6,263 research outputs found

    Irregular speech rate dissociates auditory cortical entrainment, evoked responses, and frontal alpha

    Get PDF
    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    LFP beta amplitude is predictive of mesoscopic spatio-temporal phase patterns

    Full text link
    Beta oscillations observed in motor cortical local field potentials (LFPs) recorded on separate electrodes of a multi-electrode array have been shown to exhibit non-zero phase shifts that organize into a planar wave propagation. Here, we generalize this concept by introducing additional classes of patterns that fully describe the spatial organization of beta oscillations. During a delayed reach-to-grasp task in monkey primary motor and dorsal premotor cortices we distinguish planar, synchronized, random, circular, and radial phase patterns. We observe that specific patterns correlate with the beta amplitude (envelope). In particular, wave propagation accelerates with growing amplitude, and culminates at maximum amplitude in a synchronized pattern. Furthermore, the occurrence probability of a particular pattern is modulated with behavioral epochs: Planar waves and synchronized patterns are more present during movement preparation where beta amplitudes are large, whereas random phase patterns are dominant during movement execution where beta amplitudes are small

    Magnetoencephalography in Stroke Recovery and Rehabilitation

    Get PDF
    Magnetoencephalography (MEG) is a non-invasive neurophysiological technique used to study the cerebral cortex. Currently, MEG is mainly used clinically to localize epileptic foci and eloquent brain areas in order to avoid damage during neurosurgery. MEG might, however, also be of help in monitoring stroke recovery and rehabilitation. This review focuses on experimental use of MEG in neurorehabilitation. MEG has been employed to detect early modifications in neuroplasticity and connectivity, but there is insufficient evidence as to whether these methods are sensitive enough to be used as a clinical diagnostic test. MEG has also been exploited to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface. In the current body of experimental research, MEG appears to be a powerful tool in neurorehabilitation, but it is necessary to produce new data to confirm its clinical utility

    AUTOMATED ARTIFACT REMOVAL AND DETECTION OF MILD COGNITIVE IMPAIRMENT FROM SINGLE CHANNEL ELECTROENCEPHALOGRAPHY SIGNALS FOR REAL-TIME IMPLEMENTATIONS ON WEARABLES

    Get PDF
    Electroencephalogram (EEG) is a technique for recording asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. EEG signal is well studied to evaluate the cognitive state, detect brain diseases such as epilepsy, dementia, coma, autism spectral disorder (ASD), etc. In this dissertation, the EEG signal is studied for the early detection of the Mild Cognitive Impairment (MCI). MCI is the preliminary stage of Dementia that may ultimately lead to Alzheimers disease (AD) in the elderly people. Our goal is to develop a minimalistic MCI detection system that could be integrated to the wearable sensors. This contribution has three major aspects: 1) cleaning the EEG signal, 2) detecting MCI, and 3) predicting the severity of the MCI using the data obtained from a single-channel EEG electrode. Artifacts such as eye blink activities can corrupt the EEG signals. We investigate unsupervised and effective removal of ocular artifact (OA) from single-channel streaming raw EEG data. Wavelet transform (WT) decomposition technique was systematically evaluated for effectiveness of OA removal for a single-channel EEG system. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), is studied with four WT basis functions: haar, coif3, sym3, and bior4.4. The performance of the artifact removal algorithm was evaluated by the correlation coefficients (CC), mutual information (MI), signal to artifact ratio (SAR), normalized mean square error (NMSE), and time-frequency analysis. It is demonstrated that WT can be an effective tool for unsupervised OA removal from single channel EEG data for real-time applications.For the MCI detection from the clean EEG data, we collected the scalp EEG data, while the subjects were stimulated with five auditory speech signals. We extracted 590 features from the Event-Related Potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with Radial Basis Kernel (RBF) (sigma = 10, cost = 102). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI. We also developed a single channel Electro-encephalography (EEG) based MCI severity monitoring algorithm by generating the Montreal Cognitive Assessment (MoCA) scores from the features extracted from EEG. We performed multi-trial and single-trail analysis for the algorithm development of the MCI severity monitoring. We studied Multivariate Regression (MR), Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression (RR) for multi-trial and deep neural regression for the single-trial analysis. In the case of multi-trial, the best result was obtained from the ER. In our single-trial analysis, we constructed the time-frequency image from each trial and feed it to the convolutional deep neural network (CNN). Performance of the regression models was evaluated by the RMSE and the residual analysis. We obtained the best accuracy with the deep neural regression method

    Dimension-reduction and discrimination of neuronal multi-channel signals

    Get PDF
    Dimensionsreduktion und Trennung neuronaler Multikanal-Signale
    • …
    corecore