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Abstract 
Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost 
hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico 
models become a scientific instrument for investigation, and so should be developed to high standards, be 
carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a 
framework that supports developing simulations as scientific instruments, and we select cancer systems biology 
as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack 
of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our 
framework comprises a process to clearly separate scientific and engineering concerns in model and simulation 
development, and an argumentation approach to documenting models for rigorous way of recording assumptions 
and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to 
interact with cellular signalling models directly for experimental design. There is a mismatch in scale between 
these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial 
computational resource. We present concurrent programming as a technology to link scales without losing 
important details through model simplification. We discuss the value of combining this technology, interactive 
visualisation, argumentation and model separation to support development of multi-scale models that represent 
biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions 

and response to therapeutic interventions. 
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1 Introduction: Simulation as a Scientific Instrument 

There are many possible applications for computer simulation in scientific research. In biomedical research, 
computer simulation can be used to inform and support in vivo and in vitro experimentation: the simulation may 
be used, for example, to prioritise experiments to ensure maximum contribution from a finite resource, design 
experimental programmes to test hypotheses discovered in silico, and cross-validate experimental results. In all 
these applications, the computer simulation should be treated as a scientific instrument, and should be subject to 
the rigour and understanding that goes into construction and use of other kinds of scientific instrument. 
Computer simulations need to be developed to high engineering standards and specifications, they need to be 
calibrated to understand how the outputs relate to the system under study, and they should be presented in such a 
way that their findings can be reproduced.  

Timmer [1] identifies the beginnings of a movement to ensure that computational tools are aligned with 
existing scientific methods. Publication of code and rigorous calibration are two essential steps towards 
achieving scientific reproducibility. However, scientific credibility and reproducibility of results needs a deeper 
and wider approach that affects the way that computer simulations are developed, the way that they are used, and 
the way that they are documented.  

A simulation is an encoding in an executable form of a model. Here, we use the term model simply to mean 
an abstraction of relevant features of a domain (or subject area). A model may be expressed explicitly (in 
diagrams, equations etc), or implicitly (in the domain understanding of the scientists). In many computer 
simulations, however, the model is only implicitly encoded by the computer code: in software engineering, this 
is known as a traceability problem. The act of encoding a model as a simulation introduces many design 
decisions and assumptions that need to be known and understood in order to interpret simulation results in terms 
of the model representation and the underlying domain. This raises issues of validation: how do you know that 
you have built a simulation that is competent to answer the questions you are exploring [2]? The validity of a 
simulation is never absolute: validity is not a Boolean state. A simulation may be deemed fit for a specific 
purpose, or may be considered to engender a level of confidence in those using it. In some circumstances, for 
example where outputs of a simulation have a high level of criticality, a detailed, structured argument is required 
in order to capture and express the evidence on which confidence is based [3].  

In the aftermath of “Climategate” [4], the spotlight is on the way in which scientists use computational 
devices as part of their scientific process. Making simulation code available to other researchers can assist 
experiment repeatability, but in our view this is not enough: we must also calibrate our simulations, and 
construct arguments demonstrating their validity for a particular purpose. Only then will we have sufficient 
confidence to decode the output of simulations and interpret them in the context of the real domain being 
modelled and simulated. We need to show how the simulation has been engineered and why it is a useful 
instrument to enhance our domain knowledge.  

In this paper we provide a modelling framework that supports the development of simulations as scientific 
instruments. As an exemplar domain of study we consider cancer, and we provide a short review of current 
issues and modelling efforts, paying particular attention to systems biology cellular signalling pathway 
modelling. Through this review we identify key challenges in model development: specifically lack of data, 
incomplete knowledge and modelling in the context of a continuously developing field of study. We also 
consider the need to link from such cell-based pathway models to the tissue/ tumour scale to support modelling 
of drug interventions at realistic scales. We outline the essential components of our modelling framework, and 
indicate how they combine to provide support in addressing those challenges and making that link in scale. Note, 
the framework is generalisable and we could have equally chosen other domains of study with similar features, 
i.e. complex biological systems that are only partly understood because of significant gaps in knowledge, are 
driven by processes at multiple scales and are characterised by multiple data streams again at different scales.  

 

2 Background 

Cancer is a disease characterised by functional dysregulations within and surrounding affected cells, tissues and 
organs. These dysregulations confer cancerous cells with the ability to: proliferate at an increased rate; evade 
differentiation; develop new blood vessels (angiogenesis) within their aggregate tissues; evade death; migrate 



and metastasise; and resist growth inhibitory factors [5]. These hallmarks of cancer are governed at ultra- and 
micro-cellular levels by a complex network of signalling regulatory pathways that ultimately dictate the 
development, maintenance and progression of the cancer [6], as well as its histological and anatomical 
presentation and organisation [7]. The inherent characteristic and complex heterogeneity of the disease, governed 
by multivariate spatial and temporal parametric biological (pathways) and environmental (stromal) indices [8 ,9], 
make cancer extremely difficult to study and understand. Likewise, it is these complex heterogeneous traits that 
contribute to determine the effectiveness of any anticancer therapeutic strategy [10], as well as the emergence of 
intrinsic and acquired resistance to anticancer therapeutics [11].  

The treatment modalities for cancer have traditionally been chemotherapy, surgery, radiotherapy or hormone-
based therapy [12, 13]. It is generally thought that the common mechanism of action of these therapeutic 
approaches is cytotoxicity towards the cancer cells. However, their anticancer effectiveness has been limited by 
lack of clear target specificity and our capacity to identify and fully understand all the possible myriad modes of 
their actions and effects upon cancerous cells, as well as normal cells. Research in the last two decades has 
identified the significance of tumour immunology in the tumour microenvironment, the maintenance and 
progression of tumourigenesis, as well as the susceptibility of tumour cells or tissues to any of the forms of 
anticancer therapeutic strategy [14]. Whilst this has led to promising immunotherapeutic anti-cancer strategies, 
there is increasing focus on combination therapies [15, 16]. These have led to measurable improvements in 
cancer survival rates, prognosis indicators and identification of biomarkers that determine not only treatment 
outcome but also which patients may benefit from primary, adjuvant or neoadjuvant therapy [17]. Nevertheless, 
the overall progress in the diagnosis and treatment of cancer remains limited, despite the tremendous 
breakthrough regarding the molecular basis of carcinogenesis and the discovery and development of new novel 
anticancer therapeutic interventions. The long-term disease free survival rate is only within the range of 10–30% 
among cancer patients [18, 19].  

A novel approach to improve diagnosis, early prognosis and effective targeted therapies for cancer is the use 
of mathematical and computational modelling to identify parametric biological and molecular targets, which are 
tumour-specific or differentially regulated in tumours relative to normal tissue, especially those that interfere 
with tumour cell or tissue development, progression or response to anticancer therapeutic strategies. An 
attractive modelling approach is that offered by systems biology modelling, which seeks to integrate cell 
structure and dynamics [20]. Cell structure may be modelled by characterising signal transduction in a multi-
pathway network, where that signal transduction governs cell processes [6] and cancer is characterised by 
abnormal activities of those pathways [21]. The structures, i.e. pathways, used in cellular signalling models are 
derived from established and hypothesised mechanistic associations among biomolecular species [22]. These 
networks are known to have highly complex topologies, with pathway crosstalk [23], feedback loops [24], and 
redundancy, e.g. shared downstream pathways and alternate interconnectivities [25], and this complexity in 
topology gives cells robustness to perturbation [20], e.g. drug resistance [11]. The dynamics of these associations 
are represented by equations describing rates of change of concentrations of species [26]. Such mechanistic 
representations, while being only simplifications of the real system based on what is known [27], can offer 
insights into the link between biological mechanisms and signalling responses [28], and so can assist in 
unravelling the complexities embodied in these signalling networks [21].  

Systems biology models offer a platform for hypothesis generation and experimental design [20]. For 
example, models may be used to propose new intracellular mechanisms [29] and alternate network topologies 
[30] that best explain available data, and in doing so direct experimental investigation. Moreover, this model of 
in silico investigation has the potential to reduce experimental cost [31]. Of particular interest is the use of 
modelling to assess the impact of drug intervention strategies on signalling network functioning and to 
understand how therapeutic resistance occurs. Here, for illustration of current practice, we review three systems 
biology approaches to signalling network modelling with descriptions of large scale models of epidermal growth 
factor receptor (EGFR) signalling and its application to anticancer therapy [32, 33, 26].  
 

2.1 Cellular Signalling Network Modelling 

EGFR signalling activates Ras-MAPK and the PI3K/AKT pathways which control cell division, motility, and 
survival. Constitutive activation and aberrant EGFR signalling has been identified in a wide variety of human 
cancers and this network is a promising target of anticancer therapy [34]. The key aims of modelling this 



signalling system are to: describe input-output characteristics of the signalling systems; determine the response 
of the signalling network to activation by an input signal and its inhibition by drug action; identify the best 
targets in the signalling network for anticancer therapy; dissect mechanisms of drug resistance; and identify 
design and selection criteria for an optimal therapeutic strategy [32, 33, 26].  

A dynamic model of a signalling network is typically a system of ordinary differential equations (ODEs) that 
describes the temporal change in concentrations of active (phosphorylated) proteins. The solution to the ODEs 
describes the spreading of activation (protein phosphorylation) through the signalling network from the cellular 
membrane to the nucleus. The output signal of the signalling network represents the response of the system to 
the external input signal activated in the membrane receptors. The complexity of any model rises as more 
detailed representations of the signalling network, protein-protein interactions, and post-translation modification 
of signalling proteins are included.  

For example, the signalling network of MAPK and AKT pathways in Chen et al.’s model [33] includes two 
ligands, four receptors and 28 signalling proteins participating in signalling processing and transduction. Signal 
activation leads to generation of 471 protein-protein complexes and phosphorylated proteins which participate in 
828 reactions. The system contains 499 differential equations, 201 kinetic parameters and 28 non-zero initial 
conditions. The estimation of these parameters is challenging: some sets of kinetic parameters are available from 
direct experimental data, but the majority of parameters are uncertain.  

Model parameters may be identified through a procedure of fitting to extensive experimental data, and 
usually the following type of cost function is used in calibration:  

 where Yij
(exp) (tk )  and Yij

(th)(tk )  are experimental and theoretical data respectively on concentrations of proteins Yj 

at time points t = tk obtained (calculated) under experimental condition i (for example, at different 

concentrations of ligands and/or drugs). The cost function η measures the quality of the reproduction of 
experimental data by the model for a defined parameter set. To minimise η and so estimate parameters, in large 
dimensional parameter spaces, the Monte Carlo method (Simulated Annealing) or genetic algorithms are 
commonly used [33, 32]. Despite the use of considerable experimental data during fitting (120 data sets at 10 
time points [33]) the cost function was found to have multiple local minima. This leads to non-identifiability of 
the model, i.e. there are multiple parameter sets which minimise η. Several methods have been developed to 
explore the biological implications of model non-identifiability [35], all based on sensitivity analysis.  

Sensitivity analysis, as part of general control theory, has found widespread application in the analysis and 
design of engineering systems. Sensitivity analysis offers a quantitative approach to determine which parameters 
contribute significantly to variation in model output. In local sensitivity analysis [36], sensitivity of the 

observable variables Yi to variation of the model parameter Pj is given by Sij =
∆Yi

∆p j

 .  

Sensitivity analysis of signalling networks is used to identify the proteins and reactions that have the greatest 
influence upon signalling network response, i.e. its amplitude, shape and duration. In [32], sensitivity analysis 
was carried out to identify the key proteins that control model output, phosphorylated AKT. The EGFR family 
receptor HER3 was identified as the key node in the network with significant impact on the output response to 
ligand activation, suggesting the HER3 receptor as a promising target for anticancer therapy. As a result, MM-
121, a human monoclonal antibody, was designed to inhibit the HER3 receptor. In vitro and in vivo experimental 
testing showed that targeting HER3 with MM-121 can be an effective therapeutic strategy for cancers with 
ligand-dependent activation of ErbB3 [37].  

A similar systems approach together with in silico perturbation experiments was applied to another challenge 
in cancer therapy: to dissect the mechanism underlying drug resistance to anticancer drugs targeting the EGFR 
family receptor HER2 [26, 11]. A model of the PI3K/AKT signalling network was applied to study the effects of 
different perturbations on the network response to HER2 inhibitors. An in silico perturbation technique was 
developed to model different protein mutations in the PI3K/PTEN/AKT signalling network frequently observed 
in cancer development [11]. Using this perturbation method, distinct dynamic regimes were observed in network 
functioning: sensitive mode, where inhibition of the input signal led to inhibition of the output signal, and 
resistant mode, where the system was robust to input signal inhibition. The sensitivity-to-resistance transition 
was predicted in in silico experiments following a mutation causing loss of activity of the PTEN enzyme. The 

η =
i=1

M
∑

j=1

N
∑

k=1

K
∑ [Yij

(th) (tk ) −Yij
(exp)(tk )] 2



prediction of the key role of PTEN status in resistance to anti-HER2 therapy was confirmed in in vitro 
experiments on ovarian cancer cell lines as well as in analysis of clinicopathological data on patients treated with 
anti-HER2 therapy [26]. As a result of this detailed study of the mechanism of the sensitivity-to-resistance 
transition, optimal drug targets for combined therapy overcoming resistance to anti-HER2 therapy were 
proposed and confirmed using in vitro experiments in ovarian cancer cell lines [11].  

2.2 Modelling Challenges 

The examples described above, along with many others, demonstrate the successful use of systems biology 
modelling to enhance understanding of existing experimental results and to guide the next iteration of 
experimental design. However, such cellular signalling modelling is not without its challenges, and these are 
neatly summarised in [27]: lack of data; incomplete knowledge; and an ongoing knowledge discovery process.  

Regarding lack of data, models founded on quantitative schemes require quantitative data. New 
advancements in high-throughput -omic technologies mean that ever more robust quantitative data is 
increasingly available at genomic, transcriptomic, proteomic and metabolomic scales [38], although the curation 
and exploitation of these rapidly expanding data sets introduces further difficulties (see [39] for review). These 
data do not in themselves constitute knowledge, and systems biology models are required to integrate component 
knowledge into a holistic representation [38].  

Importantly, such models are themselves simplified representations of reality based on the current knowledge 
base and with detail not considered to be essential omitted [27] and model scope reduced to the question at hand. 
Where data is available models may be parameterised directly, but this is not always possible. Where gaps in 
data exist, unknown parameter values can be estimated through a number of approaches, including 
computational search to identify parameter values consistent with known system-scale behaviour (for smaller 
spaces) or through sensitivity analysis (for larger parameter spaces) as described above. Indeed, experimental 
investigation may be directed towards model parameters that are highly sensitive and unknown. Gaps in 
knowledge, for example in network structure, introduce a deeper challenge, and it is possible to combine 
mechanistic models with data-driven approaches, including S-systems [40], to inform the validity of mechanistic 
assumptions through data-modelling. Kreeger et al. [21] provide a short review of the value of data-driven 
approaches including mutual information theory, statistical factor analysis and Bayesian networks.  

The wide range and large number of ongoing experimental investigations into cellular signalling dynamics 
means that new knowledge is discovered continuously. Cellular signalling models thus require regular and, 
importantly, systematic updating of both model structure, i.e. topology, and dynamics, i.e. model parameters to 
reflect new knowledge. A more challenging facet of knowledge discovery is an increasing awareness of the need 
to consider cancer as a multi-scale phenomenon. Within the cell, there is new information on the importance of 
spatio-temporal organisation to signal transduction and so cell functioning [6]. Cells exist in a spatially 
structured, heterogeneous and compartmentalised environment [26], and cell functioning is impacted on by the 
extracellular matrix and neighbouring cells [41]. Recent multi-scale models of cancer development consider 
inter-cell interactions, environmental interactions and metastasis (e.g. [42, 43]) where the characterisation of the 
cell in such models is typically bio-mechanical in nature. A recognised longer-term goal of systems biology 
cancer is to link models of cellular signalling networks and tissue structures [31] allowing modelling of drug 
interventions at the tumour-scale [21]. This will require a theoretical framework that acts as a scientific 
instrument to inform diagnosis, prognosis and treatment and that integrates multi-scale models from cell through 
to organism combined with sophisticated data modelling to link heterogeneous data streams relating to those 
scales.  
 

2.3 Requirements 

To construct a computer-based simulation framework that can begin to realise the above modelling goals, we 
must acknowledge that there is more to simulation as a scientific instrument than its program code. Such an 
instrument requires documented models of the scientific domain of interest, and a record of assumptions and 
simplifications. Understanding how these are expressed in the simulation design improves interpretation of 
simulation results. Further, code needs to be developed using good software engineering practices, so as to 
establish assurance that the simulation results are a feature of the scientific domain, not software bugs or design 



flaws. Assurance requires an argued evidence-base demonstrating that the various components, models, and code 
are addressing the correct question, and are addressing the question correctly. Visualisation and animation are 
often needed to present the results in a way that is understandable and relevant to the scientific question. Finally, 
high-performance technologies are required to be able to simulate systems at a scientifically plausible scale and 
resolution. Each of these requirements is explored in more detail in the following sections, and we later present 
how they may be combined to provide a modelling framework to meet the aspirations outlined above.  
 

3 Models and Methods 

In this section, we describe a “minimal process” for designing, building, calibrating, and using a scientific 
simulation. This process has been used successfully for several scientific simulation case-studies from a broad 
range of disciplines (immunology, ecology, and sociology), in the CoSMoS (Complex Systems Modelling and 
Simulation) project [44]. The development of simulations using the CoSMoS process is necessarily an 
interdisciplinary endeavour between scientists who study particular domains (the domain experts), and software 
engineers who construct simulations to facilitate the study of that domain (the developers). 

Project documentation of simulation, modelling and process descriptions [45, 44, 46], of validation and 
argumentation [47, 48, 49], of various biological system simulation case studies [50, 51, 52, 53], and of the 
CoSMoS workshop proceedings [54, 55, 56], is available from the CoSMoS project website1.  

 

3.1 The CoSMoS Process 

The CoSMoS process builds on best practice from the field of software engineering, which seeks to clarify goals, 
roles and purpose. The process identifies the following concepts [45]: domain, domain model, platform model, 
simulation platform, and results model. The domain represents a real-world system – the subject of scientific 
research. The models and simulation platform relationships are summarised in Figure 1Error! Reference source 
not found..  

The purpose of identifying the domain as the starting point is to establish a set of constraints and guidelines 
for simulation development. The domain is the preserve of domain experts responsible for guiding the scientific 
content of the simulation. The other key role is the developer, a person or group of people who are responsible 
for simulation software development.  

Domain model: explicitly captures understanding of the domain, defining the purpose, scale and scope of the 
simulation activity. The domain model identifies and describes relevant structures, behaviours and interactions 
from the domain, at a level of detail and abstraction suitable for addressing the stated purpose. The purpose 
encompasses identification of research questions to be posed of the simulation platform, but its most important 
role is to determine for what the simulation is to be assessed fit. 

The domain model is based on the science as presented by the domain experts, and its design should be free 
from simulation platform implementation bias; it separates science from simulation implementation details. The 
domain model is developed jointly by developer and domain expert (roles) and forms the agreed scientific basis 
for the eventual simulation platform. 

Platform model: an engineering derivation from the domain model, and a step towards simulation platform 
construction. Engineering design decisions, detailing the software implementation of the structures, behaviours 
and interactions identified in the domain model, shapes the platform model. Given a hypothesis under 
consideration, components in the domain model that are outcomes of hypothesised mechanisms should not be 
carried over into the platform model: the “answer” must not be coded into the simulation platform [45]. 

Simulation platform: encodes the platform model in software and hardware. The simulation platform (or 
simulator) allows execution of one or more simulations (in silico); the simulation platform defines a set of 
parameters from the domain model to explore the encoded model. The parameters may be interpreted through 
the platform model, and this interpretation allows the simulation platform to be understood by domain experts 
with knowledge of the domain model. 

Results model: captures understanding of the simulation platform based on the output of simulations. It is 

                                                 
1 www.cosmos-research.org 



this results model that enables interpretation of simulation results by domain experts. The results model is 
constructed by experimentation and observation of simulations, and might comprise data output streams, 
including dynamic data, statistical analyses and qualitative or subjective observations. Results are then viewed 
through the lens of the results model and so may be compared to the domain model. Interpretation of the results 
model can suggest new experiments to undertake, both in silico and in the real domain. 

Figure 1: Relationship between the domain, models and simulation platform, where arrows represent flows 
of information. These are all framed by the research context. 
 
These models provide arenas within which different facets of the construction and use of the simulation 

platform may be explored by domain expert(s) and developer(s), and to consider the important interfacing 
between the simulation platform and the domain. By using a principled approach to simulation, the research is 
ultimately open to peer review, and provides a basis for scientific reproducibility. 

The development and transition through the concepts identified in the CoSMoS process, together with the 
starting domain, can be thought of as establishing the research context. 

Research context: identifies and records high-level motivations or goals, research questions, hypotheses, 
general definitions, and success criteria (how to tell whether the simulation has been successful). The scope of 
the research both captures simulation validation requirements and guides how simulation results may be 
interpreted and applied. 
 

3.2 Software Engineering for Simulation 

Using the CoSMoS process to develop models and simulations includes using software engineering best 
practice. This section summarises two key issues that arise specifically in the development of software.  

Design decisions: in moving from abstract models (such as a domain model) to code (i.e. a simulator, via a 
platform model design), there are many decisions to be taken. Those which concern implementation choices are 
as important as those which concern representation of scientific concepts in terms of understanding the 
simulation. For example, implementing communication between agents using the facilities provided by a 
particular programming model necessarily limits the kinds of interactions which can take place. Almost all 
simulation developers make decisions regarding the quantisation of time (and often also space) which 
fundamentally change the basis of interaction – but it is often difficult to measure the possible effects of 
representing continuous parameters with arbitrary quantisations [57]. Whilst it is impossible to know all the 
implications of most engineering design decisions, it is possible to record those that are made explicitly, and to 
build up catalogues of limitations, and of the understanding of how to manage the limitations. Software 
engineering design decisions are part of the research context, in the same way as scientific decisions.  

Verification activities: it is not sufficient to produce code: code must be verified. Verification refers to the 
correct construction of a product, and is typified by testing. However, software testing raises interesting 
challenges for simulation developers.  

A typical testing regime requires establishing a suitable test suite: a set of static and dynamic tests, with 
predicted outcomes, that will challenge a sufficient part of the code. Truly exhaustive testing of software is 
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model
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model

Simulation 
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possible only within limited domains, and is impractical in simulation owing to the complexity of typical control 
flows and data representations. All testing relies on being able to determine whether the expected result is 
obtained. In constructing simulations as scientific instruments, we can do conventional low-level code testing; 
however, determining whether the overall simulator behaviour is “expected” can only ever be subjective: it looks 

right [48].  
To improve confidence in the subjective evaluation of the simulator, calibration is used. The principled 

design of a simulator for scientific research should give a record of how domain concepts map to program 
concepts. Domain experts then need to be able to produce data from the domain which can be used as inputs to 
simulation experiments, and the data that represents the expected scientific results. Calibration experiments 
allow the developers to adjust parameters (in scientifically-legitimate ways) and tune the simulator. In an ideal 
situation, where mappings between domain and simulator concepts are clear, and good scientific data exists, 
calibration demonstrates the typical alignment and variation between simulator and reality: exploratory 
simulation experiments can then be run with a good chance of being able to interpret the results.  

There are many practical problems with calibration. Some of these are:  

• Weak mappings between domain and simulator concepts: efficient simulation requires simplification; 
simplification means that simulator concepts represent many domain concepts, and many domain concepts 
are only implicitly represented  [58]. 

• Unsuitable scientific data: a simulator is a logical machine; a domain involves natural systems which, even 
when constrained in a laboratory, are not measurable to the same extent or at the same accuracy as a 
logical machine. For example, in one CoSMoS study, modelling a particular immune response in mice 
[53], the scientists measure success by whether the mouse survives: what does it mean for a simulation to 
be “dead”?  

• Mismatches: calibration assumes that the structures, behaviours and interactions of the simulator are 
adequate matches to the structures, behaviours and interactions of the domain (within the above 
limitations) – but what if we got it wrong? Complex systems are capable of producing wildly different 
behaviours from the same system, and strikingly similar behaviours from very different systems [44]! 

This brief review of software engineering as applied to simulation exposes many of the pitfalls that await the 
developer of simulation as a scientific instrument. There is no firm solution to these problems. Instead, the next 
section proposes an approach that allows the domain experts and developers to capture and analyse their 
understanding and their confidence in a simulator.  
 

4 Validity Argumentation 

The principled approach to simulation development shifts the focus of development from the technical 
challenges to the decisions, assumptions and justifications that arise: the focus is on the establishment of the 
research context for use in interpreting simulation results. In this setting, the validity of the simulation can be 
expressed as an argument: what rationale can be proposed, and what evidence can be put forward, to substantiate 
a claim that the simulator is fit for purpose.  

Argumentation approaches have been used in critical systems engineering: they are widely used in safety 
cases, for instance for airworthiness [59]. However, argumentation for validity is slightly different from the 
conventional safety case use. A validity argument will express the developers’ and domain experts’ confidence 
in the simulator, and will also expose limitations and uncertainties [58].  

A number of examples of CoSMoS simulation have presented parts of their validity argument in Goal 
Structuring Notation (GSN) [60, 61, 62]. This notation summarises the claims, strategy, and evidence on which 
the validity argument rests, and allows context, assumptions and justifications to be signalled. The GSN 
argument acts as a structure and index to the substance of an argument, and also shows where the argument is 
incomplete. 

Figure 2 shows part of an argument prepared during development of a simulation. The top claim, that the 
simulation is suitable for the intended research references out to a paper that describes the purpose of the 
research: in summary, this is to simulate a particular model of cell division and differentiation in the prostate, in 
a way that would be suitable for study of mutation in the development of cancer-like profiles. The validity is 
argued over three elements (Strategy 1): the biological basis of the simulation – which is partly elaborated, 



pointing to a systematic consideration of the domain concepts, and of the scope and scale of the simulation; the 
software engineering – which went on to address development approach, verification, and calibration; and 
consistency of results – unexpanded since the simulator was incomplete when the argument was prepared [58]. 

 

 
Figure 2: An extract from the validity argument for the prostate cell modelling simulation [58]. The 
argument comprises claims and strategies used to address them. Claims appended with diamonds are not 
expanded. Additional GSN notations can express evidence (“solutions”), assumptions, justifications. 
Arguments can be modularised, and generic argument patterns can be instantiated, to support reuse. 

 
The argument that this simulation is fit for purpose is not a permanent or conclusive validation: it depends on 

the purpose, the people involved in development and use of the simulation, the intended use of the results. An 
argument structure may have to be modified during development. If the purpose of the simulation is expanded or 
changed, the argument must be revised – as must much of the design rationale (assumptions, justifications) of 
the simulator. 

An argument is “complete” when each claim and subclaim is supported by evidence. In validity 
argumentation, this raises two questions: what is evidence, and when is it necessary to argue as far as evidence. 
Evidence is anything that, in the opinion of those involved, demonstrates a claim. In the case of results 
consistency (Claim 1.3), for instance, the further argument would establish which results, and a statistical 
analysis that can show consistency: the evidence would be the data characteristics needed to demonstrate 
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appropriate use of the statistic, and statistical results. Claims such as Claim 1.1.1.2 (adequate modelling of cell 
transitions) could be evidenced by the notes of meetings where domain experts reviewed the developers’ design 
decisions in relation to cell transitions. If more detail is required, they could be broken down further to explore 
the biological and engineering connotations of the representation of each cell transition included – and not 
included – in the domain and platform models. 

In terms of completing arguments – all the way to the identification of evidence – it is often unnecessary to 
present the whole argument (this is a key difference with, for example, safety case argument, where the purpose 
is to establish the evidence that supports the claims). The guiding principle is that those who need to be satisfied 
must be satisfied. For example, the simulator to which Figure 2 relates is a vehicle for exploring hypotheses. 
Simulation results are used to target scientific experimentation, and the scientific results come from laboratory 
study: the validity argument is incomplete, but establishes that the simulator is good enough for exploring 
hypotheses. 

 

5 Interactive Visualisation 

In our short review of models that describe large-scale signalling networks (Section 2), we revealed the 
complexity involved in doing so: models may have tens or hundreds of equations and parameters. These models 
describe the sequences of protein activations through the signalling network, so characterising the system 
response to external input signals. These networks are thus temporally dynamic and complex behaviours may 
emerge, especially in systems that have feedback loops. In addition to model size and the possibility of emergent 
complex system-scale dynamics, many of the model parameters are unknown. Because of the size of the possible 
parameter space, parameter estimation methods are often coupled to approaches from artificial intelligence to fit 
values to unknowns, and sensitivity analysis may be employed to explore the consequences of variations to those 
parameter values, including those that are estimated. Consequently, models are large, have complex behaviours 
and have inherent uncertainty and so model interpretation is challenging. As noted in the CoSMoS process 
(Section 3), the platform model should include instrumentation and interfaces that can support model 
interpretation. 

With respect to signalling models, visual representations may help address this challenge: human visual 
perception routinely copes with large amounts of input data, effortlessly parsing complex and confusing sensory 
stimuli into coherent and meaningful perceptual objects. Specifically, pattern-recognition abilities of human 
cognition make visualisation an effective method for understanding complex models [63]. Visual exploratory 
data analysis is concerned with detecting and describing patterns and relations in data [64], such as outliers, 
trends and clusters [65]. The idea of visualising abstract data for analysis and exploration is not new [66], but a 
focused research effort in visualisation design and usage, as a separate discipline of visual analytics, has only 
recently been recognised as an area of scientific endeavour in its own right, helping analysts to “detect the 
expected and discover the unexpected” [67]. Visual analytics seeks to ensure that visualisations are efficient and 
fit for purpose, since poor visualisations may offer no insight or worse still mislead [64], and is made possible by 
advances in the understanding of human perception and cognition processes [63]. Visual analytics supports the 
design of tools that presents data in a way that is optimised for human perception, and provides objective 
benchmarking of tool performance in terms of efficacy in conveying relevant information. 

One area of visual analytics that is especially relevant here is visualisation of networks, i.e. data that consists 
of (dynamic) connections among objects. Diverse areas such as computer network topology, social network 
analysis and organised crime investigation deal with this type of data, and research in network visualisation 
focuses on both computational and perceptual efficiency [68, 69]. Network layout – placing nodes and edges in 
two- or three-dimensional space – may be effected either manually, by allowing the user to edit the network 
layout, or automatically, using algorithms based on heuristics [68]. Manual layout is relatively easy to implement 
but visualisation construction is a time-consuming process even for relatively small networks. More importantly, 
complete user control impedes discovery of unexpected information. In contrast, automated layout schemes are 
fast, scalable to very large networks and often generate unexpected insights, but rely heavily on the choice of 
appropriate heuristics; non-intuitive automated layout can mislead the analyst. A promising approach is to 
combine the two, i.e. starting with a network that is automatically laid out and allowing the analyst to adjust the 
layout, incorporating their own expertise and insights. One such algorithm is based on a force-spring metaphor: 



every connection acts as a spring, pulling the connected nodes together, while node that are too close to each 
other repel, to prevent uninformative aggregations. This algorithm creates a network layout that dynamically 
self-organises, visualising interconnectivity as proximity [70]. Additionally, user interaction is more effective 
than observation alone in enabling understanding of system dynamics since it involves using visuo-motor multi-
modal cognitive mechanisms [71].  

We are currently developing an interactive visual exploratory tool to aid understanding of cellular signalling 
models, utilising the full graphical, computational and interactive capabilities of modern computers. Currently, 
the development of visual tools for signalling networks (e.g. [72]) is focused upon providing support to model 
builders. Thus most existing applications present data in a format for modellers to be used by modellers, such as 
the Systems Biology Graphical Notation [73], and offer extensive model editing and validation interfaces. Our 
focus, instead, is to provide tools for the biological community who need to understand and use models that were 
pre-built and verified by modellers, for focused in silico exploration and experimentation. The tool is based on 
Systems Biology Markup Language (SBML), a de-facto standard of describing such models [74]. It visualises 
the model as a self-organised 3D network of species connected by reactions governed by ODEs (see Figure 
3Error! Reference source not found. for a 2D snapshot in time). 
 



 
Figure 3: Snapshots of the 3D SBML-based visualisation of RAF/MEK/ERK and PI3K/PTEN/AKT 
pathway signalling dynamics [11]. Images show the network dynamics without (upper) and with (lower) 2C4 
application. A) The concentration of 2C4 in the system. B) The signalling activity of the PI3K/PTEN/AKT 
pathway. C) concentrations of ppAKT and associated complexes. Both B) and C) are reduced as a 
consequence of 2C4 application (A). Plus and Play buttons at the top right allow addition of drug 
interventions and play/pause functionality respectively. Adjacent slider bars are controls for visualisation 
speed and progress through the simulation. 

 
The main power of this new tool lies in its ability to interactively visualise the temporal dynamics of 

reactions in the model, including selecting among different modelled scenarios. The tool represents dynamics in 
a way that allows easy recognition of temporal patterns in the model through motion: temporal dynamics are 
depicted by changing colour saturation and opacity of the species (nodes) and reaction connections (edges). The 
network components themselves are visualised in a simplified visual style similar to biology textbooks. This is, 



again, aimed at making the models more intuitively comprehensible for domain experts. The initial layout is 
automated (and may subsequently be manipulated manually), based on a custom-built version of a spring-force 
algorithm, adapted for ternary connections which are common in signalling models (e.g. catalytic reactions) but 
not covered by generic spring-force algorithms that were developed for binary connections only. The layout is 
further constrained by the general placement of the species (e.g. cell membrane, cytosol, nucleus, etc.). The 
nucleus and the cell membrane are likewise visualised in the same abstracted textbook style. The next steps in 
the tool’s evolution include usability trials with domain experts and through these trials a study of opportunities 
for alignment with Systems Biology Graphical Notation [73], a graphical format for representing signalling 
networks in a printed medium.  

 

6 Scalable Simulation 

A simulation is an executable implementation of a model; it may be used to run preplanned experiments, or to 
interactively explore the behaviours of a system. The simulation must operate at appropriate scales in space and 
time in order to reproduce the system under study with an acceptable degree of fidelity. However, computational 
resources limit the degree to which we can scale up a simulation. One solution to this is to reduce the 
simulation’s resource requirements by simplifying the model, but we must be certain that in doing so we are not 
discarding important aspects of the system’s behaviour.  

The alternative is to make more computational resources available to the simulation by parallelising it: 
dividing it up into multiple tasks that can be executed in concert by several processors. Modern computing 
systems with hyperthreaded and multicore processors are inherently parallel, capable of executing multiple tasks 
at once; making best use of these systems requires parallel programming.  

Parallelising existing software is generally considered to be difficult, since it is up to the programmer to 
identify opportunities for safe parallel execution. However, the last ten years have seen a rise in the popularity of 
concurrent programming techniques, which use multiple flows of control within a program as a structuring 
device. Concurrent programming allows the programmer to structure their program according to the concurrent 
activities and interactions within the problem domain, just as object-oriented techniques allow the programmer to 
make use of domain entities and their operations. A concurrent runtime system then automatically arranges the 
efficient execution of the activities across the available computational resources. Modern runtime systems such 
as CCSP [75] and Threading Building Blocks [76] are able to manage millions of lightweight threads on a single 
computer.  

Concurrent design techniques are intended to simplify the construction of software systems with a high 
degree of natural concurrency – those that involve many interacting activities, such as network servers, robotic 
control systems, and many kinds of scientific simulations. A concurrent simulation can give each entity its own 
flow of control, synchronising with other entities only when required by the model. Concurrent programming 
can therefore exploit natural concurrency to enable a high degree of parallel execution.  

In addition, concurrent programming can simplify simulation programming. A sequential simulation must 
impose an artificial ordering upon the interactions within the system, potentially introducing unwanted biases 
into the simulation; for example, in a system where agents compete for shared resources, a common error is to 
give agents simulated early in the cycle an advantage over those that act later [47]. In a concurrent program, the 
ordering of events is constrained only by the modelled system itself.  

A variety of different approaches to interaction exist within the field of concurrent programming. Message-

passing, where activities send messages to each other, has advantages for simulation. Message-passing 
techniques draw upon process calculi such as the π-calculus [77], which are also used to model behaviours and 
interactions in biological systems [78 ,79]. This can ease the translation of a model into a simulation. Erlang 
[80], Go [81] and Scala [82] are examples of languages designed to support message-passing. Alternatively, a 
general-purpose language can be used in conjunction with libraries such as JCSP [83] or MPI [84].  

The semantics of message-passing are similar to those of network communication, allowing a concurrent 
program to be distributed transparently across a cluster of computers. Communication across a network has a 
considerably higher latency than local communication, but standard distributed programming techniques – such 
as the use of local proxies [85] and pipelined protocols [86] – can be applied to minimise these overheads, while 
runtime system integration allows activities to run while others are waiting for network communications [87, 



88]. CoSMoS has developed design patterns for efficient distributed simulation using message-passing 
techniques [89]; ongoing work includes new approaches to temporal synchronisation in distributed simulations 
[90].  

Building a simulation using concurrent and distributed techniques often results in worse performance when 
executing on a single processor: despite recent developments in processor technology to support parallel 
programming, managing concurrent activities still has a measurable overhead. The value of a concurrent 
simulation in performance terms comes from its scalability: it can take advantage of additional computational 
resources to run larger or faster simulations. A carefully-constructed concurrent simulation can show near-linear 
scalability, meaning that its overall performance is roughly proportional to the amount of CPU time available 
[89]. Achieving this requires the avoidance of performance bottlenecks [57] and the use of intelligent runtime 
load-balancing [75].  

For simulations with especially large computational requirements, we would like to make use of cloud 

computing resources, which allow large numbers of machines to be rented as required. Interest in cloud 
technology for high-performance computing is growing, with suppliers such as Amazon offering cloud systems 
with fast multicore CPUs and programmable graphics processing units [91]. While the techniques we have 
developed for distributed computing can be applied to geographically-distributed cloud systems, communication 
latencies are higher and more variable than in conventional clusters. Cloud computing is presently most useful 
for applications with limited communication, such as calibration and sensitivity analysis; future work will 
investigate the use of cloud resources for interactive simulation.  

To make a simulation useful, we must be able to feed data into it and analyse its results. It is also frequently 
necessary to couple multiple simulations together – for example, to combine a coarse-grained model of weather 
with a fine-grained model of agent behaviour describing responses to changes in the weather. Existing 
simulation environments such as MASON [92] provide integrated facilities for simulation and analysis in a 
single programming language, but different languages are better suited for particular tasks; for example, we 
might write our core simulation in C++, but generate environmental conditions with MATLAB, and visualise its 
output using Processing. Early CoSMoS work identified a need for a framework that manages the interactions 
between these different environments [93]. The CoSMoS Uchuu framework, currently under development, 
provides simulation, visualisation and analysis clients with access to a shared store of objects, and keeps a 
historical record of object property values during the simulation, allowing a variety of simulation and analysis 
techniques at different temporal scales [94].  

 

7 Linking Scales: from Cell to Tissue 

The concurrent design and parallel implementation techniques presented in Section 6 offer the potential for in 

silico upscaling from cell to tissue. This upscaling on the one hand affords the opportunity to link knowledge of 
cellular signalling with tumour formation in complex spatially structured environments and on the other attracts 
substantial challenges, both conceptually and practically.  

In terms of opportunity, this cell representation can be a combination of detailed biological and bio-
mechanical representations, encapsulating intra-cell signalling network information together with inter-cell 
interactions mediated by an extra-cellular matrix and impacted by spatial packing over time. For example, cells 
may be arranged in space in accordance with known tissue compartments [26], and that arrangement may be 
informed by 2D section and 3D MRI and OPT scans. Representation of inter-cell interactions can take account 
of state-of-the-art bio-mechanical models such as Ramis-Conde et al. [42]. Individual cells may be characterised 
by detailed representation of the essential signalling pathways, so characterising cell response to external input 
signals in terms of growth, mitosis, differentiation and apoptosis. This biological cell response may then impact 
and be impacted on by the local spatial environment. We can thus construct highly scalable models of 
biologically plausible cells arranged in biologically plausible structures that model cell behaviour (lifecycle), 
interactions (bio-mechanics) and response to therapeutic interventions (cellular signalling). Consequently, in 
principle, we can move toward the goal stated by Kreeger and Lauffenburger [21], i.e. to predict the effect of 
therapeutic intervention on integrated tissue structures. Indeed, because cells may be represented individually, 
questions of spatio-temporal heterogeneity may be posed: for example, predicting tumour behaviour and 
response to intervention in the presence of spatially distributed cancer subtypes [95].  



While such scalable, detailed models might provide an exciting opportunity for in silico experimentation at 
realistic scales, their construction and exploitation is made particularly challenging by: 1) the overwhelming 
complexity and scale of the models; 2) uncertainty and change in the underpinning knowledge base and in the 
model construction; and 3) uncertainty in the model purpose and scope. To address these challenges, at least in 
part, we can turn to our modelling framework components.  

Two key components of the first challenge are model detail and model interpretation. A pervasive challenge 
in all modelling endeavours is to decide upon the details of the system under study that are to be included in the 
model: the model complexity. Models of cell signalling networks are constructed from the current knowledge 
base of known interactions and comprise many network nodes arranged in complex topologies. In order to 
simulate many, many cells representing tissue structures it is desirable to simplify as much as possible the 
representation of the cell, and there are a number of techniques for undertaking this simplification including 
reduction, substitution and reformulation.  

For example, Pachepsky et al. [96] undertake model reduction through sensitivity analysis to determine, 
under a particular model parameterisation, a greatly simplified model. In the original model, individual elements 
were described by 13 parameters; by undertaking systematic sensitivity analyses the new model required just two 
parameters to describe each individual element and model functioning was preserved. While this is an 
impressive reduction, the approach is only feasible on small-scale problems and depends on varying one 
parameter at a time. More recently, and for much larger models, Gibbons et al. [97] present a method that 
systematically substitutes model parameters with constants (fixed at mean values) without affecting model 
predictions. To assess the appropriateness of any substitution the method compares predictions between the 
original and the simplified model, and in to reduce the number of comparisons the method relies on a 
computational search process to optimise selection of individuals parameter or groups of parameters to 
replace/aggregate into a single fixed value. This method has been shown to reduce the both number of 
parameters in and computational demands of very large models where exhaustive search is prohibitive. Both 
methods depend on parameter redundancy to reduce model complexity and do not consider the underlying model 
architecture and the interplay among parameters.  

In recognition of the importance of topology of models comprising networks generally, together with the 
observation that biological networks in particular exhibit scale-free properties [98], has led Barabàsi and 
colleagues to consider opportunities to control complex networks through a relatively small number of nodes 
[99]. This work seeks to identify driver nodes that are key controllers of network functioning: if the input to 
these nodes is known then the network functioning is known. The authors recognise the challenges of identifying 
such driver nodes in biological networks that have complex topologies. In particular they note that the number of 
driver nodes in such networks approaches the total number of network nodes. Clearly, this ratio offers little 
opportunity for network simplification. However, the building blocks are in place for further analyses including 
unravelling the interconnections among nodes in correlated networks [99]. This correlation approach may well 
offer a route for reformulation of network structure based on a network of “interactions of interactions among 
nodes” that may ultimately prove a useful lens through which to view network dynamics.  

The above methods help reduce model complexity with respect to the single cell, but for multi-scale 
simulations it is important to simplify models of many cells. An approach that might be of some value here is 
that of coarse-graining of detail across regions of space. For example, Ptashnyk and Roose [100] describe the 
application of homogenisation theory to solute transport in soil. In recognition of the need to carry out 
simulations at realistic scales the authors note that direct up-scaling of fine-scale models of solute diffusion is 
computationally prohibitive. Homogenisation averages out, in a rigorous manner, fine-scale detail to enable 
derivation of a simplified model that remains valid at a large-scale by capturing the essential properties of that 
fine-scale. This is a valuable approach that has recently been shown to have value in understanding lymphatic 
drainage from tissue [101]. However, the application of homogenisation theory to systems that are not dominated 
by physical structure but by organisms, such as individual cell responses to drug action, is more challenging. We 
suggest that the powerful computational techniques proposed here are a valuable component in efforts to 
homogenise systems whose functioning is driven by individuals. In particular, we are able to simulate with fine-
scale detail at large-scales and so we are able to determine the behaviour of those large-scale systems directly. 
We may then reverse engineer the process of averaging out detail increasingly towards simpler systems until 
system functioning is lost. In doing so, specific simulations can guide development of more generalisable 
mathematical approaches to homogenisation in highly complex systems.  



Model interpretation may be supported by further developing the kind of interactive visualisation and visual 
analytic approach proposed in Section 5. Clearly in its present form, the visualisation only extends to a detailed 
depiction of the intra-cell signalling pathways. For multi-scale modelling we require a multi-scale visualisation, 
and for convenience here we use the terms micro-scale (cell), meso-scale (patch) and macro-scale (whole 
tissue/tumour). At the micro-scale, and within an overall macro-scale tissue structure, individual cells may be 
both interrogated (through modelling and single cell visualisation) and perturbed (through drug interventions and 
mutations) as described in Sections 5 and 2 respectively. At the meso-scale, regions of cells may be first selected 
interactively and similarly interrogated and perturbed at the patch-scale. The visualisation must report dynamics 
across that patch, depicting both aggregated behaviour and variation among cells, while allowing the option of 
probing individual cells in detail. Of note will be the need to depict inter-cell interactions within the patch and at 
the boundaries of that region to the rest of the tissue structure. Finally, we propose the same bulk-scale reporting 
and manipulation of scales of interest for the macro-scale, i.e. the whole (modelled) tissue section. This is 
technically demanding, but certainly no more so than the scalable simulation itself. The continued improvement 
in both graphics processing and peripheral device interaction capabilities will need to be exploited to the fullest. 
Most certainly the biggest challenge lies in visual interface and interaction design to ensure that visualisations 
are as effective, intuitive and fit for purpose as possible. Methodologies in visual analytics, including 
participatory design and evaluation, must be drawn on to ensure that the predictive power of such multi-scale 
models is relevant and accessible to domain stakeholders.  

Validity argumentation (Section 4) offers an approach to help deal with the second challenge of uncertainty 
and change in the underpinning knowledge base. Modelling must be carried out with incomplete knowledge, and 
Fitzgerald et al. [31] reject the requirement for complete models in systems biology, citing Box’s maxim: “all 
models are wrong but some are useful” [102]. Indeed, models have an important role in identifying the impact of 
those gaps [27], and so directing experimental endeavour. Validity argumentation, and in particular GSN, offers 
a scheme to explicate assumptions, including simplifications and omissions, in a rigorous manner. This scheme 
formalises the link between assumptions and the knowledge base, promoting transparency in both those parts of 
the model that are supported by evidence and those that are hypothesis-based. Both evidence- and hypothesis-
based assumptions are, of course, entirely acceptable in modelling, but it is vital to distinguish one from another. 
Importantly, as the knowledge base evolves, GSN may also provide a way of systematically introducing, and 
recording the introduction of, new knowledge into the model. In turn, GSN also supports identification of the 
ramifications of new knowledge on model functioning through this explication.  

The value added by validity argumentation is increased when modelling at multiple scales. Multi-scale 
modelling often requires integration of data from different sources and measured at different spatial and/or 
temporal scales. Such data collection may require different experimental protocols resulting in different relative 
scales for quantitative data, different environmental conditions and different measurement instrumentation. 
Validity argumentation cannot reconcile these scales, but makes explicit the assumptions underlying the steps 
taken, and any uncertainties introduced, in reconciling scales. Regardless of the scaling approaches outlined 
above, assumptions and uncertainties attracted by linking data derived at different spatio-temporal scales may be 
expressed through validity argumentation, which can inform development of scaling techniques themselves.  

Changes in the available knowledge base may be limited to refinement of parameter values or they may 
impact model structure, e.g., experimental evidence of a new interaction. Changes to model structure are 
inherently pervasive, potentially impacting the entire model development process, including diagrammatic 
representation, design decisions and verification (Section 3). Although more complicated in nature, validity 
arguments may extend equally to such structural changes. More fundamentally, and with respect to the third 
challenge, new knowledge may impact on the purpose and scope of the model. The iterative cycle of experiment 
and theory seeks to generate new questions and these new questions may not be appropriate for the current 
model. Determining whether a model is fit for purpose is difficult, and the CoSMoS process supports this task. 
Separating out platform model from domain model facilitates a clearer process of reasoning about the purpose 
and scope of the model, since this is encapsulated in the (scientific) domain model alone (Section 3). Without 
this separation, purpose and scope become blurred with the (engineering) decisions of implementation 
encapsulated in the platform model. Similarly, by separating out the results model from the simulation platform 
itself it is easier to identify when new models are required. By limiting consideration to the domain (including 
experimental results) together with domain and results models, only those assumptions and evidence-base 
relating to scientific aspects of the model are reviewed in terms of being fit for purpose; all details and 



assumptions necessary for model engineering are rightly ignored.  
Model separation has particular value when dealing with multi-scale modelling. Multi-scale model 

development is especially challenging since it requires simultaneous integration of both different models and 
different data streams, and both models and data characterise separately processes at different spatial and/ or 
temporal scales. Consequently, there are two facets to reconcile: one scientific and one engineering. 
Scientifically, it is necessary to construct an independent domain model for each experimental system from 
which data is derived. Based on these multiple domain models, the interconnections among them may be 
identified and specified. These domain models and their interconnections in turn serve to inform and constrain 
the engineering-based implementation and integration of platform models. The detailed mechanics of model 
integration may thus be driven by scientific rationale, with software design decisions being made in that context.  

Finally, the concept of model separation extends to consider the gap between in vivo and in vitro systems, a 
recognised issue largely dealt with by intuition [21]. Through model separation, the in vivo system is the domain, 
and its important characteristics the domain model. The platform model is the in vitro system and the 
experimental approach used to explore system functioning. The simulation platform is the experiment itself. In 
the same way as in silico results may be related to the domain model, the results model of the in vitro system 
may be compared with the in vivo domain model and ultimately the in vivo domain. This mapping of in vivo and 
in vitro domains onto the CoSMoS model affords the use of validity argumentation to explicate the assumptions 
made in the (model) in vitro system, and so may ease the translation from controlled in vitro investigations to in 

vivo clinical application.  
 

8 Conclusion 

Although we argue for the use of simulation as a scientific instrument, the simulation itself is one remove from 
reality. There are additional sources of potential errors and limitations because of this:  

 

• There may be bugs in the simulator code: the code is not a faithful implementation of the platform model.  

• There may be bugs in the platform model: it might introduce invalid approximations or assumptions.  

• There may be bugs in the domain model: it might not capture the understood domain correctly, or the 
domain might be misunderstood.  

• The domain might not be understood well enough to build a sensible model: we cannot simulate what we 
do not know. 

The use of rigorous software engineering techniques and validity arguments can mitigate, but never completely 
remove, these possibilities. Importantly, use of these techniques is non-trivial: they require specialised skills, and 
effort. If a simulation is to be used as a specialist scientific instrument, it needs to be crafted with all due care. 
Given that simulations are not generic, but each needs to be developed and argued within its specific research 
context, this implies that simulation is not a “quick and cheap” route to results (although it is still often quicker 
and cheaper than full wet-lab experimentation).  

There are additional technology limitations. In particular, some abstractions and simplifications are 
ultimately driven by limitations in the computational power available, rather than by the research context. 
Although available computational power increases dramatically over time, it is still far from being able to cope 
with the sheer scale of biological complexity.  

Notwithstanding these problems, the multi-disciplinary modelling framework proposed here, spanning 
complex systems modelling, computer science and visual analytics, has a number of clear benefits to systems 
biology modelling:  

 

• relevance – the separation out of models through the CoSMoS process (Section 3) makes clear the scope 
and purpose of simulations (domain model), separating these out from computer-based implementation 
decisions (platform model), and aids interpretation of model results with respect to the domain;  

• acceptance – modelling requires assumptions: it is important to be explicit about the evidence-base upon 
which assumptions are based, and more so in a field where new knowledge is generated continuously. 



Acceptance in a model is increased when it is understood and validity argumentation techniques (Section 
4) provide a means to make explicit assumptions made, revealing the way in which knowledge is used;  

• availability – a central goal of modelling in cancer systems biology is to guide the domain expert, where 
models may inform diagnosis and prognosis, and/ or direct experimental effort. An important aspect of 
this is to make models available to domain experts, and interactive and dynamic visualisation of model 
dynamics (Section 5) allows model behaviour to be understood and explored in intuitive ways;  

• application – in order to translate detailed models of cellular signalling pathways derived from in vitro 
studies to clinical, in vivo tumour treatment several orders of magnitude in spatial scale must be bridged. 
The parallelisation scheme outlined (Section 6) has the potential to link scales through cluster-based 
simulations of multi-scale models. 

The framework proposed here is both flexible and robust in the face of new discoveries. It is sufficiently 
flexible to capitalise on new knowledge, derived from experimental and modelling approaches, and on technical 
developments, in computational power and visualisation-interaction platforms, whilst being robust enough to 
systematically and transparently manage the introduction of such new knowledge into existing models as and 
when such knowledge becomes available.  
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Figure Legends 
 
Figure 1: Relationship between the domain, models and simulation platform, where arrows represent flows of 
information. These are all framed by the research context. 

 
Figure 2: An extract from the validity argument for the prostate cell modelling simulation [58]. The argument 

comprises claims and strategies used to address them. Claims appended with diamonds are not expanded. 
Additional GSN notations can express evidence (“solutions”), assumptions, justifications. Arguments can 
be modularised, and generic argument patterns can be instantiated, to support reuse. 

 
Figure 3: Snapshots of the 3D SBML-based visualisation of RAF/MEK/ERK and PI3K/PTEN/AKT pathway 

signalling dynamics [11]. Images show the network dynamics without (upper) and with (lower) 2C4 
application. A) The concentration of 2C4 in the system. B) The signalling activity of the 
PI3K/PTEN/AKT pathway. C) concentrations of ppAKT and associated complexes. Both B) and C) are 
reduced as a consequence of 2C4 application (A). Plus and Play buttons at the top right allow addition of 
drug interventions and play/pause functionality respectively. Adjacent slider bars are controls for 
visualisation speed and progress through the simulation. 

 


