357 research outputs found

    Engineering simulations for cancer systems biology

    Get PDF
    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions

    Finding the pathology of major depression through effects on gene interaction networks

    Get PDF
    The disease signature of major depressive disorder is distributed across multiple physical scales and investigative specialties, including genes, cells and brain regions. No single mechanism or pathway currently implicated in depression can reproduce its diverse clinical presentation, which compounds the difficulty in finding consistently disrupted molecular functions. We confront these key roadblocks to depression research - multi-scale and multi-factor pathology - by conducting parallel investigations at the levels of genes, neurons and brain regions, using transcriptome networks to identify collective patterns of dysfunction. Our findings highlight how the collusion of multi-system deficits can form a broad-based, yet variable pathology behind the depressed phenotype. For instance, in a variant of the classic lethality-centrality relationship, we show that in neuropsychiatric disorders including major depression, differentially expressed genes are pushed out to the periphery of gene networks. At the level of cellular function, we develop a molecular signature of depression based on cross-species analysis of human and mouse microarrays from depression-affected areas, and show that these genes form a tight module related to oligodendrocyte function and neuronal growth/structure. At the level of brain-region communication, we find a set of genes and hormones associated with the loss of feedback between the amygdala and anterior cingulate cortex, based on a novel assay of interregional expression synchronization termed "gene coordination". These results indicate that in the absence of a single pathology, depression may be created by dysynergistic effects among genes, cell-types and brain regions, in what we term the "floodgate" model of depression. Beyond our specific biological findings, these studies indicate that gene interaction networks are a coherent framework in which to understand the faint expression changes found in depression and complex neuropsychiatric disorders

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    A Microbe Associated with Sleep Revealed by a Novel Systems Genetic Analysis of the Microbiome in Collaborative Cross Mice.

    Get PDF
    The microbiome influences health and disease through complex networks of host genetics, genomics, microbes, and environment. Identifying the mechanisms of these interactions has remained challenging. Systems genetics in laboratory mice (Mus musculus) enables data-driven discovery of biological network components and mechanisms of host-microbial interactions underlying disease phenotypes. To examine the interplay among the whole host genome, transcriptome, and microbiome, we mapped QTL and correlated the abundance of cecal messenger RNA, luminal microflora, physiology, and behavior in a highly diverse Collaborative Cross breeding population. One such relationship, regulated by a variant on chromosome 7, was the association of Odoribacter (Bacteroidales) abundance and sleep phenotypes. In a test of this association in the BKS.Cg-Dock7m +/+ Leprdb/J mouse model of obesity and diabetes, known to have abnormal sleep and colonization by Odoribacter, treatment with antibiotics altered sleep in a genotype-dependent fashion. The many other relationships extracted from this study can be used to interrogate other diseases, microbes, and mechanisms

    Genes and Gene Networks Related to Age-associated Learning Impairments

    Get PDF
    The incidence of cognitive impairments, including age-associated spatial learning impairment (ASLI), has risen dramatically in past decades due to increasing human longevity. To better understand the genes and gene networks involved in ASLI, data from a number of past gene expression microarray studies in rats are integrated and used to perform a meta- and network analysis. Results from the data selection and preprocessing steps show that for effective downstream analysis to take place both batch effects and outlier samples must be properly removed. The meta-analysis undertaken in this research has identified significant differentially expressed genes across both age and ASLI in rats. Knowledge based gene network analysis shows that these genes affect many key functions and pathways in aged compared to young rats. The resulting changes might manifest as various neurodegenerative diseases/disorders or syndromic memory impairments at old age. Other changes might result in altered synaptic plasticity, thereby leading to normal, non-syndromic learning impairments such as ASLI. Next, I employ the weighted gene co-expression network analysis (WGCNA) on the datasets. I identify several reproducible network modules each highly significant with genes functioning in specific biological functional categories. It identifies a “learning and memory” specific module containing many potential key ASLI hub genes. Functions of these ASLI hub genes link a different set of mechanisms to learning and memory formation, which meta-analysis was unable to detect. This study generates some new hypotheses related to the new candidate genes and networks in ASLI, which could be investigated through future research

    AFRANCI : multi-layer architecture for cognitive agents

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Immune-Mediated Drug Induced Liver Injury: A Multidisciplinary Approach

    Get PDF
    This thesis presents an approach to expose relationships between immune mediated drug induced liver injury (IMDILI) and the three-dimensional structural features of toxic drug molecules and their metabolites. The series of analyses test the hypothesis that drugs which produce similar patterns of toxicity interact with targets within common toxicological pathways and that activation of the underlying mechanisms depends on structural similarity among toxic molecules. Spontaneous adverse drug reaction (ADR) reports were used to identify cases of IMDILI. Network map tools were used to compare the known and predicted protein interactions with each of the probe drugs to explore the interactions that are common between the drugs. The IMDILI probe set was then used to develop a pharmacophore model which became the starting point for identifying potential toxicity targets for IMDILI. Pharmacophore screening results demonstrated similarities between the probe IMDILI set of drugs and Toll-Like Receptor 7 (TLR7) agonists, suggesting TLR7 as a potential toxicity target. This thesis highlights the potential for multidisciplinary approaches in the study of complex diseases. Such approaches are particularly helpful for rare diseases where little knowledge is available, and may provide key insights into mechanisms of toxicity that cannot be gleaned from a single disciplinary study
    • …
    corecore