
Cortical Resting State Circuits:

Connectivity and Oscillations

Tristan T. Nakagawa

TESI DOCTORAL UPF / ANY 2014

DIRECTOR DE LA TESI

Dr. Gustavo Deco
Dr. Salvador Soto-Faraco
Departament Department of Information and
Communication Technologies - DTIC;
Center for Brain and Cognition CBC



Abstract

Ongoing spontaneous brain activity patterns raise ever-growing interest
in the neuroscience community. Complex spatiotemporal patterns that
emerge from a structural core and interactions of functional dynamics
have been found to be far from arbitrary in empirical studies. They are
thought to compose the network structure underlying human cognitive ar-
chitecture. In this thesis, we use a biophysically realistic computer model
to study key factors in producing complex spatiotemporal activation pat-
terns. For the first time, we present a model of decreased physiological
signal complexity in aging and demonstrate that delays shape functional
connectivity in an oscillatory spiking-neuron network model for MEG
resting-state data. Our results show that the inclusion of realistic delays
maximizes model performance. Furthermore, we propose embracing a
datadriven, comparative stance on decomposing the system into subnet-
works.
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Resumen

Últimamente, el interés de la comunidad científica sobre los patrones de
la continua actividad espontanea del cerebro ha ido en aumento. Comple-
jos patrones espacio-temporales emergen a partir de interacciones de un
núcleo estructural con dinámicas funcionales. Se ha encontrado que estos
patrones no son aleatorios y que componen la red estructural en la que la
arquitectura cognitiva humana se basa. En esta tesis usamos un modelo
computacional detallado para estudiar los factores clave en producir los
patrones emergentes. Por primera vez, presentamos un modelo simplifi-
cado de la actividad cerebral en envejecimiento. También demostramos
que la inclusión del desfase de transmisión en un modelo para grabaciones
magnetoencefalográficas del estado en reposo maximiza el rendimiento
del modelo. Para ello, aplicamos un modelo con una red de neuronas
pulsantes (’spiking-neurons’) y con dinámicas oscilatorias. Además, pro-
ponemos adoptar una posición comparativa basada en los datos para de-
scomponer el sistema en subredes.
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Preface

In this thesis, we lay out a perspective on the structure and dynamics of
spontaneous brain activity as expression of a complex, metastable sys-
tem of active and interacting, but distinguishable brain networks. In
Chapter 1, we trace the development of the idea of the brain as a self-
organizing, complex network at the large scale, and the development of
a whole ’resting state’ brain connectivity research field, and the contribu-
tions of methodological advances, such as advances in structural imaging
and new data analysis and description methods, from graph theory and
new connectivity measures to clustering and decomposition approaches.

In Chapter 2, we review how computational modeling can help us to
bridge the gap between structure and function by exploring and propos-
ing mechanisms of the brain’s network dynamics. In Chapter 3, we give
an example of a spiking-neuron network model approach that suggests
that decreases in multiscale entropy in aging are an expression of dis-
placement of the brain (as an attractor network) from an optimal dynam-
ical working point due to structural connectivity decreases. We extend
on the modeling work and the importance of specific model aspects in
Chapter 4: we examine in a dynamic mean field model the importance
of considering network propagation delays in the presence of alpha-band
oscillations, which are typically found in resting state recordings of MEG
alpha. We show how the model can intrinsically generate the typically ob-
served resting-alpha rhythms by spike-frequency adaptation, and that the
functional network organization is best (and most robustly) fitted in the
presence of delays within physiologically ranges at propagation speeds of
5-10 m/s.

Finally, we turn towards analyzing the resting state networks both in time
and space in Chapter 5. We utilize Parallel Factor Analysis (PARAFAC),
a multiway factorization method related to higher-dimensional PCA/ICA,
to identify distinct networks in MEG resting state recordings. We show
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how this method sucessfully identifies several of the established RSNs
and traces their time courses simultaneously. To conclude, in Chapter 6
we summarize and discuss our findings and their implications, how our
work may contribute to understanding spontaneous human brain function
as an expression of a multistable, self-organizing system, and give an
outlook on future research and application possibilities.

For the digital version of this document, please note that the Table of Con-
tents, chapter numbers, and other brown text elements are in-document
links to text sections, figures, or the glossary 1 Citations (in blue) link
to the bibliography, and typeface elements are links to webpages of
cited papers or other web resources (functional at the time of writing this
thesis).2
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age, 10.1016/j.neuroimage.2013.04.055. http://www.
linkinghub.elsevier.com/retrieve/pii/S1053811913004023.
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1. Introduction

1.1. Idle minds - the brain at rest

When we say a person is at rest, we generally mean they are in a state
of inactivity and motionless. While the description can be valid for a
dead, a sleeping, or an awake person, the common point is the absence
of activity, including concentration or effortful thought. However, while
a person may be said to be thinking nothing in a colloquial way, the same
is not true for a profounder conceptualization of cognition. Even without
any external affordances, the brain is very much active and may come up
with a wider variety of ideas and plans. That these are not limited to a
productive or socially accepted framework is nicely illustrated by an old
saying:

"An idle brain is the devil’s shop."1

That the brain is in fact also constantly active physiologically, produc-
ing a rich array of rhythms and patterns that change by its wakefulness
state, became quickly clear from the first times electrical brain activity
was recorded from 1875 onward by Caton, Berger, and others (Haas,
2003). From this, and the fact that brain metabolism is only minimally
affected when comparing active concentration and rest (Sokoloff et al.,
1955; Buckner & Vincent, 2007), we have known for a long time that
the brain is never idle in the sense of ’inactive’ or ’unused’. Nonethe-
less, it has only been increasingly appreciated over the last two decades
how spontaneous brain activity is far from idle also in the senses of ’pur-

1(Bohn & Ray, 1855, p.106)
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poseless’, ’pointless’ or ’vain’, while many of its specific functions and
mechanisms are just beginning to be understood.

Initial findings of spontaneous correlations of activity during wakeful rest
(Biswal et al., 1995, 1997; Lowe et al., 1998; Xiong et al., 1999), and of
a subset of brain regions consistently deactivated during tasks (Shulman
et al., 1997), pioneered a shift in paradigm from studying the effect of
external stimuli and affordances on brain activity to studying the internal
dynamics themselves. The properties and interactions of these sponta-
neous (’intrinsic’) activity patterns are being extensively studied today in
a field somewhat unfortunately known as ’resting state research’ (describ-
ing the state of the person, not the brain).

But where do these networks and their fluctuations and interactions in
time originate, and what purpose do their spontaneous fluctuations serve?
The current undertaking of large collaborative research efforts to map and
model the brain at many scales, like the Human Connectome Project, the
Human Brain Project and the BRAIN Initiative, express both the impor-
tance and complexity of the task at hand. They raise high hopes in de-
cyphering the inner workings of our brain, and promise to provide us with
a wealth of invaluable data and insights into brain network function. At
the same time, care must be taken that we do not oversimplify and reduce
ourselves to the structural connections in our brain, chanting: ’I am my
connectome’.2

To understand the origin of resting state (RS) dynamics, one must com-
bine the underlying structure, that is, the physical connection pathways
between brain areas, with the dynamic activity patterns resulting from
these mutual connections. As far as structure is concerned, advances
in fiber-tracking, both by tract-tracing in animals (Stephan et al., 2001;
Bakker et al., 2012; Bezgin et al., 2012), and by diffusion tensor/spectrum
imaging (DTI/DSI) in humans (Wedeen et al., 2005; Sporns et al., 2005;
Hagmann et al., 2010; Cammoun et al., 2012), have led to the identifica-

2http://www.ted.com/talks/sebastian_seung
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tion of a structural core of human cortical connections (Hagmann et al.,
2008), so that the connectome map is ever-increasing in detail (Cammoun
et al., 2012; Daducci et al., 2012).

For investigating RS brain dynamics, functional connectivity and higher
order statistics have been used. By its nature, spontaneous brain activity
cannot be investigated by the classic subtraction paradigm of taking the
mean difference of stimulus- or task-locked activation levels between two
or more conditions. Therefore, connectivity measures such as correla-
tions, phase synchronizations, mutual information, Granger causality and
others that are independent of mean differences are commonly applied in
RS research.

By now, we know that spontaneous brain activity is complex yet struc-
tured both in space and time, featuring slow fluctuations of correlated
activity within groups of brain areas (so called resting state networks,
RSNs). Slow (<.1 Hz) fluctuations were repeatedly found in resting state
functional magnetic resonance imaging (rsfMRI) blood oxygenation level
dependent (BOLD) signal (Biswal et al., 1995; Cordes et al., 2001; Fox
& Raichle, 2007), and drive the large-scale connectivity patterns between
different cortical areas. They have been linked both to alpha/beta power
and gamma band activity (Becker et al., 2011; Scheeringa et al., 2012;
Tagliazucchi et al., 2012b; Ritter et al., 2013; Neuner et al., 2014) in neu-
rophysiological studies, and their detailed correspondence is a highly ac-
tive field of investigation. Concerning the spatial structure of these fluc-
tuations, several functional networks have been identified. Originally, a
task-negative (or default mode network, DMN) and a task-positive net-
work were found in fMRI BOLD and Positon Emission Tomography
(PET) studies (Mazoyer et al., 2001; Raichle et al., 2001; Greicius et al.,
2003; Fox et al., 2005). Subsequently, the existence of several func-
tionally relevant RSNs has been corroborated by many studies both in
fMRI (De Luca et al., 2006; Damoiseaux et al., 2006; Smith et al., 2009;
van den Heuvel & Hulshoff Pol, 2010) and MEG/EEG (MEEG) (Laufs
et al., 2003; Tagliazucchi et al., 2012b; Brookes et al., 2011c; Mantini
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et al., 2007; de Pasquale et al., 2010). The variability in number (and
exact composition) of components identified in different studies illustrate
that they are somewhat variable in their compositions and not completely
unconnected, so criteria to merge subnetworks may influence the results
(Lee et al., 2012; Uddin et al., 2009; Buckner et al., 2008a). Even so, sev-
eral core functional networks including the DMN, a dorsal attention net-
work (DAN), a ventral attention network (VAN), a visual network (VN),
a frontoparietal (FPN) and a somatosensory network (SMN) are robustly
identified in most studies (even though there might be a methodological
bias to extract certain types of networks, as discussed in Chapter 5).

A key question for investigating the internal dynamics of the brain and,
ultimately, the way they shape our perceptions and cognition, is that of
how the observed functional patterns originate from the underlying struc-
tural core of physical connections, and what mechanisms and network
properties are important and characteristic for the human brain. To this
end, it is convenient to view the brain as a complex network of connected
units, which are subject of study of graph theory (which we will introduce
in more detail in Section 1.3.2). As the brain is a complex system with
many interacting brain areas, it is impractical to describe it in terms of all
its objects and individual interactions. Instead, we want to describe the
system in terms of its most important (statistical) properties, and identify
the mechanisms and parameters shaping these properties. In this context,
a network, or graph, comprises several objects, or nodes (here represent-
ing brain areas), connected by links, or edges. The brain has been shown
to share similarities in key graph properties, such as being small-world,3

with many other real world networks with complex structured patterns,
such as neural networks, power grids, and social networks (Watts & Stro-
gatz, 1998; Bullmore & Sporns, 2009; Van Steen, 2010; Stam & van
Straaten, 2012). This may be partly due to spatial constraints of corti-
cal wiring cost, but some graph properties, such as the high modularity

3Combining high modularity, i.e. more strongly intra- than interconnected groups of
nodes, with short mean pathlength, meaning a low mean number of intermediate nodes
that have to be passed to connect any two nodes of the network.
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and strong s-core (Figure 1.1), suggest that the connectome layout fol-
lows specific functional aspects beyond metabolic considerations (Samu
et al., 2014).

Figure 1.1: Graph representation of modules (large circles in A, blue squares
in B) from high-resolution DSI imaging, which show high modularity and a
stronger s-core when compared to surrogate graphs. Adapted from Samu et al.
(2014), their Figure 5 A, B

1.2. From noise to networks - structure in
spontaneous brain activity

1.2.1. A network of task-deactivating regions - a default
brain mode?

In the tradition of behavioural experimentalists such as Galton, Donders,
or Posner, controlled laboratory conditions and mean differences in re-
sponse to experimental variations were the obvious tools of choice to
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study brain function. For example, much of the two-streams hypothe-
sis about functional specialization between action and perception in the
visual stream (Goodale & Milner, 1992) was obtained by a subtraction
paradigm based on differences in impairment for different tasks.

With the advent of fMRI in the 1990s, a safe, widely applicable way
of measuring brain activation with high spatial resolution became avail-
able to scientists. Many important findings about the specific functions
of brain areas were uncovered by comparing blockwise or event-related
means between conditions, such as the existence of a brain area more
responsive to faces than to other objects (Kanwisher et al., 1997). The
subtraction paradigm states that brain areas involved in a task should be
more active during that task than during a nonactive baseline or a control
condition. To isolate functions, only the aspect of interest would be var-
ied, so all changes in measured brain activity would either be connected to
the variable of interest, or they would be noise and even out over many tri-
als. However, Arieli et al. (1996) found that ongoing activity can predict
single trial evoked responses in visual cat cortex. Shulman et al. (1997),
looking at surprisingly reliable task-deactivations in a set of brain areas
for a wide array of tasks, also rejected the idea that the baseline would
be just noise. They suggested that increased activity found during pas-
sive conditions may reflect ongoing mental processes such as monitoring
the environment, emotional states and spontaneous thoughts (conceptual
processing, Binder et al., 1999). Others directly studied the baseline ac-
tivity by itself, and found functional connectivity in brain areas such as
the homologous motor cortices (Biswal et al., 1995, 1997; Lowe et al.,
1998; Xiong et al., 1999). These studies, by embracing a new paradigm
of studying functional connectivity in ongoing brain dynamics, triggered
a wealth of studies and new perspectives on how to research the internal
dynamics and networks of the brain.

The existence of a ’default mode network’ (Greicius et al., 2003), a set
of regions which deactivated during various tasks (Shulman et al., 1997),
was quickly attested by different measures of brain activity: this network
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had a higher-than-mean oxygen-extraction fraction during rest (Raichle
et al., 2001), and showed correlated spontaneous BOLD activity (Greicius
et al., 2003). Of the regions identified by Shulman et al. (1997) (see Table
1.1 and their Figure 1), Greicius et al. (2003) found all but two (right
amygdala and left lateral inferior frontal cortex) to be correlated to PCC
in their RS BOLD time series.

Table 1.1: Task-deactivating regions found by Shulman (BA=Brodman
Area)

Region description BA Focus nr

posterior cingulate cortex / precuneus 31/7 1
inferior parietal cortex 40,39/19 2,3,4
left dorsolateral frontal cortex 8 5
left lateral inferior frontal cortex 10/47 11
left inferior temporal gyrus 20 13
medial frontal regions 8,9,10,32 6,7,8,9,10,12
right amygdala 14

In spite of slight differences in the involvement of some areas such as
the amygdala or the hippocampus, they agree about the core regions of
the default mode network: the posterior cingulate cortex (PCC), and me-
dial prefrontal cortex (MPFC), with involvement also in medial and lat-
eral (infero-) parietal cortex and ventral anterior cingulate cortex. Sub-
sequent fMRI studies (Fox et al., 2005; Fransson, 2005) found the DMN
to slowly (<.1 Hz) fluctuate in anticorrelation with another network of
task-related/task-positive regions including intraparietal sulcus, dorsolat-
eral PFC, (pre-)supplementary motor area, ventral anterior cingulate cor-
tex (ACC), fusiform gyrus, and insula (see Figure 1.2).

Functionally, these later regions are known to be implicated in top-down
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Intrinsic correlations between a seed region in the PCC and all other voxels in the brain for a 
single subject during resting fixation. 

Fox M D et al. PNAS 2005;102:9673-9678©2005 by National Academy of Sciences

Figure 1.2: RS
anticorrelations]Slow, anticorrelated BOLD fluctuations between DMN
regions (PCC, MPF) and IPS. Adapted from Fox et al. (2005), ©by PNAS

attention (intraparietal sulcus, dorsolateral PFC: dorsal attention network,
DAN) (Corbetta & Shulman, 2002), saliency and awareness (insula)
(Craig, 2002, 2009), and a wide array of motor and cognitive tasks in
general (Cabeza & Nyberg, 2000).

The DMN areas, on the other hand, are implicated in episodic memory
(Desgranges et al., 1998; Cabeza et al., 2002), information retrieval (Des-
granges et al., 1998; Cabeza et al., 2002; Maguire & Mummery, 1999),
and conceptual processing. Binder et al. (1999); Greicius et al. (2003)
also proposed integrative connections between these networks in IFC and
MPFC, as they overlap in the region of interest (ROI) maps of both PCC
(DMN) and ventral ACC (DAN).

Although physiological noise has been shown to importantly contribute
to slow BOLD fluctuations (Wise et al., 2004; Birn et al., 2006; Birn,
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2012), and the interpretability and the conceptual usefulness of a default
mode has been disputed (Morcom & Fletcher, 2007), the slow functional
connectivity patterns at rest remain after considering physiological noise
(Birn, 2012; Damoiseaux et al., 2006). Another critique of the task-
positive/task-negative dichotomy was based on the fact that the global
signal regression used in previous studies (Greicius et al., 2003; Fox et al.,
2005; Fransson, 2005) may introduce artifactual anticorrelations into the
voxel time-series (Buckner et al., 2008a; Murphy et al., 2009). However,
different analyses circumventing or correcting for global signal regression
have confirmed a connectivity bipartition distinguishing the DMN and a
task-positive network (Fransson, 2005; Golland et al., 2008; Fox et al.,
2009).

Yet another approach to avoid the use of ROI analysis and global signal
regression suggested that spontaneous brain activity is not separable in
just two, but several different functional networks.

1.2.2. Resting State Networks

Damoiseaux et al. (2006) utilized a tensor probabilistic ICA (PICA) ap-
proach (Beckmann et al., 2005; Beckmann & Smith, 2005) to better quan-
tify distinct RS patterns and to separate such effects from artifacts such
as respiratory or cardiac cycles. Though not ultimately asserting a neu-
ral origin, they found nine consistent RS components in two datasets, de-
scribing similar activation maps as in earlier studies (De Luca et al., 2006;
Fox et al., 2005), and known functional implications: an occipital lateral
visual network (VN), the DMN, two lateralized parietofrontal ’memory’
networks consistent with the Dorsal Attention Network (DAN), a me-
dial VN, a somatosensory network centered around the central sulcus, a
ventral stream network including superior temporal with some cingulate
and frontal involvement, a network of mainly superior parietal areas, with
some occipitotemporal and precentral involvement, an auditory network
(AN) consistent of superior temporal, postcentral and insular cortex. An-
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other component resembles part of the DMN in one, and a frontopolar
network in the other dataset.

Several fMRI ICA studies have corroborated that several RSN (e.g. Beck-
mann et al., 2005; De Luca et al., 2006; Chen et al., 2008; Biswal et al.,
2010) with similar functional interpretations can be distinguished. The
difference in number of components is mainly due to the amount of com-
ponents chosen for extraction, so lateral and medial visual areas may be
included in one (De Luca et al., 2006) or in two separate (Damoiseaux
et al., 2006) components. While this may seem somewhat arbitrary, one
has to take into consideration that apart from data variability, preprocess-
ing and parcellation effects as well as prewhitening and artifact compo-
nent rejection, none of these networks are completely segregated. There-
fore, there is no absolute ground truth in how many components the brain
consists of, and our answer concerning how many components there are
will depend on how we ask the question: different compositions may for
example be incorporated and set in relation to each other, e.g. by hier-
archical clustering (Doucet et al., 2011; Cordes et al., 2002; Zhou et al.,
2006). Importantly, cumulative evidence from fMRI ROI and ICA as
well as from electrophysiological studies (detailed below), indicates that
RSNs are indeed reliable, robust, distinguishable entities. Across studies,
these networks can be identified with qualitatively similar shapes and con-
ceivable functional significance, and across modalities and analysis mea-
sures. Their most appropriate representation is a field of active research,
and as new methods become available, the possible biases of decompo-
sitions such as the ’spatial independence’ constraint typically used in RS
ICA can be tackled (Smith et al., 2012). In Chapter 5, we will present a
datadriven, maximally unbiased approach of how to decompose threedi-
mensional brain data into components with minimal assumptions on data
structure.
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1.2.3. Electrophysiological evidence

While EEG has been used to study brain oscillations in wakeful rest long
before the emergence of fMRI (Berger, 1929), today’s large interest in
the internal dynamics and functional networks of the brain were triggered
by several fMRI studies (Shulman et al., 1997; Greicius et al., 2003; Fox
et al., 2005; Damoiseaux et al., 2006). Due to its excellent spatial resolu-
tion, fMRI can be used to map slow activity changes, and in rsfMRI, func-
tional connectivity between voxels and areas. These properties predis-
posed fMRI for the detection of functional connectivity in slow dynamics
of RS brain signals. However, besides its limitation to capturing only slow
processes (< ~1-2 Hz), rsfMRI suffers from the setback that it does not di-
rectly measure neural activity. Initially, it was unclear whether the RSNs
found, while reliable, were actually of neural origin, and if so, how they
related to neural dynamics. Since then, EEG studies, while by themselves
suffering from low spatial resolution and source leakage, have confirmed
the existence of several RSNs both by using spatial priors gained from
fMRI research and from independently obtained decompositions. Within
the last decade, electrophysiological studies have refined and extended
the characterization of functionally significant RSNs. Studying important
frequencies and oscillatory dynamics, these studies, whose main results
we summarize here, importantly complement the understanding that we
gained from fMRI about internal brain dynamics.

What causes the slow BOLD fMRI oscillations so robustly appearing in
RS recordings? While the question of large-scale functional connectivity
between delineated areas has not been a primary focus in EEG research,
the existence and modulations of different brain oscillations during dif-
ferent consciousness states has always been of interest to researchers.
The alpha rhythm has been linked to spontaneous brain activity since
Berger (1929). While its origins, discussed in more detail in Chapter 4,
are still not understood in detail, spike-frequency adaptation (SFA) and
a feedback-loop between cortex and thalamus are considered the main
generators. Accordingly, thalamus and alpha activity may be related pos-
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itively (Gonçalves et al., 2006; Feige et al., 2005). Alpha power, along
with beta (Tagliazucchi et al., 2012b), was later shown to relate to lower
cortical BOLD activity (Robinson et al., 2001; Goldman et al., 2002;
Gonçalves et al., 2006; Tagliazucchi et al., 2012b; Sato et al., 2010) and
decreased connectivity, implying stronger inhibition (Scheeringa et al.,
2012). Alpha suppression can hence be regarded as a landmark of cortical
activation (Tagliazucchi et al., 2012b), and accordingly, alpha increases
upon closing the eyes (Yang et al., 2010; Barry et al., 2007). Concerning
lower consciousness states, sleep and unconsciousness, as well as medita-
tion, have been associated with slower delta/theta rhythms and more local
connectivity (Larson-Prior et al., 2011; Lehmann et al., 2012).

Accordingly, recent research using conjoint EEG/fMRI also (negatively)
related ICA-derived RSN mainly to alpha and beta-band activity (Mantini
et al., 2007; Jann et al., 2010), although a more complex picture emerges
over studies: Jann et al. (2010) find fMRI related decreases in alpha and
beta in sensory networks when compared to lower frequencies (limiting
their study to <=30 Hz). Mantini et al. (2007) find VN and AN also in low
frequencies, as well as a frontopolar, ’self-referential’ network mainly in
the gamma band. Within alpha and beta, the SMN has been associated
more with beta and the VN more with alpha activity, but connectivity
overlaps borders between frequency bands and does not allow for clean-
cut, exclusive distinctions (Mantini et al., 2007). Newer studies compli-
cate the picture even more, in that DMN BOLD activity may be related
to alpha in eyes open, but not in eyes closed condition (Mo et al., 2013),
and that different nodes of the DMN may relate to different frequency
bands (PCC/precuneus - beta; parahippocampus - delta), highlighting dif-
ferent functional involvement (Neuner et al., 2014). These are only a few
examples in an actively evolving field, illustrating that the decomposi-
tion and functional role of different areas and frequency bands together
is an important current research question. In Chapter 5, we will present
a datadriven time-space-frequency decomposition with minimal assump-
tions and discuss network decomposition methods in greater detail.
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Similarly to EEG, RS networks have recently also been investigated with
MEG technology. MEG is related to neural discharges as well as EEG,
but differs due to the different properties of propagation of electric and
magnetic fields. As MEG is only sensitive to tangential signal compo-
nents, it mainly picks up signals from sulci, while at the same time signal
loss due to distance from the skull is higher than for EEG. This results
in a more limited, yet less distorted and better localizable signal for cor-
tical sources at a high temporal resolution. In relation to the early work
in EEG described above, Nikouline et al. (2001) found slow, correlat-
ing amplitude fluctuations (<.1 Hz) between the two hemispheres as well
as near-zero lag phase synchronization for spontaneous beta-band oscil-
lations. As the study was limited to interhemispheric comparison, the
magnetic fields showed little overlap and source leakage is not a major
concern (along with the somewhat continuous phase-lag pattern, showing
significant phase locking also at nonzero phase lags). Liu et al. (2010)
confirmed slow (<.1 Hz) interhemispheric power modulations after ICA-
based artifact rejection in the beta band. While also found in alpha and
gamma bands, the latter showed a sharp spatial decrease, suggesting slow
oscillations to dominate slow global brain dynamics. de Pasquale et al.
(2010) conducted a network study of the DMN and DAN, deriving seed-
based internodal coherence maps from windows of maximal correlations
in the data. They find expression of transient formation of these RSNs
in the slow modulation of theta, alpha, and beta power, and stress the
nonstationarity of the signal, as short periods of high correlations (tens
of milliseconds) alternate with periods of low correlations (hundreds of
milliseconds). Shortly after, Brookes et al. (2011a) demonstrated good
agreement between rsfMRI and source-reconstructed MEG, and indepen-
dently replicated eight RSN from bandpass filtered power envelopes in
the alpha (DMN) and beta bands which closely resemble fMRI derived
RSNs (Figure 1.3, Brookes et al., 2011c).

Even though the beamforming algorithm, which suppresses spatially
separate but temporally correlated sources, minimizes crosstalk, some
source-leakage could have affected the analysis due to correlated beam-
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Comparison of brain networks obtained using ICA independently on MEG and fMRI data. 

Figure 1.3: RSNs
found by ICA](spatial) fcMRI (first and third row) and corrseponding

(temporal) MEG Independent Components (second and fourth row) of RSNs;
DMN (A) in alpha, all others in beta band. Adapted from Brookes et al.

(2011c), ©by PNAS

former weights (Brookes et al., 2012). Notwithstanding, the similarity
to networks derived from functional connectivity MRI (fcMRI) demon-
strates the robustness of RSNs, and localization in envelope carrier-
frequency in the alpha and beta bands is in line with earlier findings on
RS oscillations but with an additional topographic component. Using a
source-leakage correction method by subtracting pairwise common lin-
ear signal components between reconstructed sources, Hipp et al. (2012)
found functional connectivity in alpha and beta band power envelopes
with a peak around 16 Hz and highest global connectivity at that fre-
quency for the regions LPC, MPFC, DPFC and MT+ in parietal cortex,
which formed an interconnected network combining DMN and a fron-
toparietal control network (FPN, Vincent et al., 2008). In contrast to
fMRI, posterior midline areas were not identified either by Hipp et al. or
Brookes et al. (2011c) as part of the network, which may be affected by
the MEG signal drop with increasing distance from the cortical surface.
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Using mutual information (MI) on bandlimited MEG signal between ar-
eas of distances > 40 mm to avoid source leakage, Jin et al. (2013) found
network hubs in left superior frontal and middle temporal gyrus, as well as
posterior cingulate cortices in frequency bands from theta to gamma, and
medial cingulate cortex in gamma only. Other measures to improve sig-
nal detection (Hall et al., 2013) or to measure leakage-corrected (nonzero
lag), phase-related functional connectiviy have since been proposed, such
as a multivariate interaction measure (MIM) (Ewald et al., 2012) and the
phase lag index PLI (Hillebrand et al., 2012). The latter found frequency-
dependent phase connectivity patterns closely related to relative source
power (except for gamma), with connectivity hubs in occipitoparietal and
superior temporal areas for alpha, sensorimotor cortex for beta, and more
widespread connectivity for gamma PLI across temporal, sensorimotor,
inferior parietal and inferior cortices. Marzetti et al. (2013) found phase-
shifted MIM interactions between homologous DAN areas in delta and al-
pha, and alpha and beta connectivity with DAN for visual and somatosen-
sory regions, respectively. Due to the methodological difficulties and the
lack of understanding of the mechanisms driving spontaneous brain dy-
namics, it is yet too early to draw final conclusions. However, the un-
covering of phase relations is another essential piece of the puzzle, com-
plementing the aspects already illuminated by other neuroimaging and
neurophysiological techniques (Palva & Palva, 2012).

As we have seen, evidence from fMRI and neurophysiology alike point to
the existence of slowly fluctuating, interacting but distinguishable func-
tional networks that are related to bandlimited power and phase relation-
ships mostly in the alpha and beta bands in quiet rest. The core connec-
tivities remain identifiable, but connectivity is affected both by changes
in states of consciousness (e.g. sleep, meditation) and neurological and
psychiatric diseases. To quantify connectivities and changes, and bring
together all the puzzle pieces from different studies, a framework of the
brain as a complex graph, a network of networks, has emerged. Graph
Theory, namely, the study of complex systems and their abstract represen-
tations as graphs composed of nodes (objects) linked by edges (connec-
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tions), provides us the tools to quantify and systematically compare net-
work statistics and properties. In the following section, we will embrace
a network theory perspective, departing for now from brain dynamics in
favor of a structural description and the structural layout of the brain’s
pathways. This perspective will be reintegrated with the so far presented
findings in Section 2.3, where we introduce computational models of the
resting state to model spontaneous brain activity as a result of local neu-
ronal dynamics, driven by and driving their surrounding network.

1.3. Measuring brain connectivity

1.3.1. Fiber tracking: Diffusion imaging

Up until the 21st century, neural fiber tracts were mainly mapped inva-
sively through staining techniques such as with horseradish peroxidase
(van der Want et al., 1997). In a large effort, the collation of connectivity
data on the macaque brain (CoCoMac) has been implemented to create a
large-scale, comprehensive primate brain connectivity database (Stephan
et al., 2001; Kötter, 2004), which is still in constant progress in a second
edition (Bakker et al., 2012). The same approach has not been pursued in
the human brain, but technological improvements in the tracing of water
diffusion by diffusion tensor imaging DTI (Basser et al., 1994; Le Bihan
et al., 1986; Le Bihan, 2014) and diffusion spectrum / diffusion weighted
imaging DSI/DWI (Wedeen et al., 2005; Huisman, 2003). These tech-
niques have made it possible to make neural fiber tracts traceable noninva-
sively by means of the inhomogeneities they cause in the diffusion tensors
of water molecules in the brain. While still limited in accuracy, the devel-
opment of DSI has made it possible to distinguish several crossing fibers
within a single voxel of ~3mm size given sufficient directional difference
between them. Over the last years, the increasingly anticipated ’human
connectome’ (Sporns et al., 2005), a global map of connections between
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brain areas, has been mapped for the human brain, and is ever-increasing
in detail thanks to advancing technology (Cammoun et al., 2012; Daducci
et al., 2012). Figure 1.4 shows how parcellation at different spatial scales,
combined with DSI tractography, leads to the construction of connectiv-
ity matrices of different sizes. As the brain is not completely segregated
into structural modules, however, the choice of parcellation into brain
areas is nontrivial, and affects the distribution and strength of connec-
tions. For a long time, the gold standard to describe brain areas were
the cytoarchitectonic maps of Brodmann (Brodmann, 1909; Brodmann &
Gary, 2006). However, functional and structural borders do not always
coincide, and cytoarchitectonic borders may not readily be identifiable
on imaging datasets. Other parcellations with varying numbers of nodes
and delineation criteria (e.g. anatomical, cyto-, myeloarchitectonic) have
been developed over the years, such as the 90 node automatic anatomi-
cal labeling atlas (AAL, Tzourio-Mazoyer et al., 2002) and the Talairach
Atlas (Lancaster et al., 2000) (for a recent review, see Craddock et al.,
2013).

Once having chosen a parcelleation, one can construct connectivity maps.
These matrices typically result from summing all fibers between each pair
of nodes and hold a connectivity strength in the sense of the cumulative
thickness of fibers connecting two brain areas, but distance matrices con-
sidering the Euclidean distance or fiber length can also be constructed.
Due to the inability of DSI to identify fiber directionality, connectivity
matrices are symmetrical in their raw form, although they may lose sym-
metry due to normalization of connections by brain area size. This is
an important point, as directed and undirected graphs may have different
properties and information flow (Woodman & Jirsa, 2013), and further
research is needed to determine in detail the extent of reciprocity of con-
nections and the tightness of the link between fiber thickness and signal-
ing strength. However, combined DSI and autoradiography found bidi-
rectionality of all studied long association pathways in the monkey brain
(Schmahmann et al., 2007), making a symmetric approximation appear
reasonable. All in all, the developments over the last decade, that have
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Figure 1.4: DTI
]Construction of normalized connection matrices at different scales from
structural MRI, brain parcellation, and DSI tractography. Adapted from

Cammoun et al. (2012), ©Elsevier.

been providing us with whole brain, high-resolution connectivity maps,
are an invaluable asset for the study of cerebral networks and interactions,
and crucial for developing models of internal brain dynamics.

1.3.2. Graph Theory - measuring graphs

One important question that arises with the ability to trace fiber con-
nections in the brain globally is that of how to represent and analyze
them. The study of networks of connected objects (nodes) is the sub-
ject of Graph Theory, which has been popular in social science for a long
time and provides tools for describing, classifying and comparing dif-
ferent graphs and their properties. In a graph, nodes connected by links
(edges) are said to be neighbors. The path length L(p) is the average of
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the number of edges in the shortest path between to nodes. The clustering
coefficient C is the average fraction of all possible connections between
the neighbors of a node, for all nodes. Many different graph properties
can be computed, both for the network as a whole, and for each node lo-
cally, such as node degree (the number of direct connections of a node)
or its centrality (the fractions of all shortest paths in the network which
include the node), as illustrated in Figure 1.5. Different elemental con-
nectivity patterns between 3 or more nodes such as triangles are called
motifs and their arrangements and combination into connected modules
determine the larger graph’s shape and properties. High centrality nodes
are called connector hubs if they reside between, or local hubs, if they lie
within a densely interconnected module of nodes. For a more in-depth
review on graph theory measures and applications in neuroscience, see
Rubinov & Sporns (2010).

Figure 1.5: Basic Network measures as explained in the text, adapted from
Rubinov & Sporns (2010), ©Elsevier Publishing Group

In a seminal paper, Watts & Strogatz (1998) demonstrated a basic model
for networks that, while very different in size and nature, share an inter-
esting property: The western U.S. power grid, a collaboration graph for
movie actors, and the neural connectome of the worm C. elegans were all
small-world (Milgram, 1967; Travers & Milgram, 1969) networks com-
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bining short path lengths and high clustering coefficients. This means
that, on average, all other nodes can be reached from a given node by far
fewer steps than this would be the case on a regular graph or a random
graph (see Figure 1.6).

Figure 1.6: Left: example for graphs with increasingly random connections
through rewiring. Right: small-world networks combine short mean path lengths
L with a high clustering coefficient C. Adapted from Figures 1 (left) and 2 (right)
of Watts & Strogatz (1998), ©Nature Publishing Group.

In studying simple model dynamics in different systems, Watts & Stro-
gatz (1998) found that in small-world networks, coupled phase oscillators
readily synchronize. Their speculation that this may be relevant to neural
synchronization, and the brain may have a small-world architecture, fore-
boded both the now widely accepted small-world structure of brain con-
nectivity and the usefulness of oscillator nodes to study its dynamics in
computational large-scale models, which we will introduce in Section 2.3.

In 2007, Iturria-Medina et al. (2007) presented a DWI proof of concept
and brain connectivity maps with respect to strength, density, and prob-
ability. Hagmann et al. (2007) used DSI to similarly construct a whole-
brain connectivity graph, and confirmed the small-world structure of the
brain, combining shorter path-lengths and higher clustering than surro-
gate graphs with the same degree-distribution as the DSI-derived network.
With these techniques, the known structural connectivity of occipital ar-
eas was replicated, and a highly connected ’structural core’ on the brain
graph was identified (Hagmann et al., 2008), consisting mostly of high de-
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gree, strength, efficiency, and centrality nodes in posterior medial cortex
(precuneus, paracentral lobule, posterior cingulate, superior and inferior
parietal cortex as well as cuneus, pericalcarine and superior temporal ar-
eas). Nijhuis et al. (2013) confirmed many of these areas to be connector
hubs (combining high degree with betweenness centrality) and is in line
with network analysis of macaque and cat cortices (Sporns et al., 2007).
The important role of network hubs in human brain function and dys-
function has become a major focus of cognitive neuroscience, and while
graph analyses have helped identify key structural and functional patterns
of brain organization, the influences of data preprocessing, connectivity
measure and model choices pose important new challenges for the use
and interpretations of network approaches (Sporns, 2014; van den Heuvel
& Sporns, 2013). For example, while DSI technology gives us a formerly
unknown resolution of anatomical fiber tracts, one has to keep in mind
that there is only information about fiber thickness and density, and not
about directionality or synaptic efficacy. Also, due to the brain’s inher-
ent multiscale connectivity, resulting connection patterns will depend on
the spatial scale and normalization (or lack thereof) of fiber strengths by
brain area surface and parcellation size. This, and the fact that smaller
fibers may either be missed or misspecified (giving rise to connectivity
probability maps additionally to weight maps), are a few of the factors
profoundly affecting graph properties. In spite of these limitations, ad-
vanced fiber imaging has provided a consistent map of a highly structured
connectivity architecture of human cortex, with strongly connected hubs
and functional modules, which are in line with many functional connec-
tivity patterns and modules identified in functional or combined studies.

1.3.3. Functional Connectivity

But what is the precise relationship between large scale structural and
functional connectivity in the human brain? This is much more diffi-
cult to answer, as functional connectivity is a multi-faceted (’elusive’ -
Horwitz, 2003) concept (Rogers et al., 2007), and may vary both with
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connectivity measures (based on phases, bivariate or multivariate correla-
tions, coherency or mutual information) and time scales (frequency bands,
time windows) considered. This higher dimensionality of FC shows that
there is no single correct answer on the relation between FC and SC, but
may also slightly vary with scale and connectivity measure applied. Seed-
based correlational MRI analysis first led to the discovery of spontaneous
coactivations and the existence of distinguishable networks in the motor
cortex (Biswal et al., 1995), and later in task-related (e.g. IPS) and task-
negative (often PCC and MPFC) networks (Corbetta & Shulman, 2002;
Greicius et al., 2003; Fransson, 2005; Fox et al., 2005). Due to its time
resolution, capturing slow brain dynamics, correlations were successfully
used to measure FC, in spite of methodological concerns.

One main point of controversy was whether routinely performed global
signal regression (removal of BOLD fluctuations co-occurring in the
whole brain) is a necessary preprocessing step or artifactual itself, intro-
ducing artificial anticorrelations (Fox et al., 2005; Buckner et al., 2008a;
Honey et al., 2009; Murphy et al., 2009). By comparison between anal-
ysis methods, though, Fox et al. (2009) resumed that, while global signal
regression does mathematically introduce anticorrelations and global sig-
nal distributions must especially be considered in group comparison stud-
ies, the global signal is not strongly localized to the task-positive or task-
negative networks. Instead, this signal is indeed rather spatially global
and linked to physiological artifacts, so that after regression, FC better
matches SC, and thalamocortical activity is more consistent with previ-
ous findings. Also, anticorrealtions can be found even without global
signal regression, so that the authors conclude that, while the influence
of the procedure must be considered and studied carefully, global signal
regression may improve FC estimation and is not primarily artifactual.

Extension of the seed-based analysis over all ROIs yields a symmetrical
correlation matrix indexing correlations/coherence for all brain area pairs,
which can be used to describe the system, build functional graphs, and
compare FC and SC on a system level. Studies concerned with these
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aspects have consistently shown the existence of RSNs, specifically the
DMN (e.g by cluster analysis, van den Heuvel et al., 2008), as outlined
in Section 1.2.1.

However, correlational analysis is limited in different ways: Correlations
are by nature hypothesis driven, and when computed on pairs of voxels,
many significance tests have to be performed to get statistically meaning-
ful activation maps. Artifacts introducing global correlations have to be
corrected beforehand, but spurious correlations often remain. ICA was
soon proposed as an alternative to overcome these limitations (see Sec-
tion 1.2.2), as it allows for simultaneous decomposition of the signal into
maximally independent components, and artifact rejection and coactiva-
tion maps are computed in a single analysis step. After performing a
PCA to reduce the data dimensionality to K (a process termed prewhiten-
ing), an eigenvalue-decomposition is performed on the data that extracts
maximally independent components while maximizing the variance of
the data explained by these components. As ICA needs manifold more
datapoints than components, and fMRI typically delivers many spatial
but few temporal datapoints, spatially independent components have been
predominant (Kiviniemi et al., 2003; Beckmann & Smith, 2004; Damoi-
seaux et al., 2006; De Luca et al., 2006), while EEG/MEG studies typi-
cally extract temporally independent signal components (Brookes et al.,
2011c; Mantini et al., 2007; Yuan et al., 2012). In both cases, the data
is represented as a combination of K independent components (IC), and
each original data channel xn(t) = 1, ..., N (voxels, sources or sensors)
is assigned a coefficient ck on each of the components, so that

xn(t) = cn,1 ∗ IC(t)1 + ...+ cn,K ∗ IC(t)K . (1.1)

Artifactual components are typically identified and rejected manually, and
the number of extracted components is also chosen by hand, so that the
technique is not completely datadriven and both ICA and correlational
analyses should be regarded as complementary (De Luca et al., 2006). As
treated in more detail in Chapter 5, another important question is whether
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independence is an optimal constraint for data decomposition, and higher
dimension generalizations of ICA and PCA are further discussed. So
while the existence and identifiability of various RSNs with functional
importance has been robust over data recording and analysis methodol-
ogy, their detailed characterization and interactions in time are a matter of
active research. Considering the correspondence of SC and FC, though,
studies also highlight that connectivity patterns change with frequency
(Salvador et al., 2005) and that the overall concordance of functional and
structural links is only part of the picture (Skudlarski et al., 2008). Over-
all, structurally stronger connected nodes are also functionally strongly
connected, while this relation decreases for weaker anatomical connec-
tions. In fact, functional connections are commonly observed in the ab-
sence of direct structural links (Honey et al., 2009), raising interest in the
question of how the collective brain network gives rise to functional inter-
actions more complex than what is explainable purely by direct physical
links between nodes. Another question is how changes in anatomical con-
nectivity, e.g. through learning, injury, aging, or disease, directly affect
functional connectivity and how symptoms may give us insight into the
structure-function relationship in the brain. On the other hand, new diag-
nostic and treatment opportunities are likely to arise if the key implicated
network communications and pathways can be identified.

1.3.4. Connectivity alterations in diseases

Brain connectivity is implicated in a wide range of neuropsychological
diseases, and in the last years a wealth of studies has been published on
the subject. As each disease is its own field of study, a comprehensive
overview is out of the scope of this thesis. We will give an overview and
explore the effects of SC changes on brain dynamics and FC in Chap-
ter 3 in the context of aging. To give an impression of the importance
of connectivity changes in many conditions, we here recapture some key
findings on altered SC and FC in mental illness, whereby SC alterations
are so far better corroborated (see also review by Griffa et al., 2013). The
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investigation of many conditions regarding their functional connectivity
both in task and at rest is a highly active field of research.

Figure 1.7: Group differences in topological properties of brain functional net-
works: Lower probabilities for high-degree network hubs (A,B - red lines), and
differences in clustering and degree distribution over the cortex (C,D) are appar-
ent in schizophrenia patients when compared to healthy controls. Adapted from
(Lynall et al., 2010, their Figure 4), ©Society for Neuroscience.

Griffa et al. (2013) categorize three global dimensions of structural
changes: changes in integration, segregation, and architecture. In a
graph theoretical context, both segregation and integration capacity are
related to small-worldness, which combines both so that information trav-
els quickly due to short mean path lengths (high integration capacity),
while local processing is supported by strong clustering and local effi-
ciency (segregation). Although small-worldness, a robust macro-scale
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property of the brain, is typically preserved, the integration/segregation
ratio, clustering and degree-distribution (Figure 1.7) are often altered.

For Alzheimer’s Disease patients, Griffa et al. (2013) report increased
characteristic path length and clustering coefficients. The correlation with
cognitive decline both in AD and normal aging (see also Section 3), sup-
ports the hypothesis that decreasing long range connectivity (especially
interhemispheric) supports the symptoms. This is reflected in decreases in
functional connectivity, which increasingly affect all systems with ongo-
ing disease progression (Greicius et al., 2004; Zhou et al., 2010; Damoi-
seaux et al., 2012; Supekar et al., 2008).

Schizophrenia has long been viewed as a disconnection disorder (Friston,
1998), and though connection alterations are complex and widespread,
a trend towards higher path lengths and clustering coefficients, together
with decreased local efficiency of various brain regions, supports the
disconnection hypothesis. However, symptoms and pathology lack ho-
mogeneity at the macro-level, and alterations may be specific to cer-
tain sub-systems, or rather subtle global configuration alterations diffi-
cult to pinpoint to specific areas (Liang et al., 2006; Liu et al., 2008;
Lynall et al., 2010; Salomon et al., 2011). In MS, besides grey matter
losses, widespread white matter losses affected both long-range and short-
range efficiency in various functional subsystems including the cerebel-
lum (Dogonowski et al., 2013), leading to decrease in network efficiency,
(Bonavita et al., 2011; Lowe et al., 2008; Roosendaal et al., 2010). In
temporal lobe epilepsy, cortical thickness correlation analysis (Bernhardt
et al., 2011) showed symptom-progression related network disruptions in
the form of increased path length, clustering coefficient, and a relative
accentuation of paralimbic and temporal hubs when compared to healthy
controls. Results vary for different types of epilepsy, and the amount of
studies is rapidly increasing, although it is still difficult to ascertain gen-
eral findings from the limited amount of data (see Griffa et al., 2013).
Recent FC studies on Depression have also found hyperconnectivity in an
introspective socioaffective network (ISA, Schilbach et al., 2014), along
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with DMN and others (Zeng et al., 2012). While this is not an exhaustive
list of examples for findings of altered connectivity in diseases, reliable
data is still outstanding for confident clinical application. This is a highly
active and promising field of potentially useful applications of RS and
brain connectivity recordings (Fox & Greicius, 2010), and many advances
can be expected in the understanding of how certain network alterations
lead to specific symptoms of a disease and how they are connected. For
some disorders, group-based distinctions are already possible (Burklund
& Lieberman, 2012), and clinical applications are foreseeable in the fu-
ture. Combined with tasks or stimulus presentation, otherwise badly dis-
tinguishable groups such as recovered Major Depression patients could
be better identified with this method. Yet, to ultimately understand why
certain connectivity alterations lead to specific symptoms, we also need
to understand in more depth the basic principles of the healthy brain as
a complex, dynamic, and plastic self-organizing system, and how its net-
work structure and dynamics are connected to specific functions on the
one hand, and interrelate on the other hand.

1.3.5. Conclusions - a complex network perspective

A complex-network view was already voiced twenty years ago (Tononi
et al., 1994; Haken, 1996), and inspired by first connectivity datasets, a
graph theoretical approach to studying the human brain took its course
and is still growing (recounted by Sporns, 2012). The complex network
perspective defines a new era after a large gap from blackbox and purely
modular models of the brain, as well as following behavioralism and cog-
nitivism, and has superseded pioneering but more unidirectional and me-
chanic functional processing models such as the two visual processing
streams of Mishkin & Ungerleider (1982); Goodale & Milner (1992) by
emphasizing dynamic and multidirectional self-organizing principles and
emergent properties. These properties are being intensively studied in a
quest to fundamentally understand how brain function, and with it cog-
nition, emerges, develops, and adapts to external and internal stimuli and

27



contingencies without an external, teleological module. There is now ac-
cumulating evidence suggesting that the brain is small-world in structure
and functional states, consisting of interacting, hierarchical (Stam & van
Straaten, 2012) modules forming networks (Sporns, 2013), and that this
network of networks shows critical or scale-free/fractal dynamics (Rei-
jneveld et al., 2007; Bullmore et al., 2009). However, many of the de-
tails and extents of how these properties emerge from the architecture
and physiological processes are still very blurry. Here, computational
models have successfully been used to demonstrate the emergence of cer-
tain properties such as critical dynamics from certain structures such as
simulated brain networks, and the changes and deterioration that can be
induced by structural changes (Deco et al., 2013a).

Therefore, in the following, we will turn to the question of how complex
RS patterns arise from the structural core and dynamics of the brain. We
will explore computational models and their attempts at explaining and
predicting many empirical findings by creating and manipulating com-
plex, self-organizing networks as virtual brains, with different states and
dynamics.

In the following Chapter, we briefly recapture the rationale behind com-
putational modeling of large-scale resting state networks, and present
then the fundamental paradigm of how SC and local dynamics are com-
bined to create simulated brain dynamics with the example of a spiking-
neuron network. We then exemplarily study changes in dynamics caused
by structural changes in aging, before giving a comparative overview
over computational models of different complexity and behaviors in Sec-
tion 2.3.
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2. From structure to function
- large scale models of the
resting state

In the last years, a wealth of network models has been developed by in-
tegrating computational models of neural population activity with struc-
tural empirical data on the brains’ connectivity pathways. In the follow-
ing chapter, we introduce the rationale and implementation of large-scale
computational models for RS activity in the brain or cortex as a whole.
The chapter reproduces part of a paper with the title "Bottom up mod-
eling of the connectome: linking structure and function in the resting
brain and their changes in aging". The work was published in NeuroIm-
age (NeuroImage 87 (2013) 15 318-329, http://dx.doi.org/10.
1016/j.neuroimage.2013.04.055) by Nakagawa T. T., Jirsa V.
K., Spiegler A., McIntosh A. R., and Deco G. The text underwent minor
formatting and structural (e.g. figure counts) changes to better integrate
into the thesis format.

For comprehensiveness, a description of different dynamical models are
included that, except for the spiking model description, do not form part
of the published paper in Section 2.3. The application of such a model for
aging, also included in the paper listed above, is given in Chapter 3.

The abstract of the paper reads:

With the increasing availability of advanced imaging tech-
nologies, we are entering a new era of neuroscience. Detailed
descriptions of the complex brain network enable us to map
out a structural connectome, characterize it with graph the-
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oretical methods, and compare it to the functional networks
with increasing detail. To link these two aspects and under-
stand how dynamics and structure interact to form functional
brain networks in task and in the resting state, we use the-
oretical models. The advantage of using theoretical models
is that by recreating functional connectivity and time series
explicitly from structure and predefined dynamics, we can
extract critical mechanisms by linking structure and function
in ways not directly accessible in the real brain. Recently,
resting state models with varying local dynamics have repro-
duced empirical functional connectivity patterns, and given
support to the view that the brain works at a critical point at
the edge of a bifurcation of the system. Here, we present an
overview of a modeling approach of the resting brain network
and give an application of a neural mass model in the study
of complexity changes in aging.

2.1. Introduction

With the turn of the millennium, a paradigm shift slowly occurred in the
field of brain science. In the 1990s, driven by the maturation of fMRI and
its high spatial resolution, studies mainly focused on the precise localiza-
tion of specific brain functions, leading to a new level of understanding of
many perceptual processing streams, the mapping of two visual pathways
in the brain, and localization of various specific functions. However, with
time it also became clear that many neural responses depend strongly on
context. Also, complex brain functions such as attention and conscious-
ness interact widely throughout the brain, and there are also networks of
brain areas actively structuring brain dynamics in the absence of any task.
Especially the latter sparked interest in the dynamics of the fixation-only
or eyes-closed awake ’resting state’ condition as a potential baseline for
various task conditions, and the investigation of intrinsic structure, self-
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organizing principles and dynamics of the brain as a network of networks
(Gusnard & Raichle, 2001).

With concurring advances in DTI/DSI and related technologies it has
been possible to create a first generation of structural macro-connectomes
(Hagmann et al., 2008, 2010; Sporns et al., 2005; Sporns, 2011) as well
as large-scale functionally connected networks in fMRI-BOLD (Damoi-
seaux et al., 2006; Doucet et al., 2011; Fox & Raichle, 2007; Fox et al.,
2005; Greicius et al., 2003), and, most recently, MEG and EEG record-
ings (Brookes et al., 2011a,c; Hipp et al., 2012; Mantini et al., 2007; Yuan
et al., 2012). Furthermore, we are now in the process of obtaining de-
tailed structural and physiological descriptions of the brain on multiple
scales at once for large, physiologically detailed reconstructions of its
networks (Van Essen & Ugurbil, 2012; Van Essen et al., 2012). However,
a major challenge we will face in the coming years will not only be the
pure recreation of realistic brain connectivity and dynamics. It will be the
extraction of important features and mechanisms of these dynamics and
of the network structure that are critical to brain function. This is crit-
ical to understand how this most complex network self-organizes into a
very stable and consistent, yet flexible and adaptive system and its core
components.

In the following, we will review and discuss how large-scale theoretical
brain models are crucial to bridging the gap between purely anatomical
brain networks and their cognitive architectures by identifying key net-
work properties underlying the empirically observable network dynamics.
We will outline how modeling evidence supports the idea that the brain
works in a critical region close to a bifurcation, and that these dynamics
are common to resting state models capturing the spatial patterns of spon-
taneous brain activity. Finally, we will apply this modeling approach to
the study of Multiscale Entropy (MSE) in the aging brain, and give an out-
look on how capturing spatiotemporal dynamics such as complexity and
oscillatory dynamics presents the next big challenge for computational
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models, to contribute further to understanding cognitive architecture of
the brain and its relation to the underlying structural connectome.

In the following section, we will first describe how large scale computa-
tional models link the structural connectome to functional networks and
dynamics. We then exemplarily review the underlying architecture of a
biophysically sophisticated resting state model and its reduction to a neu-
ral mass model in Section 2.3. Finally, in Section 3, we give an appli-
cation of the model for studying changes in cognitive architecture and
complexity of spontaneous dynamics in aging.

2.2. Linking structure and dynamics: model
approaches

An important question which remains to be answered in spite of the
advances in structural mapping of the human connectome and intrinsic
functional networks, is how they are related in detail. For large scale
spontaneous fMRI dynamics, it has been shown that functional correla-
tions of slow fluctuations are mainly determined by the underlying struc-
tural large-scale connectivity in the long run (Greicius et al., 2009; Hag-
mann et al., 2008; Honey et al., 2009; Skudlarski et al., 2008), and both
functional and structural network characteristics can be described using
graph theory (Bullmore & Bassett, 2011; Sporns, 2011). However, this
structure-function mapping is imperfect, as functional connectivities are
also influenced by indirect links and network dynamics, especially on
shorter time intervals (Honey et al., 2009). In this sense, the structural
connectome is like a road system, in which traffic volume (functional
connections) and street size are closely connected in the long run, but de-
pend much more on the dynamics of the population on shorter time scales.
Even though this analogy does not extend to the specific dynamics of the
systems, it nicely illustrates the enabling (and limiting) role of structure
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for function. Analogously, our observations of functional relations and
states may be strongly influenced by sampling window and frequency, as
well as the aspects of the dynamics we focus on, such as mean activity,
peak activity, or oscillatory phases.

As these dynamics enable the brain’s rich repertoire of functional states,
it is of fundamental theoretical interest to understand the critical features
and mechanisms that link anatomical structure and recordings of brain
dynamics. Theoretical models bridge this gap by constructing explicit
network dynamics to capture the relations between structural connections
and resulting resting state recordings (Deco & Jirsa, 2012; Cabral et al.,
2011; Deco et al., 2009, 2013b; Honey et al., 2007, 2009; Knock et al.,
2009).

These models are all implemented on graphs with nodes (brain areas),
edges (connections), and local node dynamics, as illustrated in Figure 2.1.
Spatial connectivity is determined by the parcellated structural connec-
tome, derived from diffusion imaging (Hagmann et al., 2008) and tracing
studies and databases (Gong et al., 2009; Kötter, 2004).

For modeling brain areas as nodes on the graph, raw diffusion data are
parcelled, and areas and connectivities are down-sampled to the brain-
area level and normalized. The resulting structural connectivity matrices
are taken as fiber tracts between brain areas, and their functional trans-
mission strength in the model is taken as the relative density of these
tracts. The topological properties of the extracted brain network depend
on, and are limited by the precision of several parameters such as fiber
extraction algorithms (see e.g. Hagmann et al., 2008, methods section,
for an exemplary analysis pipeline), extraction of connectivity direction,
and cortex parcellation (Jbabdi et al., 2009; Wang et al., 2009; Zalesky
et al., 2010). At least on low resolution parcellations, though, our ear-
lier work shows model robustness over different parcellations for explo-
ration of large-scale BOLD patterns of structural and functional networks
(Cabral et al., 2012).
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Figure 2.1: resting state networks
]Modeling resting state networks. a) Fiber tract measurements (here depicting
DTI, adopted and modified under a creative commons attribution license, from

(Hagmann et al., 2007), b) parcellated from voxel space to brain areas, are
used to build a brain graph (c, right), with nodes (red) representing brain areas
and edges (green) represent links between nodes.The coupling matrix (c, left),

determining the relative weights of connections between nodes, allows the
network nodes to interact with each other, depending on their local dynamics.
Local model dynamics are exemplarily sketched out for the full spiking model

(d) and its dynamic mean field reduction (e) as described in section 2.3.
Functional connectivity from simulations (f) and empirical resting state

recordings (g) can then be compared to find the model’s working point, as
depicted in (f) for the described model (adapted with permission from the

authors from Deco et al., 2013b). The vertical black line shows the location of
the bifurcation at which the spontaneous stable state loses its stability.

Delays, reflecting finite transmission velocities along axonal fiber tracts,
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and which may reach up to 200 ms in the human brain (Nunez, 1995)
further shape the full spatiotemporal structure, especially in the presence
of oscillatory local dynamics (Campbell, 2007; Freyer et al., 2009; Jirsa
& Ding, 2004). Intrinsic local dynamics have been captured in models
by simple (Cabral et al., 2011; Deco et al., 2009; Ghosh et al., 2008a,b)
and chaotic (Honey et al., 2007, 2009) oscillators as well as by detailed
biophysically realistic descriptions of spiking neuron populations (Deco
& Jirsa, 2012). Noise is added to keep the system active and in a dy-
namic regime in the absence of structured external input (Deco et al.,
2009; Ghosh et al., 2008b).

The simulated time series for every node are then constructed as a for-
ward model on the basis of local dynamics and input from other nodes
arriving through the network structure. Functional connectivities are com-
puted from the time series’ raw, phase or power correlations and related
functional connectivity measures. Generally, for low couplings, the sys-
tem nodes are in a state dominated by low activity (Deco & Jirsa, 2012;
Ghosh et al., 2008b; Honey et al., 2007) or intrinsic oscillations (Deco
et al., 2009; Cabral et al., 2011). With increasing coupling, the system
transitions to higher activity or synchronization states, which are spatially
structured by the topography of the underlying anatomical connectome.

As the global strength level of the connections is not known a priori,
the optimal model working point can be determined by comparing the
model and the empirical functional connectivities for different coupling
strengths. For the different resting state models, this has commonly been
found to be at the critical point of a bifurcation at the edge of instabil-
ity; i.e. at the border between a stable homogenous baseline state and
emergent activation or synchronization patterns (see Figure 2.1 h). Criti-
cal dynamics of fluctuations between unstable functional brain states have
been suggested to occur in neural networks (Beggs, 2008; Haken, 1996;
Rabinovich et al., 2001, 2008), and there is ever increasing empirical and
model evidence for criticality as an organizing principle in the brain as
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a whole (Bassett et al., 2006; Kitzbichler et al., 2009; Poil et al., 2008,
2012; Tagliazucchi et al., 2012a).

For global resting state dynamics, the working location of the system at
a critical point may maximize its flexibility and enable it to explore var-
ious functional states. Typical resting state dynamics with fluctuations
between functional states occur as nodes transiently synchronize into sets
of coactivated brain regions when being pushed beyond the bifurcation by
noise. While the structure of the network depends on the underlying con-
nectome, degree and variability of expression for specific networks are
shaped by the proximity to the bifurcation and the noise of the dynamics.
From this perspective, the emergence of Resting State Networks (RSN)
reflects the dynamical capacity of the system to explore the brain’s state
space spontaneously while remaining able to efficiently respond to mini-
mal external inputs. Recently, Deco & Jirsa (2012) have found such criti-
cal dynamics in a detailed and realistic spiking neuron attractor model,
represented by populations of excitatory (AMPA and NMDA) and in-
hibitory (GABA-A receptor) integrate and fire neurons.

In the non-oscillatory, asynchronous state, as in the presented model, the
key component to the model and its dynamics depend on the topogra-
phy of its spatial connectivity structure and the location of its bifurcation,
where the available states may change mainly with the graph properties
of the network. In this case, the consistently reduced dynamic mean field
model captures the resting state dynamics and bifurcation structure of the
spiking model (Deco et al., 2013b). This is not necessarily true in the
presence of oscillations, as the delay structure and fast dynamics become
important and must be taken into account as additional factors and the
network interactions become more complex.

In the following, we will illustrate the bifurcation from a trivial low ac-
tivity state to multistable attractors with this model, and how its reduction
to a neural mass model can help us appreciate its main mechanisms and
necessary preconditions.
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2.3. Biophysical model characterization of the
resting state

In the previous sections, we presented the rationale and the fundamental
working steps of the basic RS modeling paradigm, from brain parcel-
lation, SC and FC connectivity measurements, to the simulation of RS
activity in a model network, and extracting functional markers and graph
measures of interest. As we saw, at each step of the processing pipeline,
nontrivial decisions have to be made, which depend on the nature and
quality of the data available, and influence the interpretability and possi-
ble conclusions we can draw from results.

In computational modeling, which strives to elucidate the probable links
between structure and activation and uncover mechanisms and dynam-
ics of brain function, a key question is that of how to implement neural
dynamics into the model. All models simplify brain dynamics, but the
extents and the levels of abstraction vary. Every model has different as-
sumptions of the intrinsic behavior of local brain areas, and may help us
understand brain behavior only if we keep in mind their nature and lim-
itations when drawing conclusions. While a spiking neuron model may
help us identify neurophysiological mechanisms or simulate drug-effects
in more detail, a simple oscillator model can elucidate changes in syn-
chronization over a wide set of parameters with much higher computa-
tional efficiency. In the following, we will present a nonexhaustive list
of mesoscopic models that similarly used a large-scale connectome com-
bined with different models of intrinsic local dynamics and discuss their
assumptions, conclusions, similarities and differences. While the major-
ity of models presented here consider slow, asynchronous BOLD fMRI
signals, in Chapter 4, we will explore how different parameters influence
model dynamics, considering the importance of delays in the presence of
oscillatory dynamics in the case of MEG bandlimited power signals.

Mesoscopic models describe the activity of populations of neurons, as-
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suming that their collective behavior is not strongly sensitive to the de-
tails of individual neuron activity (Breakspear & Jirsa, 2007). Mean field
models represent lowdimensional representations of collective neuronal
dynamics in one or more parameters and modes, the most important being
firing rate or mean activity, but extendable to include variability param-
eters (Brunel & Wang, 2003). These models still connect to some bio-
physiological behaviors of individual neurons (Stefanescu & Jirsa, 2011;
Jirsa & Stefanescu, 2011) while even simpler models inspired by physical
systems such as the Kuramoto model or the Ising spin glass model fully
abstract population behavior from underlying biomechanical processes of
individual neurons. In Section 2.3.6, we also present a biophysically real-
istic global spiking attractor model with populations of integrate-and-fire
neurons on the microscopic scale, along with its reduction to a meso-
scopic dynamic mean field model.

2.3.1. Conductance-based biophysical models

The biophysical neural mass model of Breakspear et al. (2003) was the
first one to be extended into a full cortical network model with nodes for
brain areas and a datadriven long-range connectivity matrix as network
links (Kötter, 2004) in a work by Honey et al. (2007). They implement the
conductance-based local model for neural dynamics by Morris & Lecar
(1981), which describes neuron behavior as a function of voltage- and
ligand-gated membrane channels. Sigmoidally voltage-dependent sodium
(Na) and calcium (Ca) channels, along with exponentially relaxing potas-
sium (K) channels describe the local populations, which are intercon-
nected by long-range excitatory to excitatory connections, implementing
glutamate-induced synaptic currents.

In this model, the neural activity is captured by the mean membrane po-
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tential of the excitatory pyramidal cells V, and governed by:

C
dV

dt
= −gCamCa(V − VCa)− gNamNa(V − VCNa)

−gKW (V − VK)− gL(V − VL),
(2.1)

where gion is the maximum conductance of each ion species, and gL is
the passive conductivity of leaky ions. mion is the fraction of open chan-
nels and Vion is the Nernst potential for that ion species. W is the average
number of ’open’ potassium channels. All related equations and parame-
ters are nondimensional and normalized to neural capacitance C = 1. As
each voltage-gated channel opens when the membrane potential crosses a
given threshold Tion from below, the relationship between membrane con-
ductance and the single channel is governed by a step function. For the
population average over such channels, assuming an ion-specific Gaus-
sion distribution of Tion, the sigmoid-shaped neural activation function
for each ion is given by

mion = 0.5(1 + tanh(V − Tion
δion

), (2.2)

where δion is the variance of the distribution. For the fraction of open
potassium channels (W), an exponential ’relaxation’ is achieved by W be-
ing governed by

dW

dt
= φ(mK −W )

τ
, (2.3)

where φ is a temperature scaling factor and τ is the relaxation time con-
stant. Synaptic interactions between neurons within the same local popu-
lation, feedback terms subsequent to cell firing, representing neurotrans-
mitter release, are introduced. At the soma, the membrane potential trig-
gers and action potential if it crosses a (mainly sodium-channel governed)
threshold. By averaging over the local population and assuming Gaus-
sianity, we obtain the firing rates

QV = 0.5QV max(1 + tanh(V − VT
δV

)), (2.4)
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QZ = 0.5QZmax(1 + tanh(Z − ZT
δZ

)), (2.5)

where QV max and QZ max are the maximum firing rates of the excitatory and
inhibitory neurons, respectively. The firing of each cell population feeds
back onto the ensemble, thus raising or lowering the membrane potential
accordingly.

Connections between the excitatory (e) and inhibitory (i) populations are
modelled as additional inputs to the flow of ions across the membrane
channels, weighted by synaptic factors aei and aie. e-e connections are
modelled with greater physiological detail: The mean firing rate QV is
assumed to trigger a proportional release of glutamate, which diffuses
across the synapse on to AMPA-receptor sodium channels and NMDA-
receptor voltage-gated calcium channels. Thus, the excitatory (V) and
inhibitory (I) membrane potential is given by:

dV

dt
= −(gCa + rNMDAaeeQV )mCa(V − VCa)

−(gNamNa + aeeQV )(V − VNa)− gKW (V − VK)
−gL(V − VL) + aieZQZ + aneIδ,

(2.6)

dZ

dt
= b(aniIδ + aeiV QV ), (2.7)

where rNMDA denotes the number of NMDA recepter in relation to
AMPA receptors, ane and ani are nonscpecific inputs, and aee parametrizes
excitatory to excitatory synaptic strength. Iδ represents subcortical excita-
tion of amplitude I, modulated by a random noise component of amplitude
δ.

To model an array of populations with long-range connectivity between
the same NMDA and AMPA receptor targets on pyramidal neurons, the
following equation describes the mean membrane potential for pyramidal
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neurons of node n:

dV n

dt
= −(gCa + (1− C)rNMDAaeeQ

n
V

+CrNMDAaee〈QV 〉)mCa(V n − VCa)
−gKW (V n − VK)− gL(V n − VL)

−(gNamNa + (1− C)aeeQn
V + Caee〈QV 〉)(V n − VNa)

+aieZQn
Z + aneIδ,

(2.8)

where 〈 〉 represents spatial averaging over cell assemblies, resulting in
’mean-field’ variables. C weighs the strength of long-range excitatory
couplings, so that, if C > 0, interdependencies and complex spontaneous
activity patterns arise (Breakspear et al., 2003). In a large-scale brain
model with realistic anatomical connectivity, C was set to a value which
allowed for weakly stable synchronous dynamics. Switches between syn-
chronous and desynchronous epochs arise from the nonlinear instabilities
based on the chaotic dynamics of the nodes, linked by the complex struc-
tural connectivity. At this critical coupling, spontaneous activity patterns
arise in the absence of noise or delays, and spontaneous patterns of coac-
tivation rebuild RS FC patterns identified in empirical BOLD recordings
both in the macaque (Honey et al., 2007) and human brain (Honey et al.,
2009). This was the first study to show in a model how the large-scale
anatomical structure of the primate cortex constrains the spatiotemporal
characteristics of RS activity.

2.3.2. FitzHugh-Nagumo model

Another neural mass model, based on FitzHugh Nagumo units (FitzHugh,
1961; Nagumo et al., 1962), coupled in the space-time structure of a time-
delayed connectivity matrix, was developed by Ghosh et al. (2008a,b). In
the twodimensional simplification of the Hodgkin-Huxley model, dynam-
ics are goverened by the evolution of the state variables ui and vi of neural
population, indexed by i:
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u̇i(t) = g(ui, vi)− c
N∑
j=1

fijuj(t−∆tij) + nu(t)

v̇i(t) = h(uj, vi) + nv(t),
(2.9)

where nu(t) and nv(t) is added white Gaussian noise, and

g(ui, vi) = τvi + γui −
u3
i

3
h(ui, vi) = 1− 1

τ
[ui − α + βvi],

with α= 1.05, β = 0.2, γ =1.0, τ =1.25. The equations for each node were
coupled, and for a certain range of delays, calculated from Euclidean dis-
tances dij and propagation velocity v by ∆tij = dij

v
. While the nodes are

damped oscillators when uncoupled, the authors observed increased in-
stability in the ongoing dynamics in the coupled system if a sufficiently
large coupling was combined with a certain realistic range of propagation
velocity of 5-20m/s. They demonstrate that the tuning of the propaga-
tion velocity allows for the emergence of the resting state networks for
biophysically realistic parameters.

The model is compared to functional imaging data by calculating sim-
ulated BOLD signal in form of the Balloon-Windkessel hemodynamic
model (Friston et al., 2003). Even though the resulting BOLD signals are
much slower, the delays on the scale of tens of seconds remain impor-
tant for the stability of the system, as they shape the interactions of the
underlying simulated neural signals. In contrast to the previous model of
Honey et al. (2007), there are no chaotic local dynamics, and the BOLD
RS patterns arise here from a combination of spatial and temporal con-
nectivity patterns. The emergent slow BOLD fluctuations are caused by
power variations in the 10 Hz oscillations of the underlying signal.
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2.3.3. Wilson-Cowan model

Another ’mean-field’ approach was taken by Deco et al. (2009) with noise
driven Wilson-Cowan oscillators (Wilson & Cowan, 1972). This very
simple neuron model is based on populations of homogenous model neu-
rons, specifically the activity, i.e. the proportion of excitatory (x(t)) and
inhibitory (y(t)) cells firing at any time t. In this model, the local dynam-
ics of cortical regions are reduced to considering the interaction between
these neuron population subtypes. While the model neurons are simple
and thus only show elementary limit cycle behavior on their own, the
global dynamics in a cortical model will depend on the interactions be-
tween the brain regions in addition to the local behavior. The local nodes
were linked by time-delayed long-range excitatory connections in order
to study how global slow oscillations could emerge from a network built
from simple fast (gamma) oscillators, as which cortical regions have been
described in the model by Wilson & Cowan (1973). In the coupled model,
the activity (z(t)) of a pool is given by the decay of current activity plus
added excitatory stimulation,

τ
∂z(t)
∂t

= −z(t) + Φ(z(t)), (2.11)

with the nonlinear response function

Φ(x) = c

1− exp− a(x− b) , (2.12)

which transforms the current into discharge rates, with membran time
constant τ . Coupled together, the local populations of excitatory and in-
hibitory neurons are governed by:

τ
∂x(t)
∂t

= −x(t) + Φ(Ib + w+x(t)− y(t)) + v(t),

τ ′
∂y(t)
∂t

= −y(t) + Φ(wIX(t)) + v(t),
(2.13)

43



where v is Gaussian noise with zero mean, and Ib is a diffuse spontaneous
background input.

To model the network dynamics, the excitatory populations of 38 Wilson-
Cowan units were coupled according to the CoCoMac macaque connec-
tivity data (Stephan et al., 2000), using the connectivity matrix Cij and
the assumed delay matrix Tij , so the global dynamics are given by

τ
∂xi(t)
∂t

= −xi(t) + Φ(Ib +
∑
j

αCjixj(t− Tji)− yi(t)) + vi(t), (2.14)

τ ′
∂yi(t)
∂t

= −yi(t) + Φ(wIxi(t)) + vi(t), (2.15)

whereCij = w+/α and α is the global coupling parameter. At a−0.1, b =
40, c = 100, τ = 1, τ ′ = 0.2, wi = 1.5, single uncoupled nodes remain
in a nonoscillatory low-activity state, while coupling (and thus increased
mutual excitation shaped by the spatiotemporal connectivity matrix) led
to noisy, self-sustained oscillations in the gamma-frequency range and the
formation of two functional networks fluctuating slowly (~0.1 Hz) in their
intranetwork synchronization. In line with empirical findings, these slow
connectivity fluctuations showed to be in anticorrelation with each other
(Fox et al., 2005).

2.3.4. Kuramoto model

Where Wilson-Cowan units can show either damped or self-sustaining
oscillations, the model can further be simplified when assuming the local
networks to be in the latter regime (as found to be the case for the network
of Deco et al., 2009), and the inputs to the network perturb the system
weakly enough to not throw it far off the vicinity of its limit cycle. In that
case, the dynamics of the system can be closely approximated in one sin-
gle dimension, which is the angle or phase of the oscillators on that cycle.
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Cabral et al. (2011) approximated the reduction of the Wilson-Cowan sys-
tem in one dimension by replacing the phase-difference function of how
the nodes affect each other with a simpler sine function, resulting in a
Kuramoto model of coupled phase oscillators. The Kuramoto model (Ku-
ramoto, 1984; Strogatz, 2000; Yeung & Strogatz, 1999) has been used in
an array of fields and topics including mathematical biology, statistical
physics, and engineering, amongst others.

The model is noteworthy in that in a collection of simple oscillators, be-
yond a certain coupling threshold, clusters of synchronizing oscillators
arise (as long as their natural frequencies are not too different). For same-
frequency oscillators, the dynamics of the system in terms of each oscil-
lator’s phase θn(t) is governed by

dθn
dt

= ωn + k
N∑
p=1

Cnpsin(θp(t− τnp)− θn(t)) + ηn(t), n = 1, ..., N,

(2.16)

where Cnp is the relative coupling strength from node p to node n (i.e.
C is the connectivity matrix), k is the global coupling strength parameter
scaling all connections, τ np are the delays between pairs of nodes calcu-
lated from propagation velocity v and the distance matrix L, expressed by
mean delay 〈v〉. ηn(t) is white Gaussian noise representing local back-
ground input with zero mean and variance σ2

n/T . fn = ωn/2π is the
intrinsic frequency of node n, drawn from a fixed Gaussian distribution
with mean f0 = 60Hz.

Cabral et al. (2011) study the effect of the spatiotemporal coupling deter-
mined by 〈τ〉 and k on the global synchrony of the system, given by the
Kuramoto order parameter. This very generic oscillator model was then
combined with an empirically obtained structural connectivity matrix of
the human cortex and delays calculated from the spatial distance between
nodes. The authors found that for large N, there exists a critical value kc
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for the global coupling where the synchrony jumps from zero (incoher-
ence) to a positie value. Rising k increased synchrony, while rising 〈τ〉
required a higher k for the same level of synchrony, therefore inhibiting
global synchrony. The node dynamics at the critical coupling captured
the empirical FC best at the level of critical coupling where clusters of
strongly connected nodes are substantially synchronous with each other
while the global network is still in a globally incoherent regime. Inter-
estingly, while previous models found a key role for both the SC and
noise (Ghosh et al., 2008a,b; Knock et al., 2009; Deco et al., 2009) or
chaotic dynamics (Honey et al., 2007, 2009), this is not the case for the
Kuramoto model. While there is some level of chaos in the incoherence
regime (Popovych et al., 2005), and noise may influence cluster inter-
actions and dynamical features of the system (Cabral et al., 2011; Deco
et al., 2009), the presence of delays is the second parameter that played a
major role in the establishment of well-fitting FC patterns, in that their in-
clusion prevented full synchronization of the network. This work showed
in a lowdimensional model how delays are important to consider in the
presence of oscillatory dynamics of the local nodes, a question we will
revisit in Chapter 4 in a spiking-neuron network with oscillatory node
dynamics.

2.3.5. Stefanescu-Jirsa model

A versatile mean-field model derived from Hindmarsh-Rose neurons
(Hindmarsh & Rose, 1984), a threedimensional reduction of the Hodgkin-
Huxley model capable of various spiking and bursting behaviors, was de-
veloped by Stefanescu & Jirsa (2008) (Stefanescu & Jirsa, 2011; Jirsa &
Stefanescu, 2011; Ritter et al., 2013). Due to its additional dimension, the
model is able to switch between a stable rest state and a limit cycle, giv-
ing rise to complex firing patterns such as synchronous and asynchronous
firing, bursting and multicluster ermergence in a lowdimensional system.

In the model, describing an excitatory and an inhibitory population of
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fully connected neurons, the three components, or modes, of the local
dynamics are described by

ẋi1 = yi1 − ax3
i1 + b2

xi1 − zi1
+ [K11(X1 − xi1)−K12(X2 − xi1)] + Ii1

ẏi1 = ci − dx2
i1 − yi1

żi1 = r[s(xi1 − xi0 − zi1] i1 = 1, .., N1

ẇi = vi − aw3
i + bw2

i − ui +K21(Xi − wi) + IIi

v̇i = hi − piw2 − vi
u̇i = rswi − rui − ni,

(2.17)

where, in the single-neuron formulation, the variables x/w encode the
membrane potential, y/v the transport of fast sodium and potasium ions
across the membrane, and z/u, the bursting variable, accounts for the
inward current through slow ion channels. In the mean field reduction,
whose terms take the form

X = 1
N

N∑
i=1

xi, (2.18)

the mathematical structure of the single-neuron model is still reflected,
and the three modes of the model (2.17) reflect different dynamical be-
haviors depending on the range of membrane excitabilities of the neuron
cluster (Stefanescu & Jirsa, 2008).

In the coupled large-scale network, inputs from other nodes are added to
local mean field potential xi, so that the mean-field potential xi(t) of node
i is goverened by

xi(t+ 1) = xi(t) +
∫

(xi(t))dt

+ c
N∑
j=1

wijxj(t−∆tij)dt+ η(t),
(2.19)
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where wij are the empirically obained coupling weights between node
i and node j, scaled by a global coupling parameter c. The model also
includes time delays, depending on distance matrix D and conduction
speed v. η(t) is an additive noise term.

This model, amongst others, was integrated into The Virtual Brain (TVB),
a neuroinformatics platform and brain modeling framework that incorpo-
rates a brain simulator with several mean-field and spiking models, as well
as statistical and visualization analysis tools (Sanz Leon et al., 2013). In
this framework, the model was shown to be promising to study a broader
range of dynamic features of the brain due to its range of parameters. At
the same time, it is not too complex to interpret or to find sensible param-
eters due to a combination of statistical methods applicable with the TVB
plattform, such as motif identification and dictionary lookups leading to
dimensionality reduction, and crossmodal empirical model fitting (Ritter
et al., 2013). The platform also makes it possible to compare model per-
formance for different models on the same data, and thus inform model
choices by pinpointing their strengths and limits in standardized, repro-
ducible settings.

2.3.6. Spiking model

The spiking neuron model combines the large-scale network graph struc-
ture used in all full spatiotemporal resting state models with biophys-
ically realistic populations of integrate-and-fire neurons on the micro-
scopic scale. Figure 2.1 shows the basic network setup.

In this model, each node is represented by an excitatory and an inhibitory
population of leaky integrate-and-fire neurons with AMPA and NMDA,
or GABA-A synaptic receptor types, respectively (Brunel & Wang, 2001).
This type of network of spiking neuron network tends to settle in station-
ary states, so called “attractors”, typically characterized by a stable pattern
of firing activity (Deco & Rolls, 2006; Deco et al., 2008), depending on
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its input level. External or even intrinsic noise that appears in the form
of finite size effects can provoke destabilization of an attractor inducing
therefore transitions between different stable attractors. The spiking ac-
tivity of the local network is determined by the dynamics of the membrane
potentials V (t), which are governed by a set of equations relating V (t) to
leakage and synaptic activity Isyn (including a noise term).

For the spiking model, each neuron’s membrane voltage below threshold
Vthr is governed by:

Cm
dV (t)
dt

= −gm(V (t)− VL)− Isyn(t), (2.20)

with membrane capacitance Cm, leak conductance gm, resting potential
VL and synaptic input current Isyn, where

Isyn = IAMPA,ext + IAMPA,rec + INMDA + IGABA (2.21)

,

IAMPA,ext(t) = gAMPA,ext(V (t)− VE)
Next∑
j=1

sAMPA,ext
j (t), (2.22)

dsAMPA,ext(t)
dt

=
sAMPA,ext
j (t)
τAMPA

+
∑
k

δ(t− tkj ), (2.23)

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)
NE∑
j=1

wjs
AMPA,rec
j (t), (2.24)

dsAMPA,rec(t)
dt

=
sAMPA,rec
j (t)
τAMPA

+
∑
k

δ(t− tkj ), (2.25)

INMDA(t) = gNMDA(V (t)− VE)
1 + λe−βV (t)

NE∑
j=1

wjs
NMDA
j (t), (2.26)

dsNMDA(t)
dt

= −
sNMDA
j (t)

τNMDA,decay

+ αxj(t)(1− sNMDA
j (t)), (2.27)
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dxNMDA(t)
dt

= −
xNMDA
j (t)

τNMDA,rise

+
∑
k

δ(t− tkj ), (2.28)

IGABA(t) = gGABA(V (t)− VI)
NI∑
j=1

wjs
GABA
j (t), (2.29)

dsGABA(t)
dt

=
sGABAj (t)
τGABA

+
∑
k

δ(t− tkj ), (2.30)

with synaptic conductances g, excitatory and inhibitory reversal potantials
VE and VI , respectively, the Dirac-delta function δ, and synaptic weight
parameter wj (determining the connection strengths between and within
neural populations). The gating variables sj are the fractions of open ion
channels of the neurons. Connections between excitatory and inhibitory
pools were set to 1, and recurrent self-excitation to /w+/=1.5. Synaptic
parameters were VE = 0mV, VI = -70mV, τAMPA = 2ms, τNMDA,rise =
2ms, τNMDA,decay = 100ms, τGABA = 10ms, α = 0.5kHz, β = 0.062, γ
= 0.28. Once a neuron crosses Vthr, a spike is transmitted to connected
neurons, and its membrane potential is reset to, and maintained at Vreset
for refractory period τref .

All neurons in the network received an external background input from
Next = 800 external AMPA signaling excitatory neurons injecting un-
correlated poisson-distributed spike trains, representing the noisy fluctu-
ations that are typically observed in vivo. Specifically, for all neurons
inside a given population p, the rate vpext of the resulting global spike train
is described by:

τn
dvpext(t)
dt

= −(vpext(t)− v0) + σv
2
√

2τnnp(t), (2.31)

where τn = 300ms, v0 = 2.4kHz, σv is the standard deviation of vpext(t),
and np(t) is normalized Gaussian white noise. Negative values of vpext(t),
that could arise due to the noise term, are rectified to zero.

After applying the mean field reduction to the above spiking model (Deco
et al., 2013b), the activity is governed by:
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dSi(t)
dt

= −Si
τS

+ (1− Si)γH(xi) + συi(t), (2.32)

H(xi) = axi − b
1− exp(−d(axi − b))

, (2.33)

xi = wJNSi +GJN
∑
j

CijSj + I0, p (2.34)

where H(xi) and Si denote the population rate and the average synaptic
gating variable for each local cortical area, Cij is the structural connec-
tivity matrix containing the link strengths between brain areas i and j,
and local excitatory recurrence w is 0.9. Parameter values for the input–
output function are /a/=270 (VnC), /b/=108 (Hz), and /d/=0.154 (s). The
kinetic parameters are γ =0.641/1000. (The factor 1000 is for expressing
everything in ms), τS =100 (ms). The synaptic couplings are JN =0.2609
(nA) and the overall effective external input is I0 =0.3 (nA). In equation
(2.32), υi is uncorrelated standard Gaussian noise and the effective noise
amplitude at each node is σ =0.001(nA).

This model is very detailed, but due to the large number of equations com-
putationally costly. In order to simplify the model and make simulations
for different connectivity structures and multiple runs and parameters fea-
sible, the model can be reduced to a neural mass model under certain as-
sumptions. Based on the mean field model of (Brunel & Wang, 2001), the
dynamic mean field (Wong & Wang, 2006) simplifies the original spik-
ing model by replacing the synaptic gating variables by a DC component
and a Gaussian fluctuation term dependent only on external synaptic gat-
ing variables, reducing the latency of the dynamics to the slow NMDA
component, and linearizing the input-output relation of the inhibitory in-
terneurons and integrating them into the excitatory dynamical equation.

BOLD fMRI signal was simulated by means of the Balloon-Windkessel
hemodynamic model of Friston et al. (2000, 2003) and all parameters are
taken from there. The model describes the perfusion changes based on
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neural activity (Si in the reduced model) in each brain region causing
a vasodilatatory signal with autoregulatory feedback. The BOLD signal
is then modeled as a static nonlinear function of volume and deoxyhe-
moglobin that comprises a volume-weighted sum of extra- and intravas-
cular signals. In the context of the present simulations, the BOLD signal
is vastly dominated by the linear contributions of the hemodynamic model
and the nonlinearities do not impact the results.

While the model is restricted to modeling spontaneous low-rate activ-
ity below the stabilization of high-activity states due to the linearizations
and reduction to slow dynamics, the reduced model captures both the bi-
furcation properties of the underlying spiking model and the empirical
functional connectivity patterns at the critical working point (Figure 2.1
e; Deco et al. 2013b). This, and the closeness of the working point to
the bifurcation, indicate that Resting State Dynamics do not fully explore
the whole state space of possible configurations available to the brain,
but rather a lowerdimensional subspace of possible states consisting of
"ghost" attractors, regions of state space at the edge of the bifurcation
(Deco & Jirsa, 2012). In this perspective, RSN dynamics are equivalent
to the brain wandering around in the atrium of our cognitive architec-
ture. The criticality of the dynamics can be likened to the flexibility of
movement within this architecture: below the working point, the system
remains near the entrance and does not visit any functional states (no
functional connectivity), whereas supercritical dynamics keep it located
in specific sections. The situation at the critical point allows the system
to move most freely, to efficiently access more specific building com-
partments (functional states) when prompted (by specific inputs). If this
analogy holds true, explicit analysis of the model time course pattern dy-
namics and quantification with high-order moments such as variance or
entropy can help us shed light on the detailed underlying computations at
rest by making model performance comparable on more dimensions. The
temporal dynamics between resting state patterns such as sequence orders
of activation patterns or coexpression and responses to external stimula-
tions or network damage should be evident also in the complexity and
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variability of the simulated time series, and provide empirically testable
measures and predictions to understanding the brain’s criticality.

In the following Chapter [3] 1, we will illustrate how dynamical biophys-
ical markers such as complexity (described in detail in section 3.3) can
provide an excellent comparison measure for model and empirical rest-
ing state dynamics. In this ongoing work, we show first results relating
empirical observations of decreasing spontaneous MSE in senescence to
criticality and model dynamics, and demonstrate how dynamical markers
provide quantifiable access to network dynamics beyond spatial pattern
analysis.

2.3.7. Conclusion from models

From the number of RS models that studied the spontaneous dynamics of
the brain at a large scale, the conclusion arises that the connectome car-
ries a key role in shaping the spatial pattern of functional states, reflected
by the occurrence of slow oscillations and the emergence of networks of
cofluctuating brain areas. Each model requires some intrinsic dynamics
together with a global scaling of couplings from the connectivity matrix
to push the regime into a state where nodes interact and form complex
patterns without being caught in constant high-activity states or rigid os-
cillatory behavior. This finding is fairly independent of the specific model,
and indicates that some aspects of brain dynamics are guided by general
principles which are shared in many complex systems. These include
network properties treated in Chapter 1.3.2, and the notion of criticality,
discussed in Chapter 2.2. Essentially, the underlying structure (responsi-
ble for integrating and communicating functional modules) is critical in
shaping the concrete patterns potentially emerging from the system, but
the emergence of a dynamical regime depends on a location of the system
at a critical working point between rigidity and chaos.

1’section’ in the published paper
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The different models have implemented this dynamic regime differently,
with the local model corresponding to a fixed-point (e.g. Deco & Jirsa,
2012; Ghosh et al., 2008b), limit cycle (e.g. Deco et al., 2009; Cabral
et al., 2011), or chaotic oscillators (Honey et al., 2007, 2009), although
some models may be able to enter different regimes (Stefanescu & Jirsa,
2011, 2008). As to whether noise importantly shapes the intrinsic system
dynamics depends on the existence or nonexistence of instabilities of dy-
namics at the local node level. Multistability can occur in the absence of
noise when intrinsically chaotic local dynamics are given (Honey et al.,
2007, 2009), and in this case neither delays nor noise are essential. In
other models, transitions between stable regimes may depend on noise
fluctuations (Deco et al., 2009). On the other hand, a complex spatiotem-
poral network structure can be enough to create basic mean FC patterns
and slow RS fluctuations also with simple physical oscillators (Cabral
et al., 2011). These large differences in which of the parameters impor-
tantly shape the dynamics of the system depend on the fundamental differ-
ene in conceptualization of brain areas. However, in the brain, noise and
delays are naturally present and one must carefully consider the question
under study and the conclusions that can be drawn by building a model
on specific local dynamics.

If brain dynamics are essentially asynchronous, with neurons firing nois-
ily at low rates as in Deco & Jirsa (2012), time delays can essentially be
neglected as they do not substantially alter the stationary asynchronous
state of the system, save for reducing the stability of the oscillatory net-
work states (Jirsa & Ding, 2004; Jirsa, 2009). However, if we consider
brain areas as phase-interacting oscillators at time scales in the range of
the estimated delays, the latter are critical to consider as they shape the
phase interactions and configuration patterns between nodes (Ghosh et al.,
2008b; Cabral et al., 2011).

In the following chapter, we study the effects of structural disconnectivity
in an asynchronous model based on Deco & Jirsa (2012). In Chapter 4, we
will explore the role of delays in a spiking-neuron network model of rest-
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ing state dynamics, developed from the asynchronous model. There, we
aim to represent oscillatory neuron populations as frequently measured
with neurophysiology. As discussed, in this case, delays are expected to
play an important role. They indeed shape the model FC in a way that
gives best results in a range of propagation velocities that are also physi-
ologically realistic, confirming that the presence or absence of oscillation
is important to determine whether delays shape system interaction and FC
patterns.
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3. Modeling complexity in Aging

This chapter reproduces the second part of the paper1 referenced in Chap-
ter 2. Here, we utilize an asynchronous spiking model (described in Sec-
tion 2.3.6) to simulate BOLD signal for two scenarios of decreasing struc-
tural connectivity as a model of changing brain structure and dynamics in
the healthy aging brain.

3.1. Brain structure changes in aging

Above, we have laid out how there is an important, yet complex relation
between structural and functional brain connectivity, and that computa-
tional models find a certain regime of critical connectivity and network
interactions optimize the dynamical properties and functional connectiv-
ities. This view implies that in the real brain, some mechanisms regulate
effective brain connectivity to establish and maintain this regime. Fail-
ure of the system to do so should result in dysfunctional states. In line
with this notion, brain connectivity is known or suspected to be altered in
psychopathology (Bullmore & Sporns, 2009; Whitfield-Gabrieli & Ford,
2012). In fact, observable changes in brain connectivity (Alstott et al.,
2009; Honey & Sporns, 2008) and their functional consequences (Lynall
et al., 2010; Supekar et al., 2008) allow us to further probe and improve
our models, and, in turn, to better characterize neurological diseases and
lesions (Cabral et al., 2012) in terms of their principal mechanisms. To
better understand how changes in connectivity affect the brain dynam-
ics, and to what extent the brain can adapt to those changes, we can use
computational models.

1Nakagawa et al. (2013)
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This approach is not limited to the study of pathological states. Our
brain network naturally changes over our lifespan, with maturation-
related changes in childhood and both gray and white matter decreases
in healthy, nonpathological aging. Many structural, cellular, and phys-
iological mechanisms appear to tune our brain during its maturation to
maximize its complexity and cognitive performance (Tononi et al., 1994;
Lippé et al., 2009; McIntosh et al., 2008; Vakorin et al., 2011). In con-
trast, senescence is primarily associated with involuntary anatomical de-
cline and decreasing complexity. Structural changes in adult aging have
recently been mapped out in some detail with advances in high-resolution
structural MR, DTI/DSI, tractography, and derived measures. Results still
vary in the specifics, in part due to the still developing methodologies
(Galluzzi et al., 2008; Sullivan & Pfefferbaum, 2007; Giorgio et al., 2010;
Gunning-Dixon et al., 2009). In general, though, both gray and white
matter are found to decrease with age, with an anterior-posterior gradient
in white matter (Ardekani et al., 2007; Grieve et al., 2007; Head et al.,
2004; Pfefferbaum & Sullivan, 2003; Salat et al., 2005). Over time, gray
matter decreases approximately linearly, while measurements of white
matter changes are more heterogeneous: volume increases up to ages 30-
40 and volume decreases occur only from around age 50 in most areas
(Pfefferbaum A, 1994; Ge et al., 2002; Giorgio et al., 2010), but diffusion
measures show linear decay at this age already (Giorgio et al., 2010; Salat
et al., 2005).

These changes in structure and structural connectivity with age are as-
sociated with decreases in cognitive performance: older adults show de-
creases in many aspects of cognition attributed to loss of processing speed
(e.g. Salthouse, 1996), and aspects of executive functions including task
switching and working memory seem especially vulnerable (Park et al.,
2002). In trying to link cognitive decline with structural changes, some
studies have found associations between gray matter volume and memory
or cognitive performance in some areas (Salat et al., 2002; Rosen et al.,
2003; Rodrigue & Raz, 2004), but see Tisserand et al. (2000); Gunning-
Dixon & Raz (2003) for contrary results. Decreases in white matter vol-
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ume are related to executive function and memory decline (Brickman
et al., 2006; Guttmann et al., 1998; Resnick et al., 2003), and microstruc-
tural damage (white matter hyperintensities, WMH), have been linked
to decreased processing speed and executive functions (DeCarli et al.,
1995; Gunning-Dixon & Raz, 2003, 2000; Madden et al., 2009; Ooster-
man et al., 2004; Prins et al., 2005). Finally, processing speed and age
have also been linked to lower brain signal complexity in recent studies
(Garrett et al., 2011a,b, 2012; McIntosh et al., 2008, 2010, 2013; Yang
et al., 2012).

Here, we investigated how structural connectivity pruning (representing
white matter losses) affects complexity in a large-scale computer model
of resting state dynamics. To this end, we created connectomes with dif-
ferent levels of connectivity with two pruning algorithms (detailed in the
methods section), and simulated resting state dynamics with a dynamic
mean field model. We then calculated MSE from the time series, to test
whether or not complexity can serve as a marker to distinguish different
structural decline scenarios.

3.2. Model network structure

The global network structure determining the connectivity between the
74 nodes of the model was comprised of a combination of long-range and
short-range connections. For the long-range connections, high resolution
diffusion tensor images were downsampled and parcellated into 74 ar-
eas to construct a coarse-grained connectivity matrix. These connections
were extracted from a combination of diffusion spectrum MRI tractog-
raphy and a mapping of the macaque connectome (CoCoMac database)
onto the human brain (for details see (Knock et al., 2009).

As DTI measures directionality of water diffusion in white matter tissue
(Beaulieu, 2002), the more diffuse lateral connections along the corti-
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cal sheet are not detected by DTI measuring, and are here considered by
short-range connectivity matrices.

These matrices used here were constructed from a Gaussian decaying
connectivity on a triangulated cortical surface ’Cortex\_reg13.mat’ that
is included in The Virtual Brain software package, available at http:
//thevirtualbrain.org/app/. The triangulated mesh that de-
scribes an individual cortical surface is based on a set of anatomical MRI
scans. The mesh was obtained by extracting a high resolution surface
from MRI and sampling down the high resolution surface, while balanc-
ing between curvature preservation and mesh regularity. The resulting
surface composes the cortical geometry of 16,384 vertices and 32,760
triangles. Each vertex covers nearly 16 mm2 of the cortical sheet. Pe-
riodic boundaries conditioned the two hemispheres composed of 8,192
vertices each. To obtain the connectivity of each vertex with its neighbor-
hood on the triangulated mesh, the edge lengths (with the mean of 3.9761
mm) were considered for sampling the short-range connectivity function
(Spiegler & Jirsa, 2013). The short-range connectivity matrices used here
differ in spatial decay of connectivity between vertices, with standard de-
viations of the gaussian spatial filter ranging between 10 mm and 40 mm.
Each vertex of the cortical surface was then assigned to 1 of the 74 brain
regions (37 per hemisphere), and the sum of the weighted lateral connec-
tions between vertices belonging to two different brain regions was taken
as the short-range connectivity between those two regions.

To capture white matter decreases, we studied the effects of long-range
pruning by repeatedly decreasing the coupling weight of randomly se-
lected node pairs of the long-range connectivities, and to capture decreas-
ing lateral connections, we used short-range connectivity with increas-
ingly faster spatial decay in steps of 10 mm. Matrices were combined
in both cases, with pruning affecting selectively the short-range or the
long-range contributions of the combined matrix (Figure 3.1).

Simulations were run for four different connectivity levels, with a 16%
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Figure 3.1: Methods: a) Construction of matrices representing connectivity de-
creases found in aging. A brain graph (second to left) is constructed from DTI
fiber estimations between brain areas. Each node on the graph (red) represents
a brain area, and connection strengths (green) determine the values in the con-
nectivity matrices. To determine if there are differential effects, short-range and
long-range connections are pruned separately, and matrices are then combined
(shown for long-range pruning). b) Simulation and analysis pipeline. Dynamic
mean field simulations are run for different levels of connectivity decrease for
both scenarios, and BOLD time series are simulated for complexity (MSE) anal-
ysis.

connectivity decrease for every step, for both long-range pruning and
short-range pruning.

To locate the system at Resting State dynamics, we here set the global
coupling weight between nodes w to 3.50, where the original, unpruned
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matrix was at its critical point just below bifurcation. and simulations
remained in an asynchronous low-firing regime.

3.3. Complexity and Multiscale Entropy

“Complexity” is a dynamic neurophysiological marker of efficient pro-
cessing, cognitive performance and age, representing the richness of in-
formation in a system. For time series, it can be quantified by entropy-
related measures such as MSE (Costa et al., 2005, 2002) or Permutation
Entropy (Richman & Moorman, 2000). Complexity has been linked to
behavioral stability and task performance (McIntosh et al., 2008, 2010;
Yang et al., 2012) as well as knowledge (Heisz et al., 2012). It increases
in the early years of life (Lippé et al., 2009; McIntosh et al., 2008) as pro-
cessing shifts from local to more distributed processing (Vakorin et al.,
2011). This tuning process reflects the increasing functional differentia-
tion with development. In older adults, less complex dynamics are ob-
served at rest (Yang et al., 2012), and a smaller increase in complexity
is observed in task (Garrett et al., 2012) or photic stimulation (Takahashi
et al., 2009). These findings suggest that MSE can serve as a neurophysi-
ological marker between underlying structure and functional network in-
tegrity or efficiency. Healthy, young brains are generally described by
more complex time series, and the findings of Yang et al. (2012) suggest
that this relation can even be found in relatively short, resting fMRI data
sets.

Many physiological systems produce irregular, complex time series, so
highly regular states often mark dysfunction and disease (Pincus & Gold-
berger, 1994; Goldberger et al., 2002). However, an increase in irreg-
ularity does not always mean an increase in complexity: noise signals
are highly irregular and maximize entropy on the first temporal scale,
but lose complexity quickly towards larger time scales (Goldberger et al.,
2002): over longer periods, noise is deterministic, as it has one single
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expected mean value. To address this multiscale nature of truly complex
time series, Costa et al. (2002, 2005) developed the MSE measure, which
estimates sample entropy (Richman & Moorman, 2000) on the original
time series as well as on downsampled versions, revealing variability of
the signal across different time scales. Given a time series x of length
t, a downsampled time series xs is calculated for every scale factor s
by constructing t/s non-overlapping windows of x, and taking the mean
of all x in the window as new value for xt, shortening xs by the scale
factor. Sample entropy is then calculated for each scale. It is defined
as the negative natural logarithm of the conditional probability that se-
quences in a dataset that are similar for m data points (within similar-
ity tolerance r, given as fraction of the standard deviation of the dataset)
will remain similar adding another data point. We calculated MSE us-
ing the physionet (Goldberger et al., 2000) MSE algorithm (available
at http://www.physionet.org/physiotools/mse/) both on
the neuronal activity and the virtual BOLD signal for all simulations. For
the BOLD signal, biophysical parameters were taken as in Friston et al.
(2003), and sampling rate = 2500ms and lowpass filtering (at 0.08 Hz)
were set equal to the values in Yang et al. (2012) for comparability. To be
able to calculate MSE for five time scales for the BOLD time series to and
compare the results to empirical data, we used pattern length m = 1 and
similarity factor r = 0.35 (varied between 0.05 and 0.5 without changes in
the results patterns). MSE was calculated from the neuronal time series
at sampling resolution of 125 ms and from the BOLD signal at 2500 ms
over scales 1:5 (2.5-12.5 s).

3.4. Complexity declines in aging

Results are presented from simulations of the dynamical mean field model
for decreasing levels of structural connectivity, imitating the decreasing
connectivity in the adult human brain. Network structure was derived
from a combined anatomical connectome of long-range and short-range
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connections between brain areas, and the lower-connected matrices were
constructed by pruning at one of the two ranges. For each pruning level
and method, MSE was then calculated for both the neuronal time series
and an fMRI BOLD model. For the rate model, both short-range and long-
range pruning led to lower complexity values over all scales. As visible in
Figure 3.2, MSE decrease was strongest for the first pruning step. Entropy
decreases with respect to the baseline were significant in all cases (all p-
values < 0.001), resembling the difference between younger and older
subjects in the empirical data, with no differences between short-range
and long-range pruning (largest t(18) = 1.60, p = 0.13).

MSE curves from the BOLD model time series are shown in Fig 3.3. For
all simulations using the BOLD model, there was an increase in entropy
from scale one to two, after which it gradually declined. This initial in-
crease was not visible in the empirical data of Yang et al. (2012), where
the entropy values decreased gradually by about 0.1 from scales one to
five. The difference in the shape of the MSE curve appeared in spite of
the fact that the same BOLD sampling, lowpass filtering, and MSE cal-
culation parameters were used. On the second to fifth scales, the entropy
values were quite similar in shape and amplitude to the empirical data,
though with a steeper drop in complexity across scales. The increase in
entropy in the model from the time scale of about 2.5 to 5-10 seconds indi-
cates that the network dynamics are more regular on the fastest timescale,
and that network interactions are therefore mainly shaped on the slower
time scales. This is in line with the non-oscillatory network dynamics
and slow NMDA component, producing slow BOLD fluctuations. The
difference between model and empirical data on the fastest time scale
may have various possible reasons,though. On the empirical side, scan-
ner, movement or physiological artifacts may appear. Concerning neural
dynamics, the model is in a low-firing regime producing slow BOLD fluc-
tuations of several seconds (for detail, see Deco & Jirsa, 2012). At faster
time scales, neural oscillations and local dynamics may modulate the dy-
namics of each node in a way that would not be captured by the model.
However, if this were the case, the same pattern should be visible in rate-
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Figure 3.2: MSE
in a model for aging]Rate MSE: MSE curves calculated from the

down-sampled time series of the dynamic mean field model for time scales from
2.5s to 12.5s.

derived MSE measures. As the origin of this difference is unresolved and
manifests on the fastest scale, we focus in the following on the slower
time scales 3-5 (7.5-12.5s) for the BOLD signal.

The effect of pruning was much smaller than for the neuronal rate (Fig-
ure 3.4). There were no differences between the two pruning methods
on any of the scales (largest t(18) = 0.94, $p=n.s.$), and the effect of
decreasing the density of the connectome became apparent as an inter-
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Figure 3.3: Multiscale Entropy
in aging - simulated BOLD signal]BOLD MSE: MSE curves calculated from

the simulated BOLD time series of the model. Top row: BOLD scales
2.5s-12.5s, bottom row: closeup of top row at the slowest scales. Error bars in

lower panels depict standard deviations.

action of pruning and scales. The tendentially higher complexity of the
pruned cases at the third scale (highest t(9) = −2.67, p < .05 for short
range pruning; p-values for long-range pruning between 0.05 and 0.10,
their difference n.s.) inverted to lower complexity at the slowest time
scale ($t(9)=$3.14, p <.05)) for all lower-connected cases (Figure 3.3,
top right panel). On this scale, the pruned case reached lower entropy
values due to its steeper slope over lower scales (lowest t(9) = −3.14,
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Figure 3.4: MSE
in aging - boxplots for scales and trial]MSE Boxplots: Boxplots of MSE

values from ten trials for all scales, for BOLD (top row) and for rate (bottom
row) MSE. Each panel shows one boxplot for each connectivity density (100%,

84%, 68%, 52%) for long-range pruning (red, ’l’) and short-range pruning
(blue, ’s’). Boxplots are centered on the median and are limited by the quartiles,

and whiskers extend by a factor of 1.5. Outliers are marked by ’+’.

p < .05). In summary, rate based measures showed concordance with em-
pirical fMRI-BOLD MSE decreases with weakening connectivity. Model
BOLD complexity showed lower entropy for lower connectivities on the
largest scale only.

Here, we investigated the changes in dynamical complexity of a model
of spontaneous large scale activity with decreasing connectivity. Con-
nectome pruning was implemented by two different algorithms targeting
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diffuse lateral short-range connections along the cortical sheet and DTI-
based white fiber tract long-range connections, respectively. MSE com-
plexity measures were calculated from simulated neuronal and BOLD dy-
namics based on a large scale computational model of cortical resting
state dynamics. From the model perspective, the decrease in complexity
observed in the neuronal time series corresponded best to an increasing
distance from the model working point at which the model best repro-
duces healthy resting state functional connectivity (Deco & Jirsa, 2012).
This point lays just below the bifurcation from a global low activity state
to the appearance of high firing states and multistability in the system.
From this point, as a consequence of pruning, mutual communication be-
tween the nodes becomes weaker and dynamics modulations from large-
scale connectivity quickly decreased on large time scales.

The fact that the largest difference in entropy was caused by the first 16%
of connectivity decline suggests that the resulting complexity of the model
is most strongly affected near the dynamical working point of the model.
Once the system is not near its dynamical working point anymore, the
spontaneous dynamics of the nodes will be largely dominated by their
internal dynamics. This may also be the reason why short-range and
long-range pruning did not show differential effects on complexity: while
the increasingly different connectomes may give rise to different network
structures and attractor landscapes in high activity states, the main ef-
fect of connectivity reduction will be similar in the low-activity regime.
In analogy, one would expect a similarly lower complexity in older brains
due to structural decline and synaptic efficacy loss independent of the spe-
cific hypoconnection structure, while the form of the functional changes
would depend on the specifics of the connectivity losses. For compari-
son, We show MSE curves for very high and low couplings in Inline Sup-
plementary Figures 3.5 and 3.6. In line with our interpretation, MSE is
highest for optimal coupling, and lower for both high and low-connected
cases, with lowest MSE for low coupling strength. Note, however, that,
the very high coupling state is not straightforward to interpret as it leaves
the low activity regime for which the dynamic mean field is well defined.
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The interpretation of these results is limited by the fact that, while prun-
ing resulted in lower rate entropy over most scales as expected from the
model, complexity of the simulated BOLD signal was affected much less
clearly than expected. Here, the model did not reproduce the empirical
pattern of steady decline and lower entropy for decreased connectivity
occuring in old age over most scales. There may be various reasons for
this. Surely, a network of similar nodes may only produce such effects
that lay in the model dynamics and connectivity itself, and not those that
may be due to changes in the local dynamics. This should, in principle,
not only affect the BOLD dynamics differentially, but differences in sam-
pling, filtering, and the BOLD conversion model itself introduce factors
that may shape both signals differently.

In summary, both BOLD and rate signals did point towards lower com-
plexity caused by structural connectivity decline on large scales. This
effect may well be connected to the large proportion of cognitive perfor-
mance decrease explained by processing speed changes in aging (Salt-
house, 1996), as the system needs higher overall activation and provides
lower communication efficiency. A more in depth comparison of prun-
ing with and without compensatory shifting of the global or specific cou-
plings, and pruning-related changes in graph properties are worthwhile
topics for further investigation, e.g. in the context of stroke recovery.

3.5. Conclusions

So far, the major focus has been on the spatial components of resting state
networks and their alteration due to external or internal factors. We are
only beginning to understand the spatiotemporal dynamics of RSN and
their interactions. This is of particular interest to resting state research,
as complexity measures can be used as a biomarker of the network dy-
namics independent of external stimuli, and how the system is affected
by different consciousness states and diseases. We suggest that scrutiniz-
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ing complexity in models may contribute to a better understanding of the
time scales of network interactions and allow for comparison of different
models in terms of their ability to recreate observable complexity patterns
across different scales.

We conclude that structural connectivity decrease led to lower complex-
ity on slow time scales in a biophysically based computational large-scale
model mainly in the rate dynamics. From the perspective of model, de-
creased MSE in older adults’ resting fMRI time recordings can best be
explained as a displacement of the system from its optimal dynamical
working point. Multiscale complexity measures can be powerful tools
to link the structural connectome to functional brain dynamics on various
temporal scales and, as this study shows, can serve as functional biomark-
ers to link the dynamics and performance of virtual brain models to the
richness of brain network activity.
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3.7. Supplementary Figures
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Figure 3.5: MSE
in aging - MSE-coupling rate](Supplemenary) Rate MSE: MSE curves for
high (w=10.00), medium (w=3.50) and low (w=0.01) global couplings for

unpruned connectivity matrices; calculated from the down-sampled time series
of the dynamic mean field model for time scales from 2.5s to 12.5s.
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Figure 3.6: MSE
in aging - MSE-coupling simulated BOLD](Supplemenary) BOLD MSE:
MSE curves for high (w=10.00), medium (w=3.50) and low (w=0.01) global

couplings for unpruned connectivity matrices. Top row: BOLD scales
2.5s-12.5s, bottom row: closeup of top row at the slowest scales. Error bars in

lower panels depict standard deviations.
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4. Resting State Rhythms:
oscillations and delays

So far, we have introduced empirical findings of RSNs and RS activity
in Chapter 1, as well as the rationale for modeling this activity in larg-
scale computational models in Chapter 2. In Chapter 3, we investigated
the influence of increasing distance from the optimal working point near
the bifurcation of an attractor network, finding that structural disconnec-
tion may thus decrease ongoing brain signal complexity. Prompted by
the increasing number of electrophysiological recordings of RS activity,
we will next turn to the question how oscillatory dynamics influence the
behavior and parameter interactions of the model. To achieve this, we use
a modified spiking-neuron network model with the same structural setup,
but added input-dependent oscillatory dynamics on the local level.

This chapter reproduces a paper with the title: "How delays matter in an
oscillatory whole brain spiking-neuron network model for MEG alpha-
rhythms at rest".1 The work was published in NeuroImage (NeuroImage
87 (2014) 383-394) by Nakagawa T. T., Woolrich M., Luckhoo H., Joens-
son M., Mohseni H., Kringelbach M. L., Jirsa V. K., and Deco G. The
abstract reads:

In recent years the study of the intrinsic brain dynamics in a
relaxed awake state in the absence of any specific task has
gained increasing attention, as spontaneous neural activity
has been found to be highly structured at a large scale. This
so called resting state activity has been found to be comprised
by nonrandom spatiotemporal patterns and fluctuations, and

1Nakagawa et al. (2014)
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several Resting State Networks (RSN) have been found in
BOLD-fMRI as well as in MEG signal power envelope corre-
lations. The underlying anatomical connectivity structure be-
tween areas of the brain has been identified as being a key to
the observed functional network connectivity, but the mech-
anisms behind this are still underdetermined. Theoretical
large-scale brain models for fMRI data have corroborated the
importance of the connectome in shaping network dynam-
ics, while the importance of delays and noise differ between
studies and depend on the models’ specific dynamics. In the
current study, we present a spiking neuron network model
that is able to produce noisy, distributed alpha-oscillations,
matching the power peak in the spectrum of group resting
state MEG recordings. We studied how well the model cap-
tured the inter-node correlation structure of the alpha-band
power envelopes for different delays between brain areas, and
found that the model performs best for propagation delays in-
side the physiological range (5-10m/s). Delays also shift the
transition from noisy to bursting oscillations to higher global
coupling values in the model. Thus, in contrast to the asyn-
chronous fMRI state, delays are important to consider in the
presence of oscillation.

4.1. Introduction

It is an astonishingly hard task to do, think, and attend nothing; thoughts,
observations, and feelings naturally arise from within us, more or less
at random. Without any specific external stimulation, we fluctuate in
our mental states as the brain fluctuates between different activity pat-
terns. While in the study of cognitive tasks, these fluctuations seem to
be a nuisance that necessitate averaging over many trials, they are them-
selves structured and informative in many ways. fMRI and, more recently,
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neurophysiological imaging studies have found that the brain’s sponta-
neous activity patterns decompose into networks of brain areas, defined
primarily not by their mean activity level but by the functional connectiv-
ity between them (Mazoyer et al., 2001). This way, several Resting State
Networks (RSN) with known task-related functional importance such as
sensorimotor, visual and attentional areas and networks, have been iden-
tified in spontaneous brain activity in the absence of tasks (Biswal et al.,
1995, 1997; Cordes et al., 2000, 2002; Damoiseaux et al., 2006; De Luca
et al., 2005, 2006; Lowe et al., 1998). A specific ’Default Mode Network’
(Gusnard & Raichle, 2001; Greicius et al., 2003; Damoiseaux et al., 2006;
van den Heuvel et al., 2008; Buckner et al., 2008b), an RSN which shows
higher activity during the resting state than during various task conditions,
has also been identified. These functional networks and their dynamics
are determined both by the underlying anatomical connectivity and the
local neuronal dynamics and interactions, leading to spatiotemporal pat-
terns and oscillations at different time scales. To understand them is of
key value to understanding the brain’s cognitive machinery and its abil-
ity to flexibly control mental states. So, it is of prime interest to gain
deeper insight into the origins and mechanisms of spontaneous functional
connectivity (FC) patterns, and we can apply theoretical models and nu-
merical simulations of resting state activity to study these dynamics.

resting state models take advantage of recent technical advances capa-
ble of tracking white fiber tracts noninvasively via DTI/DSI in humans
(Cabral et al., 2011; Deco & Jirsa, 2012; Honey et al., 2009, 2010; Izhike-
vich & Edelman, 2008; Senden et al., 2012) to combine realistic neu-
roanatomical long-range connections between brain areas with the mod-
els’ local dynamics (oscillators, neural masses, or explicitly modeled neu-
rons) in order to construct a dynamical cortical model for the human
cortex. The simulated activity patterns from the freely interacting net-
work have successfully reproduced resting state dynamics: Anticorre-
lated functional networks such as found by Fox et al. (2005) in cortex
have been observed to emerge in models with different local dynamics
(e.g. Honey et al. (2007): chaotic oscillators; Deco et al. (2009): Wilson-
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Cowan oscillators). Slow fMRI rhythms below 1 Hz observed by several
authors in fMRI resting state recordings (Biswal et al., 1995; Cordes et al.,
2001; Fransson, 2005; Damoiseaux et al., 2006; De Luca et al., 2006) can
also be found in Wilson-Cowan (Deco et al., 2009), Kuramoto oscillator
(Cabral et al., 2011), neural mass (Honey et al., 2007), and spiking neuron
models (Deco & Jirsa, 2012). In all these models, the underlying network
structure is crucial in shaping the network dynamics and maintaining the
system close to criticality (see Deco et al., 2013a). Further, delays were
found to shape the emerging spatial patterns and modes in oscillatory net-
works much more in directed graphs (Ghosh et al., 2008b,a) than in undi-
rected graphs (Knock et al., 2009). In general, the extent to which delays
(and noise) critically influence the global dynamics and interactions, de-
pends also on the nature of local network dynamics (Deco et al., 2009;
Deco & Corbetta, 2011). Consequently, the choice of local dynamics de-
pends on various factors and goals that are pursued by the studies, as for
example, the desired level of abstraction/physiological realism, the time-
and spatial scales, and the network mechanisms to be investigated.

While modeling studies have so far been mostly focused on fMRI FC and
slow oscillations that were empirically observed, recent neurophysiolog-
ical studies have investigated the resting state with increasing temporal
resolution. Using combined EEG/fMRI and source-reconstructed MEG
recordings to increase spatial resolution, these studies have found that
alpha and beta bandlimited power (BLP) envelopes retrace fMRI based
FC patterns and slow fMRI rhythms (Mantini et al., 2007; de Pasquale
et al., 2010; Liu et al., 2010; Brookes et al., 2011a,c; Hipp et al., 2012).
So far, the various anatomically informed, oscillatory dynamics network
models have been limited to fMRI, and have not yet been validated with
empirical neurophysiological data, which can capture faster oscillations.
In MEG recordings, for example, alpha-oscillations are especially pre-
dominant in, and have always been associated with the resting state. They
are readily identifiable and robustly found in electrophysiological record-
ings since the first human EEG studies by Hans Berger a century ago (for
a historical overview, see Shaw, 2003). The origin of this typical alpha-
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acitivity is not comprehensively determined yet, though self-sustaining
sources have been identified both in cortex (Lopes da Silva, 1991) and
in the thalamocortical loop (Lopes da Silva et al., 1974). In fact, alpha-
activity is most likely a collection of rhythms from several sources (Ben-
Simon et al., 2008; Freyer et al., 2011, 2012; Neymotin et al., 2011; Shaw,
2003) which may contribute to the variability of alpha-rhythm character-
istics (e.g. peak frequency, amplitude, topography) found in the brain
both over time (Freyer et al., 2011, 2012) and between subjects (Chiang
et al., 2011).

In the present study, we focused on the influence of noisy oscillations
on bandlimited connectivity patterns in a biophysical setting. As the in-
tegrity of a model always depends on the spatial connectivity structure,
but not in all cases on the temporal structure (e.g. in the case of chaotic
oscillators, (Honey et al., 2007, 2009); or in the asynchronous state (Deco
& Jirsa, 2012)), it is unclear to what extent the brain’s effective connec-
tivity is affected by, and sensitive to the delays introduced by long fibers
and limited transmission velocities in the brain, when considering com-
plex neuronal population dynamics (Knock et al., 2009). We here aimed
to study the effect of delays on the FC structure and model performance
in a neurophysiologically detailed model by recreating the irregular os-
cillations evident in MEG recordings in the alpha-band and relating the
numerical simulations for different delays and the empirical data. For
this, we employed a leaky-integrate-and-fire (LIF) spiking neuron model
with realistic NMDA, AMPA and GABA synapses (Deco & Jirsa, 2012),
and an oscillation-inducing calcium-dependent hyperpolarization current
(triggering spike-frequency adaptation SFA; e.g. Fuhrmann et al., 2002;
Liu & Wang, 2001; Meech, 1978). In the following, we will show that the
presented model exhibits network oscillations in the alpha-range when the
model nodes are coupled, and that it successfully captures alpha-band FC.
It does so most robustly in the presence of delayed large scale connectiv-
ity, suggesting a functional importance for long-range delays in sustain-
ing interaction patterns between areas and resting state networks in the
healthy brain.
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4.2. Methods

4.2.1. Neuroanatomical connectivity matrix

Weighted neuroanatomical connectivity matrices were extracted from the
diffusion tensor imaging (DTI) data of 21 healthy, normal participants
(11 males, aged 22-45 years). Extraction methods were based on Gong
et al. (2009). Diffusion MRI was acquired by using a single-shot echo
planar imaging-based sequence with coverage of the whole brain; repeti-
tion time (TR), 9390 ms; echo time (TE), 65 ms. DTI images utilized 32
optimal nonlinear diffusion weighting directions (b = 1200 s/mm2) and
2 non-diffusion weighted volumes; reconstructed matrix = 128x128x45;
reconstructed voxel size 2.0mm x 2.0mm x 2.0mm. We also acquired T1-
weighted structural images with a threedimensional ‘FLASH’ sequence
(TR = 12 ms, TE = 5.6 ms, flip angle = 19◦, with elliptical sampling of
k-space, giving a voxel size of 1x1x1 mm in 5.05 mins). All scans were
performed on the same Philips Achieva 1.5 Tesla Magnet. Weighted brain
networks were constructed by first parcellating the brain, and then ex-
tracting the network from interregional connectivity analysis. Brain par-
cellation was constructed using the automated anatomical labeling (AAL,
Tzourio-Mazoyer et al., 2002) template. The brain was parsed into 45
regions per hemisphere (90 in total), each region representing a node of
the brain network. For each participant, parcellation was conducted in
the diffusion MRI native space, and the b0 image was coregistered lin-
early to the T1-weighted structural image with the Flirt Tool (FMRIB,
Oxford, Jenkinson et al., 2002). The transformed T1-weighted image
was next mapped to the T1 template of ICBM152 in Montreal Neuro-
logical Institute (MNI) space (Collins et al., 1994), inversed, and further
applied to warp the AAL mask from MNI space to the diffusion MRI
native space, where interpolation using nearest-neighbor method ensured
that the discrete labeling values were preserved. For the analysis of in-
terregional connectivity (via Fdt toolbox in FSL, Oxford), diffusion MRI
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data was preprocessed by coregistering the diffusion-weighted images to
a reference volume using an affine transformation for the correction of
head motion as well as eddy current induced image distortion.

The local probability distribution of fiber direction and voxel connectivity
probability were estimated via probabilistic tractography (Behrens et al.,
2007), and the procedure was then extended to the level of each region.
The seed regions selected for each of the parcellated brain regions and the
connectivity probability to each of the other 89 regions was calculated.
It must be noted that because of the dependence of tractography on the
seeding location, the probability from i to j is not necessarily equivalent
to that from j to i. However, these two probabilities are highly correlated
across the brain for all subjects (the least Pearson r = 0.70, p < 10−50).
Therefore, the undirectional connectivity probability Pij between region
i and j was defined by averaging these two probabilities. Calculations of
regional connectivity probability were implemented using in-house Perl
scripts.

Finally, a weighted network graph was constructed by defining a distance
and weight associated with each edge. The high connectivity probability
between brain regions were taken here to be short distances in a graph.
Specifically, Wij = 1−Pij was computed as the distance/weight between
brain region i and j, as used in previous literature (Achard & Bullmore,
2007). Note that the distance here does not correspond to the physical
length of the white matter pathway linking the brain regions. For each
subject, a 90 × 90 weighted cortical network/graph W was constructed,
representing the anatomical organization of cerebral cortex.

4.2.2. MEG Data Collection and Analysis

MEG data were recorded from 10 healthy participants who underwent
a five minutes resting state scan with their eyes closed. Recordings were
performed at 1000 Hz sampling frequency on an Elekta Neuromag (Elekta
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Neuromag Oy, Helsinki, Finland) with 102 magnetometers and 102 pairs
of orthogonal radial gradiometers. Subjects’ head shape was recorded us-
ing a Polhemus Isotrack system, and four head position indicator (HPI)
coils allowed for the head to be localized in the scanner. Data preprocess-
ing included signal space separation (Taulu et al., 2005), denoising with
independent component analysis, source reconstruction and bandpass fil-
tering of the MEG signal. Signal space separation compensates for ex-
ternal interference and sensor artifacts by projecting the MEG data onto
a basis set of spherical harmonics. Harmonics corresponding to sources
originating from within the sensor array are preserved whilst interfering
sources from outside the environment surrounding the sensor array are
rejected. The sensor space MEG data were denoised using temporal inde-
pendent component analysis (ICA) to remove cardiac, 50 Hz mains and,
in some subjects, eye movement artifacts.

Each dataset was then coregistered into the MNI space by registering the
canonical MNI template to the Polhemus head shape data. A local spheres
forward model (Huang et al., 1999) was then estimated using the subject’s
head shape. Both coregistration and forward model estimation were per-
formed with the Matlab SPM8 package (FIL,UCL). The MEG data were
then bandpass filtered into delta (1-5 Hz), theta (4-8 Hz), alpha (8-13
Hz), beta (13-30 Hz), low gamma (30-48Hz) and high gamma (52-80 Hz)
bands. An LCMV beamformer was used to transform the original sensor
time series for each frequency band into source space time series, that is,
to reconstruct the activity at the 90 locations defined by the AAL brain
parcellation.

Functional connectivity scores between node pairs were estimated by tak-
ing the bandlimited power envelopes of a pair of nodes, regressing one out
from the other to orthogonalize the time series and thereby removing any
zerolag correlations. We then calculated the Pearson correlation between
the orthogonalized time series. Since the orthogonalization can be per-
formed in both directions (X from Y and Y from X), the mean of both
resulting correlation values was taken as the final correlation value. The
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full approach is described in detail and discussed in Brookes et al. (2012)
and is the same as in Hipp et al. (2012). Functional connectivity scores
between node pairs were estimated in the following way. For a given fre-
quency band, a pair of nodes was selected. The first node of the pair was
regressed from the second to orthogonalize the two time series, removing
any zerolag correlations induced by field spread. The correlation between
the low pass filtered envelopes of the two orthogonalized time series was
estimated, and a correlation matrix computed (Figure 4.1 a).

This procedure was repeated but instead regressing the second voxel from
the first and estimating the envelope correlation (Brookes et al., 2012;
Hipp et al., 2012). The two different correlation values were then av-
eraged to give a single correlation score. Here, we consider mainly the
MEG signal’s alpha BLP based on findings that, along with beta, it best
captures the functional connectivity of RSN in MEG data Brookes et al.
(2011b); Hipp et al. (2012); Luckhoo et al. (2012)

4.2.3. Global cortical model

The global model consists of 90 model nodes, each comprising an in-
hibitory and an excitatory pool of neurons, whose properties are described
in detail below. Each node of the model represents one brain area, and the
connections between any two nodes are implemented by interconnect-
ing the respective neurons between the excitatory pools via NMDA and
AMPA synapses. Transmission strengths are weighted by the correspond-
ing value in the neuroanatomical connectivity matrix described above. As
the DTI measure used to extract the structural connectivity is symmetri-
cal, so are the connectivities in the model. Connections between nodes
are limited to act between excitatory pools as they are here considered
to represent long-range axons of pyramidal neurons. These connections
are weighted by a global coupling factor W, which determines the overall
connectivity strength in the resulting network. W, and the propagation
velocity v are the main parameters to be varied in the simulations to find
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an area of parameter space where the correspondence between empirical
and model data becomes maximal. In the brain, delays depend on axonal
transmission times, which are determined by axon diameter, myeliniza-
tion, and distance. The delay between two brain areas in the model was
determined by their euclidean distance in MNI-templated source space
(max=160mm) divided by v, with propagation speed v in m/s and inter-
area distance D in mm. The Euclidean distances are necessarily a lower
bound estimate of fiber tract lengths, therefore propagation speeds would
here be somewhat underestimated.

1. Local dynamics

Each node’s local dynamics are modeled with 200 spiking neurons,
featuring a biophysically realistic neural network model, consist-
ing of leaky-integrate-and-fire (LIF) spiking neurons with NMDA,
AMPA, and GABAA receptors (Brunel & Wang, 2001). The model
was first adapted for modeling resting state dynamics by, and is
described in detail in Deco & Jirsa (2012). Their detailed global
attractor model combines a realistic mechanistic model at the level
of each single brain area with the large-scale cortical network struc-
ture. In the model, every node consists of an excitatory (index E,NE

=160) and an inhibitory pool (index I,NI =40). The local dynam-
ics are described by combining the dynamical equations of each
neuron and the synaptic variables with all connected neurons. Ex-
citatory/inhibitory neuron ratio and conductivities were balanced to
reflect empirically realistic values and low spontaneous firing rates
(DeFelipe, 1993; Destexhe et al., 1998) in each node (Figure 4.3,
inlay).

Neurons inside a node were all-to-all connected in order to keep
neuron numbers low and simulations feasible. There were NE ex-
citatory and NI inhibitory presynaptic connections for every neu-
ron, in addition to the excitatory inputs from long-range connec-
tions from pyramidal cells of other nodes and background input
from 800 external neurons as described at the end of this paragraph.
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The neurons are modeled as LIF units that are characterized by the
dynamics of their membrane potential. When the membrane volt-
age crosses a threshold Vthr, the neuron generates a spike, which
is transmitted to connected neurons via its AMPA and NMDA or
GABA synapses, and the membrane voltage is set to Vreset, where
it is held fixed for the neuron’s refractory period τref . The sub-
threshold equation for the membrane potential is given by:

CE,I
m

dV (t)
dt

= −gm(V (t)− VL) + Itotal(t), (4.1)

describing a basic RC-circuit with the cell membrane capacitance
Cm in parallel with membrane resistance Rm, leak conductance gm
= 1/Rm, resting potential VL = −70mV , and synaptic and after-
hyperpolarization (AHP) currents. Membrane time constants are
given in Table 4.1. The total current Itotal is the sum of synaptic
external excitatory AMPA currents, AMPA and NMDA recurrent
excitatory currents, GABAergic inhibitory currents and an afterhy-
perpolarization current

Itotal(t) = IAMPA,ext(t)+IAMPA(t)+INMDA(t)+IGABA(t)+IAHP (t).
(4.2)

The synaptic currents and their mediation through gating variables
sji (t) are described by:

IAMPA,ext(t) = gAMPA,ext(V (t)− VE)
Next∑
j=1

sjAMPA,ext(t), (4.3)

dsjAMPA,ext(t)
dt

=
sjAMPA,ext(t)
τAMPA

+
∑
k

δ(t− tjk), (4.4)

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)
NE∑
j=1

wjs
j
AMPA,ext(t), (4.5)
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Table 4.1: Membrane and synaptic parameters
Parameter Excitatory (NE = 160) Inhibitory (NI = 40)
Cm 0.5 nF 0.2 nF
gm 25 nS 20 nS
VL -70 mV -70 mV
Vthr -50 mV -50 mV
Vreset -55 mV -55 mV
τref 2 ms 1 ms
gAMPA,ext 2.496 nS 1.944 nS
gAMPA,rec 0.104 nS 0.081 nS
gNMDA,rec 0.327 nS 0.258 nS
gGABA 4.375 nS 3.4055 nS

dsjAMPA,rec(t)
dt

=
sjAMPA,rec(t)
τAMPA

+
∑
k

δ(t− tjk), (4.6)

INMDA,rec(t) = gNMDA,rec(V (t)− VE)
1 + γe−βV (t)

NE∑
j=1

wjs
j
NMDA,rec(t),

(4.7)
dsjNMDA,rec(t)

dt
=
sjNMDA,rec(t)
τNMDA,decay

+ αxj(t)(1− sjNMDA,rec(t)),
(4.8)

dxjNMDA,rec(t)
dt

=
xjNMDA,rec(t)
τNMDA,rise

+
∑
k

δ(t− tjk), (4.9)

IGABA(t) = gGABA(V (t)− VI)
NI∑
j=1

wjs
j
GABA(t), (4.10)

dsjGABA(t)
dt

= sjGABA(t)
τGABA

+
∑
k

δ(t− tjk), (4.11)

with indices over neurons j, synaptic conductances g, excitatory and
inhibitory reversal potantials VE and VI , respectively, the Dirac-
delta function δ, and synaptic weight parameter wj (determining
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the connection strengths between and within neural populations).
NMDA currents are voltage dependent and modulated by intracel-
lular calcium concentrations (equation 4.7). Connections between
excitatory and inhibitory pools were set to 1, and recurrent self-
excitation to w+ = 1.5. Synaptic parameters were VE = 0 mV, VI =
-70 mV, τAMPA = 2 ms, τNMDA,rise = 2 ms, τNMDA,decay = 100 ms,
τGABA = 10 ms, α = 0.5 kHz, β = 0.062, γ = 0.28. The remaining
constant neural parameters are given in table 4.1.

The adaptation-inducing calcium-dependent AHP current IAHP is
given by:

IAHP (t) = −gAHPCa(t)(V (t)− VK), (4.12)

dCa(t)
dt

= −Ca(t)
τCa

+ αCA
∑
i

δ(t− ti), (4.13)

where αCa = 0.2, τCa = 70 ms, gAHP = 100 nS, and were chosen
to induce alpha-range oscillations in the presence of network input.
For a more detailed discussion on the dependency of adaptation-
induced oscillations on the input and the time constant, see (Au-
gustin et al., 2013). Note that we here focused on the implementa-
tion of noisy oscillations as opposed to fixed frequency oscillators
or to the asynchronous state, and manually adjusted the SFA values
to introduce heterogenous alpha-activity into the model. Parame-
ters were based on previously established values (Brunel & Wang,
2001; Ermentrout et al., 2001) guided by physiological measure-
ments (Helmchen et al., 1996; Svoboda et al., 1997; Ahmed et al.,
1998).

All neurons in the network received an external background input
from Next = 800 external AMPA signaling excitatory neurons in-
jecting uncorrelated poisson-distributed spike trains, representing
the noisy fluctuations that are typically observed in vivo. Specifi-
cally, for all neurons inside a given population p, the rate vpext of the
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resulting global spike train is described by:

τn
dvpext(t)
dt

= −(vpext(t)− v0) + σv
2
√

2τnnp(t) (4.14)

where tn = 300 ms, v0 = 2.4 kHz, σv is the standard deviation of
vpext(t), and np(t) is normalized Gaussian white noise. Negative
values of vpext(t) that could arise due to the noise term are rectified
to zero. The resulting simulated time series was calculated by sum-
ming up all synaptic input currents (AMPA, GABA and NMDA).
This signal more directly corresponds to a simulated LFP signal
(as in e.g. Mazzoni et al., 2008) than to the dendritic currents the
MEG signal originates in, but some evidence from simultaneous in-
tracortical recordings and MEG during tactile stimulation suggests
good correspondence between LFP and MEG signals (Zhu et al.,
2009). This may be due to the fact that though dendritic integration
of synaptic input may be highly nonlinear due to dendrite shape,
this effect may be balanced by ion channel distribution and synap-
tic properties, which can cancel dendritic signal distortion (Magee,
2000). Power envelopes were calculated analogously to those of
MEG recordings (Figure 4.1 b).

4.3. Results

We present a theoretical model of spontaneous brain activity that specif-
ically considers the noisy oscillatory nature evident in MEG resting state
recordings. The model is based on local LIF-neuronal dynamics of pop-
ulations of inhibitory and excitatory neurons, combined with a structural
connectivity matrix that determines inter-areal connection strengths. Os-
cillations emerge in the model from the recurrent input between nodes,
paired with neural adaptation in each node. Considering the noisy oscil-
lations of the empirical data and the model, we show in the following that
the model captures the network connectivity of the MEG resting state data
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in an optimal limited range of global coupling strenghts. The inclusion
of neurophysiologically realistic delays shifts the working point to higher
mean coupling values and increases the concordance between model and
empirical data.

4.3.1. MEG data

In the literature, resting state activity has been associated primarily with
BLP in the alpha- and beta-bands (Brookes et al., 2011b,a; Mantini et al.,
2007). In line with these findings, the power spectrum of the MEG data
set from the present study had a peak around 10 (8-12) Hz (Figure 4.2,
first panel). Though typically the characteristics (e.g. peak location, fre-
quency differences between areas, peak amplitude) vary across persons,
age and sex groups, its appearance is a very robust finding (Chiang et al.,
2011). In our group of 10 healthy adult subjects, the mean power spec-
tral peak was centered at 8.7 Hz (± 2.25). The data was lowpassed fil-
tered and freed from artifacts as described in detail in the methods section.
When filtering the time series in 15 bands of 4 Hz width from 0 to 60 Hz,
the alpha-band also carries the highest mean BLP connectivity between
nodes.

Brookes et al. (2011c) showed resting state networks resembling those
previously found in fMRI studies for these MEG recordings. Using ICA,
they independently identified eight RSN in the MEG alpha- and beta-
band power envelopes closely coinciding with RSN also found in fMRI
recordings (their Figure 1: a) DMN in alpha; b) left lateral frontoparietal,
c) right lateral frontoparietal, d) sensorimotor, e) medial parietal, f) visual,
g) frontal and anterior cingulate, and h) cerebellar networks). Focussing
here on the oscillatory data component and studying the effect of long-
range delays on the model FC structure over a range of coupling and delay
paramaters, we directly fitted the model FC to the empirical alpha power
FC structure. Graph measures for the empirical FC matrix are shown in
Supplementary Figure 4.7.
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4.3.2. Model data

The model consisted of local nodes connected to each other by long-range
connections. The structure of these long-range connections was fixed as it
was based on neuroanatomical DTI measurements. Additionally, two free
parameters shaped the spatiotemporal network structure. Connectivity
strength between nodes was varied systematically with coupling parame-
ter W, and the spatiotemporal pattern of the connectivity was modulated
by introducing global propagation velocity parameter v, which changed
the temporal dynamics of the network. W is unitless and unknown and
was the main free parameter in the model, and we varied v from Infinity
(no delays) across a physiological range of delays (5,10 m/s) to very large
delays (1 m/s).

In the model, isolated nodes did not oscillate autonomously or from the
background activity only. Increasing input from other nodes triggered
activity-dependent SFA, leading itself to noisy oscillations in the alpha-
band (Figure 4.2). The shape of the model frequency spectrum thus de-
pended on the global coupling parameter W: increasing the coupling be-
tween brain areas caused the network nodes to start oscillating at around
10 Hz, at a similar frequency as the alpha-peak evident in the MEG data.
When coupling was further increased, the network oscillations became
more and more regular. The transition from the low asynchronous state
over noisy oscillations with irregular spiking across all pools of neurons
to the highly regular population spikes for high W can be seen for one
brain area example time series in Figure 4.3. Oscillatory power and peak
frequency further depended on the mean input (Figure 4.2), bottom pan-
els).
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4.3.3. Model Fit

For each simulation in parameter space of W and v, we extracted the BL
alpha-power and calculated the FC from each node to each other node
(Figure 4.4). To judge the model’s performance and find the optimal
working point, we systematically varied W and v, and compared the re-
sulting model FC matrices between model nodes with the corresponding
MEG derived FC. After applying a Fisher-Z transform to the FC measures
(due to the nonadditivity of correlation coefficients, Zimmerman et al.,
2003), the matrices unique triangular parts were vectorized and the per-
formance of the model was then calculated from the Pearson correlation
between MEG data and model.

Figure 4.5 shows the model performance defined by alpha range power
envelope correlations for a range of W and v parameters. The ability of
the model to capture the empirical functional connectivity depends on the
coupling strength and propagation speed. For weak couplings, there is
no connection between the model nodes, and all nodes have independent
activity. For intermediate couplings, the network nodes couple dynami-
cally and trigger the SFA. A performance peak of the model in predicting
the empirical FC in the alpha-BLP can be found with this intermediate
coupling range for all delay levels, the maximal fit being reached at lower
coupling levels for smaller delays, and the performance curve flattening
out for very large delays (1 m/s) (remaining low for higher couplings, not
shown). Also note that delays increase the region of global coupling val-
ues for which the model yields a good prediction of the empirical FC: the
range of global coupling values for which the fit is systematically rising
beyond 0.10 (orange/yellow in figure 4.5, bottom) is much wider for inter-
mediate delays at 5 m/s than for v=Inf. See Supplementary Figure 4.8 (for
model performance and correlation distances for frequency bands from
delta to high gamma-bands, which shows highest maximal fits for the al-
pha range, decreasing both towards lower and higher frequency bands.

Figure 4.6 shows the FC pattern of two brain areas pertaining to distinct
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networks: the left posterior cingulate (DMN) and left dorsomedial frontal
cortex (associated with task control). The functional differences of the
regions are reflected by their embedding in different networks at rest, and
functional connections between nodes without direct structural links can
be observed both in the MEG data and in the model.

The here presented model is quite different from simpler oscillator mod-
els such as presented by Cabral et al. (2011) and Deco et al. (2009) where
delays play a critical role in maintaining phase heterogeneity between the
nodes. In the spiking model, complete synchronization is prevented for
most of parameter space by the heterogeneity and size of the network,
through background noise and a wider distribution in time of individual
spike times. Therefore, delays are not critically necessary for a good
model fit. They do, however, change the spatiotemporal connectivity pat-
tern. As a result, strong connection inputs are more evenly distributed in
time and mean firing rate is reduced, and with it SFA. Without delays, all
inputs into a pool arrive at the same time, and therefore sum up to higher
momentary inputs. With delays, time differences between the arrival of
inputs from other brain areas are introduced. In theory, in spontaneous
activity, this change in temporal connectivity may also lead to synchro-
nizing strong inputs in some cases. Effectively, though, the introduction
of delays distributes inputs from different nodes in time. This leads on
the one hand to higher required global coupling to effectuate changes
in node activity in a nonlinear system where single weak activities may
drown in the background noise. On the other hand, due to delays, there
is also a less abrupt accumulation of the AHP-current and a later transi-
tion to regular oscillations for the delayed case (Figure 4.3, center row,
left vs right column: while for v = 5, spiking is still quite irregular, the
same global coupling without delays already shows population bursts).
For even higher couplings, the system transitions to a high firing regular
oscillation regime for all delays, as visible both in the spike rasterplots
and the LFP time series in Figure 4.3.
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4.4. Discussion

In this study, we investigated how spontaneous brain activity, oscillations
and functional connectivity as recorded by MEG may be captured in a
neurophysiological resting state model. To this aim, we equipped a local
LIF-neuron population model (Deco & Jirsa, 2012) with SFA and imple-
mented it on the nodes of a neuroanatomically based large-scale brain
connectivity graph. Our results demonstrate that the model captures the
network connectivity patterns in bandlimited alpha-power, and that it does
so most robustly in the presence of cortical transmission delays.

Spatial patterns of fMRI resting state activity have been reproduced in
the last years with a variety of models (Honey et al., 2007; Ghosh et al.,
2008b,a; Honey et al., 2009; Deco et al., 2009; Cabral et al., 2011; Deco
& Jirsa, 2012). In these models, network dynamics in resting state mod-
els are importantly shaped by three key factors: couplings, delays and
noise (Deco et al., 2009). In all the models, the coupling matrix between
the nodes plays a crucial role in shaping the spatial patterns of activity.
The role of delays and noise, however, depend more on the specific lo-
cal dynamics used to model neural activity. For example, neither delays
nor external noise are necessary to keep the system dynamic and acti-
vated in the case of chaotic dynamics (Honey et al., 2007, 2009). In other
cases, noise is essential to introduce transitions between multistable states
(Ghosh et al., 2008b; Deco et al., 2009; Deco & Jirsa, 2012). Noise can be
neglected also in a complex network arrangement of Kuramoto oscillators
with delays, which may show ongoing dynamics and transient couplings
(so called Chimera states) (Cabral et al., 2011). Delays, in general, do
not influence slow asynchronous dynamics (Deco & Jirsa, 2012), but be-
come essential in the case of underlying oscillatory dynamics on the time
scale of the delays (Jirsa & Ding, 2004; Jirsa, 2009). When assuming
intrinsic nonchaotic oscillatory dynamics in the local nodes (Deco et al.,
2009; Cabral et al., 2011; Ghosh et al., 2008b,a), delays are necessary to
prevent full synchronization of the network. In a FitzHugh-Nagumo os-
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cillator model, Knock et al. (2009) showed that characteristics of the con-
nectivity matrix matter for the importance of delays in shaping dynamics
and found that the network structure is less affected by delay magnitude
changes for symmetric than for asymmetric graphs. This is due to real
symmetric matrices having real eigenvalues, so the networks equilibrium
point may change with connectivity, but not the dynamics (though note
that DSI matrices may also show asymmetries due to normalization of
connectivity by brain area size, resulting in larger weights from larger ar-
eas to smaller ones than vice versa). This may, however, depend on the
specific model, as e.g. in the model of Cabral et al. (2011), delays shape
the spatiotemporal structure of the oscillators, whose phase interactions,
and therefore clustering and frequency suppression, depend on the spa-
tiotemporal layout in a DSI-derived SC network. In the here presented
model, delays are important to consider as they shape network dynamics
and increase the model fit in a physiological delay range.

We focused on alpha-band activity due to alpha being the most distin-
guished oscillatory rhythm during eyes-closed resting state, and to ex-
emplarily address the question of how the spatiotemporal connectivity
structure and presence of physiological, noisy oscillations interact to form
network dynamics. Due to these dynamics occuring mainly in the alpha-
range, this is also where the highest fits were found, followed by the beta-
and theta-bands (Supplementary Figure 4.8). The advantage of this model
is the spontaneous emergence of noisy oscillations in the network. Oscil-
lations are important to consider when investigating RSN and resting state
FC in the light of its neuronal dynamics and mechanisms, as we have seen
from recent EEG/fMRI and MEG studies. Though the functions and de-
tails of origins of these oscillations are still undetermined, we can study
their dynamics and properties with oscillatory models, where the critical
settings and oscillatory dynamics depend on the specific model applied.
In the Kuramoto model, for example, oscillations emerge due to the ten-
dency of coupled oscillators to synchronize, leading to clusters of nodes
transiently synchronizing at reduced frequencies, and are based on the
intrinsically (gamma-band) oscillatory nature of the nodes.
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The here employed SFA mechanism parsimouneously creates alpha-
oscillations based on an easily physiologically interpretable biological
mechanism. Noisy oscillations emerge for the intermediate parameter
range where the model best fits the data also in terms of functional con-
nectivity, and naturally reproduces some details of empirically observable
alpha-rhythms, such as the higher amplitude and frequency peaks for oc-
cipital nodes. This may be due to higher adaptation in visual areas, but
also arises naturally in the model, as the oscillation frequency depends
on the interplay of neural adaptation and recurrent excitatory input, and
occipital nodes are more interconnected on average. As an outlook, the
reduction of alpha-rhythms typically seen during tasks could be easily
modulated by arousal-related ACh signaling (which reduces adaptation).
We here focus on simulating the network in a full spiking model to con-
sider the heterogenous spike times, and their stabilizing effect on the sys-
tem’s oscillatory response, as well as to allow for a direct physiological
interpretation of the oscillatory source. This, however, makes it difficult
to explore the stability of the network behavior over a large parameter
space, and reduced models are needed to investigate regime bifurcations
and to study parameter interactions in more detail. These relations (Deco
et al., 2014; Jirsa, 2009) and the origins and dynamics of alpha activities
(e.g. Freyer et al., 2011, 2012; Augustin et al., 2013) are under active in-
vestigation, and will help us in the future to further specify the oscillatory
sources of models and study their impacts and influences on the network
dynamics.

We here implemented SFA as an oscillation-generating mechanism in or-
der to study the importance of delays in the presence of noisy network
oscillations. The detailed origins, dynamics, and modulation of sponta-
neous oscillatory activity and causal role of adaptation in the brain in its
different states, however, need to be studied in much more depth. In the
brain, various types of adaptation currents in cortical neurons exist, dif-
fering in strength between layers. They are modulated by various factors
such as polarization state (Connors et al., 1982; Llinas, 1988), cortical
depth (Ahmed et al., 1998), and cholinergic signaling (Crook et al., 1998).
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These interdependencies, and more systematic variation of adaptation pa-
rameters in (reduced) large-scale cortical models may be of great help to
understand spontaneous brain dynamics and states in the future.

Though beyond the scope of this study, it is noteworthy that the burst-
ing mode observed here for sufficiently strong adaptation and recurrency
(Figure 4.3), while not resembling the oscillatory dynamics of the resting
state, are much more reminiscent of up and down states in sleep dynamics
(e.g. Steriade, 1997), though at different frequencies. The relation be-
tween acetylcholine signaling and cortical activation and cognitive states
on one hand (Sarter & Bruno, 1999; Vazquez & Baghdoyan, 2001) and
SFA on the other hand (Stiefel et al., 2009) may help us in the future to
better understand spontaneous brain dynamics in wake and sleep. This
transition was studied in a layered model of thalamus and portions of vi-
sual cortical areas by (Hill & Tononi, 2005), and by Deco et al. (2014) in
a cortical model for slow waves. A key challenge for future work will be
to consider these modulations, and to study the key responsible mecha-
nisms, resulting network dynamics and interactions in whole brain models
for different frequency bands.

In the presented data, maximal model fit was no higher than 0.4 for any
delay condition, which leaves room for improvement. Of course, this may
be related to dynamics and communications not captured by the model,
such as, e.g., lateral connections (Spiegler & Jirsa, 2013), or directionality
of fibers between brain areas. Results are also influenced by the quality
of the DTI matrix, which is prone to miss interhemispheric connections
(Hagmann et al., 2008). There is ongoing work in our lab to enhance
the quality of the DTI by integrating FC and SC through a modeling ap-
proach. The DTI acquisition parameters from the used dataset at 1.5T and
b=1200 may also have limited the SC precision. Another aspect to con-
sider is the choice of brain parcellation and preprocessing, which may in-
fluence connectivity estimates (Cloutman & Lambon Ralph, 2012; Wang
et al., 2009; Zalesky et al., 2010). Here, an AAL parcellation without vol-
ume normalization for the DTI was used. From a model and connectivity
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perspective, smaller brain areas are favorable, although MEG signal leak-
age limits the spatial resolution. Importantly, though these issues need to
be studied in more detail, they should not be critical in the main findings
of the current study, as we focus on the relative changes and effects of
including delays rather than the exact network structure.

In conclusion, brain connectivity and resting state FC investigation is be-
coming more and more important, both for understanding basic organiza-
tion principles of brain networks as well as for investigating and poten-
tially diagnosing medical conditions. With access to neurophysiological
recordings of resting state activity at high temporal resolutions, we are
now in the position to investigate the importance of oscillation in the brain
for spontaneous network patterns. We here propose a model that offers
an implementation of such noisy oscillations combined with large-scale
resting state network connectivity. We demonstrate that in the presence
of these oscillatory dynamics, the model best captures the bandlimited
power connectivity patterns of the empirical data when considering de-
lays.
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4.5. Supplementary Figures
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Figure 4.1: MEG
and model data processing and analysis]Data processing and analysis: a)

MEG time series were recorded by sensors and transformed into AAL
source-space time series with a beamformer algorithm. The resulting time

series for each brain area was then filtered in the alpha-band (8-12 Hz) and its
BLP was extracted via Hilbert-envelope computation, resulting in 90

alpha-power time series. b) The model was constructed by taking the same AAL
brain parcelation used for source-reconstruction of the MEG signal and putting

a model node in the center of each brain area. LIF neuron populations
determined local node dynamics and DTI-measurements determined the

connection weights between nodes (see methods). The connected network was
simulated for 5 mins, and resulting simulated LFP’s band-pass filtered

alpha-power envelopes were calculated the same way as for MEG recordings.
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Figure 4.2: MEG
Power spectra]Top: Power spectra for all brain areas / nodes for exemplary

simulation with disconnected nodes (/W = 0, top left) and at W = 20, v = 5 m/s
(top right). The inlay shows the mean power spectrum for empirical MEG

recordings. Bottom: Mean power spectra over all nodes for undelayed (left) and
delayed (right) simulations./
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Figure 4.3: Example raw time series for one brain area (PCC) over one second
for different cortical conduction speed /v (left column: 5 m/s, right column: No
delays) and different global coupling values W/
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Figure 4.4: FC matrices for empirical (first column) and simulated data at dif-
ferent delays and couplings (second and third column). High synchrony appears
much earlier in the absence of delays (third column) as oscillations become more
regular (see Fig 4.3).
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Figure 4.5: Empirical Fit: Model performance as measured by Pearson cor-
relation between empirical and model FC, based on alpha band-limited power
correlations, with Error bars (standard deviation over 5 trials, top), and a color
representation for mean over trials (bottom). Maximal fit of r=.40 is reached at
W=25, v=5.
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Figure 4.6: SC, empirical FC and model FC of the alpha-band power envelopes
(HE) for left posterior Cingulate Cortex (left) and left dorsomedial Frontal Cor-
tex (right)
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Figure 4.7: MEG
data](Supplemenary) Graph analysis measures for the empirical alpha power
(8-12 Hz) envelope FC matrix for thresholds from .05 to 0.5. Global measures:
a) Global Efficiency, b) Small Worldness, c) Harmonic mean Path Length, d)
Clustering Coefficient (red) and Transitivity (blue dotted) line. Betweenness

Centrality for each node in decreasing order is shown in e) and f).
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Figure 4.8: (Supplementary) Empirical Fit (top) and distances (bottom) of sim-
ulated and empirial FC, over levels of empirical coupling and delays for different
frequency bands from Delta to high Gamma.
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5. Decomposing resting state
networks - new perspectives

So far, we have talked about how well models can reproduce FC patterns
and their dynamics as a whole. In this chapter, we want to turn our at-
tention towards the network compositions, or rather decompositions, of
RS activity in the brain. We propose tensor factorization, specifically
PARAFAC/CANDECOMP to be a viable alternative to the established
approaches, and discuss the influence of constraints imposed on the data.
The here presented results are explorative in nature, and an exhaustive
specification of the methods and their applicability for this type of brain
data and the necessary preprocessing for obtaining optimal results is still
outstanding. Nonetheless, as we will discuss, these are promising meth-
ods potentially opening new doors to understanding and conceptualizing
brain networks.

5.1. Introduction

5.1.1. Established methods: ICA in fMRI and M/EEG

To achieve a datadriven identification of RSNs, the most common ap-
proach after seed-based analysis (Fox et al., 2005) has been to apply
PCA/ICA to the signal, mostly spatial ICA in the case of fMRI (e.g. Beck-
mann et al., 2005; De Luca et al., 2006; Chen et al., 2008; Biswal et al.,
2010). Later, these RSNs have also been found in MEG (de Pasquale
et al., 2010; Liu et al., 2010; Brookes et al., 2011a,c) and in EEG (Man-
tini et al., 2007; Jann et al., 2010). Slow RS networks and dynamics
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comparable to fMRI data have primarily been found in the connectiv-
ity of band-limited power-envelopes in the slower, specifically the alpha-
and beta- bands (Liu et al., 2010; Brookes et al., 2011a; de Pasquale et al.,
2010). These findings did not only corroborate the existence and identities
of structured spontaneous communities found in fMRI data, but opened
up new possibilites to study the dynamics and mechanisms of how spa-
tiotemporal structure in spontaneous brain activity emerges in time and
across different frequencies. However, these studies were based on the
fMRI spatial maps or had limited spatial resolution and matched a subset
of similar, not equivalent components to fMRI RSNs. Also, as they stem
from another modality, they are not conclusive with respect to how much
of the signal is different due to differences in bandlimited neural activity
as measured by M/EEG and fMRI BOLD, and how much is due to dif-
ferences in the ICA modes. This matters, as spatial ICA maximizes the
spatial independence of components while not constraining their temporal
activity. This is optimal for fMRI data structure, as it typically combines
many spatial datapoints with relatively few timepoints, but it is disadvan-
tageous for identifying functionally distinct, potentially spatially overlap-
ping components such as to be expected in hub-rich networks like the
brain. Smith et al. (2012); Helwig & Hong (2013); Calhoun et al. (2012).

Smith et al. (2012) recently compared spatial and temporal ICs (’tempo-
ral functional modes, TFM’) in fMRI data. The temporal decomposition
yielded corresponding modes to the classical RSNs, but with somewhat
distinct spatiotemporal signatures (e.g. more highly functionally segre-
gated visual-subsystem TFM). Interestingly, they found the DMN to be
not so much a single functional network but more of a time-averaged pat-
tern of correlations and anticorrelations of different TFMs. The authors
propose that cognition may occur in independent functional networks, and
while not negating the DMN (which they reproduced in the time-average
of both signal correlations and TFMs), they show how its prominence in
RS research may in part be due to the choice of methods we apply to
the data, including their own method, which imposes strong assumptions
of temporal independence. ICA will maximize independence in space
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or time (and, thus, assume independence), PCA aims to explain variance
maximally in few dimensions and searches a low-dimensional representa-
tion explaining the maximal variance. Non-negative tensor factorization
explains data by parts-based additive representations. Given these alter-
native, it is important to be aware of the assumptions we make about the
data.

Accordingly, calls to rethink the modes and constraints with which we
analyze brain network data have been increasing (Calhoun et al., 2012;
Helwig & Hong, 2013). Different constraints imposed on the decompo-
sition follow different application goals and determine the nature of the
resulting components. Importantly, though, prior knowledge is needed to
implement the appropriate constraints and to have confidence that the re-
sulting components represent the data well. As emphasised by Cichocki
(2009, p.8):

"the successful and efficient use of such tools strongly de-
pends on a priori knowledge, common sense, and appropriate
use of the preprocessing and postprocessing tools. In other
words, it is the preprocessing of data and postprocessing of
models where expertise is truly needed in order to extract and
identify physically significant and meaningful hidden compo-
nents."

This becomes even more critical when stepping into higher dimen-
sions. Multiway approaches are being used increasingly, and promise
a datadriven and more easily interpretable decomposition of brain net-
works (Cichocki, 2013; Helwig & Hong, 2013). Especially in neuro-
physiological data, where frequency-specific activity adds a natural third
data dimension, multiway decomposition methods offer a good way to ex-
plore brain networks in all dimensions simultaneously (Miwakeichi et al.,
2004; Mørup et al., 2006; Martínez-Montes et al., 2008a,b; Wang et al.,
2008).This way we can take into account spatial, temporal and spectral,
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subject, group or trial information at once, and provide links between
these data dimensions (Cichocki, 2013).

Beckmann and colleagues (Beckmann & Smith, 2004, 2005; Beckmann
et al., 2005) introduced a probabilistic ICA (pICA) and a three-way ex-
tension in order to extract fMRI components in space, time, and ses-
sion/subject domains. Comparing their approach with an unconstrained
PARAFAC analysis, they show higher accuracy with less cross-talk in ex-
tracting (spatially independent) components from multi-subject datasets.
However, Stegeman (2007); Helwig & Hong (2013) later showed that
the robustness of tPICA depends on the chosen algorithm and iteration
scheme, and produces biased results in the presence of deviations from the
spatial independence assumption, and therefore recommend constrained
PARAFAC (with orthogonality) or PARAFAC2 models.

These studies were performed on fMRI data, where multivariate tech-
niques are used mostly to extract components across tasks or subjects
(Sharma & Baron, 2013; Long et al., 2013). In neurophysiological data,
frequency is an obvious third dimension of the datasets. At first, com-
ponent and connectivity analyses were mostly repeated over frequency
bands (e.g. Brookes et al., 2011c; de Pasquale et al., 2010; Tagliazuc-
chi et al., 2012b; Hillebrand et al., 2012), but recently, multi-variate fre-
quency interactions are increasingly proposed to play an important func-
tional role in brain dynamics. Marzetti et al. (2013) introduced a mul-
tivariate interaction measure (MIM), quantifying lagged interaction be-
tween a seed in the DAN and other areas across frequency bands. Sim-
ilarly, Brookes et al. (2012) took a multivariate, seed-based approach
to measure MEG power envelope FC across frequency bands, which,
in its extension (Brookes et al., 2014), allows for the construction of
signal-leakage corrected, seed-based, time-frequency connectivity plots
in a framework accounting for temporal non-stationarity.

In light of the abovementioned discussion on model assumptions, PARAFAC
/ Candecomp (CP) is a promising tool to understanding brain networks:
unique solutions are readily obtained with minimal constraints, and a pri-
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ori independence and orthogonality assumptions are therefore not always
necessary. Remaining assumptions are that the data are variable, as well
as roughly trilinear and additive (Murphy et al., 2013).

Computerized tensor decomposition methods have been developed decades
ago (Hitchcock, 1927; Carroll & Chang, 1970; Harshman, 1970), but have
advanced since then with the development of new algorithms (Cichocki
et al., 2008; Bader & Kolda, 2007; Friedlander & Hatz, 2008; Kim &
Park, 2011; Phan et al., 2012; Kim et al., 2013), and they have become
more readily available to a wider audience in recent years with tutori-
als and toolboxes (Bader & Kolda, 2007; Friedlander & Hatz, 2008; Ci-
chocki, 2009; Kolda & Bader, 2009; Murphy et al., 2013). While the
reader is referred to these methodological papers for an in-depth discus-
sion, in the following we will give a short overview of the PARAFAC
method and important considerations regarding its applications.

5.1.2. Tensor factorization

PARAFAC/Candecomp is one of many tensor decomposition methods,
and represents a generalization of a matrix singular value decomposition
(Kolda & Bader, 2009). Given a data array/tensor Y, CP decomposes it
into a sum of component rank-one tensors, where rank-one tensors are
tensors that can be written as an outer product of N vectors (N being the
tensors dimensionality). It follows that a third-order, rank-one tensor X of
size I is given by the outer product of its constituent vectors, X = a◦b◦c,
and element xi,t,q is given by aibtcq. This relation is illustrated for Y by
vector arrows in Figure ?? (left). However, as not all three-dimensional
tensors are rank-one already, a three-dimensional PARAFAC model de-
composes a given tensor into a sum of multi-trilinear terms, and returns
three-component (’loading’) matrices (Cichocki, 2009), which can be
written as:
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yitq =
J∑
j=1

aijbtjcqj + eitq, (5.1)

in matrix form:

Y = aj ◦ bt ◦ cq + E = [[A,B,C]] + E, (5.2)

where Y is the tensor, A,/B/ and C are the three factor matrices and E is
the error. The factor matrices are a combination of the vectors from the
rank-one components.

#+CAPTION[PARAFAC Matrix and vector representation]:Representation
of Matrix (uppercase) and vector (lowercase) PARAFAC representation of three-
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Every component matrix stores the weight of each dimensional element (e.g.
timepoints, frequency bands, or nodes) on each component. This way, several
components can be active at the same time. For a given component, all values
are linked across dimensions, i.e. the ’activity’ of a component is simultaneously
fixed on all three dimensions. The interactions between components are set to
zero, that is, all but the superdiagonal of the core-tensor, which holds interactions
in the more general TUCKER decomposition (not depicted), is zero. This mostly
prohibits a perfect reconstruction of the data (and hence TUCKER is better used
for data compression), but permits easier interpretation of the components. As
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the optimal decomposition is typically not determinable analytically, the best
decomposition is determined iteratively to maximize variance explanation. The
original alternating least squares (ALS) algorithm does this by repeatedly fixing
two of the three component matrices to solve for the remaining one. (Kolda &
Bader, 2009).

In general, the PARAFAC model does not suffer from lack of rotational unique-
ness, meaning that most PARAFAC solutions have one unique best solution.
This is considered a major advantage of this model over factor analysis solutions
(Kruskal, 1989). However, a model without any constraints that best represents
the input data numerically may not always be unique nor optimal in terms of
interpretability of the factors. Also, a best-fitting decomposition may not exist
for every data array, and diverging components with nearly linearly dependent
columns in A, B, C may appear (Stegeman, 2014). To avoid these problems
and to increase the physcial meaningfulness of the decomposition, constraints
such as non-negativity, unimodality or orthogonality can be imposed for each
mode individually in PARAFAC. Of course, these constraints have to actually be
present in the data structure to result in a meaningful decomposition. For the fre-
quency domain for example, a non-negativity constraint can naturally be used,
while unimodality may be meaningful depending on the underlying processes.
For both the time and the spatial domains, further constraints can be made. We
here applied two- and threedimensional decompositions with 1. no constraints,
2. orthogonality, and 3. non-negativity constraints.

Furthermore, it is important to note, and reflect upon, the limitations of the model
in terms of what kind of data it can represent. As it uses the same number of
components/columns J, components are tied together in all modes. Unlike in
other decompositions such as PARAFAC2 or TUCKER3, interactions between
the modes cannot be represented, and the model cannot meaningfully represent
the data in such a case. While there is no direct test for data trilinearity, the
Core Consistency diagnosis (CorCondia, CC) can be used as an indicator for
3-way tensors. Being the similarity (from 0 to 1) between a PARAFAC and a
TUCKER decomposition of the same data, a high CC of 0.8 or 0.9 indicates few
interactions between the components, and hence a good model fit, while a low
value of e.g. 0.5 indicates that the data cannot be presented well by a PARAFAC
model (Cichocki, 2009).
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5.1.3. Motivation

Here, we use PARAFAC to decompose MEG RS recordings in space, time,
and frequency bands. We explore alternative decomposition methods on a pre-
processed source space MEG RS recording. Using the previously established
ICA approach and two- and threedimensional PARAFAC, we set out to identify
RS networks both in time, space, and frequency bands in order to study if the
PARAFAC model can give a meaningful representation. We compare decompo-
sition results of spatial and temporal ICA as well as PARAFAC with different
constraints in order to visualize the different interpretations of the data, and dis-
cuss the importance of choice and future application potential of these analysis
methods.

5.2. Methods

5.2.1. MEG Data Collection and Analysis

The study included data from 7 healthy participants taken from a larger data set
including 12 subjects (6 males, age range 19-27) with no history of neurologi-
cal disorders. MEG was recorded with a CTF-151 system (CTF Systems Inc.,
Vancouver, Canada) on two separate days. Both days included the following
recording paradigm: 5 minutes of rest with open eyes, 5 minutes of rest with
closed eyes, a task, ~90 minutes attempted sleep, a re-run of the task. The sleep
recordings were scored by an expert sleep technician according to the principles
given by Rechtschaffen & Kales (1968) in 30-seconds windows with each win-
dow being assigned to one of the following 6 state categories: ‘wakefulness’,
‘NREM sleep stage 1’, ‘NREM sleep stage 2’, ‘NREM sleep stage 3’, ‘NREM
sleep stage 4’, ‘REM sleep’. Written informed consent was given by all partic-
ipants, and the protocol was in accordance with the Declaration of Helsinki and
accepted by the medical ethics committee of the VU University Medical Center,
Amsterdam, the Netherlands. The data subset from 7 out of 12 participants for
the study at hand was chosen on the grounds that each of these 7 participants
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showed sleep scores indicating epochs of at least 270 seconds of undisrupted
wakefulness (S0), NREM sleep stage 2 (S2), and Deep NREM sleep (SWS).
SWS was defined as epochs of data scored as NREM sleep stage 3, NREM sleep
stage 4, or a combination of the two. For this study, only the ’wakefulness’ state
recordings were used.

All pre-processing steps were performed in MATLAB (The MathWorks, Inc.)
employing software developed at Oxford Centre for Human Brain Activity
(OHBA). OHBA’s Software Library (OSL) is borrowing functions from other
software packages, such as SPM8 (Litvak et al., 2011), FieldTrip (Oostenveld
et al., 2011), and FSL (Jenkinson et al., 2012). Each recording (~45 minutes)
was preprocessed as one continuous piece. The raw CTF-151 data was high-
pass filtered at 0.1 Hz, and single channels with excessive noise levels were
removed from further analyses. Data was then submitted to Blind Source Sep-
aration by temporal Independent Component Analysis (ICA) using the FastICA
algorithm (Hyvärinen & Oja, 2000; Vigário et al., 2000) as implemented in the
FastICA toolbox for MATLAB. Each independent component (IC) was repre-
sented by an independent time-course and a topological map describing each of
the MEG sensors’ contribution to the given IC. All ICs were reviewed manu-
ally and categorized as either neural or artifact. Artifactual ICs included cardiac,
ocular (Mantini et al., 2008; Vigário et al., 2000) or facial muscle-interference
(Muthukumaraswamy, 2013) and were removed by subtracting them from the
full-rank data (Mantini et al., 2011). The artifact-corrected data was band-pass
filtered into 4 frequency bands of interest: delta (0.25-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), and beta (13-30 Hz), and submitted to source reconstruction.

In order to estimate the sources of neural activity leading to the signals measured
at the sensors of the MEG array, the data was spatially filtered using a Linearly
Constrained Minimum Variance (LCMV) beamformer (Hillebrand & Barnes,
2005; Van Veen et al., 1997). More specifically, an overlapping-spheres for-
ward model was implemented using a quasi-static approximation of Maxwell’s
equations with a sphere fitted to each of the 151 MEG sensors (Huang et al.,
1999), upon which a scalar LCMV beamformer (Sekihara et al., 2001; Woolrich
et al., 2011) was employed. A prerequisite for successful source-reconstruction
in MEG is co-registration. Since no individual structural scans were obtained for
the participants studied here, a template average structure in Montreal Neurolog-
ical Institute (MNI) coordinates was used. For one participant, the dimensions
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of this average template were in conflict with his/her position in the scanner (i.e.
bulging outside of the helmet) when co-registered to the MEG device coordinate
system. In order not to lose the data from this participant, a structural MRI from
another data set with suitable dimensions was used (Holliday et al., 2003). An
affine registration was applied between this substitute MRI and the MNI tem-
plate brain, used for the rest of the participants, to make later group comparisons
possible. One of the main advantages of using beamformers, compared to other
strategies of source-reconstruction, is the fact that projection of source activity at
any given location is independent from prior or later projection to other locations
(Barnes & Hillebrand, 2003). Hence, it was possible to focus the beamformer at
90 center-of-gravity locations derived from the AAL template (Tzourio-Mazoyer
et al., 2002), yielding 90 time-courses for each of the participants’ three vigilance
states in each of the four frequency bands.

Power envelopes were extracted separately for each frequency band, downsam-
pled to 25 Hz, normalized to zero mean and unit variance, and concatenated
over subjects. Both 2D (temporal and spatial ICA) and 3D decomposition meth-
ods were then applied to the data via the TDALAB (Zhou & Cichocki, 2013;
Cichocki et al., 2014) Matlab Toolbox.

1. Temporal ICA (PMFefica2): Based on previous work finding RSNs in
MEG power envelopes via temporal ICA (Brookes et al., 2011c), we ex-
pected to find core RSN networks also in the present dataset based on 90
nodes. The analysis was confined to the AAL regions, and spatial compo-
nents were extracted by calculating the correlation of the nodes’ envelope
time courses with each of the components.

2. Spatial ICA (PMFefica1): At 90 spatial nodes, the data did not meet con-
ditions for spatial ICA, but we included it to compare visually the method
results in the same parcellation space.

3. 2D PARAFAC: For twodimensional CP, different constraints were cho-
sen, identified by one numeric digit on the dimensions space and time, re-
spectively: constraints: 0 = none, 1 = orthogonality, 2 = nonnegativity, 3 =
unimodality and nonnegativity. bi = binarized data. hence, ’CP02bi’ de-
notes CP decomposition with no spatial constraint, nonnegativity in time,
on binarized data.

114

http://www.bsp.brain.riken.jp/TDALAB/


4. 3D PARAFAC: For 3D-CP, the third dimension is frequency, which is
naturally constrained to positive values, so the nonnegativity constraint
was applied.

5.3. Results

5.3.1. 2D decomposition

To gain an overview over the different methods, we first compared the different
methods in terms of variance they explained, for each band separately (Figure
5.1).

For binarized data (CP02bi and CP20bi), less variance was explained than for
continuous CP and ICA (PMFefica). Temporal ICA (PMFefica1) and CP per-
formed equally well, both with slightly higher values than spatial ICA, espe-
cially over lower numbers of components. Only in the gamma band, spatial ICA
quickly surpassed the other methods. The gradual increase and similarity for
CP20 and PMFefica1 suggested there is no clear cutoff or preferred method. In
general increasing the number of components beyond the first five or six tends to
fragment existing components, but not to uncover structurally different, compet-
ing factors.

Temporal ICA clearly showed the existence of established networks in the
dataset, specifically a visual network, a frontopolar network, and a sensorimotor
network, together with left and right lateral temporal networks, visible in Figure
5.2 for alpha and beta band. These networks tend to decompose into left- and
right-hemispheric subnetworks as number of components increase (see Supple-
mentary Figures 5.12 and 5.13).

In the different frequency bands, component structure only slightly changes
(5.2): A stronger widespread component with occipital focus and a ventral vi-
sual stream component are most prominent in delta, while theta, beta and gamma
profiles are quite similar to the alpha pattern.
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Figure 5.1: ICA
& Parafac methods comparison]Subplots 1-5: Variance explained for

different methods by frequency band (legend subplot 6), and 3-D PARAFAC/CP
decomposition with different constraints. CP constraints: 0 = none, 1 =

orthogonality, 2 = nonnegativity, 3 = unimodality and nonnegativity. bi =
binarized data. PMFefica1 = spatial ICA, PMFefica2 = temporal ICA.

The differences between ICA and CP are shown in 5.3. All methods similarly
show a lobular structure. In CP, the first component with strongest activation
in occipital cortex is also the most widespread one, extending to include areas
from most of the rest of the brain also. The remaining components however are
similar to the ones extracted by ICA, marking the sensorimotor, medial frontal,
and left and right temporal cortices. The Supplementary Figures (5.8 to 5.15)
show how the component structure nontrivially depends on method, constraints,
preprocessing and number of components extracted.
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Figure 5.2: ICA
5 Components]Temporal ICA networks in the delta- (left) and theta-band

(right), with negative (blue) and positive (red) weights. Here, 5 Components are
shown seperately for each frequency band.

5.3.2. 3D decomposition

In three dimensions, we used CP002 and CP202, taking advantage of the natu-
ral non-negativity in the frequency domain. In many instances, highly collinear
components were extracted, leading to low CC values. Using both CC and fit
values for determining the optimal number of components, no satisfactory level
of explained variance and consistency could be found. The crossover between
CC and fit at 13 components leaves us with CC at 0.49 and the fit at 0.19. By
comparing with 6 components, it is visible that there is one robust widespread,
strong delta component, losing importance with increasing number of compo-
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Figure 5.3: Five component decompositions in the alpha band, for temporal and
spatial ICA (PMFefica1,2), and CP with nonnegativity contraint in the spatial
and temporal dimension, respectively.

nents and slow, intermittent activity (Component No. 4 in Figure 5.4 / No. 7
in Figure 5.5, No. 5 in Figure 5.6 and No. 11 in Figure 5.7). Furthermore it
is apparent that gamma components double from two to four components, so
that most new components appear in the theta to beta range. In CP002, most
of these components appear negative (blue), compared to a global positive al-
pha component, but the pattern matches with the one from CP202 in Figure 5.7:
These are mostly components arising around cortical hubs in the cingulate cor-
tex, superior/medial frontal areas, together with basal ganglia, hippocampus and
amygdala, with varying involvement of these and other participating areas.
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Figure 5.4: CP002 decomposition with nonnegativity constraint in the third
(frequency) mode - 6 Components. Panel 1 shows the quality of the decompo-
sition, the rest of the panels the score of each element on the components. In
accordance with the panel titles, a column is a component for panels 2-5, and
for the last panel, a row is a component
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Figure 5.5: CP002 decomposition with nonnegativity constraint in the third
(frequency) mode - 13 Components.
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Figure 5.6: CP202 decomposition with nonnegativity constraint in the first
(space) and third (frequency) mode - 6 Components.
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Figure 5.7: CP202 decomposition with nonnegativity constraint in the first
(space) and third (frequency) mode - 13 Components.
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5.4. Discussion

In this chapter, we presented an alternative approach to using ICA, the to-date
standard method of decomposing whole brain activity into distinguishable net-
works of brain activity. In an AAL-parcellated RS-MEG dataset, ICA and twodi-
mensional CP decompositions explain similar amounts of variance. ICA decom-
position showed a principally lobular delineation, with an occipital component, a
frontal component, a parietal component, and a left and a right temporal compo-
nent (Figure 5.3 far left). The first three of these coincide with the visual, fron-
topolar, and sensorimotor functional networks previously identified (e.g. Fig-
ure 1.3 F,D,G).

The results show that the methods match in the strongest components but differ in
spatial extent and overlap. Temporal ICA showed the most isolated components
while the other methods tended to have one widespread, strongest component.

Taken together, our results show that twodimensional CP methods are capable of
reproducing some of the strongest functional RS networks. Due to the limited
spatial resolution and purely datadriven approach, with no manual selection of
components, the decomposition only reproduces some of the established RSNs,
which are the least distributed ones. Especially the DMN does not appear as
a component in any of the decompositions, but it was also not necessarily ex-
pected after the study of Smith et al. (2012). The strong fragmentation into
single brain areas/lobes is likely also due to the combination of constraints and
spatial resolution. It appears that the RSNs extracted by ICA emerge due to the
independence maximization of the method, but that they are not the strongest
components signal-wise in the data. We speculate that the CP methods pick up
the strongest components signal-wise, which are more spatially modular in the
concatenated band-limited power-envelope datasets.

This is just a first glimpse into the potentials and caveats of tensor decomposition
approaches for extracting meaningful data components and their profiles and in-
teractions accross multiple modes. Here, we extracted a lobular structure from a
spatially coarse-grained parcellation. We did not find clear evidence for higher
sensitivity of CP methods over more traditional ICA measures in detecting func-
tional networks, but we did show that CP can extract similar components. The
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variations of constraints in space and time remained inconclusive, and a more
comprehensive investigation of their effects on synthetic data is warranted.

For detailed specifications of what kind of features can or cannot be extracted
with CP, and how multivariate, large-scale neurophysiological signals are best
preprocessed and decomposed, further study will be necessary. With the increas-
ing availability of ressources such as toolboxes and introductory articles (Ci-
chocki et al., 2014), this is an active field promising to yield highly interesting
results in the near future.
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5.5. Supplementary Figures and Tables

Figure 5.8: CP20 in the beta-band - 10 components

Figure 5.9: CP20 in the beta-band - 20 components
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Figure 5.10: CP20 in the beta-band, binarized - 10 components

Figure 5.11: CP20 in the beta-band, binarized - 20 components

126



Figure 5.12: ICA
- 10 components]Temporal ICA in the beta-band - 10 components

Figure 5.13: ICA
- 20 components]Temporal ICA in the beta-band - 20 components
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Figure 5.14: CP02 in the beta-band, binarized - 10 components

Figure 5.15: CP02 in the beta-band, binarized - 20 components
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Table 5.1: AAL
region abbreviations]AAL regions ans abbreviations, as in Tagliazucchi et al.

(2012b). Region numbers in the first column are for for left-right,
correspondingly.

Nr Region Name Abbreviation

1-2 Precentral Gyrus PCG
3-4 Superior frontal gyrus SFG
5-6 Superior frontal gyrus, orbital part ORBsup
7-8 Middle frontal gyrus MFG
9-10 Middle frontal gyrus, orbital ORBmid
11-12 Inferior frontal gyrus, opercular INFoperc
13-14 Inferior frontal gyrus, triangular INFtriang
15-16 Inferior frontal gyrus, orbital ORBinf
17-18 Rolandic operculum ROL
19-20 Supplementary motor area SMA
21-22 Olfactory cortex Olf
23-24 Superior frontal gyrus, medial ORBsupmed
25-26 Superior frontal gyrus, dorsal SFGdor
27-28 Rectus gyrus REC
29-30 Insula INS
31-32 Anterior cingulate gyrus ACG
33-34 Middle cingulate gyrus MCG
35-36 Posterior cingulate gyrus PCG
37-38 Hippocampus Hip
39-40 Parahippocampal gyrus PHG
41-42 Amygdala Amyg
43-44 Calcarine cortex Cal
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Nr Region Name Abbreviation

45-46 Cuneus Cun
47-48 Lingual gyrus Ling
49-50 Superior occipital gyrus SOG
51-52 Middle occipital gyrus MOG
53-54 Inferior occipital gyrus IOG
55-56 Fusiform gyrus Fus
57-58 Postcentral gyrus PostCG
59-60 Superior parietal gyrus SPG
61-62 Inferior parietal gyrus IPG
63-64 Supramarginal gyrus SMG
65-66 Angular gyrus Ang
67-68 Precuneus PCUN
69-70 Paracentral lobule PCL
71-72 Caudate Cau
73-74 Putamen Put
75-76 Pallidum Pal
77-78 Thalamus Tha
79-80 Heschl’s gyrus Heschl
81-82 Superior temporal gyrus STG
83-84 Temporal pole, superior TPOsup
85-86 Middle temporal gyrus MTG
87-88 Temporal pole, middle TPOmid
89-90 Inferior temporal gyrus ITG
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6. General discussion

In the preceeding chapters, we laid out our work focussing on the complex spa-
tiotemporal activity patterns that occur in the brain intrinsically, that is, in the
absence of experimental tasks or stimulations. We applied a biophysically real-
istic computational model of brain dynamics in order to study critical network
parameters and contingent changes in the spatiotemporal network setup of RS
brain dynamics. We set out to demonstrate how both the interaction of the com-
plex structural connectivity patterns and their temporal embedding in the pres-
ence of oscillations shape RSN dynamics and functional connectivity patterns.
In order to do so, we applied a large-scale brain model with integrate-and-fire
neurons and anatomically derived connectivity patterns. With this model, we
studied the connectivity patterns resulting from its internal dynamics in relation
to key parameter settings. In the following, we will discuss the implications of
our findings in context of the existing literature, as well as the present and future
of RSN- and brain dynamics research in general.

As we have seen in Section 2.3, there is a wealth of models for brain dynam-
ics that have been used in large-scale brain simulations, with varying degrees
of complexity, biological realism, and different underlying dynamics. Unavoid-
ably, all brain simulations are to some degree reductions, usually by many, many
degrees. But even the most ambitious projects in terms of realism, such as the
HBP, face challenges: of how to handle, analyze, summarize and, most impor-
tantly, understand and extract the important features of the immense quantities
of data produced. As such, there is no one ’correct’ model of the brain, and the
choice of model optimally depends on the objective and the nature of the dynam-
ics in question. Abstract models may suffice for studying population-behaviour
in order to generalize beyond the specific implementation of a function, to find
similarities in different systems or conclude about the global configuration of the
system. More detailed models, however, are needed to study the mechanisms
by which these global dynamics are instantiated in the microscopic scales of the
system. Recently, it has been shown that the global configurations and a variety
of dynamics can be implemented in highly reduced models of simple oscilla-
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tors (e.g. Cabral et al., 2011, 2014) and even analytical derivations of statistical
moments (Deco et al., 2013b).

In the present work, we have mainly been interested in the macroscopic net-
work configurations in relation to both global and local parameters and mecha-
nisms. We studied the effects of gradually decreasing global and local connec-
tivity strengths (Chapter 3), and local oscillatory dynamics and inter-area signal
propagation delays (Chapter 4). We worked with the versatile model of Deco &
Jirsa (2012), which in its basic form comprises a network of biophysiologically
realistic integrate-and-fire neurons. In consideration to computational cost this
network, too, is reduced in many ways such as the limited number of 18.000 neu-
rons and 90 brain areas. Our choice of this model was based on that it allows both
for further reduction and for the inclusion of biophysically meaningful mecha-
nisms. One such mechanism is SFA through AHP, which we used to introduce
oscillatory dynamics in the connected network.

In relation with fMRI data, we applied an asynchronous model in the low ac-
tivity regime to simulate BOLD data. We had found before that, in the absence
of oscillations on the same time scale, introduction of delays does not change
the global network configuration. In that case, the time scale of the accumula-
tion of the incoming activity is such that the phase delay does not substantially
change the interaction patterns between the nodes. Notably, both in oscillatory
and nonoscillatory systems, a critical dynamical region was identified, in which
the empirical FC and the model configuration coincide best, and fit decreases
again beyond a certain coupling strength (see Figure 2.1 h). This optimal work-
ing point is near a bifurcation (Deco & Jirsa, 2012; Deco et al., 2013a), which
corresponds to a metastable region between high and low activity states in the
spiking attractor network. Critical dynamics are increasingly studied and found
in neural networks (Beggs, 2008; Haken, 1996; Rabinovich et al., 2001, 2008),
and evidence accumulates that criticality is a key organizing principle in the brain
as a whole (Bassett et al., 2006; Deco et al., 2013a; Kitzbichler et al., 2009; Poil
et al., 2008, 2012; Tagliazucchi et al., 2012a). In this perspective, RS brain dy-
namics are far from random, noisy fluctuations of activity around main structural
pathways, but a key base from which to access the array of cognitive architec-
tures the brain has available. A functional setting of the system at this working
point thus maximizes its flexibility and ability to explore various functional states
without fully activating sensory and cognitive goal-focused processing.
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Our main contribution lies within showing how the critical model parameters
and behaviour depend on the underlying system. In the asynchronous model, we
showed how brain signal complexity is affected by increasing distance from the
critical working point. Also, we demonstrated that, while the SC is critical for
the dynamics in all cases, it starts interacting with delays in the presence of noisy
oscillations on a similar timescale. With this, we were able to expand the model
to consider oscillatory activity as recorded by electrophysiology. By combining
coupling and delay parameters, we were able to identify a best-fit region for
the model. We concluded that delays matter in this case, and that propagation
velocities in the range of what is neurologically realistic stabilize the system.
They increase both the maximum and range of good fit over the coupling by
preventing precipitated global synchronization in the system.

In this scenario, strength of the oscillation is input-dependent, meaning that neu-
rons transition from a low-input asynchronous state to noisy oscillatory activ-
ity and later to a synchronous bursting regime. The frequency depends some-
what on the input strength, whereby input actually decreases the frequency (see
Figure 4.2). This seems contrary to empirical findings of cortical activity at
first sight, but one must consider that higher input also most probably leads to
decrease in the oscillation-generating SFA (discussed in detail below). In our
model, the oscillation frequency of the whole system behaves quite similar to
that of a single, unconnected node in that it primarily depends on the strength
and timescale of the AHP current. In contrast, Cabral and colleagues (Cabral
et al., 2011; Cabral, 2012) observe a substantial frequency reduction in a cou-
pled system of weakly coupled gamma-band Kuramoto oscillators. Both models
can result in clusters of nodes at different frequencies. This is due to the input-
dependency in our case, where a densely connected cluster would show lower
frequency than a weakly connected cluster, and due to the different sizes and de-
lays of transiently emerging clusters in the Kuramoto system. As these two cases
build upon two distinct principles, it is desirable to disentangle these two scenar-
ios. To do so, we will have to study with scrutiny the emerging cluster dynamics
in time, both empirically and in the proposed models. It would also be worth-
while to see if a more complex large-scale model, e.g. of firing neurons, can
reproduce reduced-frequency synchronization of gamma-oscillating units such
as found in the Kuramoto oscillators.

In our model, delays play a critical role in distributing the mutual inputs in the
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network, so that inputs do not acumulate to cause activity bursts with a follow-
ing refractory periods in all neurons at the same time. The oscillatory dynamics
in the model were introduced by SFA of the excitatory neuron populations of
all cortical nodes. This of course does not mean that these are the only possi-
ble, actual mechanisms by which the alpha/beta oscillations observed ubiquously
in electrophysiological RS recordings are generated in the human brain. Other
simulation studies have proposed different underlying oscillatory dynamics. For
example, intrinsic local gamma dynamics that lead to slower oscillations in the
coupled system (Deco et al., 2009; Cabral et al., 2011) have also been proposed
as underlying generator. Different oscillator types actually lead to similar results
(Ghosh et al., 2008b), and the cortex also responds to oscillatory thalamic in-
puts (Freyer et al., 2009, 2011; Roy et al., 2014). In fact, the neural origin and
propagation of spontaneous cortical oscillations in wakefulness and sleep is mul-
tifaceted, and interesting works are being conducted on the topic (Ladenbauer
et al., 2012; Augustin et al., 2013; Hindriks et al., 2014). It is quite fascinating
that we have known of different frequency brain oscillations from the very first
eletrophysiological recordings in the early 19th century, and yet we still have
such little integrated knowledge about their function or the mechanisms behind
their appearance and modulation between different mental states. In the course
of this project, by studying SFA effects on spiking behavior (see Figure 4.3)
and reviewing the literature, we have embraced the notion that SFA may be a
key mechanism in modulating mental state and lower-than-gamma oscillation
occurence in the human brain. Different types of SFA have already been identi-
fied and found in cortex (Lopes da Silva et al., 1980), but their role in controling
cognitive states are only now being studied with large-scale models (e.g. Deco
et al., 2014). In this view, the cortex, without further input, would be largely
governed by global waves induced by slow scale SFA, such as we can see in up
and down states in human sleep. We already know that ACh signaling decreases
SFA, so reticular activation would decrease synchrony in global waves, allow for
weaker, faster time scale adaptation to occur, which may elicit the typical resting
inactivity alpha-rhythm. This, again, may be shut down by further ACh signaling
in some or all networks, and high-rate neural computations and local inhibitory-
excitatory loop oscillation in the gamma range would occur. Of course, this is
only a very rough image, and many specific functions may use certain frequency
ranges independently. Yet, different functionally associated rhythms, such as the
posterior alpha or the rolandic alpha, fit well in this concept in that they are ac-
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tually ’idling’ rhythms (Ritter et al., 2009), that is, in a low-power standby state,
quickly activable but not busily processing yet.

Many empiricical and computational questions arise from this possible general
principle of brain states. Are the different rhythms based on different neural me-
chanics, or are they distinguishable because they are separated into clusters by
the spatiotemporal cortical connectivity? How many neurons feature SFA, and
are different adaptation time scales (from bursty supersecond global oscillations
to shallow noisy beta rhythms) implemented in different neuron populations?
How much of the oscillations are induced by the thalamocortical loop and is
resonance-related? How far are interneurons involved in these dynamics? Some
pieces of these and other questions are known (e.g. bursty versus regular spiking
cells). Their further study, however, is still outstanding (e.g., do bursty and regu-
lar spiking cells form a continuum or two cluster?), and indispensable if we want
to profoundly comprehend brain states, mental states (including the concepts of
wakefulness and sleep stages themselves), and, by extension, important aspects
of neuropsychological diseases.

Ultimately, when modeling RS activity, it would be desirable to combine and
study both fMRI BOLD and EEG/MEG data in one model, so being able to
include rhythmic neural activity is important. Recently, several studies have
combined tract imaging, as well as fMRI and EEG/MEG in the same or several
recording sessions, so that individual data can be obtained in different modali-
ties (e.g. Sato et al., 2010; Tagliazucchi et al., 2012b; Schölvinck et al., 2010).
With these new possibilities, we also have to think about how to represent and
explain various data features in one model. This is in no sense trivial, and the
knowledge of how different models behave with respect to one or two param-
eters is an invaluable basis to move towards more comprehensive models. As
more data aspects are integrated and compared, though, we also need a new level
of standardization and reproducibility. For this necessary development, well-
standardized open source model platforms such as TVB (Sanz Leon et al., 2013)
open up new possibilities in large-scale brain simulation.

Computational studies are also increasingly concerned with brain network dy-
namics, in the sense of spatiotemporal fingerprints and interactions of functional
networks. In Chapter 5, we explored a new approach to decomposing RS ac-
tivity into networks, and the nature and assumptions underlying their extraction.
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Smith et al. (2012) showed differences in spatial and temporal ICA in fMRI data.
By comparing the commonly applied ICA approach with tensor decomposition
approaches (CP/PARAFAC) with different underlying assumptions about the na-
ture of the underlying data, we found similar components and variance explained
for some conditions, and showed that CP may be a valid an valuable approach.
Many caveats remain and many factors (such as the most appropriate preprocess-
ing steps and data simplifications) to lead to a more automatic network decompo-
sition method, are still to be determined. A more detailed scrutinization of these
methods on synthetic and brain data, however, promises to give us powerful tools
to reliably extract meaningful components.
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7. Conclusions

In this thesis, we have studied the connectivity patterns emerging in a biophysi-
cally realistic large-scale model of spontaneous dynamics of the human brain in
a state of wakeful rest. We built the model upon an empirically derived structural
connectome, and used MEG recordings to judge model performance. First, we
demonstrated the impact of the just strength of connectivity in order to maintain
variability and complexity. The model suggests that a dislocation from the op-
timal working point at the edge of criticality may explain the changes of brain
dynamics in aging. Then we expanded the model in order to study if the pres-
ence of oscillations, integrated into a spiking-neuron network, would cause the
consideration of propagation delays to be important for network configuration.
We were able to show that delays are important to consider in the presence of
oscillations of a similar timescale. We found that physiologically realistic delays
result in best concordance between the model and empirical data. Our results
suggest highest robusticity in the presence of delays, and the model is readily
adjustable to include different dynamic regimes such as slow bursty activity or
high rate firing. To better define and unmingle different functional components
in the data, we proposed the use of tensor factorization methods, and showed
their potential to extract meaningful subnetworks from RS brain recordings.

To conclude, we expect that the findings and explanations we have here presented
contribute to the advancement of the field of RS and brain dynamics research.
We anticipate that the herein discussed concepts and caveats carry inspiration
and impetus for further advancing our understanding of intrinsic dynamics un-
derlying RS brain activity.
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Abbreviations and Glossary

Abbreviations

• AAL: Automated Anatomical Labeling

• AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

• ACC: Anterior Cingulate Cortex

• ACh: Acetylcholine

• AHP: After-hyper-polarization

• CC: Corcondia

• CP or CANDECOMP: Canonical polyadic (Decomposition), see PARAFAC

• BA: Brodman Area

• BLP: Bandlimited Power

• BOLD: Blood Oxygen Level Dependent

• DAN: Dorsal Attention Network

• DPFC: Dorsolateral Prefrontal Cortex

• DMN: Default Mode Network

• DSI: Diffusion Spectrum Imaging

• DTI: Diffustion Tensor Imaging

• DWI: Diffusion Weighted Imaging

• EEG : Electroencephalography

• FC: Functional Connectivity

• fcMRI: Functional connectivity MRI
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• fMRI: Functional Mangnetic Resonance Imaging

• FPN: Frontoparietal Network

• GABA: γ-Aminobutyric acid

• IC: Independent Component

• ICA: Independent Component Analysis

• IPS: Intraparietal Sulcus

• LCMV: Linearly Constrained Minimum Variance

• LIF: Leaky-integrate-and-fire

• LPC: Lateral Parietal Cortex

• MEEG: MEG/EEG

• MEG: Magnetoencephalography

• MI: Mutual Information

• MNI: Montreal Neurological Institute

• MPFC: Medial Prefrontal Cortex

• MSE: Multiscale Entropy

• MT+: Medial Temporal Area - visual motion area

• NMDA: N-Methyl-D-aspartic acid

• NREM: Non-REM

• PARAFAC: Parallel Factor Analysis

• PCA: Principal Component Analysis

• PCC: Posterior Cingulate Cortex

• PET: Positron Emmition Tomography
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• PFC: Prefrontal Cortex

• PICA: Probabilistic ICA

• ROI/ROIs: Region of Interest

• REM: Rapid Eye Movement

• RS: Resting State

• rsfMRI: Resting State fMRI

• RSN/RSNs: Resting State Network

• SC: Structural Connectivity

• SFA: Spike-Frequency Adaptation

• SMN: Somatosensory Network

• SWS: Slow Wave Sleep

• TVB: The Virtual Brain

• VAN: Ventral Attention Network

• VN: Visual Network
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Glossary

• After-hyper-polarization (AHP): The hyperpolarized state of a neuron
after the occurence of an action potential where the membrane potential
falls below the resting potential, inhibiting further firing of the cell for its
duration. AHP is partly caused by Ca2+-dependent Kˆ+-channel opening
during the action potential, but other aspects are not well understood yet.
There are AHP on several time scales.

• Corcondia: A model appropriateness measure for PARAFAC, express-
ing the similarity between a decomposition allowing or not allowing for
interaction between the components.

• Criticality: (or self-organized criticality - SOC) refers to systems with a
critical point attractor at the edge of bifurcation, or phase transitioning of
the system. In critical systems, scale-free, power-law or at least heavy-
tailed complex dynamics arise.

• Default Mode Network (DMN): A network of brain regions whose ac-
tivity is more correlated to each other than to other regions during resting-
state brain activity, and which is deactivated during a range of tasks. Main
hubs are medial prefrontal cortex, posterior cingulate cortex, and pre-
cuneus.

• Dorsal Attention Network (DAN): Also reffered to as the TPN / Task
positive network, due to its implication in many visual and attention tasks.
It includes areas in inferior parietal cortex, (pre-)sensorimotor cortex, and
frontal eye fields.

• Electroencephalography (EEG): A technology to measure electric cur-
rents originating in the brain through electrodes attached to the human
scalp. EEG is closely related to MEG and Ecog (Scholarpedia: Electroen-
cephalography).

• Human Brain Project (HBP): A 10-year European Union flagship re-
search project established in 2013 which aims to build a detailed computer
model of the human brain and its dynamics (Project Homepage).

190

http://www.scholarpedia.org/article/Electroencephalography
http://www.scholarpedia.org/article/Electroencephalography
https://www.humanbrainproject.eu/


• Inverse problem: In neurophysiology, this describes the problem that
while we are interested in brain signals, in M/EEG we only have a limited
amount of remote sensor data available, which can be potentially caused
by many different patterns of internal brain source patterns so that no sin-
gle unique solution exists (Scholarpedia: Source localization).

• Magnetoencephalography (MEG): A technology to measure magnetic
field emitted by the electric firing of neurons. MEG is mainly sensitive to
the postsynaptic intracellular currents flowing across pyramidal neurons in
cortical sulci, due to the fact that MEG is only affected by the tangential
component and signal strength drops stronger with distance than for EEG,
but it is less affected by skull and tissue conductivities, complementing its
strengths and weaknesses with EEG. (Scholarpedia: Magnetoencephalog-
raphy)

• Mean field: The representation of a large number of units in a population,
here populations of neurons, by a single mean field equation, taking into
account the mean or mean and variance.

• M/EEG: MEG and/or EEG.

• Multiscale Connectivity: Multiscale brain connectivity refers to physical
and functional connection patterns between a set of brain units on multi-
ple levels of spatial extent (Springer Encyclopedia: Nakagawa & Deco,
2014).

• Multiscale Entropy: A measure of complexity of physiological data, e.g.
of the heartbeat.

• Multistability: Description for systems that have multiple stable configu-
rations, and may settle into (or, in the presence of noise, switch between)
different stable states depending on initial conditions or inputs.

• Multivariate Interaction Measure (MIM): phase-shifted interaction
measure introduced by (Ewald et al., 2012).

• Mutual Information: A mutual dependency measure between variables,
measured in bits (Scholarpedia: MI)
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• Maximal Correlation Window (MCW): An algorithm "which itera-
tively locates epochs in which the correlation between a seed region (e.g.,
LpIPS) and a subset of network nodes is high while, concurrently, the
correlation with a region outside of the network is minimal" (de Pasquale
et al., 2010).

• Parallel Factor Analysis (PARAFAC): A datadriven tensor decomposi-
tion method based on a generalization of matrix singular value decompo-
sition.

• Resting State Network / Resting State Networks (RSN, RSNs): Dis-
tinguishable networks of brain regions that are functionally linked during
spontaneous brain activity, such as the DMN or the DAN

• Source leakage : A term for the phenomenon that an electric or magnetic
signal originating in the brain travels, is picked up by various sensors at
the same time, and may be confoundedly attributed to several sources.
Related intimately to the inverse problem.

• Spike Frequency Adaptation (SFA): The phenomenon that some neu-
rons show a decrease of response to continuous stimulation after the initial
response, e.g. through AHP. (Scholarpedia: SFA)
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