32 research outputs found

    Artificial Intelligence-based Control Techniques for HVDC Systems

    Get PDF
    The electrical energy industry depends, among other things, on the ability of networks to deal with uncertainties from several directions. Smart-grid systems in high-voltage direct current (HVDC) networks, being an application of artificial intelligence (AI), are a reliable way to achieve this goal as they solve complex problems in power system engineering using AI algorithms. Due to their distinctive characteristics, they are usually effective approaches for optimization problems. They have been successfully applied to HVDC systems. This paper presents a number of issues in HVDC transmission systems. It reviews AI applications such as HVDC transmission system controllers and power flow control within DC grids in multi-terminal HVDC systems. Advancements in HVDC systems enable better performance under varying conditions to obtain the optimal dynamic response in practical settings. However, they also pose difficulties in mathematical modeling as they are non-linear and complex. ANN-based controllers have replaced traditional PI controllers in the rectifier of the HVDC link. Moreover, the combination of ANN and fuzzy logic has proven to be a powerful strategy for controlling excessively non-linear loads. Future research can focus on developing AI algorithms for an advanced control scheme for UPFC devices. Also, there is a need for a comprehensive analysis of power fluctuations or steady-state errors that can be eliminated by the quick response of this control scheme. This survey was informed by the need to develop adaptive AI controllers to enhance the performance of HVDC systems based on their promising results in the control of power systems. Doi: 10.28991/ESJ-2023-07-02-024 Full Text: PD

    An overview of soft open points in electricity distribution networks

    Get PDF
    Soft open points (SOPs) are power electronic devices that are usually placed at normally open points of electricity distribution networks to provide flexible power control to the networks. This paper gives a comprehensive overview of both academic research and industrial practice on SOPs in electricity distribution networks. The topologies of SOPs as multi-functional power electronic devices are identified and compared, which include back-to-back voltage source converters, multi-terminal voltage source converters, unified power flow controllers, and direct AC-to-AC modular multilevel converters. The academic research is reviewed in three aspects, i.e., benefit quantification, control, and optimal siting and sizing of SOPs. The benefit quantification indices are categorized into feeder load balancing, voltage profile improvement, power losses reduction, three-phase balancing and DG hosting capacity enhancement. The control of SOPs is summarized as a three-level control structure, where the system-level and converter-level control are further discussed. For optimal siting and sizing of SOPs, problem formulation and solution methods are analyzed. Besides the academic research, practical industrial projects of SOPs worldwide are also summarized. Finally, opportunities of research and industrial application of SOPs are discussed

    An Overview of Applications of the Modular Multilevel Matrix Converter

    Get PDF
    The modular multilevel matrix converter is a relatively new power converter topology suitable for high-power alternating current (AC)-to-AC applications. Several publications in the literature have highlighted the converter capabilities, such as full modularity, fault-redundancy, control flexibility and input/output power quality. However, the topology and control of this converter are relatively complex to realise, considering that the converter has a large number of power-cells and floating capacitors. To the best of the authors’ knowledge, there are no review papers where the applications of the modular multilevel matrix converter are discussed. Hence, this paper aims to provide a comprehensive review of the state-of-the-art of the modular multilevel matrix converter, focusing on implementation issues and applications. Guidelines to dimensioning the key components of this converter are described and compared to other modular multilevel topologies, highlighting the versatility and controllability of the converter in high-power applications. Additionally, the most popular applications for the modular multilevel matrix converter, such as wind turbines, grid connection and motor drives, are discussed based on analyses of simulation and experimental results. Finally, future trends and new opportunities for the use of the modular multilevel matrix converter in high-power AC-to-AC applications are identified.Agencia Nacional de Investigación y Desarrollo/[Fondecyt 11191163]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondecyt 1180879]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondecyt 11190852]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[ANID Basal FB0008]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondef ID19I10370]/ANID/ChileUniversidad de Santiago/[Dicyt 091813DD]//ChileUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctric

    Hybrid Smart Transformer for Enhanced Power System Protection Against DC With Advanced Grid Support

    Get PDF
    The traditional grid is rapidly transforming into smart substations and grid assets incorporating advanced control equipment with enhanced functionalities and rapid self-healing features. The most important and strategic equipment in the substation is the transformer and is expected to perform a variety of functions beyond mere voltage conversion and isolation. While the concept of smart solid-state transformers (SSTs) is being widely recognized, their respective lifetime and reliability raise concerns, thus hampering the complete replacement of traditional transformers with SSTs. Under this scenario, introducing smart features in conventional transformers utilizing simple, cost-effective, and easy to install modules is a highly desired and logical solution. This dissertation is focused on the design and evaluation of a power electronics-based module integrated between the neutral of power transformers and substation ground. The proposed module transforms conventional transformers into hybrid smart transformers (HST). The HST enhances power system protection against DC flow in grid that could result from solar storms, high-elevation nuclear explosions, monopolar or ground return mode (GRM) operation of high-voltage direct current (HVDC) transmission and non-ideal switching in inverter-based resources (IBRs). The module also introduces a variety of advanced grid-support features in conventional transformers. These include voltage regulation, voltage and impedance balancing, harmonics isolation, power flow control and voltage ride through (VRT) capability for distributed energy resources (DERs) or grid connected IBRs. The dissertation also proposes and evaluates a hybrid bypass switch for HST module and associated transformer protection during high-voltage events at the module output, such as, ground faults, inrush currents, lightning and switching transients. The proposed strategy is evaluated on a scaled hardware prototype utilizing controller hardware-in-the-loop (C-HIL) and power hardware-in-the-loop (P-HIL) techniques. The dissertation also provides guidelines for field implementation and deployment of the proposed HST scheme. The device is proposed as an all-inclusive solution to multiple grid problems as it performs a variety of functions that are currently being performed through separate devices increasing efficiency and justifying its installation

    DC Networks on the Distribution Level – New Trend or Vision?

    Get PDF
    "DC networks on Distribution Level – are they a new trend or a Vision?" That is the question that has focused the efforts of the Working Group the last two years, and whose consideration is summarized in this report. This report represents the first phase evaluation of this topic and is focused primarily on medium (MVDC) and low voltage (LVDC) level applications

    A single-phase multi-level D-STATCOM inverter using modular multi-level converter (MMC) topology for renewble energy sources

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringRuth Douglas MillerThis dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10–20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices

    A fast-acting protection scheme for series compensators in a medium-voltage network

    Get PDF
    In recent 20 years medium voltage networks have been becoming one of the important interfaces between the power plants and loads due to the increasing load demand as well as number of distributed generators connected to the network. This is the reason, managing the power flow, and voltage profile of the network at the lowest possible power losses and also price are of the utmost importance. The series compensators such as a static synchronous series compensator are of the most cost effective power compensators that also have the high efficiency in controlling the power flow and voltage profile. However, their drawback is their vulnerability against the short circuit. This thesis presents a new protection scheme for an SSSC in an MV network by using a varistor and thyristors to eliminate this weakness. The DC offset phenomenon is one of the main uncertainties that has been studied in the thesis. This phenomenon could cause a delay in the circuit breakers’ performance. In this thesis, the parameters of the machines that have most influence on the time when the fault current will pass the zero point have been analysed. Besides, the impact of the DC offset in the medium voltage network has been studied. Furthermore, the thermal issues have always been one of the most challenging problems for the power electronics devices. This thesis investigates a new packaging style by using the phase change material to improve the thermal managing of a press-pack thyristor during a short circuit. This packaging style is able to absorb the heat as much as required and also could decrease the thermal resistance

    Simplified control strategies for modular multilevel matrix converter for offshore low frequency AC transmission system

    Get PDF
    PhD ThesisThe Low frequency AC (LFAC) transmission system is considered as the most cost-saving choice for the short and intermediate distance. It not only improves the transmission capacity and distance but also has higher reliability which makes it more advantageous than the HVDC transmission system. Modular Multilevel Matrix Converter (M3C) is recognized as the most suitable frequency converter for the LFAC transmission system which is responsible for connecting 16.7 Hz and 50 Hz ac systems. In such applications, the ‘double αβ0 transform’ control method is most popular technique that realizes the decoupled control of the input current, output current and circulating current. However, the derivation process of the mathematical model is so complicated that it gives too much burden on the controller of the M3C system. Therefore, this thesis is focusing on simplifying the M3C control strategies when used in LFAC systems and the primary contribution to the knowledge is outlined as follows: (1) A simplified hierarchical energy balance control method which employs an independent control for each of three sub-converters in M3C is proposed in Chapter 5. The output frequency circulating current is injected and utilized to balance the energy between the three arms of the sub-converter. The proposed method achieves a reduced execution time and a simplified control structure, with which a low-cost processor is applicable and the control bandwidth of the system is improved. (2) An improved energy balance control method with injecting both input and output frequency circulating currents is proposed in Chapter 6. The magnitudes of the circulating current responsible for the energy balance control in either frequency are half reduced as compared to the single frequency injection method in Chapter 5. This arrangement alleviates the negative impact of the injected circulating current on the external grid and allows the M3C systems work through larger grid unbalance situations. Finally, the effectiveness of the proposed control strategy is demonstrated by extensive simulation results and validated experimentally using a scaled-down laboratory prototype
    corecore