1,028 research outputs found

    Automating senior fitness testing through gesture detection with depth sensors

    Get PDF
    Sedentarism has a negative impact on health, life expectancy and quality of life, especially in older adults. The assessment of functional fitness helps evaluating the effects of ageing and sedentarism, and this assessment is typically done through validated battery tests such as the Senior Fitness Test (SFT). In this paper we present a computer-based system for assisting and automating SFT administration and scoring in the elderly population. Our system assesses lower body strength, agility and dynamic balance, and aerobic endurance making use of a depth sensor for body tracking and multiple gesture detectors for the evaluation of movement execution. The system was developed and trained with optimal data collected in laboratory conditions and its performance was evaluated in a real environment with 22 elderly end-users, and compared to traditional SFT administered by an expert. Results show a high accuracy of our system in identifying movement patterns (>95%) and consistency with the traditional fitness assessment method. Our results suggest that this technology is a viable low cost option to assist in the fitness assessment of elderly that could be deployed for at home use in the context of fitness programs.info:eu-repo/semantics/publishedVersio

    A review of activity trackers for senior citizens: research perspectives, commercial landscape and the role of the insurance industry

    Get PDF
    The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future

    Evaluating body tracking interaction in floor projection displays with an elderly population

    Get PDF
    The recent development of affordable full body tracking sensors has made this technology accessible to millions of users and gives the opportunity to develop new natural user interfaces. In this paper we focused on developing 2 natural user interfaces that could easily be used by an elderly population for interaction with a floor projection display. One interface uses feet positions to control a cursor and feet distance to activate interaction. In the second interface, the cursor is controlled by ray casting the forearm into the projection and interaction is activated by hand pose. The interfaces were tested by 19 elderly participants in a point-and-click and a drag-and-drop task using a between-subjects experimental design. The usability and perceived workload for each interface was assessed as well as performance indicators. Results show a clear preference by the participants for the feet controlled interface and also marginal better performance for this method.info:eu-repo/semantics/publishedVersio

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    A Sensing Platform to Monitor Sleep Efficiency

    Get PDF
    Sleep plays a fundamental role in the human life. Sleep research is mainly focused on the understanding of the sleep patterns, stages and duration. An accurate sleep monitoring can detect early signs of sleep deprivation and insomnia consequentially implementing mechanisms for preventing and overcoming these problems. Recently, sleep monitoring has been achieved using wearable technologies, able to analyse also the body movements, but old people can encounter some difficulties in using and maintaining these devices. In this paper, we propose an unobtrusive sensing platform able to analyze body movements, infer sleep duration and awakenings occurred along the night, and evaluating the sleep efficiency index. To prove the feasibility of the suggested method we did a pilot trial in which several healthy users have been involved. The sensors were installed within the bed and, on each day, each user was administered with the Groningen Sleep Quality Scale questionnaire to evaluate the user’s perceived sleep quality. Finally, we show potential correlation between a perceived evaluation with an objective index as the sleep efficiency.</p

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare

    The KIMORE dataset: KInematic assessment of MOvement and clinical scores for remote monitoring of physical REhabilitation

    Get PDF
    The paper proposes a free dataset, available at the following link1, named KIMORE, regarding different rehabilitation exercises collected by a RGB-D sensor. Three data inputs including RGB, Depth videos and skeleton joint positions were recorded during five physical exercises, specific for low back pain and accurately selected by physicians. For each exercise, the dataset also provides a set of features, specifically defined by the physicians, and relevant to describe its scope. These features, validated with respect to a stereophotogrammetric system, can be analyzed to compute a score for the subject's performance. The dataset also contains an evaluation of the same performance provided by the clinicians, through a clinical questionnaire. The impact of KIMORE has been analyzed by comparing the output obtained by an example of rule and template-based approaches and the clinical score. The dataset presented is intended to be used as a benchmark for human movement assessment in a rehabilitation scenario in order to test the effectiveness and the reliability of different computational approaches. Unlike other existing datasets, the KIMORE merges a large heterogeneous population of 78 subjects, divided into 2 groups with 44 healthy subjects and 34 with motor dysfunctions. It provides the most clinically-relevant features and the clinical score for each exercise
    • …
    corecore