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Abstract

Computer simulation can be used to informvivo and in vitro experimentation, enabling rapid, low-cost
hypothesis generation and directing experimentsaigiiein order to test those hypotheses. In this, wasilico
models become a scientific instrument for invediiga and so should be developed to high standdres,
carefully calibrated and their findings presentedsuch that they may be reproduced. Here, we eutin
framework that supports developing simulations@argific instruments, and we select cancer systeiviegy
as an exemplar domain, with a particular focusahular signalling models. We consider the chalksgf lack
of data, incomplete knowledge and modelling in tmntext of a rapidly changing knowledge base. Our
framework comprises a process to clearly sepaciatffic and engineering concerns in model andusation
development, and an argumentation approach to deatimy models for rigorous way of recording assuaomyst
and knowledge gaps. We propose interactive, dynaisi@lisation tools to enable the biological commityito
interact with cellular signalling models directlgrfexperimental design. There is a mismatch inesbatween
these cellular models and tissue structures tleadfiected by tumours, and bridging this gap rexsugubstantial
computational resource. We present concurrent progring as a technology to link scales without Igsin
important details through model simplification. Wiscuss the value of combining this technologyerattive
visualisation, argumentation and model separatiosupport development of multi-scale models thptagent
biologically plausible cells arranged in biologigaplausible structures that model cell behavionteractions
and response to therapeutic interventions.

Running title
Engineering scientific simulations

Keywords
Argumentation, cellular signalling, concurrent prxgming, information visualisation, linking scaleystems
biology.



1 Introduction: Simulation as a Scientific I nstrument

There are many possible applications for computaulgtion in scientific research. In biomedical easch,
computer simulation can be used to inform and sappivo andin vitro experimentation: the simulation may
be used, for example, to prioritise experimentgrisure maximum contribution from a finite resourdesign
experimental programmes to test hypotheses disedversilico, and cross-validate experimental results. In all
these applications, the computer simulation shbeldreated as a scientific instrument, and shoeldubject to
the rigour and understanding that goes into coostnu and use of other kinds of scientific instrumhe
Computer simulations need to be developed to higlineering standards and specifications, they nedse
calibrated to understand how the outputs relatbgsystem under study, and they should be praséntich a
way that their findings can be reproduced.

Timmer [1] identifies the beginnings of a movemémtensure that computational tools are aligned with
existing scientific methods. Publication of codedarmgorous calibration are two essential steps tdwa
achieving scientific reproducibility. However, soidic credibility and reproducibility of resultseeds a deeper
and wider approach that affects the way that coaermimulations are developed, the way that theysee, and
the way that they are documented.

A simulation is an encoding in an executable foffra onodel. Here, we use the termoadel simply to mean
an abstraction of relevant features of a domains(dsject area). A model may be expressed expli¢itly
diagrams, equations etc), or implicitly (in the dom understanding of the scientists). In many cdewpu
simulations, however, the model is only implicitpcoded by the computer code: in software enginggethis
is known as araceability problem. The act of encoding a model as a simulation thices many design
decisions and assumptions that need to be knowmiaerstood in order to interpret simulation residtterms
of the model representation and the underlying donihis raises issues of validation: how do yoowrthat
you have built a simulation that is competent tevear the questions you are exploring [2]? The uglidf a
simulation is never absolutealidity is not a Boolean state. A simulation may be deemed fit for a specific
purpose, or may be considered to engender a lévardidence in those using it. In some circumsésndor
example where outputs of a simulation have a heghllof criticality, a detailed, structured argumisrequired
in order to capture and express the evidence oohrdunfidence is based [3].

In the aftermath of “Climategate” [4], the spotligis on the way in which scientists use computation
devices as part of their scientific process. Makéngiulation code available to other researchers asaist
experiment repeatability, but in our view this ietrenough: we must also calibrate our simulaticars)
construct arguments demonstrating their validity doparticular purpose. Only then will we have wight
confidence to decode the output of simulations emerpret them in the context of the real domaimge
modelled and simulated. We need to shimaw the simulation has been engineered amhg it is a useful
instrument to enhance our domain knowledge.

In this paper we provide a modelling framework teapports the development of simulations as sdienti
instruments. As an exemplar domain of study we idenscancer, and we provide a short review of aurre
issues and modelling efforts, paying particularertibn to systems biology cellular signalling pasiyw
modelling. Through this review we identify key dealges in model development: specifically lack atad
incomplete knowledge and modelling in the contektaocontinuously developing field of study. We also
consider the need to link from such cell-basedwayhmodels to the tissue/ tumour scale to suppodating
of drug interventions at realistic scales. We oetlthe essential components of our modelling fraonkwand
indicate how they combine to provide support inradding those challenges and making that link &tesdNote,
the framework is generalisable and we could hawglgchosen other domains of study with similaatéees,
i.e. complex biological systems that are only gauhderstood because of significant gaps in knogédedre
driven by processes at multiple scales and areacteised by multiple data streams again at diffeseales.

2 Background

Cancer is a disease characterised by functionakdytations within and surrounding affected cdlssues and
organs. These dysregulations confer cancerous wihsthe ability to: proliferate at an increaseder;, evade
differentiation; develop new blood vessels (angiages) within their aggregate tissues; evade demnitp;ate



and metastasise; and resist growth inhibitory fac[b]. These hallmarks of cancer are governedted-uand
micro-cellular levels by a complex network of silimg regulatory pathways that ultimately dictateet
development, maintenance and progression of theecaf6], as well as its histological and anatomical
presentation and organisation [7]. The inherentadtaristic and complex heterogeneity of the disegsverned
by multivariate spatial and temporal parametriddgaal (pathways) and environmental (stromal) ¢edi[8 ,9],
make cancer extremely difficult to study and untierd. Likewise, it is these complex heterogenemisstthat
contribute to determine the effectiveness of articancer therapeutic strategy [10], as well asetimergence of
intrinsic and acquired resistance to anticancemafteutics [11].

The treatment modalities for cancer have tradifigri®een chemotherapy, surgery, radiotherapy omuwre-
based therapy [12, 13]. It is generally thoughtt tttee common mechanism of action of these therapeut
approaches is cytotoxicity towards the cancer celtavever, their anticancer effectiveness has tiedted by
lack of clear target specificity and our capacitydentify and fully understand all the possibleriagt modes of
their actions and effects upon cancerous cellsyels as normal cells. Research in the last two deshas
identified the significance of tumour immunology the tumour microenvironment, the maintenance and
progression of tumourigenesis, as well as the @tibdy of tumour cells or tissues to any of tf@ms of
anticancer therapeutic strategy [14]. Whilst thés led to promising immunotherapeutic anti-canteteygies,
there is increasing focus on combination therafilés 16]. These have led to measurable improvemients
cancer survival rates, prognosis indicators andtifieation of biomarkers that determine not ontgatment
outcome but also which patients may benefit frormary, adjuvant or neoadjuvant therapy [17]. Nevelss,
the overall progress in the diagnosis and treatmefntancer remains limited, despite the tremendous
breakthrough regarding the molecular basis of naggnesis and the discovery and development ofnuassl
anticancer therapeutic interventions. The long-tdisease free survival rate is only within the mof 10—-30%
among cancer patients [18, 19].

A novel approach to improve diagnosis, early praigmand effective targeted therapies for cancthrduse
of mathematical and computational modelling to tdfgrmparametric biological and molecular targetsiieh are
tumour-specific or differentially regulated in tuaors relative to normal tissue, especially those thterfere
with tumour cell or tissue development, progress@nresponse to anticancer therapeutic stratedies.
attractive modelling approach is that offered bytsgns biology modelling, which seeks to integragd c
structure and dynamics [20]. Cell structure maynimelled by characterising signal transduction imulti-
pathway network, where that signal transductionegos cell processes [6] and cancer is charactebsged
abnormal activities of those pathways [21]. Thecturres, i.e. pathways, used in cellular signallimgdels are
derived from established and hypothesised mechardssociations among biomolecular species [22ks&h
networks are known to have highly complex topolegigith pathway crosstalk [23], feedback loops [2¢d
redundancy, e.g. shared downstream pathways aerhatk interconnectivities [25], and this complgxit
topology gives cells robustness to perturbation,[8@. drug resistance [11]. The dynamics of thessmciations
are represented by equations describing rates afigeh of concentrations of species [26]. Such mastian
representations, while being only simplificatiorfstioe real system based on what is known [27], cier
insights into the link between biological mechargsand signalling responses [28], and so can aBsist
unravelling the complexities embodied in these &ligrng networks [21].

Systems biology models offer a platform for hypsibegeneration and experimental design [20]. For
example, models may be used to propose new intlmdnemechanisms [29] and alternate network topiel®g
[30] that best explain available data, and in d@ngdirect experimental investigation. Moreoveis tihhodel of
in silico investigation has the potential to reduce expamtalecost [31]. Of particular interest is the ude o
modelling to assess the impact of drug interventstrategies on signalling network functioning amd t
understand how therapeutic resistance occurs. @rélustration of current practice, we reviewdR systems
biology approaches to signalling network modellwith descriptions of large scale models of epidémgnawth
factor receptor (EGFR) signalling and its applicatio anticancer therapy [32, 33, 26].

2.1 Cdlular Sgnalling Network Modelling

EGFR signalling activates Ras-MAPK and the PI3K/AKathways which control cell division, motility, @n
survival. Constitutive activation and aberrant EG$ignalling has been identified in a wide variefyhaman
cancers and this network is a promising target rifcancer therapy [34]. The key aims of modellifgst



signalling system are to: describe input-outputrati@ristics of the signalling systems; determime fresponse
of the signalling network to activation by an inmignal and its inhibition by drug action; identifige best
targets in the signalling network for anticanceertlpy; dissect mechanisms of drug resistance; deatify
design and selection criteria for an optimal thetdje strategy [32, 33, 26].

A dynamic model of a signalling network is typigadl system of ordinary differential equations (Ot
describes the temporal change in concentratioractdfe (phosphorylated) proteins. The solutionhte ©DEs
describes the spreading of activation (protein phosylation) through the signalling network fronetbellular
membrane to the nucleus. The output signal of ifpealling network represents the response of tistesy to
the external input signal activated in the membresweptors. The complexity of any model rises asemo
detailed representations of the signalling netwprkiein-protein interactions, and post-translatieodification
of signalling proteins are included.

For example, the signalling network of MAPK and Alathways in Chest al.’s model [33] includes two
ligands, four receptors and 28 signalling protgiagticipating in signalling processing and trangaiunc Signal
activation leads to generation of 471 protein-grot®mplexes and phosphorylated proteins whichigpéite in
828 reactions. The system contains 499 differemiplations, 201 kinetic parameters and 28 non-istial
conditions. The estimation of these parameterbadienging: some sets of kinetic parameters ardadoa from
direct experimental data, but the majority of pagtars are uncertain.

Model parameters may be identified through a procedf fitting to extensive experimental data, and
usually the following type of cost function is useadalibration:

whereY,®?(t,) and Y, (t,) are experimental and theoretical data respectivelyoncentrations of proteilvs

at time pointst =t, obtained (calculated) under experimental conditi(far example, at different

concentrations of ligands and/or drugs). The aasttionn measures the quality of the reproduction of
experimental data by the model for a defined patanset. To minimisgq and so estimate parameters, in large
dimensional parameter spaces, the Monte Carlo ddBimnulated Annealing) or genetic algorithms are
commonly used [33, 32]. Despite the use of conalllerexperimental data during fitting (120 data s&t10
time points [33]) the cost function was found ted@anultiple local minima. This leads to non-ideiatifility of
the model, i.e. there are multiple parameter séiswminimisen. Several methods have been developed to
explore the biological implications of model noreidifiability [35], all based on sensitivity analys

Sensitivity analysis, as part of general contrelotlty, has found widespread application in the aislgnd
design of engineering systems. Sensitivity analgfers a quantitative approach to determine wiparameters
contribute significantly to variation in model outp In local sensitivity analysis [36], sensitivityf the

observable variable to variation of the model parametgrisgiven by §; = % .

]

Sensitivity analysis of signalling networks is useddentify the proteins and reactions that hdedreatest
influence upon signalling network response, i.amplitude, shape and duration. In [32], sengjtighalysis
was carried out to identify the key proteins thamtcol model output, phosphorylated AKT. The EGRRily
receptor HER3 was identified as the key node innihevork with significant impact on the output respe to
ligand activation, suggesting the HER3 receptoa @somising target for anticancer therapy. As alte®M-
121, a human monoclonal antibody, was designedhibit the HER3 receptoln vitro andin vivo experimental
testing showed that targeting HER3 with MM-121 d&n an effective therapeutic strategy for cancets wi
ligand-dependent activation of ErbB3 [37].

A similar systems approach together wittsilico perturbation experiments was applied to anothelieihge
in cancer therapy: to dissect the mechanism uniderigrug resistance to anticancer drugs targetieggGFR
family receptor HER2 [26, 11]. A model of the PIZIT signalling network was applied to study theeetf of
different perturbations on the network responséiER2 inhibitors. Anin silico perturbation technique was
developed to model different protein mutationsha PI3K/PTEN/AKT signalling network frequently olnged
in cancer development [11]. Using this perturbatimethod, distinct dynamic regimes were observatkimork
functioning: sensitive mode, where inhibition oftimput signal led to inhibition of the output signand
resistant mode, where the system was robust ta signal inhibition. The sensitivity-to-resistantansition
was predicted inn silico experiments following a mutation causing loss cfvity of the PTEN enzyme. The



prediction of the key role of PTEN status in remige to anti-HER2 therapy was confirmedimvitro
experiments on ovarian cancer cell lines as weilh @halysis of clinicopathological data on patgetneated with
anti-HER2 therapy [26]. As a result of this detdilstudy of the mechanism of the sensitivity-tostsice
transition, optimal drug targets for combined tlpgraovercoming resistance to anti-HER2 therapy were
proposed and confirmed usiimgvitro experiments in ovarian cancer cell lines [11].

2.2 Modelling Challenges

The examples described above, along with many strdemonstrate the successful use of systems piolog
modelling to enhance understanding of existing erptal results and to guide the next iteration of
experimental design. However, such cellular sigmglinodelling is not without its challenges, anédé are
neatly summarised in [27]: lack of data; incomplatewledge; and an ongoing knowledge discovery gssc

Regarding lack of data, models founded on quaiM#tatschemes require quantitative data. New
advancements in high-throughput -omic technologmsan that ever more robust quantitative data is
increasingly available at genomic, transcriptorpigteomic and metabolomic scales [38], althoughctiration
and exploitation of these rapidly expanding data sgroduces further difficulties (see [39] foview). These
data do not in themselves constitute knowledge systems biology models are required to integrateponent
knowledge into a holistic representation [38].

Importantly, such models are themselves simplifeggtesentations of reality based on the currentienge
base and with detail not considered to be essemtidted [27] and model scope reduced to the questi hand.
Where data is available models may be parametedsedtly, but this is not always possible. Wheepg in
data exist, unknown parameter values can be estiméitrough a number of approaches, including
computational search to identify parameter valumssistent with known system-scale behaviour (foelfam
spaces) or through sensitivity analysis (for largarameter spaces) as described above. Indeedjregptal
investigation may be directed towards model pararsethat are highly sensitive and unknown. Gaps in
knowledge, for example in network structure, introel a deeper challenge, and it is possible to amnbi
mechanistic models with data-driven approachedudireg S-systems [40], to inform the validity of afanistic
assumptions through data-modelling. Kreegerl. [21] provide a short review of the value of datasen
approaches including mutual information theorytistigal factor analysis and Bayesian networks.

The wide range and large number of ongoing expetiahénvestigations into cellular signalling dynai
means that new knowledge is discovered continuougllular signalling models thus require regulada
importantly, systematic updating of both model structure, i.e. topologyd aynamics, i.e. model parameters to
reflect new knowledge. A more challenging facekwéwledge discovery is an increasing awarenesseohéed
to consider cancer as a multi-scale phenomenorhiibe cell, there is new information on the intpace of
spatio-temporal organisation to signal transductaond so cell functioning [6]. Cells exist in a SpHy
structured, heterogeneous and compartmentaliseddoament [26], and cell functioning is impacted loy the
extracellular matrix and neighbouring cells [41}ed@nt multi-scale models of cancer developmentidens
inter-cell interactions, environmental interacti@arsl metastasis (e.g. [42, 43]) where the charaat&m of the
cell in such models is typically bio-mechanicalriature. A recognised longer-term goal of systenadobiy
cancer is to link models of cellular signalling wetks and tissue structures [31] allowing modellofgdrug
interventions at the tumour-scale [21]. This widquire a theoretical framework that acts as a #fien
instrument to inform diagnosis, prognosis and treatt and that integrates multi-scale models frolintiemugh
to organism combined with sophisticated data maugelo link heterogeneous data streams relatinthose
scales.

2.3 Requirements

To construct a computer-based simulation framevtbat can begin to realise the above modelling goad¢s
must acknowledge that there is more to simulati®ra scientific instrument than its program codechSan
instrument requires documented models of the sfieiomain of interest, and a record of assumpiand
simplifications. Understanding how these are exgmdsin the simulation design improves interpretatid
simulation results. Further, code needs to be deeel using good software engineering practicesassto
establish assurance that the simulation results &ature of the scientific domain, not softwaog®or design



flaws. Assurance requires an argued evidence-te&sembstrating that the various components, modetscade
are addressing the correct question, and are agildgethe question correctly. Visualisation and aation are
often needed to present the results in a way shanderstandable and relevant to the scientifistipre Finally,

high-performance technologies are required to e tabsimulate systems at a scientifically plawsigtale and
resolution. Each of these requirements is explaradore detail in the following sections, and weetagpresent
how they may be combined to provide a modellingngaork to meet the aspirations outlined above.

3 Modelsand M ethods

In this section, we describe a “minimal process” designing, building, calibrating, and using aestific
simulation. This process has been used succes$fullseveral scientific simulation case-studiesrfra broad
range of disciplines (immunology, ecology, and stmay), in the CoSMoS (Complex Systems Modellingl an
Simulation) project [44]. The development of simigdas using the CoSMoS process is necessarily an
interdisciplinary endeavour between scientists whmly particular domains (the domain experts), softlvare
engineers who construct simulations to facilitée $tudy of that domain (the developers).

Project documentation of simulation, modelling gmmbcess descriptions [45, 44, 46], of validatiord an
argumentation [47, 48, 49], of various biologicgbtem simulation case studies [50, 51, 52, 53], @inthe
CoSMoS workshop proceedings [54, 55, 56], is al#lérom the CoSMoS project website

3.1 The CoSMoS Process

The CoSMoS process builds on best practice fronfighak of software engineering, which seeks toityagoals,
roles and purpose. The process identifies thevidtig concepts [45]domain, domain model, platform model,
simulation platform, andresults model. The domain represents a real-world system — dibgest of scientific
research. The models and simulation platform @atiips are summarised in Figuferfior! Reference source
not found..

The purpose of identifying thdomain as the starting point is to establish a set ostraints and guidelines
for simulation development. The domain is the prnes@f domain experts responsible for guiding the scientific
content of the simulation. The other key role is dbveloper, a person or group of people who are responsible
for simulation software development.

Domain model: explicitly captures understanding of the domagfjrdng the purpose, scale and scope of the
simulation activity. The domain model identifiesdagiescribes relevant structures, behaviours amdaictions
from the domain, at a level of detail and abstoactuitable for addressing the stated purpose.plinpose
encompasses identification of research questiofe tposed of the simulation platform, but its magportant
role is to determine for what the simulation iv®assessed fit.

The domain model is based on the science as pegsbgtthe domain experts, and its design shoulfildee
from simulation platform implementation bias; ipseates science from simulation implementationitdetihe
domain model is developed jointly by developer dodhain expert (roles) and forms the agreed sciefttisis
for the eventual simulation platform.

Platform model: an engineering derivation from the domain moded] a step towards simulation platform
construction. Engineering design decisions, defgithe software implementation of the structurehaviours
and interactions identified in the domain modelaps the platform model. Given a hypothesis under
consideration, components in the domain model dnabutcomes of hypothesised mechanisms should not be
carried over into the platform model: the “answentist not be coded into the simulation platform [45]

Simulation platform: encodes the platform model in software and hardwahe simulation platform (or
simulator) allows execution of one or more simwlias {n silico); the simulation platform defines a set of
parameters from the domain model to explore th@ded model. The parameters may be interpreted ghrou
the platform model, and this interpretation allatve simulation platform to be understood by doneiperts
with knowledge of the domain model.

Results model: captures understanding of the simulation platftiased on the output of simulations. It is

1 www.cosmos-research.org



this results model that enables interpretation infukation results by domain experts. The resultddehas
constructed by experimentation and observation imlukations, and might comprise data output streams,
including dynamic data, statistical analyses andlitative or subjective observations. Results aentviewed
through the lens of the results model and so magobgpared to the domain model. Interpretation efrésults
model can suggest new experiments to undertakk,jaiico and in the real domain.

......................................
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Figure 1: Relationship between the domain, models and simulgtlatform, where arrows represent flows
of information. These are all framed by the redeamntext.

These models provide arenas within which differfaxtets of the construction and use of the simufatio
platform may be explored by domain expert(s) andetbper(s), and to consider the important interfgci
between the simulation platform and the domain.uBing a principled approach to simulation, the aede is
ultimately open to peer review, and provides asfmi scientific reproducibility.

The development and transition through the concielgtstified in the CoSMoS process, together witl th
starting domain, can be thought of as establistiingesearch context.

Research context: identifies and records high-level motivations aalg, research questions, hypotheses,
general definitions, and success criteria (howetbwhether the simulation has been successfulg. Sdope of
the research both captures simulation validatioquirements and guides how simulation results may be
interpreted and applied.

3.2 Software Engineering for Smulation

Using the CoSMoS process to develop models and lafimos includes using software engineering best
practice. This section summarises two key issussatise specifically in the development of softevar

Design decisions: in moving from abstract models (such as a domaidet) to code (i.e. a simulator, via a
platform model design), there are many decisiorisettaken. Those which concern implementation esoare
as important as those which concern representaifoscientific concepts in terms of understanding th
simulation. For example, implementing communicatiogtween agents using the facilities provided by a
particular programming model necessarily limits #iads of interactions which can take place. Almalt
simulation developers make decisions regarding dbantisation of time (and often also space) which
fundamentally change the basis of interaction — ibus often difficult to measure the possible effe of
representing continuous parameters with arbitrargntjsations [57]. Whilst it is impossible to knadl the
implications of most engineering design decisiahs possible to record those that are made efpliand to
build up catalogues of limitations, and of the ustEnding of how to manage the limitations. Sofevar
engineering design decisions are part of the reBeamntext, in the same way as scientific decisions

Verification activities: it is not sufficient to produce code: code mustvbsdfied. Verification refers to the
correct construction of a product, and is typifieg testing. However, software testing raises irsing
challenges for simulation developers.

A typical testing regime requires establishing #@atle test suite: a set of static and dynamicstesith
predicted outcomes, that will challenge a suffitipart of the code. Truly exhaustive testing oftwafe is



possible only within limited domains, and is impfeal in simulation owing to the complexity of tyail control
flows and data representations. All testing rebesbeing able to determine whether the expectedltres
obtained. In constructing simulations as scieniifistruments, we can do conventional low-level cteiting;
however, determining whether the overall simulé®naviour is “expected” can only ever be subjeciiviooks
right [48].

To improve confidence in the subjective evaluatadrthe simulatorcalibration is used. The principled
design of a simulator for scientific research sHogive a record of how domain concepts map to @mogr
concepts. Domain experts then need to be ableoupe data from the domain which can be used agsrip
simulation experiments, and the data that represtm expected scientific results. Calibration expents
allow the developers to adjust parameters (in $ifieadly-legitimate ways) and tune the simulattr.an ideal
situation, where mappings between domain and stowtzoncepts are clear, and good scientific datatgx
calibration demonstrates the typical alignment amdiation between simulator and reality: explorgtor
simulation experiments can then be run with a gdwahce of being able to interpret the results.

There are many practical problems with calibrat®®ome of these are:

»  Weak mappings between domain and simulator conceffitient simulation requires simplification;
simplification means that simulator concepts repnésnany domain concepts, and many domain concepts
are only implicitly represented [58].

» Unsuitable scientific data: a simulator is a logimachine; a domain involves natural systems whicien
when constrained in a laboratory, are not measeitatthe same extent or at the same accuracy as a
logical machine. For example, in one CoSMoS staaydelling a particular immune response in mice
[53], the scientists measure success by whethenthise survives: what does it mean for a simulation
be “dead”?

» Mismatches: calibration assumes that the structbedsaviours and interactions of the simulator are
adequate matches to the structures, behaviourstndctions of the domain (within the above
limitations) — but what if we got it wrong? Complsystems are capable of producing wildly different
behaviours from the same system, and strikinglylairbehaviours from very different systems [44]!

This brief review of software engineering as applie simulation exposes many of the pitfalls thahia the
developer of simulation as a scientific instrumdiitere is no firm solution to these problems. ladieghe next
section proposes an approach that allows the domgerts and developers to capture and analyse thei
understanding and theionfidence in a simulator.

4 Validity Argumentation

The principled approach to simulation developmehifts the focus of development from the technical
challenges to the decisions, assumptions and ifiatdns that arise: the focus is on the establesfitnof the
research context for use in interpreting simulatiesults. In this setting, the validity of the siation can be
expressed as an argument: what rationale can Ipeged, and what evidence can be put forward, tetantiate

a claim that the simulator fi for purpose.

Argumentation approaches have been used in crigigstems engineering: they are widely used in pafet
cases, for instance for airworthiness [59]. Howgwgumentation for validity is slightly differefitom the
conventional safety case use. A validity argumeifitexpress the developers’ and domain expertsfidence
in the simulator, and will also expose limitaticarsd uncertainties [58].

A number of examples of CoSMoS simulation have qmesd parts of their validity argument in Goal
Structuring Notation (GSN) [60, 61, 62]. This nadatsummarises the claims, strategy, and evidenoshich
the validity argument rests, and allows contexsuagptions and justifications to be signalled. Th8NG
argument acts as a structure and index to the audestof an argument, and also shows where the armum
incomplete.

Figure 2 shows part of an argument prepared dudeglopment of a simulation. The top claim, that th
simulation issuitable for the intended research references out to a paper that describes the pearpb the
research: in summary, this is to simulate a pdgicmodel of cell division and differentiation ihe prostate, in
a way that would be suitable for study of mutatiorthe development of cancer-like profiles. Theidity is
argued over three elements (Strategy 1): the bigdbdpasis of the simulation — which is partly eledted,



pointing to a systematic considerat

ion of the donwaincepts, and of the scope and scale of the &fionj the

software engineering — which went on to addressldgment approach, verification, and calibrationd a
consistency of results — unexpanded since the atmulvas incomplete when the argument was pregasid

Context: adequate
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(ref to paper
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CLAIM 1
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intended research
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(b) s/w engineering
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Figure 2: An extract from the validity argument for the pmist cell modelling simulation [58]. The
argument comprises claims and strategies useddmesal them. Claims appended with diamonds are not

expanded. Additional GSN notations can express eewid (“solutions”), assumptions, justifications.
Arguments can be modularised, and generic argupatérns can be instantiated, to support reuse.

The argument that this simulation is fit for purpds not a permanent or conclusive validationepehds on
the purpose, the people involved in developmentusedof the simulation, the intended use of thaltgsAn
argument structure may have to be modified duriexgtbpment. If the purpose of the simulation isaqed or
changed, the argument must be revised — as mudt ofuthe design rationale (assumptions, justifarad) of
the simulator.

An argument is “complete” when each claim and saibelis supported by evidence.
argumentation, this raises two questions:; whavidemce, and when is it necessary to argue assfaviglence.
Evidence is anything that, in the opinion of thdseolved, demonstrates a claim. In the case ofltesu
consistency (Claim 1.3), for instance, the furtbegument would establish which results, and a stiedi
analysis that can show consistency: the evidenceldvbe the data characteristics needed to demoastra

In validity



appropriate use of the statistic, and statistiealits. Claims such as Claim 1.1.1.2 (adequate ltmaylef cell

transitions) could be evidenced by the notes oftimge where domain experts reviewed the developbrsign
decisions in relation to cell transitions. If matetail is required, they could be broken down fertto explore
the biological and engineering connotations of tepresentation of each cell transition includednd aot
included — in the domain and platform models.

In terms of completing arguments — all the wayhe identification of evidence — it is often unneszey to
present the whole argument (this is a key diffeeewith, for example, safety case argument, whezeptirpose
is to establish the evidence that supports thenslaiThe guiding principle is that those who neebé satisfied
must be satisfied. For example, the simulator ticktirigure 2 relates is a vehicle for exploring bypeses.
Simulation results are used to target scientifipegimentation, and the scientific results come flaboratory
study: the validity argument is incomplete, butabfishes that the simulator is good enough for g
hypotheses.

5 Interactive Visualisation

In our short review of models that describe largales signalling networks (Section 2), we revealbd t
complexity involved in doing so: models may havester hundreds of equations and parameters. Thedelsn
describe the sequences of protein activations tfrathe signalling network, so characterising thetay
response to external input signals. These netwar&shus temporally dynamic and complex behaviouay
emerge, especially in systems that have feedbaglsldn addition to model size and the possibditgmergent
complex system-scale dynamics, many of the modealpeters are unknown. Because of the size of thsilgle
parameter space, parameter estimation methoddtarecoupled to approaches from artificial intedlige to fit
values to unknowns, and sensitivity analysis magreloyed to explore the consequences of variatmtisose
parameter values, including those that are estom&@ensequently, models are large, have compleaweirs
and have inherent uncertainty and so model int&@apoa is challenging. As noted in the CoSMoS pssce
(Section 3), the platform model should include rimstentation and interfaces that can support model
interpretation.

With respect to signalling models, visual repreatohs may help address this challenge: human lisua
perception routinely copes with large amounts ptitrdata, effortlessly parsing complex and confyisiansory
stimuli into coherent and meaningful perceptualeoty. Specifically, pattern-recognition abilitiet kuman
cognition make visualisation an effective method doderstanding complex models [63]. Visual expiona
data analysis is concerned with detecting and desgrpatterns and relations in data [64], sucloasiers,
trends and clusters [65]. The idea of visualisibgtect data for analysis and exploration is net [&6], but a
focused research effort in visualisation design asage, as a separate discipline of visual analytias only
recently been recognised as an area of scientifite@vour in its own right, helping analysts to #dtthe
expected and discover the unexpected” [67]. Vismallytics seeks to ensure that visualisations fiimeat and
fit for purpose, since poor visualisations may offe insight or worse still mislead [64], and isdagpossible by
advances in the understanding of human perceptidrcagnition processes [63]. Visual analytics sutgpthe
design of tools that presents data in a way thaipismised for human perception, and provides dhbjec
benchmarking of tool performance in terms of effican conveying relevant information.

One area of visual analytics that is especiallgvaht here is visualisation of networks, i.e. datd consists
of (dynamic) connections among objects. Diverseasarguch as computer network topology, social nd¢wor
analysis and organised crime investigation deah whis type of data, and research in network visatbn
focuses on both computational and perceptual eff@y [68, 69]. Network layout — placing nodes addes in
two- or three-dimensional space — may be effectéeremanually, by allowing the user to edit theweark
layout, or automatically, using algorithms basedhearistics [68]. Manual layout is relatively easyimplement
but visualisation construction is a time-consunpngcess even for relatively small networks. Morg@anantly,
complete user control impedes discovery of unexgaestformation. In contrast, automated layout scte@re
fast, scalable to very large networks and ofteregate unexpected insights, but rely heavily ondheice of
appropriate heuristics; non-intuitive automatedol#tycan mislead the analyst. A promising approachoi
combine the two, i.e. starting with a network tisadutomatically laid out and allowing the analysadjust the
layout, incorporating their own expertise and ihgsg One such algorithm is based on a force-spriataphor:



every connection acts as a spring, pulling the eoted nodes together, while node that are too dmsach
other repel, to prevent uninformative aggregatioriss algorithm creates a network layout that dyicaity
self-organises, visualising interconnectivity asxpmity [70]. Additionally, user interaction is mereffective
than observation alone in enabling understandingysfem dynamics since it involves using visuo-matalti-
modal cognitive mechanisms [71].

We are currently developing an interactive visugdleratory tool to aid understanding of cellulagrglling
models, utilising the full graphical, computatiorsaid interactive capabilities of modern comput€nstrently,
the development of visual tools for signalling netls (e.g. [72]) is focused upon providing supgortnodel
builders. Thus most existing applications presea ¢h a format for modellers to be used by modgliguch as
the Systems Biology Graphical Notation [73], anteoExtensive model editing and validation inteefs.cOur
focus, instead, is to provide tools for the biot@gicommunity who need to understand and use mdhtisvere
pre-built and verified by modellers, for focuskdsilico exploration and experimentation. The tool is based
Systems Biology Markup Language (SBML), a de-fastindard of describing such models [74]. It visedi
the model as a self-organised 3D network of speciemected by reactions governed by ODEs (see &igur

3Ecrror! Reference source not found., for a 2D snapshot in time).
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Figure 3: Snapshots of the 3D SBML-based visualisation of RMEK/ERK and PI3K/PTEN/AKT
pathway signalling dynamics [11]. Images show teework dynamics without (upper) and with (lower)2C
application. A) The concentration of 2C4 in thetsys. B) The signalling activity of the PISK/PTEN/AK
pathway. C) concentrations of ppAKT and associatethplexes. Both B) and C) are reduced as a
consequence of 2C4 application (A). Plus and Plattobs at the top right allow addition of drug
interventions and play/pause functionality respedyi. Adjacent slider bars are controls for vissatfion
speed and progress through the simulation.

The main power of this new tool lies in its ability interactively visualise the temporal dynamids o
reactions in the model, including selecting amoiffgiint modelled scenarios. The tool representsadyics in
a way that allows easy recognition of temporalgratt in the model through motion: temporal dynanaics
depicted by changing colour saturation and opatfithe species (nodes) and reaction connectiorge@dThe
network components themselves are visualised implified visual style similar to biology textbook¥his is,




again, aimed at making the models more intuitivedynprehensible for domain experts. The initial lays
automated (and may subsequently be manipulated attghibased on a custom-built version of a sprfimge
algorithm, adapted for ternary connections whiagh @mmon in signalling models (e.g. catalytic rian) but
not covered by generic spring-force algorithms thate developed for binary connections only. Thela is
further constrained by the general placement ofghecies (e.g. cell membrane, cytosol, nucleus). efbe
nucleus and the cell membrane are likewise visedlia the same abstracted textbook style. The stexis in
the tool’s evolution include usability trials wittomain experts and through these trials a studyppbrtunities
for alignment with Systems Biology Graphical Notati[73], a graphical format for representing sigjngl
networks in a printed medium.

6 Scalable Simulation

A simulation is an executable implementation of @def; it may be used to run preplanned experimemt#p
interactively explore the behaviours of a systeime §imulation must operate at appropriate scalspage and
time in order to reproduce the system under stuitly an acceptable degree of fidelity. However, cataponal
resources limit the degree to which we can scaleaugimulation. One solution to this is to reduce th
simulation’s resource requirements by simplifyihg todel, but we must be certain that in doing saave not
discarding important aspects of the system’s behgvi

The alternative is to make more computational resesiavailable to the simulation Iparallelising it:
dividing it up into multiple tasks that can be extsd in concert by several processors. Modern cdimgpu
systems with hyperthreaded and multicore processersherently parallel, capable of executing ipldttasks
at once; making best use of these systems reqarediel programming.

Parallelising existing software is generally coesatl to be difficult, since it is up to the prograer to
identify opportunities for safe parallel executibtowever, the last ten years have seen a riseeipdpularity of
concurrent programming techniques, which use multiple flows of controlthim a program as a structuring
device. Concurrent programming allows the programtmestructure their program according to the corent
activities and interactions within the problem démgust as object-oriented techniques allow thegpgmmer to
make use of domain entities and their operationsoicurrentruntime system then automatically arranges the
efficient execution of the activities across thailable computational resources. Modern runtimeesys such
as CCSP [75] and Threading Building Blocks [76] aloée to manage millions dightweight threads on a single
computer.

Concurrent design techniques are intended to diyngiie construction of software systems with a high
degree ohatural concurrency — those that involve many interacting activitissch as network servers, robotic
control systems, and many kinds of scientific satiohs. A concurrent simulation can give each it own
flow of control, synchronising with other entitiesly when required by the model. Concurrent prognamgy
can therefore exploit natural concurrency to enalidgh degree of parallel execution.

In addition, concurrent programming can simplifynalation programming. A sequential simulation must
impose an artificial ordering upon the interactiovighin the system, potentially introducing unwahteiases
into the simulation; for example, in a system whagents compete for shared resources, a commonignm
give agents simulated early in the cycle an adggntaver those that act later [47]. In a concurpgogram, the
ordering of events is constrained only by the miedetystem itself.

A variety of different approaches to interactioriséxvithin the field of concurrent programmingessage-
passing, where activities send messages to each other,abgantages for simulation. Message-passing
techniques draw upon process calculi such ag-t@culus [77], which are also used to model beharg and
interactions in biological systems [78 ,79]. Thancease the translation of a model into a simulatitrlang
[80], Go [81] and Scala [82] are examples of lammsadesigned to support message-passing. Alteehatia
general-purpose language can be used in conjunettbriibraries such as JCSP [83] or MPI [84].

The semantics of message-passing are similar &etbbd network communication, allowing a concurrent
program to balistributed transparently across a cluster of computers. Comization across a network has a
considerably higher latency than local communicgtliut standard distributed programming technigussch
as the use of local proxies [85] and pipelined grots [86] — can be applied to minimise these ovads, while
runtime system integration allows activities to mvhile others are waiting for network communicasdg?,



88]. CoSMoS has developed design patterns for iefficdistributed simulation using message-passing
techniques [89]; ongoing work includes new appreacto temporal synchronisation in distributed satiahs
[90].

Building a simulation using concurrent and disttézlitechniques often results in worse performanicenw
executing on a single processor: despite receneldements in processor technology to support mrall
programming, managing concurrent activities stdéisha measurable overhead. The value of a concurrent
simulation in performance terms comes fromsitalability: it can take advantage of additional computational
resources to run larger or faster simulations. keftdly-constructed concurrent simulation can sheear-linear
scalability, meaning that its overall performansaadughly proportional to the amount of CPU timeitable
[89]. Achieving this requires the avoidance of perfance bottlenecks [57] and the use of intelligemtime
load-balancing [75].

For simulations with especially large computationaguirements, we would like to make use cidud
computing resources, which allow large numbers of machiredéd rented as required. Interest in cloud
technology for high-performance computing is grayiwith suppliers such as Amazon offering cloudtays
with fast multicore CPUs and programmable graplpicscessing units [91]. While the techniques we have
developed for distributed computing can be appitedeographically-distributed cloud systems, comication
latencies are higher and more variable than in eotienal clusters. Cloud computing is presently imeseful
for applications with limited communication, such ealibration and sensitivity analysis; future wosil
investigate the use of cloud resources for interacimulation.

To make a simulation useful, we must be able td f#sa into it and analyse its results. It is dfsguently
necessary to couple multiple simulations togethtar-example, to combine a coarse-grained modelezther
with a fine-grained model of agent behaviour ddsng responses to changes in the weather. Existing
simulation environments such as MASON [92] providtegrated facilities for simulation and analysisa
single programming language, but different langsagee better suited for particular tasks; for exempe
might write our core simulation in C++, but generativironmental conditions with MATLAB, and visis#iits
output using Processing. Early CoSMoS work idesdifa need for a framework that manages the intersct
between these different environments [93]. The CoSNchuu framework, currently under development,
provides simulation, visualisation and analysiemi$ with access to a shared store of objects,kapgs a
historical record of object property values durthg simulation, allowing a variety of simulationdaanalysis
techniques at different temporal scales [94].

7 Linking Scales: from Cell to Tissue

The concurrent design and parallel implementatemtiques presented in Section 6 offer the pofefatian
silico upscaling from cell to tissue. This upscaling be bne hand affords the opportunity to link knowgleaf
cellular signalling with tumour formation in complspatially structured environments and on the roéitieacts
substantial challenges, both conceptually and jadbt.

In terms of opportunity, this cell representatioancbe a combination of detailed biological and bio-
mechanical representations, encapsulating intdasighalling network information together with inteell
interactions mediated by an extra-cellular matrid ampacted by spatial packing over time. For examgells
may be arranged in space in accordance with knésgone compartments [26], and that arrangement reay b
informed by 2D section and 3D MRI and OPT scangr&sentation of inter-cell interactions can takecant
of state-of-the-art bio-mechanical models such aniR-Condeet al. [42]. Individual cells may be characterised
by detailed representation of the essential signpjpathways, so characterising cell response tereal input
signals in terms of growth, mitosis, differentiatiand apoptosis. This biological cell response thay impact
and be impacted on by the local spatial environm#®ié can thus construct highly scalable models of
biologically plausible cells arranged in biologigaplausible structures that model cell behavidife¢ycle),
interactions (bio-mechanics) and response to tleertap interventions (cellular signalling). Consenlyg in
principle, we can move toward the goal stated bgelger and Lauffenburger [21], i.e. to predict tifeat of
therapeutic intervention on integrated tissue $times. Indeed, because cells may be representaddinally,
questions of spatio-temporal heterogeneity may bseg: for example, predicting tumour behaviour and
response to intervention in the presence of spat@tributed cancer subtypes [95].



While such scalable, detailed models might proddeexciting opportunity fom silico experimentation at
realistic scales, their construction and explaitatis made particularly challenging by: 1) the eueelming
complexity and scale of the models; 2) uncertaartgd change in the underpinning knowledge base ratigei
model construction; and 3) uncertainty in the mqulepose and scope. To address these challengeasain
part, we can turn to our modelling framework compus.

Two key components of the first challenge are malé¢hil and model interpretation. A pervasive chadle
in all modelling endeavours is to decide upon teeits of the system under study that are to bleidled in the
model: the model complexity. Models of cell sigiral networks are constructed from the current kieolge
base of known interactions and comprise many né&twamdes arranged in complex topologies. In order to
simulate many, many cells representing tissue ttres it is desirable to simplify as much as pdssihe
representation of the cell, and there are a nurobéechniques for undertaking this simplificatiamciuding
reduction, substitution and reformulation.

For example, Pachepslg al. [96] undertake model reduction through sensitiatyalysis to determine,
under a particular model parameterisation, a gresathplified model. In the original model, individuelements
were described by 13 parameters; by undertakingisygic sensitivity analyses the new model requusttwo
parameters to describe each individual element mwodiel functioning was preserved. While this is an
impressive reduction, the approach is only feasirle small-scale problems and depends on varying one
parameter at a time. More recently, and for muehelamodels, Gibbonst al. [97] present a method that
systematically substitutes model parameters withstamts (fixed at mean values) without affectingdeio
predictions. To assess the appropriateness of abstigition the method compares predictions betwéen
original and the simplified model, and in to redute number of comparisons the method relies on a
computational search process to optimise seleatibrindividuals parameter or groups of parameters to
replace/aggregate into a single fixed value. Thisthmd has been shown to reduce the both number of
parameters in and computational demands of vegelanodels where exhaustive search is prohibitiveth B
methods depend on parameter redundancy to redudel mmmplexity and do not consider the underlyingded
architecture and the interplay among parameters.

In recognition of the importance of topology of netsl comprising networks generally, together with th
observation that biological networks in particukxhibit scale-free properties [98], has led Baralzsl
colleagues to consider opportunities to control glex networks through a relatively small numbemofies
[99]. This work seeks to identify driver nodes tlaaé key controllers of network functioning: if thgut to
these nodes is known then the network functiorsrighown. The authors recognise the challengesestiiying
such driver nodes in biological networks that hewmplex topologies. In particular they note that tlumber of
driver nodes in such networks approaches the tatalber of network nodes. Clearly, this ratio offétde
opportunity for network simplification. However,atbuilding blocks are in place for further analyseduding
unravelling the interconnections among nodes imetated networks [99]. This correlation approachy mell
offer a route for reformulation of network struausased on a network of “interactions of interactiamong
nodes” that may ultimately prove a useful lens tigtowhich to view network dynamics.

The above methods help reduce model complexity wédpect to the single cell, but for multi-scale
simulations it is important to simplify models ofany cells. An approach that might be of some vélee is
that of coarse-graining of detail across regionspce. For example, Ptashnyk and Roose [100]idesitre
application of homogenisation theory to solute s@ort in soil. In recognition of the need to caoyt
simulations at realistic scales the authors not direct up-scaling of fine-scale models of soldiféusion is
computationally prohibitive. Homogenisation avemgait, in a rigorous manner, fine-scale detail nabde
derivation of a simplified model that remains vadida large-scale by capturing the essential ptigseof that
fine-scale. This is a valuable approach that hasntty been shown to have value in understandingphatic
drainage from tissue [101]. However, the applicatth homogenisation theory to systems that arelootinated
by physical structure but by organisms, such awithgal cell responses to drug action, is more lelmgiing. We
suggest that the powerful computational techniqouesposed here are a valuable component in efforts t
homogenise systems whose functioning is drivembdyiduals. In particular, we are able to simubaith fine-
scale detail at large-scales and so we are aldeteymine the behaviour of those large-scale systimctly.
We may then reverse engineer the process of avgramit detail increasingly towards simpler systamsl
system functioning is lost. In doing so, specifimglations can guide development of more genefalksa
mathematical approaches to homogenisation in highfgplex systems.



Model interpretation may be supported by furtheredi@ping the kind of interactive visualisation avidual
analytic approach proposed in Section 5. Clearlysipresent form, the visualisation only exterals tdetailed
depiction of the intra-cell signalling pathways.rFoulti-scale modelling we require a multi-scalsualisation,
and for convenience here we use the terms micre-qcall), meso-scale (patch) and macro-scale (ghol
tissue/tumour). At the micro-scale, and within arerall macro-scale tissue structure, individualscetay be
both interrogated (through modelling and singlé wisualisation) and perturbed (through drug inggrions and
mutations) as described in Sections 5 and 2 respbctAt the meso-scale, regions of cells mayibs Eelected
interactively and similarly interrogated and pebeot at the patch-scale. The visualisation mustrtefymamics
across that patch, depicting both aggregated betwaind variation among cells, while allowing thaion of
probing individual cells in detail. Of note will ike need to depict inter-cell interactions witttie patch and at
the boundaries of that region to the rest of theui structure. Finally, we propose the same mdlegeporting
and manipulation of scales of interest for the mewmale, i.e. the whole (modelled) tissue sectibmis is
technically demanding, but certainly no more santtiee scalable simulation itself. The continued rowement
in both graphics processing and peripheral devitsraction capabilities will need to be exploitedtie fullest.
Most certainly the biggest challenge lies in visimérface and interaction design to ensure thatialisations
are as effective, intuitive and fit for purpose pgssible. Methodologies in visual analytics, in@hed
participatory design and evaluation, must be drawrto ensure that the predictive power of such irsakile
models is relevant and accessible to domain stéddtetso

Validity argumentation (Section 4) offers an apmtoto help deal with the second challenge of uaasst
and change in the underpinning knowledge base. Moglenust be carried out with incomplete knowledgad
Fitzgeraldet al. [31] reject the requirement for complete modelsystems biology, citing Box’s maxim: “all
models are wrong but some are useful” [102]. Indesstels have an important role in identifying tmpact of
those gaps [27], and so directing experimental @avoler. Validity argumentation, and in particular g ®ffers
a scheme to explicate assumptions, including sfiogtions and omissions, in a rigorous manner. Boleeme
formalises the link between assumptions and thevigdge base, promoting transparency in both thases of
the model that are supported by evidence and tthageare hypothesis-based. Both evidence- and hgpist-
based assumptions are, of course, entirely acdeptaimodelling, but it is vital to distinguish ofimm another.
Importantly, as the knowledge base evolves, GSN aisy provide a way of systematically introduciagd
recording the introduction of, new knowledge int@ tmodel. In turn, GSN also supports identificatodrthe
ramifications of new knowledge on model functionthgough this explication.

The value added by validity argumentation is insegawhen modelling at multiple scales. Multi-scale
modelling often requires integration of data froiffedent sources and measured at different spatial/or
temporal scales. Such data collection may requfferent experimental protocols resulting in difet relative
scales for quantitative data, different environmaémonditions and different measurement instruntemnta
Validity argumentation cannot reconcile these sgateit makes explicit the assumptions underlyirg steps
taken, and any uncertainties introduced, in redimgciscales. Regardless of the scaling approachédmed
above, assumptions and uncertainties attractethkind) data derived at different spatio-temporalles may be
expressed through validity argumentation, whichiodorm development of scaling techniques themselve

Changes in the available knowledge base may béelinto refinement of parameter values or they may
impact model structure, e.g., experimental evideot& new interaction. Changes to model structuee a
inherently pervasive, potentially impacting the ientmodel development process, including diagrarmamat
representation, design decisions and verificati®acfion 3). Although more complicated in natureljciiy
arguments may extend equally to such structurahgbs More fundamentally, and with respect to thedt
challenge, new knowledge may impact on the purposkescope of the model. The iterative cycle of erpent
and theory seeks to generate new questions and tteg questions may not be appropriate for theeatirr
model. Determining whether a model is fit for puspas difficult, and the CoSMoS process suppoliits tdsk.
Separating out platform model from domain modellifates a clearer process of reasoning about thpgse
and scope of the model, since this is encapsulatéite (scientific) domain model alone (Section \B)ithout
this separation, purpose and scope become bluriéid tve (engineering) decisions of implementation
encapsulated in the platform model. Similarly, bparating out the results model from the simulagitaiform
itself it is easier to identify when new models agquired. By limiting consideration to the doméiincluding
experimental results) together with domain and ltesmodels, only those assumptions and evidence-bas
relating to scientific aspects of the model areiewed in terms of being fit for purpose; all detadnd



assumptions necessary for model engineering andyriggnored.

Model separation has particular value when dealivith multi-scale modelling. Multi-scale model
development is especially challenging since it hexgusimultaneous integration of both different migdand
different data streams, and both models and dadeacterise separately processes at different $ati or
temporal scales. Consequently, there are two fatetseconcile: one scientific and one engineering.
Scientifically, it is necessary to construct aneipdndent domain model for each experimental system
which data is derived. Based on these multiple demaodels, the interconnections among them may be
identified and specified. These domain models &eil interconnections in turn serve to inform awstrain
the engineering-based implementation and integradoplatform models. The detailed mechanics of ehod
integration may thus be driven by scientific ratitm with software design decisions being madéan ¢ontext.

Finally, the concept of model separation extendsotusider the gap betweamvivo andin vitro systems, a
recognised issue largely dealt with by intuitiod]l2Through model separation, tirevivo system is the domain,
and its important characteristics the domain moddie platform model is thén vitro system and the
experimental approach used to explore system fumictij. The simulation platform is the experimestlt. In
the same way a® silico results may be related to the domain model, thalt® model of thén vitro system
may be compared with the vivo domain model and ultimately the vivo domain. This mapping of vivo and
in vitro domains onto the CoSMoS model affords the uselidity argumentation to explicate the assumptions
made in the (modelh vitro system, and so may ease the translation fromatedin vitro investigations tan
vivo clinical application.

8 Conclusion

Although we argue for the use of simulation asiargific instrument, the simulation itself is oremove from
reality. There are additional sources of poterrabrs and limitations because of this:

e There may be bugs in the simulator code: the cadet a faithful implementation of the platform nebd
» There may be bugs in the platform model: it migitdduce invalid approximations or assumptions.

e There may be bugs in the domain model: it mightaagture the understood domain correctly, or the
domain might be misunderstood.

» The domain might not be understood well enoughuittlta sensible model: we cannot simulate what we
do not know.

The use of rigorous software engineering techniquesvalidity arguments can mitigate, but never pletely
remove, these possibilities. Importantly, use esthtechniques is non-trivial: they require spemdlskills, and
effort. If a simulation is to be used as a spesfatientific instrument, it needs to be craftethvéll due care.
Given that simulations are not generic, but eaddado be developed and argued within its spemfearch
context, this implies that simulation is not a ‘ciuiand cheap” route to results (although it id sfilen quicker
and cheaper than full wet-lab experimentation).

There are additional technology limitations. In tmadar, some abstractions and simplifications are
ultimately driven by limitations in the computateinpower available, rather than by the researchestn
Although available computational power increasesdtically over time, it is still far from being labto cope
with the sheer scale of biological complexity.

Notwithstanding these problems, the multi-discigtin modelling framework proposed here, spanning
complex systems modelling, computer science andavianalytics, has a number of clear benefits &iesys
biology modelling:

» relevance — the separation out of models through the CoSptaSess (Section 3) makes clear the scope
and purpose of simulations (domain model), sepagdtiese out from computer-based implementation
decisions (platform model), and aids interpretabbmodel results with respect to the domain;

e acceptance — modelling requires assumptions: it is importanbe explicit about the evidence-base upon
which assumptions are based, and more so in aviiletsle new knowledge is generated continuously.



Acceptance in a model is increased when it is w8tded and validity argumentation techniques (Sactio
4) provide a means to make explicit assumptionsenabealing the way in which knowledge is used;

» availability — a central goal of modelling in cancer systenadolgiy is to guide the domain expert, where
models may inform diagnosis and prognosis, andirect experimental effort. An important aspect of
this is to make models available to domain expartd,interactive and dynamic visualisation of model
dynamics (Section 5) allows model behaviour to haenstood and explored in intuitive ways;

» application — in order to translate detailed models of cellsignalling pathways derived from vitro
studies to clinicalin vivo tumour treatment several orders of magnitude &tiapscale must be bridged.
The parallelisation scheme outlined (Section 6)thagotential to link scales through cluster-based
simulations of multi-scale models.

The framework proposed here is both flexible arousb in the face of new discoveries. It is sufiitig
flexible to capitalise on new knowledge, deriveainfrexperimental and modelling approaches, and amteal
developments, in computational power and visudtisainteraction platforms, whilst being robust egbuto
systematically and transparently manage the inttalu of such new knowledge into existing modelsaad
when such knowledge becomes available.
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Figure Legends

Figure 1. Relationship between the domain, models and siiulgtlatform, where arrows represent flows of
information. These are all framed by the reseacctiext.

Figure 2: An extract from the validity argument for the pratstcell modelling simulation [58]. The argument
comprises claims and strategies used to address €laims appended with diamonds are not expanded.
Additional GSN notations can express evidence (ftsmhs”), assumptions, justifications. Argumentsa ca
be modularised, and generic argument patterns eamsktantiated, to support reuse.

Figure 3: Snapshots of the 3D SBML-based visualisation of RMEK/ERK and PI3K/PTEN/AKT pathway
signalling dynamics [11]. Images show the netwoykaimics without (upper) and with (lower) 2C4
application. A) The concentration of 2C4 in theteys. B) The signalling activity of the
PI3K/PTEN/AKT pathway. C) concentrations of ppAKidaassociated complexes. Both B) and C) are
reduced as a consequence of 2C4 application (A¥. &1id Play buttons at the top right allow additén
drug interventions and play/pause functionalitypeesively. Adjacent slider bars are controls for
visualisation speed and progress through the stioola



