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Abstract 

Sedentarism has a negative impact on health, life expectancy 

and quality of life, especially in older adults. The assessment 

of functional fitness helps evaluating the effects of ageing and 

sedentarism, and this assessment is typically done through 

validated battery tests such as the Senior Fitness Test (SFT). 

In this paper we present a computer-based system for 

assisting and automating SFT administration and scoring in 

the elderly population. Our system assesses lower body 

strength, agility and dynamic balance, and aerobic endurance 

making use of a depth sensor for body tracking and multiple 

gesture detectors for the evaluation of movement execution. 

The system was developed and trained with optimal data 

collected in laboratory conditions and its performance was 

evaluated in a real environment with 22 elderly end-users, and 

compared to traditional SFT administered by an expert. 

Results show a high accuracy of our system in identifying 

movement patterns (>95%) and consistency with the 

traditional fitness assessment method. Our results suggest that 

this technology is a viable low cost option to assist in the 

fitness assessment of elderly that could be deployed for at 

home use in the context of fitness programs. 

1 Introduction 

According to current projections, nearly one third of 

European citizens will be aged 65 or over by 2060 [1]. In 

addition to these demographic changes, sedentarism is the 4th 

main factor in worldwide mortality, being associated with 21-

25% of breast and colon cancer cases, 27% of diabetes, and 

30% of ischemic strokes [2]. The combination of ageing with 

sedentary behaviours is a growing concern, and is putting a 

high strain on modern societies and their health systems. 

There is strong scientific evidence that regular (moderate-to-

vigorous intensity) physical activity produces major and 

extensive health benefits in adults, particularly in older adults 

(aged 65 and above), as they suffer more frequently the 

consequences of inactivity [3]. 

In older adults, the assessment of multiple dimensions of 

physical function is commonly done using Senior Fitness 

Tests (SFT) [4]. These tests assess several physical 

parameters such as muscle strength, agility and dynamic 

balance, and aerobic endurance. Parameters that have high 

impact on people’s ability to live independently which 

according to Fleg et al.  “is dependent largely on the 

maintenance of sufficient aerobic capacity and strength to 

perform daily activities” [5]. The administration of SFT 

requires very specific training and elevated levels of 

concentration by a single test administrator who needs to 

simultaneously guide elderly through the tests, evaluate the 

quality of their movements, keep test scores and ensure 

safety. 

Recent advances in information and communication 

technologies (ICT), specifically in the area of affordable and 

reliable motion tracking technology based on depth sensors, 

create new opportunities in the field of kinematic based 

assessment such as SFT. These systems can now be adapted 

to assess the quality of movement execution and measure task 

performance in a non-invasive manner. Such an approach 

does not only reduce the workload from the health and fitness 

professionals, but it also allows administration by non-experts 

and increases the accuracy of the results. Hence, movement 

kinematics and their quality can be quantified in an objective 

and reliable manner through machine based metrics. In this 

work we present a system for the automated administration of 

SFT that uses a Kinect V2 sensor for body tracking and 

gesture detectors to evaluate lower body strength, agility and 

dynamic balance, and aerobic endurance. 

2 Related Work 

In human body motion tracking, the most relevant sensing 

technologies are: marker-based optical systems; inertial and 

magnetic systems; and marker-less infrared systems. 

Marker-based optical systems are the most precise with most 

of its usage being in motion capture applications, but the 

requirement of an elaborate and expensive multi-camera setup 

plus the use of markers distributed over the body makes them 

unpractical for domestic or low-cost applications. 

Motion sensing through inertial or magnetic systems uses 

accelerometers, gyroscopes and/or magnetometers attached to 

the body. These systems have the advantage of being able to 

work independently from an external setup. However, their 

main disadvantages are the presence of drift errors in the 

measurements and the fact that the sensors need to be “worn” 

by the user, which can be cumbersome or unpractical. These 

systems were used in [6], who developed a novel automatic 

tracking device for weight training and calisthenics. The 

system uses a 3 axis-accelerometer and 3 axis-gyroscope 

installed in an armband. It automatically segments periods of 



activity, recognizes the exercise and counts the repetitions, 

presenting high accuracy rates and both offline and online 

feedback. A different study compared the adhesion of elderly 

to a fall prevention program when it was done through 

wearable sensor exergames instead of the traditional 

instructional booklet approach; results suggested that 

adherence is improved in exergames through increased levels 

of engagement [7]. In [8] the authors presented the lessons 

learned from developing games for stroke rehabilitation using 

the Nintendo Wii™ inertial remote, and discussed what 

makes games playable, fun, challenging and useful from a 

therapeutically perspective. However, the body of research on 

the assessment of fitness indicators themselves is much more 

reduced than for exergames. One exception is the evaluation 

of standing balance using the Wii Balance Board [9][10]. 

Comparisons between Balance Board based exergames’ 

scores and fitness indicators [11] showed significant 

correlations between game scores and aerobic fitness. 

Marker-less infrared systems present the lowest cost 

alternatives. The adoption by Microsoft of this technology in 

their mass-produced motion controller Kinect has contributed 

to the widespread availability of such sensors. These specific 

devices are able to estimate human body poses by analysing 

the 3D depth information from a scene, also requiring 

minimal setup and no markers. The main disadvantage is the 

lower accuracy of the measurements when compared with the 

marker-based optical systems. Still, Kinect V1 is accurate 

enough to be used in rehabilitation [12], and improved 

accuracy has been shown for Kinect V2 [13]. These devices 

have been widely used in research, for example, for designing 

full-body interactions in exergaming for older-adults [14]; for 

motion tracking in gait evaluation [15],[16],[17]; as a 

guidance, correction and scoring prototype for shoulder 

abduction exercises [18]; for gesture detection associated with 

muscle and joint pain, common in older-adults [19]; or as a 

tool to assist in the medical diagnosis and monitoring of 

Parkinson’s disease through movement analysis [20].  

There is, however, limited work on the assistance or 

automation of SFT. To our knowledge, only one case has 

used such an approach [21], exploring the feasibility of a 

home-based solution through the combined use of a Kinect 

and inertial sensors to detect the correct performance of the 

SFTs. Hence, this gap in the application to fitness assessment 

in elderly combined with the recent release of higher 

resolution depth sensors (Kinect’s second generation sensor 

V2) which provide a more accurate estimation of 25 skeleton 

joints [13], offers new opportunities for innovation. 

3 Methods 

3.1 Fitness Tests 

The Senior Fitness Test (SFT) [4] is a valuable tool for 

evaluating and identifying risk factors, planning and assessing 

training programs, educating and setting goals, and 

motivating clients to be more active. The SFT is designed to 

be easy to administer by health and fitness professionals in 

common community settings without extensive time (20-30 

minutes), equipment or space requirements. In this study, we 

considered the following domains and subtests of the SFT: 

1- Lower body strength is an important aspect of muscular 

fitness with respect to health, namely, in retaining proficient 

functioning in most daily activities, especially with advancing 

age. It can be measured through the 30-second Chair-stand 

Test that consists on counting the number of times a 

participant can fully stand and sit from a chair, with the arms 

crossed, during a 30 seconds interval [4]. 

2- Aerobic endurance or Cardio-respiratory Fitness (CRF) is 

another key component of health-related fitness. Low levels 

of CRF have been associated with a markedly increased risk 

of premature death, while high levels are associated with 

higher levels of habitual physical activity, and consequently 

with many health benefits [22]. This fitness component is 

assessed with the 2-minute Step Test [4]. The test consists on 

having the participant step in place for 2 minutes, raising the 

knees up to a height marker placed halfway between the knee 

level and hip level. The number of times each knee reaches 

the target height is the score of the test. 

3- Agility (the ability to move the body and change direction 

quickly) and dynamic balance (maintaining postural stability 

while moving) are good predictors of recurrent falls and 

independent living [23]. It can be measured with the 8-foot 

Up-and-go Test [4]. In this test, starting from a seated 

position, the user stands on a “go” signal, walks 2.4 m, turns 

around, walks back to the chair and sits. The participant 

practices once and then performs two trials. The score is the 

fastest time to the nearest tenth of a second of the two trials. 

3.2 Setup 

Our system was developed using the Unity 3D game engine 

(Unity Technologies, San Francisco, USA) making use of 

Kinect’s V2 plugin for Unity, Kinect’s SDK and its API 

(Microsoft, Redmond, USA). The Kinect V2 – a RGB-Depth 

sensor capable of tracking 25 body joints, per person, of up to 

8 people simultaneously at a frequency of 30 Hz – was placed 

horizontally (no tilt angle) at a height of 0.74 m and facing a 

wall at 4.22 m distance (Figure 1). The Visual Gesture 

Builder from Kinect’s SDK, which uses AdaBoostTrigger and 

RFRProgress detection technologies, was used to train gesture 

detection databases. 
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Figure 1: Top view of Kinect’s V2 tracking area in green and 

chair and marker placement. 



3.3 Gesture Detection Based Assisted SFT 

In total, 5 gesture detectors were trained to compute the 

scores of the 3 SFT previously described, 2 discrete and 3 

continuous detectors, as follows: 

1. For the 30-second Chair-stand Test, 2 gesture detectors 

were trained: discrete detector of “arms crossed” to 

monitor the correct arms pose and the continuous progress 

“sit-stand” detector to trigger the counting of full stands.  

2. To measure the 2-minute Step Test score, 2 continuous 

“step” progress gesture detectors were used, 1 for each 

leg, to monitor and count the number of steps.  

3. The 8-foot Up-and-go Test timing was attained via the 

“sit” discrete detector acting as trigger to start and stop. 

3.3.1 Discrete Detectors 

The discrete gesture detectors use Adaptive Boosting 

(AdaBoost) [24] to construct a “strong” classifier as a linear 

combination of “weak” classifiers. The classifier output is a 

binary detection result of a gesture and its confidence level. 

For our system, two of these detectors were built:  

1. “Arms crossed” detector, trained (ignoring the lower 

body: knees, ankles and feet) with 12 videos of 3 different 

people. Totalling 34658 labelled frames (obtained at 30 

Hz) with a ratio of 1:1.132 positives to negatives; 

2. “Sit” detector, trained (ignoring the arms: elbows, wrists 

and hands) using 8 videos of 1 person. Totalling 21300 

labelled frames and ratio of 1:0.319 positives to negatives. 

3.3.2 Continuous Detectors 

Built with Random Forest Regression [25], the continuous 

detectors output is a continuous measure of progress 

according to a regression model constructed from training 

data. For our system, 3 continuous detectors were built:  

1. “Sit-stand” progress detector, trained (ignoring the arms) 

with 12 videos of 3 people. Totalling 36126 labelled 

example frames;  

2. Two “step” progress detectors (one for each leg), both 

trained (ignoring the arms) with 4 videos of 3 people. 

Totalling 10974 and 10976 labelled examples for left and 

right steps, respectively. 

3.3.3 Automated SFT Score Computation 

2-minute Step Test Automated Scoring: The system compares 

each step progress with two thresholds, one for detecting the 

knee raised to the target height, the other for detection of the 

foot on the ground. It requires the alternate triggering of 

right/left steps. Every time the right knee is detected above 

the top threshold and the opposite foot below the bottom 

threshold, the step count is incremented. From visual 

inspection of training data the detection thresholds were set to 

the regression values of afore mentioned situations, 

respectively 0.8 and 0.1. 

30-second Chair-stand Test Automated Scoring: The output 

of the “sit-stand” progress detector is compared against two 

thresholds, a bottom one representing the regression output of 

a seating pose, and a top one representing the output of a 

standing pose. Every time the detector outputs alternate from 

sit to stand, the stand count is incremented. For this test, two 

different sets of thresholds were established. The first, 0.25 

and 0.7, set according to the values given by the “sit-stand” 

detector when the subjects were considered to be on the limit 

of being correctly seated/standing (by SFT definition) using 

the training data. The second set, 0.584 and 0.8, was defined 

after the experiment using the evaluation by an expert as 

ground truth for what were considered valid sit/stand poses. 

8-foot Up-and-go Test: In this chronometry test, our system 

measures the time that a subject takes to get up, walk 2.4 m 

forth and back, and sit. With the user seated the timer starts 

counting as soon as the sit gesture is no longer detected (user 

got up from the chair), the system then tracks the subject 

waist and once it detects that the user walked at least 2.4 m 

forward a validity variable is activated. The timer is stopped 

when sitting is once again detected if the 2.4 m walk was 

considered valid. 

3.4 Participants 

This study included 22 volunteers (15 females), 65±5.6 years 

old, who gave their informed consent. Participants were 

recruited from a physical activity program in a senior centre 

in Funchal, Portugal. The inclusion criteria were: (1) to be a 

community-dwelling older adult, aged 60 to 85 years old; (2) 

being able to walk independently and autonomy to perform 

normal everyday activities; and (3) absence of reported 

medical problems considered contraindications to exercise. 

3.5 Experimental Protocol 

Participants answered demographic and fitness questionnaires 

prior to the experimental session. Subsequently, they 

executed the 3 previously described SFT in the following 

order: 30-second Chair-stand Test; 8-foot Up-and-go Test; 

and 2-minute Step Test. These were administered and scored 

in real-time as follows:  

- For the 30-second Chair stand test, a chair was placed 

against a wall facing the Kinect in the centre of its FOV. 

- The 2-minutes Step test was performed with the participant 

stepping in place centred in Kinect’s field of view at a 

distance of around 3 m from the sensor. 

- In the 8-foot Up-and-go test, a chair was placed as in the 30-

second Chair stand test. A cone was placed 2.4 m from the 

chair’s front edge. The administrator accompanied the 

participant by his/her side through the trial to ensure his/her 

safety but without getting between him/her and the sensor. 

In this study, to maximize the consistency of the assessment 

procedures, all the assessments were performed by the same 

trained fitness professional. 

3.6 Data Analysis 

Collected SFT score data consisted in 3 datasets: (1) 

“Traditional” – the standard assessment done by the 

professional live on site; (2) “Recordings” – a posterior 

assessment done by the same professional 5 weeks later by 

carefully replaying the Kinect recorded data (in a blinded and 

randomized fashion); and (3) “Automated” – the assessment 

done by our proposed system when replaying the Kinect 

recordings (emulated as real time data). Video data were 



tagged by the expert for positives (correct movement patterns) 

and negatives (incorrect movement patterns). These data were 

then compared, using Mathworks software MatLab R2013b, 

with the detection outputs from the automated system.  

A within-subjects design was used to compare the conditions. 

Normality of the distributions of differences was assessed 

using a Kolmogorov-Smirnov test. Because data deviated 

from normality, nonparametric statistical tests were used. For 

assessing the overall difference between assessments, a 

Friedman test was used on each dependent variable. For 

further pairwise comparisons, the Wilcoxon's T matched pairs 

signed ranks test was used. For all pairwise comparisons a 

Bonferroni correction was used to account for the number of 

comparisons. Additionally, the inter-rater reliability was 

measured via Intraclass Correlation. All statistical testing was 

done using IBM software SPSS Statistics 22. 

4 Results 

Here we present a comparative analysis, including the overall 

scoring performance metrics as well as a comparison between 

automated movement detection and expert tagged data. The 

later comparison resulted in the identification of correct 

detections (True Positives – TP), correct non-detections (True 

Negatives – TN), incorrect detections (False Positives – FP), 

and incorrect non-detections (False Negatives – FN). The TP 

and TN detection rates represent the ratio of correct 

detections to the respective total number of positives or 

negatives. FP and FN detection rates are the ratio of incorrect 

detections to the total number of both positives and negatives. 

4.1 30-second Chair-stand Test 

In the case of the 30-second Chair-stand Test, exceptionally, 

the system was tested with the 2 different sets of parameters. 

Here, “Laboratory trained system” refers to the thresholds 

obtained from laboratory training data and “Expert trained 

system” to the thresholds derived from the expert tagged 

experimental data, as explained in Subsection 3.3.3. 

The scores, assessed as number of repetitions, are presented 

in Table 1. The number of counted full stands did not differ 

across assessments (Traditional: 18; Recordings: 19; 

Laboratory Trained System: 18.5; Expert Trained System: 

19), χ2(3) = 5.723, p > .05. The Intraclass Correlation 

Coefficient, for absolute agreement definition, was  

ICC(3,1) = 0.858 and ICC(3,4) = 0.960, high values meaning 

that the different methods of measurement agree and are 

reliable between themselves. 

For gesture detection, the positive gestures were fully seated 

and fully standing. Negatives were all other gestures, 

including positives of the opposite detector, i.e. a positive sit 

is a negative stand and a positive stand is a negative sit. 

Results of detection rates for both the Laboratory Trained 

System and the Expert Trained System show a high detection 

performance, above 95% for the Laboratory Trained and 98% 

for the Expert Trained, with false detections never exceeding 

2% (Table 3). 

4.2 2-minute Step Test 

The next results encompass data from 21 (out of 22) subjects 

as one dataset was corrupted and excluded from the analysis. 

For this test, the number of counted complete steps differed 

significantly between methods used for counting (Traditional: 

97; Recordings: 101; Automated: 96), χ2(2) = 13.156, p < .05 

(Table 2). Interestingly, pairwise comparisons showed that 

the number of counted complete steps was significantly 

higher in the recordings than in the traditional measurements, 

p = 0.001, T = 8.50, effect size r = -0.498. However, no 

significant differences between the recordings and our 

automated system were found, p = 0.109, T = 15, r = -0.248, 

as well as between the traditional and the system method,  

p = 0.359, T = 64.50, r = -0.142. Average differences of about 

4 steps (3.9%) can be seen between assessment methods. 

Intraclass Correlation, for the absolute agreement definition, 

was measured at ICC(3,1) = 0.790 and ICC(3,3) = 0.919, 

indicating an agreement between the measuring methods. 

For individual detector performance, positive gestures 

consisted in the detection of knee elevation (one detector for 

each leg) up to the target height, and negatives all remaining 

cases. Step detection performance was above 95% with less 

than 2% false detections (Table 4). 

 2-minute Step Test (nr rep) 8-foot Up-and-go (all Trials) (s) 8-foot Up-and-go (Score) (s) 

Method Median Percentile 25 Percentile 75 Median Percentile 25 Percentile 75 Median Percentile 25 Percentile 75 

Recordings 101.00 91.50 116.50 4.70 4.13 5.10 4.65 4.08 5.03 

Traditional 97.00 88.50 112.50 4.80 4.20 5.10 4.75 4.15 5.00 

Automated 96.00 87.00 112.00 3.95 3.53 4.48 3.90 3.30 4.40 

Table 2: Descriptive statistics for the different assessment methods and different tests. 

 

Method Median Percentile 25 Percentile 75 

Recordings 19.00 15.75 24.00 

Traditional 18.00 16.00 21.00 

Lab. Trained Sys. 18.50 15.75 20.50 

Exp. Trained Sys. 19.00 15.75 23.25 

Table 1: 30-second Chair-stand Test scoring for the different 

assessment methods. 

  Lab. Trained Sys. Exp. Trained Sys. 

  True % False % True % False % 

Stand 
Positive 98.39 0.45 98.62 0.45 

Negative 95.16 0.78 98.90 0.67 

Sit 
Positive 95.98 0.45 99.55 0.45 

Negative 97.50 2.01 97.73 0.22 

Table 3: 30-second Chair-stand Test detection rates for both 

the Laboratory Trained and Expert Trained systems. 

 
Step  True % False % 

Right 
Positive 98.67 0.16 

Negative 95.85 0.66 

Left 
Positive 96.15 0.55 

Negative 97.60 1.90 

Table 4: 2-minute Step Test detection rates for the automated 

system. 



4.3 8-foot Up-and-go Test 

As explained in Section 3.1, the 8-foot Up-and-go Test 

requires the execution of two individual timed trials, where 

only the fastest is considered for the assessment. This enables 

us to analyse the results in two different ways. One where all 

the 44 timed trials for the 22 participants are considered. The 

second where only the fastest trial per subject is considered. 

4.3.1 All trials 
Measurements of execution time for each trial of the 8-foot 

Up-and-go Test differed significantly with the method used 

for timing (Traditional: 4.80; Recordings: 4.70; Automated: 

3.95), χ2(2) = 71.268, p < .05 (Table 2). The average 

differences between traditional and computer mediated 

assessment amount to approx. 0.7 sec., which represent a 15% 

difference. Time measured did not significantly differ 

between the traditional measurements in situ and the one 

performed by inspection of the recordings, p = 0.077,  

T = 173, r = -0.188. However, both “traditional” and 

“recording” were significantly higher than our system,  

p < 0.001, T = 0, r = -0.619, and p < 0.001, T = 0, r = -0.618 

respectively. The Intraclass Correlation for absolute 

agreement definition was ICC(3,1) = 0.661 and  

ICC(3,4) = 0.854, whereas using the consistency definition 

was ICC(3,1) = 0.957 and ICC(3,4) = 0.985. The low 

correlation values for the absolute agreement definition 

indicate that timing methods did not provide reliable absolute 

measures between themselves. However, very high values of 

Intraclass correlation according to the consistency definition 

indicate that the methods were precise, although inaccurate 

due to system’s delay. 

4.3.2 Fastest trial 

The fastest measured time for performing both trials (for each 

participant) of the 8-foot Up-and-go Test also differed 

significantly with the method used for timing  

(Traditional: 4.75 s; Recordings: 4.65 s; Automated: 3.90 s),  

χ2(2) = 35.877, p < .05 (Table 2). The measured time did not 

significantly differ between the traditional measurements in 

situ and the one performed by inspection of the recordings,  

p = 1.000, T = 60, r = 0. However, and consistent with the 

previous data, time was found significantly higher in both 

“recordings” and “traditional” methods than by our system, 

with p < 0.001, T = 0, r = -0.622 in both cases. Intraclass 

Correlation for the absolute agreement definition was 

ICC(3,1) = 0.674 and ICC(3,4) = 0.861, when calculated 

using the consistency definition was ICC(3,1) = 0.962 and 

ICC(3,4) = 0.987. Values are identical to the previous case. 

5 Discussion and Conclusions 

In this work, we developed and evaluated a low cost system 

to support health and fitness professionals in the assessment 

of physical function in the elder population, with the potential 

to be used autonomously at home by non-experts. Not many 

researchers have addressed this issue, particularly in real 

scenarios and with end users [21]. Here we presented a 

comparative study with 22 elderly community dwelling 

participants using 3 standard SFT performed in a real world 

scenario. The results confirmed that the proposed system can 

be used to score as accurately as an expert in 2 of the 3 tests. 

The 8-foot Up-and-go Test presented a systematic error, 

underestimating time due to our experimental setup. Our 

system would only measure the time to perform the actions, 

and not the reaction time to the instructions. Thus, this error 

would not exist if the go signal had been given by the system 

itself. Low Intraclass Correlation for the absolute agreement 

but very high consistency values support the possibility of a 

systematic delay. The overall performance of the system in 

gesture detection was very high, with TP and TN rates over 

95%. This individual gesture detection results are better (3-

6%) than what was presented in [19], and while the 

comparison is hard to make, for exercise repetition counting 

they are alike to what was presented in [6].  

In the case of the 30-second Chair stand Test we observed 

that despite very high rates for TP and TN with the 

Laboratory Trained System (~95%), results were further 

improved with the Expert Trained System (~99%). This 

sensitivity of score accuracy relative to the threshold values, 

confirmed by our data, shows the importance of using training 

data collected in realistic settings as opposed to laboratory 

conditions. This adaptation can be done by a large enough 

training sample in real scenarios (which is very demanding 

and time consuming) or alternatively by introducing a system 

calibration phase immediately before each individual subject 

assessment. The scores obtained for our system were not 

significantly different neither from the traditional assessment 

done in situ nor by inspecting the recordings. This was 

corroborated by a high Intraclass Correlation Coefficient 

(ICC(3,4) = 0.960) indicating a high absolute agreement. 

We identified a high rate of FN for the left step detector in the 

2-minute Step Test. The main contributor for this asymmetry 

was an occlusion introduced by a height marker the test 

administrator was using in front of the subjects’ left knee. A 

significant difference was found between the traditional 

assessment and that from the recordings. This could be 

attributed to the high attention levels this test requires from 

the administrator when performed live without a tally counter. 

For a test administrator, it is challenging to correctly evaluate 

every single step validity (at rates sometimes over 2Hz), 

count them mentally, and ensure safety of the participant, 

what further supports the need for a system such as the one 

proposed here. In fact, our system produced scores that did 

not differ from those of the expert, indicating an accuracy 

equivalent to that of the post analysis of the video recordings. 

We are currently integrating our automated fitness assessment 

system in a stand-alone spatial augmented reality guiding 

system for SFT assessment. By introducing visual (projected 

on the ground) and audio guidance for each test, we intend to 

deliver an objective assessment as well as to provide the 

patients with live feedback of the movement quality 

compared to the test goals. In a later phase, the system will be 

modified to provide continuous assessment during gaming 

exercise purposely designed to improve activity levels and 

overall fitness of elderly. 
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