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Andrea Monteriù , Member, IEEE, Luca Romeo , and Federica Verdini

Abstract— This paper proposes a free dataset, available
at the following link,1 named KIMORE, regarding different
rehabilitation exercises collected by a RGB-D sensor. Three
data inputs including RGB, depth videos, and skeleton
joint positions were recorded during five physical exer-
cises, specific for low back pain and accurately selected by
physicians. For each exercise, the dataset also provides a
set of features, specifically defined by the physicians, and
relevant to describe its scope. These features, validated
with respect to a stereophotogrammetric system, can be
analyzed to compute a score for the subject’s performance.
The dataset also contains an evaluation of the same per-
formance provided by the clinicians, through a clinical
questionnaire. The impact of KIMORE has been analyzed
by comparing the output obtained by an example of rule
and template-based approaches and the clinical score. The
dataset presented is intended to be used as a benchmark
for human movement assessment in a rehabilitation sce-
nario in order to test the effectiveness and the reliability of
different computational approaches. Unlike other existing
datasets, the KIMORE merges a large heterogeneous popu-
lation of 78 subjects, divided into 2 groups with 44 healthy
subjects and 34 with motor dysfunctions. It provides the
most clinically-relevant features and the clinical score for
each exercise.

Index Terms— Dataset, rehabilitation, motion analysis,
RGB-D sensor.

I. INTRODUCTION

IN recent years, chronic diseases have been affecting the
quality of life of many people, leading to progressive
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limitations in motor activities and reducing participation in
social life when a correct and continuous rehabilitation support
is not provided. In this context, an accurate and reliable reha-
bilitation framework is necessary to reduce the high demands
for healthcare staff as well as to make rehabilitation more
enjoyable and acceptable in terms of adherence, monitoring,
access and sustainability [1]. New modalities of health service
delivery have proliferated, providing remarkable solutions for
overcoming related issues and offering individualized pro-
grams beyond the hospital setting, such as telerehabilitation.
This approach is based on regular monitoring of the patient’s
state of health and progress, with respect to the aim of
the treatment and to his/her expectations [2]–[5]. Generally,
a rehabilitation program is delivered in clinical facilities or
at home by a physiotherapist, who continuously provides
feedback on gesture accuracy, in terms of goal, motion and
posture, in order to obtain the best result as regards safety
and efficacy in the short as well as in the long term. The
feedback/information about gesture accuracy while performing
or after a movement promotes motor learning and retention,
minimizing possible side effects and maximizing physical
benefits [6]. Therefore, an effective and safe telerehabilitation
architecture should guarantee the same supervision of the
gesture in order to reach results similar to those provided
by the therapist. In this context, both postural alignment and
kinematics should be monitored according to [7]. Different
telerehabilitation approaches require wearable and/or vision-
based systems to monitor the patient during the exercise.
Particularly, Red-Green-Blue Depth (RGB-D) cameras can
be used as low-cost markerless systems to analyze human
motion and support physiotherapists in the rehabilitation
cycle [8]–[16].

In this context, the motion capture system technology,
adopted to record the subject’s performance, can produce
reliable results, if complemented by specific and accurate data
processing algorithms. Machine learning algorithms have often
been employed to perform motion assessment. Some of these
try to provide movement evaluation in order to give a feedback
about the correct execution of the gesture performance. In lit-
erature, it is possible to find the two most important human
motion assessment approaches [17]: rule- and template-based.
While in the rule-based approach [17]–[20], experts (e.g.,
medical staff) identify some motion descriptors (e.g., angles,
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joint position, relative distance, velocity), which define the
“motion sample”, in the template-based approach [12], [13],
[21]–[29], the motion sequence is recorded a priori, and then
used as an exemplar to be compared with the observations,
through action similarity approaches or using machine learning
methodologies, which allow it to be easily generalized to
different types of exercise. Machine learning based methodolo-
gies require a huge amount of data in order to learn the correct
motion sequence as well as all the possible errors. The algo-
rithm should be able to generalize across different subjects,
pathologies or sets of exercises. Accordingly, template-based
approaches require a completely supervised setting, where the
training data are composed of examples of the input vectors
along with their corresponding output (i.e., score for the per-
formance of the exercise). To the best of the authors’ knowl-
edge, very few datasets [30] overcome the costs associated
with the labeling process, providing this target information
annotated by clinicians. In this scenario, the current paper
contributes to the creation of a freely available dataset, named
KIMORE (KInematic assessment of MOvement for remote
monitoring of physical REhabilitation), composed of rehabili-
tation exercises, collected by the Microsoft Kinect v2 sensor,
with both healthy and disabled subjects. The dataset consists
of three synchronized data typologies, which include RGB,
Depth videos, skeleton positions and orientations in the format
produced by the skeleton tracking system. Skeleton data
(i.e., trajectory position and orientation of virtual joints), are
computed through video streams, using the algorithm proposed
by [31]. The validation of these virtual joint angles has been
the topic of several studies [32], [33] which highlight an high
level of agreement between the Kinect-based motion capture
system (i.e., skeleton tracking algorithm) and the ground truth
system (i.e., stereophotogrammetric system) when tracking
joints displacement. More importantly, the findings behind
these studies suggest that the Kinect-based motion capture
system may be a viable alternative to professional three-
dimensional systems for certain applications [33].

Two physicians, specialized in Physical and Rehabilita-
tion Medicine, selected five exercises usually adopted in
rehabilitation programs for low back pain [34], [35], for a
study aimed at carrying out exercise assessment in a visual
markerless scenario [36], [37]. The dataset can be categorized
according to the definition introduced in [38], as a single view
action/activity, where each action, performed by one actor at
a time, is captured from a single specific viewpoint, to distin-
guish it from multi-view action/activity datasets [38] and from
human-human interaction/multi-person activity datasets [38].
Together with the raw data, clinically relevant motion features,
suggested by physicians and validated with respect to a
stereophotogrammetric system [32], [37], are provided in the
dataset. These features and the relative identified trajectories
can be used to study the task and subsequently to test and
compare rule- and template- based approaches for physical
exercises assessment [36], [37]. Moreover, the clinical evalua-
tion, based on a standard questionnaire designed by physicians,
is reported with the references for the validation. KIMORE
provides a score which is useful for (i) properly designing the
template-based algorithm for movement assessment and (ii)

measuring the performance of the proposed approaches with
respect to the clinical ground truth evaluation. Taking into
account this aspect and considering the recent interruption of
Kinect on the market, our work aims to provide a dataset
which:

• includes RGB, depth and skeleton joints positions and
orientations. The dataset also comprises clinical features,
which are invariant among people and selected on the
basis of the scope of the exercise (see [37], for more
detail [18]) as well as the Matlab code to compute it;

• can be easily generalizable to different domains (i.e.,
no visual tracking sensors) which involve not only the
validated clinical features. In particular, although Kinect
produces a stream of body segment orientations, these
measurements must be numerically manipulated to yield
clinically relevant kinematic data [33].

The paper is organized as follows. A comparison with
other studies and datasets is provided in subsection I-A. The
population involved, the exercises description, the relative
feature extraction, the clinical assessment, with a description
of the questionnaire and how the data are organized in the
dataset are introduced in Section II. Section III presents the
results related to the statistical analysis of the scores obtained,
through both the clinical and the Kinect-based assessment.
Finally, the discussion and conclusions are presented in
Sections IV and V.

A. Related Works

Many data-driven approaches are based on relatively large
training data. Thus, recently there has been an increased
interest in collecting datasets in various application domains
ranging from brain computer interfaces [39]–[41] to dietary
monitoring and food recognition [42] to predictive telediag-
nosis and telemonitoring [43]. The existing datasets, related
to human motion data were created using RGB-D or similar
sensors as in [38] and [44] to facilitate the development
and the approach of new algorithms, using accurate depth
information or simply the RGB data. Generally, the data have
been compared with those collected by other kinds of sensors
like the inertial sensor in [45] to test multimodal approaches
and develop multimodal datasets [46], [47]. In particular,
the diffusion of the Kinect sensor and its accessibility, has
allowed the creation of different datasets on the basis of
gesture, primitive movements, action and activities as in [48]
and [49]. This sensor has also been used as a camera for moni-
toring emotions related to pain in a rehabilitation context [50].
The datasets, presented in [51] and [52], include different
activities: in the MADS dataset, complex poses, related to
Martial Arts, Dancing and Sports are available to test motion
tracking algorithms. In [53] and [54], the authors propose two
datasets, the ReadingAct and the RGBD-HuDaAct, for human
activity recognition using the Kinect sensor. In both papers,
feature extraction is performed considering the kinematics of
the movement and not the clinical aspects of the gesture
(task- vs clinical-oriented), defined only on the basis of the
scope of the movement and not with respect to clinically
relevant dynamics. The applications of RGB-D-based action
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TABLE I
COMPARISON BETWEEN KIMORE AND THE DATASETS PRESENTED IN LITERATURE, IN THE REHABILITATION CONTEXT. THE MAIN PHASES OF

DATA COLLECTION, FEATURE EXTRACTION, PREPROCESSING, DATA VALIDATION AND EXERCISE EVALUATION, ARE INCLUDED AND CONTRASTED

ACROSS THE DIFFERENT DATASETS. FURTHERMORE, THE TABLE REPORTS WHETHER THE DATASET IS PUBLISHED AND AVAILABLE FREE OF

CHARGE. THE INFORMATION ABOUT THE ENROLLED POPULATION AND THE TYPE OF DATA ACQUIRED, RGB, DEPTH (D), JOINT POSITIONS (JP)
AND JOINT ORIENTATIONS (JO), COMPLETES THE DESCRIPTION OF THE PROPOSED DATASET

datasets, in the literature, are limited for different reasons: the
type and dimension of the analyzed population, the validation
and preprocessing (see Table I), and the restricted types of
exercises and motor tasks included in each dataset. These
characteristics may reduce the dataset applicability [38].

In the present work, the authors propose a comparison
of the KIMORE dataset with some of those available in
literature, focused on the rehabilitation context. In detail,
Table I summarizes the characteristics of the proposed dataset
with respect to the others cited [30], [55]–[58] that compile
rehabilitation exercises, with the exception of the dataset
in [57] that presents the movement assessment of standardized
tests selected by clinicians. The authors identified the most
salient factors, described in Table I and chosen according
to those discussed in [38] (i.e., dataset size, applicability,
evaluation protocols) in order to measure and compare the
reliability of the proposed dataset with respect to other works.
All the steps in Table I were previously carried out with
the proposed KIMORE dataset in [18], [32], [36], and [37]s.
Differently from the other datasets, KIMORE provides the
two main data modalities (i.e., RGB and Depth). This aspect
opens up a whole range of possibilities for testing several
computer vision approaches which are not directly based on
clinical features and Kinect skeleton tracking. For instance,
open frameworks, such as OpenPose [59], may be used to
obtain virtual skeleton joints directly from RGB data.

With respect to the enrolled population, the analyzed
datasets, coming from the literature, included smaller samples,
ranging from a minimum of 5 subjects, as in [30], to a
maximum of 54 in [57] with a prevalence of healthy subjects
and a limited age range; conversely, in the proposed dataset,
the number of people involved in the study, 78, is larger than
in other works [30], [55]–[58] and the subjects display a wider
range of age and health/disability conditions.

Note that, almost all the reported datasets are accessible
and published, except for the one proposed in [30], which was
developed with the sole purpose to allow physiotherapists and
patients to test the prototype of the telerehabilitation system.

It is worth bearing in mind that the proposed dataset has been
validated in [32] and that the preprocessing step described here
is not reported in the presentation of other available works;
they do not present data or specific information related to pre-
processing.

Although the aim of many papers showing a dataset is to
obtain an evaluation of the subject’s movement, only a few
of them present a feature extraction method [30], [56], [57]
to provide performance assessment. Differently from the
approach introduced in this study, Negin et al. [56] and
Leightley et al. [57] proposed a feature selection based on
a decision forest [56] and a k-means clustering [57]. Feature
extraction, encapsulating prior clinical knowledge related to
the objective and kinematic constraints of physical exercises,
is chosen by these authors to obtain salient motion features for
movement assessment, while all the works introduce a direct
exercise evaluation through the different machine learning
methods adopted (i.e., support vector machine, artificial neural
networks).

In the cited survey [52], the authors observed that size,
applicability, feasibility of ground truth labels and evaluation
protocols are lacking in the available literature on RGB-D-
based datasets, notwithstanding the importance of providing
a reliable tool for motion analysis supporting rehabilitation,
as emerged from preliminary reports [60]. They showed that
detection supported exercise therapy produced similar or even
better enhanced clinical outcomes compared to conventional
exercise therapy [61]. From this perspective, only the pro-
posed KIMORE dataset includes annotations made by expert
clinicians, of the same exercises performed by the differ-
ent enrolled subjects,through the compilation of a designed
questionnaire which is reported in Section II-F and published
in [18]. Moreover, the assessment is not only related to all
the exercises, but the total score is obtained by averaging the
local scores, related to the primary outcome, and the kinematic
constraints described for each exercise. The contribution of
a medical staff, to describe the features and to evaluate the
performance, is not introduced in any other work.
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Fig. 1. The 5 rehabilitation Exercises: PO and CF features extraction. (a) Exercises. (b) POs extracted. (c) CFs extracted.

II. MATERIALS AND METHODS

A. Population

The authors enrolled 44 healthy subjects, with no history
of neurological or musculoskeletal problems and no recent
traumas. The average age was 35 years (mean (SD) = 36.7
(16.8) years) and 15 subjects were females. The healthy
subjects contributed to defining the normative data of the
dataset and constituted the Control Group (CG). Within this
group, 12 subjects were physiotherapists and experts in the

rehabilitation of back pain and postural disorders CG-E, while
the remaining 32 were non-expert healthy subjects CG-NE.

In addition to the healthy group, 34 other subjects were also
enrolled. They were suffering from chronic motor disabilities
due to different pathologies affecting posture and causing back
pain (stroke (n= 10), Parkinson’s disease (n= 16), back pain
due to spondylosis (n = 8)). The whole Group with Pain
and Postural disorders (GPP) was 60 years old on average
(mean (SD)= 60.44 (14.2) years) and was constituted by
19 women and 15 men. No subject in the GPP was in an
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acute phase of illness; patients were consecutively enrolled at
a neurorehabilitation facility during follow-up visits.

All the enrolled subjects performed the experimental proto-
col and signed informed consent for data publication. Among
them, 8 subjects of CG and 15 of GPP did not allow the
publication of either RGB or depth videos while the related
kinematic data are present in the KIMORE dataset.

The study conformed to the Helsinki protocol for clinical
trials and was approved by the local ethics committee at the
University Hospital in Ancona.

B. Data Collection: Kinect v2

A RGB-D camera allows a 3D structure of the scene
to be computed, with good invariance against illumination
changes, color and texture. In order to collect the dataset,
a Microsoft Kinect v2 was adopted as a RGB-D vision sensor.
The Microsoft for Windows v2 sensor uses a novel Time-
of-Flight (ToF) technology while the previous sensor (Kinect
v1) belongs to the category of Structured Light (SL) cameras.
Compared with cameras based on SL technology, ToF cameras
have a longer range and the images appear to be more accurate
without holes in the depth map [62]. The depth map reflects
the round-trip time of flight for single laser pulses.

Compared with the previous version, Kinect v2 provides a
higher depth map resolution (512×424 vs 320×240), allowing
thin objects to be recognized and solving some ambiguity
problems. Moreover, Kinect v2 is an inexpensive, unobtrusive
and easy to set up sensor that can be used both in home
and clinical environments to monitor subjects during physical
rehabilitation. The depth features allow the recognition of
different subjects and different body parts in the field of view,
while the increase in resolution permits the identification of
the 3D points of 25 distinct body parts at 30fps. Compared
with the previous version, a bio-correction allows each joint
to be mapped consistently with an anatomic reference.

C. Preprocessing

In order to filter temporary spikes, a filtering-stage is
proposed for the position and orientation of skeleton joints:
a 3rd order low-pass Butterworth filter is applied to all the
features extracted from the recorded raw data. The cutoff
frequency is set at 1Hz according to the residual analysis as
described in [63].

D. Exercise Description and Features Extraction

Clinicians selected 5 exercises widely used and clini-
cally recognized for low back pain physiotherapy, provid-
ing dynamic dorsal and lumbar stabilization and improving
balance in the elderly [64]. The first (Exercise 1) involves
the active movement of the upper limbs stretching the trunk
muscles, three (Exercises 2 − 4) involve active movements of
the trunk, one for each of the three space planes, and the last
(Exercise 5) involves active movements of the lower limbs.
For each exercise, the clinicians specified the primary goals
defined as Primary Outcomes (POs), and some constraints,
named Control Factors (CFs), in order to map the exercise

objectives into kinematic parameters extracted by the 3D joint
trajectories. From the absolute quaternion configuration of
the Kinect-based motion capture system, it is possible to
retrieve the relative quaternions, defined with respect to their
parent segment quaternion. This process can be performed
following the parent/child multiplications along the quaternion
body chain [33]. Subsequently, the conversion of the rela-
tive quaternions into Euler angles leads to the derivation of
meaningful joint angles (notice that this procedure may lead
to the problem of gimbal lock [33]). Goals (POs) and con-
straints (CFs) became descriptors of the movement, in terms of
body segments, distances between anatomical landmarks, and
relative angles. Specifically, POs are the target descriptors that
change in order to reach the exercise goal (e.g., the maximum
range of motion of the upper limbs during their lifting on the
frontal plane as for Exercise 3 and the maximum knee flexion
on the sagittal plane as in Exercise 5). On the contrary, CFs
represent physical constraints which have to be maintained
during the exercise (e.g., correct trunk alignment along the
sagittal, frontal and transversal plane as in Exercise 2 or
stability and complete elbow extension during Exercise 1).
In general, correct body alignment during motion is a funda-
mental requirement for minimizing exercise side effects (pain
and muscle contractures) and maximizing the muscle force
output during movement. CFs are time series, scalar values
that change respect to the time during the exercise execution,
while POs are vectors with the same number of elements as the
repetitions number and refer to the maximum and minimum
of the signal. Both CFs and POs can be considered as vector
time series because they are time ordered.

In particular, the reliability and the clinical relevance of
these features were explored and confirmed in our recent
works [32], [37] by: (i) comparing and validating the clinical
features extracted by the Kinect-based motion capture sys-
tem, and the same features obtained by the stereophotogram-
metric system [32], (ii) providing a functional monitoring
of these clinical features during exercise execution which
disclosed a high level of agreement with respect to clinical
judgment [36], [37].

A brief description of each exercise and a related graphical
scheme of POs and CFs are reported in Figure 1:

• Exercise 1: Lifting of the arms. The subject holds a bar
with both hands and with arms extended along the body,
slightly apart. He/she has to raise the arms above the
head, keeping the elbows in extension in order to stretch
the trunk muscles. The feet must always be on the ground,
slightly apart, with the knees slightly flexed. The subject
must avoid anterior or posterior pelvic tilt.
Extracted Features: angles between right/left arm and
upper torso in the sagittal plane (αl/r ) represent the POs.
Elbow extension angles (γl/r ), knee extension angles
(φl/r ), hip angles (ψl/r ), torso area (At ), hands distance
(dh), ankle distance (da) are the CFs to be considered.

• Exercise 2: Lateral tilt of the trunk with the arms in
extension. The subject has to raise his/her arms above the
head with the elbows completely extended and holding
a bar with both hands (starting position). He/she then
has to tilt the trunk slowly first to the left and then to
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the right, keeping it exactly on the frontal plane. After
each tilt, the subject returns to the starting position. The
movement must be performed so as to avoid bending the
trunk backwards or forwards. The feet must always be on
the ground, slightly apart, with the knees slightly flexed.
Extracted Features: right and left angles between the
anatomical segment defined by the hip and shoulder
and the vertical axis (βl/r ) in the frontal plane (x, y)
are defined as POs, while elbow extension (γl/r ), knee
extension angles (φl/r ), hip angles (ψl/r ), hand distance
(dh), shoulder distance (ds), hip distance (dhip) and the
vertical distance between the wrists and the shoulders
(hl/r ) and the transverse plane coordinates of the hip
(zhl/r , Xhl/r ) normalized to zero mean, are the CFs.

• Exercise 3: Trunk rotation. The subject holds the arms
parallel, at an angle of ninety degrees with respect to
the torso (arms aligned with the shoulders) with the
elbows completely extended (starting position). He/she
then rotates the torso slowly first to the left and afterwards
to the right. After rotation to the right, the subject returns
to the starting position. During the exercise, the body
must be kept well aligned, avoiding bending the trunk
backwards or forwards. The feet must always be on the
ground, slightly apart, with the knees slightly flexed.
Extracted Features: PO is the horizontal distance
between the elbows (dx), normalized with respect to the
maximum variation. The elbow extension angle (γl/r ),
shoulder extension angles (ηl/r ), knee extension angles
(φl/r ), hip angles (ψl/r ), shoulder distance (ds), hip
distance (dh) the distance between the wrists and the
shoulders (hl/r ) and the depth coordinates of the hip
(zhl/r ) normalized to zero mean, are the CFs.

• Exercise 4: Pelvis rotations on the transverse plane. The
subject has to stand still with feet slightly apart. Without
moving the feet, he/she makes a circular rotation with
the pelvis, first in clockwise and then, in the counter
clockwise direction.
Extracted Features: POs are given by the spine base
trajectories, normalized to zero mean, in the transverse
plane (x, z), to ensure that the subject’s position is
independent from the sensor. The shoulder distance (ds),
hip distance (dh), elbow extension (γl/r ), knee extension
angles (φl/r ) and the depth coordinates of the shoulders
(zsl/r ) normalized to zero mean, are the CFs.

• Exercise 5: Squatting. The subject holds the arms,
aligned with the shoulders, at 90◦ with respect to the trunk
with the elbow completely extended (starting position).
He/she has to flex the knees up to 60◦/70◦ and then return
to the starting position. During the exercise, the body has
to be kept well aligned in the sagittal plane so as to avoid
bending the trunk backwards or forwards.
Extracted Features: the right and left knee angles in the
sagittal plane (θl/r ) are POs. Hand distance (dh), shoulder
distance (ds), hip distance (dhip), knee distance (dk),
ankle distance (da), torso area (At ), distance between
hand and shoulder (dsl/r ) and the transverse plane coor-
dinates of the shoulder (zsl/r , xsl/r ) normalized to zero
mean, are the CFs.

Fig. 2. Clinical assessment questionnaire.

Subjects were asked to repeat each exercise consecutively
5 times and they were positioned at a distance of 3 meters in
front of the Kinect sensor, so that distances and angles were
calculated in the frontal and sagittal plane, respectively. Each
exercise started with the subject in the upright posture with the
legs slightly apart. The sequence of the exercises was random.

E. Clinical Assessment

Clinicians, experts in musculoskeletal and neurological dis-
orders (M.C. and M.G.C.), assessed each exercise proposed.
They observed videos and compiled the 10-item Likert ques-
tionnaire presented in [37], called the Exercise Accuracy
Assessment Questionnaire (EAAQ) as reported in Figure 2.
This questionnaire was created to quantify the clinicians’
judgment as regards the accuracy of the subjects while per-
forming a motor exercise. The first three questions investigated
accuracy with respect to the exercises’ primary objectives (i.e.,
extension of the upper limbs, trunk rotation with upper limbs
elevated to 90◦, squatting, etc.), whereas the last seven items
controlled the posture of seven body segments (head/neck,
trunk, arms, pelvis and legs), that subjects have to maintain
during the exercise. The tool provides three scores: the clinical
Total Score (cTS), that is the sum of the ten identified scores;
the clinical Primary Outcome (cPO) score, that is the sum of
the scores of the first three questions; and, finally, the clinical
Control Factors (cCF) as the sum of the last seven items (about
postural performance).

F. Data Description

The dataset description is shown in Figure 3. The enrolled
population is presented and split into the two previously
defined macro-groups: the Control Group (CG) and the group
of people with Pain and Posture disorders (GPP). The CG is
subdivided into two subgroups with (CG-E) or without (CG-
NE) expertise in physiotherapy exercises, while the GPP is
divided into 3 sub-groups according to the diagnosis: Stroke
(GPP-S), Parkinson’s disease (GPP-P) and Low Back Pain
(GPP-B). In each group, the subjects have their own folder
with all the exercises performed. For each of the 5 exercises,
the authors provided 3 sub-folders related to the Raw data,
the Script and the Label as follows:
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Fig. 3. Schematic description of data presentation in the proposed dataset structure.

• the Raw folder includes raw data acquired directly from
the Kinect v2 sensor that are related to the RGB video,
depth video, the joint positions and orientations, and
the time stamp with the acquisition times. Respec-
tively, the files available in this folder are (depthD-
DMMYY_XXXXXX), (JointPositionDDMMYY_XXXXXX),
(JointOrientationDDMMYY_XXXXXX) and (TimeStam-
pDDMMYY_XXXXXX), where DDMMYY refers to the
acquisition date and XXXXXX are associated numbers for
each recording;

• the Script folder includes the code related to the imple-
mented functions, in particular the features extraction step
and the pre-processing of data, both called back in the
main function. The code for data filtering is also available
in this folder. The related files are feat_extract_ExX,
preproc_ExX, main_ExX, and filtering;

• the Label folder includes two files: ClinicalAssess-
ment_X_IDx, related to the clinical scores assigned by
clinicians, including both total and local scores, and
SuppInfo_X_IDx that provides information about sex, age,
diseases and other supplementary information that might
affect the subject.

RGB data will be made available on explicit request to the
corresponding author and after signing an End User License
Agreement (EULA document).

III. RESULTS

The clinical impact and the reliability of the KIMORE
dataset were measured by (i) validating the accuracy of
the recorded data with respect to a gold-standard system,
(ii) testing the clinical validity of the questionnaire and

(iii) demonstrating how this dataset has potential to be used to
build a template/rule-based model for evaluating the patient’s
performance during rehabilitation. In particular, we provide
evidence of how the KIMORE dataset can be used to train,
validate and test human motion assessment approaches.

A. Validation of the Dataset

The validation of the dataset was performed according to
our published study [32] considering two of four recorded
exercises involving the upper body (i.e., Exercises 1 and 2)
and one involving the lower body (i.e., Exercise 5). The
accuracy of the Kinect motion capture was measured in
terms of spatial and temporal accuracy with respect to the
gold standard, represented by a stereophotogrammetric system
(ELITE, BTSEngineering, Milano), characterized by 6 infrared
cameras. In particular, the validation study is provided by
analyzing (i) raw data provided directly by Kinect skeleton
tracking (i.e., joint displacement), (ii) the POs and (iii) the
temporal difference between the POs computed by Kinect
and the gold-standard system. The results of the experimental
validation [32] provide evidence of the consistency of features
extracted by Kinect motion capture data, with respect to the
gold standard motion capture. The analysis of raw data was
performed considering the displacement between the elbow
joints for Exercise 1 and Exercise 2 and the displacement
between the ankle joints for Exercise 5. This analysis demon-
strates how Kinect v2 follows the trend of the gold standard.
However, there is a static offset for the same joint (i.e., 8cm
and 3cm for elbow and ankle joints) which could be easily
removed in order to track the performance of the patient over
time.
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Fig. 4. Legend: CG-E = Control Group- Experts; CG-NE= Control Group-Non-Experts; GPP X Group of people with Pain and Postural disorders;
TS Ex 1-5 = clinical Total Score Exercises 1-5: PO Ex 1-5 = clinical Primary Outcome Exercises 1-5; CF Ex1-5 = clinical Control Factors
Exercises 1-5.

The Microsoft Kinect sensor seems to be more reliable for
tracking POs in the motor task involving the upper limbs (i.e.,
Exercise 1: maximum relative error = 12.1%) with respect to
the task involving the lower body (i.e., Exercise 3: maximum
relative error = 26.3%). However, during maximum knee
flexion in Exercise 5 there is a systematic bias between the two
measurements: some main Kinect joints used for computing
the POs of Exercise 5 can be occluded. On the other hand for
the exercises involving the upper body (e.g., Exercise 1) the
larger measurement volume can increase error variability (up
to 9.5◦). For Exercise 2 there is a vertical symmetry across
the frontal plane: the error is comparable during left and right
oscillation (i.e., relative error = 12% and 12.7% respectively).

The temporal accuracy results confirm how Kinect v2 could
accurately measure the timing characteristic of exercises (max-
imum absolute latency 0.03 ± 0.113 sec).

The performed comparison is shown in greater detail in
Appendix A (see Table IV).

B. Clinical Questionnaire Validation

Questionnaire validity was tested on normal and patho-
logical subjects where it proved to be able to distinguish
between healthy and disabled people [36], while the inter-
rater reliability was checked, comparing the judgments of three
clinicians (one physician and two physiotherapists) applying
Cohen’s Kappa test which reached a K-value > 0.8 [37].

Figure 4 shows the box plot of the EAAQ scores as well as
the mean, standard deviation and standard errors of the three
groups (CG-E, CG-NE and GPP) for the five exercises.

The differences between groups were analyzed applying
the Kruskall Wallis test and the results are detailed in
Table II: the clinical total score of the GPP was significantly
lower than the CG, where the highest scores were achieved
by the experts. Since it is also important to prove that
the questionnaire is able to distinguish patients from people
without any expertise in physiotherapy exercises, a direct com-
parison between GPP and CG-NE was carried out applying
the Mann-Whitney U test. The three clinical scores, i.e. cTS,

TABLE II
COMPARISON BETWEEN GROUPS (CG-E VS CG-NE VS GPP)

OBTAINED WITH THE KRUSKALL WALLIS TEST. THE H AND

THE P VALUE ARE REPORTED FOR EACH EXERCISE

AND FOR CTS, CPO AND CCF

cPO and cCF, differed significantly between the two groups
for each of the five exercises: in fact, the comparison reached
a Z score > 4.00 and a p value < .0001 in all cases except
for cCF for Exercise 5 (Z = −3.1 and p = .002), cPO for
Exercise 4 (Z = −3.6 and p = .0008) and cPO for Exercise 1
(Z = −3.9 and p = .0001), where, nonetheless, significant
differences between groups where highlighted. The figure also
shows that cPO and cCF of GPP subjects differ from those
of CG. These results highlighted, therefore, that a template-
based approach should be based on the movement performed
by experts in movement therapy.

C. The Usefulness of the Dataset in a Rehabilitation
Assessment Scenario

In the present paper, we tested, on a large population
(n = 78), the correlation of the EAAQ total score with respect
to the assessment performed through the instrumental rule-
based methodology proposed in [37] and the template-based
methodology proposed in [36]. A Spearman rank correlation
test [65] was applied for this scope and the analysis results
are displayed in Table II and Table III.

In addition, in Appendix B we have provided a full example
of how the dataset can be used to evaluate the performance
objectively using a rule- or template-based approach.
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TABLE III
CORRELATION ANALYSIS BETWEEN THE EAAQ AND THE SCORES

OBTAINED BY THE RULE AND TEMPLATE-BASED ALGORITHMS

APPLYING THE SPEARMAN CORRELATION: Z, p AND ρ VALUES ARE

REPORTED IN THE TABLE. THE SIGNIFICANCE, WAS SET AT .05 FOR

ALL CORRELATION COMPARISON. HENCE, N.S. INDICATES THAT THE

CORRELATION RESULT IS NOT STATISTICALLY SIGNIFICANT

IV. DISCUSSION

The paper presents the KIMORE dataset including 5 exer-
cises, which are widely used for posture and back pain
rehabilitation, collected using a RGB-D based skeleton track-
ing system, in a clinical outpatient scenario. The KIMORE
includes 78 subjects with (34) and without (44) neurological or
musculoskeletal disorders, affected by postural disturbances or
back pain. KIMORE is comprised of RGB, depth and 25 joint
positions and orientations. In addition, the total and local
scores, provided by the medical staff, according to the clinical
assessment questionnaire published in [37], are available for
each exercise.

The main contributions of the introduced KIMORE dataset
compared to the related literature are:

• the high number and heterogeneity of enrolled subjects
with respect to the literature;

• the organization of collected data in different groups on
the basis of diagnosis or expertise;

• the collaborative approach between engineers and clini-
cians in designing the experimental procedure;

• the identification by clinicians of two main groups of
features to monitor, defined as primary outcomes and
postural constraints;

• the accurate description of the main motor task features
together with a specific algorithm for their extraction,
available with the Matlab code.

• the annotation of the dataset carried out by two expert
clinicians according to a questionnaire validated in [37],
related to the achievement of the primary outcomes and
kinematic constraints of each exercise, is included.

• KIMORE reports core exercises useful in widespread
pathological conditions (i.e., back pain and postural dis-
turbances) [34], [35] providing a detailed dataset for
rehabilitation subjects of all ages and socioeconomic
status who seek health care [66]. Although the present
study was run at a hospital facility, in order to respond
to validation needs, the architecture was built to be easily
delivered at home.

All these aspects support the detailed description of the
proposed work by providing a method which is useful for
building telerehabilitation systems. The RGB-based telereha-
bilitation system has been demonstrated to support exercise
therapy, by showing similar or better effectiveness compared
to a conventional therapy [61]. Nevertheless, more research
is advocated to provide insight into motion analysis for

musculoskeletal rehabilitation, because of the low method-
ological quality of the reviewed studies.

The high number of enrolled subjects (total 78 subdivided
into 44 healthy and 34 with posture and pain disorders)
helps the generalization of the results. Data are organized
systematically: those related to the 34 subjects constituting the
GPP are organized in the dataset with respect to the pathology
(i.e., low back pain due to spondylosis, hemiparesis due to
cerebral stroke, Parkinson’s disease). The 44 healthy subjects
that make up the CG include both experts in physiotherapy
(i.e., physiotherapists and physiotherapy students) and people
without specific skills in the rehabilitation context.

As the authors highlighted in Section I-A and Table I,
the proposed dataset aims to fill a gap with respect to the
existing literature, promoting the integration and applicability
of rule/template-based models for assessing the performance
of rehabilitation programs.

A. The Impact of the KIMORE Dataset for Rehabilitation
Assessment

Human motion assessment based on Artificial Intelli-
gence (AI) can be divided into rule and template according to
the scientific literature [17]. Since both these methodologies
are powered by data, the main requirement for reliable design
and the consequent application of these algorithms is to have
a high-quality labeled training dataset. In this context the
KIMORE dataset provides, but is not limited, to the following
opportunities. It can be used to train a template-based approach
(i.e., supervised Machine Learning (ML) model). For example,
in [37] the Hidden Semi Markov Model was trained using only
the features of the best subjects (cTS) of the control group,
considered as an exemplar of the motion sequence. The instru-
mental score was computed measuring the likelihood of the
observation with respect to the trained model. In this scenario
the KIMORE dataset opens up a whole range of possibilities
which can be used to provide suitable data for training the
ML model. From the ML perspective, the trained model may
be designed so as to evaluate the subjects’ performance for
different exercises by generalizing across unseen subjects.

The rule-based approach can exploit the proposed dataset
by properly setting the rule parameters (i.e., objective and
tolerance value [37] or parameter of the membership function
for the fuzzy inference [67]) for each different exercise.
This process may be considered as the main core of the
collaborative design procedure described in [67].

KIMORE is highly dependent on the collaboration of
medical staff, in order to compile the “ground truth label”
regarding the accuracy of exercise performance, which is
the main gap with respect to the available RGB-D-based
action recognition datasets [38]. The medical staff contri-
bution concerns the definition of relevant clinical motion
features and a questionnaire designed/validated for exercise
performance assessment. The features are extrapolated by the
exercise description in terms of the movement and posture that
subjects have to adopt during the motor task performance,
while clinicians based their judgment on the available liter-
ature [34], [64]. The exercise description also provides the
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reference to fill in a questionnaire (i.e., EAAQ). The EAAQ
is a task-independent assessment tool, in which judgment is
based on the scope and kinematic characteristics of the motor
exercise. To the best of the authors’ knowledge, there are no
validated clinical tools in literature, to rate individual per-
formance of a therapeutic exercise, although physiotherapists
usually supervise patients and give them constant feedback
on how to optimize motor performance [68]. The question-
naire may be useful to monitor the exercise quantitatively,
to track the rehabilitation functional outcomes and to test and
compare different machine learning and rule-based method-
ologies. Monitoring how an exercise is performed promotes
the outcome and avoids possible side effects due to incorrect
postures or incomplete movements [61]. Moreover, giving
patients feedback during or after the exercise improves their
motor learning, thereby enhancing retention of new motor
skills [6]. The clinical questionnaire has proved to be able to
distinguish between the subgroups of subjects with appropriate
reliability [36], [37]. Furthermore, KIMORE presents data of
complex gestures while monitoring the whole body posture
to control factors that may influence exercise outcomes. This
novelty tries to reflect clinical scenarios, so as to correctly val-
idate the method and to increase its generalization. However,
the available data proposed are not limited to clinical features
and skeleton tracking trajectories. The authors provided the
main streams of RGB and depth so that the dataset can be
easily generalized for different computer vision tasks without
being strictly related to the defined clinical features and the
Kinect skeleton tracking algorithms. This aspect, together with
the high level of generalization of the clinical features and
joint orientation encourages the application of this dataset for
modeling, comparing and validating different rule/template-
based approaches in the physical rehabilitation scenario. The
feature extraction and the questionnaire may be generalized to
any exercise. The clinicians provided the cTS, the cPO score
and the cCF score in order to quantify the overall performance
of the subjects and to evaluate the achievement of the primary
objectives and the postural constraints, respectively. In this
context, the reliability of template/rule-based (instrumental)
approaches can be measured according to the correlation
between the clinical scores (i.e., cTS, cPO and cCF) and
scores provided by the instrumental approach for different
sets of exercises. As evidence of this concept, we performed
a non-linear correlation analysis between one template-based
algorithm proposed in [36], and one rule-based algorithm
introduced in [37] with respect to the ground-truth scores (see
Section III-C). In particular, the correlation, with respect to
the clinicians’ judgments, highlights a moderately significant
reliability of TS and PO scores computed by the rule-based
approach, while the CF scores are less accurate for assessing
postural features. However, the moderate correlation value
(around 0.4) shows how the solution of the rehabilitation
assessment task is not a trivial problem. In this scenario,
the rule-based and template-based approaches can prevail over
each other in order to better evaluate human movement. In fact
the template-based approach is better than the rule-based
approach for Exercises 2 and 3, while the rule-based approach
seems to be more accurate for Exercises 4 and 5. The low

performance of Exercise 5 for both methodologies can be
justified by some limitations of the RGB-D sensor, which is
also confirmed by the validation analysis (see Section III-A).
Dynamic movements may include different postures adverse to
the vision sensor characterized by joint occlusion [32]. In this
context, the skeletal tracking algorithm seems to ensure a
better accuracy in the motor task involving the upper limbs
(e.g., Exercises 1 and 2) with respect to the task involving
the lower body (Exercise 5). However, neither approach is
constantly able to capture the same components as detected
by a clinician who is monitoring the movement. Moreover,
the clinical assessment can also be affected by bias and errors
due to the discrete EAAQ scale (e.g., rarely vs sometimes vs
often) and to the visual inspection of a 3D human movement
performed through 2D video images. These elements and the
sample heterogeneity can affect the variability of the clinical
measurements (see Figure 4).

V. CONCLUSIONS

KIMORE may be useful for building a remote rehabilitation
system for low back pain therapy and posture disability,
to meet both health care and patients’ needs for the continuity
and sustainability of health care services for chronic disabil-
ities. Future works are warranted to study a greater sample
of exercises and subjects so that, even if bigger than other
datasets, KIMORE may be augmented in order to model the
high variability of human movement. In this study, the selected
exercises were chosen on the basis of their reproducibility in
front of the Kinect sensor. Other types of exercises that present
a partial or total occlusion of the tracked joints involved in the
movement should be explored in order to measure the accuracy
of the sensor.

APPENDIX A
VALIDATION OF THE DATASET

Table IV shows the results of the KIMORE validation with
respect to the gold standard stereophotogrammetric system.
For more detail, please refer to the published paper [32].

APPENDIX B
THE USEFULNESS OF THE DATASET IN A

REHABILITATION ASSESSMENT SCENARIO

An example of how the dataset can be used for rehabilitation
assessment is reported below. We have applied our rule-
and template-based approaches published respectively in [37]
and [36], exploiting the potential of the presented KIMORE
dataset, and the physical exercise assessment was performed
according to these methodologies. As regards the rule-based
approach, we set the rule parameters (i.e., objective and
tolerance value) according to the value of the CG subjects.
On the contrary, the Hidden Semi-Markov Model (HSMM)
was applied to evaluate body motion during a rehabilitation
training program. The training of the HSMM was carried out
using only the features of a subset of CG who achieved the
highest cTS. The chosen features are collected and available
within the KIMORE dataset (i.e., PO and CF described in
Section II-C). Both the approaches considered are able to
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Fig. 5. PO (αL) of C_ID1 (a) and P_ID26 (b) for Exercise 1. The relative PO scores (c) and (d) were computed for each repetition according to the
rule- [37] and template-based approach [36].

Fig. 6. CF (γL) of C_ID1 (a) and P_ID26 (b) for Exercise 1. The relative CF scores (c) and (d) were computed for each time stamp according to the
rule- [37] and template-based approach [36].

provide disaggregated and total scores. Since the PO aims to
evaluate the achievement of the maximum and minimum target
angle/position, the PO related scores are generally computed
for each repetition of the considered exercise. Figure 5 shows

the PO scores (relative to αL ) computed for each repetition of
Exercise 1 for C_I D1 and P_I D26.

On the contrary the CF describes a constraint achievement
over time (e.g., subjects have to keep the elbow extended to
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TABLE IV
COMPARISON BETWEEN KINECT AND THE GOLD STANDARD

STEREOPHOTOGRAMMETRIC SYSTEM

Fig. 7. Overall PO (αL), CF (γL) and total scores for C_ID1 and P_ID26
during Exercise 1.

about 180◦ over time for Exercise 1). Thus the CF scores were
extracted for each timestamp. Figure 6 shows the CF scores
related to αL during Exercise 1 for C_I D1 and P_I D26.

The overall PO (αL ), CF (γL) and total scores are reported
in Figure 7 for Exercise 1.

The total score, computed according to the rule- and
template-based approach, is respectively 84 and 87 for C_I D1
and 34 and 43 for P_I D26. These scores are in line with the
clinical questionnaire which indicates a cTS of 98 for C_I D1
and a cTS of 34 for P_I D26. In addition to the total score,
the authors provide disaggregated scores for the PO and CF
features involved that allow the clinician to localize the error
in the exercise movement execution. The reliability of the rule-
and template- based approach is not limited to measuring the
correlation between the cTS and the computed total score. The
computed PO and CF scores can be compared with respect to
the cPO and cCF (see Section III-C for more details on this
performed comparison).
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