progressed, e.g. with theoretical work by Laing 

(2015) and Pietras et al. (2019) on how to treat gap junc-
tions, and by Coombes and Byrne (2019) on the inclusion 
of realistic synaptic currents (governed by reversal poten-
tials and dynamic conductance changes). Recent work by 
Byrne et al. (2020) has also considered the inclusion of 
finite action potential speeds. In this paper we consider 
a synthesis of modelling work to date on developing a 
new class of mean-field models fit for use in complement-
ing neuroimaging studies, and present some new results 
emphasising the important role of local gap-junction cou-
pling in shaping brain rhythms and waves.

Even without the inclusion of gap junctions a first major 
success of this so-called next generation neural mass and 
field modelling approach has been in explaining the phe-
nomenon of beta-rebound. Here a sharp decrease in neu-
ral oscillatory power in the 15 Hz EEG/MEG beta band is 
observed during movement followed by an increase above 
baseline on movement cessation. Standard neural mass 
models cannot readily reproduce this phenomenon, as they 
cannot track changes of synchrony within a population. On 
the other hand the next-generation models treat population 
coherence as fundamental, and are able to track and describe 
changes in synchrony in a way consistent with movement-
related beta decrease, followed by an increase above baseline 
upon movement termination (post-movement beta rebound) 
(Byrne et al. 2017). Moreover, these models are capable 
of explaining the abnormal beta-rebound seen in patients 
with schizophrenia (Byrne et al. 2019). Beta decrease and 
rebound are special cases of event related synchrony/de-
synchrony (ERS/ERD), as measured by changes in power 
at given frequencies in EEG/MEG recordings (Pfurtscheller 
and da Silva 1999), and as such this class of model clearly 
has wider applicability than standard neural mass models 
that cannot describe ERD/ERS because their level of coarse-
graining does not allow one to interrogate the degree of 
within-population synchrony. By merging this new dynami-
cal model of neural tissue with anatomical connectome data 
it has also been possible to gain a perspective on whole brain 
dynamics, and preliminary work in Byrne et al. (2020) has 
given insight into how patterns of resting state functional-
connectivity can emerge and how they might be disrupted 
by transcranial magnetic stimulation.

Despite the success of the next generation models that 
include synaptic processing it is well to recognise the impor-
tance of direct electrical communication between neurons 
that can arise via gap junctions. Without the need for recep-
tors to recognise chemical messengers gap junctions are 
much faster than chemical synapses at relaying signals. The 
communication delay for a chemical synapse is typically in 
the range 1–100 ms, while that for an electrical synapse may 
be only about 0.2 ms. Gap junctions have long been thought 
to be involved in the synchronisation of neurons (Alva-
rez et al. 2002; Bennet and Zukin 2004) and are believed 
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to contribute to both normal (Hormuzdi et al. 2004) and 
abnormal physiological brain rhythms, including epilepsy 
(Velazquez and Carlen 2000; Martinet et al. 2017).

In the “Neural Mass Model” section we introduce the 
mathematical description for the microscopic spiking cell 
dynamics as a network of QIF neurons with both synaptic 
and gap-junction coupling. We present the corresponding 
mean-field ordinary differential equation model with a focus 
on the bifurcation properties of the model under variation of 
key parameters, including the level of population excitability 
and the strength of gap-junction coupling. A simple cortical 
model built from two sub-populations, one excitatory and 
the other inhibitory, is shown to produce robust oscillations 
via a Hopf bifurcation. The derivation of the macroscopic 
equations of motion is deferred to a technical appendix. This 
new class of neural mass model is used as a building block 
in “Neural Field Model” section to construct a continuum 
model of cortical tissue in the form of an integro-differential 
neural field model. Here, long-range connections are medi-
ated by action potentials giving rise to space-dependent 
axonal delays. For computational ease we reformulate the 
neural field as a brain-wave partial differential equation, 
and pose it on idealised one- and two-dimensional spatial 
domains. A Turing analysis is performed to determine the 
onset of instabilities that lead to novel patterned states, 
including bulk oscillations and periodic travelling waves. 
These theoretical predictions, again with details deferred to 
a technical appendix, are confirmed against direct numerical 
simulations. Moreover, beyond bifurcation we show that the 
tissue model can support rich rotating structures, as well as 
localised states with dynamic cores. Finally, in the “Discus-
sion” section we outline further applications and extensions 
of the work presented in this paper.

Neural Mass Model

Here we describe a new class of neural mass model that can 
be derived from a network of spiking neurons. The micro-
scopic dynamics of choice is the QIF neuron model, which 
is able to replicate many of the properties of cortical cells, 
including a low firing rate. In contrast to the perhaps more 
well studied linear or leaky IF model it is also able to repre-
sent the shape of an action potential. This is important when 
considering electrical synapses, whereby neurons directly 
“feel” the shape of action potentials from other neurons to 
which they are connected. An electrical synapse is an electri-
cally conductive link between two adjacent nerve cells that 
is formed at a fine gap between the pre- and post-synaptic 
cells known as a gap junction and permits a direct electrical 
connection between them. They are now known to be ubiq-
uitous throughout the human brain, being found in the neo-
cortex (Galarreta and Hestrin 1999), hippocampus (Fukuda 

and Kosaka 2000), the inferior olivary nucleus in the brain 
stem (Sotelo et al. 1974), the spinal cord (Rash et al. 1996), 
the thalamus (Hughes and Crunelli 2007) and have recently 
been shown to form axo-axonic connections between excita-
tory cells in the hippocampus (on mossy fibers) (Hamzei-
Sichani et al. 2007). It is common to view the gap junction 
as nothing more than a channel that conducts current accord-
ing to a simple ohmic model. For two neurons with voltages 
vi and vj the current flowing into cell i from cell j is propor-
tional to vj − vi . This gives rise to a state-dependent interac-
tion. In contrast, chemical synaptic currents are better mod-
elled with event-driven interactions. If we denote the mth 
firing time of neuron j by Tm

j
 then the current received by 

neuron i if connected to neuron j would be proportional to ∑
m∈ℤ s(t − Tm

j
) , where s is a temporal shape that describes 

the typical rise and fall of a post synaptic response. This is 
often taken to be the Green’s function of a linear differential 
operator Q, so that Qs = � where � is a delta-Dirac spike. 
Throughout the rest of this paper we shall take 
s(t) = �2t exp(−�t)H(t) , where H is a Heaviside step func-
tion. In this case the operator Q is second order in time and 
given by

where �−1 is the time-to-peak of the synapse.
We are now in a position to consider a heterogeneous net-

work of N quadratic integrate-and-fire neurons with voltage 
vi and both gap-junction and synaptic coupling:

i = 1,… ,N , with vr ≤ vi ≤ vth . Here, firing times are defined 
implicitly by vj(Tm

j
) = vth . The network nodes are subject to 

reset: vi → vr at times Tm
i

 . The parameter � is the membrane 
time constant. The strengths of gap-junction and synaptic 
coupling are �v and �s respectively. The background inputs 
�i are random variables drawn from a Lorentzian distribution 
with median �0 and half width � . The value of �0 can be 
thought of as setting the level of excitability, and � as the 
degree of heterogeneity in the network. The larger �0 is, the 
more neurons would fire if uncoupled, and the larger � is, the 
more dissimilar the inputs are. A schematic of a QIF network 
and its reduction to a neural field model is shown in Fig. 1, 
with details of the neural field formulation described in 
“Neural Field Model” section. 

The mean-field reduction of (2) can be achieved by 
using the approach of Montbrió et  al. (2015). This is 
described in detail in Appendix 1, and is valid for glob-
ally coupled cells in the thermodynamic limit N → ∞ . 
The network behaviour can be summarised by the 

(1)Q =
(
1 +

1

�

d

dt

)2

,

(2)𝜏 v̇i = 𝜂i + v2
i
+

𝜅v

N

N∑

j=1

(vj − vi) +
𝜅s

N

N∑

j=1

∑

m∈ℤ

s(t − Tm
j
),



39Brain Topography (2022) 35:36–53 

1 3

instantaneous mean firing rate R(t) (the fraction of neu-
rons firing at time t), the average membrane potential V(t) 
( = limN→∞ N−1

∑N

i=1
vi ), and the synaptic activity U(t). The 

synaptic activity U is driven by mean firing rate accord-
ing to QU = R , with the mean-field dynamical equations 
for (R, V):

Interestingly this (R, V) perspective on population 
dynamics can be mapped to one that tracks the degree 
of within-population synchrony described by the complex 
Kuramoto order parameter Z according to the conformal 
map (Montbrió et al. 2015):

(3)𝜏Ṙ = −𝜅vR + 2RV +
𝛾

𝜋𝜏
,

(4)𝜏V̇ = 𝜂0 + V2 − 𝜋2𝜏2R2 + 𝜅sU.

where W∗ is the complex conjugate of W. The correspond-
ing dynamics for Z is given by equation (23) in Appendix 
1. Alternatively, one can evolve the model for (R, V, U) and 
then obtain results about synchrony |Z| by the use of (5).

The mean field model accurately describes the underlying 
spiking network (Fig. 2). A network of 1000 synaptically 
and electrically coupled QIF neurons (blue), as described by 
(2), was simulated and compared to the mean field dynamics 
(red), as described by (3) and (4). The finite size fluctuations 
are most apparent for the membrane potential V. However, 
the overall behaviour is similar. As expected, increasing the 
population size reduces the finite size fluctuations.

A previous instance of this model, without gap-junction 
coupling and with synaptic reversal potentials, was applied 
to describe beta-rebound, as seen in real MEG data (Byrne 
et al. 2017). Beta-rebound is a special case of event-related 
desynchronisation and synchronisation, whereby power in 
the beta band decreases at movement initiation and rebounds 
above baseline after movement termination. For our model, 
which does not incorporate synaptic reversal potentials, 
we find that gap-junction coupling is important for beta-
rebound. In particular, our results suggest that there is a 
delicate balance between too little gap-junction coupling 
and too much gap-junction coupling (Fig. 3). A temporally 
filtered square pulse of length 400 ms and magnitude 3 μA 
was applied to the model at t = 0 ms to mirror a movement. 
For intermediate values of gap-junction coupling, there is 
a reduction in beta power at movement onset (0 ms), fol-
lowed by a sharp increase in power shortly after movement 
termination (500 ms). The transient increase in beta band 
power presents with high within population synchrony, con-
firming the link between rebound and synchronisation. With 
weak gap-junction coupling, the system does not oscillate, 
and as such, beta rebound is not possible. With strong gap-
junction coupling, the system oscillates, but after movement 
termination the system returns, almost immediately, to its 
original behaviour. The population is overly synchronised 
at steady state, and as such, a transient of high synchrony is 
not possible.

Single Population: Bifurcation Analysis

We first consider a single excitatory population ( 𝜅s > 0 ). 
In contrast to a scalar rate model with self-feedback 
(as an exemplar of a single population model), the next 
generation model has at least two variables (to describe 
either synchrony Z, or the pair (R, V)) and thus is of high 
enough dimension to support oscillations in time (Fig. 4). 

(5)Z =
1 −W∗

1 +W∗
, W = ��R + iV ,

Fig. 1  Model schematic. At each point in a two-dimensional spatial 
continuum there resides a density of QIF neurons whose mean-field 
dynamics are described by the triple (R, V, U), where R represents 
population firing rate, V the average membrane potential, and U the 
synaptic activity. The non-local interactions are described by a ker-
nel w, taken to be a function of the distance between two points. The 
space-dependent delays arising from signal propagation along axonal 
fibres are determined in terms of the speed of the action potential c 
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Examining the profile of these oscillations, we observe 
that the peaks and troughs of the firing rate R and the syn-
chrony |Z| roughly coincide. This indicates, rather unsur-
prisingly, that when a population is highly synchronised 
the population firing rate will be high.

As the strength of gap-junction coupling �v is decreased 
the system undergoes a Hopf bifurcation and oscillations dis-
appear (Fig. 5). Note that to the right of the Hopf bifurcation 
the amplitude and frequency of the oscillations increases 
with �v . Increasing the level of excitability �0 also leads to 
oscillatory behaviour. A continuation of the Hopf bifurcation 
in �v and �0 is shown for different values of � (Fig. 5). The 
system oscillates for parameter values to the right of these 
curves. Remembering that � sets the level of heterogeneity, 
we note the window for oscillations gets smaller as the het-
erogeneity of network is increased.

Excitatory‑Inhibitory Network: Bifurcation Analysis

The single population model can be easily extended to a two 
population network, consisting of an excitatory and an inhib-
itory population, labelled by E and I respectively. Synaptic 
coupling is present both within and between populations, 
while gap-junction coupling only exists between neurons in 
the same population. The augmented system of equations, 
describing the mean firing rate R and the average membrane 
potential V of each population, as well as 4 distinct synaptic 
variables U for each of the synaptic connections, is presented 
in Appendix 2.

The excitatory-inhibitory network possesses a rich rep-
ertoire of dynamics. For example, it is possible to generate 
bursts of high frequency and high amplitude activity at a 
slow burst rate (Fig. 6). This pattern of activity is typical 
in epileptic seizures, e.g. (Krishnan et al. 2013). Decreas-
ing the gap-junction coupling strengths �E

v
 and �I

v
 results in 

smoother lower amplitude oscillations, more in line with 
healthy brain oscillations. We note that �E

v
 and �I

v
 are not 

the only parameters that can change the profile of the oscil-
lations; reducing �E

0
 (the median background drive to the 

excitatory population) can also eradicate the seizure-like 
oscillations.

Next we examine the bifurcation structure of the 
excitatory-inhibitory network for different combinations 
of gap-junction coupling strengths �E

v
 and �I

v
 (Fig.  7). 

With no gap-junction coupling in either population ((a) 
�E
v
= �I

v
= 0 ), intermediate values of the median back-

ground drive to the inhibitory population �I
0
 result in oscil-

latory behaviour. Switching on the gap-junction coupling 
in the inhibitory population only ((b) �E

v
= 0 , �I

v
= 0.5 ), 

the amplitude of oscillation increases significantly for this 
branch of oscillatory solutions. An additional branch of 
oscillatory solutions emerges for low �I

0
 , with moderate 

amplitude oscillations for the firing rate of the inhibi-
tory population RI and low amplitude oscillations for the 
excitatory population RE . Interestingly, the two oscilla-
tory solutions co-exist for �I

0
≈ −7.5 to 2.5. Jansen and 

Rit (Jansen and Rit 1995) demonstrated that transitions 
between seizures and healthy brain activity could be 

Fig. 2  Validity of the mean-field reduction. A comparison of the 
mean-field dynamics (red) with the corresponding network of spiking 
neurons (blue). The top panel shows a raster plot for a sample of 100 
of the 1000 neurons in the network of synaptically and electrically 
coupled QIF neurons. Below are comparisons of the mean firing rate 
R, average membrane potential V and within population synchrony 
|Z| for the spiking network and mean field model. Parameter values: 
�0 = 2 , �

v
= 1 , �

s
= 1 , � = 16 , � = 0.5 , � = 0.5 . For the spiking net-

work simulations vr = −1000 and vth = 1000 , while in the mean field 
limit these are assumed to be −∞ and ∞ , respectively
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viewed as transitions between co-existing oscillatory 
solutions. A similar approach for the next generation neu-
ral mass model (without gap junctions) can be found in 
Byrne et al. (2020). Turning off the gap-junction coupling 
in the inhibitory population but switching it on for the 
excitatory population ((c) �E

v
= 0.5 , �I

v
= 0 ), does not affect 

the amplitude of the original branch of oscillatory solu-
tions. There is again an additional branch of oscillatory 

solutions, this time with very low amplitude RI oscillations 
(green/blue line at RI ∼ 0.7 ) and moderate amplitude oscil-
lations in RE (not shown). With gap junctions switched on 
in both populations ((d) �E

v
= �I

v
= 0.5 ), the 3 oscillatory 

solution branches exist. For moderate values of �I
0
 , there is 

a high amplitude oscillation, a moderate amplitude oscil-
lation (low amplitude oscillations in RE ) and a low ampli-
tude oscillation (moderate amplitude oscillations in RE).

(a) (b) (c)

Fig. 3  Beta rebound. Time course of the within population synchrony 
and synaptic current ( �

s
U )) and a time-frequency spectrogram of the 

synaptic current for different gap-junction coupling strengths when a 
temporally filtered square pulse of length 400 ms and magnitude 3 

μA was applied to the model (3)–(4). a Weak gap-junction coupling 
�
v
= 0.5 . b Intermediate gap-junction coupling �

v
= 1 . c Strong gap-

junction coupling �
v
= 1.5 . Parameter values: �0 = 1 , �

s
= 1 , � = 15 , 

� = 0.1 , � = 0.5

Fig. 4  Single population dynamics. a Oscillations in the population 
firing rate R (teal) and average membrane voltage V (yellow), b Cor-
responding oscillations in the complex Kuramoto order parameter 

Z = |Z|ei� , where |Z| reflects the degree of within-population syn-
chrony (green), and � a corresponding phase (red). Parameter values: 
�0 = 1 , �

v
= 1.2 , �

s
= 1 , � = 15 , � = 0.5 , � = 0.5
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(a) (b)

Fig. 5  Single population bifurcation diagrams. a A Hopf bifurcation 
is found with an increase in the strength of gap-junction coupling �

v
 , 

giving rise to limit cycle oscillations. Red (black) lines denote the sta-
ble (unstable) fixed point, while the green lines show the minimum 

and maximum of the oscillation. b A two parameter bifurcation dia-
gram in the (�

v
, �0)-plane tracing the locus of Hopf bifurcations for 

different values of � . Oscillations emerge to the right of each curve. 
Parameter values: �0 = 1 , �

s
= 1 , � = 15 , � = 0.5 , � = 0.5

Fig. 6  Excitatory-inhibitory network dynamics: Oscillations in a 
the excitatory population firing rate R

E
 (teal), and b in the average 

membrane potential V
E
 (yellow). Corresponding oscillations for the 

inhibitory population, c R
I
 and d V

I
 . Kuramoto order parameters for 

the excitatory population e Z
E
= |Z

E
|ei�E , |Z

E
| (green) and f �

E
 (red). 

Corresponding traces for g |Z
I
| and h �

I
 of the inhibitory popula-

tion. Parameter values: �E
0
= 5 , �I

0
= −3 , �E

v
= �I

v
= 0.5 , �EE

s
= 15 , 

�IE

s
= 25 , �EI

s
= −15 , �II

s
= −15 , �

E
= 1, �

I
= 1 , �

EE
= 0.2 , �

IE
= 0.1 , 

�
EI

= 0.07 , �
II
= 0.06 , �

E
= �

I
= 0.5
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With a good understanding of the behaviour of the spa-
tially clamped system, we move on to consider the spatially 
extended neural field model.

Neural Field Model

Brain waves are inherently dynamical phenomena and come 
in a vast variety of forms that can be observed with a wide 
range of neuroimaging modalities. For example, at the meso-
scopic scale it is possible to observe a rich repertoire of 
wave patterns, as seen in voltage-sensitive dye imaging data 
from the primary visual cortex of the awake monkey (Mul-
ler et al. 2014), and local field potential signals across the 
primary motor cortex of monkeys (Rubino et al. 2006). At 
the whole brain scale they can manifest as EEG alpha oscil-
lations propagating over the scalp (Hindriks et al. 2014), and 
as rotating waves (defined as a significant increase in phase 
offset with rotation about a wave center) seen during human 
sleep spindles with intracranial electrocorticogram record-
ings (Muller et al. 2016). Waves are known to subserve 

important functions, including visual processing (Sato et al. 
2012), saccades (Zanos et al. 2015), and movement prepara-
tion (Rubino et al. 2006). They can also be associated with 
dysfunction and in particular epileptic seizures (Martinet 
et al. 2017). Computational modelling is a very natural way 
to investigate the mechanisms for their occurrence in brain 
tissue, as well as how they may evolve and disperse (Heit-
mann et al. 2013, 2017; Liou et al. 2020).

The study of cortical waves (at the scale of the whole 
brain) is best advanced using a continuum description of 
neural tissue. The most common of these are referred to 
as neural fields, and are natural extensions of neural mass 
models to incorporate anatomical connectivity and the asso-
ciated delays that arise through wiring up distant regions 
using axonal fibres. The study of waves, their initiation, and 
their interactions is especially pertinent to the study of epi-
leptic brain seizures and it is known that gap junctions are 
especially important in this context (Martinet et al. 2017). 
Phenomenological neural field models with gap-junction 
coupling have previously been developed and analysed by 
Steyn-Ross et al. (2007, 2012), and more principled ones 

(a) (b)

(c) (d)

Fig. 7  Two population bifurcation diagrams: Continuations in the 
median background drive to the inhibitory population �I

0
 for differ-

ent combinations of gap-junction coupling strengths �E

v
 and �I

v
 . Red 

(black) lines denote the stable (unstable) fixed point, while the green 
(blue) lines show the minimum and maximum of the stable (unsta-
ble) oscillation a No gap-junction coupling, �E

v
= 0 , �I

v
= 0 , b Gap 

junctions in the inhibitory population only, �E

v
= 0 , �I

v
= 0.5 , c Gap 

junctions in the excitatory population only, �E

v
= 0.5 , �I

v
= 0 , d Gap 

junction coupling in both populations, �E

v
= 0.5 , �I

v
= 0.5 . Other 

parameters: �E
0
= 5 , �EE

s
= 15 , �IE

s
= 25 , �EI

s
= −15 , �II

s
= −15 , 

�
E
= 1, �

I
= 1 , �

EE
= 0.2 , �

IE
= 0.1 , �

EI
= 0.07 , �

II
= 0.06 , 

�
E
= �

I
= 0.5
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derived from theta-neuron models by Laing (2014, 2015). In 
the latter approach it was necessary to overcome a technical 
difficulty by regularising the shape of the action potential. 
However, with the approach used in “Neural mass model” 
section this is not necessary and the neural field version of 
(3)–(4) is constructed by replacing full temporal derivatives 
by partial temporal derivatives and replacing the tempo-
ral dynamics for U with the dynamics QU = Ψ , where Ψ 
denotes a spatio-temporal drive. For example, in the plane 
we might consider

where R(�, t) is the population firing rate at position � ∈ ℝ
2 

at time t and c represents the speed of an action potential, 
as illustrated in Fig. 1. Typical values for cortico-cortical 
axonal speeds in humans are distributed, and appear to 
peak in the 5 − 10 m/s range (Nunez and Srinivasan 2014). 
Here, w represents structural connectivity as determined by 
anatomy. For example, long-range corticocortical interac-
tions are predominantly excitatory whilst inhibitory inter-
actions tend to be much more short-ranged, suggesting a 
natural choice for the shape of w as an inverted Mexican hat 
(Stepanyants et al. 2009). A similar equation would hold in 
one spatial dimension. We emphasise that in the continuum 
model presented here, the gap-junction coupling has no spa-
tial extent. The mass model (defined locally) incorporates 
gap junctions, while the only coupling between masses is via 
synaptic currents. The model in Laing (2014) treats a linear 
array with nearest neighbour electrical interactions (repre-
senting cells that touch) as well as allowing for interactions 
beyond nearest neighbour. For large scale brain modelling it 
is more natural to view the brain as a network of synaptically 
interacting neural masses, each with its own local synaptic 
and gap-junction currents, with longer range interactions 
mediated only by synaptic currents.

In this section we shall work with the explicit choices 
of structural connectivity w(x) = (|x| − 1)e−|x| in 1D and 
w(r) = (r∕2 − 1)e−r∕(2�) in 2D (where x represents distance 
in 1D, and r represents radial distance in 2D). For conveni-
ence we have chosen spatial units so that the scale of expo-
nential delay is unity, though note that typical values for the 
decay of excitatory connections between cortical areas (at 
least in macaque monkeys) is ∼ 10 mm (Markov et al. 2010). 
Both of the above kernel shapes have an inverted wizard hat 
shape and are balanced in the sense that the integral over the 
whole domain is zero. They also allow for a reformulation 
of the neural field model as a partial differential equation, 
as detailed in Appendix 3. The resulting brain-wave equa-
tion is very amenable to numerical simulation using standard 
(e.g. finite difference) techniques. Before we do this, it is first 
informative to determine some of the patterning properties 

(6)Ψ(�, t) = ∫
ℝ2

w(|� − �
�|)R(��, t − |� − �

�|∕c)d��,

of the neural field model using a Turing instability analysis. 
Below we outline the results of the analysis and discuss the 
ensuing patterns for the neural field model in both 1D and 2D.

One Spatial Dimension

Turing instability analysis, originally proposed by Turing in 
1952 (Turing 1952), is a mechanism for exploring the emer-
gence of patterns in spatio-temporal system, including neu-
ral fields. Similar to the bifurcation analysis for the neural 
mass model, it allows us to determine the parameter values 
for which oscillations and patterns occur. Bulk oscillations, 
whereby synchronous activity across the spatial domain var-
ies uniformly at the same rate, emerge at a Hopf bifurcation. 
Static patterns, which do not change with time, emerge at a 
Turing bifurcation. Dynamic patterns, that oscillate in time 
and space, emerge at a Turing–Hopf bifurcation.

The 1D neural field model, given in Appendix 3 by (38), 
supports both bulk oscillations and spatio-temporal patterns. 
Using the inverted wizard hat connectivity kernel (long-
range excitation and short-range inhibition), we find Hopf 
and Turing–Hopf bifurcations (Fig. 8 left). See Appendix 4 
for details of the analysis. For the chosen parameter values 
and weak gap-junction coupling ( 𝜅v ≲ 0.8 ), the spatially-
uniform steady state is always stable and neither patterns nor 
oscillations exist. Increasing the median background drive �0 
moves the Hopf and Turing–Hopf curves down in the c-�V 
plane, allowing for oscillations and patterns in the absence 
of gap junctions ( �v = 0 ). For slow action potential speeds 
( c ≲ 0.2 ), the system first undergoes a Hopf bifurcation as 
�v is increased and bulk oscillations emerge (Fig. 8I). As �v 
is increased further, the system undergoes a Turing–Hopf 
bifurcation and standing waves emerge (Fig. 8II). For faster 
action potential speeds ( c ≳ 0.2 ), the Turing–Hopf bifurca-
tion occurs before the Hopf, and we see periodic travelling 
and standing waves between the two bifurcations (Fig. 8III).

To assess the role of gap junctions, we fixed the action 
potential speed c = 0.11 and explored the dynamics of the 
synchrony variable |Z| for different gap-junction coupling 
strengths �v (Fig. 9). For weak gap-junction coupling (I), 
there is a regular standing wave and the level of synchro-
nisation is low. As �v is increased bulk oscillations emerge 
and the level of synchronisation increases (II). Increasing �v 
further leads to the emergence of mixed dynamics, with both 
spatial and temporal patterning. The tissue is now highly 
synchronised, confirming the belief that gap-junction cou-
pling increases the level of synchronisation.

For a standard wizard hat coupling kernel (long-range 
inhibition and short-range excitation) the neural field 
model can undergo a Turing bifurcation, as well as Hopf 
and Turing–Hopf bifurcations (see Supplementary mate-
rial 1 panel (a)). Changing the sign of the synaptic coupling 
strength �s changes the coupling to long-range inhibition and 
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short-range excitation. When Turing and Hopf instabilities 
occur simultaneously, interesting patterns emerge. In par-
ticular, we see stationary bumps where the activity at the 
centre of the bump oscillates in both space and time (see 
Supplementary material 1 panel (b)). We will discuss the two 
dimensional version of such patterns in more detail below.

Two Spatial Dimensions

A Turing analysis was also performed for the 2D neural field 
equation, given in Appendix 3 by (37), and a very similar 
bifurcation structure was found (see Supplementary material 

2 panel (a)). As expected, close to the Hopf bifurcation the 
activity of the tissue oscillates in time, but no spatial pat-
tern emerges (see Supplementary material 3). Near the 
Turing–Hopf bifurcation we see both planar waves (Sup-
plementary material 4) and radial waves (Supplementary 
material 5) depending on initial conditions. Close to the 
intersection of the Turing–Hopf and Hopf bifurcation we see 
mixed spatio-temporal dynamics (Supplementary material 
6). Away from bifurcation, more interesting patterns emerge.

We fix the action potential speed c = 1 and vary the gap-
junction coupling strength �v to assess how gap-junction 
coupling affects patterning. For weak gap-junction coupling, 

Fig. 8  Turing instability analysis for the one-dimensional neural field 
model. The left panel shows the Hopf and Turing–Hopf curves as a 
function of the action potential speed c and gap-junction coupling 
strength �

v
 . Above these curves patterned states emerge. The three 

right hand panels show simulations near Hopf, and two Turing–Hopf 

points: (I) Bulk oscillation with c = 0.1 , �
v
= 0.85 , (II) Standing wave 

with c = 0.11 , �
v
= 0.855 , (III) Periodic travelling wave with c = 1.0 , 

�
v
= 0.88 . Other parameter values: �0 = 1 , �

s
= 10 , � = 15 , � = 0.5 , 

� = 0.5

Fig. 9  Simulations of the one-dimensional neural field model under variation in �
v
 : (I) Standing wave with �

v
= 0.86 , (II) Bulk oscillations with 

�
v
= 1.0 , (III) Mixed dynamics with �

v
= 1.2 . Other parameters c = 0.11 , �0 = 1 , �

s
= 10 , � = 15 , � = 0.5 , � = 0.5
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we observe rotating waves with source and sink dynam-
ics where the waves collide with each other (Fig. 10). The 
domain shown contains 12 rotating cores. Periodic boundary 
conditions were used. Hence, the cores at the edge of the 
domain wrap around to those on the other side. Supplemen-
tary material 7 shows the temporal evolution of the syn-
chrony variable |Z|, from which the cores and rotations are 
readily observed. The direction of rotation alternates, such 
that every second core rotates clockwise/anti-clockwise.

As the gap-junction coupling strength �v is increased 
robust spirals emerge at the centre of the rotating cores. The 
spiral is tightly wound with a diffused tail of high ampli-
tude activity that propagates into the rest of the domain and 
interacts with the other rotating waves (Fig. 11). The time 
course of a point close to the centre of a rotating core (green 
dot) depicts higher amplitude oscillations for the firing rate 
R, mean membrane potential V and level of synchronisation 
|Z| when compared to the simulations for lower gap-junction 
coupling strength �v (Fig. 10). In addition, the peaks in R are 
sharper and the minimum level of synchrony |Z| is substan-
tially higher. The temporal evolution for the full tissue can 
be seen in Supplementary material 8.

We again note that increasing the gap-junction coupling 
strength increases the level of synchronisation across the 
tissue. For �v = 0.695 , the synchrony variable oscillates 

between 0.02 and 0.36. For �v = 0.8 , it oscillates between 
.120 and 0.56. Increasing �v further does not change the 
overall dynamics, but does result in higher levels of syn-
chronisation. This supports the hypothesis that gap-junction 
coupling lends to more synchronous activity.

As mentioned in the “One Spatial Dimension” section, for 
a regular wizard hat connectivity kernel (short-range excita-
tion and long-range inhibition) the neural field supports static 
Turing patterns, periodic bumps of high activity in 1D and 
a periodic lattice of high-activity spots in 2D. When a Hopf 
instability coincides with this Turing instability, patterns form 
at the centre of these localised states. In 2D, patterns of con-
centric circles can appear within spots when the two bifurca-
tions coincide (Fig. 12). Activity within a localised state can 
oscillate in time, while the activity in the surround is constant 
with a low firing rate. These patterns are reminiscent of chi-
meras (Abrams and Strogatz 2004; Kuramoto and Battogtokh 
2002; Laing 2009a, b; Omelchenko et al. 2011), as seen in 
networks of coupled oscillators, where a fraction of the oscil-
lators are phase-locked or silent while the others oscillate inco-
herently. Note how the peaks in firing rate coincide with peaks 
in synchrony. However, in the surround synchrony is high, but 
the firing rate is minuscule. This indicates that the neurons 
are also synchronised at rest. A video illustrating how these 
exotic patterns evolve on the entire spatial domain is provided 

Fig. 10  Simulations of the two-dimensional neural field model show-
ing that, beyond a dynamic Turing instability, rotating waves with 
source and sink dynamics may emerge. Top: a snapshot of a patterned 
state in the (R, V) and (|Z|, �) variables. Bottom: the correspond-

ing time-series for the point marked by the small green circle in the 
top panel. A movie illustrating how this pattern evolves in time is 
given in Supplementary material 7. Parameter values: c = 1 , �0 = 2 , 
�
v
= 0.695 , �

s
= 12 , � = 20 , � = 0.5 , � = 0.5
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in Supplementary material 9 and the bifurcation diagram is 
given in Supplementary material 2 panel (b). The patterns 
presented here persist with the refining of the numerical mesh 
so we are confident that the relatively sharp changes between 
spatial points are not just a numerical artefact.

When not perfectly synchronised, the relative timing of 
oscillations across single areas or distant regions in the cor-
tex can give rise to a range of flexible phase offsets which 
can manifest as travelling waves of various shapes, includ-
ing plane, radial and spiral waves (Muller et al. 2018). The 
numerical simulations presented above highlight the ease 
with which these can be generated within the next generation 
neural field model with local gap-junction currents, and in 
particular spiral waves. The latter are thought to be highly 
relevant to status epilepticus characterised by the formation 
of spiral waves that emerge after wavefront annihilation and 
exhibit complex interactions (Liou et al. 2020).

Discussion

Mean-field models have proven invaluable in under-
standing neural dynamics. Although phenomenological 
in nature, coarse-grained neural mass/field models have 

proven particularly useful in describing neurophysiologi-
cal phenomena, such as EEG/MEG rhythms (Zhang 1996), 
cortical waves (Wilson et al. 2001; Roberts et al. 2019), 
binocular rivalry (Laing and Chow 2002; Bressloff and 
Webber 2012), working memory (Laing et al. 2002) and 
visual hallucinations (Ermentrout and Cowan 1979; Bress-
loff et al. 2001). The exclusion of synchrony in standard 
neural mass/field models prohibits them from describing 
event-related synchronisation and desynchronisation; the 
increase and decrease of oscillatory EEG/MEG power due 
to changes in synchrony within the neural tissue. Here we 
presented and analysed a recently developed neural mass/
field model that incorporates within population synchrony. 
In contrast to other reductive approaches for describing 
the behaviour of populations of spiking neurons the one 
described here is exact (in the thermodynamic limit) for 
realistic event-driven models of (non-instantaneous) syn-
aptic process. For example, the spike-density formalism 
for reducing networks of linear integrate-and-fire neu-
rons requires a moment closure approximation (Ly and 
Tranchina 2007), whilst Fokker-Planck approaches for 
describing renewal-type spiking neurons often only reduce 
after the truncation of some eigenfunction expansion (Piet-
ras et al. 2020).

Fig. 11  Simulations of the two-dimensional neural field model with 
moderate gap-junction coupling strength. In this case robust spi-
ral waves emerge at the centre of rotating cores. The spiral is tightly 
wound with a diffused tail of high amplitude activity that propagates 
into the rest of the domain and interacts with the other rotating waves. 

Top: a snapshot of a patterned state in the (R, V) and (|Z|, �) vari-
ables. Bottom: the corresponding time-series for the point marked by 
the small green circle in the top panel. The full spatio-temporal can 
be seen in Supplementary material 8. Parameter values: c = 1 , �0 = 2 , 
�
v
= 0.8 , �

s
= 12 , � = 20 , � = 0.5 , � = 0.5
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The mean-field model presented here has previously 
been applied to real MEG data in Byrne et al. (2017) (at 
the neural mass level) and used with MRI-derived struc-
tural connectivity in Byrne et al. (2020) (for a network 
of neural masses), though not with the inclusion of gap 
junctions. The main benefit of such a model is that it is 
derived from a population of interacting spiking neurons, 
with the QIF model incorporating a reasonable represen-
tation of the action potential shape. This further allows 
for the inclusion of realistic gap junctions at the cellu-
lar level. Gap junctions are known to promote synchrony 
within neural tissue (Watanabe 1958; Bennett 1977) and 
the strength of these connections has been linked to the 
excessive synchronisation driving epileptic seizures (Myl-
vaganam et al. 2014; Volman et al. 2011). Nonetheless, it 
is also important to recognise the important effects that 
the extracellular space has on seizure dynamics, as dis-
cussed in Wei et al. (2014). Recent work by Martinet et al. 
(2017) has emphasised the usefulness of bringing mod-
els to bear on this problem, and coupled the Steyn-Ross 
neural field model (Steyn-Ross et al. 2013) to a simple 
dynamics for local extracellular potassium concentration. 
Here, gap junctions are modelled by appending a diffusive 
term to a standard neural field and increases in the local 
extracellular potassium concentration act to decrease the 

inhibitory-to-inhibitory gap-junction diffusion coefficient 
(to model the closing of gap junctions caused by the slow 
acidification of the extracellular environment late in sei-
zure). A more refined version of this phenomenological 
approach would be to replace the Steyn-Ross model with 
the neural field described here. This would allow a more 
principled study of how slow changes in the extracellular 
environment could initiate wave propagation, leading to 
waves that travel, collide, and annihilate. Indeed, simula-
tions of the next-generation neural field model (without 
coupling to the extracellular space) have already shown 
such rich transient dynamics including seizure-like oscilla-
tions (and their dependence on the strength of gap-junction 
coupling). It would be interesting to explore this further, 
and in particular the transitions whereby spatio-temporal 
wave patterns are visited in sequence. This has already 
been the topic of a major modelling study by Roberts et al. 
(2019) who considered a variety of more traditional neural 
mass models in a connectome inspired network using the 
998-node Hagmann et al. dataset (Hagmann et al. 2008) 
with a single fixed axonal delay. A similar computational 
study, with a focus on spiral waves and sinks/sources from 
which activity emanates/converges, could also be under-
taken using the alternative neural mass model presented 
here, and with the further inclusion of space-dependent 

Fig. 12  Simulations of the two-dimensional neural field model with 
short-range excitation and long-range inhibition, showing the emer-
gence of a spatially localised spot solution (top panel). Note that the 
core of the spot has a rich temporal dynamics, as indicated in the bot-

tom panel showing the time course for a point within the core (green 
dot in top panel). A movie showing the full spatio-temporal can be 
found in Supplementary material 9. Parameters values: c = 10.0 , 
�0 = 0.1 , �

v
= 1.0 , �

s
= −25 , � = 1 , � = 5 , � = 0.5
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axonal delays. Moreover, electrical stimulation can easily 
be integrated into the model, by returning to the micro-
scopic voltage dynamics model given by (2) (which ensure 
current balance) and including a time-dependent drive, say 
A(t), which could represent a pattern of applied transcra-
nial direct current. This modifies the background drive 
in the mean-field model according to �0 → �0 + A(t) . In 
Byrne et al. (2020) this approach was used to determine 
the effects of transcranial magnetic stimulation (with an 
induced electrical form for A(t)) on patterns of network 
functional connectivity. Finally, it is well to note the 
assumption throughout our modelling study that chemi-
cal and electrical synapses operate independently. How-
ever, there is now accumulating evidence to suggest that 
this might not be the case (Pereda 2014). For example, 
neurotransmitter modulators released by nearby synaptic 
terminals can regulate the synaptic strength of co-local-
ised chemical and electrical synapses through the activa-
tion of G protein-coupled metabotropic receptors. All of 
the above are topics of ongoing investigation and will be 
reported upon elsewhere.

Appendix 1: Mean‑Field Reduction

Consider a heterogeneous network of N quadratic inte-
grate-and-fire neurons with voltage vi and both gap-junc-
tion and synaptic coupling:

i = 1,… ,N , with vr ≤ vi ≤ vth . Here, the mth firing time of 
the jth neuron is defined implicitly by vj(Tm

j
) = vth . The net-

work nodes are subject to reset: vi → vr at times Tm
i

 . The 
strengths of gap-junction and synaptic coupling are �v and 
�s respectively. The function s(t) represents the shape of a 
post synaptic response (to a delta-Dirac spike) and will be 
taken to be the Green’s function of a linear differential  
operator Q. For an alpha-function s(t) = �2t exp(−�t)H(t) , 
where H is a Heaviside function, Q = (1 + �−1d∕dt)2 , whilst 
for an exponential response s(t) = � exp(−�t)H(t) , 
Q = (1 + �−1d∕dt) . In (7) the �i are random variables drawn 
from a Lorentzian distribution:

with median �0 and half-width � . The threshold vth and reset 
vr values are taken to be ∞ and −∞ , respectively.

To derive the mean-field equations we follow closely 
the exposition by Montbrió et al. (2015). Consider the 

(7)𝜏 v̇i = 𝜂i + v2
i
+

𝜅v

N

N∑

j=1

(vj − vi) +
𝜅s

N

N∑

j=1

∑

m∈ℤ

s(t − Tm
j
),

(8)g(�) =
1

�

�

(� − �0)
2 + �2

,

thermodynamic limit N → ∞ with a distribution of volt-
age values �(�|�, t) . The continuity equation for � is

where

and

which represent the average voltage and population firing 
rate respectively. We now assume a solution �(v|�, t) of the 
form

For a fixed � the firing rate r(�, t) can be calculated as 
𝜌(v → ∞|𝜂, t)v̇(v → ∞|𝜂, t) , from which we may establish 
that

By exploiting the structure of (14), with poles at v± = y ± ix , 
a contour integration shows that

where PV denotes the Cauchy principal value. After averag-
ing over the distribution of single neuron drives given by 
(8) we obtain

For fixed � , substitution of (14) into the continuity equation 
and balancing powers of v shows that x and y obey two cou-
pled differential equations that can be written as

(9)
𝜕𝜌

𝜕t
+

𝜕(𝜌�̇�)

𝜕𝜐
= 0,

(10)𝜏 v̇ = 𝜂 + v2 − 𝜅vv + 𝜅vV + 𝜅sU,

(11)QU = R,

(12)V(t) = lim
N→∞

1

N

N∑

j=1

vj,

(13)R(t) = lim
N→∞

1

N

N∑

j=1

∑

m∈ℤ

�(t − Tm
j
),

(14)�(v|�, t) = 1

�

x(�, t)

(v − y(�, t))2 + x2(�, t)
.

(15)x(�, t) = ��r(�, t).

(16)y(�, t) = PV ∫
∞

−∞

v�(v|�, t) dv,

(17)R(t) =
1

�� ∫
∞

−∞

d� x(�, t)g(�),

(18)V(t) = ∫
∞

−∞

d� y(�, t)g(�).

(19)�
��

�t
= −�v� + i

[
� + �vV + �sU − �2

]
,
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where �(�, t) = x(�, t) + iy(�, t) . After evaluating the inte-
grals in (17) and (18) using contour integration (and using 
the fact that � has poles at �± = �0 ± i� ) the coupled equa-
tions for (R, V) can be found as

The complex quantity W = ��R + iV  is known to be related 
to the Kuramoto order parameter Z by the conformal map 
(Montbrió et al. 2015):

where W∗ is the complex conjugate of W. The evolution 
equation for Z is given by the complex differential equation

where QU = R(Z) and

Appendix 2: Interacting Sub‑populations

Consider an excitatory population labelled by E coupled 
to an inhibitory one labelled by I. In this case there are 
four distinct synaptic inputs with connection strengths �ab

s
 , 

a, b ∈ {E, I} , with 𝜅aE
s

> 0 and 𝜅aI
s

< 0 . Each population has 
a background drive drawn from a Lorentzian with median 
�a
0
 and half-width �a , a ∈ {E, I} . Generalising the mean-field 

model derived in section Appendix 1, for gap-junction cou-
pling only within a given sub-population, we have that

For a second order synapse with time-scale �−1
ab

 we would set

(20)𝜏Ṙ = −𝜅vR + 2RV +
𝛾

𝜋𝜏
,

(21)𝜏V̇ = 𝜂0 + V2 − 𝜋2𝜏2R2 + 𝜅sU.

(22)Z =
1 −W∗

1 +W∗
,

(23)
𝜏Ż =

𝜅v

2
(1 − Z2) −

𝛾

2
(1 + Z)2 −

i

2
(1 − Z)2

+
i

2
(1 + Z)2

[
𝜂0 + 𝜅vV(Z) + 𝜅sU

]
,

(24)R(Z) =
1

��
Re

(
1 − Z∗

1 + Z∗

)
,

(25)V(Z) = Im
(
1 − Z∗

1 + Z∗

)
.

(26)𝜏aṘa = −𝜅a
v
Ra + 2RaVa +

𝛾a

𝜋𝜏a
,

(27)𝜏aV̇a = 𝜂a
0
+ V2

a
− 𝜋2𝜏2

a
R2
a
+

∑

b∈{E,I}

𝜅ab
s
Uab,

(28)QabUab = Rb, a, b ∈ {E, I}.

Note that in a slightly more general setting that would allow 
for electrical connections between excitatory and inhibitory 
sub-populations then we would replace (26) and (27) by

 where there are three distinct gap-junctions strengths �ab
v

 , 
a, b ∈ {E, I} , with 𝜅ab

v
> 0 and �EI

v
= �IE

v
.

Appendix 3: Brain Wave Equation

A simple continuum model for an effective single popula-
tion dynamics can be written in the form

where Ψ = w⊗ R . The symbol ⊗ is used to describe spatial 
interaction within the neural field model, while w represents 
structural connectivity. For example, in the plane we might 
consider (R,V ,U) = (R(�, t),V(�, t),U(�, t)) , with � ∈ ℝ

2 
and t ≥ 0 with

where c represents the speed of an action potential. We note 
that (35) can be written as a convolution:

where G(r, t) = w(r)�(t − r∕c) . For certain choices of w it is 
possible to exploit this convolution structure to obtain a PDE 
model, often referred to as a brain-wave equation (Nunez 
1974; Jirsa and Haken 1997).

(29)Qab =

(
1 +

1

�ab

d

dt

)2

.

(30)𝜏aṘa = −Ra

∑

b∈{E,I}

𝜅ab
v

+ 2RaVa +
𝛾a

𝜋𝜏a
,

(31)

𝜏aV̇a = 𝜂a
0
+ V2

a
− 𝜋2𝜏2

a
R2
a
+

∑

b∈{E,I}

𝜅ab
s
Uab

+
∑

b∈{E,I}

𝜅ab
v
[Vb − Va],

(32)�
�R

�t
= −�vR + 2RV +

�

��
,

(33)�
�V

�t
= �0 + V2 − �2�2R2 + �sU

(34)QU = Ψ,

(35)
[w⊗ R](�, t) =

∫
ℝ2

w(|� − �
�|)R(��, t − |� − �

�|∕c)d��,

(36)Ψ(�, t) = ∫
ℝ

dt� ∫
ℝ2

d��G(� − �
�, t − t�)R(��, t�),
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For the choice of an inverted balanced wizard hat func-
tion with w(r) = (r∕2 − 1)e−r∕(2�) this approach yields the 
following brain-wave equation:

Note that (37) is only strictly valid for describing long-
wavelength solutions. In one spatial dimension and using 
w(x) = (|x| − 1)e−|x| the brain-wave PDE is

and is an exact reduction of Ψ = w⊗ R (Venkov et al. 2007).

Appendix 4: Turing Instability Analysis

Consider the homogeneous steady state of (37) given by 
(U(�, t),Ψ(�, t),R(�, t),V(�, t)) = (0, 0,R0,V0) where (R0,V0) 
are given by the simultaneous solution of the algebraic 
equations

We linearise around the steady state and consider per-
turbations of the form (U(�, t),Ψ(�, t),R(�, t),V(�, t)) =

(0, 0,R0,V0) + �(U,Ψ,R,V)e�tei�⋅�  f o r  |𝜖| ≪ 1 a n d 
� = � + i� . Substitution into (37) and working to first order 
in � gives the linear relationship

where k = |�| . A linearisation for the dynamics of (R, V) 
gives

where I2 is the 2 × 2 identity matrix and J is the Jacobian

We may solve (42) using Cramer’s rule to yield

(37)

[(
1 +

1

c

�

�t

)2

−
3

2
∇2

]2
Ψ = −

{
1

c

�

�t

(
1 +

1

c

�

�t

)
−

3

2
∇2

}
R.

(38)

[(
1 +

1

c

�

�t

)
2

−
�2

�x2

]
2

Ψ

= −2

{
1

c

�

�t

(
1 +

1

c

�

�t

)
2

−
�2

�x2

(
2 +

1

c

�

�t

)}
R,

(39)0 = −�vR0 + 2R0V0 +
�

��
,

(40)0 = �0 + V2
0
− �2�2R2

0
.

(41)
[(

1 +
�

c

)2

+
3

2
k2
]2
Ψ = −

{
�

c

(
1 +

�

c

)
+

3

2
k2
}
R,

(42)A(�)

[
R

V

]
=

[
0

�sU

]
, A(�) = ��I2 − J,

(43)J =

[
−�v + 2V0 2R0

−2�2�2R0 2V0

]
.

where we have used the fact that (1 + �∕�)2U = Ψ (from 
(34)). Substitution of (44) into (41) and demanding a non-
trivial solution for Ψ leads to the condition E(�, k) = 0 , 
where

Thus, the continuous spectrum � = �(k) is given by the roots 
of an eight order polynomial.

A similar analysis of (38) gives

The system undergoes a bifurcation when a branch of 
solutions �(k) to E(�, k) = 0 touches the imaginary axis, 
�(kc) = 0 , where kc is the critical wave number. By the 
implicit function theorem, this occurs when

where M = Re (E) and N = Im (E).
A Hopf bifurcation of the spatially uniform state can be 

found by solving E(i�, 0) = 0 for � . A static Turing bifur-
cation is found by solving E(0, kc) = 0 and (47) for kc non-
zero, while a dynamic Turing-Hopf bifurcation is found by 
solving E(i�, kc) = 0 and (47) for non-zero � and kc . Inter-
esting patterns tend to emerge when a Hopf and Turing-
Hopf intersect at a codimension-2 point. Such a bifurca-
tion can be found by solving E(i�1, 0) = 0 , E(i�2, kc) = 0 
and (47) simultaneously for �1 , �2 and kc.

Appendix 5: Computation and Simulation 
of the Model

All bifurcations diagrams were generated using XPPAUT 
(Ermentrout 2002). The neural mass and neural field 
models were numerically solved using a finite difference 
scheme on Julia (Bezanson et al. 2017) using a default 
adaptive solver from the DifferentialEquations.jl package 
(Rackauckas and Nie 2017).

(44)R =
1

|A(�)|

|||||

0 −2R0

�sU �� − 2V0

|||||
=

2�sR0

|A(�)|(1 + �∕�)2
Ψ,

(45)
E(�, k) = |A(�)|

(
1 +

�

�

)2
[(

1 +
�

c

)2

+
3

2
k2
]2

+ 2�sR0

[
�

c

(
1 +

�

c

)
+

3

2
k2
]
.

(46)
E(�, k) = |A(�)|

(
1 +

�

�

)2
[(

1 +
�

c

)2

+ k2
]2

+ 4�sR0

[
�

c

(
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�

c

)2

+ k2
(
2 +

�

c

)]
.

(47)�M

�k

�N

��
−

�M

��

�N

�k
= 0,
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