
University of Porto

Faculty of Engineering

Department of Electrical and Computer Engineering

Thesis presented for the fulfilment of the requirements necessary to complete

the degree of PhD in Electrical and Computer Engineering

AFRANCI: A Multi-Layer

Architecture for Cognitive Agents

by

Francisco Antonio Fernandes Reinaldo

Supervisor: Professor Rui Camacho

Co-supervisor: Professor Lúıs Paulo Reis

To my parents Alceb́ıades Reinaldo and Eḿılia Fernandes Reinaldo

Resumo

O desenvolvimento de agentes autónomos e inteligentes que são capazes de cumprir

tarefas e sobreviver em ambientes pouco favoráveis, dinâmicos e impreviśıveis, é

uma tarefa extremamente complexa. Inteligência, neste trabalho, é entendida

como a efectiva negociação de comportamentos entre as camadas internas do

agente, permitindo respostas correctas ao ambiente onde opera.

Esta tese propõe que a inspiração pela análise de arquitecturas baseadas em

comportamentos e cognição e o resultado da sua junção, seja a fonte de mecan-

ismos e soluções que permitam projectar e implementar novas arquiteturas de

agentes com elevado grau de autonomia.

Assim, esta tese apresenta um modelo de arquitectura h́ıbrida, que é composta

por modelos simbólicos e não-simbólicos, para modelizar os aspectos comporta-

mentais e inteligentes de um agente. Esta metodologia oferece uma arquitectura

heterogénea com diferentes camadas de abstracção. Sua estrutura multi-camadas

é interconectada. Cada camanda suporta diversos tipos de comportamento como

os estereotipados, reactivos, instintivos, deliberativos e de consciência. A camada

“consciência” está localizada no metańıvel cognitivo da arquitectura. Ela contém

uma maquinaria para desenvolver o papel de monitorar os estados internos e sen-

sores e as experiências adquiridas e então sugerir comportamentos inteligentes no

momento adequado. O conflito interno de comportamentos que são gerados pelas

camadas simples e complexas, comuns em arquitecturas de agentes, são resolvidos

pela própria heterogeneidade intŕınseca das camadas integradas e pela utilização

de seus vários módulos de controle, prioritizando o trabalho em simultâneo.

A arquitectura proposta oferece uma estrutura hierárquica expanśıvel e um

fluxo de informação bidireccional ı́ntegro que alimenta os diferentes ńıveis de in-

teligência para promover a correcta emergência de comportamentos pela tomada

de decisões autónomas. A estrutura hierárquica é o resultado de uma série de

classes de comportamentos e de caracteŕısticas observadas em outras arquitec-

turas. Em cada camada ou entre camadas, heterogéneos módulos de controle

colaboram entre si no processo de controle comportamental e cognitivo do agente,

v

deixando-o apto a agir em um dado ambiente, consoante suas crenças e intenções.

Assim, procura-se comprovar a hipótese de que os diferentes ńıveis hierárquicos

de inteligência possam fornecer interpretação de informação e novas acções que

guiem o agente para diferentes espaços de soluções pelos diferentes estados inter-

nos.

Para implementar esta estrutura multi-camada, no desenvolvimento de agentes

autónomos, construiu-se AFRANCI. AFRANCI é uma ferramenta que modeliza

e automatiza frameworks. Constrúıda nos fundamentos da PiramidNet, arquitec-

tura biologicamente inspirada, AFRANCI herda algoritmos da abordagem conex-

ionista (não-simbólica) e acrescenta outros algoritmos da abordagem simbólica.

A ferramenta AFRANCI permite que utilizadores comuns integrem os diferentes

algoritmos de Aprendizagem Computacional (Machine Learning) e projectem

um Agente Cognitivo robusto. O sistema produzido pelo utilizador através de

AFRANCI é expanśıvel e possibilita que outros algoritmos sejam adicionados sem

a necessidade de recompilar toda a estrutura já desenvolvida. A automatização

da construção dos agentes utiliza apenas três passos: a especificação da estrutura,

o treino dos módulos e a geração do código fonte final. Melhoras significativas

foram alcançadas com o desenvolvimento da estrutura de alguns algoritmos de

Aprendizagem Computacional através do uso de wrappers, contribuindo para o

processo de investigação e agilizando a tomada de decisão dos agentes de forma

correcta.

Abstract

The development of Autonomous and Intelligent agents, capable of accomplishing

goals and survive in complex, dynamic and unpredictable environments is a highly

complex task. In this context, intelligence, is regarded as an adaptive and a fast

behaviour that agents use to survive in the environments.

In this thesis we propose that the analysis and combination of computational

models involving both behaviour and cognition will lead to improved agents with

high degree of autonomy and utility. Following that proposal we developed a

hybrid methodology (symbolic and non-symbolic) to model and standardise the

agent’s behavioural and intelligent aspects. This methodology enables the de-

velopment of an architecture with different levels of abstraction. The multi-

layer structure is interconnected. Each layer implements several types of be-

haviours that include stereotyped, reactive, instinctive, deliberative and conscient

behaviours. The “conscient” layer it is located at the cognitive meta-level of the

architecture. This layer is powerful enough to be able to monitor the inner states

and sensors and acquired past experiences and then suggest intelligent behaviours

at the adequate circumstances. Internal conflict behaviours generated in the lower

layers, so common in agents architectures, are resolved by control modules work-

ing simultaneously.

The abstract architecture is implemented in an hierarchic and expandable

structure, and a bidirectional information flow integrates and feeds the differ-

ent intelligence levels in order to promote the right behaviour emerging by au-

tonomous decision making. The proposed hierarchic structure is the result of a

series of behaviour classes and characteristics observed in other architectures. In

each layer or between them, heterogeneous control modules implement Machine

Learning algorithms that interchange messages to cooperate and control the agent

behaviour and conscience, making it capable to act in an environment in accor-

dance with its believes, desires and intentions. Thus, the thesis corroborates the

hypothesis that different hierarchic intelligent levels offer the interpretation of

vii

information and trigger new behavioural actions that guide the agent to different

space of solutions by different inner states.

To be able to easily implement the proposed multi-layer agent structure we

developed the AFRANCI tool. AFRANCI is a tool capable of modelling and

automate frameworks. AFRANCI is based on a previously proposed approach,

PiramidNet, uses connectionist algorithms and integrates them with the sym-

bolic algorithms. This tool allows any common user to integrate different Ma-

chine Learning algorithms and develop a robust Cognitive Agent. The system

produced by the user is extensible and allows the addition of other algorithms

without recompiling the whole of the structure already developed. The automa-

tion of the agent construction process is based on three steps: the specification of

the structure; the modules training and finally; the code generation. Significant

improvements were found with the development of wrappers that automatically

tune the Machine Learning algorithms.

Résumé

La mise en place d’agents autonomes et intelligents capables d’accomplir des

tâches et de survivre au sein d’ environnements plutôt hostiles, dynamiques et

imprévisibles, est extrêmement complexe. Dans ce cas spécifique, l’intelligence

est envisagée comme négociation effective du comportement entre les couches in-

ternes de l’agent, permettant ainsi d’avoir des réponses correctes du milieu dans

lequel elle opère. La proposition de cette thèse est de soutenir que l’inspiration

émanant de l’analyse d’architectures elles-mêmes fondées sur les comportements

et la cognition bien comme le résultat de leur jonction, soit source de mécan-

ismes et solutions capable de projeter et mettre en oeuvre de nouvelles archi-

tectures d’agents à haut degré d’autonomie. Cette thèse présente ainsi un mod-

èle d’architecture hybride composée de modèles symboliques et non symboliques,

ayant pour but de moderniser les aspects comportamentaux et intelligents de

l’agent. Cette méthodologie offre une architecture hétérogène munie de différentes

couches d’abstraction. Sa structure multi-couches est interconnectée. Chaque

couche donne support a des comportements, qúıls soient stéréotypés, réactifs,

instinctifs, délibératifs ou de conscience. La couche “conscience” est située au

méta-niveau cognitif de l’architecture. Dotée de toute une machinerie qui con-

trôle et les états internes et les capteurs et les expériences acquises, elle suggère

au moment opportun, des comportements intelligents. Le conflit interne des com-

portements produits par les couches simples et complexes et qui sont communs

dans les architectures d’agents, est réglé par la propre hétérogénéite intrinsèque

des couches intégrées ainsi que par l’utilisation de la plurarilité des modules de

contrôle. Le travail (en) simultané est mis en exergue . L’architecture proposée

offre une structure hiérarchique expansible et un flux d’information bidirection-

nel complet qui alimente les différents niveaux d’intelligence. Par ce biais la

prise de décisions autonomes déclenchera l’urgence correcte de comportements.

La structure hiérarchique , est le résultat d’une série de classes de comporte-

ments et de caractéristiques déjà observées à l’intérieur d’autres architectures.

Dans chaque couche ou entre couches, des modules de contrôle hétérogènes colla-

borent entre eux au processus de contrôle comportemental et cognitif de l’agent

ix

alors apte à agir dans un environnement donné, au gré de ses croyances et in-

tentions. Tentative qui prouverait l’hypothèse que les différents niveaux hiérar-

chiques d’intelligence pourraient fournir une interprétation de l’information ainsi

que de nouvelles actions guidant l’agent vers différents espaces de solutions au

moyen de différents états internes. AFRANCI a vu le jour afin d’ implanter cette

structure multi-couche dans le développement d’agents autonomes. AFRANCI

est un outil qui modèlise et automatise des frameworks. Coņcu sur la base

du piramidnet, AFRANCI hérite des algorithmes de l’approche connexioniste

(non symbolique) en addition à d’ autres algorithmes de l’approche symbolique.

AFRANCI permet aux utilisateurs communs d’intégrer les différents algorithmes

d’apprentissage de Machine et de projeter un système robuste d’apprentissage

multistratégique de l’ordinateur. Avec AFRANCI, l’architecture produite par

l’usager peut être expansible et permet l’ajout d’autres algorithmes sans avoir a

recompiler toute la structure déjà existante. Seulement trois etapes sont néces-

saires a l’automatisation de la construction des agents: la spécificité de la struc-

ture, l’entrâınement des modules et l’engendrement du code source final. Dû a

l’utilisation de wrappers, des gains significatifs dans le développement de la struc-

ture de quelques algorithmes d’apprentissage de Machine ont été atteints, ce qui

a contribué au processus d’investigation et a pu accélérer de fa̧con correcte la

prise de décision des agents.

Contents

Contents i

List of Figures v

List of Tables viii

1 Introduction 1

1.1 Problem Description . 2

1.2 Symbolic and non-Symbolic Features 3

1.3 Motivations . 5

1.4 Research Objectives . 6

1.5 Outline of the Thesis . 6

2 Machine Learning algorithms 9

2.1 Introduction . 9

2.2 Artificial Neural Networks . 10

2.3 Rule Induction Algorithms . 15

2.4 Decision Trees . 18

2.5 Genetic Algorithms . 22

2.6 A Multi-Strategy Learning example 31

2.6.1 Part One . 31

2.6.2 Part Two . 35

2.6.3 Part Three . 38

2.7 Conclusions . 41

3 Architectures for Autonomous Agents 43

3.1 Introduction . 43

3.2 Architectural Styles and their Control Levels 45

3.2.1 Architectural Styles . 46

3.2.1.1 Data-flow Architectures 46

i

ii CONTENTS

3.2.1.2 Call-and-Return Architectures 48

3.2.1.3 Independent Component Architectures 50

3.2.1.4 Data-Centred Architectures 52

3.2.1.5 Virtual Machine Architectures 52

3.2.2 Levels of Control . 53

3.2.2.1 Stereotyped Level 53

3.2.2.2 Reactive Level . 54

3.2.2.3 Instinctive Level 55

3.2.2.4 Deliberative Level 55

3.2.2.5 Hybrid Approaches 56

3.2.2.6 Organisation and Flow of Control 56

3.3 Pure Artificial Intelligence Architectures 57

3.3.1 The SOAR Architecture . 57

3.3.1.1 Description of the Approach 58

3.3.1.2 SOAR applications 62

3.3.1.3 Conclusions . 63

3.4 Cognitive-based Artificial Intelligence Architectures 64

3.4.1 Subsumption Architecture 64

3.4.1.1 Description of the Architecture 64

3.4.1.2 Deployment . 67

3.4.1.3 Conclusions . 67

3.4.2 PyramidNet Architecture 69

3.4.2.1 Description of the Architecture 70

3.4.2.2 Experiments . 71

3.4.2.3 Conclusions . 73

3.4.3 Minsky’s Approach and “The Society of Mind” 74

3.4.3.1 Description of the Approach 75

3.4.3.2 Problem Solving 77

3.4.3.3 Communication 77

3.4.3.4 Experiment . 78

3.4.3.5 Conclusions . 78

3.5 Multi-Agent Systems . 79

3.6 Meta-Architecture . 80

3.7 Conclusions . 81

4 AFRANCI for Multi-Strategy Learning systems 85

4.1 Introduction . 85

4.2 Background . 86

4.3 AFRANCI Features . 87

4.3.1 AFRANCI Support for Reusability 88

4.3.2 AFRANCI Workspaces . 88

4.3.3 The integrated Machine Learning Libraries 89

iii

4.3.4 The AFRANCI Internal Structure 90

4.4 Designing a System’s Structure in a Nutshell 92

4.4.1 The Design and Set Up stage 92

4.4.2 The Train and Test stage 93

4.4.2.1 Wrappers . 95

4.4.3 The Code Generation stage 95

4.4.4 Experiment: “Building a Rescue Decision System” 96

4.4.4.1 Design and Set Up 96

4.4.4.2 The Train and Test Module 98

4.4.4.3 Code Generation 99

4.5 Conclusions . 99

5 AFRANCI for Agents 103

5.1 Introduction . 103

5.1.1 Motivation . 105

5.2 Towards an Architecture . 106

5.2.1 Learning in AFRANCI . 107

5.3 Levels and Layers . 107

5.3.1 The Flow of Control Information 107

5.3.2 The Strategic Levels . 108

5.3.3 The Perceptual-Motor Subsystem 110

5.3.4 The Stereotyped and Reactive Layers 111

5.3.5 The Instinctive Layer . 111

5.3.6 The Deliberative Layer . 112

5.3.7 The Meta-management Layer 113

5.3.8 Short-term and Long-Term Memories 113

5.3.9 Impasse . 114

5.4 Advantages of AFRANCI . 115

6 Architecture Implementation and Experiments 117

6.1 Introduction . 117

6.1.1 CyberMouse Environment 118

6.1.1.1 Agent Specifications 118

6.1.2 Experimental Design . 119

6.1.2.1 Levels and Layers of the System 120

6.1.2.2 The Priority Scheme 123

6.1.3 Features of the Agent Architecture 123

6.1.3.1 Escaping of Inside Corner Traps 124

6.1.3.2 Detecting and Avoiding Obstacles 127

6.1.3.3 Circumventing Outside Corners 129

6.1.3.4 Searching for Cheese 132

6.1.3.5 Travelling Aimlessly in the Labyrinth 135

iv CONTENTS

6.1.3.6 Central Decision Making Unit 135

6.1.3.7 Conscience . 136

6.1.4 Experiments . 140

6.1.5 Experimental Results . 143

6.2 Conclusions . 147

7 Conclusions and Future Work 151

7.1 Summary of this Thesis . 151

7.2 Summary of this Thesis . 152

7.3 Research Contributions . 153

7.4 Limitations . 154

7.5 Future Work . 155

Bibliography 157

List of Figures

2.1 Functional representation of an artificial neurone. 11

2.2 Identify function. 12

2.3 Binary Step function. 12

2.4 Binary Sigmoid function. 12

2.5 Bipolar Sigmoid function. 12

2.6 A model of MLP architecture. 13

2.7 Arbitrary decision regions modelled by FF. 13

2.8 The data set (left-hand side) and its Decision Tree (right-hand side). 20

2.9 A simple artificial chromosome. 23

2.10 The GA computational search method. 23

2.11 The selection method Roulette Wheel. 24

2.12 Recombination with a single point crossover. 25

2.13 Mutation operator changing the allele value. 26

2.14 The chromosome of ANN structure encoded in the first process. 27

2.15 The Rescue decision system. 32

2.16 The module Civilian (FF). 33

2.17 The module Fireman (FF). 33

2.18 The Rule Inducer module Ambulance (CN2). 36

2.19 The ordered rule list generated by CN2. 37

2.20 The Rescue (J48) Decision Tree module. 39

2.21 Decision Tree generated by WEKA J48 learner. 39

3.1 The batch sequential style. 47

3.2 The pipe-and-filter style. 47

3.3 The main-program-and-subroutine style. 48

3.4 The object-oriented style. 49

3.5 The layered style. Each layer represents an abstraction level. 50

3.6 The event-based style. 51

3.7 The communicating Processes model. 51

v

vi LIST OF FIGURES

3.8 The data-centred style. 52

3.9 The virtual machine style. 53

3.10 Structure of memories in SOAR as proposed in [102]. 60

3.11 Traditional sequence of sense-model-plan-act as defined by [28]. 65

3.12 An approach based on task-achieving behaviours as defined by [28]. . 65

3.13 Brooks’s Subsumption Architecture as defined by [28]. 66

3.14 The Hormone Activation System. 66

3.15 Allen Architecture. Reproduced of [28]. 68

3.16 PyramidNet architecture as specified in [185]. 70

3.17 A global view (sketch) of Behaviour Task Plan. 72

3.18 The diagram of Behaviour Task Plan - designed in PyramidNet tool. . 72

3.19 The “Follow Wall” and “Search Recharging Point” diagram. 73

3.20 A society of interconnected agents according to Minsky [155]. 75

3.21 A Meta-architecture model of an architecture is itself an architecture. 81

4.1 The splash screen of AFRANCI tool. 87

4.2 The environment used to plan the architecture. 88

4.3 AFRANCI Workspaces. 89

4.4 The general AFRANCI structure. 91

4.5 An example of an AFRANCI component and its parts. 92

4.6 The Wizard window interface. 94

4.7 The architecture of rescue decision system (extended version). 97

4.8 CN2 training phase (module Ambulance). 98

4.9 J48 training phase (module Building). 99

4.10 ANN training phase (module Civilian). 100

4.11 The Rescue Decision System entirely trained. 100

4.12 The AFRANCI ASCII editor. 101

5.1 A global view of the AFRANCI (main components). 104

5.2 The prototype of AFRANCI. 106

5.3 A model of learning cycle development. 108

5.4 The Flow of Control Information. 109

5.5 AFRANCI levels and layers. 110

6.1 The Agent Control System. 120

6.2 A stylised network of interconnected modules. 121

6.3 The Agent System diagram. 122

6.4 Escaping of inside corners. 124

6.5 Circuit diagram of Inside Corner Detector Function Module (TQ). . . 125

6.6 Circuit diagram of Inside Corner Detector Control Module (AC). . . . 126

6.7 Circuit diagram of Inside Corner Detector Traction Module (ET). . . 126

6.8 Avoiding collisions. 127

vii

6.9 Circuit diagram of Obstacle Detector Function Module (OBS). 128

6.10 Circuit diagram of Obstacle Avoidance Control Module (BC). 129

6.11 Circuit diagram of Obstacle Avoidance Traction Module (FT). 129

6.12 Circumventing the wall. 130

6.13 Circuit diagram of Outside Corner Detector Function Module (DFP). 131

6.14 Circuit diagram of Circumvent Outside Corner Control Module (CC). 132

6.15 Circuit diagram of Circumvent Outside Corner Traction Module (GT). 133

6.16 Reaching the cheese. 133

6.17 Circuit diagram of Search Cheese Control Module (DC). 134

6.18 Circuit diagram of Search Cheese Traction Module (IT). 135

6.19 Circuit diagram of Best Side Traction Module (Tr). 136

6.20 A simple Wander behaviour. 137

6.21 Circuit diagram of Wander Traction Module (Vt). 137

6.22 Circuit diagram of Central Decision Module (SF). 138

6.23 Circuit diagram of Conscience Module (Conscience). 139

6.24 The first experiment diagram. 141

6.25 The second experiment diagram. 142

6.26 The third experiment diagram. 143

6.27 The results of Analysis of Variance (ANOVA). 147

6.28 The results of Tukey Test. 147

List of Tables

2.1 Data sets used in the experiments. 28

2.2 Comparing hand-tuned ANN with ANN tuned by GA. 29

6.1 Simulator Parameters. 140

6.2 Table results of Reactive Module experiment. 145

6.3 Table results of ANN without Conscience Module experiment. 145

6.4 Table results of ANN with Conscience Module experiment. 146

viii

Acknowledgements

A great deal of effort goes into writing a thesis. I first of all wish to thank God,

who makes this opportunity real, unique and possible. After that, my primary

debt, of course, is to Prof. Eugénio Oliveira at LIACC for his support during

the time I was “living” in his research centre at FEUP, and mainly to Prof. Lúıs

Paulo Reis and Prof. Rui Camacho that opened their arms for receiving a foreign

student came from South America.

I owe so much to many people. I want to express my gratitude to Prof.

Lúıs Paulo Reis and Prof. Rui Camacho for their support and advising during

the time I was writing the thesis. Both advisors and their numerous comments,

suggestions, corrections and hints have substantially improved the quality of the

text. I am greatly in debit to Rui Camacho for his careful reading of all chapters

of the manuscript; through his constant encouragement also kept me on the right

track. I am grateful to Andreia Malucelli, Ana Paula Gonçalves and Ricardo

Moraes for advice, encouragement and comments. There is insufficient space

here to list all those who have made significant contributions; I thank them all.

The impetuous of this thesis came from the relationship among you all. Among

them I specially wish to acknowledge Leornardo and his wife (both in memoriam)

for their patience and advice. Thanks to be a great guy! I want to express my

gratitude to Fatinha, Ildo and wife, José and wife for their affectuous and good

humour.

I would like to thank my families and friends for the support given during the

preparation of this thesis, specially for my lovely mom and daddy for all support

over these years. I would also like to take this opportunity to thank Adilson de

Sousa, Antonio Machado Filho, Ana Mariante, Ângela Reis, Demétrio Renó, Eva

Machnikova, Francisco Vasques, Frederic Hustinx, Jamilson, Maria Tereza, Nuno

Lau, Norton Oliveira, Kátia Ramos, Ricardo Oliveira, Tatiane Rocha, and many

other friends for their friendship and patience. Hearty thanks for similar reasons

go to Cartoninha1 and family, Brasup, Bezerra of Menezes’s Centre, and SASUP.

ix

x LIST OF TABLES

This acknowledge is for everyone direct or indirectly involved in this thesis. My

apologies if I missed someone. Thank you all.

Last, but not least, I want to express my gratitude to the FCT and Unileste-

MG for supporting my work and the LIACC and LIC for providing a most pleas-

ant environment in which to complete my work on this thesis. I gratefully recog-

nise all of my colleagues at LIAC and LIC who helped me anytime I need.

Chapter 1

Introduction

One of the main hallmarks of Artificial Intelligence (AI) is the heterogeneous

abilities of an agent to act independently in the environment, such as to simulate

perceptual and motor processes, and cognitive faculties. According to this idea,

AI emerged from the experimental approach of a sequence of behaviours - scripted

behaviours [214]. Whether the scripted behaviour produces a known answer to

the situation, there is no learning by the agent in that moment, but an automatic

thinking.

The first scientific stretches of thinking machines theory begun in 1940 with

a progressive movement labelled Cybernetics [246]. The group of cyberneticists

believed that the whole psychologic activity could be translated into mathematic

models. The mathematic models would be used to simulate the brain functions

by electric circuits in computational entities.

After cybernetic, AI notion emerged like a symbolic computational model,

and mind was defined as a chain of mental representations made of symbols.

The symbolic model uses symbols in an abstract form to represent knowledge

at a deliberative level. Since then, computational entities can simulate natural

processes of human intelligence. Knowledge is commonly acquired by relations

between sensations of world and inner rules. Consequently, the act of knowing,

refers to the emergent development of knowledge by information processing of

“mental” functions such as inference, decision-making, planning and learning -

common properties of an abstract mind on symbolic and sub-symbolic layers of

a modular and hierarchic architecture.

In the symbolic model, the inner construction of world is based on represen-

tations of situations lived or repetitions of analogue situations. The representa-

tions are the result of acquired symbols by the sensory systems in contact with the

1

2 CHAPTER 1. INTRODUCTION

world. The construction of every representation is determined by cognitive knowl-

edge. Cognitive knowledge evidences new ways to act based on inner interference

or external noises.

Conversely to the symbolic model, the sub-symbolic model, also called connec-

tionist or“the new robotic approach”, does not use knowledge like representations.

In this new approach, the notion of mind is not refereed as result of algorithms

process, such as logic inferences. The main idea is not to set specific symbols,

but deal with a global system state where complex interactions patterns emerge

from it, without having a specific component storing it.

On the one hand, the classic approach is centred in the deliberative level to

make decisions, and plans in a specific top-down strategy. On the other hand,

the new robotic approach is looking for simple behaviours that do not require

previous knowledge representations to achieve complex outcomes, like reacting in

a typical bottom-up strategy.

To outline a reliable agent mind that produces fast responses, we believe to

combine heterogeneous Machine Learning algorithms of two different cognitive

lines in a single architecture. Thus, a hybrid layered architecture is modelled

from combination of the best characteristics of some heterogeneous classic archi-

tectures.

1.1 Problem Description

The human beings are constantly in contact with the environment that surrounds

them. They have skills to perceive the world, interpret symbols by analogies, react

when necessary, learn the meaning of things by inclusion or exclusion principles,

and interact back with the world. These innate human beings characteristics,

encoded in the genes and biologically inherited from parents, have augmented

the innate knowledge, and preserved the species up to now.

Looking at the Nature, we can see a diversity of other species that developed

different innate abilities (skills) of survival and intelligence along the centuries.

Typically, the skills are responsible to recognise information, use and manipulate

them, judge them as adequate in face of a situation, formulate them again or

tune their “thought” appropriately.

Species that use embedding knowledge to interact with the environment have

several advantages. First, the access to the accurate and restructured knowledge,

and further retrieval happens instantaneously (reflexivity, reactivity). Second,

no current learning is necessary; consequently only interpretation of signals in

real-time is need. Embedded knowledge means no memorisation of the world,

which avoids storing an outdated or misleading knowledge of the environment in

1.2. SYMBOLIC AND NON-SYMBOLIC FEATURES 3

a long-term memory. Third, the agent behaviour reflects in real-time the state

of the world. Fourth, it requires neither reasoning nor training. This bottom-up

approach is possible only in inferior levels. As Brooks observed, “The world is

its own best model.” [31]. On the other hand, species that relying on knowledge

in the world have benefits in many ways. First, they use their cognitive pro-

cess to monitor complex and dynamic conditions and affect the environment in

a goal-directed way. Second, the cognitive process allows the opportunity of an

organism to demonstrate emergent behaviour in face of some situation by apply-

ing knowledge (proactive decisions) for a specific purpose (for instance, develop a

plan) if appropriated. This top-down approach is only possible in superior levels.

The possibility of simulating an intelligent agent mind made of patterns rather

than particles - the common structure of an intelligent system (like a system of

functions and controls) - was the main point that motivated us to develop this

thesis. On this basis, we drive our research to combine autonomous decisions

and pre-defined actions (skills) in an unique hybrid and robust agent architec-

ture. Therefore, the agent can adapt its behaviour appropriately by external and

internal stimuli, in this sense, our agent is said to behave “intelligently”.

1.2 Symbolic and non-Symbolic Features

In symbolic (that is, rule-based) approach, symbols are used in an abstract level

to extract implicit information from simple situations, represent models of en-

vironments, and trigger a chain of production rules for reaching a goal. If the

goal was not reached, a new strategy will be obtained again by developing plans

- several cycles of inner combinations of actions - until find the most promising

answer. A symbolic goal-oriented behaviour uses long-term changes to reason

about what actions to do next. The Symbolic systems store long-term changes

in the form of production rules, commonly referred as universal subgoaling that

are arranged in a single central unit, to simulate the human cognition. Thus, it is

presumable that the agent behaviour system must be motivated by goal-oriented

states and, consequently, learning occurs in the process.

Unfortunately, the symbolic approach fails in some aspects, such as: a) the

classic symbolic approach has difficulties in dealing with noise and failure; b) it

requires either representing some goals implicitly or forcing unrelated goals into

a single hierarchy; c) it uses world representation and knowledge previously ob-

tained to trigger an effective action; d) the representation of an object can scale-up

as the size of the knowledge base increases; e) the development of plans represent

a combinatory explosion of paths to be followed, and in the same time the problem

grows in complexity; f) it is not useful the idea of frozen a dynamic environment

in memory in order to find the best answer. Once the logic mechanisms do not

4 CHAPTER 1. INTRODUCTION

prevent invariant changes, so the system works with outdated values; g) it is very

difficult to implement symbolic rationalisation (cognition) that allows agents to

perform complex analysis of sensorial data quickly and generalised; h) update

of long-term memories; i) the use of a single goal hierarchy affects the symbolic

learning because produces over generalisation of chunks, and makes them expen-

sive chunks; j) some catastrophic collapses can occur in long simulations, where

a large set of good rules are lost; k) symbolic models are limited to maintain long

simulations updated; l) these lost rules are acquired again, but the price of a huge

instability of the hierarchy defaults; m) training is a learning way that occurs via

division of production rules; n) the size of long-term memory in Symbolic system

needs to be extended; o) it depends entirely on the world state to obtain the next

“decision”, and sometimes the current world state is not sufficient to provide the

necessary “decision” about what to do next.

In this sense, it is perceived that a non-Symbolic approach, if rightly com-

bined with a Symbolic approach, like simpler pieces of entities working together

in different hierarchic levels, they can obtain a robust decision system. Thus, the

following features of a non-Symbolic system comes to complete with or substitute

some Symbolic systems characteristics. For instance, in non-Symbolic, the min-

imisation of the scalability problem happens by the use of biologic plausibility;

conversely, automatic learning and imprecise general answers are a real trouble

when logic is required, but a Symbolic system is able to solve it. Other non-

Symbolic features are: a) there is no shared global memory; b) it is sufficiently

robust in the presence of noise; c) its knowledge is stored in the form synaptic

weights; d) the absence of an inner classic symbolic environment model gener-

ates low level behaviours, such as the reactive one; e) it deals with short-term

changes; f) it acts freely in accordance with stimulus-response from changes in

the environment; g) it reaches rationality from the result of interaction between

reactivity and environment; h) it is robust in unpredictable environmental situ-

ations; i) there is no symbolic rationalisation (cognition) that allows agents to

perform complex analysis of sensorial data; j) the process occurs in parallel, and

actions can be performed without having to wait for such symbolic complexity;

k) the association between raw data and action is pre-formed in the system, such

as intrinsic rules; l) reasoning is usually represented as the adjustment of weights

on the network’s nodes; such models of reasoning are sometimes described as non-

symbolic; m) training is a learning way that occurs via simple adjusts of weights

(plastic knowledge).

Therefore, this work uses both the symbolic and the connectionist paradigms

to develop AFRANCI architecture. The idea of joining both research areas ap-

peared in McCulloch’s work, which had a strong biologic inspiration and was

made in conformity with Pitts’s work using mathematical concepts. In the same

direction, in order to construct hybrid systems, we combine the characteristics

1.3. MOTIVATIONS 5

of adaptability, robustness and uniformity that are offered by neural networks

with representation, inference and universality, native characteristics of symbolic

Artificial Intelligence. Thus, we analyse (a) several ML algorithms that makes

relation with the proposed skills, (b) different architectural patterns in order to

know what are the most robust and flexible at the same time, and (c) classic

agent architectures with the purpose of collecting the most usable skills to our

architecture.

1.3 Motivations

Our motivation is devoted on the research and development of behaviours in

agents such as they origins, how the emerge and how they inner can command

agent parts in order to be autonomous in unknown and unpredictable environ-

ments. Additionally, our motivation is to offer flexibility in the development

of agents “soul”. As the general architecture is concerned, we may customise a

Cognitive Architecture and train it to solve a particular problem, such as the

RoboCup Rescue Domain, CyberRat Domain or standalone experiments.

Other main motivations of this work are as follow:

• Development of an agent architecture that will be used as pattern for de-

signing agents;

• Contribution in the improvement of straightforward agent learning tech-

niques that are based on similarity of behavioural human being architec-

ture;

• Providing opportunities for students to perform significant test bed in class-

room through which they can learn many of the train techniques of multi-

agent system development;

• Comprising the following domains: social, technical and cognitive. Social

environment is significant because it focuses on human search and rescue

mission planning. Technical research is important because it solves prob-

lems of strategies and tactics for a fast and optimised mission. Cognitive

science is considered because it studies models of information and represen-

tation, capacity of human memory and biologic behaviour to be applied in

an agent.

6 CHAPTER 1. INTRODUCTION

1.4 Research Objectives

The main goal of this thesis is to develop and architecture for autonomous agent

with cognitive insights, and to research implementation issues associated with its

development. Thus, this thesis has the following objectives:

• Investigate and identify various relevant agent issues through the theoret-

ical studies about architecture and meta-architecture styles, and symbolic

and connectionist approaches. These include investigate how many capabil-

ities should the agent have, understand what control processes are capable

of such activity, comprehend whether the arrangement of control modules

and data flow interferes on manifestation of intelligence, identify which cog-

nitive strategies would be used to produce reasoning in agent, and discuss

motivations for combining the most promising features of each style by

using heterogeneous Machine Learning algorithms of both heterogeneous

approaches in a robust framework;

• Develop an agent architecture that hosts heterogeneous architectures of

Symbolic and non-Symbolic approaches in different organisational levels.

The proposed architecture must synchronise the communication among lev-

els for working together in order to reach the agent goals autonomously.

We present a sample framework that directly supports reasoning, methods

of prevision and abstraction obtained from many well-known architectures

and representation from sensors to actuators;

• Develop AFRANCI Tool, a tool designed for easy agent architecture imple-

mentation. The tool uses Machine Learning algorithms for automatisation

of tasks on the development of behaviour - cognition modules composed by

symbolic-connectionist approaches in the framework;

• Implement a computational agent with bidirectional route of data with

lower layer sending sensory inputs to the upper layer in order to solve a

problem by specialised architecture slices; consequently, the upper layer

sending data back to the lower layer to perform actions by its actuators;

• Evaluate the performance of agent architecture, cross-comparing the results

along the simulations.

1.5 Outline of the Thesis

The individual chapters are briefly described in the next paragraphs and further

elucidate the specific goals of the research.

1.5. OUTLINE OF THE THESIS 7

Chapter 1 outlines the thesis and presents a general introduction to the prob-

lem area by establishing the research problem, the research aims, and contribu-

tions.

Chapter 2 presents the state-of-the-art and the popular foundations of the

term learning, followed by the analysis of the most usable Machine Learning (ML)

algorithms, such as Decision Trees, Rule Induction, Artificial Neural Networks,

and Genetic Algorithms. This chapter molds the initial ML specification for our

agent architecture. We also take the first steps towards elucidating the reflective,

reactive, deliberative and cognitive activities to the control modules by describing

their functional attributes, and proposing a fourth-layered model that will explore

the structural and dimensional attributes of the mechanisms.

Chapter 3 shows the state-of-the-art of typical architectural approaches used

to assemble computational entities. We start with a brief overview of related

work on such architectural approaches [83, 219, 33, 17], and identify the most

useful architecture features to build our agent architecture. Additionally, the

chapter provides a brief overview of existing deliberative and behaviour-based

agent architectures [102, 28, 204, 155] followed by their implementations. We also

clarify a set of terms and concepts to lead the reader capable of understanding

of skills that can be used towards build our intelligent agent entity. We then

highlight the most interesting skills to meet the basic requirements of intelligent

autonomy for agents.

Chapter 4 describes the AFRANCI tool as an intuitive and visual resource

to develop Multi-Strategy Learning systems for autonomous agents. AFRANCI

tool provides a set of heterogeneous ML induced modules and resources to train,

and test them.

Chapter 5 presents the design of the cognitively-inspired agent architecture

connecting hybrid states - integrating the different research strands explored from

chapters 1 to 4. We also describe how the different concern-processing compe-

tence levels of our four-layered architecture can act, and we identify the different

processes active in the emergence of decision states.

Chapter 6 reports the implementation of our agent design, and an analysis of

similar designs in the design-space. We also present an analysis and evaluation

of our design, and address some of the architectural requirements needing it.

Chapter 7 summarises the contributions of this research to the field of under-

standing concern-processing in intelligent and autonomous agents, and points to

new directions in which the research can be taken in the future.

Chapter 2

Machine Learning algorithms

Machine Learning algorithms comprises a set of techniques for acquisition and

integration of new knowledge by study or training with intention to achieve a

particular goal. This capacity of learning from observation focuses on continuous

self-improvement. Using Machine Learning, models can predict how a system be-

haves or “think” under certain circumstances, such as to survive and respond in

the world. In this chapter, we focus on the techniques that are directly relevant

for the thesis work. The Machine Learning algorithms reviewed in this chapter

are Artificial Neural Networks, Rule Induction, Decision Trees, and Genetic Al-

gorithms. These algorithms will be used to fill in the modules at each level of the

agent architecture as described in the following chapters.

2.1 Introduction

Machine Learning algorithms (ML) are computational tools capable of optimising

the performance criterion of a model using example data or past experience, and

a desired output or action [5].

Inductive learners are left to discover - or induce - rules from their experience,

that is, a general rule is derived from a specific case and then applied in all

cases. So, Inductive learning takes examples and generalises rather than starting

with existing knowledge. Actually, there is a contrast between Deductive and

Inductive learning methods. While induction follows from particular to general,

deduction follows from general to specific instances. However, there is a scope of

error in the inductive method, but supervised learning techniques address that

problem as we describe next.

9

10 CHAPTER 2. MACHINE LEARNING ALGORITHMS

Supervised Learning (SL) is a subset of Machine Learning techniques that

monitors or maps the off-line mode of both inputs and outputs. In SL, an in-

structor “supervises” the training and test cycles of the algorithm. The feedback

can be closer or not from the expected result. Commonly, SL deals with classi-

fication and regression problems. Learning by classification uses discrete values

that respond to instance cases of the model, that is, assign examples to pre-

defined classes. On the other hand, learning by regression the goal is to predict

a numerical value.

The SL algorithms we choose to construct our agent architecture are Artifi-

cial Neural Networks, Rule Induction, Decisions Trees, and Genetic Algorithm.

These SL algorithms offer the most important features for an agent sense the

environment and deliberate actions to the environment. The features of ML al-

gorithms are: a) estimate fundamental rules successfully; b) maximise correct

data from classification and regression; c) derive correct choices from observation

data; d) detect patterns in a data set, and produce decision rules made easy

for humans beings - except for Artificial Neural Networks; e) find a solution by

recursive division of problem in subproblems; f) take advantage of incremental

training already completed by encoding all past training examples as negative

examples for a hypothetical learning task.

2.2 Artificial Neural Networks

In the recent past, the metaphor of mind, prominent since the 1960’s, has been

reset by the brain metaphor [121] in which learning and cognition take place

via simplified models of the connectionist approach (interconnected network of

neurones). So, we define mind as a set of abstract computations. The syntactic

proprieties of symbols are controllable and a programmer establishes the seman-

tic. In the same line, cognition is represented by an act of knowing or knowledge,

which models describe or explain certain behaviours emerged in terms of informa-

tion flow or functions of brain. Cognition also represents a process or method fired

by an inner state or situation of the environment, so understood by perceptive

brain mechanisms. In this sense, metacognition is an abstract cognitive method

that creates cognition, and information-processing systems (computational enti-

ties) can simulate cognition.

The connectionist approach attempts to understand how interconnected net-

work of neurone-like-units work, can learn and remember facts. The approach

stresses the capability of learning, recognising patterns and discovering represen-

tations. Representation may be seen as the development of a similarity model of

the world, based on background knowledge and trails made by memory to find

analogue states.

2.2. ARTIFICIAL NEURAL NETWORKS 11

In this fashion, the brain metaphor suggests that intelligent systems can be

built by adding and connecting in parallel a large number of simple processing

units (neurones). Thus, the brain-style parallel computation announces new di-

rections to develop a network composed of collective simple neurones working

together. This kind of network is termed Artificial Neural Networks (ANN).

An ANN is a mathematic model of information processing that attempts to

mimic functions of the brain. Therefore, complex behaviours and robustness of

ANN emerge from collective workings neurones. Neurones are individual pro-

cesses that perform only simple operations. Its individual autonomy gives ANN

the ability to achieve a better performance. Although there is no explicit knowl-

edge on how the brain works, it is well known that learning from examples,

decision-making, and recognising patterns are considerable powerful character-

istics of this flexible system.

ANN history started when the first neurone was encoded like a binary circuit

by McCulloch and Pitts in 1943 [148]. In the 1943, they observed the potential

waves of a neurone membrane among many neurones. It was believed that a

rather complicated computer program could be encoded like a brain structure and

produce the same brain outputs. The McCulloch-Pitts’s artificial neurone model

fires an impulse only if its threshold value was exceeded. Because of threshold

has a predetermined limit in that epoch, the neurone model was not able to learn.

Rosenblatt published the basis of his work on the perceptron theory in 1958

[207]. In his work, Rosenblatt solved the limitations of McCulloch and Pitts’s

model. Rosenblatt developed the first neurone able to learn [22]. The Rosenblatt’s

perceptron is in Figure 2.1. As opposed to McCulloch and Pitts’s model, the

general neurone model has null retard. Additionally, transfer function output

was adjusted to support not only binary responses, but also to assume continuous

values.

Figure 2.1: Functional representation of an artificial neurone.

In order to produce a desired output, the perceptron, also called neurone,

receives a predefined range of values from the environment or from the output of

other neurones. The values are combined by a function (x) to produce an effec-

12 CHAPTER 2. MACHINE LEARNING ALGORITHMS

tive activation value. After that, a transfer function receives the activate value to

produce the desired neurone output (or signal). The most common transfer func-

tions are: Identify function, Binary Step, Binary Sigmoid, and Bipolar Sigmoid

[65], respectively the Figures 2.2, 2.3, 2.4 and 2.5.

Figure 2.2: Identify function. Figure 2.3: Binary Step function.

Figure 2.4: Binary Sigmoid function. Figure 2.5: Bipolar Sigmoid function.

Networks that have only one adaptive layer are bounded to recognise only

linearly separable patterns [157]. This limitation was overcome with the introduc-

tion of a intermediary or hidden layer. So, a network that has one or more hidden

layers called Multilayered Layer Perceptrons (MLP) or Multilayered Feedforward

Artificial Neural Network (FF), and its learning algorithm is called Backward

error Propagation (or Backpropagation) [244, 208].

A MLP permits more complex, nonlinear relationships of input data with

output results. MLP can learn continuous mapping with an arbitrary accuracy.

The MLP network is assembled by perceptrons interconnecting other perceptrons

by unidirectional channels (axons), and they are structured in at least three layers

as exemplified in Figure 2.6.

Figure 2.6 presents ANN diagram. The circles (n1 to n6) are neurones ar-

ranged in a network. Neurones are interconnected by axons-dendrites (synapses).

Neurones that receive stimuli from the environment are titled input neurones,

and they are set at the input layer (n1 and n2). Neurones acting in the environ-

ment are called output neurones, and they constitute the output layer (neuron

n6). The neurones between the input and the output layer are considered to be

2.2. ARTIFICIAL NEURAL NETWORKS 13

Figure 2.6: A model of MLP architecture.

“hidden” neurones, and so they are located at one or more intermediate layers

or “hidden” layers (neurones n3, n4 and n5). Hidden layers allow recognition of

non-linear associations between input and output patterns (vectors) because they

can form more complex decision regions (rather than just hyperplanes). A useful

example of non-linear associations were described in [81] and are presented in

Figure 2.7.

Figure 2.7: Arbitrary decision regions modelled by FF.

In ANN diagram above described, each neurone processes simultaneous in-

puts neurones of the previous layer (neighbouring neurones (short-term mem-

14 CHAPTER 2. MACHINE LEARNING ALGORITHMS

ory)). Each simultaneous input has its own signal (synaptic weight) received

from one or many arrows (axons or connections). Signals can be adjusted by

weights. The weights distributed on the connections are pieces of information

stored in synapses that have been acquired to solve a problem. More specifically,

the weights represent the knowledge (long-term memory) that enable ANN to

store and recall patterns, classify patterns, perform general mapping from input

patterns to output patterns, or find solutions to constrained optimisation prob-

lems [65]. In the first layer, each node creates a hyperplane. In the second layer,

each node combines hyperplanes to create convex decision regions. Finally, in

the third layer, each node combines convex regions to form concave regions [81].

By storing the information in weights, ANN can convert data patterns into be-

haviours. It is well noting that synaptic weights determine the behaviour of the

network.

In Figure 2.6, arrows give a forward direction of activation, from the input to

the output layer. The weights labelling the arrows are the outcome (or synaptic

strengths) between neurones and previous weights. Synaptic strengths can excite

or inhibit neurones situated in the next layer. The excitatory or inhibitory con-

nection is indicated by the plus and minus signs, respectively. Synaptic weights

can be interpreted like a matrix of real numbers or integer values in a graph. It

is worth noting that, except the input neurones, every neurone uses a transfer

function to get an activation value.

As the brain learns from experience, and ANN also uses that method. Learn-

ing is implemented by adjusting the synaptic weights between layers in order to

optimise the network performance when a pattern is presented. The learning

phase of ANN uses a set of vector pairs to learn from experience. Vector pairs

are schemers of assimilation formed by background knowledge to embody a be-

haviour script in training cycle. During each network training cycle, synaptic

connection weights are adjustable to be closer to the pattern presented; conse-

quently minimise the difference between the desired and actual network outputs,

and to optimise the network performance when a pattern is presented. The ANN

synaptic connection weights represent a set of well-defined “rules” acquired along

training cycle or learning phase. For each example showed to the input of the

network, the correspondent correct output value will also be presented. Thus, a

network learns when we say the network has plasticity.

As mentioned before, Backward error Propagation paradigm, or simply Back-

propagation learning algorithm (BP) is a well-known SL method for training

cycle of FF. As BP the name suggests, the error generated by output layer will be

feedback to the hidden layers and to the input layer in order to update the weights.

Commonly, the weight correction is applied to entire axons of the network to

reduce the error rate. Activation levels are necessary to determine the values

used as the basis for weight adjustments.

2.3. RULE INDUCTION ALGORITHMS 15

The basis of BP is the Delta Rule [245] function in its generalised form. Delta

Rule adjusts proportionally the weights to the output in order to minimise the

Mean-Squared Error (MSE). The more vectors from the training set are applied

to the network or the more iterative cycles are fired, the faster the error rate is

reduced. In each training cycle, the error signal modifies the network weights in

direction to the minimal error. The process of training cycle is then repeated

until the MSE of the output reaches an acceptable value.

Conclusions

Artificial Neural Networks are a subject of common interest to Psychologists,

Neurophysiologists, Scientists, Engineers and other researchers. ANN respond

by stimuli and ANN do not require a formalised algorithm to achieve a goal. A

sub-optimal result is commonly necessary to solve problems instead of “optimal”

results because a final result is unclear in some cases.

The connectionist learning technique adopts the brain-style information pro-

cessing. Depending on the ANN topology, strings of facts can be processed to

support noisy or imprecise data. Additionally, connectionist models deal with

“unseen” patterns and generalise them from the training set.

However, ANN have inspiration on biologic networks of neurones, there is

minimal similarity between a biologic and an artificial neurone, and the network

topology. Nevertheless, the minimal similarity is sufficiently robust in the pres-

ence of noise and failure. So, noise and failure are just the tasks that the classic

symbolic approach has difficulty in dealing with.

2.3 Rule Induction Algorithms

A Rule Induction algorithm is a symbolic Machine Learning method used to

induce rules from the example cases. A rule is a kind of implication with an

antecedent part and a consequent part, and an example case is a state that

represents a description of a problem situation in a given moment.

Rule induction transforms the process of constructing a new rule into a search

over the space. In such space, a goal state is any acceptable rule. Using induction

to solve a problem, a state corresponds to a candidate rule and operators corre-

spond to generalisation and specialisation operations that transform a candidate

rule into another. So, the rule is fashioned like a basic generalisation or specialisa-

tion operation (set of sequential beliefs or conditions) accepted as true. It is also

described as well-formed formula, rules are commonly used to determine prede-

fined categories and to construct the basis of reasoning or to dictate the behaviour

actions. Inductive reasoning, by its nature, is more open-ended and exploratory,

16 CHAPTER 2. MACHINE LEARNING ALGORITHMS

especially at the beginning. In its natural form, an inductive reasoning process

from specific observations and measures, starts to detect patterns and regularities,

formulates some hypotheses that can be explored, and finally end up developing

some general conclusions or theories that defines the production conditions.

CN2 [41, 38] is a typical rule-based induction algorithm that accepts exam-

ples as input, together with relevant information (the background knowledge),

and induces a model that “explains” the examples given in the background knowl-

edge. The inductive reasoning process creates useful broader concepts obtained

by bottom-up inference from specific observations from the whole environment,

based on a necessarily limited number of observations; informally, it is called a

“bottom up” approach.

The CN2 Induction algorithm was developed at the Turing Institute as part

of the Machine Learning Toolbox project. The algorithm was designed to be

an efficient induction tool of simple decision rules for problems involving large

data sets where there might be noise1 [39, 38]. The latest version of CN2 offers

statistic methods similar to tree pruning in IF...THEN... rules generated from a

set of samples [41]. The CN2 algorithm had previously been developed for UNIX

systems, but new improve it to run on Microsoft Windows system [197].

Basically, the CN2 algorithm works as follows:

Observations Two data files are loaded to construct and test decision rules

along with statements of the data types of each attribute and the examples

of the algorithm;

Discovery of a relation between them The algorithm uses a concept de-

scription language, the rule is assembled in the form of:

IF <complex> THEN <class>.

A <complex> is specialised by either adding a new conjunctive term or re-

moving a disjunctive element in one of its selectors. The learning algorithm

works interactively, and for each new iteration the algorithm searches for

a <complex> that predicts a large number of samples in a unique <class>,

and few in other classes;

Generalisation The system searches for the <complex> by performing a pruned

global-to-local search. When the <complex> is evaluated as good, the sam-

ples predicted are removed from the training set, and the rule IF <complex>

THEN predict <class> is added to the end of the rule list. The last rule,

in the CN2 list, is a “default rule” that classifies all the new samples based

on the most frequent <class>. This process repeats until the satisfactory

<complex> no longer exist or there are no more examples to “explain”.

1The noise represents errors due to transcription or due to an insufficient description lan-
guage.

2.3. RULE INDUCTION ALGORITHMS 17

The choice to apply the operator is no longer restricted on seed positive and

negative examples of a specific class; rather is determined by an user-defined

heuristic function. The user-defined heuristic function evaluates the effectiveness

of each <complex> with respect to the given candidate rule on its classification

performance on the whole training set. The obtained rules can cover overlapping

data regions, that is, an instance can satisfy the antecedents of several rules. This

new feature makes the algorithm more tolerant to noise, rather just predictive

and reliable [41].

The learning process of the first version of CN2 generated a set of rules in

an ordered fashion, and Entropy function was used to evaluate the quality of a

<complex> [41]. The lower the entropy, the better the <complex> is. For instance,

the quality of the <complex> is evaluated by determining if a new <complex>

should be reset by the most improved <complex> found, and which <complex>

should be discarded if the maximum size is exceeded. The Entropy evaluation

function is given by:

Entropy = −

n∑

i=1

pi log(pi)

where n is the number of classes represented in the training data, and pi is the

probability of the ith class, in the set of samples covered by the complex.

The evaluation function of the learning process introduces the pruning or

the “search stopping” mechanism. This mechanism is a heuristic measure of

the recently generated <complex>. This is achieved by the classification of the

<complex> that is based on the distance between the resulting class distribution

and the default one. The generation rule process only continues if the result of

the measure gets above a user-defined threshold [123]. The Likelihood Radio

Statistic (LRS) evaluation function [111] is given by:

LRS = 2

n∑

i=1

fi log(fi/ei)

where n is the number of classes represented in the training data, fi is the

number of examples belonging to the ith class, and ei is the total number of

examples belonging to the class that is scaled to the coverage of the complex,

such as
∑n

i=1
fi.

Some improvements on the second version of CN2 [38] provided the genera-

tion of unordered rules in which the quality of the complexes can be evaluated

by Laplace Error Estimate function. The advantage of this new resource is its

comprehensibility. This function evaluates the total coverage of the <complex>,

rather than its performance in individual classes. The Laplace Error Estimate

(LEE) is given by:

LEE = 1 −
(fi + 1)

(
∑n

j=1
fi + n)

18 CHAPTER 2. MACHINE LEARNING ALGORITHMS

where n and fi are defined as in the equation above. Empirical results [38]

have showed that the Laplacian Error Estimative results is substantially higher

accuracy than the Entropy evaluation function, especially in noisy domains.

Conclusions

The goodness of Rule Induction algorithms are on advantageous generalisations

about the whole environment, based on a consequence of a limited amount of

observations. As such, it is an important method to inductively build knowledge-

based systems.

Using Rule Induction algorithms, we may reach wrong conclusions in cases

where observations are previously faulty or are wrongly written down from an

inaccurate sample. Indeed, Rule Induction systems use simple propositional-like

logic representations to increase knowledge based on experience and to generate

a set of unordered as well as ordered rules, thus helping the comprehensibility of

the induced rule set.

Currently, CN2 analyses the variables and the preferences of each result, and

discards the manual process that makes a slow search based on the number of

variables and the need to make a comparison between them.

2.4 Decision Trees

The decision theory structures decision processes in situations where a choice

must be made among several alternatives. Decision process plays an important

role in Cognitive Science, Artificial Intelligence, and general behavioural studies.

Decision process focuses on the descriptive analysis of risk, doubt and conflict, as

well as its reward. However, the decision process will not be presented here in

detail, we will go over the main points of this approach.

Decision Tree algorithms (DT) construct a tree-based model for a data set of

objects. Objects are described by the values for a fixed set of attributes. One of

the attributes is special and is called the class. The root and the internal nodes

encode a test on an attribute and have one branch for each possible outcome. A

leaf assigns a class value for the object that reach that leaf.

The objects are classified from training sets (seen instances) and test sets

(unseen instances). This method determines a class of object by classification

or regression rules with attribute values in a tree-based format. Objects can be

referred to a collection of attributes, and each attribute is represented by an object

feature. If there is at least an object in a set of mutually exclusive classes, and if a

class of any object of the training set is known, a training set should not contain

2.4. DECISION TREES 19

objects with identical values to each attribute that there are in different classes.

In this case, there is a conflict, and the attributes are considered unsuited to the

training set of induction task. To solve this, experts can manually introduce some

additional attributes.

J.R. Quinlan has popularised Decision Trees models [182] with the C4.5 tool.

The Quinlan’s C4.5 aims at determining the most promising strategies to achieve

a goal by using graphs or decisions models and their possible results. C4.5 is a tool

that builds tree models automatically from given data set of objects. Two main

parts compose the Quinlan’s tool: C4.5-DT [182] is a Decision Tree generator, and

C4.5-rules that produces IF...THEN... rules based on Decision Trees generated

by C4.5 -DT [180]. The tool is found for free in WEKA library respectively

labelled as J48 tool [250].

Decision Trees algorithms perform a greedy top-down approach. DT starts

at the top with a first decision at the root node and follows assertions down up

to reach achieve the most promising decision. Analysing the training data, DT

will develop branches of internal decision nodes (features) and external terminal

leaves (categories). Each non-leaf node in the tree specifies a logic test of some

attribute of an instance. The decision node splits its set of possible answers

into subsets that correspond to different test results. Each branch descending

from that decision node carries a particular test result subset to another decision

node, and each decision node is connected to a set of possible answers. Usually,

these branches are exclusive, that is, non-overlapping. For example, each internal

node m implements a function test fm(x) with discrete outcomes to label the

branches [5]. These sequence of steps are repeated until a satisfactory condition

of the leaf node is achieved, otherwise the satisfactory condition can be on the next

decision node (recursion). Finally, the DT is evaluated by a test set. Figure 2.8

was adapted from [5] to present a data set and a Decision Tree graph.

20 CHAPTER 2. MACHINE LEARNING ALGORITHMS

Figure 2.8: The data set (left-hand side) and its Decision Tree (right-hand side).

Figure 2.8 represents oval nodes as decision nodes, and rectangles as the leaf

nodes. The data set was classified in two classes by the rectangular nodes.

Another well known DT tool is CART. CART, or Classification and Regres-

sion Tree, is considered nonparametric tree models. CART establishes a rela-

tion between a vector of predictor variables x and a single outcome variable y.

The variables in CART can be a mixture of categorical, interval, and continuous

variables. The nonparametric technique selects the most important variables to

determine the satisfactory outcome in which it can be explained from a large

number of those variables and their possible interactions. The outcome variable

is categorical, the right approach to solve the problem is the Classification Tree.

On the other hand, if the outcome variable is continuous, a Regression Tree is the

best choice. Apart from being able to perform both Classification and Regres-

sion, CART improves over C4.5 by using sophisticated tests in the internal nodes.

CART may use a linear combination of attributes in the test in each internal

node.

Regression Trees predict continuous dependent variables for problem solving.

In this method, each leaf node is a linear model with an equation to achieve

the previous value of the set of samples (training set). The unknown regression

function is valued by a local regression. As any common regression technique,

this method obtains a subset average defined by explicative variables (covari-

ables). The training samples are started where explicative variables and outcome

variables are known. According to Ethem [5], Regression Trees are constructed

in almost the same manner like Classification Trees, except that the impurity

measure is appropriate for regression.

Pre-pruning is a specific method for interrupting the growing of the tree if a

non-reliable division is detected. Unfortunately, it is difficult to get a sub-optimal

2.4. DECISION TREES 21

tree [27]. Conversely, pruning is another method to interrupt the growing of

trees by cutting off nodes. The pruning is a satisfactory technique to remove

unnecessary subset tests, and to replace them with leaves or branches. Trees

with low complexity have several advantages over others because they can classify

correctly a large number of objects out of the training set [180]. It minimises the

low reliability of error rate used to select the division into construction of complex

trees (over-fitting). Cut-off nodes may elevate the error rate to the training set,

and do not achieve any over-fitting.

Conclusions

Differently from statistical models, Decision Trees offer an overview of the risks

and rewards associated with each possible course of action by a set of legible

choices. Tree models provide a highly effective framework for common users or

experts can lay out decision options (a tree-based graphic model), and get an

investigate conclusion generated by those options chosen (discriminant-based).

Decision Trees became popular with the C4.5 tool. The tool classifies both

categorical and numerical data, as long as the output attribute is categorical,

but multiple output attributes are not allowed. The DT strengths are (a) quite

simple graph mode, (b) and decisions encoded like IF...THEN... rules, (c) a

white box model used to explain the result provided by the model, which can

easily be replicated by a simple mathematical operation. Conversely, Artificial

Neural Networks are considered to be black boxes because the explanations of

the results can be excessively complex for any user.

Decision Trees algorithms also have an important weakness, the instability.

Minimal variations in the training data produces very different attribute selections

at each choice point in the tree. Consequently, all descendent subtrees will suffer

the variation effect as well.

Tree models are not based on a probabilistic approach, so there is no proba-

bility levels nor confidence intervals associated with predictions derived of CART

to classify a new data set. The confidence intervals represented by the accuracy

of the results that were obtained by a given model or tree was based purely on

its historical accuracy - how well it has predicted the desired response in other,

similar circumstances. Moreover, trees created from numeric data sets can be

extremely complicated to understand since attribute splits for numeric data sets

represent binary values.

22 CHAPTER 2. MACHINE LEARNING ALGORITHMS

2.5 Genetic Algorithms

Inspired by concepts from Genomics and Charles Darwin’s [47] Natural Selection

theory, Genetic Algorithms (GA) are a powerful sort of search algorithm. GA

implement a stochastic and parallel hill-climbing search strategy and are one of

the techniques of a larger research area called Evolutive Computing. GAs were

initially proposed by J. Holland [96]. The goal of GA is to study computational

methods that simulate the theory of evolution [87] and use that model of Nature

to find appropriate solutions to problems.

In GA, the candidate solutions are encoded in structures called chromosomes.

A chromosome is a sequence of bits that encode the values of a pre-specified set

of attributes or problem variables as can be seen in Figure 2.14. The GA evolve a

set of chromosomes until an accepted solution (the most promising chromosome)

is found. During this evolutive cycle (generation) new chromosomes (candidate

solutions) are generated (population) by the application of genetic operators.

Each chromosomes is evaluated by a user specified fitness function. During

the evolutive cycle the number of chromosomes in the population is kept constant.

Since new chromosomes are generated at each cycle the chromosomes with lower

fitness value are discarded (effect of the Natural Selection theory). Based on a

suitability of a given organism to its environment (static fitness), and following

certain iterations (reproductive cycles), GA converge to a generation of promising

candidates, that is, solutions to the problem. GENESIS [90] was one of the first

desktop commercial software with GA built-in, but today GAlib[158] and other

research groups freely distribute the implementations of GA running on several

systems and platforms.

A candidate solution is a chromosome composed of linear chains of small units

named genes. The chromosome is made of an alphabet of binary digits, integers

or real values to represent in the gene each independent feature (allele), as shown

in Figure 2.9. Each gene has a fixed place, named locus, in the chromosome.

A genotype is a collection of genes and alleles to create a candidate, and a

phenotype is a collection of the features of this candidate. The adaptation of each

candidate is directly related to the phenotype. The traditional GA method [87]

uses a binary alphabet, a fixed-length bit string chromosome and a population

with a fixed size.

2.5. GENETIC ALGORITHMS 23

Figure 2.9: A simple artificial chromosome.

The Holland’s studies [96] propose some step-by-step to run GA. Figure 2.10

shows the pseudo-code of a classic GA:

Algorithm: GA

Input: Pool of possible candidates
Output: The best candidate
begin

Initialisation:
Create a population of random and valid candidates

Main:
while (not final condition) do
begin

Evaluate the fitness of each offspring
Select the best-ranking candidates to be recombined
Recombine the parents
Mutate the offspring
Replace the worst candidates by new offspring

end
Return the most promising candidate of the last population

end

Figure 2.10: The GA computational search method.

To be able to implement GA we need the following items:

• Solution Candidates Encoding: We first have to represent the problem

candidate solutions as chromosomes (a linear chain of binary digits);

• Initialisation: We then have to set up the initial population by randomly

generating a population of chromosomes (or candidates). Generally, the

size of population obeys to a heuristic rule [232];

24 CHAPTER 2. MACHINE LEARNING ALGORITHMS

• Evaluation Process: Another ingredient concerns the fitness statistic

score evaluation of each possible solution (chromosome). Before the fit-

ness score, the objective score of objective function is obtained at first. The

objective score is the value of error rate obtained in the test phase of that

current candidate. A linear scaling function is the most used to evaluate the

candidate [87, 158]. The error rate extracted from the current candidate is

encoded to a proportional non negative transformed rating fitness or fitness

score;

• Selection Process: A third ingredient concerns the selection of the most

evolved candidates to reproduction. This implies more chances at spread-

ing the candidate features in the next generation, that is, to preserve the

“knowledge” of that candidate. The most used selection mechanisms are:

– Roulette Wheel: This method selects the most evolved candidate to re-

production based on the highest fitness score relative to the remaining

part of the population. Figure 2.11 [87] presents five eligible chromo-

somes. The roulette wheel will rotate to randomly choose the chro-

mosome. To this example, the chromosome number five was selected.

The portion of the roulette wheel of each candidate is given by:

Portion(xi) =
f(xi)∑N
i=1

f(xi)

where xi is the candidate with a f(xi) probability area to be selected.

– Elitism: This process ensures the survival of the most promising can-

didate to the next generation, preserving it to participate in the next

recombination process [108].

Figure 2.11: The selection method Roulette Wheel.

• Genetic Operators: An ingredient of capital importance is the set of

genetic operators that implement the generation of new chromosomes by the

2.5. GENETIC ALGORITHMS 25

combination of existing ones. We may use a sexual crossover with one-cut

point crossover technique, where the selection point is random. After that,

the parents change the right side, generating two offspring and preserving

the same previous population size. In sequence, the mutation operator

is used that “disturbs” the chromosomes, simulating interference from the

environment.

– Crossover: This operator shares information between chromosomes,

offering a global heuristic to be exploited. Commonly, a single point

crossover is chosen to obtain two offspring from two chromosome par-

ents, and preserve the population size. The single point crossover [96]

randomly cut the chromosome parents and change the portion of the

right side between the candidates, automatically creating two offspring

(new chromosomes) (see Figure 2.12). In general, the crossover oper-

ator combines two candidates with a high fitness score to create new

offspring, so that the nasty offspring will be eliminated in the next

generation. The crossover operator is not typically relevant to all can-

didates in the evolution process.

Figure 2.12: Recombination with a single point crossover.

– Mutation: The mutation operator is another method used to avoid the

convergence of population to a minimum local. The mutation operator

consists of changing the genetic material of chromosomes randomly

selected (see Figure 2.13). Specifically, a random allele of a random

chromosome will have its content changed by values represented in the

alphabet previously chosen. This method offers a global heuristic to be

exploited. The method guarantees that all alphabet values participate

in the mutation process.

• Termination Process: the last process stops the GA search (a) based

on the number of generations achieved, so the last generation brings the

26 CHAPTER 2. MACHINE LEARNING ALGORITHMS

Figure 2.13: Mutation operator changing the allele value.

most promising candidates with the highest fitness scores, or (b) a value to

which the best-of-generation score should converge. After that, the current

population evolves.

Example: The Automatic Tuning of Artificial Neural Networks

Almost all Machine Learning algorithms have parameters that must be tuned to

achieve a good quality for the constructed models. This is most often a severe

obstacle to the widespread use of such systems. In this example we will test GA

as a wrapper to automatically fine tune ANN parameters and obtain lower error

rates.

Several studies concerning the automatic tuning of ANN parameters may be

found in the literature. Most of them use Genetic Algorithm (GA) as a stochastic

search method to find solutions [87]. For instance, Davis and Prado [50, 178]

propose the tuning of the most usual parameter values using GA. In [91], Harp

et al. describe a study to find a good ANN architecture by setting the number

of layers and the number of neurones in hidden layers. Whitley [243] uses GA

to determine the best weight of an ANN. Regarding the manual customisation

of parameters, Shamseldin et al. [217] combine different transfer functions in a

hidden layer to reach the best model with a purpose to apply them in the context

of the river flow forecast combination method.

As proposed by John [105] one possible approach to overcome such a situ-

ation is by using a wrapper. This automatic tuning of parameters completely

hides the details of the learning algorithms from the users. The differential of

our experiment is on the use of the complete set of parameters, instead of only

traditional ones. The tune that we propose includes the choice of the best ANN

structure, the best network biases and their weights. The next paragraph shows

all ingredients used to fine tune the ANN.

2.5. GENETIC ALGORITHMS 27

GA Ingredients

A first ingredient for using GA is to encode the chromosomes as linear

chains of binary digits, using the following features, such as the learning rate

(L); the momentum rate (M); the steepness rate (S); the bias for each hidden

(BHL) and output layer (BHL); different transfer functions in every neurone of

the hidden layers (THL) and the output layer (TOL); the number of neurones

in every hidden layer (NHL).

L M S BHL BOL THL TOL NHL

Figure 2.14: The chromosome of ANN structure encoded in the first process.

Another ingredient concerns the evaluation of the solutions (chromosomes).

Using the linear scaling, fitness function was implemented in GAlib. The error

rate extracted from the current candidate is encoded to a proportional non neg-

ative transformed rating fitness or fitness score. A third ingredient to implement

a GA concerns the implementation of the roulette wheel selection method. This

method selects the most evolved candidate to reproduction based on the highest

fitness score relative to the remaining part of the population. A fourth item re-

quired to implement GA is the combination of existing candidates and the use

of a sexual crossover with one-cut point crossover technique, where the selection

point is random. After that, the parents change the right side, generating two

offspring and preserving the same previous population size. In sequence, we have

used the mutation operator that “disturbs” the chromosomes. Finally, the last

process sets the stop measure of the GA search. We chose the number of genera-

tions achieved because after several evolutional steps, the last generation brings

the most promising candidates with the highest fitness scores. After that, the

GA evolve.

Research Data and Experiment Design

The technique presented was evaluated using nine heterogeneous data

sets from the UCI [58] repository. The classification data sets were Letter,

RingNorm, Splice, Titanic, TwoNorm. On the other hand, the regression data

sets are Abalone, Addd10, Boston, and Hwang. All data sets are presented in

Table 2.1.

Two sets of experiments (tests) were devised in order to produce a fair com-

parison, as follows. In the first experiment the ANN was set by hand-tuning.

ANN has been set to: three layers; Backpropagation learning algorithm; random

28 CHAPTER 2. MACHINE LEARNING ALGORITHMS

Dataset Attributes Examples

Letter 16 20000
RingNorm 20 7400
Splice 60 3190
Titanic 3 2201
TwoNorm 20 7400
Abalone 8 4177
Addd10 10 9792
Boston 13 506
Hwang 11 13600

Table 2.1: Data sets used in the experiments.

weights initialisation from [-0.5, +0.5]; five neurones set to Sigmoid transfer func-

tion in the hidden layer, and bias set to value 1; one neurone set to Sigmoid

transfer function in the output layer, and bias set to value 1; learning rate, mo-

mentum rate and steepness rate set to 0.8, 0.2 and 1, respectively; the training

phase stops if the error rate gets below 0.1 or the training epochs gets below

50. In the second experiment the ANN was set by using a GA-based wrapper.

GA has been set to: 50 candidates; 30 generations; mutation probability set to

1%; crossover probability of 90%; population replacement percentage set to 25%.

Consequently, the ANN has been set to: Backpropagation learning algorithm;

random weights initialisation from [-0.5, +0.5]; three times more neurones in the

hidden layer than in the input layer; one out of seven transfer functions in each

hidden and output neurones, and bias set to value 1; one neurone in the output

layer, and bias set to value 1; learning rate, momentum rate and steepness rate

set to respective default internal range; the training phase stops if the error rate

gets below 0.1 or the training epochs gets below 50.

Experimental Results

The experimental results are reported in Table 2.2. Both the average

error rate and the std. deviation of training and test data sets are presented.

The average represents the result obtained from the arithmetic sum of five cycles

(K-fold technique) of the same data set together and then the total is divided

by the number of cycles. The winner result percentage was obtained by the

variation coefficient of the tests. The values in Table 2.2 were all multiplied by

110.

From Table 2.2, the following conclusions can be drawn. First, it is worth

noting that all tests listed in this study show good results, but error rate decreased

because of the use of wrapper. Second, as can be observed, the use of GA turns

2.5. GENETIC ALGORITHMS 29

ANN ANN
Data set hand-tuning with GA Winner

(Technique:T1) (Technique:T2)

Letter 123.6(13.8) 102.6(1.9) T2(9.3%)
RingNorm 981.7(123.0) 267.9(10.7) T2(8.5%)
Splice 16.8(2.2) 16.8(0.6) T2(9.5%)
Titanic 11.3(0.9) 9.5(0.5) T2(3.3%)
TwoNorm 475.2(257.2) 141.8(23.5) T2(38%)
Abalone 99.9(7.5) 70.1(5.1) T2(0.2%)
Addd10 31223(950) 30460(855) T2(0.2%)
Boston 107982(27495) 84110(17309) T2(4.9%)
Hwang 1342.8(15.9) 1174.6(24.6) T1(0.9%)

Table 2.2: Comparing hand-tuned ANN with ANN tuned by GA.

out to be better in three cases out of nine due to the structural risk minimisation

principle of ANN, such as local minima and overfitting.

Under a wrapper technique, GA are the most used fine tuning technique to

draw the best ANN structure by choosing the correct transfer functions, biases,

and other essential ANN parameters.

Advantages

The advantages of GA from a common user perspective include the following:

• In a search method, GA strengths come from the fully parallel blind search

on the solution space. GA drive the search to promising areas via a popula-

tion of potential candidates, minimising the risk of searching for a solution

in a maximum or minimum local;

• The blind search, referring to known only the necessary candidate cost

function;

• As adaptive algorithms for solving practical problems, GA create new vari-

ants to generate a good chance of finding better solutions;

• GA use simple search methods that do not require extensive knowledge

in the search space. Traditional non-linear solution techniques, such as

solution bounds or functional derivatives are not used because, as a result,

they cannot always achieve an optimal solution;

• GA prevent the optimisation problem being trapped in local minima or

maxima by two methods: (a) the initial random population generated is a

30 CHAPTER 2. MACHINE LEARNING ALGORITHMS

multidimensional global sample of the whole solution space; (b) variation-

inducing tactics, that is, crossover and mutation;

• GA combine representation of candidate solutions and problem-specific ge-

netic operators [96], in which there is a trend to good solutions each time

an evolving process is re-started [87]. This way, GA solve problems by col-

lecting knowledge accumulated in earlier iterations about the problem and

using knowledge to create acceptable solutions.

Disadvantages

The drawbacks of GA include:

• GA are a highly simplified system compared to the actual traditional evo-

lutionary theory;

• Whenever multidimensional systematic searching would be technique of

choice, except that the large number of comparisons make that approach

intractable;

• it is difficult to encode chromosomes;

• Due to the probabilistic development of the solution, GA do not guarantee

optimality even when it may be reached. However, they are likely to be

close to the global optimum. This probabilistic nature of the solution is

also the reason they are not contained by local optima;

• GA need to couple with other search techniques to overcome the rapid local

optimisation.

Conclusions

Genetic Algorithms have been introduced as general stochastic search algorithms

based on metaphors of natural selection and natural genetics. GA are robust to

find the most promising hypothesis in a huge space of candidates by analysing

simultaneously each new generation. To create a population, a pool of possible

solutions is encoded like a chromosome. There are three central operators behind

the GA method, such as selection, crossover and mutation. GA can be driven to

cover fine tuning learning algorithms, such as ANN parameters; consequently, a

hybrid system is composed.

The main benefits of GA are the unsophisticated operations, the easy imple-

mentations, the effectiveness in search of a global maximum, the applicability in

situations where a mathematical model is unknown or imprecise, and in linear

2.6. A MULTI-STRATEGY LEARNING EXAMPLE 31

and non linear functions. Conversely, the major limitation of this algorithm is its

limited accuracy caused by discretisation of the search space, implied by the use

of a fixed binary representation.

2.6 A Multi-Strategy Learning example

To illustrate the decision power of heterogeneous ML algorithms working together

in a decision system, we elaborate a decision problem based on RoboCup Rescue

domain.

The main goal is to decide whether fireman can reach the civilian position on

time to perform a rescue action and left it in the nearest refuge instead of extin-

guishing fires in burning buildings with the aim of preserving the city. For both

modules, the objective is to obtain correct responses to situations that do not

belong to the training set. The civilian is somewhere in a burning building in the

city. Typically, a rescue decision is taken based on position, agent’s and civilian’s

life conditions. The system devised is composed by two modules that encode

the fireman and the civilian decisions, respectively labelled Civilian (FF) and

Fireman (FF), a module that encodes the ambulance decision, called Ambulance

(CN2), and a fourth module that combines fireman and ambulance decisions, la-

belled Rescue (J48). Figure 2.15 shows the modular and heterogeneous structure

of the decision system, assembled in AFRANCI2. The fireman and civilian deci-

sion modules are encoded using Feedforward ANN, the ambulance module was

constructed using CN2 Rules Induction algorithm [41], and the last module was

constructed using WEKA J48 Decision Trees algorithm.

2.6.1 Part One

We now describe only Civilian (FF) and Fireman (FF) ANN modules are ex-

plained. To train the module Civilian (FF), Figure 2.16, a data set was prepared

with some ingredients: independent variables that include the coordinate (X,Y)

of the civilian, the life measure of the civilian, the difficulty of the civilian rescue

situation, and the coordinate (X,Y) of the nearest refuge (rescue building). The

goal is to know whether the civilian can be rescued on time to be left in the

nearest refuge. Additionally, to train the module Fireman (FF), Figure 2.17, a

data set was prepared with some ingredients, being two of them are feeding the

module Civilian (FF). In general, the data set is composed of independent vari-

ables that include the coordinate (X,Y) of the fireman and the coordinate (X,Y)

of the civilian, and the life measure of the fireman3. ANN has been set to: three

2In AFRANCI, users design the whole system structure using drag-and-drop operations. In
the final step, a set of C++ instructions is automatically encoded.

3A measure between 0 and 100 of the energy the fireman can use.

32 CHAPTER 2. MACHINE LEARNING ALGORITHMS

Figure 2.15: The Rescue decision system.

layers; back-propagation learning algorithm; random weights initialisation from

[-0.5, +0.5]; 10 neurones set to Binary Sigmoid transfer function in the hidden

layer, and bias value set to 1; one neurone set to Binary Sigmoid transfer function

in the output layer; learning rate, momentum rate and steepness rate set to 0.8,

0.2 and 1, respectively; stop the training phase when the error rate gets below

0.05 or the training epochs reaches 100.

In modules, we use ANN generalisation capacity to correctly predict all the

other values. Generalisation means the property to get the right answers to

questions not previously seen in the examples.

The modules Civilian (FF) and Fireman (FF) modules are capable of estimat-

ing continuous functions by observing the relation of output data with the inputs.

The module Civilian (FF) is responsible for verifying whether the civilian can be

rescued on time to be left in the nearest refuge, and Fireman (FF) is responsible

for verifying whether fireman can rescue civilian on time instead of extinguish

fires. Once the modules have learned the desired relationship between the input

and output data presented during the training phase, it is probable that they give

right answers to other problems of the same type by means of generalisation.

2.6. A MULTI-STRATEGY LEARNING EXAMPLE 33

Figure 2.16: The module Civilian (FF).

Figure 2.17: The module Fireman (FF).

34 CHAPTER 2. MACHINE LEARNING ALGORITHMS

Advantages

The greatest advantages of Artificial Neural Networks compared to classic decision

making methods include:

• Artificial Neural Networks possess the ability to implicitly guide an analysis

with data both in linear and multivariate non-linear problems; consequently,

detecting all possible interactions between dependent and independent vari-

ables. ANN also learn these relationships directly from the data being

modelled, and there is not necessary any prior assumptions about these

relations;

• Not surprisingly, the massive paralleled centre of units and the intercon-

nections gives to ANN a high processing speed and data compression, as

presented in Figure 2.6, over conventional well-ordered rule algorithms. For

this reason, the ANN also have been dubbed the connectionist approach

[67];

• ANN have capacity (a) to obtain meaning from imprecise or complex inputs,

(b) to adjust their synaptic weights to any situations, and (c) even to model

a complex decision system;

• The plasticity summed with parallelism, empirically“inherited” from biolog-

ical neural networks, can achieve skills, such as robustness to noise, learning

rate, generalisation and adaptability, association, and rule-like behaviours

without hand drafted rules. For instance, ANN are capable of analysing the

data, even if the data are incomplete or distorted. Distributing information

redundantly on their axons, ANN can build a robust fault tolerant system;

• ANN learn from observed data (experience) by the arbitrary approximation

function. In a non restricted pre-fixed sequential order, ANN also identify

instances that are unlike any which have been observed before showed to

the network;

• ANN can be trained to recognise uncommon events with a high degree of

accuracy. ANN use past experiences to gain the ability to apply this knowl-

edge to identify unknown instances. The probability of any action may

be estimated and a potential response be flagged whenever the probability

exceeds a specified threshold;

• ANN adapt their analysis of data in response to the training. The output of

ANN, typically expressed in the form of a probability, provides a predictive

capability to identify a particular event or pattern. Pattern represents a

package of predesigned “chunks” (decisions) that have already been made

and can be reused.

2.6. A MULTI-STRATEGY LEARNING EXAMPLE 35

Disadvantages

Conversely, the ANN weakness are the following:

• The individual relation between the input variables and the output variables

are not clearly presented so that the model tends to be a “black box” or

input/output table without analytical basis;

• The proneness to overfitting requires a considerable computational burden

to be minimised;

• The connection weights and transfer functions of the various network nodes

are usually “frozen” after the network has reached an acceptable level of

success in the identification of events;

• The training routine requires a large sample size to ensure that the results

are statistically accurate;

• While the network analysis is searching for a sufficient probability of success,

the basis for this level of accuracy is not often known;

• There is no cookbook which explains how to fine tune the technical proper-

ties of ANN.

2.6.2 Part Two

This part extends the description of the previous one about whether ambulance or

fireman should rescue or not a civilian to a nearest refuge. For now, we try to solve

whether ambulance is apt to rescue a civilian based on its actual conditions. This

kind of decision-making problem is performed at Ambulance (CN2), Figure 2.18.

The module Ambulance (CN2) is responsible for verifying whether the ambu-

lance is entirely apt to rescue a civilian. To train the module Ambulance (CN2),

a data set was constructed with some inputs where four of them are feeding the

module Civilian (FF). The inputs are: independent variables that include the

coordinates (X,Y) of the civilian and the coordinates (X,Y) of the nearest refuge,

the coordinates (X,Y) of the ambulance, and state4. The CN2 algorithm has

been set to: ordered rule list; Laplacian error estimative; threshold set to 0.8;

and Star set to 5. The goal is to know whether civilian can be rescued on time

to be left alive in the nearest refuge.

4The state attribute defines whether ambulance is free or busy.

36 CHAPTER 2. MACHINE LEARNING ALGORITHMS

Figure 2.18: The Rule Inducer module Ambulance (CN2).

In order to verify whether the ambulance is apt to rescue a civilian, Figure 2.19

establishes below the decision rules.

The rules induced by CN2 establish that: (rule 1) if the ambulance is occupied

then it is useless to attempt the rescue; (rule 2) if the civilian has not sufficient

time-life then it is not rescued; (other rules) the civilian will be rescued if it has

sufficient time-life and the ambulance is between the civilian and the rescue place,

otherwise it will not be rescued.

Advantages

The advantages of a Rule Induction algorithm are the following:

• Rule Induction algorithm are tolerant to noise. It correctly assigns examples

to into sub-spaces, and classify all known and unknown examples in the

training;

• Rule Induction methods simulate the non monotonic reasoning, that is, the

reasoning based on general rules and accepting exceptions;

• Rule Induction provides a set of alternative rules;

2.6. A MULTI-STRATEGY LEARNING EXAMPLE 37

IF state = busy

THEN class = n [52 0]

ELSE

IF civilian = notapt

THEN class = n [20 0]

ELSE

IF Yamb > 8164.50

AND Xciv < 9204.50

THEN class = y [0 7]

ELSE

IF Yamb > 340.00

AND 386.00 < Yciv < 7731.50

AND Xrefuge > 3800.00

THEN class = n [9 0]

ELSE

IF Yamb < 5721.00

AND Xrefuge > 866.00

THEN class = y [0 8]

ELSE

(DEFAULT) class = n [4 0]

Figure 2.19: The ordered rule list generated by CN2.

• The rules generated are “white boxes”, and therefore can generally be un-

derstood and validated by domain experts. The rules learned with these

algorithms can be used to predict information about new objects;

• The familiar structure of syllogisms, IF condition 1 AND condition 2,

..., THEN conclusion are a very powerful representational language, and

can be fully applied to explain the meaning of the rules;

• Rule Induction algorithms assist users on rationale choices that were derived

by observation so that patterns are discovered in a data set and the most

promising set of decision rules is collected;

• CN2 is sufficiently robust to induce an ordered or an unordered list of

IF...THEN... rules in domains where there might be noise [38]. Clark

and Niblett [39] classify the noise into two different causes that are (a)

Errors due to transcription: whenever an example situation is presented to

a learning algorithm it must be described in some manner. The process of

recording and transcribing the attributes of an example is prone to error due

to several causes. For example, imperfect measuring equipment, mistaken

classification by an expert, typing errors and so on, and (b) Errors due to

an insufficient description language: a description language should provide

38 CHAPTER 2. MACHINE LEARNING ALGORITHMS

the resources completely and correctly, and classify all possible situations

in a problem;

• Recent improvements to the output of the rules form have induced a set

of covers where CN2 builds an expression IF...THEN...ELSEIF...THEN...

structure that is called a rule list [203]. The important point is that the

semantics of each individual rule depends on the previous one, that is, a

rule will trigger when all the previous rules must have failed. This feature

of the rule list excludes the possibility of a clash during the classification

process, but increases the difficulty to be interpreted by humans.

Disadvantages

The general problem to create and test rules can be resumed in a NP-complete

problem. It is well known that some questions have still no answers. For instance,

(a) What is the best the stop measure of the number of rules generated? (b) How

many hypotheses should the final theory have?

2.6.3 Part Three

In the previous parts one and two, we presented the rescue civilian problem,

and explained some of the decision modules that compose the decision system to

rescue a civilian in the RoboCup Rescue Domain.

In this last part, we present the module Rescue (J48) Decision Tree, Fig-

ure 2.20. This module will deliberate in favour of the apt agent to rescue the

injured civilian. In order to deliberate, the Rescue (J48) Decision Tree module

receives two outputs, each one from Fireman (FF) and Ambulance (CN2), as was

presented in Figure 2.15.

The Rescue (J48) is responsible for deciding which agent will rescue the civil-

ian. The system devised is composed by two modules that encode the decision of

the fireman and the civilian, a module that encodes the decision of the ambulance

and a third module that combines fireman and ambulance decisions. The system

will deliberate in favour of the fireman agent to rescue the civilian only if the

ambulance agent is not able to do this. In case of both fireman and ambulance

agents are capable of rescuing the civilian, the module Rescue (J48) decides in

favour of the ambulance agent. This happens because a fireman agent has other

priority such as to extinguish fires in burning buildings with the aim of preserving

the city. Figure 2.21 presents the results of J48 Decision Tree generator.

2.6. A MULTI-STRATEGY LEARNING EXAMPLE 39

Figure 2.20: The Rescue (J48) Decision Tree module.

J48 pruned tree

ambulance_apt = TRUE: RescueAmbulance (7.0)

ambulance_apt = FALSE: RescueFireman (3.0/1.0)

Figure 2.21: Decision Tree generated by WEKA J48 learner.

Advantages

Decision Trees have the following advantages:

• Decision Trees produce tree models that are easy to be interpreted by hu-

man experts. They satisfactorily explain by graph why a decision was made;

• Tree models are useful to map any kind of data into groups. DT analyse

data to highlight the relationships of a large number of candidate input

variables to an output variable;

• Decision Trees determine the most promising strategies to achieve a goal

by a set of business rules. Some of these strategies are: the memorisation

of several internal states to be used by the classifier, the use of confidence

measures, and the avoidance of conflicts among them;

40 CHAPTER 2. MACHINE LEARNING ALGORITHMS

• Decision Trees can be satisfactorily translated to a set of business rules, in

which it can also be represented;

• Tree models implement the divide-and-conquer strategy. Typically, a

problem is recursively divided into sub-problems to find a solution. Each

sub-problem identifies some patterns in the data set. A solution is achieved

when each subset in the partition contains cases of a single class, or when

no test offers any improvement;

• Decision Trees can model uncertainty, predicting categories for new events;

• Decision Tree methods make no prior assumptions about the distribution of

the data (nonparametric). Because the nonparametric technique selects the

most important variables in order to determine the satisfactory outcome,

a large number of those variables and their possible interactions can be

explained.

Disadvantages

Although DT have numerous advantages over other types of Machine Learning

algorithms, including the ones just described, DT have some disadvantages:

• Decision Trees need as many examples as possible to generalise, so the

number of possible outcomes in the model can be extremely large. Similarly,

some DT models tend to over-generalise with many examples. The same

symptom is also caused by not much training data;

• Unfortunately, many divisions form large and complex trees that generate

over-fitting. In order to generate simple trees and avoid over-fitting, a

set of training cases should not be divided any further (stopping or pre-

pruning), but some of the structure built up by recursive partitioning should

be retrospectively removed (pruning) [5];

• Large DT or DT created from numeric data sets can become difficult to be

interpreted. On the one hand, larger DT can be more consistent; on the

other hand smaller DT generalise better.

• Developing and reaching agreement on regression may be difficult;

• Decision Tree engine requires more computation resources than Finite State

Machines;

• DT obey a sequence of tests, being dependent of the structure generated;

2.7. CONCLUSIONS 41

• Some learned DT may contain errors and become unstable. Similarly, small

variations in the training data can generate weird looking trees. This is

commonly caused by problems with sparse data set (randomised data set)

or small data set. In order to correct this instability, cross-validation is used

to force the utilisation of the entire data set to train and test the model,

and stratified sampling is used to balance the class distribution between

them.

2.7 Conclusions

Symbolic and connectionist approaches, if rightly combined, they can obtain a

complex decision system, always looking for improved performance in agents.

Machine Learning algorithms employ deduction or induction techniques to

encode knowledge in a form of synaptic connection weights or production rules

until a satisfactory description of each class is obtained. For instance, agents can

behave or “think” under certain circumstances, such as to survive and respond in

the world.

Using Supervised Learning (SL) method, a fast learning rate was obtained,

instead of just letting the algorithm work out for itself. The most common hetero-

geneous ML algorithms for agents interact and reach goals in the world were Feed-

forward Artificial Neural Networks, Rule Induction Algorithm, Decision Trees,

and Genetic Algorithms.

Chapter 3

Architectures for Autonomous

Agents

Architecture is an archetype of a complex structure composed of interconnected

elements arranged in a specific manner. Agents are entities commonly made of a

complicated structure of interconnected and organised elements. In this chapter,

we analyse the influence of architecture styles on the development of agents, and

describe a set of architectural styles adequate to construct cognitive agents. We

also discuss a set of concepts regarding how intelligence can be implemented in

agents. We review typical architectural styles used to assemble agent skeletons,

and analyse classic architectures for agents suitable for the development of ro-

bust agents. Furthermore, a brief explanation about meta-architectures and their

importance is also addressed.

3.1 Introduction

Generally speaking an architecture in software engineering can be conceptually

interpreted as “structure” or “organising principles” of a system. Architectures

specify the set of components (or modules) of a system and the way they are

arranged and interconnected. Procedure calls may be used to promote communi-

cation among heterogeneous and independent modules. Modules are used to drive

attention at an appropriate goal of the system without delving into programming

details. In a complex system modules do not work alone, but they sum efforts

from their parts (relationships among them) to achieve goals. They interact with

each other by means of interfaces to share details, results, to produce signals, or

43

44 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

behaviours and possibly to generate actions. Depending on context, a system can

comprise more than one architectural style to synthesise a complex behaviour.

Although there are many types of architectures they have similarities. There

are common principles, design philosophies and theories that can be successfully

applied to a wide number of types of structures. For instance, we can include

learning algorithms in the modules, in an agent, architecture in the same way

specific routines fill components in a software. It is possible to reuse or transfer

what was learnt from one architecture into new ones.

To develop a good architecture, it is important to understand in detail how

a system will behave to achieve the goals and what is an agent. Architects are

the ones who understand the system context and establish what goals the archi-

tecture will support. They also design the system, encode the operation strategy

into technical strategy (meta-architecture). The compilation of the architecture

encodes deliberative reasoning into mechanisms of response more efficiently. The

architecture establishes how technology will be used to deliver operation capa-

bilities, setting direction for the architects and development community. The

emergence of behaviours is dependent of the arrangement of modules in a specific

style. Styles enhance the understandability and re-usability of the architecture,

as a result of exhaustive generalisation and specialisation (decomposition) of huge

holistic systems.

In order to clarify what agents are, or how agents can be autonomous, we

present some classic agent definitions that can be found in the literature:

“An agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through effectors.”1 [212].

“Autonomous agents are computational systems that inhabit some complex

dynamic environment, sense and act autonomously in this environment, and by

doing so realise a set of goals or tasks for which they are designed.” [141].

Based on the definitions presented above, we define an autonomous agent

as an adaptable software or hardware entity in the sense of controlling over its

own actions and internal states. In other words, agent is a fully functioning

system, like a biological, or simulated in software, or implemented in the form of

a computational entity, that has an integrated collection of several heterogeneous

but interconnected capabilities arranged according to an architecture.

In order to plan an agent architecture, it is important to understand the prob-

lem domain in details. For instance, agents can be planned simply to sense-act

in response to their environments, decide some actions based on production rules

or prewired connections, or store past environment states in order to remember

1Also labelled as rational agent.

3.2. ARCHITECTURAL STYLES AND THEIR CONTROL LEVELS 45

and make plans for further decisions. In addition, the arrangement of modules

influences the emergence of behaviours.

On the one hand, an agent that manifests a reactive behaviour is charac-

terised by the absence of an inner classic symbolic environment model, dealing

with short-term changes, and acting freely in accordance with stimulus-response

from changes in the environment. It is worth noting that the terms reflexes and re-

actions have different meaning. For instance, the agent triggers a chain of several

reflexive rules in order to produce a reactive behaviour. In this sense, Brooks [28],

and Agre & Chapman [2] argue that agents can emerge “intelligent” actions with-

out symbolic representations, so typical of traditional Artificial Intelligence. On

the other hand, an agent that deliberates decisions is characterised by the use

of a previous symbolic model of the world, dealing with long-term changes, and

reasoning about what actions to do next. The ability to reason symbolically is

based on knowledge stored in a form of a set of symbols. Reasoning represents

the manipulation of these symbols, to make judgements and decisions that are

logically valid. Oriented reasoning is a result of adaptation of its own rules by a

sequence of specific actions
”

scuh as planning to solve a problem.

In this chapter, we are surveying different types of architectural styles by

software engineering and classic architectures to develop our own system that

will be introduced later on.

3.2 Architectural Styles and their Control Levels

Artificial Intelligence attempts not only to understand, but also to develop intel-

ligent entities [212].

Recently, new agent architectures are being designed based on the concept of

modular structure, and modular structures are simple to be implemented. The

selected criteria for the decomposition of a system in small pieces of function

impacts on maintenance reuse, increasing consistency, integration among systems,

and portability.

Autonomy is highly correlated with structural complexity. As the autonomy

of an agent increases so increases complexity of its structure. In such cases it

is advisable to adopt the principle of loose coupling by decomposing the system

into reasonably independent modules making complex systems tractable.

On the one hand, system decomposition addresses such concerns as complex-

ity, portability and flexibility. To handle complexity one applies the principles

of separation of components and “divide and conquer”. To address portability

and flexibility one applies the principle of identifying areas that are probable

to change. On the other hand, system composition addresses other concerns as

46 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

integrity mechanism that include internal balance, compatibility and harmony

among the parts, as well as fit to context and to purpose.

The next sections present the key factors for the development of architectures

as an understandable and manageable system, being better provided by architec-

tural styles.

3.2.1 Architectural Styles

Architectural styles, also known as system patterns, represent a family of systems

in terms of patterns of a structural organisation and their combination to guide

less experienced architects in designing new architectures [219].

Typically, architectural styles determine exactly what a system looks like. In

short, an architectural style defines a system providing the following information:

• A set of component types that defines the locus of computation. For exam-

ple, a process that performs some functions at runtime;

• A topological layout of these components indicating their runtime interre-

lationships;

• A set of connectors that mediate interactions (communication, coordination,

or cooperation) among components.

In general, architectural styles specify the circumstances in which should be

relevant to plan and to construct the architecture of autonomous agents. We

now present the architectural styles studied [83, 219, 33, 17], relevant to the

development of the architecture we propose in this thesis.

3.2.1.1 Data-flow Architectures

Data-flow architectures represent systems that transform input into output or

some final destination by a sequence of conversions one at a time. Having the

properties of reuse and modifiability in mind, it is easier to build a data-flow

architecture by simply arranging modules (blocks) in different manners.

Data-flow architectures may be divided into two subtypes, batch sequential,

and pipe-and-filter.

Batch Sequential

In the batch sequential style, components are independent programs

that obey a sequential processing completion flow, which means components will

3.2. ARCHITECTURAL STYLES AND THEIR CONTROL LEVELS 47

start only if previous components have performed their tasks. Each batch of

data is transmitted as a whole between the steps. A classical data processing is

the most common application for this style. This style is illustrated in Figure 3.1

Figure 3.1: The batch sequential style.

Pipe-and-filter

The pipe-and-filter style transforms data incrementally by successive

components. An incremental process means that later processes are started after

the earlier ones have finished. Filters are independent programs (stream trans-

ducers) that load streams of data on their inputs, perform some computational

task or data compilation, retain no state information between examples, and

produce streams of data on their outputs. The transmission of data happens

using pipes between steps. Pipes are used like channels of data-flow for the

streams, passing outputs from one filter to the inputs of others. This style is

flexible to build the system with blocks, and arranging them in parallel, as can

be seen in Figure 3.2.

Figure 3.2: The pipe-and-filter style.

Advantages and Disadvantages

In batch sequential style controls are easily handled. Controls represent

a collection of simple and atomic components, having neither concurrency nor

interactions between those components. The major problem of this style is

that the system has a tendency to become big and sometimes slow in time.

Conversely, pipeline style produces fast first outputs, which is very useful in

behaviour-based systems. Unfortunately, pipeline style may be too complex to

48 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

program because process operates incrementally. Its cyclic structure supports

feedback and loops, that is, later processes can start before the earlier ones have

finished.

3.2.1.2 Call-and-Return Architectures

Call-and-Return architectures are designed for agents in which modifiability and

scalability are important issues. In the following paragraphs, we present some

variations of that architecture.

Main-program-and-subroutine architectures

The main-program-and-subroutine architectures are based on the hierar-

chical decomposition of main program into subroutines; a typical programming

paradigm that helps to achieve modifiability. Traditionally, each module in the

hierarchy supports a single thread of control. The hierarchical reasoning will

only perform correctly if a dependent subroutine transmits the correct data.

The goal is to increase performance by distributing the computations and taking

advantage of multiple tasks. Figure 3.3 shows the main program that delegates

tasks to be performed by subroutines.

Figure 3.3: The main-program-and-subroutine style.

3.2. ARCHITECTURAL STYLES AND THEIR CONTROL LEVELS 49

Object-oriented architectures

Object-oriented architectures represent the inner evolution of call-and-

return architectures. In this style reuse and modifiability is achieved by

encapsulated internal operations. The object-oriented paradigm emphasises: (a)

the object definition; (b) the knowledge of how to manipulate and access data;

(c) defines responsibilities; (d) the collaboration of the different objects. This

style uses components, like black boxes and interchanging of data as represented

in Figure 3.4.

Figure 3.4: The object-oriented style.

Layered Architecture

A Layered architecture arranges components in layers. In the pure ver-

sion of this style, each layer communicates only with its immediate neighbours,

as we can see in Figure 3.5. A Layer bridging is a variation of the basic model in

which a layer may interchange messages with others that are not its immediate

neighbours.

Advantages and Disadvantages

The main-program-and-subroutines style is similar to the top-down or

hierarchic reasoning. This sort of style is very useful to develop an emergent

reasoning in agent structures. But, the correctness of modules/subroutines

depends on the correctness of the subroutine it calls. Object-oriented style uses

encapsulation to hide certain information and offers management of objects. In

this style, we can interpret the idea of atomic control modules encapsulated

details from others and sharing only the necessary data. The Layered style

behaves like an organisation was divided in sub-levels. A module, sub-system,

50 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

Figure 3.5: The layered style. Each layer represents an abstraction level.

or layer represents in the organisation a highly coherent set of functionalities,

which suggest high internal coupling and low coupling to external entities.

3.2.1.3 Independent Component Architectures

Independent component architectures represent structures of independent mod-

ules communicating among them through messages. The strongest feature

achieves modifiability by re-use and evolution. New modules can be easily at-

tached to the structure and run in parallel. The components interact through

the exchange of data only when they are selected, which leads to integration of

environments.

Independent component architectures have two subtypes: Event-based archi-

tectures, and Communicating processes.

Event-based Architecture

In Event-based architectures, a message manager receives data from in-

dependent components (see Figure 3.6). Components listen/announce data to

the messenger in order to be up-to-date. After receiving a message, the message

manager forwards it to the component already subscribed that wish to receive

the data previously announced. Message manager controls the interchange of

messages among subscribed components, but it does not directly control the

component execution.

3.2. ARCHITECTURAL STYLES AND THEIR CONTROL LEVELS 51

Figure 3.6: The event-based style.

Communicating Processes

Communicating processes are multiprocessing systems capable of scaling

up without quality of service lost. This model is characterised by having a main

component that serves data to one or more components connected to it across a

network. The components request data to the main component by a call, which

works, synchronously or asynchronously, as depicted in Figure 3.7. Processes are

like black box modules interchanging messages among their pairs. The difference

between Communicating Processes and Event-based style is determined by the

autonomy of the components having or not their own control. For instance, if

the main component performs tasks synchronously, it returns control to the

component at the same time that it returns data. If the main component

performs tasks asynchronously, it returns only data to the component that which

has its own thread of control.

Figure 3.7: The communicating Processes model.

52 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

3.2.1.4 Data-Centred Architectures

Data-centred architectures are structural systems composed by client and shared

data. A client is an independent execution module that accesses and updates

shared data in a passive repository, like a file, or in an active repository, like a

blackboard. The major difference between passive and active repository is the

existence or not of notification messages. For instance, a blackboard sends no-

tifications to subscribers when data of interest changes, and for this reason it

is labelled as active. A blackboard has bidirectional control arrows to “inter-

change” shared data. The diagram shown in Figure 3.8 represents independent

components sending/receiving up-to-date data.

Figure 3.8: The data-centred style.

The advantages over other systems is that the clients are relatively indepen-

dent of each other, and the data storage is independent of the clients, thus the

style enables the development of scalable layers. New clients can be easily added,

or changed with respect to the functionality. Coupling among clients will re-

duce this benefit but may occur to enhance performance. The weakness of these

systems is the blackboard feature itself that can behave as a bottleneck of the

system.

3.2.1.5 Virtual Machine Architectures

Virtual machines mimic some functionality (behaviours) not native of the system

on which they are running. They allow the simulation (and testing) of behaviour-

based models, as explained earlier in this chapter, complex decision processes,

and even the simulation of uncommon situations that need fast agent attention

to be solved both by reasoning and action. For instance, Rule-based systems

are the most common example of virtual machine architectures, as depicted in

Figure 3.9.

3.2. ARCHITECTURAL STYLES AND THEIR CONTROL LEVELS 53

Figure 3.9: The virtual machine style.

3.2.2 Levels of Control

A typical agent architecture is composed by interconnected modules that are

arranged in numerous relationships of grouping or subordination.

In order to deal with environmental diversities, four main control levels should

compose an agent architecture. The levels are arranged from simple (bottom)

to complex (top), respectively stereotyped, reactive, instinctive and deliberative

behaviours [251, 252, 193]. In some circumstances, agents are made of an hybrid

approach, but all of them are organised in levels to determine the course of the

best action.

3.2.2.1 Stereotyped Level

The stereotyped level is characterised by instant and simple responses produced

in the lowest level of the architecture (sense-act). The response is result of hard-

wired“neural circuits”. Behaviours like reflexes or taxies [193] emerge in the agent

with no previous knowledge of the environment model (no mental states) [31].

Therefore, a real-time activity can be modelled by boolean functions.

54 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

3.2.2.2 Reactive Level

The Reactive level is set on an upper abstraction level just above the Stereotyped

level, but it is still a representative of a low abstraction level. The reactive level

is composed by collections of atomic rules (or modules) in the form of condition-

action (stimulus-response) pairs in an ordered sequence. Modules receive sensory

information from the environment or from other modules, and send signals di-

rectly to the actuators or other modules. This level allows a fast behaviour

retrieval. At this level there is no symbolic reasoning (cognition) that allows

agents to perform complex analysis of sensorial data. Although the previous cen-

tred form of environment model does not exist, there may be the case where the

agent has knowledge that represents inner rules shaped along its evolution, the

agent has (a) Believes because the term believe represents rules and rules are

knowledge, (b) Desires because desires represents a set of pre-formed rules that

will drive the agent towards a goal, and (c) Intentions that represents a ready

cycle of training that the agent can iterate (BDI).

This unconscious level can be subdivided in two subclasses, Pure Reactive

Systems and Behaviour-based Systems.

Pure Reactive Systems

The Pure Reactive systems use hard-wired circuits between perception

and action. There is no state at all, no history, no information processing, nor

even access to its current position. In other words, all behaviours are thus

emergent once that they appear only as a result of the environment changes.

For instance, an agent will only trigger an action if a raw sensorial value was

recognised by the module.

This implies that the process occurs in parallel, and actions can be performed

without having to wait for such symbolic complexity. The association between raw

data and action is encoded in the system, such as intrinsic rules. These systems

cannot improvise results when facing of unknown situations neither decide what

to do next - they “decide” entirely on the present, with no reference at all to the

past.

Behaviour-based Systems

The main characteristic of Behaviour-based Systems is the emergence of

control by units that work in parallel. This decomposition made by activities

contrasts with decomposition made by functions, and the monolithic control

that are so typical of deliberative systems. The idea of decomposition shows that

behaviour complexity of a system is an emergent feature that arises when there

3.2. ARCHITECTURAL STYLES AND THEIR CONTROL LEVELS 55

are interactions among basic components. In general, each unit accesses sensorial

data and decide in favour of adequate reactions to control the actuators.

Behaviour-based Systems have a flexible design. This heterogeneity is present

in different behaviour architectures. Unfortunately, scalability is still a major

limitation, and the lack of symbolic representation makes it difficult to achieve

goals.

3.2.2.3 Instinctive Level

Instinctive level is the third level from bottom to top in an abstract layered

architecture. Instinct is determined by an unconscious memory acquired from

complex interactions with environmental stimuli [89]. The sequence of stimulus

(instinctive action) runs through a chain of reactive modules. The final point of

the chain may be reached using different ways when the previous stimulus was

perturbed during the cycle. Instinctive behaviours are more flexible than reactive

behaviours but much less complex than deliberative ones.

3.2.2.4 Deliberative Level

The Deliberative level is found at the top of abstraction layer [193, 102]. The

decisions are taken via (pseudo)logic reasoning based on pattern recognition or

symbolic manipulation. This class uses world representations and knowledge

previously obtained to trigger an effective action. This upper level uses long-term

knowledge for goals, differently from lower levels that use short-term knowledge

for goals. The cognitive layer learns from past experiences, develops several

combinations of actions, obtains a strategy that determines actions, and triggers

them to aim a goal. For instance, in a first step, sensors receive stimuli from

the environment. In the second step, a model of the environment is assembled

by symbolic representation of the environment. Next, deliberation develops a

plan about the modelled environment. Last, the actions are performed based on

developed plan. If the goal was not achieved, new inner combination of actions

will be fired again, that is, the upper level will perform several cycles until it finds

the most promising answer. Unfortunately, the development of plans represent

a combinatory explosion of paths to follow, and at the same time the problem

increases in complexity. The idea of freezing a dynamic environment in memory

to find the best answer is not useful since the logic mechanisms do not prevent

invariant changes, leading to working with outdated values.

56 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

3.2.2.5 Hybrid Approaches

An Hybrid approach combines the most promising features of above approaches

and balances the reasoning and action methods to react at lower level and to

judge deliberative actions at an upper level. Typically, the lower levels are closer

to sensors and actuators. It priors the reactive actions on the basis of organisation.

Therefore, it is possible to offer fast answers to important events happening in

the environment.

The lowest levels maps raw data from sensors and use them to perform the first

processing. If deliberative actions are necessary, lower levels send their results

to upper levels. Each upper level collects the early results from lower layers to

perform different processes among them to reach the goal. Thus, a sophisticated

sequence of behaviours is obtained in upper layers that control lower ones.

3.2.2.6 Organisation and Flow of Control

An agent architecture can be explained by the arrangement of independent ele-

ments interchanging data in numerous relationships of grouping or subordination.

All proposed learning architectures can be briefly divided in a few main categories,

such as centralised, modular, hierarchic or distributed, and one of two approaches

that are bottom-up or top-down.

The cognitive agent architectures are organised in categories, as follows [177,

254]:

Centralised It is the most popular category. It deals with a well-defined prob-

lem using a rigid structure between functions and collected data. A single

central unit plans the tasks and processes the collected data;

Modular This category has specialised modules that are arranged in a horizontal

design of a system;

Hierarchic It is arranged by different levels of interconnected modules. Each

layer has different features, and they are arranged in a hierarchic order of

importance;

Distributed Each module receives a priority key to perform tasks. Each mod-

ule receives results from other modules or sensory inputs, performs new

processes, and sends the results to input of other modules. The whole archi-

tecture can be represented as a graph of modules interchanging information

and scheduled with priorities in every moment.

During the development of architectures arranged in a vertical form, the de-

signer defines the direction of information flow. The direction will determine how

3.3. PURE ARTIFICIAL INTELLIGENCE ARCHITECTURES 57

an agent will behave in the environment. Two unidirectional routes are found in

literature [28, 43]:

Bottom-up The flow of control starts from the lowest level to the upper levels

where the action will be defined;

Top-down The flow of control starts from the upper level to the lower level

where the action will be performed.

Some architectures use bidirectional flow of control, where the direction of

the flow is from bottom-up to top-down. In case of bidirectional flow, the sensory

inputs sent data to the upper layer to define the course of the best action. Con-

sequently, the upper layer sends data back to the lowest layer to perform actions

by its actuators.

1

3.3 Pure Artificial Intelligence Architectures

This section presents a set of well known pure AI agent architectures. Pure means

a characteristic that does not “imitate” cognitive processes. The main goal is to

provide an overview of the architecture towards our proposed architecture.

3.3.1 The SOAR Architecture

SOAR [102] is a general purpose symbolic AI architecture that integrates together

basic mechanisms for traditional problem solving, learning, and perceptual-motor

behaviour. SOAR is a good representative of symbolic goal-oriented behaviour,

as described by Allen Newell in [168]. SOAR uses explicit production rules to

govern behaviours. In accordance with other symbolic AI approaches, SOAR

assumes that behaviour system must be motivated by goal-oriented states and,

consequently, learning occurs in the process [130].

SOAR is a centred architecture that performs intelligent agent tasks, in the

line of the main goal of Artificial Intelligence [168]. The main strengths of SOAR

are driven to achieve a symbolic goal-oriented behaviour, that is, an agent should

resolve any task proposed using all available knowledge. The knowledge acquired

from agent sensors or data set is arranged on a single central unit that develops

production rules using selection and application operators. For instance, one

important type of internal goal is a goal that makes decisions about what actions

to perform next [211].

58 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

The main characteristics of SOAR are:

• Breaking off;

• Knowledge integrated;

• Problem spaces represent all tasks;

• Productions provide all long-term memory (symbols): search control, oper-

ators, declarative knowledge;

• Attribute-value representation is the encoding scheme for all things;

• Preference-based procedures are used for all decisions: preference language:

accept or reject, better or worse;

• Chunking of all goal-results occurs continuously.

3.3.1.1 Description of the Approach

The SOAR architecture accomplishes all tasks and sub-tasks (problem spaces)

using an unique representation for the long-term knowledge (problem spaces,

states, operators and so on), a representation to transient processes, an engine to

generate goals (achieve sub-goals automatically), and a learning engine (“chunk-

ing”).

In this architecture, every task-step is considered as a problem which is solved

via search in the appropriate problem space, and all knowledge systems are stated

in the form of production rules, commonly referred to as universal subgoaling. So,

SOAR solves problems by triggering production rules, which are stored in long-

term memory. When SOAR detects a most promising sequence of production

rules, SOAR creates a chunk. Chuck, essentially, breaks large rules in a sequence

of small ones.

Problem Spaces

The SOAR architecture describes a problem as an inconsistency between

conditions. In this manner, problem solving can be described as a search for a

solution through a problem space.

A problem space is a collection of different solutions of the problem (goal

states) and operators. To be more specific, states of problem space represent

situations, problem space operators are the synthetic actions, and motor com-

mands are the primitive actions. There is an initial state, representing the initial

situation and a set of desired states that represent the goal. An operator, when

3.3. PURE ARTIFICIAL INTELLIGENCE ARCHITECTURES 59

applied to a state in the problem space, yields another state in the problem space.

The goal is completely achieved when a desired state is reached as the result of

a sequence of operators starting from the initial state. Thus, each goal defines a

problem solving context (context for short) that contains, in addition to a goal,

roles for a problem space, states and operators [102].

These selectable decisions influence some objects, such as objectives, problem

spaces, states and operators. They ensure changes of contents in the declarative

working memory (a set of objects and preferences about an object). In the prob-

lem space level, there is a variety of problem spaces that are in a task. Therefore,

there are several operators that are used to solve the problems in the correspond-

ing space inside of each problem space.

Long-term Memory

During the elaboration phase, each problem solving or decision making

searches for a goal. This implies that all content of long-term memory is stored

in a recognition-based memory and further encoded as productions. The memory

will be accessed to retrieve new objects, new information about existing objects

and preferences. The decisions selected to solve the problem will become the

base to the learning. Productions are simple IF...THEN... rules that test some

working memory conditions and retrieve the contents of these actions when a

pattern is successfully matched. By sharing variables between conditions and

actions, productions can retrieve information, that is, a function of what was

matched. By using variables in actions that are not in conditions, new objects

can be generated/retrieved. In this sense, a sequence of synchronous cycles

(matched productions) are fired in parallel until no more rules can be fired. The

productions fired during this phase do not change the working memory content,

merely create references of those changes and generate effects to actuators.

SOAR long-term memory is impenetrable, which means SOAR system cannot

examine its own associations directly [102].

Short-term or Working Memory

SOAR supports operations of working memory contents, proving direct

access to the relevant knowledge by triggering production rules to solve the

problem at hands. A single knowledge access consists of a single cycle of

elaboration, during which all of the successfully matched productions are fired

in parallel. The single access result is the content of working memory with

additional information.

60 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

Figure 3.10: Structure of memories in SOAR as proposed in [102].

The interface is responsible for extracting sensory information from environ-

ment with the purpose of feeding the inference machine, and send to the envi-

ronment the actions (perceive, sense, think and act) were selected by inference

machine.

Decision Cycle and Goal-Directed Behaviour

Elaboration proceeds in a sequence of synchronous cycles, during each

of which all successfully matched productions are fired in parallel. When no

more productions can be fired in a cycle, a decision procedure is invoked to

search for a specific object in a role in a context. The object will become the

current value of the role if the preferences uniquely specify it. Additionally,

impasses can occur when the available knowledge to the problem are either

incomplete or inconsistent to perform the basic functions in problem solving. In

this case, the system does not know how to proceed. To solve these impasses,

SOAR provides a refinement of the goal.

Refinement of a goal into a set of independent sub-goals is another manner to

minimise the complexity. Refinement uses a full recursive hierarchy function to

automatically generate a sub-goal and associated it with problem-solving context.

Thus, generation, selection, and application of a set of operators, which jointly

accomplish the goal, can decompose a goal.

3.3. PURE ARTIFICIAL INTELLIGENCE ARCHITECTURES 61

Impasses vary from selection problems (problem spaces, states, and opera-

tors) to problems of generation (operator application). The process of sub-goal

generation is interrupted when an impasse is solved. Consequently, sub-goals of-

fer another opportunity to learn, generating new rules in a problem space. The

actions of new productions are based on the results of the sub-goal.

Perceptual-Motor Components

SOAR perceptual-motor behaviour is mediated through the state in the

top context [247]. Each perceptual and motor system has its own field in the

state. Perceptual systems behave by autonomously adding perceived information

to their fields of the top state. Therefore, information is available for examination

by productions up and further overwritten by later information arriving from

the same system. Inside of the working memory, perceptual information acts

just as if it were retrieved from memory. Motor systems behave autonomously

executing commands that are set (by the firing productions) in their fields on

the top state.

Chunking

SOAR learns by including new productions, a process called chucking [131].

Chucking is a general learning mechanism able to create new rules to avoid

impasses in the future.

In his book [168], Allen Newel refers the main properties of chunking as fol-

lows:

• Converts goal-based problem solving into productions,

– Action: based on the results of the sub-goal;

– Conditions: based on the pre-impasse situation.

• Chunks are active processes (productions), but not declarative data;

• Chunking is a form of permanent goal-based caching;

• Chunks are generalisations implicitly ignoring whatever the problem solving

ignored;

• Learning occurs during the problem solving, and chunks become effective

as soon as they are created;

• Chunking applies to all impasses, hence all sub-goals,

62 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

– Search control, operator implementation, whenever knowledge is in-

complete or inconsistent.

• Learning only what the system experience,

– Total problem solving system is part of the learning system;

– Chunking is not intelligent per se, but a limited mechanism.

• A general mechanism to move up the preparation-deliberation.

All learning in SOAR uses the chunking mechanism. On the one hand, the

learning is autonomous and does not intervene with other parallel activities. On

the other hand, there is no simple command to be used to record a declarative

track. In this kind of learning system, after an impasse is resolved, the fact

previously called returns a result to a super-goal.

The learning engine has no possibility to improve itself by including knowledge.

Nevertheless, the chucking mechanism ought to receive new knowledge for future

resolution of problems. Particularly, the quality of future behaviours learned

could be improved by acquiring knowledge that changed in sub-goals occurrences

and change what was learned.

3.3.1.2 SOAR applications

SOAR has been successfully applied to many domains, such as agents for synthetic

battle spaces simulation and computer games.

The TacAir-SOAR [236, 172] represents a generic automated pilot agent for

battle spaces simulation environment. The pilot agent was planned using the

SOAR integrated architecture [210, 209]. The pilot is an automated agent spe-

cialised by means of parameters and domain knowledge. The automated pilot

includes a variety of important capabilities: goal-driven and knowledge, intensive

behaviour, reactivity, real-time performance and so on. TacAir-SOAR pilots have

already successfully participated in constrained air-combat simulations against

expert human pilots2. Nonetheless, TacAir-SOAR is the first AI system to have

participated directly in an operational military exercise [209].

SOAR is being also devoted to computer games research. For example, SOAR-

based Quake bot [240] has an Artificial Intelligence Engine around the SOAR

Artificial Intelligence architecture [126] that attempts to incorporate some of the

missing human players capabilities, such as goal-oriented and multi-step look-

ahead techniques. This bot is distinguished by its ability to build its own map

2It was provided by ModSAF [34], a distributed simulator that has been developed commer-
cially for military purposes.

3.3. PURE ARTIFICIAL INTELLIGENCE ARCHITECTURES 63

to use a wide variety of tactics based on its internal map, and in some cases, to

anticipate enemy’s actions. The bot uses a dynamic hierarchic task decomposition

to organise knowledge and actions. It also uses internal predictions based on its

own tactics to anticipate its opponents actions [127, 128].

3.3.1.3 Conclusions

The SOAR architecture attempts to encode the general human intelligence in

small sets of basic decision-making mechanisms and representations. As a top-

down approach, the architecture can perceive environment changes, learn the

facts, remember similar situations, and decide the best agent goal by logical

reasoning.

SOAR system was designed to extract implicit information from simple situ-

ations, and to reason about goals. SOAR requires either representing some goals

implicitly or forcing unrelated goals into a single hierarchy [107, 88]. In addition,

sub-symbolic I/O is not supported.

A problem that affects the SOAR learning process is the use of a single goal

hierarchy. This approach produces over generalisation of chunks, and makes them

expensive chunks. Effectively, the hierarchy performs few rules in fast simulations.

Conversely, some catastrophic collapses can occur in long simulations, where a

large set of good rules may be lost. Symbolic models are limited to maintain long

simulations updated. Fortunately these lost rules are acquired again, but the

price is instability of the hierarchy defaults. It is one of the most serious problems

found in SOAR. Furthermore, as all symbolic systems, the representation of an

object can scale-up as the size of the knowledge base increases. Other negative

point is that small decision rules represent a huge effort to SOAR.

Although SOAR has a high-level inference machine that constantly operates

in a decision cycle (perceive, think and act), there are some problems to this

theoretical approach. Sometimes “thinking”, is not needed but reactivity would

be the best answer. For instance, one problem could determine how to allocate

attention to features, depending on the task. Complex environments involve a

very large number of features, and some allocation of attention is required to

focus on the critical or most diagnostic features. The allocation of attention

needs to be learned from experience for each type of inference task, and current

SOAR exemplar models have failed to provide such a learning mechanism. One

last problem is that they fail to account for sequential effects that occur during

training. This failure results in systematic deviations.

64 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

3.4 Cognitive-based Artificial Intelligence Architectures

In a cognitive process, a decision-making route of beliefs or desires is fired to

produce actions for emerging behaviours in agents [251]. A cognitive strategy

takes advantage of known facts to improve a strategic plan to accurately achieve

its goals.

We now describe the well known cognitive agent architectures, showing their

most promising features and processes to build cognitive agents.

3.4.1 Subsumption Architecture

A Subsumption Architecture (SA) [28] is a hierarchic structure of distributed task-

accomplishing behaviours used to control agents. The conception of the architec-

ture was inspired in decentralised and paralleled reactive structures of primitive

nervous systems. In his paper entitled Elephants don’t play chess, Brooks [30]

presents interesting ideas about the emergence of complex behaviours without

learning in the process.

The main characteristic of a SA is the rational behaviour without explicit

knowledge representation. Differently from traditional symbolic systems, Brooks

argues rationality emerges from the result of interaction between reactivity and

environment [31], and not from symbolic representations and their features (world

model, and a shared global memory), nor logic reasoning techniques so commonly

used by the centred approach. His technique avoids update of short-term or long-

term memories because the response to stimuli is purely reflexive. Reflexive

responses provide real-time actions between sensors and actuators in complex,

dynamic and unpredictable environmental situations. As Brooks says, “The world

is its own best model” [31].

3.4.1.1 Description of the Architecture

SA remodel the orthodox basis of the horizontal deliberative scheme, from the

sequence sense-model-plan-act, Figure 3.11, into a vertical parallel ed model with

layers of control, Figure 3.12.

In a SA, each layer only uses sensory information necessary to command the

actuators, and it is filled in with a behaviour module that processes information

coming from sensors to perform specific tasks. A behaviour module is a Finite

Automata Augmented with timers (FAAt) [28]. Timers enable state changes

after pre-programmed periods of time. Each independent and specialised FAAt is

intended for a specific task (avoid-obstacle, go-home, follow-light, . . .), and FAAt

can be defined by several levels of abstraction (go-one-step-ahead, go-ahead, . . .).

3.4. COGNITIVE-BASED ARTIFICIAL INTELLIGENCE ARCHITECTURES 65

Figure 3.11: Traditional sequence of sense-model-plan-act as defined by [28].

Figure 3.12: An approach based on task-achieving behaviours as defined by [28].

Each input and output of FAAt can inhibit other FAAt of low priority, in the

same form that stimulus-response can be inhibited by other active FAAt. FAAt

is manually implemented as follow: input and output signals; a limit of states;

one or two internal registers; one or two internal clocks; and a simple calculus

machine, such as vector sum. These behaviour modules are fired by input signals

load from agent sensors and/or from other behaviours, and sent to the agent

actuators or to other behaviour modules (stimulus-response).

The organisation of layers is based on a fixed behaviour-based priority scheme

from bottom to top. Each layer operates asynchronously and always pays atten-

tion to its sensory readings and acts accordingly. In the hierarchic scheme of

behaviour modules, the lowest layer performs actions that are not seen by lay-

ers above it. Consequently, upper layers can subsume lower layers by its own

commands, deciding which behaviour must be triggered in each moment.

Agents controlled by SA are fully dependent of their sensors to decide the best

course-of-action [233]. The stimulus-response technique interacts physically with

their surroundings. Brooks argues that the best way to produce“intelligence”and

66 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

adaptive behaviours is from the combination of simpler, underlying behaviours.

Thus, agents can perform their tasks autonomously based on reactive features.

For instance, an agent can go from point A to point B without any knowledge

concerning path planning by performing simple tasks. Figure 3.13 shows a robust

architecture that subsumes commands from layers directly underneath when they

wish to take control of an autonomous agent. In order to control and avoid

conflicts, the architecture subsumes commands from layers directly underneath

when they wish to take control.

Figure 3.13: Brooks’s Subsumption Architecture as defined by [28].

This example of hierarchic multi-layered structure is filled by specialised

FAAt’s that minimise the scalability problem typical of a central unit architec-

ture, consequently reducing one of the biggest problems in implementation of

behaviour tasks. Fault tolerance is also another robustness of Brooks’s archi-

tecture because if any layer breaks down, this fault will not collapse the entire

structure.

The mechanism used to resolve conflicts between competing or conflicting

behaviours between layers, in its fixed topological network of simple FAAt, is the

Hormone Activation System (HAS), Figure 3.14. HAS controls the behaviour by

inhibiting or suppressing signals. This gives each level its own“rank of control”. It

is designed to modulate the agent behaviour by thresholding the layers of FAAt’s

and preventing the activity of those levels below the threshold.

Figure 3.14: The Hormone Activation System.

The most important aspects of this hormonal mechanism are the adequate

integration of many different modules made of low-level behaviours, and when

higher-level behaviours dictate orders (suppressing) whenever a low-level response

3.4. COGNITIVE-BASED ARTIFICIAL INTELLIGENCE ARCHITECTURES 67

is not needed. Therefore, FAAt’s can be inhibited by the presence or absence of

a hormone, allowing for higher levels to subsume the function of lower levels. In

[31], Brooks refers that the activation system was inspired by the animal hormone

systems. However, the abusive use of HAS can increase the size of the system

linearly, endangering all structure [254], which is one of the unsolved problems in

SA.

3.4.1.2 Deployment

The SA approach contributed for the development of the third generation of

robots, called “intelligent robots”. Based on SA, Brooks developed a six-legged

robot called Genghis that provides a useful metaphor for understanding the func-

tional architecture of insect nervous systems [29].

Allen was another “Brooksian” agent. The Allen architecture [28] is one of

the most well known, and it is shown in Figure 3.15. In layer 0, the agent avoids

stationary as well as dynamic obstacles that may appear in the environment. In

layer 1, the agent randomly wanders around aimlessly without hitting obstacles.

In layer 2, the agent explores the environment with its own sonars.

In layer 0, obstacles are avoided. In layer 1, the robot controls the progress

and sends updated commands to the actuators. It is interesting to note that

there is no conscious memory about the obstacles that were avoided. In layer

2, the robot visits places, which were not defined by Brooks. Each layer has a

fixed scheme of finite state machines combined through suppressor and inhibitor

mechanisms. These mechanisms are activated by messages or world state changes.

Other experiments like Attila, Herbert, Tom and Jerry, Seymour, COG and

ATLANTIS have used Brooks’s approach as described in [30].

Many additional extensions have been implemented in Brooks’s architecture.

Most of them were made by Maes [140], Mataric [143, 144, 145], and Firby and

Slack [75]. The main point was to improve new capabilities of behaviours in reac-

tive systems. The capabilities developed were [144, 146, 79]: object detection and

map building, planning and learning to walk, collective behaviours with homoge-

neous agents, group learning with homogeneous agents, and heterogeneous agents.

Latter on these extensions would be known as behaviour-based capabilities.

3.4.1.3 Conclusions

Simplicity and real-time performance are two features adequate to control agents

in static, dynamic and unknown environments as argued by [233]. Thus, Brooks’s

architecture characteristics focus on reactive and modular organisation. The

monolithic decision making controller was divided in layers with a priority scheme

68 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

Figure 3.15: Allen Architecture. Reproduced of [28].

to achieve complex behaviours, that is, higher priority behaviour subsume the

output of behaviours implemented beneath.

The absence of an inner world-model does not prevent the agent navigation.

On the contrary, a fast navigation is one of the best features obtained by sub-

sumption agents. Unfortunately, it is well known that finite state machines need

to be implemented manually one by one. So there is a strong need for more and

more modules, which could become a bottleneck in the proposed architecture. In

addition, behaviours are fired by internal or external conditions and maintaining

all modules is necessary. Additionally, the inflexible architecture proposed in SA

prevents the progress of system migration to another agent in other environment.

Consequently, the SA architecture does not offer the expected adaptability.

The Subsumption Architecture does not use cognitive operations involving

representations, neither performs complex analysis of its sensory data or adapts

its behaviours to become prepared to respond, unless the agent had sufficiently

knowledge to perform such tasks. Conversely, beliefs, desires and intentions can

be achieved, as was explained before.

3.4. COGNITIVE-BASED ARTIFICIAL INTELLIGENCE ARCHITECTURES 69

Brooks also claims that rationality should not be seen as a computational pro-

cessing, where a input produces a processed output. Rationality, claims Brooks,

is so complex and simple at the same time as the interaction between agent sen-

sors and the world. On the one hand, sensory input devices are rich enough for

them to uniquely decide the next best action, without resorting to an internal

model of the world state. On the other hand, agents will depend entirely of the

world state to obtain the next “decision”. It is well known that sometimes the

current world state is not sufficient to provide a “decision” about what to do next.

Another problem occurs when enforcing sensorial information to be processed

in separate channels. Separate channels reduce the possibility of unifying redun-

dant evidences that could be used to estimate behaviours more accurately. A

benefit could be to allow the interchange of sensory data among modules. As a

result, the architecture would not have an overload of a full environment state.

One last problem is associated with fixed behaviour-based priority scheme com-

bined with movements of avoidance obstacles by a military vehicle, as cited in

[176]. The SA solved the problem linking the output of the lower level with the

entrance of the upper level. Unfortunately, this successful solution compromises

the parallelism of the SA and its benefits. Because a parallel architecture cannot

enforce upper layers to wait for the output of lower layers.

3.4.2 PyramidNet Architecture

The PyramidNet Architecture [204] was proposed by Mauro Roisenberg, as a

modular and hierarchic approach composed by Artificial Neural Networks (ANN).

The architecture was both inspired on Brooks’s Subsumption Architecture [28]

and hierarchic nervous structure of some animals. This connectionist architecture,

in fact, was induced from modules both arranged in vertical and horizontal levels.

These levels allow an increasingly complex behaviour structure [193].

Using the connectionist approach to be closer to biologic plausibility, Roisen-

berg’s research has been focused on the simulation of many survival biologic

behaviours [204, 206]. Unfortunately, the scalability problem arises when a large

variety of behaviours need to be emerged from a unique ANN. A solution was the

modularisation and hierarchy (distributed computing) proposed by Brooks [28]

to solve the scalability problem and achieve expected agent responses.

The main feature of the PyramidNet Architecture is its robustness and flex-

ibility to support different behaviour modules arranged in an hierarchic form.

The information flow follows the bottom-up learning, that is, from reactive to

deliberative behaviour in order to generate agents decisions. The advantages of

using modules and layers arranged in an hierarchy is that each module has a

specialised function, a minimisation of mutual interference and execution among

simultaneous process. The use of ANN can represent many advantages because

70 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

it supports high noise immunity, fault tolerance and programming by examples

[185].

3.4.2.1 Description of the Architecture

Inspired also on the modularity of human brain, and based on Brooks’s approach

[28], the PyramidNet arranges the modules in a pyramidal form to explore the

vertical and horizontal approaches. In the horizontal approach, homogeneous

ANN modules populate each level. Consequently, the parallelism of layers, in the

vertical approach, is used simultaneously to trigger heterogeneous behaviours.

These mixing of approaches allows different tasks to be performed at the same

time. These levels of function represent subsequent clusters of ANN and remind

us of the book The Society of Mind written by Minsky [155].

Figure 3.16: PyramidNet architecture as specified in [185].

In the base of the pyramid, at the effector level, plain or reflexive behaviour

modules can be found exploring the straightforward performance. Static ANN,

such as Feedforward ANN, model the behaviours. Additionally, complex be-

haviours are modelled by recurrent neural networks that are set on the top of the

pyramid [204, 185], Figure 3.16.

The PyramidNet approach arranges levels in a bottom-up fashion, and divides

the levels of complexity into incremental functionality to support adequately a

large variety of behaviours without decreasing the performance. The idea focus

on many cases where ANN modules are used to perform processes in different

periods or a same process will be performed for many modules “in the same” time

in distinct and functional areas of the brain [194].

The communication between levels and modules is implemented using mul-

tiple paths of internal connections. The vertical approach can be compared to

3.4. COGNITIVE-BASED ARTIFICIAL INTELLIGENCE ARCHITECTURES 71

a brain when executing different behaviours simultaneously, where an intrinsic

parallelism occurs with different sorts of information. The process course hap-

pens in a serial way, that is, the functions of different hierarchical modules are

accomplished in a same functional layer and the processed information can be

reviewed to the posterior hierarchic layers [196]. Thus, the hierarchic structure is

flexible enough to be extended with more behaviour or levels in accordance with

complexity of a problem to be solved.

3.4.2.2 Experiments

The experiments that follow were developed using the PyramidNet tool [185].

This tool has been successfully used to plan examples of PyramidNet architecture

with integration of various independent ANN subsystems, providing a robust

“nervous system” [192].

In order to assess the robustness of the architecture and feasibility of the tool,

two different experiments were carried out, as follow:

• “Container Capturer”: emergence of behaviours in a dynamic environment;

• “Follow Wall - Search Recharging Point”: connecting heterogeneous learning

modules, and emergence of complex behaviours.

First Experiment: “Container Capturer”

In order to show the emergence of autonomous behaviours in an agent,

PyramidNet architecture was used as the backdrop support. The main intention

of the agent was to identify and collect specific objects (container) in a dynamic

environment. The robot Lego MindStorm [135] was used as the agent body, and

the environment was carefully prepared to be unpredictable as possible. We

refer the reader to [196] for more detailed information.

Figure 3.17 shows a structure composed by two layers. The lower layer per-

forms basic tasks, such as backward movements, looking around and forward

movements. The upper layer performs complex decisions about continuously

searching for containers, retreating for wrong containers, and pushing wrong con-

tainers out of arena.

Figure 3.18 presents the architecture proposed. The learning module, Stereo-

typed Network, uses FeedForward ANN topology trained with the Backpropaga-

tion algorithm to achieve simple behaviours. This module receives signals from

sensors and sends data to the Reasoning Net module (at the second layer). The

Reasoning Net module, uses Recurrent ANN to decide about detected events in

72 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

Figure 3.17: A global view (sketch) of Behaviour Task Plan.

Figure 3.18: The diagram of Behaviour Task Plan - designed in PyramidNet tool.

the first layer and transmits them to first layer and overlapping it. The Tem-

poriser Net module, uses FeedForward ANN topology trained with the Back-

propagation algorithm to solve conflicting decisions. Finally, the Control Motor

Net module, uses FeedForward ANN topology trained with the Backpropagation

algorithm to control the tracking motors from superior layer.

Second Experiment: “Follow Wall - Search Recharging Point”

In the second experiment, a Khephera robot was used as the agent to

test the theory about emergence of complex behaviours. The environment was

carefully prepared to explore all behavioural characteristics of the architecture.

In this project, the Lego agent wanders in an environment until the battery has

no energy. The agent objective is to find a recharging point and wander around.

For more details concerning the project we refer the reader to [196].

The architecture shown in Figure 3.19 is composed by eight sensors (from A

3.4. COGNITIVE-BASED ARTIFICIAL INTELLIGENCE ARCHITECTURES 73

Figure 3.19: The “Follow Wall” and “Search Recharging Point” diagram.

to H), a Perceptron (Perc), two actuators (LM, RM), and nine Artificial Neural

Networks: Sensory Follow Wall (RSSP); Sensory Distance (RSD); Sensory En-

ergy (RSE); Control Follow Wall (RCSP); Control Energy (RCE); Walk Energy

(RME); Walk Distance (RMD) and; Motor Controllers (TM).

The Khepera default behaviour modules, presented in Figure 3.19, are: wan-

der in the environment, measure the wall distance, detect obstacles, and detect

light direction. Two recurrent ANN receive their inputs from these previous Feed-

Forward ANN and from the recurrent Perceptron that simulates the low battery.

3.4.2.3 Conclusions

PyramidNet architecture uses a connectionist approach to emerge complex be-

haviours in agents. In order to develop a robust architecture and minimise the

scalability problem, interconnected modules compose the structure of pyramid.

Based on a parallel and hierarchic distribution of behaviour modules, Pyramid-

Net architecture follows the same modular principle. Therefore, PyramidNet

architecture is composed by multiple layers, each layer with a function. These

layers of function represent subsequent clusters of modules that are arranged in a

hierarchic way, allowing emergence of more behaviours [193]. This biologic plau-

sibility can be compared with a nervous system. In fact, our nervous system has

74 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

a hierarchic structure. For example, control of human skin temperature does not

depend on the central body control [121].

Artificial Neural Networks usually achieve good generalisation, that is, they

respond correctly to inputs they have not seen. Unfortunately, there are some

disadvantages, such as the absence of a methodology to build agents, the difficulty

to develop an automatic learning technique, and the need of a large quantity of

environmental information in order to receive good and tuned responses. Addi-

tionally, an architecture only made of ANN can offer imprecise general answers

when logic is required. For instance, an exact output of a mathematic expression

is difficult to obtain using ANN. Other point is although ANN were deeply fo-

cused in brain mechanisms and biologic nervous system, PyramidNet architecture

does not explain how the mind works, but makes some speculations.

3.4.3 Minsky’s Approach and“The Society of Mind”

Minsky’s approach addresses the modelling of how mind works and he suggests

that intelligence was emerged from non-intelligence. In his book called The Soci-

ety of Mind [155], Minsky did not follow the “basic AI principle” from which all

cognitive phenomena in some way was emerged. Instead, Minsky suggests that

the construction of mind was only possible from many small-specialised cognitive

processes or agents working together.

The strength of Minsky’s approach is on taking the perspective of the mind as

a society of heterogeneous agents representing different processes. Consequently,

the emergence of “true” intelligence happens by real formulation of mind as a

society of agents without full knowledge of each other.

Agents are small pieces of specialised mindless entities of machinery with more

autonomy than traditional modules or procedures. They do not need of higher

level nor a structured hierarchy to cooperate with. The main idea is that agents

interact with each other to build a large system called Society of Agents (see

Figure 3.20).

According to Minsky, thinking and other mind abilities emerge from interac-

tion among these agents. This heterogeneity establishes agents with their own

distinct objectives, such as language to describe things, ways to represent the

knowledge, and methods to produce results with efficient solutions.

Minsky modelled the human cognition as a complex system composed by

several societies partially autonomous called (partial) mental states. For instance,

suppose that society of mind performs tasks like an administrative organisation.

In the highest level of this organisation, general divisions are established, such

as sensory processing, long-term planning and so on. Inside of each division,

there are sub-specialised agents, made of small elements of specific knowledge

3.4. COGNITIVE-BASED ARTIFICIAL INTELLIGENCE ARCHITECTURES 75

Figure 3.20: A society of interconnected agents according to Minsky [155].

and methods. Each agent knows nothing about itself, except that it recognises

communication connection sets, and answers if its states are changed. The size

of the society can be enlarged or reduced for each mental activity according to

the need for more or less agents.

The variation of mental activity can result in hierarchies and bureaucracies,

specialisation or other social arrangements. Generally, heterogeneous societies

are more complex to control, but are robust to support a huge set of tasks. For

instance, an analogy can be made with human immunological system, where each

agent of immunological system is in a specific society. A large quantity of agents

when combined to activate or not other immunity agents when needed, they can

produce an amazing immunological system.

3.4.3.1 Description of the Approach

Minsky’s approach addresses the highly evolved and very complicated human

mind with different types of basic processing units working together as an agency.

These basic processing units are now described.

K-lines or knowledge-lines perform a search in the past for similar solutions,

when confronted with problems of a similar nature. A K-line agent has the po-

tential of finding solutions to problems, which have a variable input, and which

in the non-AI approach demand a variety of algorithms (depending on the input)

in order to be solved efficiently. K-line agents connect with other K-line agents

by connection lines. They are activated to assemble in cascade small informa-

tion units. Eventually, K-line agents build their own societies to emerge specific

abilities inside the mind.

76 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

Neme and Nome are two instances of K-line, respectively data and control line.

Neme describes an agent output that represents a fragment of an idea or mental

state. This example of agent invokes representations of how the environment

and the learning coming from experience could be represented. Nome is other

example of agent that affects an agency by its outputs, looking after the control

of how the information is represented, processed and worked.

Polyneme and Microneme are two subtypes of Neme. Polyneme arises incom-

plete states within multiple agencies, where each agency is involved with repre-

senting some different aspect of a thing. For example, recognising a chair arouses

a “chair-polyneme” that invokes certain properties within the colour, shape and

other agencies to assemble mentally the experience of a chair, as well as it brings

to mind other fewer sensory aspects such as the cost of a chair, places where

chairs can be found, the kind of situations in which one might use a chair, and

so on. Polynemes support the idea that a distributed way across multiple repre-

sentations is the best alternative to express meaning of things. In the same line,

Micronemes provide contextual signals of global connection for all agencies. It

also describes dedicated aspects that are hard to be explained by words, like con-

cepts partially determined, such as specific smell, colours, shapes and intuitions;

aspects of current moment that are difficult to be linked to any particular object

or event.

Nome has been divided in three subtypes: Isonome, Pronomes, and Paranome.

Isonomes interchange messages among different agencies in order to perform the

same kind of pattern achieved by a cognitive task. For instance, they can re-

quire a set of agencies to save their current states to short-term memory in other

to be read in a different situation, or then require it to begin the training to a

new long-term K-line memory to copy the current state, or ever require them

to imagine/visualise consequences of a certain action. Pronomes are Isonomes

that control the use of representation of short-term memory. A Pronome is fre-

quently associated with a specific function in a large situation or event, such as a

localisation of an event previously occurred. Pronomes can link to specific kinds

of agents that are in short-term memory allowing to record only specific kind of

knowledge, such as place, shape or path. Other Pronomes can be used as general

purpose and achieve the majority of agencies in the brain. Minsky calls them

“IT” because the big quantity of connections are required to be modelled. Para-

nomes coordinate the use of multiple representations. For instance, a Paranome

could be connected to Pronomes that would be connected to two other different

representations, one in terms of an egocentric or centred body that coordinates

the system and other in terms of an external or third person that coordinates the

system.

An active agent K-Line records the current activities. If the system suddenly

receives a similar problem to be solved, this society previously formed will have

3.4. COGNITIVE-BASED ARTIFICIAL INTELLIGENCE ARCHITECTURES 77

a previous solution and a starting point to solve it. This recompilation process

of agents activated in that moment in mind, the experience acquired from the

solution had included: memories of false initial points, sudden discovery, sorts of

strategies to solution of problems, sorts of knowledge, sorts of subjects, memo-

ries of particular experiences and other links that had previous origin from past

experience and that can help the system solve a problem.

Frame is other important element in the society of agents. Frame represents

a package of information that helps agent recognise or understand something. A

package of information can be built from Pronomes that control the connections

to the port. When a frame is called, Pronomes start their relations to call partial

description of aspects of something that is being described. Thus, the frame

represents situations and discovers pathways to typical problems.

Memory is a network of Frames interconnected with common Pronomes. Each

Frame is linked to each known concept. Each perception selects a frame and

classifies the current situation into a category, in which it will be adapted to

that situation. Frames offer computational advantages because they focus on the

rationalisation of information in some situations. They are biologically plausible

because they do not divide cognitive phenomena - phenomena like perception,

recognising, rationalisation, understanding and memory.

3.4.3.2 Problem Solving

In order to solve some problems in a society of agents, problem-solving agencies

ought to be organised at every level. A difference-engine is a goal-driven problem

solving method. In the difference-engine, agents work together to minimise the

difference between current and desired states of affairs as a typical means-end-

analysis approach. The agents try to improve by invoking K-lines that turn on sat-

isfactory solution methods. Inhibitors and suppressors are also used to attenuate

the competition among agents [223]. Minsky explains in his book that inhibitors

represent mental activity that precedes unproductive or dangerous actions, and

suppressors suppress those unproductive or dangerous actions themselves [156].

3.4.3.3 Communication

An agency is made up of several interconnected agents interchanging signals

among them by a communication line to represent knowledge. In order to under-

stand the signals, agents shall agree well enough on the meanings of these signals,

that could be “words” or other representational-construction operations [223]. In

this context, agents can activate a Polyneme to arouse agents that “think” about

some particular things (object, event, or situation), or it may activate Micronemes

that trigger other agents to “think” about some general context.

78 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

3.4.3.4 Experiment

Minsky’s approach is a highly speculative theory about how mind works, and how

we can build a similar mind with a machine. In his book titled “The Society of

Mind”, Minsky documented all the process to decompose the human mind into a

society of independent but simpler agents organised in levels.

Despite the great popularity of his book, there have been few attempts to

implement the proposed theory. The main problem is the amount of fragments

and many conceptual levels at his theory. While some tasks sounds simple to be

modelled, in practice it is too complicated.

In all of the papers presented in his book, Minsky does not offer a detailed

specification of the theory, but rather takes a higher-level perspective. Moreover,

the “micro word” idea has been proven to be extremely scaling-up in practice.

It has been written (programmed) by so many students, and the system was so

large that no one could follow it because of its complexity, and it was abandoned

in 1971.

It is well noted that the notion of decomposing complex processes into or-

ganised subsets of simpler pieces of semi-autonomous software were not really

introduced by Minsky, as well as the notion of organisation of elements in a hier-

archical form, and the consequent organisation that impose on the control of the

system. Both of these ideas have a long and distinguished history in cognitive

science, and can be found in [152, 222].

3.4.3.5 Conclusions

The Minsky’s theory presents us the opportunity to understand the mechanisms

of mind. In his approach, agents perform their tasks accurately, but they per-

form their conscience less tasks. Minsky proposes that a large-scale cognitive

architecture emerges intelligent actions from a diversity of non-intelligent agents

arranged in an organisational bureaucracy, and behaviour imposes coherence to

experience.

The biologic plausibility that Minsky claims is associated with millions of cells

in the human brain. Each one complicated by itself, and arranged in a massive

and connected network. In general, each neurone represents a simple processing

unit (or a sub-specialised agent) that receives signals from other neurones. De-

pending on such conditions, agents transmit signals to a set of other neurones in

neighbourhood. Consequently, the complexity of human cognition emerges from

these network of interconnected neurones.

Minsky claims that intelligent machines can be implemented if we are able

to mimic the nanoengineering of mind. Thus, Minsky assumes that every cell

3.5. MULTI-AGENT SYSTEMS 79

of a human brain could be changed by a simple processing unit with purpose of

performing the same functions and linked to other.

In conclusion, Minsky answers that anyone can build a mind since there are

small elements, each one independent and unconscious. It is our opinion that

Minsky’s theory is a good starting point for a materialist treatment of the problem

of consciousness, but many more new ideas will be needed.

One interesting point to note in this theory is the similarity with Simon’s

book [221] and Braitenberg’s book [26]. Both of these books advocate that simple

systems on the presence of other simple systems, when set in a complex environ-

ment, they can produce complex, fascinating, and extraordinary phenomena.

3.5 Multi-Agent Systems

Distributed, open, and large-scale organisations, modelled as systems composed

of many agents, have received attention in research community. These organi-

sations involve various open challenges of monitoring geographically distributed

and interdependently built multiple agents.

Multi-Agent Systems (MAS) is a powerful research area that investigates com-

plex social phenomena. MAS is based on idea of a set of autonomous agents

goal-oriented interacting with each other by communication protocols, and in a

dynamic environment. Therefore, interactions can also result in many behaviours.

Agents use events to interact with each other directly or using the environment

[68]. This social interaction is the main factor to emerge intelligence in the com-

plex systems [173].

In the MAS area, the major research interest is coordination of behaviours in

agents. A MAS coordination offers guarantees that the agent community will act

coherently, that is, must be present when agents are dependent with each other

to achieve a global goal. If there is no dependency, agents can share information

among other agents that can be useful at that time.

This thesis is not driven to study of behaviour in a community. On the con-

trary, the main goal of this work is limited to the development of a robust agent ar-

chitecture without social behaviour but capable of performing autonomous tasks.

We focus on the emergence of intelligent behaviours by interchange of signals

among homogeneous or heterogeneous algorithms. We believe this kind of archi-

tecture supports a general and promising representation of knowledge from differ-

ent behaviour modules. We also believe the architecture will provide answers to

the questions of how sensory input and current agent state can determine future

actions based on its internal states.

80 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

3.6 Meta-Architecture

A major drawback of traditional autonomous agent architectures rely on two

main factors. First, monolithic cognitive agent structures that cannot be fine

tuned to interact in a new environment by the designer nor by itself. Second,

new functionalities cannot be extended because it is hard to be understood. In

order to emerge dynamic and self-adjustable behaviours, agents should have a

flexible structure made of modules in which the agent should decide (balance) its

own performance by activating or not some parts of its own structure easily.

The architecture should support inner modifiable behaviours. Thus, agents

should control its own internal states whether new or different runtime activities

are required.

To observe and tune its own (autonomous) behaviour, agents use what we call

a “self-modelling” feature, that is, reasoning about and acting upon itself. The

modules are planned in design phase, but pragmatically, some will arise later in

other strategy-level decision, which have their place in the meta-architecture.

Meta-architecture in software engineering is a new paradigm, which drives de-

signers to reason about easily maintainable systems. Meta-architecture separates

functional from non-functional code. Functional code is concerned with computa-

tions about the application domain (base level). Conversely, non-functional code

resides at the meta-level, supervising the execution of the functional code.

Meta-architecture is arranged in the highest level of the structure. It provides

the guidance to the system structure, rather than the higher level of abstraction

(conceptual architecture) or detailed one (logical architecture).

The meta-architecture of an architecture is itself an architecture before its con-

ception, which does not prototype a concluding application but an architecture

[225]. Self-modelling of a meta-architecture uses architecture to define another

architecture, and for that reason, meta-architecture provides the basic modelling

of components that describe a particular system, called architecture. To Arti-

ficial Intelligence, a meta-architecture level offers a new way to produce agent

architectures with only one architecture, where a structure of an agent can be

migrated into other.

The main purpose of meta-architecture is to guide designers in advance on

planning of a system structure. Decisions about components were made by de-

signers during system structure design, and it can be viewed as a key part of

meta-architecture.

Typically, a meta-architecture creates a small number of system concepts that

are effective, that is, the meta-architecture has built-in a collection of high-level

decisions (strategies) working together. The high level establishes open system

3.7. CONCLUSIONS 81

Figure 3.21: A Meta-architecture model of an architecture is itself an architecture.

architectures. The set of system concepts will shape the architecture, and strongly

influence architects to deliberate about the structure of the system.

Deliberation is the key concern for an architecture strategy. Architecture strat-

egy supports the operational strategy, and indicates how the technical strategy

will be implemented. In order to set the right decisions, the preliminary deci-

sions about the system, and in particular the definition of system scope should

be taken.

Designers are who understand the system context and establish goals that the

architecture will support. They also design the system, encoding an operation

strategy into a technical strategy (meta-architecture), and leading the implemen-

tation of the technical strategy. The compilation of the architecture encodes

deliberative reasoning into mechanisms of response more efficiently. The opera-

tion strategy establishes what capabilities are necessary to build or improve the

high level objectives. The architecture objectives to establish how technology will

be used to deliver these operation capabilities, setting direction for the architects

and development community.

3.7 Conclusions

Before choosing the architectural style of any agent, designers have to have in

mind a careful analysis of the problem and environment. Designers should have

in mind that the development of agent architecture is beyond simple arranging of

82 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

control blocks, implementing of functions or operational issues, like programs. In

order to construct true agents, designers should know about interaction among

parts, composition of subsystems, declarative issues, system-level performance,

context analysis in which agent is inserted, and what strategies are needed to

achieve the goals. As we know, the true essence of the experiment is to evoke

the problem and further analyse the variations of response by changes that were

triggered by stimuli. Consequently, stimuli and responses are aspects directly con-

nected to behaviour, and learning can or can not be part of this process. Stimuli

and responses build a structure to study the intermediate “thinking” process in a

legible and interpretable form. For instance, Pavlov’s theory has used the notion

of induced cortical excitation to explain the formation of neurones connections.

His theory relates learning with responses to external stimulus. Conversely, pro-

duction rules are another form to study the intermediate process, and should not

be discarded. The interpretation of an stimulus-response is more comprehensible

if the process is arranged in an architecture interacting between agent and the

environment. In opposition to the traditional cognitive school, connectionist ar-

chitecture can also be used as base to support heterogeneous inner processes, and

achieve an adequate high behaviour level.

Architectural styles are patterns that define specific characteristics of agents

(nature of decisions), and contextualise an operational strategy to an effective

technical implementation. Additionally, styles offer a plenty of tools to develop

systems more easily traceable and evolvable, instead of traditionally been largely

informal and ad hoc. An architectural style will only be adequate, unless the

designer knows the characteristics of agents in the context. In addition, Ar-

chitectural styles define the characteristics of the planning system structure, so

deciding which architectural style and feature to use is always difficult. Batch

style, for instance, arranges and controls a collection of simple and atomic com-

ponents, having neither concurrency nor interactions between those components.

The problem of this style is that the system has a tendency to become large and

sometimes slow with time. Conversely, Pipeline style produces the first output

quickly, which is very useful in behaviour-based systems. Unfortunately, Pipeline

style may be too complex to program due to the incremental process. In ad-

dition, its cyclic structure supports feedback and loops, that is, later processes

can start before the earlier ones have finished. In Main-program-and-subroutines

style, a main program controls modules; and consequently their subroutines are

aggregated to modules. This style is similar to top-down or hierarchic reasoning.

This sort of style is very useful to develop an emergent reasoning in agent struc-

tures. But, the correctness of modules/subroutines depend on the correctness of

the subroutine they call. Object-oriented style uses encapsulation to hide certain

information and offer management of objects. To this style, we can interpret the

idea like atomic control modules hiding details from others and sharing only the

3.7. CONCLUSIONS 83

necessary data. Layered styles behave like an organisational pyramid with its

sub-levels. A control module, sub-system, or layer represents a highly coherent

set of functionality, which suggests high internal coupling and low coupling with

external entities. Many architectures have used this concept to overlap/delegate

behaviours to their subordinates. Event-based style and Data Centred architec-

ture deal with access and update of shared data, like a repository of agent experi-

ences. Independent Component styles support shared data among heterogeneous

components. For instance, in communicating process style, control modules are

independent process, connecting others like a point-to-point network.

SOAR is a sort of architecture that pertains to the traditional cognitive school.

SOAR has proposed a robust and centred architecture of production rules that

simulates the human cognition, but SOAR is not inspired on it. SOAR can per-

ceive the environment changes, learn, remember, and decide the best goal by

logical reasoning. Unfortunately, long simulations are its weakness. Subsump-

tion is an example of an architecture that does not use symbolic approach. In a

Subsumption architecture, modularity and hierarchical arrangement of modules

are advantageous to control agents in static, dynamic and unknown environments.

Notwithstanding, it depends entirely on the world state to obtain the next “de-

cision”, and sometimes the current world state is not sufficient to provide the

necessary “decision” about what to do next. PyramidNet brought some light to

the development of intelligent engines with minimisation of the scalability prob-

lem through biologic plausibility, but automatic learning and imprecise general

answers are a real trouble when logic is required. Finally, Society of Mind is

a very articulated architecture about how mind works, and how simpler pieces

of entities working together in different levels can emerge the same intelligence

that we know in human beings, but Minsky is in his own “micro word” in the

same manner as its agents. His proposed architecture was proven to be extremely

scalable in practice but difficult to implement.

Note that agents can be built with different but interlaced styles and a supe-

rior level that controls them. Thus, we may have a meta-architecture, that is, an

architecture behind of an architecture. Each architecture is an indication of the

context, and meta-architecture is a promise of a set of high-level decisions (strate-

gic architectural choices) integrated in the structure that will strongly influence

the development/actions of the future architecture, its objectives, and the na-

ture of agent decisions. Meta-architectures collect lessons from past experience

to activate some strategy (architecture characteristic). Meta-architecture lays

about previous foundations, laying out the high-level path toward the architec-

tural vision, before diving into system decomposition and design of architectural

mechanisms.

This chapter showed that there is no unique and right architecture capable of

solving all AI problems, but the union of useful particularities of each architecture

84 CHAPTER 3. ARCHITECTURES FOR AUTONOMOUS AGENTS

can emerge as a most promising and robust approach.

Chapter 4

AFRANCI for Multi-Strategy

Learning systems

This chapter introduces the “Architecture FoR AgeNts with Cognitive Insights”

(AFRANCI) tool, an intuitive and visual resource adequate for designers to de-

velop Multi-Strategy Learning systems. AFRANCI provides a set of features, such

as pre-encoded libraries, and heterogeneous Machine Learning algorithms to assist

in the design, train, test, and deployment of cognitive agents. The chapter ends

with the description of a set of experiments used to assess AFRANCI.

4.1 Introduction

It is well known that different problems require different strategies to be resolved.

The development of reliable Multi-Strategy Learning Systems is most often a hard

experience for common users. This chapter presents the AFRANCI [191] tool that

helps common designers to develop cognitive agents in an easy and very efficient

way. AFRANCI was developed to be more than a resource for the development

of Multi-Strategy Learning Systems [193]. It also represents the combination of

heterogeneous ML algorithms.

AFRANCI combines reasoning and behaviour levels, and constructs new

agents by composing agent structures with drag-and-dropping specialised mod-

ules linked with external libraries. The tool offers flexibility, extensibility and

integration of symbolic and connectionist approaches in the same environment.

85

86 CHAPTER 4. AFRANCI FOR MULTI-STRATEGY LEARNING SYSTEMS

4.2 Background

Cognitive Agents (CA) can be modelled as a collection of interconnected control

modules with well-defined interfaces and fine tuned behaviours. A popular CA

architecture considers several control modules arranged in horizontal and/or ver-

tical layers to combine behaviours in different levels of abstraction. See Chapter 3

for a detailed description.

In order to implement a CA architecture from scratch, it is often required

experts in Artificial Intelligence and/or Robotics. Unfortunately, designers and

programmers tend to produce different programming codes, which may reveal

problems whenever the code needs to be extended or updated. Subtle usability

problems always creep in during implementation, as well.

To overcome such incompatibilities, MatLab c© [147] and SNNS c© (Stuttgart

Neural Network Simulator) [256, 257] tools have adopted graphical user interfaces

and some AI resources. Unfortunately, MatLab and SNNS have some limitations

that compromise the agent architecture development of this thesis. The limita-

tions of MatLab software are:

• There is no possibility to design a modular structure composed of several

heterogeneous controllers interconnected in different levels of abstraction;

• Although the automatic code generation was offered, the final code is al-

ways,

– fat to be built-in in small devices with low processors and memory;

– highly complex to be understood due to the communication among

internal procedures and routines;

– rigid to be extended;

• The compiled code cannot be generated from the whole project.

The limitations of SNNS are as follow:

• A simple graphic environment;

• Limitations on the behaviour level development, only offering a level at

time;

• There is no support for,

– working with multi-environments;

– training at the same time interconnected ANN;

– a preview of the complete proposed structure;

4.3. AFRANCI FEATURES 87

– working with heterogeneous collections of control modules.

• Expandability is limited concerning new ways of graphic design.

4.3 AFRANCI Features

AFRANCI combines the best of software engineering to offer resources to achieve

an effortlessly construction of an efficient model of a Multi Strategy Learning

system. Figure 4.1 presents the AFRANCI splash screen.

Figure 4.1: The splash screen of AFRANCI tool.

AFRANCI lets designers handle a heterogeneity of learning algorithms in the

same environment of development. Designers are responsible for choosing the

components and assembling the agent architecture based on the specific context.

Designers are responsible for arranging the components in the workspace (see

Figure 4.2). In general form, users may represent both of them. workspace.

In AFRANCI, different designers can model a symbolic-connectionist system

by arranging and linking heterogeneous learning modules on the screen, with a

minimum knowledge of programming language. They may also work in parallel

to modify the flexible agent architecture by changing the order or type of the

control module, inserting or removing ones, and solving the problem of rigid

agent architecture construction. After the training of the model or part of it, a

concise source code can be generated. These features enable the simplest, lightest

and fastest way to produce elaborated decisions and behaviour systems for agents.

The facilities offered for users to perform all development phases until an

enhanced behaviour is achieved system file were carefully planned. Consequently,

users do not need to use earlier holistic enhanced behaviour structures of other

tools because AFRANCI promotes by itself clean and flexible routines.

88 CHAPTER 4. AFRANCI FOR MULTI-STRATEGY LEARNING SYSTEMS

Figure 4.2: The environment used to plan the architecture.

4.3.1 AFRANCI Support for Reusability

Reusability is a technique to build larger things from existing parts, and to iden-

tify commonalities among those parts. Reusability also defines a degree of in-

dependence of a component in a system [85]. The highest degree of reusabil-

ity means the component is more independent. The importance of reusability

has influenced the development of methods during the design-time process [171].

Components previously developed are the main difference in a fast and reliable

learning systems.

The AFRANCI tool uses the reusability concept to develop a set of cohe-

sive and loosely coupled visual components (inputs, outputs, and control mod-

ules). Visual components save encoding time and eliminates bugs. From code,

AFRANCI supports two control concepts: Behaviour Patterns and Templates.

Behaviour Patterns are solutions formally defined and improved to develop

projects. Each pattern describes a problem and the core of the solution. Be-

haviour Patterns offer sound techniques to be shared in different projects. Alter-

natively, Templates are prototypes that decrease the cost of models by (re)use.

Prototypes refine the project ideas by multiple iterations, gradually moving from

low-fidelity prototyping to high-fidelity representations of Behaviour Patterns.

4.3.2 AFRANCI Workspaces

In recent years, Multi Strategy Learning systems are becoming complex enough

to be hard to plan. The best way to plan a complex system is dividing it in

4.3. AFRANCI FEATURES 89

small and specific sub-systems. This natural divide-and-conquer strategy can be

compared to an evolutionary system. In this sense, complex systems can be par-

tially developed into sub-systems, and each sub-system has its inputs, outputs,

and control modules. Thus, different research centres can collaborate and ex-

change messages among them. Unfortunately, this computational resource is not

so common in tools that offer learning algorithms.

AFRANCI Workspace was developed to support heterogeneous sub-systems

(like a puzzle) and to promote sharing of models among team-mates at design-

time development. Workspaces let users develop, debug, manage, manipulate,

analyse, and tune sub-systems quickly and efficiently. In addition, they help

users to avoid costly mistakes at development phase by training and testing sub-

systems at first. A virtualised environment composed by two workspaces is shown

in Figure 4.3. A large structure made of arranged control modules can be easily

made collaboratively in different windows by common users.

Figure 4.3: AFRANCI Workspaces.

4.3.3 The integrated Machine Learning Libraries

AFRANCI overcomes the lack of integration of heterogeneous learning algorithms

in the same environment, to offer homogeneous environment conditions with easy

access to learning algorithms (control modules) without any need of programming.

Tuning and linking control modules like a circuit diagram, control modules will

communicate from their interfaces to comprise a global solution among them.

Thus, this resource completely hides from regular users’ view the internal com-

90 CHAPTER 4. AFRANCI FOR MULTI-STRATEGY LEARNING SYSTEMS

plexity of the process. Users only need to know which learning algorithms will

be set in every control modules.

To designers, the integration of control modules brought the following benefits:

Choice of components at design-time level, and still enjoy the benefits of using

a single-source integrator that provides resources, in terms of training and

system integration expertise, to assure that the system will work properly;

Improved user productivity by integrating many sub-systems in a large

project and, consequently, improving the behaviour complexity of the fi-

nal system. The facility of modular integration reduces the complexity of

programming and the high cost of team-mates’ training;

Sharing of information among objects effortlessly is the key benefit of

AFRANCI. Information from the integrated sub-systems run more effi-

ciently and at lower cost;

Cooperation among team-mates reduces time of development, increases safety,

maximises time, and improves the effectiveness and productivity;

Expandability by adding new control modules or replacing the unused ones in

older systems. Consequently, the older systems are extended at lower costs.

Users can handle several learning algorithms of many libraries at the same

time. AFRANCI has two internal learning algorithms, such as Feedforward

and Recurrent ANN, and supports external Machine Learning libraries, such

as the ones available in WEKA [250], CN2 Induction Algorithm [41, 197], and

GAlib [158]. Thus, users access an useful repository of algorithms to data pre-

processing, classification, regression, evaluation, clustering, stochastic search, fine

tuning, and association rules.

4.3.4 The AFRANCI Internal Structure

AFRANCI internal structure is made of Behaviour Patterns and Templates. Us-

ing modularity, high cohesion and low linkage, programmers obtain clear and

strong methods to reach high degrees of inheritance, and possibilities to extend

features from generic to specialised behaviours. In addition, the robustness of

the structure allows AFRANCI to support external events but controlling the

main application execution, such as supporting abnormal and non foreseeable

conditions.

AFRANCI was built on MVC architecture local idea. MVC stands for Model,

View and Controller layers. MVC is the way that the code was organised in

AFRANCI. MVC uses DRY (Do not Repeat Yourself) to construct models or

4.3. AFRANCI FEATURES 91

objects. The MVC divides the functionality involved on application changes

and presentation of data. Model layer encapsulates data in one place to access

features of the application encapsulated to the controller by the Model. View layer

represents what user can see and it is the most used by designers. It receives the

data input and presents it at the output. It is not focused on how or where

the information was obtained. View renders the content of a particular part of

the Model and sends to the Controller the user actions, accesses also the data

of the model via controller, and defines how these data should be presented.

The Controller is the part of the architecture with define the behaviour of the

application. It is responsible to interpret the user actions and map them to

model calls. Also, the controller processes and responds to events, such as user

interactions, and invokes changes to both model and view.

The AFRANCI internal structure is divided in three main parts [195]:

Integrated Machine Learning Libraries (iMLL) offers a repository of in-

ternal Machine Learning algorithms and connects to external ML algo-

rithms as well. Additionally, iMLL offers normalisation methods that trans-

lates data to be sent to the control module;

Graphic Environment (GE) offers a set of main classes for modelling all vi-

sual components. For instance, users design their control models by assem-

bling and linking visual components on the development environment;

Automatic Code Generator (ACG) represents a high-performance interpre-

tation algorithm to automatically encode the diagram into a clean and

ready-to-use standardised C++ open-source code.

The three main parts of AFRANCI structure are presented in Figure 4.4,

which will be detailed in the next sections.

Figure 4.4: The general AFRANCI structure.

92 CHAPTER 4. AFRANCI FOR MULTI-STRATEGY LEARNING SYSTEMS

4.4 Designing a System’s Structure in a Nutshell

We now demonstrate how we can, in three main simple stages, easily develop a

behaviour-based structure, showing therefore the feasibility and efficiency of the

tool. The Design and Set Up, Module Training and Code Generation stages will

help users to avoid time consuming projects that comes from confusing lines of

code.

4.4.1 The Design and Set Up stage

AFRANCI has a workspace to design and set up systems, like a circuit board

of modules, called Desktop. AFRANCI tool was planned to develop and link

several modular sub-systems, in the design-time environment. Design-time prop-

erties are characteristics of well-designed objects that influence either the visible

format or their execution. AFRANCI builds a behaviour system model using

graphic elements in the form of control modules. Users have full control of the

hierarchical dependencies of the control modules as well as their portability to

different contexts.

The design of the structure and the choice of the ML algorithms can be man-

ually made by disposing graphic objects on the Desktop or can be automatically

made by the use of the wizard.

Figure 4.5 shows the main visual parts used to diagram a control structure.

The efficient highly interconnected model composed of inputs (circles), an output

(lozenge), and a ML algorithm (rectangle). For instance, from left to right, three

sensors (s1,s2,s3) connect with three input ports (i1,i2,i3), and the output port

(o1) connects with the actuator (a1).

Figure 4.5: An example of an AFRANCI component and its parts.

The Manual process offers resources to perform drag-and-drop actions to ar-

range the input port, the control module and output port on the desktop

area. Using drag-and-drop is a convenient way for users to manipulate ob-

jects, each visual component can be dragged and dropped from the standard

4.4. DESIGNING A SYSTEM’S STRUCTURE IN A NUTSHELL 93

component palette onto the blank area of the form. The development plan

starts with users opening an existent file or creating a new blank project,

see main workspace in Figure 4.2. An input port can be an attribute or a

sensor, as well as, the output port can be an actuator or an output variable.

Every module is set to process the CSV (Comma Separated Values) sample

files. A sample file provides data for learning algorithms in the training

stage and defines the actual input and output ports. To develop a complete

wired network, the interconnections are established from the input port to

the input of the module and, consequently, from the output of the module to

the output port. The users can change the default parameter values of the

objects or choose the learning algorithm by accessing the module properties.

For example, it is possible to set preferences like colour, dimensions, label,

and coordinates of the objects or to choose different learning algorithm. In

this case, further knowledge will be required from the users;

The Wizard helps users to upload training files and set up the correspondent

ML algorithm, Figure 4.6. A Wizard or an Automatic Project Constructor

(APC) is a piece of machinery that interprets CSV (Comma Separated Val-

ues) data set files and automatically draws a diagram in a workspace. The

CSV file represents a training set of facts stored in a logic table. AFRANCI

interprets columns of the table like input sensors, output sensors or output

of control modules, and lines of the table as individual facts. Each CSV file

can also be interpreted as an independent control module. If APC detects

that there is relation between input and output elements of the diagram, a

system will link and show it on the screen. In this sense, APC speeds up

the development of the circuit diagram on screen.

Despite its graphical environment complexity, AFRANCI windows are more

sophisticated than similar tools. Users can magnify or reduce images by Zoom

mode. In addition, the right mouse button invokes a pop-up toolkit menu to cus-

tomise visual components on the form. User can activate many other AFRANCI

functions either with mouse or keyboard.

4.4.2 The Train and Test stage

The automatic training process is started after the agent structure was dia-

grammed, but before launching the training phase, AFRANCI checks if the whole

system was fully interconnected as a single structure, and the training set files

were load by the corresponding modules.

The automatic training process uses data flow sequence and low coupling

to fire the training sequence and validate control modules in different processes,

94 CHAPTER 4. AFRANCI FOR MULTI-STRATEGY LEARNING SYSTEMS

Figure 4.6: The Wizard window interface.

independently of the horizontal or vertical architecture level. Finally, the last

inspection checks if all nominal values were load from data sets and previously

normalised as numbers to be compatible with control modules. All other valida-

tions were made at design-time. It is worth mentioning that AFRANCI supports

K − fold cross validation is an advanced statistical technique useful to assess the

bias in the training set results.

The K−fold cross validation technique enables users to assess the stability of

different structures, but confirming and validating the initial analysis [118]. For

instance, the K − fold cross validation verifies if the result of the first identified

structure is repeated when investigated on the next structure. In such a process,

the original set of samples is divided into K proportional subsets. From a col-

lection of K subsets, the K − 1 subsets are matched in a training set and the

remaining subset is then a test set. Obeying the cross validation rule, each K

subset will be received as a test set and the K − 1 will be used as a training set

until the K cycles finished.

The main benefits achieved by the use of control modules are presented as

follow:

Avoiding bottlenecks by using multi-thread to train or test different control

modules;

Multi-threaded of tasks enhance the editing, training, testing, and graphic

analysis of control modules.

4.4. DESIGNING A SYSTEM’S STRUCTURE IN A NUTSHELL 95

4.4.2.1 Wrappers

Almost all ML algorithms have parameters to be tuned in order to achieve optimal

results. An experienced practitioner knows that changes in the parameter values

may lead to quite different results. To tune system parameters, experts are

required to have a deep knowledge of the system. Unfortunately, there is no

cookbook made by experts that explains how to do this in order to achieve the

most promising results. This is most often a severe obstacle to the wide spread

use of such algorithms.

We foresee that the main reason of these unsolved problem is the substantial

varying of the parameter values to tune each learning algorithm. Since an user

has extensive experience to design and set up a control module to the problem,

it is more difficult to obtain reliable results only by using empirical and manual

set up.

As proposed by John [105] one possible approach to overcome such a sit-

uation is by the use of a wrapper. A wrapper produces several models using

different combinations of parameters in the learning algorithm and returns the

most promising model. The wrapper technique used to fine tune the learning

algorithm was Genetic Algorithm (GA) [96].

In our tool the wrapper chooses the best parameters of ANN and, conse-

quently, the details to set parameters of learning algorithms are completely hid-

den from the user. It is therefore a way to make the tool usable by a wide range

of users.

4.4.3 The Code Generation stage

The Automatic Code Generator (ACG) has been implemented in AFRANCI tool

to translate the diagram into a ready-to-use programming code, saving time and

avoiding any percentage of programming error made by user. The purpose of

ACG is to keep common users apart from the software engineering cycle, that is,

instead of writing programming code, users should spend their time on elabora-

tion phase of autonomous agent structures because the codification process is a

responsibility of the tool.

The benefits that ACG provides are:

• Automatic generation of a standardised output of the diagram. This implies

that if the agent produces a wrong behaviour, the designer needs only to

fix the diagram, instead of debugging the whole source code;

• Clear and concise code generation, free of bugs, because ML libraries were

already tested;

96 CHAPTER 4. AFRANCI FOR MULTI-STRATEGY LEARNING SYSTEMS

• Time and costs saving through automatic code generation.

The basis of ACG implementation relies on the fact that most projects created

in the early stages of software development arise from diagrams. Since a project

has all the visual components interconnected, it can be automatically encoded.

Independently from the amount of elements used in the diagram, a short and clean

source code is automatically generated, and ready to be used. Parsing the project

into a ready-to-use source code is performed in a single step. ACG uses internal

routines to recognise input/output ports, and control modules to encode into

classes, objects, attributes, associations, and other information that compose a

source code file. In the encoding process, users do not have to worry about syntax,

creating class hierarchies and interconnection between Machine Learning libraries.

As a designer, it is possible to specify which visual elements or sub-projects will

participate on the encoding process. The encoding process is completely hidden

from the users, and does not depend on the nature nor complexity of the graphical

project, making an easy operation to common users. As C++ programmers, users

have more sophisticated needs. Fortunately, AFRANCI recognises these needs,

and provides benefits to easier the encoding process of the project. For example,

Figure 4.12 presents a screen shot of the output of an encoding process.

4.4.4 Experiment: “Building a Rescue Decision System”

This experiment is the extended version of rescue civilian problem, first described

in chapter 2. In this extended version, other modules and input variables were

added, making the architecture more complex. The main independent variables

include: the coordinate (X, Y) of the ambulance, fireman, building on fire, fire

brigade, the nearest refuge (rescue building), and of the civilian; the life condition

measure of the fireman and civilian1, the building volatile information that is com-

posed of earlier burnt, state and structure; the state of the ambulance (busy/free)

to receive the civilian and of the fireman (busy/free) to extinguish the fire or to

rescue the civilian; and an estimative of difficulty to rescue the civilian.

4.4.4.1 Design and Set Up

Figure 4.7 presents the modular Rescue Decision System, with heterogeneous

modules linked among them and input variables composing an intuitive circuit

diagram. Not perceived in the figure is the heterogeneity of the ML algorithms

included in the control modules. Referring to the module labels in Figure 4.7 the

following algorithms were used.

1A measure between 0 and 100 of the energy the fireman can use.

4.4. DESIGNING A SYSTEM’S STRUCTURE IN A NUTSHELL 97

Figure 4.7: The architecture of rescue decision system (extended version).

The module Civilian was assembled using a feedforward ANN. The modules

Ambulance, BuildingOnFire, Fireman and RescueFireman were assembled using

CN2 rule learner. Other modules, such as Building and Decision, were assembled

using WEKA’s J48 Decision Tree algorithm. The user’s drag-and-drop operations

were: i) to drag the visual components, and to drop them on the black form; ii)

to connect them and; iii) choose input and output variable names; iv) feed the

system with the data set; v) train the modules in the correct sequence; vi) export

C++ source-code that encodes the whole system.

The module Decision decides which agent, fireman or ambulance, will rescue

the injured civilian (see Figure 4.7). There are cases where the fireman and ambu-

lance are capable of rescuing the civilian at the same time. To solve the conflict,

the module Decision decides in favour of the ambulance agent because a fireman

agent has other priorities such as to extinguish fires in burning buildings with

the aim of preserving the city. Rules induced by CN2 check if the ambulance is

entirely apt to rescue a civilian obeying two main rules: (rule 1) if the ambulance

is occupied then it is useless to attempt the rescue; (rule 2) if the civilian has

not enough “vitality” then it is also not rescued; (other rules) the civilian will

be rescued if it has enough “energy” and the ambulance is localised between the

98 CHAPTER 4. AFRANCI FOR MULTI-STRATEGY LEARNING SYSTEMS

civilian and the rescue building otherwise it will not be rescued.

4.4.4.2 The Train and Test Module

The training sequence is launched independently of the abstraction levels. In this

new way to train interconnected ML algorithms, AFRANCI tool starts identify-

ing and compiling the atomic control modules at first due to the output data

that atomic control modules offer to feed other dependent control modules. The

training stage of three control modules, with the built-in CN2, J48 and ANN ML

algorithms, are shown in Figures 4.8, 4.9, and 4.10, respectively. Each trained

module receives a bold border as shown in Figure 4.11, in which the user can

follow the cycle of training. At the end, if all modules have been successfully

trained, the user can export his/her diagram to a code (see Figure 4.12).

Figure 4.8: CN2 training phase (module Ambulance).

Figure 4.8 presents the training phase of CN2 algorithm where module Am-

bulance was trained. The rules composing the model are depicted on the right

hand-side whereas the raw data is shown on the left hand-side. Figure 4.9 shows

the training phase of J48 algorithm in which module Building was trained. The

output tree model is shown on the right-hand side whereas the raw data used to

produce the tree is shown on the left-hand side. Figure 4.10 shows the training

phase MLP with Backpropagation algorithm where module Civilian was trained.

The error curve on the left is decreased by iterations showed on the right.

4.5. CONCLUSIONS 99

Figure 4.9: J48 training phase (module Building).

4.4.4.3 Code Generation

An excerpt of a ready-to-use programming code was presented in Figure 4.12.

The diagram project was encoded into a set of C++ code that can be edited

as text in the full-featured AFRANCI ASCII editor or in any other text code

editor. The source code is composed of classes, attributes, associations, and other

features needed to run the architecture outside of the AFRANCI development

environment.

4.5 Conclusions

In this chapter we have presented the AFRANCI tool for the fast development

of Cognitive Agents. AFRANCI offers visual resource to diagram Multi-Strategy

Learning systems and commands to generate code automatically from diagrams.

The tool provides fast and intuitive features, such as pre-written code libraries,

and integration of symbolic and connectionist ML algorithms to assist in design-

ing, training, testing, and deployment of the agents. The process of linkage among

learning algorithms, in the same environment, represents many advantages; con-

sequently, a system can become robust and support high noise immunity, fault

tolerance and programming by examples for new control architectures. The ex-

periment presented in this chapter, as well as other examples in the rest of the

thesis, show the AFRANCI benefits to develop agent architecture.

100 CHAPTER 4. AFRANCI FOR MULTI-STRATEGY LEARNING SYSTEMS

Figure 4.10: ANN training phase (module Civilian).

Figure 4.11: The Rescue Decision System entirely trained.

4.5. CONCLUSIONS 101

Figure 4.12: The AFRANCI ASCII editor.

Chapter 5

AFRANCI for Agents

The AFRANCI tool, presented in the previous chapter, combines basic function-

alities required for general intelligent behaviours. AFRANCI works with both

symbolic and connectionist approaches, and serves as prototype of state-of-the-

art research on the hybrid approach. AFRANCI was created to be the support for

emerging a “creative” thought through different micro-architectures. The micro-

architectures “think” in parallel in order to find more than one solution for a

problem. In the meta-level, the structure decides in favour of the scenarios.

5.1 Introduction

AFRANCI implements a new approach that may be associated with the proto-

type of state-of-the-art research on hybrid approach. It supports bidirectional

communication between different levels of abstraction. This new proposed ap-

proach may then form the basis for understanding the emergence of knowledge in

autonomous agents structures. The three main development aspects are: combi-

nation of hybrid approaches, modular and flexible structures, and cognitive and

behavioural layers. A simple view of the AFRANCI model is shown in Figure 5.1.

103

104 CHAPTER 5. AFRANCI FOR AGENTS

Figure 5.1: A global view of the AFRANCI (main components).

AFRANCI uses rational and cognitive principles to model the emergence of

elaborated behaviours and to make decisions in favour of the most promising

action for the agent.

Rationality uses the heterogeneity of structures to define the innate agent be-

haviours in the lower layers.

Cognition combines all relevant decision modules, short and long-term knowl-

edge to define, in the higher layers, what should the agent perform next.

Simple or more elaborated behaviours or decisions are based on: (a) signals

provided by sensors; (b) the content of working memory created to solve unknown

problems; and (c) any other knowledge stored in long-term memory.

AFRANCI uses a meta-level to be conscious of its actions and capabilities.

It is horizontally set in the highest abstraction level. In lower levels, modules

5.1. INTRODUCTION 105

are arranged in parallel by levels of competence, but lower and upper levels are

independent.

5.1.1 Motivation

Although classic AI architectures concede autonomy to agents, agents are re-

stricted to foreseeable behaviours in a monolithic system. Unfortunately, mono-

lithic systems imply pre-formed structures, which is their main weakness. As

a consequence of their “pure” construction, monolithic structures do not allow

designers to increase new components as in a building blocks formation, nor to

share information between cognitive or rational approaches.

AFRANCI avoids the “pure” characteristic of the classic AI architectures and

brings solutions for designers to update old agent structures. AFRANCI makes

use of the most useful techniques and styles found in four main previous architec-

tures, such as SOAR, Minsky’s Society of Mind, Subsumption and PyramidNet

architecutre. In this way, an agent can adapt in unknown environments and

generalise new behaviours.

In fact, AFRANCI is a solid ideal for an integrated approach that harmonises

multiple characteristics of other systems. The architecture has stand-alone mod-

ules for each different task that communicate over links. Through the incremental

development of intelligence, designers can build new agent activities by the use of

processes and competencies repetitively acquired, during the evolution and devel-

opment phases. These include sensing the environment, building a representation

of the world, and controlling the agent motors.

AFRANCI does not follow older philosophical questions such as ‘what is mind’

or ‘what are the necessary and/or sufficient conditions for agents to be conscious’.

In fact, AFRANCI focuses on several different kinds of “minds” of heterogeneous

architectures and their capabilities arranged in a “correct”manner. Thus, design-

ers may build new components to also fill in the lacunas of other agent designers,

or change the performance to be top-down, bottom-up or hybrid. This is the

main difference between AFRANCI and other architectures, as the next sections

will explain.

106 CHAPTER 5. AFRANCI FOR AGENTS

5.2 Towards an Architecture

The flexible evolution of AFRANCI guides designers to (a) create new opened-

mind states, which imply flexibility, tolerance to repetition, and receiving con-

cepts; (b) rebuild concepts and evaluate them; (c) cope continuously with the

maximum of adaptability; (d) achieve a satisfactory behaviour in each new exis-

tential situation; (e) build an agent structure, establishing communication among

modules, without deep knowledge of programming language, differently from tra-

ditional architectures.

Figure 5.2: The prototype of AFRANCI.

Figure 5.2 presents the proposed AFRANCI architecture. We do not expect

AFRANCI to be the “optimal” architecture constructed because there is no such

optimal intelligent architecture design, as biological diversity on Earth shows us.

Conversely, this model separates concerns, which helps designers to organise their

decision-making process and actions; thus, they can develop the most promising

set of concepts.

AFRANCI is vertically arranged in five abstraction levels of competence and

evolution from bottom-to-top, that are, Stereotyped, Reactive, Instinctive, De-

liberative and Meta-management (Cognition), and three horizontal functional

subsystems, to be specific, Perceptual subsystem, Central processing, and Mo-

5.3. LEVELS AND LAYERS 107

tor subsystem. Abstraction levels of competence and types of task-achievement

behaviours are separated from function effectively in a hierarchically organised

manner. The Perceptual and Motor subsystems are also divided into many ab-

straction levels as need. In accordance with Brooks [28], the main idea of levels

of competence is that we can build layers of a control system corresponding to

each level of competence and simply add a new layer to an existing set to move

onto the next higher level of overall competence.

5.2.1 Learning in AFRANCI

Learning is based on decisions taken via agent, which could be by supervised or

unsupervised methods.

AFRANCI is constantly performing a clockwise cycle (see Figure 5.3). The

cycle involves to send signals from the environment to the respective control

modules that can deal with, and send back to the environment the actions chosen

by the architecture. The arrows represent the direction of information. Control

modules use a built-in knowledge stored in training - learned a priori - and

apply it to the current situation. Whenever an unpredictable situation happens,

the generalisation happens depending on the architecture level. Therefore, the

architecture directly supports the acquisition of new information.

Control modules can be activated or not by a fact. A fact connects (a) an

event, (b) an environment action, (c) an output of other control module, and

(d) a collection of input devices.

Each control module is ignorant of existence of others, but when working

together they are capable of performing independent and specialised tasks by

mechanisms of inhibition and excitation.

5.3 Levels and Layers

Layers are the implementation versus of the abstraction levels. Layers interchange

messages with each other by means of bidirectional flow of information control

- bottom-up activation and top-down execution - as explained on section 3.2.2.6

(of chapter 3). Module is the mechanism that interfaces signals between layers,

others modules and external reality.

5.3.1 The Flow of Control Information

Basically, the flow of control information goes up to the sensory inputs and it

reaches, at the same time, all modules of the lowest level in the architecture, as

presented in Figure 5.4. For instance, if the Stereotyped layer has control over

108 CHAPTER 5. AFRANCI FOR AGENTS

Figure 5.3: A model of learning cycle development.

inputs then it will do so in a priority manner, otherwise, bottom-up activation

will occur and the control will be passed to the Reactive layer. This bottom-up

activation will successively occur until the level of competence get the input. In

another example, if the Deliberative level has competence to control a situation

then it will do so, typically by top-down execution. Figure 5.4 presents the

information flow between architecture interfaces and modules.

5.3.2 The Strategic Levels

The strategic levels have built-in a heterogeneous collection of internal and ex-

ternal but interrelated modules. The modules are implemented in accordance

with the layer purpose into a coherent working system for building a modular

agent mind. Such methods are in the form of symbolic (rule-based) system, sub-

symbolic or neural (connectionist-based) or both (hybrid) systems. Figure 5.5

shows a network of modules communicating between them along the structure.

In this scenario, Stereotyped, Reactive, Instinctive, Deliberative and Meta-

management layers interact with the external environment up to a degree. The

interaction process happens via perceptual and motor action subsystems. Thus,

sensory information acquired is converted to symbols, which are then processed

5.3. LEVELS AND LAYERS 109

Figure 5.4: The Flow of Control Information.

and evaluated in order to determine the appropriate motor symbols that lead to

generate motor actions - behaviours. Additionally, Instinctive and Deliberative

layers internally interact with other layers.

Actually, the modular architecture is made of several layers. For instance,

atomic reflexive behaviours compose the Stereotyped layer. A chain of atomic

reflexive behaviours - or an innate cognitive modules - implement the Reactive

layer. Instinctive layer controls a chain of reactive behaviours - or recurrent in-

nate cognitive modules. Deliberative and Meta-management layers contain semi-

autonomous controllers that represent the symbolic processing mechanisms of the

system. Those modules have been described as the“building blocks”of knowledge

and cognition. Symbols are described and entitled as parcels of information and

then stored in memory, and retrieved for problem solving in a working memory.

Particularly, the Instinctive behaviour supports working memory.

110 CHAPTER 5. AFRANCI FOR AGENTS

Figure 5.5: AFRANCI levels and layers.

Stereotyped, Reactive, Instinctive, Deliberative and Meta-management layers

modules pertain to the central processing subsystem, mediating and moderating

relations between stimuli and responses.

5.3.3 The Perceptual-Motor Subsystem

In the Perceptual subsystem, sensory inputs create a sort of representation of

spatial relations in the environment. Over repeated experiences sensory inputs

contribute to a higher level of representation about relations between objects.

The representation permits predictions or expectations about them, a property

that only requires that measure of activation about objects be maintained after

they have disappeared.

The lower levels are directly in contact with the environment. Reactive and

reflexive levels respond in a timely way to what is happening in the environment.

5.3. LEVELS AND LAYERS 111

This low level has properties to sense-act without previous representations.

5.3.4 The Stereotyped and Reactive Layers

Encapsulated modules with innate information processing capacities fill in the

lower layers. These rigid pre-compiled innate modules have rigid knowledge be-

cause of their own particular stimuli and goals were acquired during the evolution

process. Thus, each of these modules can be developed independently of other

modules, but associated to them to produce complex behaviours, as Minsky and

Brooks proposed.

Richardson [201] believes that associations (group of encapsulated modules)

are used not to explain mental states but to explain behaviours. Following this

thought, we define cognition as the execution of behaviours and their regulations.

Behaviourists argued that mind is too much abstract to be measured; conversely,

only stimuli and responses can be observed.

Innate specified modules are implemented in Stereotyped behaviour layer by

simple and specialised knowledge. Stereotyped behaviour layer is set in the lowest

abstraction level. This layer provides many largely innate specified modules.

The modules have a very fast simple maturation of pre-formed structures much

of the organisms background knowledge. They can be implemented by rigid

rules or feedforward Artificial Neural Networks with a specialised training. The

Stereotyped layer input driven characteristic determines to the architecture a

largely organised around bottom-to-top information flow.

The Reactive behaviour layer is set as a level, but is still set in the lower

abstraction levels. It has been dependent on the adoption of certain assumptions

and strategies. In the reactive layer, reactive structures interconnect well-formed

innate specified modules producing a small chain of modules. Similarly, a chain

of innate specified modules could be substituted by a little evolved module with

a bunch of built-in pre-formed rules - processes. In fact, reactive modules can

fire new changes or modulate changes launched by other events, that are, sen-

sory inputs. The modules can be linked with other modules and form a fairly

sophisticated reactive network with a variety of behaviour processes. Inspired by

evolution, we have Artificial Neural Networks with tuned synaptic weights.

5.3.5 The Instinctive Layer

Innate behaviours, when controlled by Instinctive layer, permit the agent to tran-

scend knowledge, towards a particular and elaborated instinct. The Instinctive

layer does not focus on a specific behaviour, but controls long chains of reactive

behaviours beneath it to produce cooperative behaviour with appreciable useful

112 CHAPTER 5. AFRANCI FOR AGENTS

difference. Instincts are also labelled as Fixed Action Patterns (FAP). FAP is the

result of long chains of low-level atomic behaviour modules performing actions to

reach a purpose.

The Instinctive layer contains a considerable intricacy structure of FAPs

that are capable of going beyond the limits of the environment or conscious-

ness thought. Instinct uses previous encoded knowledge to respond for specific

external stimuli. The agent recall the instinct by finding the beginning of such

a sequence in order to respond or react to certain sorts of stimuli, propagating

its excitement into the other. The behaviour sequence runs to completion, but

during the propagating of excitement, the agent is “blind” of external influences.

Inside of the Instinctive layer, rationality emerges from collaboration of a

chain of stand-alone behaviours. The result of interaction among many reactive

modules and the environment allows the layer to generate a symbolic action

sequence without performing the corresponding actions, so the agent knows by

anticipation what will happen.

The propagating of excitement can operate at different time scales. The layer

can fire a bunch of innate stand-alone behaviour patterns contained in several

reactive modules, such as feedforward or feedback ANN as well.

The responses to a given excitement are obtained by a sequence of reactions,

but they are not notified to the upper level. This avoids decision taking, impasses,

and control.

This layer uses a reusable memory in which the sequence of output can be

built so that their consequences can be evaluated. Further developments could

allow the memory to be used to construct more than one action sequence so that

difference options can be compared and one selected.

As happens often in evolution this might be done by copying and modifying

one of the pre-existing reactive modules. The modifications involved giving the

module inputs from all over the system, making it work faster, and making it

crudely classify inputs into categories relevant to a certain global behaviour.

5.3.6 The Deliberative Layer

At the Deliberative level, process and plan as well as prior decisions are taken into

account when deciding on the next step of the agent. Decisions about whether

new actions (motives) should be adopted or not happen all the time. To do so, the

layer (a) receives output signals from some modules set beneath it as well as input

signals of Perceptual subsystem. In accordance with the agent evolution cycle,

lower modules may or may not be connected with deliberative level, (b) evaluates

5.3. LEVELS AND LAYERS 113

and selects the next agent action in order to govern the actuators by explicit1 or

implicit2 decisions, and (c) sends output signal to the Motor subsystem, allocating

it exclusively.

5.3.7 The Meta-management Layer

In the highest cognitive level, the meta-management layer presents the prompti-

tude of dealing with detailed management solution for unified control of multiple

levels, which affect one another and the overall trends of the architecture (as

shown in Figure 5.5). A meta-manager is conceived to manage the decisions of

parallel modules throughout their functioning period and ensuring the combina-

tion of modules that contribute to the overall goals of the architecture.

The main goals include monitoring and evaluation the management of infer-

ential internal processes, activation of new deliberative strategies, and behaviour

changes and impasses detection.

Meta-management is set in the highest level of AFRANCI architecture. This

top level implements consciousness to tune the agent to the “right” decision ac-

cording to the situation in the environment. Nevertheless, the layer should have

access, knowledge, and understandability of signals coming from the environment

by the perception subsystem and from the deliberative layer.

Meta-management allows an agent to control its deliberative responses

(states). Without this top layer, the agent would not be apt to identify and

dynamically change its own behaviours. In this sense, the agent recognises it-

self as an entity in the environment. Consequently we can affirm that agent has

“auto-conscience”.

5.3.8 Short-term and Long-Term Memories

In computational neuroscience, memory is composed of interconnected processing

elements entitled neurones. Each neurone receives signals (that are, adjustable

synaptic weights) from neighbour neurones, except for those special neurones3.

The structure of connections and the learning algorithm typify the long-term

knowledge. Long-term knowledge aggregates new experiences in order to augment

1Explicit decisions are those understandable by human beings like IF...THEN rules, used
as a white box model to explain the result provided by the model, which can easily be replicated
by a simple mathematical operations.

2Implicit decisions are those codified by synaptic connection weights in Artificial Neural
Networks black boxes.

3In Multilayer Perceptron Artificial Neural Networks, special neurones represent the input
layer of the structure.

114 CHAPTER 5. AFRANCI FOR AGENTS

the cognitive universe of the agent. The propagation of activation of each neu-

rone is a short-term reflection of the long-term structure. The network transmits

information to its distal parts in parallel over a set of connections. The activa-

tion process is propagated until the network has reached the quiescent knowledge

access. Quiescence refers to an external stimulus that triggers an organised be-

haviour in any time - behaviour is not necessarily innate, but generalisation can

be reached. Perception, which occurs via the activation of special neurones, trans-

mits knowledge from outside of the system to the inside. This specific behaviour

changes the short-term activation of the system, without changing its long-term

structure.

The long-term structure stores and recalls data or patterns, classifies patterns,

performs general mapping from input patterns to output patterns, or finds solu-

tions to constrained optimisation problems [65]. The knowledge is example of the

whole base of representations stored in long-term memory. The relevance among

knowledge, representations and reasoning is so strong that one complements the

other. Reasoning is the process responsible to trail a situation to be understood.

Whereas all knowledge of ANN are stored in the form of synaptic weights that

will determine the behaviour of the network; conversely, Symbolic systems store

them in the form of production rules, commonly referred as universal subgoaling.

Both Connectionist and Symbolic systems solve problems using the long-term

knowledge. In order to retrieve information about existing problem and searches

for a new solution decision, all systems develop solutions on elaboration phase

(training). Training is a learning way that occurs via the adjustment of connection

weights or division of production rules. Unfortunately, the size of long-term

memory in Symbolic system needs to be extended, instead of simple adjusts of

weights as ANN’s proposes.

5.3.9 Impasse

Impasse is defined like a common situation that occurs in the higher levels when

the system does not know how to proceed and then collapses. Discovery by

trial-and-error is a sort of technique used to construct new solutions. To this

technique, a nontrivial problem is presented to the problem space. Unfortunately,

the problem space is either incomplete or inconsistent and annuls the technique.

Nontrivial problems are also complex problems, which result in successive and

inadequate or unknown answers of deductive logic and background knowledge in

face of the initial problem.

Impasse is the result of partial, unpredictable, sequential and inadequate

background knowledge in face of the initial problem. To resolve the impasse,

AFRANCI architecture uses two cognitive strategies: convergent, and divergent.

5.4. ADVANTAGES OF AFRANCI 115

The convergent strategy follows a logic path. It is most useful for situations un-

der control, with well-done metadata that may be measured and predicted. For

instance, in cases of Reactive layer, convergent strategy solves the impasses by

making use of some classifier method or vector. Conversely, the divergent strategy

searches in other domains for sufficient elements that could help it to solve that

problem by analogy. The agent augments the problem space up to reach a sat-

isfactory solution by acquiring new knowledge, which summarises the processing

that leads to results, or up to another process inhibits it. For example, the agent

changes the current synaptic connection weights by other synaptic connection

weights stored in the database (long-term memory). This swap of new memories

simplify the implementation processes, adapting the agent to inner beliefs already

supervised. So, the agent uses new beliefs to take decisions and achieve answers

- solutions. As it is was presented before, many unsupervised rules came collapse

the decision system.

In a new problem space, which was augmented by the impasse, AFRANCI

sets new knowledge by using synaptic connections weights or new production

rules previously stored on long-term memory. Consequently the cognitive space

of agent is augmented. Thus, the acquisition of new concepts is restructured by

the problem space and representations of problems, that is, possible solutions

extend the general domain by creating new concepts between facts.

5.4 Advantages of AFRANCI

In order to simulate reasoning in agents, knowledge represented by rules and

tuned synaptic connection weights were both implemented. The result was the

most promising multi-strategy plan with fast decisions.

Thus, we conclude that the main benefits of the architecture are:

• Model an system at a high-level design relieves the designer of sig-

nificant system responsibilities, such as to fulfil particular requirements.

AFRANCI comprises many control modules to emerge autonomy that can

be understood at a large-scale abstraction level;

• Support parallel and partitioned development provides a structural

decomposition of loosely coupled architectural patterns with clear respon-

sibilities in the system design phase. Since the architectural components

are relatively independent from each other, the subsequent development

work can be partitioned. Each partitioned pattern may be analysed and

developed by a team with specialised skills;

116 CHAPTER 5. AFRANCI FOR AGENTS

• Hot swap long-term capabilities automatically “rearrange” the whole

system. This improvement offers the union of new collections of capabilities

at any time; consequently upgrading old architectures;

• Understand the human thinking as a coherent and plastic to connect

simultaneous control modules and simulate specific behaviours. Addition-

ally, agent can take decisions based on its knowledge, learning and external

environment interaction;

• Cognitive indexing system analyses many possibilities in face of the sev-

eral neural records that do not make relation a priori with specific contexts,

and searches its references by means of associations (relational) in events

or other situations, avoiding mediation of the search (directive) as it is;

• Consciousness level is a mature general notion to solve real problems,

such as a new technique based on function and decomposition. After

that, the system uses a structure compilation to encode all decision tak-

ing into reactive mechanisms with high degree of efficiency. The differential

of AFRANCI is on the capability of controlling its own reasoning process.

Thus, the higher levels trigger actions to control modules beneath it;

• Flexibility of the meta-architecture handles different types of sub-

structures, with the potential for self tuning; consequently diversifying the

system. In general, there will not be unique design solutions. It is not to

be expected that there is any one “right” architecture. As biological diver-

sity demonstrates, many different architectures may be successful, and in

different ways.

Chapter 6

Architecture Implementation and

Experiments

This chapter presents an autonomous agent architecture that exerts control over

behaviours in a simulated environment. We begin by describing both architecture

and simulator and outlining the basic agent structure. We then take an inner look

at each function and control module concerning the relation between implemented

layers and evolution levels. From this background, we compare the proposed agent

architecture with other techniques in order to find the most promising one. Fi-

nally, we consider how the agent architecture has adapted to its most complex

functions.

6.1 Introduction

Autonomy and intelligence are different characteristics that focus on the same

principle, the independence of the agent in the environment.

In order to capture the “beauty” of autonomy and intelligence proposed along

this thesis, this chapter presents an architecture for computational agents that

supports heterogeneous control modules distributed in distinct levels, as biologic

human evolution dictates. The levels of importance act directly on mechanical

and functional agent properties as well as control modules being governed by

Conscience, which drives the agent to reach the target area.

The methodology used to evaluate the performance of the agent architecture

is a simulated environment with certain operating conditions. The virtual world,

known as CyberMouse, was used as the main environment due to the degree

117

118 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

of freedom (behaviour complexity) that any agent can obtain in the simulation.

The agent will be exhaustively tested in different simulation phases. Each phase

corresponds to different experimental prototype that obeys to a particular mani-

festation of autonomy.

6.1.1 CyberMouse Environment

CyberMouse is a simulator that virtualises a mouse, a cheese, a labyrinth, and

the dynamic states of the world. Respectively: an agent, a target area, a virtual

environment, and noise and/or latency. The primary agent goal is to reach the

target area set somewhere in the environment. The agent needs to avoid collisions

and reach the target area as fast as it can. The faster the target area is reached

by the agent, the better is its performance, which reflects the right choices made

by the inner system.

The labyrinth is a rectangular area with dimensions measured in Um (a stan-

dard unit of measurement), the maximum 28 Um wide by 14 Um depth. The

agent has a circular shape with dimension of 1 Um. The simulator can be con-

nected up to 3 agents at a given moment, but only one will be used in this thesis.

Simulation time is measured in units of time (Ut) or cycles, being pre-configured

to 1000, but it can be customised by the user. High or low walls in relation to

the cheese represent obstacles. The state of the world offers noise and/or latency,

meaning that the values captured by the sensors or actions sent to actuators may

be inaccurate. Noise is an inconsistent reading that interferes in agent decisions.

Latency is a delay of sensor readings or tasks implementations. For example,

sensors of target area and compass have latency up to 4 Ut, receiving outdated

information. There is a limit of up to 4 sensors for each 1 Ut to be implemented,

except the obstacle sensor, which is always available. For specific details about

simulator, simulation, and agent, please read [16].

6.1.1.1 Agent Specifications

The agent has a spheric shape with dimensions of 1 Um of diameter. To navigate

in the environment and reach the target area, the agent has sensors, engine and

LEDs, respectively:

Obstacle Sensor : Three infrared sensors measure the distance between the

agent and the obstacles around it. The values returned by the sensors are

measured in 1

distance
. By default, the centre obstacle sensor is set on the

central axis of the agent. The left and right obstacle sensors are set from

-60 to 60 degrees of the centre obstacle sensor, respectively. Each sensor

6.1. INTRODUCTION 119

covers an area of 60 degrees. The sensors provide an acceptable accuracy

when the distance between the agent and the obstacle is less than 2 Um;

Target Area Sensor : This omni directional sensor is set at the top of the

agent. The sensor returns an angle between the target area and the axis of

the agent. The sensor latency is set to 4 Ut, by default;

Ground Sensor : This sensor informs to simulator if the target area was

reached;

Compass Sensor : This sensor of navigation measures an angle between the

agent frontal axis and the north of the labyrinth;

Collision Sensor : This sensor detects a collision;

Engines : Right and left traction engines control the agent direction and speed

of wheels. The engines are on their axis perpendicular to the frontal axis.

The power of each engine varies between -0.15 and 0.15. The engines can

produces a speed of up to 0.12Um

Ut

. The power sent to the engines is influ-

enced by noise, as well;

LEDs : Two LEDs indicate,

Visit : whether the target area was reached by the agent;

End : whether the simulation has finished.

6.1.2 Experimental Design

The architecture was shaped on the same principles of the generic agent architec-

ture, presented in Chapter 5. Horizontal and vertical levels assembled by symbolic

and connectionist modules suggesting an organisation capable of producing au-

tonomous behaviours and able to emerge conscience1. Learning and reasoning

features were encoded in rules to produce cognition/action. They harmoniously

interchange signals among sensory and motor connections of internal agent mod-

ules. In the end, the agent introspectively evaluates and validates its thoughts in

order to control the behaviour to a certain degree of freedom.

1Conscience is the part of architecture that transmits commands to the level beneath it.

120 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

Figure 6.1 presents the architecture to be evaluated. In essence, functions

and modules are linked among them to interpret sensory stimulation and produce

behaviour by actuators.

Figure 6.1: The Agent Control System.

Figure 6.1 shows a network of interconnected heterogeneous modules perform-

ing specific functions in parallel, as previously illustrated by a series of horizontal

slices in Chapter 5. As with accommodation of multiple goals in parallel, each

slice was explicitly implemented then tied then all together to form an harmonic

Agent Control System. The architecture features are: low computational cost,

high noise adaptation, modular, heterogeneity, bidirectional flow of information,

biologic inspiration, robustness, flexibility, and the use of schemes of behaviour-

based context.

In fact, the conjunction of heterogeneous AI approaches (symbolic/non sym-

bolic) open the investigation to questions linked with agent behaviours analysis

and digest.

6.1.2.1 Levels and Layers of the System

The architecture was modelled under two perspectives: logical and physical.

The former distributes signals for four main hierarchic behaviour levels and one

6.1. INTRODUCTION 121

meta-level, as follow: Stereotyped, Reactive, Instinctive, Deliberative, and Meta-

management. The latter controls the agent system of values by arrangement of

the abstraction levels in layers from simple to complex, such as: Traction Modules,

Function Modules, Control Modules, Central Decision Module, and Conscience

Module, respectively. Figure 6.2 and Figure 6.3 presents the arrangement of levels

and layers in a stylised version, for easy undertanding.

Figure 6.2: A stylised network of interconnected modules.

Figure 6.3 presents how the whole structure is arranged in order to judge

and decide in favour of local sub-decisions and the main central decision to acti-

vate/inhibit the traction motors.

The Reactive layer, identified by light horizontal lines, implements Inside Cor-

ner Detector Function Module (TQ), Obstacle Detector Function Module (OBS),

Outside Corner Detector Function Module (DFP), and Wander Traction Module

(Vt) with atomic rules encoded as production rules in the Stereotyped layer that

control the agent locomotion, for instance. The Stereotyped layer, identified by

122 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

Figure 6.3: The Agent System diagram.

light vertical lines, the layer represents a Traction Module (Tr) that implement

“toward” (reflexes) or “against” (taxies) actions in left and right actuators.

The Instinctive layer, determined by shingle lines, enables Inside Corner De-

tector Control Module (AC), Obstacle Avoidance Control Module (BC), Circum-

vent Outside Corner Control Module (CC), and Search Cheese Control Module

(DC). Each instinctive module supports schemes of independent reactive mod-

ules. The use of Reactive Modules gives to the instinctive level a kind of “built-in

knowledge” stored along agent evolution, that is represented by production rules

or synaptic connection weights. These behaviour schemes are fired in accordance

with the agent situation in the environment. In this level, Function Modules rep-

resent the schematic representation of perception and activity - signal detection

and encoding. After data coming from the environment, Function Modules pro-

cess them and send them already encoded to the level above to emerge instinctive

actions for problem solving.

The Deliberative layer, identified by diagonal brick lines, determines the agent

goals from a situation or stimuli. It is composed by a Central Decision Making

Unit (SF) - reasoning of output process. This level measures the priority of all

global objectives and triggers the correspondent control to solve the problem.

The Central Decision Making Unit (SF) receive signals from Control Modules

6.1. INTRODUCTION 123

spread in the structure.

The Meta-management layer, sighted by large grid lines, also known as mod-

ule Conscience, represents the agent self control that analyses and judges the

decisions made in Deliberative level by Central Decision Making Unit. The main

goal is to autonomously suggests new control priorities to the Central Decision

Making Unit by analysis of differences among a great variety of stimuli received

from sensors to inner states and output of the Central Decision Making Unit

(SF). The module Conscience is based on a long-term knowledge base2 stored in

a repository of past “memories” - learning and external environment interaction.

It was implemented to be a purposeful self reflection - introspection of decision

activity. In the end, the overall activity of signals inside the architecture results

on outcomes that will activate and/or inhibits the output of other modules.

6.1.2.2 The Priority Scheme

The priority scheme was implemented during analyses of Central Decision Making

unit. In this priority-achieving scheme, the agent will decide in favour of the

most current important task of a cached task-list to be executed. The level of

importance of each task can be changed by intrinsic intentions, reading sensors,

and conscience suggestions (perceptions of something).

Every module receive data in parallel and work in parallel with others of the

same layer, but they obey a bidirectional degree of arrangement, as commented

in Chapter 3. The levels of importance are arranged in execution time due to the

situation and agent in context. By default, the agent issues are arranged in five

main priority levels. The level of importance is from top to bottom, as follow:

1. Escaping of Inside Corner Traps;

2. Detecting and Avoiding Obstacles;

3. Circumventing Outside Corners;

4. Searching for Cheese;

5. Travelling Aimlessly in the Labyrinth.

6.1.3 Features of the Agent Architecture

The agent issues are distributed in the following modules: a module of Conscience

in the meta-level, a central module of decision making in the deliberative level,

2Knowledge base is represented by rules encoded in a form of synaptic connection weights
already fine-tuned - “encoded memory”. It is used for the conscious/cognitive machinery to
develop goals and perform multi-strategy plans.

124 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

four control modules in the instinctive level, three specialised functions modules

in the reactive level, and six actuator modules in the stereotyped level. The

respective modules are commented below obeying the priority scheme of arrange-

ment.

6.1.3.1 Escaping of Inside Corner Traps

Basically, agents with simple behaviour (reflexive inner rules) are easily trapped

in inside corners. To avoid or escape of inside corners, the agent needs to in-

terpret correctly the signals received from all three obstacle sensors. Figure 6.4

demonstrates in four steps the action to escape of inside corners in the labyrinth.

Figure 6.4: Escaping of inside corners.

The escape of inside corners behaviour is implemented in three modules, as

follow, Inside Corner Detector Function Module (TQ), Inside Corner Detector

Control Module (AC), and Inside Corner Detector Traction Module (ET).

Inside Corner Detector Function Module (TQ)

The main function of Inside Corner Detector Function Module (TQ) is

to check whether the agent is trapped in an inside corner, Figure 6.5.

6.1. INTRODUCTION 125

Figure 6.5: Circuit diagram of Inside Corner Detector Function Module (TQ).

This Function Module checks if the agent has moved out of an inside corner,

based on output of Escape Inside Corner Control Module (AC). An inside corner

is only detected whether left, middle and right obstacle sensors (S1, S2, and S3,

respectively) had load, at the same time, a value higher than the default value

set by user in distance vision architecture parameter (VTQ). In this case, the

instinctive behaviour of basic survival is fired to discover some direction to get

out.

If the left obstacle sensor had the lowest value among all obstacle sensors,

but the left and right obstacle sensors are equal to and have the lowest value

than right obstacle sensor, so the left agent side is chosen and sent to Inside

Corner Escape Traction Module (ET), and a number of times for the agent to

turn around its own axis in anticlockwise direction is set by the user. During the

cycle of rotation, the agent does not process any signal received by sensors until

complete the task.

If the above conditions were not met, so the left obstacle sensor value is com-

pared with the lowest value at time tcurrent, otherwise middle and right obstacle

sensors have the same value, and if the value is less than the value load by left

obstacle sensor, so the right side is the direction to escape of inside corner (clock-

wise direction). If any of these above conditions are met then the side to escape

is randomly chosen.

Inside Corner Detector Control Module (AC)

This module decides the most promising strategy to move the agent out

of the trap, based on reading sensors and inner agent states, Figure 6.6.

The Inside Corner Detector Control Module (AC) checks on time t
−1 whether

the agent was moving out of an inside corner. Maybe not, then Inside Corner

Detector Control Module (AC) verifies the amount of steps that the agent rotated

on its own axis, and sends it to the Inside Corner Detector Function Module (TQ).

126 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

Figure 6.6: Circuit diagram of Inside Corner Detector Control Module (AC).

During the behaviour execution, the module decreases the number of steps

by each Ut and requests execution priority of Inside Corner Detector Traction

Module (ET) to Central Decision Making Unit (SF) in order to move agent out

of the inside corner.

Inside Corner Detector Traction Module (ET)

This module implements in the agent the behaviour to escape of the

trap. Figure 6.7.

Figure 6.7: Circuit diagram of Inside Corner Detector Traction Module (ET).

This module receives the clockwise or anticlockwise agent direction from In-

side Corner Detector Function Module (TQ), and implements the order of Central

Decision Making Unit (SF).

6.1. INTRODUCTION 127

6.1.3.2 Detecting and Avoiding Obstacles

The agent performance is drastically reduced by collisions. To detect obstacles

and avoid collisions, new guidance is suggested by the module to the actuator, as

showed in four steps in Figure 6.8.

Figure 6.8: Avoiding collisions.

The avoidance obstacle planning is set in three modules, as presented below,

Obstacle Detector Function Module (OBS), Obstacle Avoidance Control Module

(BC), and Obstacle Avoidance Traction Module (FT).

Obstacle Detector Function Module (OBS)

This module receives distance values from all obstacle sensors and inter-

prets them to assert the presence of obstacles, Figure 6.9. The obstacles are only

detected whether a reading value is greater than or equal to the architecture

parameter of vision distance (VD), previously set by the user. The higher reading

value means the closer the agent is to the obstacle.

The module checks and selects the sensor that reads the lowest distance be-

tween the agent and the obstacle, and suggests a new direction. The lower dis-

tance value means the opposite of distance load. The new direction chosen is

128 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

Figure 6.9: Circuit diagram of Obstacle Detector Function Module (OBS).

encoded as angle to be sent to Obstacle Avoidance Traction Module (FT) to

implement the trajectory.

Obstacle Avoidance Control Module (BC)

This module decides in favour of the most promising strategy to avoid

agent collision, Figure 6.1.3.2. All the strategies take into account the

environment conditions and agent inner states.

Based on output of Obstacle Detector Function Module (OBS), Obstacle

Avoidance Control Module (BC), and inhibitor agent behaviour architecture pa-

rameter (CRM),the agent requests execution priority for Central Decision Making

Unit (SF) to trigger Obstacle Avoidance Traction Module (FT).

In certain situations, the path is blocked and the agent cannot reach the

target area when detected. In this case, an inhibitor “hormone” is fired to block

6.1. INTRODUCTION 129

Figure 6.10: Circuit diagram of Obstacle Avoidance Control Module (BC).

the target area detection for a time period until it be in other place.

Obstacle Avoidance Traction Module (FT)

This module receives the obstacle direction from Obstacle Detector Function

Module (OBS), sets the opposite direction, and implements the order of Central

Decision Making Unit (SF), Figure 6.11.

Figure 6.11: Circuit diagram of Obstacle Avoidance Traction Module (FT).

6.1.3.3 Circumventing Outside Corners

After observed it, it can be time consuming if thinking new strategies to control

actuators for performing the best smooth curve. The solution proposed was to

130 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

built-in a natural behaviour in instinctive level that is capable of moving the

agent from one side to other side, and making a curve. The coordinates of curve

are automatically adjusted according to the wall corner shape. The result is the

agent circumvents corners very fast and checks for obstacles that can put its

performance at risk. Figure 6.12 presents the mouse using instinctive behaviours

to circumvent the wall.

Figure 6.12: Circumventing the wall.

The behaviour presented above is presented below at three main modules

as follow, Outside Corner Detector Function Module (DFP), Circumvent Out-

side Corner Control Module (CC), and Circumvent Outside Corner Traction

Module (GT).

Outside Corner Detector Function Module (DFP)

The main goal of this module is to detect the end of a wall and imple-

ment curves to circumvent corners in the labyrinth, Figure 6.13.

This module uses (DRP) architecture parameter to keep agent in a secure

distance from lateral obstacle. After that, it checks whether value of left obstacle

sensor (S1) is higher than value of right obstacle sensor (S3), and higher than

distance view of wall (VDPL) in order to detect a corner or inter spaces, increment

the agent left side counter, and reset the agent right side counter. But if the

6.1. INTRODUCTION 131

Figure 6.13: Circuit diagram of Outside Corner Detector Function Module
(DFP).

condition was not met, the right obstacle sensor will be checked under the same

conditions. If the condition is met by the right obstacle sensor, the right side

counter is incremented and the left side counter is reset - these two conditions

are checked using (MVS) set to 3 for previous information states at time t
−3, t

−2,

and t
−1 of each new simulation Ut. If some condition is met, the next action

checks if the value of active sensor has returned a value lower than the secure

distance of architecture parameter InterSpace. This verification is made in case

of a slight distance from the wall; the agent does not detect it as end of wall,

but continues implementing past behaviour. Conversely, if at time tcurrent any of

these conditions were not met, the counters of both sides are reset.

Circumvent Outside Corner Control Module (CC)

This module plans the best smooth curve to the agent if the end of a

wall is detected, and sends a request to its actuator module by Central Decision

Making Unit (SF), Figure 6.14.

The module checks whether the agent is implementing the action of circum-

venting outside corner (requiring priority). Whether the condition was not met,

the module checks whether the output of Outside Corner Detector Function Mod-

ule (DFP) have detected the end of wall; additionally, the module Circumvent

Outside Corner Control Module (CC) requires priority and starts circumventing

the outside corner in a pre-fixed number of steps customised by user.

During the implementation of behaviour, the module uses BeaconDir simu-

lator parameter to guide the agent to reach the cheese, but the environment is

dangerous for the agent, so prevention decisions are built-in in its veins, such as:

(a) do not circumvent walls to the side where there is no target area, (b) do not

go directly to the target area, or (c) do not enforce a circumvent action if the

target area is not accessible.

132 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

Figure 6.14: Circuit diagram of Circumvent Outside Corner Control Module
(CC).

Circumvent Outside Corner Traction Module (GT)

This module receives the side of the wall and implements the action of

circumventing outside corner, Figure 6.15. It happens at t
−1 and tcurrent. At

the time t
−1 the agent moves forward, and at the time tcurrent the agent turns a

little to the side that circumvents the outside corner.

6.1.3.4 Searching for Cheese

The main function of this module is to guide the agent to reach the target area.

Figure 6.16 presents in four steps the mouse reaching the cheese.

Nonetheless, the architecture may interrupt this particular inner stimulus for

a short time period if a translucent wall and target area are both detected on

the same direction. The purpose is to avoid iterative crashes like a bug trying to

pass through the glass.

Once the agent is partially blind, it does not recognise the target area like

an external stimulus of attraction, thus other modules can control the agent to

successfully avoid obstacles. These behaviours are represented by Search Cheese

Control Module (DC), Search Cheese Traction Module (IT), and Best Side Trac-

tion Module (Tr).

6.1. INTRODUCTION 133

Figure 6.15: Circuit diagram of Circumvent Outside Corner Traction Module
(GT).

Figure 6.16: Reaching the cheese.

Search Cheese Control Module (DC)

134 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

This module receives from the simulator the following parameters: ob-

stacle sensor (S2); target area visibility (BeaconVisible); target area direction

(BeaconDir); target area was detected in that cycle (BeaconReady); the output of

Obstacle Avoidance Control Module (BC) that blinds the agent for a time period;

and the target area detector(MiddleSensor), as presented in Figure 6.17.

Figure 6.17: Circuit diagram of Search Cheese Control Module (DC).

This module uses two output bits to connect and control the Best Side Trac-

tion Module (Ht), and Search Cheese Traction Module (IT). The procedure veri-

fies if the target area was found and the agent is not blind. If so, the next action

is to check if the path to the target area is accessible.

Search Cheese Traction Module (IT)

This module guides the agent to the target area and fixes the path

planning trajectory caused by the interference of sensor latency, Figure 6.18.

The module receives the following parameter data: from Central Decision

Making Unit (SF), the data that indicates whether the sensor implemented any

measurements; from simulator, if target area was detected (BeaconReady); also

receives the direction of the target area (BeaconDir). The output of the module

is an angle that fixes the agent trajectory to the target area.

Best Side Traction Module (Tr)

This module is activated if a low obstacle was detected between the

agent and the target area. The Best Side Traction Module (Tr) receives values

from left and right obstacle sensors and sends an angle to the engine, Figure 6.19.

6.1. INTRODUCTION 135

Figure 6.18: Circuit diagram of Search Cheese Traction Module (IT).

6.1.3.5 Travelling Aimlessly in the Labyrinth

The purpose of this module is to implement a simple wander behaviour in the

environment when no other behaviour was implemented, Figure 6.20.

Wander Traction Module (Vt)

This simple behaviour has a built-in subroutine implemented that uses

tcurrent and correction value function (LRS), both hand crafted by user, to treat

noises and latency, Figure 6.21.

6.1.3.6 Central Decision Making Unit

The Central Decision Making Unit (SF) is responsible for the reasoning of the

agent. Its main goals are measuring the priority of all global objectives and

trigger the correspondent control to solve the problem. The module receives

signals from all control modules arranged in the structure, that also includes

Conscience Module (Conscience), Figure 6.22.

136 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

Figure 6.19: Circuit diagram of Best Side Traction Module (Tr).

6.1.3.7 Conscience

In general, conscience is correlated with standardised decisions rules (agent body

intentions), and with “psychical” activities in the alternate states of long-term

memories.

Conscience Module (Conscience)

The Conscience Module (Conscience) was implemented to monitor and

think about decisions made by Central Decision Making Unit (SF), influencing it

6.1. INTRODUCTION 137

Figure 6.20: A simple Wander behaviour.

Figure 6.21: Circuit diagram of Wander Traction Module (Vt).

by approbation or rejection. Thus, Conscience Module (Conscience) intercepts

the output of Central Decision Making Unit (SF) and makes judgements based

on the past experience load.

The process is as follow. The Conscience Module (Conscience) intercepts the

Central Decision Making Unit (SF) output value and brings it to itself. Inside

the Conscience Module (Conscience), Artificial Neural Networks will verify: a)

138 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

Figure 6.22: Circuit diagram of Central Decision Module (SF).

the output of Central Decision Making Unit (SF) and confront it with a data

set of past experiences (PC)3; b) the input signals of collected data during the

current agent performance (SG)4, and c) how time cycle in past the ANN should

look at (QCSC). Experiences are encoded during the agent training in a file of

3In this experiment, the data set was created during the Wander Module when running.
4The input examples represents the whole history of all sensors, all architecture parameters,

all outputs of control modules, and the internal state of agent.

6.1. INTRODUCTION 139

Figure 6.23: Circuit diagram of Conscience Module (Conscience).

synaptic weights. Such synaptic weights have been fine-tuned when observing

the agent wandering behaviour and its integration with the system of searching

for target areas. After that, ANN returns a vector of six cells that contains new

priority weights to the Conscience Module (Conscience). The Central Decision

Making Unit (SF) will check again and verify if the past decision was the best to

that moment. This execution happens in one cycle of simulation and before the

execution order of any traction modules. The priority weights will influence the

output values of control modules previously load, respectively, the Inside Corner

Detector Control Module (AC), the Obstacle Avoidance Control Module (BC),

the Circumvent Outside Corner Control Module (CC), two cells for the Search

Cheese Control Module (DC), and the Wander Traction Module (Vt). In addition,

as what matters to the consciousness level is the majority activation of only one

output Control Module, then an average of outputs is re-entered to the Central

Decision Making Unit (SF). The Central Decision Making Unit (SF) receives the

output of Conscience Module (Conscience), and sums it with its output. Wander

Traction Module (Vt) is the unique module that does not have its own control

module, so the sum represents the following steps: If the output of Conscience

Module (Conscience) produced to Wander Traction Module (Vt) is higher than

value 0.95, then the value 1 is summed to the Conscience Module (Conscience)

output value of Wander Traction Module (Vt), otherwise the outcome of sum of

Wander Traction Module (Vt) receives only the output of Conscience of Wander

Traction Module (Vt). Therefore, Central Module (SF) makes calculus between

theses sums to know who has the highest degree to prioritise the activation of

this respective module in its output.

140 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

6.1.4 Experiments

About 17 original scenarios with initial positions to mouse and cheese were gen-

erated to produce a pool of new scenarios with different initial positions. The

unknown scenarios represent the impartiality of techniques. The mix of scenarios

produced new 170 valid scenarios with a non repetitive initial random positions.

From those scenarios, only 10 and non repetitive scenarios were randomly chosen

to be used on each evaluation phase. To be closer of a reproducible result, the

Table 6.1 presents the parameters of simulator used to configure the environment:

Parameters Values

SimTime 1000
CycleTime 60
CompassNoise 2
BeaconNoise 2
ObstacleNoise 0.1
MotorsNoise 1.5
RunningTimeout 500
GPS OFF
ScoreSensor OFF
ShowActions FALSE
NBeacons 1
RequestsPerCycle 4
ObstacleRequestable ON
BeaconRequestable ON
GroundRequestable ON
CompassRequestable ON
CollisionRequestable ON
ObstacleLatency 1
BeaconLatency 5
GroundLatency 1
CompassLatency 5
CollisionLatency 1
BeaconAperture 3.141593

Table 6.1: Simulator Parameters.

Three main sets of experiments were devised in order to produce a

fair comparison. First we use three Reactive Modules G1 with differ-

ent approaches to produce the base-line results, the results with which

our proposed techniques will be compared. The second experiment uses

Architecture without Conscience Module G2 in 12 different test phases. The last

experiment uses Architecture with Conscience Module G3 to judge and suggest

new answers to the system in 24 different test phases. Each test phase represents

inner evolution of agent structure to be tested in 10 runs. To each new run, a

6.1. INTRODUCTION 141

respective and non-repetitive scenario is load to the simulation. The stop value

measure of all scenarios was customised to 1000 Ut. If in this time period the

mouse has reached the cheese, the arrival time is set to 1000, by default. In the

end, an amount of 390 runs were performed.

In the first experiment, entitled Reactive Module, we test Wander Traction

Module (Vt) under three different reactive techniques to evaluate the agent perfor-

mance. To the first technique, Rules: Hand crafted, we have hardly experienced

to develop segments of knowledge by hand. The structure of production rules

composed a small expert system that reacts to events of the environment. Ad-

ditionally, the second and third techniques use ANN to prepare the agent to

reach its goal by synaptic connection weights, instead of production rules. To

the second technique, titled ANN: GA-based wrapper, ANN was tuned using a

GA-based wrapper. GA set ANN to: back-propagation learning algorithm; ran-

dom weights initialised from [−0.5, +0.5]; until three times more neurones in the

hidden layer than the input layer; sigmoidal transfer functions set to hidden and

output layers, and bias set to value 1; one neurone in the output layer, and bias

set to value 1; learning rate, momentum rate and steepness rate set to respective

default internal ranges; stop the training phase when the error rate achieves 0.05

in test phase or the training epochs achieves 150. Last, the third technique, called

ANN: Hand-tuned, represents ANN parameters hand-tuned by the supervisor. To

this technique, we hand set the ANN to: three layers; back-propagation learn-

ing algorithm; random weights initialisation from [−0.5, +0.5]; three neurones set

to the input layer, which receives three obstacle sensors; fifteen neurones set to

hidden layer, and bias set to value 1; one neurone set to output layer to feed

the traction module, and bias set to value 1; sigmoidal transfer function set to

hidden and output layers; learning rate, momentum rate and steepness rate set

to 0.8, 0.5 and 1, respectively; stop the training phase when the error rate gets

below 0.05 in test phase or the training epochs reaches 150. The first experiment

diagram is represented in Figure 6.24 with three different reactive techniques. In

the diagram, the main box on the left side represents the experiment, and the

three sub-boxes on the right side represents the specific tests supported by the

experiment.

Figure 6.24: The first experiment diagram.

142 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

In the second experiment, denominated Architecture without Conscience Module,

the Central Decision Making Unit filters various Control Modules request, de-

termines the next agent action, and subsumes orders of execution/inhibition to

Traction Modules. Moreover, a script file composed by all configurable agent

parameters that feed the Function and Control Modules - made by production

rules in whole structure. This script is responsible to particularise the agent

behaviours and influence the agent decisions. In this experiment, the values

are hand-tuned by a supervisor or automatically wrapped by GA; respectively,

Script Architecture: Hand-tuned, and Script Architecture: GA-based Wrapper.

In both techniques, the presence or absence of Previous Information States

determine the agent performance. Previous information states is a matrix of

memory cells that stores multiple reading signals and inner agent parameters

and states by time-sequential. The main purpose is to use possible differences

between the time-sequential to influence the agent decision. Other techniques

and their configuration have been inherit from the first experiment. The second

experiment is represented in Figure 6.25 by four horizontal branches. Each full

branch of the diagram supports up to 3 different techniques, since each Reactive

Module inherited three different reactive techniques. Each branch, from left to

right represents the group that supports the specific tests.

Figure 6.25: The second experiment diagram.

In the last third experiment, termed Architecture with Conscience Module,

6.1. INTRODUCTION 143

the Conscience Module (Conscience) is used to reduce drastically the agent ar-

rival time. The module analyses all sensors, and inner information states of agent

and suggests new results. The reader can imagine the Conscience Module sugges-

tion like an inner voice of agent mind saying which would be the best decision to

follow in that moment. The Conscience Module machinery uses ANN, which is

hand-tuned by a supervisor or automatically wrapped by stochastic search that

GA offers, respectively, ANN Conscience Module: Hand-tuned, ANN Conscience

Module: GA-based wrapper. It is worth noted that ANN used in Conscience

Module (Conscience) is adjusted obeying the same principles and values used to

configure Wander Traction Module (Vt) commented on the first experiment, ex-

cepted by 29 input neurones, 35 hidden neurones and one output neurone. Both

robust methods inherit all techniques of the second experiment, which when com-

bined they produce 24 test phases, differently from the second one that produces

12 test phases and the fist one, which produces three test phases. The third

experiment is represented in Figure 6.26 that has two branches. Each branch in-

herits 12 test phases from second experiment. The difference between branches is

the customisation of Conscience Module. After all, 24 test phases are run. Each

branch, from left to right represents the group that supports the subgroups.

Figure 6.26: The third experiment diagram.

6.1.5 Experimental Results

The results of three main experimental groups G1, G2, and G3 are reported below

from Table 6.2 to 6.4. Table 6.2 presents Reactive Module / ANN: GA-based

wrapper, signalised by an asterisk mark, as the winner technique. In Table 6.3,

the best technique is Architecture without Conscience Module / Script Architec-

ture: GA-based wrapper / Using previous information states / Reactive Modules

/ ANN: GA-based wrapper, indicated by an asterisk mark; in addition, Table 6.4

144 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

presents Architecture with Conscience Module / ANN Conscience Module: GA-

based wrapper / Script Architecture: GA-based wrapper / Using previous infor-

mation states / Reactive Modules / Rules: Hand crafted, showed by an asterisk

mark, as the best technique.

Analysis of Variance (ANOVA) and Tukey Test were used to identify statisti-

cal significance among experimental groups and their correspondent techniques.

The winner technique of each main experiment is highlighted by an asterisk mark

set on the right side of the std. deviation value. Figure 6.27 presents the Analy-

sis of Variance (ANOVA) among the winner techniques. According to ANOVA,

where ∗ achieved a p < 0.05, means all experiments are different among them.

The labels are: dark grey colour representing G1 winner, light grey colour show-

ing G2 winner, and black colour representing G3 winner, and Figure 6.28 presents

the Tukey Test, where ∗ achieved a p < 0.05 between G1 and G2, and G1 and G3,

but G2 and G3 were not statistically different. The labels are: dark grey colour

representing G1 winner, light grey colour showing G2 winner, and black colour

representing G3 winner.

From Figures 6.27 and 6.28, the following conclusions can be drawn. First,

the 39 techniques listed in this study showed good results, reporting that arrival

time decreased drastically during the evolution of the architecture.

Second, as it can be observed in Figures 6.27 and 6.28, statistical tests re-

ported significant differences between winner techniques on experiment I and II,

and reported on experiment I and III, but not too different between those reported

on experiment II and III. Nevertheless, the winner technique in experiment III

had the lowest variability of data around the average (high confidence level), if

compared to the winner technique of experiment I and II.

6
.1

.
IN

T
R

O
D

U
C

T
IO

N
145

Group Technique x̄ ± s

Reactive
Module

Rules: Hand crafted 898.57 ± 259.26
ANN: GA-based wrapper 778.40 ± 300.64*
ANN: Hand-tuned 898.57 ± 196.03

Table 6.2: Table results of Reactive Module experiment.

Groups & Techniques mixed x̄ ± s

ANN
without
Conscience
Module

Script Ar-
chitecture:
Hand-tuned

Not Using
Previous
Inform. States

Reactive
Module

Rules: Hand crafted 601.00 ± 406.52
ANN: GA-based wrapper 569.80 ± 370.22
ANN: Hand-tuned 583.03 ± 378.06

Using
Previous
Inform. States

Reactive
Module

Rules: Hand crafted 504.70 ± 366.44
ANN: GA-based wrapper 490.30 ± 337.74
ANN: Hand-tuned 496.60 ± 374.41

Script Ar-
chitecture:
GA-based
wrapper

Not Using
Previous
Inform. States

Reactive
Module

Rules: Hand crafted 543.40 ± 356.98
ANN: GA-based wrapper 526.60 ± 345.33
ANN: Hand-tuned 546.70 ± 325.56

Using
Previous
Inform. States

Reactive
Module

Rules: Hand crafted 517.32 ± 316.83
ANN: GA-based wrapper 449.20 ± 257.23*
ANN: Hand-tuned 475.00 ± 239.57

Table 6.3: Table results of ANN without Conscience Module experiment.

146
C

H
A

P
T

E
R

6
.

A
R

C
H

IT
E

C
T

U
R

E
IM

P
L
E

M
E

N
T
A

T
IO

N
A

N
D

E
X

P
E

R
IM

E
N

T
S

Groups & Techniques mixed x̄ ± s

Architecture

with Conscience

Module

ANN

Conscience

Module:

Hand-tuned

Script

Architecture:

Hand-tuned

Not Using

Previous Inform.

States

Reactive

Module

Rules: Hand crafted 367.00 ± 249.06

ANN: GA-based wrapper 451.10 ± 277.95

ANN: Hand-tuned 449.50 ± 320.36

Using Previous

Inform. States

Reactive

Module

Rules: Hand crafted 336.10 ± 263.04

ANN: GA-based wrapper 388.60 ± 245.82

ANN: Hand-tuned 387.12 ± 261.19

Script

Architecture:

GA-based

wrapper

Not Using

Previous Inform.

States

Reactive

Module

Rules: Hand crafted 385.60 ± 298.35

ANN: GA-based wrapper 458.20 ± 284.05

ANN: Hand-tuned 487.30 ± 313.47

Using Previous

Inform. States

Reactive

Module

Rules: Hand crafted 462.70 ± 323.36

ANN: GA-based wrapper 447.11 ± 277.27

ANN: Hand-tuned 451.90 ± 321.66

ANN

Conscience

Module:

GA-based

wrapper

Script

Architecture:

Hand-tuned

Not Using

Previous Inform.

States

Reactive

Module

Rules: Hand crafted 349.60 ± 237.81

ANN: GA-based wrapper 443.80 ± 274.05

ANN: Hand-tuned 331.30 ± 267.93

Using Previous

Inform. States

Reactive

Module

Rules: Hand crafted 375.70 ± 292.24

ANN: GA-based wrapper 481.10 ± 315.82

ANN: Hand-tuned 463.00 ± 330.16

Script

Architecture:

GA-based

wrapper

Not Using

Previous Inform.

States

Reactive

Module

Rules: Hand crafted 379.92 ± 275.78

ANN: GA-based wrapper 428.20 ± 268.70

ANN: Hand-tuned 466.60 ± 318.13

Using Previous

Inform. States

Reactive

Module

Rules: Hand crafted 290.20 ± 182.49*
ANN: GA-based wrapper 335.80 ± 153.26

ANN: Hand-tuned 385.00 ± 261.95

Table 6.4: Table results of ANN with Conscience Module experiment.

6.2. CONCLUSIONS 147

Figure 6.27: The results of Analysis of Variance (ANOVA).

Figure 6.28: The results of Tukey Test.

Last, the harmony among heterogeneous approaches interchanging messages

was fully aimed and was decisive for the agent to reach the target area. The use

of previous information states, and past events stored up in Conscience Module

(Conscience), had rightly influenced all agent decisions, and demonstrated that

using reactive rules hand-crafted in the lowest level was the most feasible and

reliable way to quickly reach the goal in any scenario tested.

6.2 Conclusions

In this chapter, different autonomous structures made of individual or collective

behaviours were exhaustively evaluated and compared. The main purpose was

to find an efficient technique able to reach fast agent performance (short arrival

time). Our proposed and winner architecture was a system of logic and rules,

148 CHAPTER 6. ARCHITECTURE IMPLEMENTATION AND EXPERIMENTS

stimulated by goals, linked by channels of communications, and shaped on biologic

evolutionary principles. Its hybrid structure of interconnected modules supported

perception, movement, cognition, and memory.

We observed that the winner architecture achieved an hybrid evolutionary

configurable strategy by mixing approaches, reaching the equilibrium or balance

between elements of agent intellectual faculty and simple propensities. By using

previous information states - registered changes in time of inner states, physical

activities, mental achievements, and conscience achievements - the agent travelled

backwards and forwards in time, projecting itself in future. Nevertheless, we de-

tected that in some simulations, the agent behaved “impatiently” when future

time brought signals back to the current time, so every moment was a struggle.

This particular issue was fixed since the blind mouse agent function was imple-

mented - the architecture interrupts the behaviour for a short time period if a

low wall and target area are both detected on the same direction.

We also observed that current and past events, or low and high levels had

disputed strengths at each renewable Ut. In lower level, react to the environment

was necessary in such situations. For instance, in face of extreme circumstances,

such as avoiding collisions, the lower behaviour level was “what” had the agent

control. The innate principles were not dependent of consciousness to be oper-

ated. Conversely, superior levels were responsible to “think” or find an answer to

solve the problem. The upper levels seemed to be flexible and capable of changes

in behaviour due to learning in past and swapping of long-term experiences in

present to deal with an unpredictable events in future. Therefore, the environ-

ment changes was quickly assimilated by agent. Conversely, other techniques

used ostensible knowledge that was divided in trivial disconnected fragments or

was limited to specialised knowledge, and they did not reached the aim so fast.

On one hand, the arrival time was the unique evaluation parameter to dis-

cover the most promising technique among experiments that could be measured

by simulator. On the other hand, the same parameter did not reflect all agent

“creativities” during the simulations, the Artificial Intelligence main point. Hav-

ing consciousness, the agent balanced, calculated, compared and selected what

was the most important thing to do. Additionally, GA and Conscience Module

(Conscience) were crucial to overpass latency and noise, reducing the agent ar-

rival time due to the use of past knowledge, well-done decisions, and a fine-tuned

behaviour. Conscience Module (Conscience) avoided robotisation of activities,

and GA made reflexions more robust - repertory enlarged and sensibility accu-

rated. Other point is even that thousands of simulations had happened, they did

not give us a real and absolute truth of any outcome, since the environment is not

previsible. For that reason we define the lack of statistic significancy presented

by ANOVA cannot be taken a genera law. In addition, spectator directly ob-

served vestiges of well-elaborated agent decisions emerged along the simulation

6.2. CONCLUSIONS 149

by Conscience Module (Conscience). The agent consciousness, its judgements

and decisions, and behaviour had evolved together, as a result, one is responsi-

ble for the other, which is responsible for the other, which is responsible for the

other, and so on and on. Other remarkable agent skills that could not be mea-

sured were: best smooth curve, concise deviations, and the best decisions taken

in unexpected situations (the implementation of hot-swap functions to load new

learned experiences when necessary).

In conclusion, the main strengths of the agent architecture, as an extensible

structure of modules, and in opposition to some basic principles or some simple

systems, were the optimisation strategy to achieve the optimal solution to the

most promising performance in an unknown scenario, and the effective managing

of symbolic and non-symbolic modules by interchanging messages among them-

selves. The agent speed and adaptation in unfamiliar environments was improved;

consequently saving time. The use of both hierarchic and parallel organisation of

behaviour modules had enabled the agent to process information from the envi-

ronment, interpret them, decide the best solutions and send them to the actuators

by subsumption of modules.

Chapter 7

Conclusions and Future Work

This Chapter summarises and presents the main conclusions of the research work

described in this thesis. The original contributions and the limitations are also

identified. Finally, future research directions are proposed.

7.1 Summary of this Thesis

In our work we have investigated the most common types of agent architectures

and Machine Learning algorithms, and developed a robust architecture that al-

lows the encoding of different and sophisticated behaviours into an artificial Cog-

nitive Agent. In the line of Brooks, the architecture has a layer structure where

each layer corresponds roughly to a cognitive level. Each layer is composed by

a set of modules that together enable the simulation of behaviours. Modules

are interconnected in such a way that information may influence other modules.

Differently from Brooks the modules may have interconnections with modules

of different layers. Layers that are more abstract (upper layers) provide increas-

ing complexity and subsume lower level functionalities. In the horizontal lines,

homogeneous modules are arranged in the same topology. In the vertical lines,

heterogeneous modules are arranged in different sorts of behaviour complexity

from simple behaviours to complex reasoning. Also differently from Brooks the

modules may be constructed by the use of Machine Learning algorithms. With

this general architecture one can assemble a particular agent choosing and con-

necting modules. This is facilitated by the AFRANCI tool. AFRANCI has a

user friendly graphical interface and a set of facilities to easy and speed up the

development of new Cognitive Agents.

151

152 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Summary of this Thesis

This work addressed the lack of tools to implement an architecture with a large

variety of intelligent actions in agents without decreasing of performance. Intelli-

gent actions are aimed at autonomy, solving problems and conscience by compu-

tational models inspired in other agent architectures. Thus, many bibliographic

resources supported the research to establish the basis in which the proposed

solution was developed.

The proposed solution was to investigate the most common types of agent

architectures and Machine Learning algorithms, and to develop a robust archi-

tecture that could emerge behaviours (perception/action), mind agent control

(learning), and conscience (meta-management) by using two different cognitive

lines. The main idea focuses on running processes in different periods or the

same process will be performed for many modules in the “same time” in distinct

and functional areas of the architecture. Levels that are more abstract provide

increasing complexity and subsume lower level functionalities. In horizontal lines,

homogeneous modules are arranged in the same topology. In vertical lines, het-

erogeneous modules are arranged in different sorts of behaviour complexity from

simple behaviours to complex reasoning.

AFRANCI architecture is a framework that supports multiple different levels

of abstraction organised in a hierarchical manner. In every level, control modules

made of ML algorithms interchange messages. We contemplate faster knowl-

edge acquisition to the reproduction of intelligence by addressing specific parts

of problem solving, such as emergence of inner thinking over structural arrange-

ment, background knowledge, control over internal states, and the influences of

Believes, Desires and Intentions (BDI).

To construct the AFRANCI architecture, various agent states (that are, activ-

ities and their respective functional attributes) were typified in control modules,

which then were arranged in structural layers. A fourth-layered hybrid architec-

ture was implemented from simple behaviours to complex reasoning, in order to

explore the structural and dimensional attributes of the layer. The layers were la-

belled in reflexive/reactive, instinctive, deliberative and cognitive (meta-model).

Thus, we combine symbolic and non-symbolic approaches with respective Ma-

chine Learning algorithms.

Next, we have used the AFRANCI Tool to draw a detailed circuit diagram

that determines the communication among layers and control modules. The in-

ner plasticity was carefully aimed with the study of the dynamic conscience that

influences the decision-making at the actuators, and layers that comprise these

components. In addition, the automatic training sequence demonstrated the most

promising performance in execution phase, which reached a bidirectional route

7.3. RESEARCH CONTRIBUTIONS 153

of data. In the bidirectional flow of data, the lower layers send sensory inputs

to the upper layers in order to solve a problem by specialised architecture layer;

consequently, the upper layers send data back to the lower layers to perform ac-

tions by its actuators. In the end, our fourth-layered hybrid architecture provides

control over behaviours in a unknown simulated environment. The harmonic het-

erogeneity among layers and components provides agents with their own and

distinct kind of intention, such as trends to represent behaviours and methods

and produce results efficiently.

7.3 Research Contributions

We have proposed an hybrid architecture of interconnected heterogeneous mod-

ules. Those modules may be constructed using Machine Learning algorithms to

develop autonomous and adaptable agents. The major contributions of this thesis

are the following.

Hybrid Architecture We have extended the definition of abstract control lev-

els and coordination methodologies that support heterogeneous ML al-

gorithms interchanging messages in different flow of control, and meta-

architecture for agents that virtualise many architectures in the main archi-

tecture - a new method for Multi-Strategy Learning System.

Architecture for Cognitive Agents Resume and commented analysis of the

main structural organisations with their examples in unpredictable, dy-

namic and dangerous environment in which the Autonomous is designed

to work. In addition, classification of their most promising features and

combinations towards our proposed architecture. Followed by the extension

of the definition of abstract control levels and coordination methodologies

that support heterogeneous ML algorithms interchanging messages in dif-

ferent flow of control, and meta-architecture for agents that virtualise many

architectures in the main architecture - a new method for Multi-Strategy

Learning System. Thus, the agent may modify its performance, which

means short-term and long term-internal self-modification is possible.

Machine Learning to construct Agent modules Overview of the most rele-

vant ML algorithms used in Artificial Intelligence presented a new tendency

to define intelligent agents. In addition, decision-making problems were im-

plemented to illustrate the strengths of learning methods. Consequently,

advantages and disadvantages compose particular and overall conclusions.

The ML algorithms used in this thesis are Artificial Neural Networks, Rule

Induction, Decisions Trees, and Genetic Algorithms which are supervised

learning methods.

154 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Framework for Designing Consciousness Autonomous Agents The pro-

posal of a modular architecture for autonomous and adaptable agents that

implement tasks previously defined has elucidated the uncertain theories

about mixing symbolic and sub-symbolic approaches in the agent structure.

In this framework, it is possible to divide levels of complexity into incremen-

tal functionality. The architecture combined characteristics of adaptability,

robustness and uniformity that are offered by Connectionist Approach with

characteristics of representation, inference and universality, which are na-

tives of Symbolic Approach. It supports heterogeneous abstractions levels

arranged in a bidirectional flow of information able to solve inner conflicts

and propose solutions.

Toolkit for Building Consciousness Autonomous Agent A graphical

front-end tool was built for users to design, test, debug and analyse

agent architectures. The AFRANCI tool was used extensively in to

attribute new functions by modification in the agent structure, and develop

organised layered architectures with interconnected ML modules of both

symbolic-connectionist approaches described in this thesis.

Test-bed A test-bed was implemented to evaluate our approach, which offered

fast and satisfactory responses, breaking AI paradigms, and achieving or-

ganisational levels that other architectures had not reached.

7.4 Limitations

Despite having reached satisfactory results in this thesis, the following limitations

were detected:

• The Agent was limited to the main ML algorithms studied. Other ML

algorithms could be tested and their performance compared;

• The modules become dependent due to hierarchy and specialisation;

• AFRANCI Tool does not support interconnected workspaces that deal with

unfinished projects;

• Background knowledge is necessary to off-line training time, which can slow

down installation and development;

• Decision tree methods use greedy algorithms. However, the greedy nature

of these algorithms can overlook multivariate relationships that cannot be

found when attributes are considered separately;

7.5. FUTURE WORK 155

• The main tests of architecture happened in labyrinths RoboCup Rescue and

CyberMouse, some critical opinions could suppose that the architecture is

not generic but environment dependant. As we have presented in numerous

times, this critic is not supported.

7.5 Future Work

Although many topics were addressed and covered, it is possible to identify some

open questions in this work, as they follow:

• Up to now, a sort of hot swap long-term memory as load. Other step

could be investigate other long-term memories to different situations and

implement a meta-cognitive layer (meta-meta-management level) to solve

eventual conflicts;

• Since the architecture has stored all agent activities along the execution in

the environment, a topic to be investigate is the possibility of the agent to

learn along the execution and do not forget the rules previously learned in

off-line training:

• Auto-update and fine-tune of long-term memories load in cognitive level to

new experiences without user intervention:

• New structures could be added over those previously existent or extended

in the same layer to enhance the behaviour complexity;

• More experiments should be designed to evaluate the architecture and util-

isation of Machine Learning algorithms, extending our study about inner

state induction;

• Apply the architecture in other areas, such as Biologic Evolution, and Psy-

chology.

The methodology used in this work focused on development of simple be-

haviour examples to prove and test the ideas presented. Thus, the final products

of this thesis were tools and models that help architect/designers to implement

the agents soul with high degree of autonomy and intelligence.

Bibliography

[1] A.K. Abbas. Imunologia Celular e Molecular. Revinter, 3o. edition, 2000.

[2] P.E. Agre and D. Chapman. What are plans for? In P. Maes, edi-

tor, Designing Autonomous Agents: Theory and Practice from Biology

to Engineering and Back, pages 17–34. The MIT Press: Cambridge, MA,

USA, 1990.

[3] H. Akin, C. Skinner, J. Habibi, T. Koto, and S. L. Casio. Robocup 2004

Rescue Simulation League Rules V1.01. The RoboCup Rescue Technical

Committee, 2004.

[4] K. Ali and R. Arkin. Implementing schema-theoretic models of animal

behavior in robotic systems, 1998.

[5] Ethem Alpaydin. Introduction to Machine Learning (Adaptive

Computation and Machine Learning). The MIT Press, October 2004.

[6] L.K. Altman. Manual merck. distúrbios imunes transplante.

http://www.msd.brazil.com, December 2006.

[7] J. B. Mota Alves. Fiction, reality and expectation of behavior-based robots.

In Annals of 1st Brazilian Symposium of Intelligent Automation, pages 145–

154. SBIA, Rio Claro, SP, 1993.

[8] C. Angle and R. Brooks. Small planetary rovers. In EEE/RSJ International

Workshop on Intelligent Robots and Systems, pages 383–388, Ikabara,

Japan, 1990.

[9] L.J. Antunes. Imunologia Geral. Atheneu, 1999.

[10] Associaç ao Brasileira de Normas Técnicas. Abnt web site. Publicado por

htpp em http://www.abnt.org.br/default.asp, Abril 2007.

157

http://www.msd.brazil.com

158 BIBLIOGRAPHY

[11] Jo ao Certo, Nuno Cordeiro, Francisco Reinaldo, Lúıs Paulo Reis, and Nuno

Lau. Fc portugal rescue home page. http://www.fe.up.pt/~rescue, Feb

2006.

[12] Jo ao Certo, Nuno Cordeiro, Francisco Reinaldo, Lúıs Paulo Reis, and Nuno

Lau. Fcpx: A tool for evaluating teams’s performance in robocup rescue

simulation league. Research in Computer Science, 26:127–136, Nov 2006.

[13] J.C.C. Baptista-Silva. Angiologia e cirurgia vascular: guia ilustrado.,

chapter Transplante renal: cirurgia no receptor: adulto, page

http://www.lava.med.br/livro. UNCISAL/ECMAL & LAVA, 2003.

[14] K. S. Barber, T. H. Liu, and D. C. Han. Agent-oriented design. In

Francisco J. Garijo and Magnus Boman, editors, Proceedings of the 9th

European Workshop on Modelling Autonomous Agents in a Multi-Agent

World : Multi-Agent System Engineering (MAAMAW-99), volume 1647,

pages 28–40. Springer-Verlag: Heidelberg, Germany, Feb 1999.

[15] Jorge Muniz Barreto. Resi: Revista eletrónica de sistemas de informção.

Publicado por http://www.inf.ufsc.br/resi, Abril 2007.

[16] Daria Alexandrovna Barteneva. Computational mind models for emotional

behavioral multi-agent systems. Master’s thesis, Faculdade de Engenharia

da Universidade do Porto (FEUP), 2006.

[17] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in

Practice. Addison-Wesley Professional, 2003.

[18] B. Bauer. Agent-standardization and implementation. In: Postgraduate

Course on Intelligent Agents, July 1999. EPFL, Lausanne.

[19] R. D. Beer. Intelligence as Adaptative Behavior: An Experiment in

Computational Neurobiology. Academic Press, 1990.

[20] David Benyon. Task analysis and system design: The discipline of data.

Interacting with Computers, 4(2):246–259, 1992.

[21] F.C. Berthoux, E.H. Jones, O. Mehls, and F. Valderrabano. Pre-emptive

renal transplantation in adults aged over 15 years. Nephrology Dialysis

Transplantation, 11:41–43, 1996.

[22] H. D. Block. The perceptron: A model for brain functioning. i. Rev. Mod.

Phys., 34(1):123–135, Jan 1962.

[23] E.J.W. Boers, H. Kuiper, B.L.M. Happel, and I.G. Sprinkhuizen-Kuyper.

Designing modular artificial neural networks. In H.A. Wijshoff, editor,

http://www.fe.up.pt/~rescue

159

Proceedings of Computing Science in The Netherlands, pages 87–96, SION,

Stichting Mathematisch Centrum, 1993.

[24] W. BOGGS and M. BOGGS. Mastering UML with rational rose 2002.

SYBEX, London, 2002. ISBN: 0-7821-4017-3.

[25] Jeffrey M. Bradshaw. An introduction to software agents. In Jeffrey M.

Bradshaw, editor, Software Agents, pages 3–46. AAAI Press - The MIT

Press, 1997.

[26] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology.

Cambridge, Mass. : MIT Press, 1984.

[27] Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen.

Classification and Regression Trees. Chapman & Hall-CRC, January 1984.

[28] Rodney A. Brooks. A robust layered control system for a mobile robot. In

Robotics and Automation, Journal of IEEE, volume 2, pages 14–23, 1986.

[29] Rodney A. Brooks. A robot that walks; emergent behaviors from a carefully

evolved network. Neural Comput., 1(2):253–262, 1989.

[30] Rodney A. Brooks. Elephants don’t play chess. Robotics and Autonomous

Systems, 6(1&2):3–15, June 1990.

[31] Rodney A. Brooks. Intelligence without reason. In John Myopoulos and Ray

Reiter, editors, Proceedings of the 12th International Joint Conference on

Artificial Intelligence (IJCAI-91), pages 569–595, Sydney, Australia, 1991.

Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.

[32] Arthur Buchsbaum and Francisco Reinaldo. A tool for logicians. The

PracTEX Journal, (3), 2007.

[33] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,

Michael Stal, Peter Sommerlad, and Michael Stal. Pattern-Oriented

Software Architecture, Volume 1: A System of Patterns. John Wiley &

Sons, August 1996.

[34] R. Calder, J. Smith, A. Courtenmanche, J. Mar, and A. Ceranowicz. Mod-

saf behavior simulation and control. In Proceedings of the Third Conference

on Computer Generated Forces and Behavioral Representation, 1993.

[35] Pedro Luis Luque Calvo. Construction of tables

latex multicolumn/color. Acessado por http em

http://www.informatica.us.es/~calvo/prog/in/p4.htm, Abril 2004.

http://www.informatica.us.es/~calvo/prog/in/p4.htm

160 BIBLIOGRAPHY

[36] Lance Carnes. The practex journal. Publicado por

http://www.tug.org/pracjourn/, Abril 2007.

[37] Yves Chauvin and David E. Rumelhart, editors. Back-Propagation: Theory,

Architecture, and Applications. Lawrence Erlbaum Associates, Inc., Mah-

wah, NJ, USA, 1995.

[38] P. Clark and R. Boswell. Rule induction with CN2: Some recent improve-

ments. In Proc. Fifth European Working Session on Learning, pages 151–

163, Berlin, 1991. Springer.

[39] P. Clark and T. Niblett. Induction in noisy domains. In Progress in Machine

Learning–Proceedings of EWSL 87: 2nd European Working Session on

Learning, pages 11–30, Bled, Yogoslavia, 1987.

[40] Peter Clark. Knowledge representation in machine learning. In Yves

Kodratoff and Alan Hutchinson, editors, Machine and Human Learning,

advances in European Research, pages 35–49. Michael Horwood, London,

1989.

[41] Peter Clark and Tim Niblett. The cn2 induction algorithm. Mach. Learn.,

3(4):261–283, 1989.

[42] Agent Communication. Foundation for intelligent physical agents fipa 97

specification part 2, 2003.

[43] Jonathan H. Connell. Sss: a hybrid architecture applied to robot navigation.

In Robotics and Automation, 1992. Proceedings., 1992 IEEE International

Conference on, pages 2719–2724 vol.3, 1992. TY - CONF.

[44] Nuno Cordeiro, Francisco Reinaldo, Jo ao Certo, Lúıs Paulo Reis, and Nuno

Lau. Fcpx home page. http://www.fe.up.pt/~rescue/FCPx, Feb 2006.

[45] F. D’Agostino, A. Farinelli, G. Grisetti, L. Iocchi, and D. Nardi. Monitor-

ing and information fusion for search and rescue operations in large-scale

disasters. In Information Fusion, pages 672–679, AnnaPolis, July 2002.

IEEE.

[46] Portugal Dáirio. Ue quer fora de protecção civil. Coluna Poltica, maro

2004.

[47] C. Darwin. On the Origin of Species by Means of Natural Selection. John

Murray, London, 1859.

[48] DELVE data for evaluating learning in valid experiments, 2003.

http://www.fe.up.pt/~rescue/FCPx

161

[49] Artur d’Avila Garcez, Krysia Broda, and Dov Gabbay. Neural-Symbolic

Learning Systems: Foundations and Applications. Perspectives in Neural

Computing. Springer-Verlag, 2002.

[50] Lawrence Davis. Mapping classifier systems into neural networks. In

Proceedings of the Workshop on Neural Information Processing Systems

1, pages 49–56, 1988.

[51] Randall Davis. Applications of meta level knowledge to the construction,

maintenance and use of large knowledge bases. Technical report, Stanford

Artificial Intelligence Laboratory, 1976.

[52] Robert A. Day. How to Write and Publish a Scientific Paper. Cambridge

University Press, 6 edition, 2006.

[53] Flávio de Almeida e Silva. Hierarchic neural nets for behavioural implemen-

tation in autonomous agents. Msc thesis. department of computer science,

Federal University of Santa Catarina, Florianópolis, Brazil, 2001.

[54] Instituto Brasileiro de Informação em Ciência e Tecnologia. Man-

ifesto brasileiro de apoio ao acesso livre informao cientfica.

http://www.ibict.br/openaccess/arquivos/manifesto.htm, Dezem-

bro 2005. Acesso em 18 de dezembro de 2005.

[55] H. M. Deitel and P. J. Deitel. C++ How To Program. Prentice Hall,

Englewood Cliffs, New Jersey 07632, 3 edition, 2001.

[56] Harvey M. Deitel and Paul J. Deitel. Java How to Program. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2001.

[57] DF. Decreto federal nÂ1

4
2.268, June, 30th 1997.

[58] C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of

machine learning databases, 1998.

[59] Richard C. Dorf and Robert H. Bishop. Modern control systems. Prentice

Hall, 10 edition, 2004.

[60] W. Duch, R. Adamczak, and N. Jankowski. Initialization and optimization

of multilayered perceptrons, 1997.

[61] W. Duch and N. Jankowski. Survey of neural transfer functions, 1999.

[62] R.J. Duquesnoy. Hlamatchmaker: a molecularly based algorithm for histo-

compatibility determination. Human Immunology, 63:339–352, 2002.

http://www.ibict.br/openaccess/arquivos/manifesto.htm

162 BIBLIOGRAPHY

[63] David L. Elliott. A better activation function for artificial neural networks.

Technical Report TR 93-8, Institute for Systems Research, Univ. of Mary-

land, College Pk., College Park, MD, 1993.

[64] D. Erdogmus, O. Fontenla-Romero, J.C. Principe, A. Alonso-Betanzos,

E. Castillo, and R. Jenssen. Accurate initialization of neural network

weights by backpropagation of the desired response. In Proceedings of

the International Joint Conference on Neural Networks, volume 3, pages

2005–2010. IEEE, 2003.

[65] Laurene V. Fausett. Fundamentals of neural networks: architectures,

algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1994.

[66] M. E. Fayad and D. C. Schimidt. Surveying current research in object-

oriented design. Communications of the ACM, 40(10):32–38, 1997.

[67] J. A. Feldman and D. H. Ballard. Connectionist models and their properties.

CogSci, 6:205–254, 1982.

[68] Jacques Ferber. Multi-Agent Systems: An Introduction to Distributed

Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1999.

[69] M.N. Fernando, T. Deuzeny, A.G. Claudio, T. Euclides, H. Sheila, M. Mar-

cos, and R.M. Carlos. Hlamatchmaker: a molecularly based algorithm

for histocompatibility determination. Revista Brasileira de Cirurgia

Cardiovascular, 16(2), April-June 2001.

[70] L. C. Figueiredo and F. G. Jota. A switching time-varying and time in-

variant controller to stabilize nonholonomic systems. In XIV Congresso

Brasileiro de Automática - CBA, Natal - RN, 2002.

[71] L. C. Figueiredo and R. A. Teixeira. Implementação de um controlador

fuzzy em clp. In II Congresso Mineiro de Automação, V Simpósio Regional

de Instrumentação, pages 73–79, Belo Horizonte - MG, 1998.

[72] Luiz Carlos Figueiredo, Gilcésar Ávila, Francisco Reinaldo, Rui Camacho,

Demétrio R. Magalh aes, and Lúıs Paulo Reis. A tool for the development of

robot control strategies. EJIS, Electronic Journal of Information Systems,

11(2), September 2007. ISSN 16773071.

[73] M.J.C. Figueiredo, L.C. & Justino. Robustez em medição: Filtro de kalman

aplicado a véıculos autónomos. Revista DOXA, 6:75–88, 2001.

[74] Terrence L. Fine. Feedforward Neural Network Methodology. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1999.

163

[75] R. J. Firby and M. Slack. Task execution: Interfacing to reactive skill net-

works. In AAAI Spring Symposium on Lessons Learned from Implemented

Software Architectures for Physical Agents, pages 92–96, Stanford, CA,

1995.

[76] D.S. Fitzwater, B.H. Brouhard, D. Garred, R.J. Cunningham, A.C. Novick,

and D. Steinmuller. The outcome of renal transplantation in children with-

out prolonged pre-tranplant dialysis. Clinical Pediatrics, 30:148–152, 1991.

[77] M. Fowler and K. Scott. UML essencial: um breve guia para a linguagem

padro de modelagem de objetos. Bookman, Porto Alegre, 2000.

[78] S. Franklin and A. Graesser. Is it an agent, or just a program?:

A taxonomy for autonomous agents. In Intelligent Agents III. Agent

Theories, Architectures and Languages, volume 1193, Berlin, Germany,

1996. Springer-Verlag.

[79] J. Fredslund and M.J. Mataric. Robot formations using only local sensing

and control. Computational Intelligence in Robotics and Automation, 2001.

Proceedings 2001 IEEE International Symposium on, pages 308–313, 2001.

[80] Evandro César Freiberger and Ricardo Pereira e Silva. Suporte ao uso de

frameworks orientados a objetos com base no histórico do desenvolvimento

de aplicações. SBQS III, page 2, 2004.

[81] LiMin Fu. Neural Networks in Computer Intelligence. McGraw-Hill, Inc.,

New York, NY, USA, 1994.

[82] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Padres

de projeto: soluções reutilizáveis de software orientado a objetos. Bookman,

Porto Alegre, 2000.

[83] R. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[84] Michael R. Genesereth and Steven P. Ketchpel. Software agents.

Communications of the ACM, 37(7):48–53, July 1994.

[85] Anne Geraci. IEEE Standard Computer Dictionary: Compilation of IEEE

Standard Computer Glossaries. Institute of Electrical and Electronics En-

gineers Inc., The, 1991.

[86] Andrew G. Glen and Lawrence M. Leemis. The arctangent survival distri-

bution. Department of Mathematics, College of William & Mary. Williams-

burg, VA., 1997.

164 BIBLIOGRAPHY

[87] David E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley Professional, January 1989.

[88] Elizabeth Gordon and Brian Logan. A goal processing architecture for

game agents. In AAMAS ’03: Proceedings of the second international joint

conference on Autonomous agents and multiagent systems, pages 998–999,

New York, NY, USA, 2003. ACM Press.

[89] S. J. Gould. Darwinism and the expansion of evolutionary theory. pages

308–387. Science, 216, 1982.

[90] J. J. Grefenstette. Genesis: a system for using genetic search procedures.

In Proceedings of the 1984 Conference on Intelligent Systems and Machines,

pages 161–165, 1984.

[91] Steven Alex Harp, Tariq Samad, and Aloke Guha. Towards the genetic

synthesis of neural network. In Proceedings of the third international

conference on Genetic algorithms, pages 360–369, San Francisco, CA, USA,

1989. Morgan Kaufmann Publishers Inc.

[92] Nicholas J. Higham. BibTeX: A versatile tool for LATEX users. SIAM News,

27(1):10, 11, 19, January 1994.

[93] Pascal Hitzler, Steffen Hölldobler, and Anthony K. Seda. Logic programs

and connectionist networks. Journal of Applied Logic, 3(2):245–272, 2004.

[94] Joel Hoff and George Bekey. An architecture for behavior coordination

learning. In In IEEE International Conference on Neural Networks, vol-

ume 5, pages 2375–2380. IEEE, 1995.

[95] D. Hogg, F. Martin, and M. Resnick. Braitenberg creatures, 1991.

[96] J. H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, 1975.

[97] John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and Paul R. Tha-

gard. Induction. Series: Computational Models of Cognition and Percep-

tion. The MIT Press, Cambridge, 1986. Series Editors: Jerome A. Feldman,

Patrick J. Hayes, and David E. Rumelhart. First MIT Press paperback edi-

tion, 1989.

[98] Kurt Hornik, Maxwell Stinchcombe, Halbert White, and Peter Auer. De-

gree of approximation results for feedforward networks approximating un-

known mappings and their derivatives. Neural Computation, 6(6):1262–

1275, 1994.

[99] IBGE. Normas de apresentação tabular. Rio de janeiro. 61 p., 1993.

165

[100] IBM-Taligent(ed.). Building object-oriented frameworks. White paper, Fev.

1994.

[101] K. Ito, A. Gofuku, Y. Imoto, and M. Takeshita. A study of reinforcement

learning with knowledge sharing for distributed autonomous system. In

International Symposium on Computational Intelligence in Robotics and

Automation, volume 3, pages 1120–1125, Okayama Univ., Japan, July 2003.

Dept. Syst. Eng.
”

IEEE.

[102] J. Laird J. F. Lehman and P. Rosenbloom. A gentle introduc-

tion to soar, an architecture for human cognition on-line. Available

via www.eecs.umich.edu/~SOAR/sitemaker/docs/misc/Gentle.pdf. ac-

cessed Jan 12, 2007.

[103] Marcela Jamett and Gonzalo Acuña. An interval approach for weight’s

initialization of feedforward neural networks. In Alexander F. Gelbukh and

Carlos A. Reyes Garćıa, editors, MICAI, volume 4293 of Lecture Notes in

Computer Science, pages 305–315. Springer, 2006.

[104] Nicholas R. Jennings, Katia P. Sycara, and Michael P. Georgeff. Editorial.

Autonomous Agents and Multi-Agent Systems, 1(1):5, 1998.

[105] H. George John. Cross-validated c4.5: Using error estimation for automatic

parameter selection. Technical note stan-cs-tn-94-12, Computer Science

Department, Stanford University, California, October 1994.

[106] R. E. Johnson and B. Foote. Designing reusable classes. Journal of

Object-Oriented Programming, 1(2):22–35, 1998.

[107] R. Jones, J. Laird, M. Tambe, and P. Rosenbloom. Generating behavior

in response to interacting goals. In Proceedings of the Fourth Conference

on Computer Generated Forces and Behavioral Representation. Orlando,

Florida: Institute for Simulation and Training, University of Central

Florida, 1994.

[108] K. A. JONG. An analisys of the behaviour of a class of genetic adaptative

systems. PhD thesis, Michigan University, USA, 1975.

[109] K-TEAM. The khepera miniature mobile robot.

http://diwww.epfl.ch/lami/robots/K-family/Khepera.html, 2004.

[110] Leslie Pack Kaelbling. A situated-automata approach to the design of em-

bedded agents. SIGART Bull., 2(4):85–88, 1991.

[111] J. Kalbfleish. Probability and Statistical Inference, volume 2. Springer-

Verlag, New York, 1979.

www.eecs.umich.edu/~SOAR/sitemaker/docs/misc/Gentle.pdf
http://diwww.epfl.ch/lami/robots/K-family/Khepera.html

166 BIBLIOGRAPHY

[112] H. Kitano, S. Tadokor, H. Noda, I. Matsubara, T. Takhasi, A. Shinjou, and

S. Shimada. Robocup-rescue: Search and rescue for large scale disasters as

a domain for multi-agent research. In In Proc. of the IEEE Conference on

Systems, Men, and Cybernetics, volume 6, pages 739 – 743. IEEE, 1999.

[113] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi

Osawa, and Hitoshi Matsubara. Robocup: A challenge problem for

ai and robotics. In RoboCup-97: Robot Soccer World Cup I, volume

1395/1998 of Lecture Notes in Computer Science, pages 1–19. Springer,

1998. http://www.springerlink.com/content/a3826g5q77706l87/.

[114] A. Kleiner and M. Göbelbecker. Rescue3D: Making rescue simulation at-

tractive to the public. Technical Report 00229, Institut für Informatik, Uni-

versität Freiburg, 2004. http://www.informatik.uni-freiburg.de/∼kleiner.

[115] R. Kleiss and R. Pittau. Weight optimization in multichannel monte carlo.

Computer Physics Communications, 83:141, 1994.

[116] Michael Knapik and Jay Johnson. Developing intelligent agents for

distributed systems: exploring architecture, technologies, & applications.

McGraw-Hill, Inc., New York, NY, USA, 1998.

[117] Donald E. Knuth. The TeX book, volume 1986a of Computers and

Typesetting. Addison-Wesley, 1986.

[118] Ron Kohavi. A study of cross-validation and bootstrap for accuracy esti-

mation and model selection. In IJCAI, pages 1137–1145, 1995.

[119] Ron Kohavi. Wrappers for Performance Enhancement and Oblivious

Decision Graphs. PhD thesis, Stanford University, 1995.

[120] Ron Kohavi and Dan Summerfield. Features subset selection using

the wrapper method:overfitting and dynamic search space topology. In

First International Conference on Knowledge Discovery and Data Mining

(KDD-95), 1995.

[121] Bryan Kolb and Ian Q. Whishaw. An Introduction to Brain and Behavior.

Worth Publishers Inc, New York, 2nd edition, 2005.

[122] I. Kolmanovsky and N. H. McClamroch. Developments in nonholonomic

control problems. In IEEE Trans. On Control Systems, pages 20–36, 1995.

[123] I. Kononenko, I. Bratko, and R. Roskar. Experiments in automatic learning

of medical diagnosticrules. Technical report, Faculty of Electircal Engineer-

ing, E. KardeljUniversity, Ljubljana, 1984.

167

[124] B. Kosko, editor. Neural Networks and Fuzzy Systems – A Dynamical

Systems Approach to Machinne Intelligence. Prentice Hall, Englewood

Cliffs, 1991. ISBN 0136114350.

[125] J. Laird and J. Duchi. Creating human-like sythetic characters with mul-

tiple skill levels: A case study using the soar quakebot. In AAAI Fall

Symposium Series: Simulating Human Agents, 2000.

[126] J. E. Laird and Michael van Lent. Developing an artificial intelligence

engine. In Proceedings of the Game Developers Conference, pages 577–588.

San Jose, CA, March 16-18 1999.

[127] John E. Laird. It knows what you’re going to do: adding anticipation to a

quakebot. In AGENTS ’01: Proceedings of the fifth international conference

on Autonomous agents, pages 385–392, New York, NY, USA, 2001. ACM

Press.

[128] John E. Laird. Using a computer game to develop advanced ai. Computer,

34(7):70–75, 2001.

[129] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: an architecture

for general intelligence. Artificial Intelligence., 33(1):1–64, 1987.

[130] John E. Laird and Paul Rosenbloom. The evolution of the Soar cognitive ar-

chitecture. In David M. Steier and Tom M. Mitchell, editors, Mind Matters:

A Tribute to Allen Newell, pages 1–50. Lawrence Erlbaum Associates, Inc.,

Mahwah, New Jersey, 1996.

[131] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in soar:

The anatomy of a general learning mechanism. Machine Learning, 1(1):11–

46, March 1986.

[132] Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley,

Massachussets, 2 edition, 1994. ISBN: 0201529831.

[133] C. Larman. Utilizando UML e padrões. Bookman, Porto Alegre, 2000.

[134] N. Lavrac. Computational logic and machine learning: a roadmap for in-

ductive logic programming. Technical report, J. Stefan Institute, Ljubljana,

Slovenia, 1998.

[135] Lego. Lego mindstorm hitachi h8: 3804 robotic invention system 2.0.

http://mindstorms.lego.com, 2002.

[136] The IEEE Computer Society Digital Library. Ieee web site. Publicado por

http em http://www.ieee.org/portal/site, Abril 2007.

http://mindstorms.lego.com

168 BIBLIOGRAPHY

[137] R. Liscano, A. Manz, E.R. Stuck, R.E. Fayek, and J.-Y. Tigli. Using a black-

board to integrate multiple activities and achieve strategic reasoning for

mobile-robot navigation. Expert, IEEE [see also IEEE Intelligent Systems],

10(2):24–36, 1995. TY - JOUR.

[138] John Little and Loren Shure. Signal Processing Toolbox for use with

MATLAB:User’s Guide. The Mathworks, Cochituate Place, 24 Prime Park

Way, Natick, MA, USA, 1988.

[139] P. Maes. How to do the right thing. Connection Science Journal, Special

Issue on Hybrid Systems, 1, 1990.

[140] Pattie Maes. Situated agents can have goals. Special issue of journal of

Robotics and Autonomous vehicle control, 6(1-2):49–70, 1990. TY - JOUR

U1 - 90090535699 Compilation and indexing terms, Copyright 2004 Elsevier

Engineering Information, Inc. U2 - Autonomous Agent Situated Agents

Activation/Inhibition Dynamics Situation-Orientedness Goal-Orientedness

Goal-Directed Behavior.

[141] Pattie Maes. Artificial life meets entertainment: lifelike autonomous agents.

Communications of the ACM, 38(11):108–114, 1995.

[142] Danilo P. Mandic and Jonathon Chambers. Recurrent Neural Networks for

Prediction: Learning Algorithms, Architectures and Stability. John Wiley

& Sons, Inc., New York, NY, USA, 2001.

[143] Maja J. Mataric. Behavioral synergy without explicit integration. SIGART

Bulletin 2, 2(4):130–133, 1991.

[144] Maja J. Mataric. Behavior-based control: Main properties and implica-

tions. In Proceedings, IEEE International Conference on Robotics and

Automation, Workshop on Architectures for Intelligent Control Systems,

pages 46–54, Nice, France., 1992.

[145] Maja J. Mataric. Interaction and Intelligent Behavior. Thesis.

PhD thesis, Massachusetts Institute of Technology, 1994.

ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-1495.pdf.

[146] Maja J. Mataric. Learning to behave socially. Technical re-

port, MIT Articial Intelligence Laboratory, April 10,1997 1997.

http://citeseer.ist.psu.edu/144586.html.

[147] Mathworks. Matlab. Mathworks, Inc, Natick, MA, 1999.

[148] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

169

[149] A. Menon, K. Mehrotra, C. K. Mohan, and S. Ranka. Characterization of

a class of sigmoid functions with applications to neural networks. Neural

Networks, 9(5):819–835, 1996.

[150] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. Springer-Verlag, New York, 1992.

[151] R.S. Michalski. A theory and methodology of inductive learning. In

R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning:

An Artificial IntelligenceApproach, volume 1, pages 83–134. Morgan Kauf-

man, Palo Alto, CA, 1983.

[152] George Armitage Miller, Eugene Galanter, and Karl H. Pribram. Plans and

the Structure of Behavior. Adams Bannister Cox Pubs, September 1986.

[153] Marvin Minsky. A framework for representing knowledge. Technical report,

Cambridge, MA, USA, 1974.

[154] Marvin Minsky. Jokes and their relation to the cog-

nitive unconscious. In Vaina and Hintikka, editors,

Cognitive Constraints on Communication. Reidel, 1981.

http://web.media.mit.edu/~minsky/papers/jokes.cognitive.txt.

[155] Marvin Minsky. The Society of Mind. Simon & Schuster, 1988.

[156] Marvin Minsky. Negative expertise. In International

Journal of Expert Systems, volume 1, pages 13–19, 1994.

http://web.media.mit.edu/~minsky/papers/NegExp.mss.txt.

[157] M.L. Minsky and S.A. Papert. Perceptrons. MIT Press, Cambridge, 1969.

[158] MIT and Matthew Wall. Galib: a library of genetic algorithm components.

http://lancet.mit.edu/ga/, October 2006.

[159] Perry Moerland, Georg Thimm, and E. Fiesler. Results on the steepness

in backpropagation neural networks. In Marc Aguilar, editor, Proceedings

of the ’94 SIPAR-Workshop on Parallel and Distributed Computing, pages

91–94, Institute of Informatics, University Pérolles, Fribourg, Switzerland,

October 1994. SI Group for Parallel Systems.

[160] David J. Montana and Lawrence Davis. Training feedforward neural

networks using genetic algorithms. In IJCAI’89: Proceedings of the

11th international joint conference on Artificial intelligence, pages 762–

767, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

http://dli.iiit.ac.in/ijcai/IJCAI-89-VOL1/PDF/122.pdf.

http://web.media.mit.edu/~minsky/papers/jokes.cognitive.txt
http://web.media.mit.edu/~minsky/papers/NegExp.mss.txt

170 BIBLIOGRAPHY

[161] Takeshi Morimoto. How to Develop a RoboCupRescue Agent for

RoboCupRescue Simulation System version 0. The RoboCup Rescue Tech-

nical Committee, Nov. 2002.

[162] Takeshi Morimoto. Viewer for robocuprescue simulation system.

http://ne.cs.uec.ac.jp/morimoto/rescue/viewer/, 2002.

[163] T. Mowbray. Essentials of object-oriented architecture. Object Magazine,

pages 28–32, September 1995.

[164] R. M. Murray, Z. Li, and S. Sastry. A mathematical introduction to robotic

manipulation. CRC Press LLC, 1994. ISBN 0849379814.

[165] Carl Nelson. A forum for fitting the task. Computer, 27(3):104–109, 1994.

[166] Fernando Moraes Neto, Deuzeny Tenório, Claudio A. Gomes, Euclides

Tenório, Sheila Hazin, Marcos Magalh aes, and Carlos R. Moraes. Trans-

plante card́ıaco: a experiência do instituto do coração de pernambuco com

35 casos. Revista Brasileira de Cirurgia Cardiovascular, 16(2)(2):152–159,

April - June 2001.

[167] Allen Newell. Unified theories of cognition. Harvard University Press, Cam-

bridge, MA, USA, 1994.

[168] Allen Newell. Unified Theories of Cognition (The William James Lectures).

Harvard University Press, October 2002.

[169] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptative weights. In Neural

Networks for Control, volume 3, pages 21–26, 1990.

[170] D. Nguyen and B. Widrow. The truck backer-upper: An example of self-

learning in neural networks. In Miller W. T, Sutton R. S, and Werbos P.

J., editors, Neural Networks for Control, pages 288–299, Cambridge, MA,

1990. MIT Press.

[171] Jakob Nielsen. The usability engineering life cycle. IEEE Computer, pages

12–22, March 1992.

[172] Paul E. Nielsen. Soar/ifor: intelligent agents for air simulation and control.

In WSC ’95: Proceedings of the 27th conference on Winter simulation,

pages 620–625, Washington, DC, USA, 1995. IEEE Computer Society.

[173] Timothy Norman, Nick Jennings, Peyman Faratin, and Abe Mamdani. De-

signing and implementing a multi-agent architecture for business process

management. In Jörg P. Müller, Michael J. Wooldridge, and Nicholas R.

Jennings, editors, Proceedings of the ECAI’96 Workshop on Agent Theories,

http://ne.cs.uec.ac.jp/morimoto/rescue/viewer/

171

Architectures, and Languages: Intelligent Agents III, volume 1193, pages

261–276. Springer-Verlag: Heidelberg, Germany, 12–13 1997.

[174] Irene L. Noronha, Agenor Spallini Ferraz, Álvaro Pacheco Silva Filho, David

Saitovich, Deise de Boni Monteiro de Carvalho, Flávio Jota de Paula,

Henry Campos, and Luiz Estevam Ianhez. Diretrizes em transplante re-

nal. http://www.sbn.org.br/Diretrizes/tx, October 2006.

[175] Manas Ranjan Patra and Hrushikesha Mohanty. A formal framework to

build software agents. In APSEC, pages 119–126, 2001.

[176] David W. Payton, J. Kenneth Rosenblatt, and David M. Keirsey. Plan

guided reaction,. IEEE Transactions on Systems, Man and Cybernetics,

No. 6, November/December 1990, 20:1370–1382, 1990.

[177] A.G. Pipe, Y. Jin, and A. Winfield. A hybrid adaptive heuristic critic

architecture for learning in large static search spaces. In Intelligent Control,

1994., Proceedings of the 1994 IEEE International Symposium on, pages

237–242, 1994. TY - CONF.

[178] D.L. Prados. New learning algorithm for training multilayered neu-

ral networks that uses genetic-algorithm techniques. Electronics Letters,

28(16):1560–1561, 30 JUL 1992.

[179] W. Pree. Design patterns for object oriented software development.

Addison-Wesley, 1994.

[180] J. Ross Quinlan. Internal consistency in plausible reasoning systems. New

Generation Computing, 3(2):157–180, 1985.

[181] J.R. Quinlan. Learning efficient classification procedures and theirapplica-

tion to chess end games. In R. Michalski, J. Carbonnel, and T. Mitchell,

editors, Machine Learning: An Artificial IntelligenceApproach. Tioga, Palo

Alto, CA, 1983.

[182] Ross J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

January 1993.

[183] E.L. Milford R.A.Wolfe, V.B. Ashby. Comparison of mortality in all pa-

tients on dialysis awaiting transplantation, and recipients of a first cadaveric

transplant. The New England Journal of Medicine, 314:1725–1730, 1999.

[184] Francisco Reinaldo. Pyramidnet tool project homepage.

http://www.inf.ufsc.br/~rei, 2002.

http://www.sbn.org.br/Diretrizes/tx
http://www.inf.ufsc.br/~rei

172 BIBLIOGRAPHY

[185] Francisco Reinaldo. Projecting a framework and programming a system

for development of modular and heterogeneous artificial neural networks.

Msc thesis. department of computer science, Federal University of Santa

Catarina, Florianopolis, Brazil, Feb 2003.

[186] Francisco Reinaldo. Dezenas de sites interessantes para latex, 2005.

[187] Francisco Reinaldo. Afranci project homepage. http://www.afranci.com,

2006.

[188] Francisco Reinaldo. Os pacotes mais usados em latex, 2006.

[189] Francisco Reinaldo. From the editor:editorial: Tools for latex and tex users.

The PracTEX Journal, (3), 2007.

[190] Francisco Reinaldo, Rui Camacho, Lúıs P. Reis, and Demétrio Renó Ma-

galhaes. Fine-tune Artificial Neural Networks Automatically, volume 1

of Leacture Notes in Electrical Engineering, 27, chapter 5, pages 39–43.

Springer Verlag, 2009.

[191] Francisco Reinaldo, Rui Camacho, and Lúıs Paulo Reis. Afranci: An ar-

chitecture for learning agents. Phd report, FEUP, Porto, Portugal, August

2005.

[192] Francisco Reinaldo, Rui Camacho, and Lúıs Paulo Reis. Aplicando

novos paradigmas biológicos para emergir comportamentos em um sistema

autónomo. II Seminário de Investigadores e Estudantes Brasileiros em

Portugal - II SIEBRAP, 2005. ISSN:1646-0936.

[193] Francisco Reinaldo, Joao Certo, Nuno Cordeiro, Lúıs Paulo Reis, Rui Ca-

macho, and Nuno Lau. Applying biological paradigms to emerge behaviour

in robocup rescue team. In Carlos Bento, Amı́lcar Cardoso, and Gaël Dias,

editors, EPIA, volume 3808 of Lecture Notes in Computer Science, pages

422–434. Springer, 2005. ISSN: 03029743.

[194] Francisco Reinaldo, Eliane Pozzebon, Mauro Roisenberg, and Jorge Muniz

Barreto. Biological answer generated by a robotic agent. In II Symposium

Catarinense of Digital Image Processing, Florianópolis, Brasil, 2002.

[195] Francisco Reinaldo, Mauro Roisenberg, Jorge Muniz Barreto, Rui Camacho,

and Lúıs Paulo Reis. A tool for fast development of modular and hierarchic

neural network-based systems. In J. Manuel Feliz-Teixeira and A. E. Car-

valho Brito, editors, Proceedings of the 2005 European Simulation and

Modelling Conference, pages 161–163, Porto, PT, October 2005. EUROSIS-

ETI. ISBN: 9077381228.

http://www.afranci.com

173

[196] Francisco Reinaldo, Mauro Roisenberg, Rui Camacho, and Luis Paulo Reis.

A tool for fast development of modular and hierarchic neural network-based

systems. EJIS, Electronic Journal of Information Systems, 8(2), September

2006. ISSN 16773071.

[197] Francisco Reinaldo and Marcus Siqueira. Cn2 for microsoft windows

xp. http://www.cs.utexas.edu/users/pclark/software/~cn2, Septem-

ber 2006. Peter Clarck’ WebSite.

[198] Francisco Reinaldo, Marcus Siqueira, Rui Camacho, and Lúıs Paulo Reis.

Multi-strategy learning made easy. WSEAS Transactions On Systems,

Greece, 5(10):2378–2384, July 2006. ISSN 1109-2777.

[199] Francisco Reinaldo, Marcus Siqueira, Rui Camacho, and Lúıs Paulo Reis.

A tool for multi-strategy learning. Research in Computer Science, 26:51–60,

Nov 2006.

[200] Lúıs Paulo Reis. Coordination in Multi-Agent Systems: Applications in

University Management and Robotic Soccer. Doctoral dissertation, Univer-

sity of Porto, Porto, Portugal, 2003.

[201] Ken Richardson. Models of Cognitive Development. Psychology Press,

1998.

[202] Helge Ritter and Teuvo Kohonen. Self-organizing semantic maps. Biologic

Cybernetics, 61(4):241–254, 1989.

[203] Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246,

1987.

[204] M. Roisenberg. Emergency of the intelligence in autonomous agents through

inspired models in the nature. Doctoral dissertation, Federal University of

Santa Catarina, Florianopolis, Brazil, 1998.

[205] M. Roisenberg, J.M. Barreto, F.d.A. Silva, and R.C. Vieira. Pyramid-

net: A modular and hierarchical neural network architecture for behavior

based robotics. In Proceedings of International Symposium on Robotics

and Automation - ISRA 2004, page 6, Queretaro, Mexico, August 25-27

2004. IEEE.

[206] Mauro Roisenberg. Biobots. Technical report, Federal University of Santa

Catarina: Florianópolis. p. 12, 2001.

[207] F. Rosenblatt. The perception: a probabilistic model for information stor-

age and organization in the brain. Psychological Review, 65(6):386–408,

1958.

http://www.cs.utexas.edu/users/pclark/software/~cn2

174 BIBLIOGRAPHY

[208] F. Rosenblatt. Principles of Neurodynamics. Spartan, New York, 1962.

[209] P. S. Rosenbloom, J. E. Laird, and A. Newell. Knowledge level learning in

soar. pages 527–532, 1993.

[210] P. S. Rosenbloom and A. Newell. A preliminary analysis of the soar archi-

tecture as a basis for general intelligence. pages 860–896, 1993.

[211] Paul Rosenbloom. A Symbolic Goal-Oriented Perspective on

Connectionism and SOAR, pages 245–263. Elsevier, New York, 1988.

[212] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[213] J. P. Sauv. Definies de frameworks.

http://www.dsc.ufpb.br/~jacques/cursos/1999.2/map/material/frame/deffw.htm,

Fev. 2002.

[214] Roger C. Schank and Robert P. Abelson. Scripts, Plans, Goals and

Understanding: an Inquiry into Human Knowledge Structures. L. Erlbaum,

Hillsdale, NJ, 1977.

[215] Michael Schillo, Hans-Jrgen Brckert, Klaus Fischer, and Matthias Klusch.

Towards a definition of robustness for market-style open multi-agent sys-

tems. In Proceedings of the fifth international conference on Autonomous

agents (Agents ’01), Montreal, Quebec, Canada, 2001. ACM Press.

[216] A. Y. Shamseldin, E. N. Ahmed, and K. M. O’Connor. Comparison of

different forms of the multi-layer feed-forward neural network method used

for river flow forecast combination. Journal of Hydrology and Earth System

Sciences, 6(4):671–684, 2002.

[217] Asaad Y. Shamseldin, Ahmed E. Nasr, and Kieran M. OConnor. Compari-

son of different forms of the multi-layer feed-forward neural network method

used for river flow forecasting. Hydrology and Earth System Sciences

(HESS), 6(4):671–684, 2002.

[218] A. Shapiro. The Role of Structured Induction in Expert Systems. Phd

thesis, University of Edinburgh, Edinburgh, Scotland, 1983.

[219] Mary Shaw and David Garlan. Software architecture: a roadmap. In ICSE

’00: Proceedings of the Conference on The Future of Software Engineering,

pages 91–101, New York, NY, USA, 2000. ACM.

[220] R. P. Silva. Suporte ao desenvolvimento e uso de frameworks e componentes.

Dissertação de doutorado em ciência da computação, Universidade Federal

do Rio Grande do Sul, Porto Alegre, Brazil, 2000.

http://www.dsc.ufpb.br/~jacques/cursos/1999.2/map/material/frame/deffw.htm

175

[221] Herbert A. Simon. The Sciences of the Artificial. MIT Press, Cambridge,

Massachusetts, first edition, 1969.

[222] Herbert A. Simon. The Sciences of the Artificial - 3rd Edition. The MIT

Press, October 1996.

[223] Push Singh. Examining the society of mind. Computers and Artificial

Intelligence, 22(6), 2003.

[224] Push Singh. EM-ONE: An Architecture for Reflective Commonsense

Thinking. PhD thesis, Massachusetts Institute of Technology, 2005.

[225] Adel Smeda, Tahar Khammaci, and Mourad Oussalah. 1:454–460, 2005.

[226] David Canfield Smith, Allen Cypher, and Jim Spohrer. Kidsim: program-

ming agents without a programming language. Communications of the

ACM, 37(7):54–67, 1994.

[227] SNT. Sistema nacional de transplantes.

http://dtr2001.saude.gov.br/transplantes, April 2007.

[228] Stephen W. Soliday. Programmable transfer functions for neural net-

works. In First Industry and Academy Symposium on Research for Future

Supersonic and Hypersonic Vehicles, volume 1, pages 142–147, Dec 1994.

ISBN: 0962745189.

[229] Eduardo D. Sontag. Feedforward nets for interpolation and classifica-

tion. Journal of Computer and System Sciences, 45(1):20–48, 1992.

http://www.math.rutgers.edu/∼sontag/FTP DIR/jcss-sigmoids.pdf.

[230] SOSTeam. Sos homepage, amirkabir university of technology.

http://ce.aut.ac.ir/~sos/, 2005.

[231] Springer. Springer verlag web site. Publicado por http em

http://www.springer.com/east/home?SGWID=5-102-0-0-0, Abril 2007.

[232] M. Srinivas and Lalit M. Patnaik. Genetic algorithms: A survey. Computer,

27(6):17–26, June 1994.

[233] L. Steels. Exploiting analogical representations. In Pattie Maes, edi-

tor, Designing Autonomous Agents: Theory and Practice from Biology

to Engineering and Back, pages 71–88. MIT Press, Cambridge, MA, USA,

1990.

[234] Peter Stone and Manuela M. Veloso. Layered learning. In Machine Learning:

ECML 2000, 11th European Conference on Machine Learning, Barcelona,

Catalonia, Spain, May 31 - June 2, 2000, Proceedings, volume 1810, pages

369–381. Springer, Berlin, 2000.

http://dtr2001.saude.gov.br/transplantes
http://ce.aut.ac.ir/~sos/

176 BIBLIOGRAPHY

[235] SUN. http://java.sun.com/. Publicado por http., Abril 2007.

[236] Milind Tambe, W. Lewis Johnson, Randolph M. Jones, Frank V. Koss,

John E. Laird, Paul S. Rosenbloom, and Karl Schwamb. Intelligent agents

for interactive simulation environments. AI Magazine, 16(1):15–39, 1995.

[237] Arian Team. Official arian home page. http://ce.sharif.edu/~arian/,

Nov 2005. Sharif University of Technology.

[238] A. M. Turing. Computing machinery and intelligence. Mind, 58:433–460,

1950.

[239] Jari Vaario. An Emergent Modeling Method for Artificial Neural Networks.

PhD thesis, The University of Tokyo, 1993.

[240] Michael van Lent, John Laird, Josh Buckman, Joe Hartford, Steve

Houchard, Kurt Steinkraus, and Russ Tedrake. Intelligent agents in com-

puter games. In AAAI ’99: Proceedings of the sixteenth national conference

on Artificial intelligence and the eleventh Innovative applications of artificial

intelligence, pages 929–930, Menlo Park, CA, USA, 1999. American Asso-

ciation for Artificial Intelligence.

[241] Sankar Virdhagriswaran. MuBot. (no longer available directly: quote from

http://www.msci.memphis.edu/~franklin/AgentProg.html).

[242] Raul S. Wazlawick. Análise e Projeto de Sistemas de Informação Orientados

a Objetos. Elsevier, 2004.

[243] Darrell L. Whitley. Cellular genetic algorithms. In Proceedings of the 5th

International Conference on Genetic Algorithms, page 658, San Francisco,

CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[244] B. Widrow. Generalization and information storage in networks of ada-

line “neurons”. In M.C. Yovits, G.T. Jacobi, and G.D. Goldstein, editors,

Self-Organizing Systems 1962, pages 435–461, Washington, 1962. (Chicago

1962), Spartan.

[245] B. Widrow and M.E. Hoff. Adaptative switching circuits. IRE WESCON

Convention Records, a:96–104, 1960.

[246] N. Wiener. Cybernetics: or Control and Communication in the Animal and

the Machine. MIT Press, Cambridge, MA, 1948.

[247] M. Wiesmeyer. Soar i/o reference manual, version 2. Technical report,

Department of EECS. University of Michigan, 1988.

http://ce.sharif.edu/~arian/
http://www.msci.memphis.edu/~franklin/AgentProg.html

177

[248] Rebecca J. Wirfs-Brock and Ralph E. Johnson. Surveying current research

in object-oriented design. Communications of the ACM, 33(9):104–124,

1990.

[249] Ian Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques (Second Edition). Morgan Kauffmann, 2005.

[250] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, San Francisco, 2nd. edition, 2005.

[251] Michael Wooldridge and Nicholas R. Jennings. Agent theories, architec-

tures, and languages: a survey. In ECAI-94: Proceedings of the workshop

on agent theories, architectures, and languages on Intelligent agents, pages

1–39, New York, NY, USA, 1995. Springer-Verlag New York, Inc.

[252] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory

and practice. Knowledge Engineering Review, 10(2):115–152, 1995.

[253] Michael J. Wooldridge and Nick R Jennings. Intelligent agents: Theory and

practice. In The Knowledge Engineering Review, volume 2, pages 115–152.

1995.

[254] Robert Wray, Ron Chong, Joseph Phillips, Seth Rogers, and Bill Walsh. A

Survey of Cognitive and Agent Architectures. University of Michigan, 1994.

[255] Gül Yazici, Övünç Polat, and Tülay Yildirim. Genetic optimizations for

radial basis function and general regression neural networks. In Alexan-

der F. Gelbukh and Carlos A. Reyes Garćıa, editors, MICAI, volume 4293

of Lecture Notes in Computer Science, pages 348–356. Springer, 2006. 3-

540-49026-4.

[256] A. Zell, N. Mache, T. Sommer, and T. Korb. Design of the snns

neural network simulator. In H. Kaindl, editor, 7. Österreichische

Artificial-Intelligence-Tagung, pages 93–102. Springer, Berlin, Heidelberg,

1991.

[257] Andreas Zell, Niels Mache, Ralf Huebner, Michael Schmalzl, Tilman Som-

mer, and Thomas Korb. Snns: Stuttgart neural network simulator. Tech-

nical report, University of Stuttgart, Institute for Parallel and Distributed

High Performance Sytems(IPVR), Stuttgart, 1992.

[258] Gilad Zlotkin and Jeffrey S. Rosenschein. Negotiation and goal relaxation.

In Y. Demazeau and J. P. Müller, editors, Decentralized A. I. 2, Proceedings

of the Second European Workshop on Modeling Autonomous Agents in a

Multi-Agent World, pages 273–286. Elsevier Science Publishers B.V./North-

Holland, 1991.

