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ABSTRACT 

Khatun, Saleha. Ph.D. The University of Memphis. November 2018. Automated Artifact 

Removal and Detection of Mild Cognitive Impairment from Single Channel 

Electroencephalography Signals for Real-Time Implementations on Wearables. Major Professor: 

Dr. Bashir I. Morshed. 

 

Electroencephalogram (EEG) is a technique for recording asynchronous activation of 

neuronal firing inside the brain with non-invasive scalp electrodes. EEG signal is well studied to 

evaluate the cognitive state, detect brain diseases such as epilepsy, dementia, coma, autism 

spectral disorder (ASD), etc. In this dissertation, the EEG signal is studied for the early detection 

of the Mild Cognitive Impairment (MCI). MCI is the preliminary stage of Dementia that may 

ultimately lead to Alzheimer’s disease (AD) in the elderly people. Our goal is to develop a 

minimalistic MCI detection system that could be integrated to the wearable sensors. This 

contribution has three major aspects: 1) cleaning the EEG signal, 2) detecting MCI, and 3) 

predicting the severity of the MCI using the data obtained from a single-channel EEG electrode.  

Artifacts such as eye blink activities can corrupt the EEG signals. We investigate 

unsupervised and effective removal of ocular artifact (OA) from single-channel streaming raw 

EEG data. Wavelet transform (WT) decomposition technique was systematically evaluated for 

effectiveness of OA removal for a single-channel EEG system. Discrete Wavelet Transform 

(DWT) and Stationary Wavelet Transform (SWT), is studied with four WT basis functions: haar, 

coif3, sym3, and bior4.4. The performance of the artifact removal algorithm was evaluated by 

the correlation coefficients (CC), mutual information (MI), signal to artifact ratio (SAR), 

normalized mean square error (NMSE), and time-frequency analysis. It is demonstrated that WT 

can be an effective tool for unsupervised OA removal from single channel EEG data for real-

time applications. 
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For the MCI detection from the clean EEG data, we collected the scalp EEG data, while the 

subjects were stimulated with five auditory speech signals. We extracted 590 features from the 

Event-Related Potential (ERP) of the collected EEG signals, which included time and spectral 

domain characteristics of the response.  The top 25 features, ranked by the random forest 

method, were used for classification models to identify subjects with MCI. Robustness of our 

model was tested using leave-one-out cross-validation while training the classifiers. Best results 

(leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 

85%) were obtained using support vector machine (SVM) method with Radial Basis Kernel 

(RBF) (sigma = 10, cost = 102). Similar performances were also observed with logistic 

regression (LR), further validating the results. Our results suggest that single-channel EEG could 

provide a robust biomarker for early detection of MCI.  

We also developed a single channel Electro-encephalography (EEG) based MCI severity 

monitoring algorithm by generating the Montreal Cognitive Assessment (MoCA) scores from the 

features extracted from EEG. We performed multi-trial and single-trail analysis for the algorithm 

development of the MCI severity monitoring.  We studied Multivariate Regression (MR), 

Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression (RR) for 

multi-trial and deep neural regression for the single-trial analysis. In the case of multi-trial, the 

best result was obtained from the ER. In our single-trial analysis, we constructed the time-

frequency image from each trial and feed it to the convolutional deep neural network (CNN). 

Performance of the regression models was evaluated by the RMSE and the residual analysis. We 

obtained the best accuracy with the deep neural regression method.  
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1. INTRODUCTION 

1.1 Problem Statement 

Memory impairment due to aging is natural. However, if the level of impairment goes 

beyond the expected level, that condition is stated as mild cognitive impairment (MCI) 

[1]. MCI is a transforming state in cognitive function between changes deriving from 

natural/normal aging and dementia [2][3]. Alzheimer’s disease (AD) is the most 

prevalent dementia [4][5][6][7] for elderly people in many countries, and it is 

accompanied by progressively worsening memory, reasoning, and other aspects of 

cognition [7][8]. MCI can also be related with Parkinson’s disease (PD) [9], 

cardiovascular disease, type 2 diabetes, obesity, sedentary activity, metabolic syndrome, 

excess alcohol, and smoking [10]. As MCI is the preliminary stage of cognitive 

impairment, most often if it is not treated properly, there is a 10-54% and 10-15% chance 

that MCI may lead to dementia, or Alzheimer’s, respectively [8]. The cost of providing 

care for the Alzheimer patients in the US was $200 billion in 2012, and it is estimated to 

grow to $1.1 trillion per year by 2050 [11]. Therefore, detecting and managing this 

disease is of great importance for better healthcare as well as for the national financial 

interest. Another aspect of Alzheimer’s disease is that the cause of this neurodegenerative 

disease is still unclear. So, earlier detection of MCI is critical in order to develop care-

plans and prognosis of Alzheimer or dementia. MCI detection is possible through 

neurological signal monitoring such as EEG. 

1.2 Motivation 

Wearable sensing of elderly people’s health is a growing field with the augmentation 

of real-time detection and monitoring. The algorithm to detect mild cognitive impairment 



16 
 

should be developed in such a way that it can be implementable in a simplistic single 

channel EEG system [12]. 

Neuro-physiological signals often get affected by artifacts which hinder the valuable 

information processing from them, and thus reduce the accuracy and performance of 

algorithms by increasing inaccuracies such as false positives.  So, it is crucial to have 

artifact removal algorithm applicable in single channel EEG based mechanism for robust 

detection of MCI.  

MCI can be the biomarker of Dementia/Alzheimer disease. Low cost, fast, and easy 

solution is achievable by extracting features and processing them to identify biomarkers 

from neuro-physiological signals such as EEG. MCI detection from EEG is thus crucial 

to prevent Alzheimer’s disease at the onset of it.  

Severity of MCI detection would be an important part of remote patient monitoring in 

outside of hospital settings. Single channel EEG based system can be a portable, cost 

effective, and fast solution to this problem.  

1.3 Goal 

Early detection and monitoring the progression of MCI through unsupervised 

algorithms that uses only single channel EEG data.  

1.4 Objectives 

1. Algorithm development for unsupervised removal of major artifacts from single 

channel EEG signals. 
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2. Algorithm development to detect MCI from single channel EEG data using 

speech-evoked brain responses. 

3. Algorithm development for MCI severity detection from single trials of single-

channel EEG data towards early detection and monitoring of MCI. 

1.5 Technical Challenges 

• EEG signals can be noisy and can easily get contaminated by ocular artifacts, 

motion artifacts, power line interferences, etc. To automatically remove artifacts 

from EEG signals is a challenge in a minimalistic system, but is needed for real-

time implementation. 

• Automatic classification and detection of MCI can be implemented in wearables 

and can allow users to continually monitor their brain states at the comfort of their 

home. 

• For single trial-based MCI severity detection, there can be trial-trial variabilities, 

artifacts, etc. which add to difficulties. Features, epoch length, algorithms are 

crucial to resolve those issues.  

1.6 Research Outcomes: 

1. Algorithm to remove ocular artifact from a single-channel EEG system*. 

2. Algorithm to detect MCI from a single-channel EEG system using speech-evoked 

brain responses. 

3. Algorithm to determine MCI severity ranking from EEG signals to facilitate MCI 

severity monitoring. 
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*Made publicly available (http://www.memphis.edu/esarp/repository/index.php) 
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2.   COMPARATIVE STUDY OF WAVELET BASED UNSUPERVISED 

OCULAR ARTIFACT REMOVAL TECHNIQUES FOR SINGLE 

CHANNEL EEG DATA 

Abstract—Electroencephalogram (EEG) is a technique for recording asynchronous 

activation of neuronal firing inside the brain with non-invasive scalp electrodes. Artifacts 

such as eye blink activities can corrupt these neuronal signals. While ocular artifact (OA) 

removal is well investigated for multiple channel EEG systems, in alignment with the 

recent momentum towards minimalistic EEG systems for use in natural environments, we 

investigate unsupervised and effective removal of OA from single-channel streaming raw 

EEG data. In this study, unsupervised wavelet transform (WT) decomposition technique 

was systematically evaluated for effectiveness of OA removal for a single-channel EEG 

system. A set of seven raw EEG dataset was analyzed. Two commonly used WT 

methods, Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), 

were applied. Four WT basis functions, haar, coif3, sym3, and bior4.4, were considered 

for OA removal with Universal Threshold (UT) and Statistical Threshold (ST). To 

quantify OA removal efficacy from single channel EEG, five performance metrics were 

utilized: correlation coefficients (CC), mutual information (MI), signal to artifact ratio 

(SAR), normalized mean square error (NMSE), and time-frequency analysis. The 

temporal and spectral analysis shows that the optimal combination could be DWT with 

ST with coif3 or bior4.4 to remove OA among sixteen combinations. This work 

demonstrates that WT can be an effective tool for unsupervised OA removal from single 

channel EEG data for real-time applications. 
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Index Terms—Artifact Removal, Electroencephalogram (EEG), Ocular Artifact, 

Wavelet Transform, Single Channel EEG. 

2.1 Background 

 
Electroencephalogram (EEG) is the recording of the brain’s spontaneous electrical 

activity captured non-invasively by placing electrodes on the scalp [1]. EEG has been 

utilized in many medical diagnosis, prognosis and therapies including epilepsy, sleep 

disorder, coma, encephalopathy and brain deaths [2]. EEG signals are often corrupted by 

two sources of artifacts:  physiologic such as eye,  muscle,  and cardiac activities, and 

extraphysiologic such as line interference and electrode noise. Extraphysiologic artifact 

can often be removed using appropriate filtering techniques as there is spectral 

separation. however physiologic artifact removal requires careful attention as they can be 

within the same frequency range of the EEG signal and are aperiodic. Ocular artifacts 

(OA) due to eye movement and eye blinks are dominant over other contaminating 

physiologic artifacts [3]. As EEG signal can be used for analyzing different diseases [4– 

6], monitoring brain engagement [7, 8], different techniques have been proposed for the 

removal of OA from EEG to make it more reliable for different purposes. The widely 

used methods for removing OAs are based on regression in time domain [9] and 

frequency domain [10]. But these methods need the recording of Electrooculogram 

(EOG),and can also result in the elimination of neural activities [11]. Statistical 

techniques like Principal Component Analysis (PCA) [12], Kurtosis [13], Independent 

Component Analysis (ICA) [14] and Multiscale sample entropy [15] are also shown to be 
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effective to remove OA, but they rely on multiple channel data. One of the robust and 

promising ocular artifact removal techniques for single channel EEG data is Wavelet 

Transform (WT) [11, 18]. 

T. Zikov et al. discussed applying stationary wavelet transform with coif3 wavelet 

filters to denoise the EEG signal [8]. In their proposed study, 60-second baseline EEG 

was recorded to calculate threshold required for denoising. Use of haar wavelet is 

explored in detecting changes in the state of the eye (eye-blinks and eyeball movements) 

[17]. Stationary wavelet transform with coif3 as a basis function with various non-

adaptive thresholding methods have also been demonstrated [18]. Another wavelet-based 

approach of removing ocular artifact was to use stationary wavelet transform with sym3 

as a basis function and to use the coefficient of variation to detect and denoise the artifact 

[19]. 

With the advent of ambulatory and miniaturist body-worn EEG systems with few 

channels for routine monitoring [20, 21, 22], there is a growing need to develop effective 

OA removal technique that can operate on few channel EEG data.  For real-time 

applications like mental state classification, comfort sensing, emotion sensing, movement 

prediction etc., algorithms should perform reasonably with short epoch of streaming EEG 

data. Many brain-computer interfacing (BCI) systems are utilized for routine and 

continuous monitoring of brain activities for epilepsy [23], autistic spectrum disorder 

(ASD) [24], and Alzheimer’s patients [25]. Hence, removal of artifacts in real-time with 

the access of few channel (especially single channel) is of research interest. Though there 

is a vast amount of literature available on using wavelet transform for ocular artifact 

removal from EEG data [20–22], a little have investigated the effects of using various 
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possible forms of WT for single channel OA removal. The evaluation of existing WT 

techniques is critical in order to find the efficient, reliable and unsupervised way of 

denoising OA for real time BCI applications.  

This paper compares different combinations of wavelet decomposition techniques, 

thresholds and mother wavelets. Specifically, we present a comparative study of discrete 

and stationary wavelet transform using four basis functions: haar, coif3, sym3, and 

bior4.4 with Universal and Statistical Thresholding for OA removal from single channel 

EEG data. These combinations are carefully selected as they are commonly used for OA 

removal [19–22, 25]. Furthermore, we present objective performance metrics using 

multiple statistical measures in time domain and frequency domain.  

2.2 Wavelet Transform and Performance Metrics 

2.2.1 Wavelet Transform (WT) Decomposition   

WT can be applied to any single channel EEG data to remove OAs without 

information from any other EEG or EOG channels. WT decomposes a time-varying 

signal into its set of basis functions known as wavelets. These basis functions known as 

wavelets are obtained by performing dilations and shifting of the mother wavelet: 

 

Ψa,b(t) = Ψ(
𝑡 − 𝑏

a
) 

(1) 

 

 

where a is the scaling parameter and b is the shifting parameter [13]. In this study, we 

have implemented multi-level wavelet decomposition in order to get precise information 



28 
 

about the wavelet coefficients.  In addition to ocular artifact removal, WT is proven to be 

a robust tool in several applications like machine condition monitoring [27], hologram 

analysis [28], pitch detection of speech signals [29], multi -modality medical image 

fusion [30], fault detection in a spur gear [31], power quality analysis [32], signal 

processing in white-light interferometry [33]. 

2.2.2 Discrete Wavelet Transform (DWT) 

DWT is considered non-redundant and highly efficient wavelet transform to obtain 

discrete wavelet representation of signals [34, 35]. In DWT, the input signal is passed 

through a low pass and high pass filter to get approximate coefficients (ak ) and detail 

coefficients (dk ), respectively, where k represents the level of decomposition (Fig. 1). This 

process is repeated until the desired frequency range is obtained. At each stage, the filter 

output is down-sampled by 2, later up-sampled to reconstruct the signal. In this study, we 

have used in-built wavedec function in Matlab (MathWorks, Natick, MA) to implement 

DWT in the denoising algorithm. 

2.2.3   Stationary Wavelet Transform (SWT) 

 

Fig. 1: Graphical representation of DWT decomposition. (HPF: High pass filter, LPF: Low pass filter.)  



29 
 

 

Fig. 2: Examples of common wavelet basis functions that can be applied for artifact removal from EEG 

data. (Plotted using Matlab built-in functions.) 

The major drawback of DWT is its time-variance, which is particularly important in 

statistical signal processing applications such as EEG [36]. SWT overcomes this 

translation-invariance drawback of DWT but has redundant information and is relatively 

slow [37]. The design difference between DWT and SWT is the filter at each stage [38]. 

The approximate and detail sequences at each level of decomposition are of the same 

length as the original sequence. After obtaining the coefficients at jth level, the algorithm 

up samples the filter coefficients by a factor of 2j−1. It has been implemented by the swt 

function of MATLAB in this study. 

2.2.4 Wavelet Basis Functions 

 WT of the EEG signals yields the wavelet coefficients which represents the 

correlation between EEG signal and the wavelet basis functions. Fig. 2 represents some 

commonly used WT basis functions utilized in the literature for OA removal. For eye-

blink removal, these wavelets perform well as they resemble the characteristics of these 

eye blinks [16, 18, and 19]. In this paper, we have compared the performance of widely 

used symlet (sym3), haar (haar), coiflet (coif3), and biorthogonal (bior4.4) wavelets. 
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2.2.5  Wavelet Thresholding for Denoising   

The approximate and detail coefficients of the decomposed EEG needs to be denoised 

to separate the artifactual coefficients from neural signal coefficients. For thresholding 

the wavelet coefficients, two commonly used metrics: Universal Threshold (UT) and 

Statistical Threshold (ST) are evaluated in this paper.  

UT is 

implemented 

as: 

𝐾 = √2logN𝜎 (2) 

 σ2  = median (
|𝐶𝑎|

0.6745
) (3) 

 

where, K is the estimation of neuronal wide band signal magnitude using UT, N is the 

length of data to be processed, Ca is the wavelet coefficients at ath level of decomposition 

that undergoes thresholding, and 0.6745 is the constant value for Gaussian noise [15]. 

We also implemented ST (proposed by Krishnaveni et al. in [18]) in our study which 

is based on the statistics of the signal. As discussed in [19], the proposed threshold 

produces better de-noised results than the other conventional thresholds. Mathematically, 

the proposed ST is formulated as:. 

 

 T = 1.5* std(Hk) 

(4) 

 

where T is the estimation of neuronal wideband signal magnitude using ST, 

std(Hk ) employs standard deviation of wavelet coefficients at kth level. In both cases, 
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hard thresholding is applied, where wavelet coefficient is removed if the absolute value 

of wavelet coefficient is greater than the threshold. 

2.2.6  Performance Metrics 

Different statistical performance metrics have been used to objectively compare 

various combinations of OA removal in time and frequency domain. For time domain 

comparison, correlation coefficient, mutual information, signal to artifact ratio and 

normalized mean square error have been evaluated. For frequency domain comparison, 

time frequency analysis has been utilized.  

Correlation Coefficient (CC) is a statistical method that shows the degree of 

association between two variables. Suppose C(t1,t2) is the auto-covariance of a process 

x(t), or in another way, C (t1, t2) is the covariance of the random variables x (t1) and x 

(t2), then correlation coefficient of the process x (t) is [39]:   

 

 r (t1, t2) =
C (t1, t2)

√C (t1, t1)C (t2, t2)
 (5) 

 

Mutual Information (MI) is used statistically to measure how much information one 

random variable contains about the other random variable. If U and V are two partitions 

of sample space S, then information about U contained in V or information about V 

contained in U is: 

 

 I (U, V) = H(U) + H(V) −H (U.V)                    (6) 

 

 

I (U, V) represents mutual information [39]. 
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Signal to Artifact Ratio (SAR) is a quantification method to measure the amount of 

artifact removal in a specific signal after processing with an algorithm [40]. If z is the 

EEG signal containing artifact and ẑ is the signal obtained after running an artifact free 

algorithm. Hence,, 

 𝑆𝐴𝑅 = 10log (
𝑠𝑡𝑑(𝑧)

std(z − ẑ)
) (7) 

Normalized Mean Square Error (NMSE) approximates the difference between the 

ideal and actual data [11]. NMSE is computed in dB using the equation: 

 𝑁𝑀𝑆𝐸 = 20𝑙𝑜𝑔𝐸{
∑[𝑥1(𝑖) − 𝑥2(𝑖)]2

∑[𝑥1(𝑖)]2
} (8) 

Time and frequency components can be analyzed simultaneously using the wavelet 

decomposition tool of EEGLAB toolbox (Matlab, CA, US). This allows qualitative 

comparison of the signals before and after artifact denoising. 

2.3 Experimental Method 

For EEG acquisition, a 14-channel referential montage EPOC headset (Emotiv, 

Eveleigh, NSW, Australia) at a sampling rate of 128 sps was used in the lab setting. 

Before data acquisition, the skin of the subject was cleaned using Nuprep skin preparing 

gel (Weaver and Company, Aurora, CO) and mild abrasive strips to remove the dead skin 

and thereby moisten the skin. Data were collected from four subjects (two males, two 

females) at AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1, and O2 channel 

locations in a closed room for 1 min 45 s. During the recording, subjects were instructed 

t o  blink 9 times with a 5 s hiatus. As OAs are prominent in the frontal lobe, only AF3 

channel data was used for analysis in this study. Out of two sessions/subject data 
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recording, 7 datasets were used for this study using an approved Institutional Review 

Board protocol (University of Memphis IRB# 2289).   
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Fig. 3: 12-channel EEG data from the Dataset 4 (Top) Raw (Below) OA artifact-free. X-axis is time in 

seconds and Y-axis is amplitude in microvolts. 



35 
 

As OAs are prominent in the frontal lobe, most of the comparison plots in this 

study are from AF3 channel. However, as  discussed in the literature, WT can be 

applied to denoise any channel location, as depicted in Fig. 3. OAs occur due to eye 

movement and eye-blinks and have frequency ranges of 0-7 Hz and 8-13 Hz, respectively 

[33]. To accurately identify artifact related wavelet coefficients, we have implemented 

multi-level wavelet decomposition using SWT or DWT. The decomposition was done up 

to level 8 (level 8: 0.25-0.5 Hz, level 7: 0.5-1 Hz, level 6: 1-2 Hz, level 5: 2-4 Hz, level 4: 

4-8 Hz, level 3: 8-16 Hz, level 2: 16-32 Hz and level 1: 32-64 Hz) to obtain the frequency 

range of interest. For denoising the wavelet coefficients, thresholding has been done over 

the detail coefficients from level 8 up to level 3. As the sampling rate of the dataset is 128 

sps, decomposing up to level 3 gives us the required ocular related wavelet coefficients 

for denoising.  Either UT or ST is implemented for thresholding and sym3, haar, 

coif3 or bior4.4 have been used as mother wavelet. With two wavelet decomposition 

techniques (DWT/SWT), two thresholds (UT/ST) and four mother wavelets 

(sym3/haar/coif3/bior4.4), 16 combinations or methods a re  possible to remove OA 

from EEG. The outputs of these combinations are quantified and compared using 

different performance metrics. 

2.4 Results and Analysis 

Fig. 4 compares raw and OA-artifact free EEG data using coif3 wavelet basis 

function with statistical threshold to denoise single channel EEG data using SWT and 

DWT techniques. Careful observation indicates that SWT produced cleaner processed 

signals, however, DWT is a faster method, which is an important aspect of real time data 

processing (e.g. streaming data). Most OA removal algorithms affected neuronal signals 
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where there is no blink artifact (non-blink regions). To the distinguish performance of an 

algorithm to remove OA, while preserving neuronal signals, we have segregated the raw 

EEG data into “Blink regions” and “Non-blink regions”. 

 

Fig. 4: Comparison of a section of EEG data from AF3 channel (Dataset 1) before and after denoising using 

SWT and DWT decomposition techniques with coif3 wavelet. 

CC and MI have been calculated between raw and re- constructed signals for blink 

and non-blink regions of the entire EEG data. The ideal eye blink removal algorithm 

would produce high CC and MI values in the non-blink region, while low CC and MI 

values in the blink region [41-42]. Fig. 5 and 6 show the statistical analysis of the CC and 



37 
 

MI metrics (averaged over 7 datasets) for both blink and non-blink regions of AF3 

channel EEG data. 

In both cases, DWT with UT performs better in an eye-blink region than all other WT 

threshold combinations. Among them, DWT+UT+sym3 gives the lowest value of CC, 

while DWT+UT+haar gives the lowest value of MI. However, the efficacy of DWT with 

UT to preserve neuronal information in a non-blink region is poor. This might be due to 

spectral shift introduced by DWT technique. Similarly, among all cases, the SWT with 

ST generates higher values of CC and MI than all other WT threshold combinations for 

non-blink regions. Among these, SWT+ST+haar provides the highest values of CC and 

MI in non-blink regions. Based on CC and MI metric, SWT with UT reveals that 

neuronal signals retention is poor, but removes or changes the blink zone in a greater 

amount. SWT with ST retains neuronal signals based on both CC and MI metrics, even 

though OA removal performance based on CC and MI is not as good as other methods. 

Applying DWT with UT doesn’t show the power of preserving neural information based 

on CC and MI metric.  DWT with ST is excellent to retain neuronal information based on 

CC metric for all wavelets, but performance is dependent on wavelet types based on MI 

metric, where haar wavelet outperforms other basis functions.  

According to the definitions, the technique that produces the higher value in the SAR 

and the lower value in the NMSE is considered to be more effective. Table I depicts the 

values of SAR for different methods. Based on SAR, SWT+ST combination performs 

superior to others. It is noted from Table I that, in general, SAR values are higher when 

ST is used with any types of wavelet, indicating ST is aggressive in eliminating probable 
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artifacts, while UT is conservative. DWT+ST performs better after SWT+ST 

combination. 

 

Fig. 5: Correlation coefficient comparison (N=7) for blink and non-blink EEG data using UT and ST 

thresholds with SWT and DWT methods. 
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Fig. 6: Mutual Information comparison (N=7) for blink and non-blink EEG data using UT and ST 

thresholds with SWT and DWT methods. 

Table II depicts the values of NMSE for different methods. Based on Table II, 

SWT+ST again outperforms other methods, while DWT+ST is the second best, 

compared to other WT threshold combinations. As the lower NMSE indicates better 

technique, both SWT and DWT show superior performance with ST for any type of 

wavelet basis functions. NMSE values are lower when ST is applied with both SWT and 

DWT using any type of wavelet basis functions. 
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Time-frequency analysis results are shown along with the raw signal (Dataset 1, AF3 

channel location) in Fig. 7. Few DWT methods are observed to have introduced new 

artifactual noise in the processed data during the OA removal throughout the spectrum 

(e.g. DWT+UT+haar, DWT+ST+haar). DWT with UT is also noted to decrease the 

overall magnitudes of neuronal signals. Within DWT results, ST with coif3 and bior4.4 

seems to retain neuronal signals effectively while minimizing OA. Further, in order to 

analyze over frequency domain, magnitude squared coherence measure is calculated 

between the raw and OA-artifact free EEG data and is plotted for these two combinations 

in Fig. 8. Magnitude squared spectral coherence estimate between 0 and 1 corresponds to 

how well the two-signals, a and b, relates at various frequencies and is mathematically 

calculated as: 

𝐶𝑎𝑏(f) =
𝑃𝑎𝑏(𝑓)2

𝑃𝑎𝑎(𝑓)𝑃𝑏𝑏(𝑓)
                                                                     (9) 

where Pab(f) is the cross power spectral densities of the signal, Paa(f) is power spectral 

density of raw EEG signal and Pbb(f) is power spectral density of OA-artifact free EEG 

signal. It has been implemented in this study using mscohere function of Matlab. It has 

been observed that all of the SWT combinations show efficacy in preserving neuronal 

signals and do not introduce new artifacts like some of the DWT combinations. 

.  

TABLE 1. SAR ON EEG DATASETS USING UT AND ST THRESHOLDS WITH SWT AND DWT METHODS 

WT+Thresh. sym3 haar coif3 bior4.4 

SWT + UT 1.42±0.61 1.48±0.58 1.40±0.61 1.42±0.61 

SWT + ST 2.33±0.86 2.18±0.79 2.32±0.85 2.28±0.85 
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DWT + UT 1.28±0.63 1.13±0.49 1.31±0.63 1.3±0.62 

DWT + ST 1.93±0.82 1.68±0.65 1.89±0.80 1.89±0.78 

 

TABLE 2. NMSE ON EEG DATASETS USING UT AND ST THRESHOLDS WITH SWT AND DWT METHODS   

WT+Thresh. sym3 haar coif3 bior4.4 

SWT + UT -5.88±2.37 -6.11±2.23 -5.79±2.36 -5.85±2.37 

SWT + ST -8.92±3.25 -8.47±2.96 -8.84±3.2 -8.77±3.21 

DWT + UT -5.31±2.5 -4.7±1.94 -5.43±2.49 -5.39±2.45 

DWT + ST -7.97±3.18 -6.9±2.49 -7.8±3.1 -7.82±3.02 

 

 

(a) 
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(b) 

Fig. 7: Time- Frequency comparison plots of various wavelets and thresholds for OA artifact denoising 

technique using (a) SWT (b) DWT. Raw EEG signal is from prefrontal AF3 channel location of Dataset 1. 
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(a) 

 

(b) 

Fig. 8: Magnitude squared coherence measure plot for one subject from AF3 location after denoising with 

(a) DWT+ST+coif3 (b) DWT+ST+bior4.4 combination. 

2.5 Discussion and Conclusions  

Brain monitoring using a few EEG sensors in non-clinical settings has drawn a lot of 

attention lately. These real time BCI applications like cognitive load assessment, 

diagnosis of brain disorders, fatigue prediction, and cognitive biometrics, need fast and 

efficient pre-processing algorithms in order to process and analyze raw brain signals 
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reliably in real time. The most common artifact in the EEG signal is due to the ocular 

activity. This study, therefore, focusses on comparing the effectiveness of commonly 

used wavelet based techniques for ocular artifact removal in a single channel EEG 

system. This will allow us to determine the optimal wavelet decomposition technique and 

corresponding threshold to denoise EEG signal effectively.  

In this paper, data from AF3 channel has been presented as a representative of EEG 

signal contaminated with artifacts to compare several WT based methods. However, the 

algorithm is not specific to the channel and is applicable to EEG recordings from any 

channel. Based on CC and MI metrics, DWT with ST using haar wavelet is found to be 

more effective than DWT+ST+coif3 or DWT+ST+bior4.4, but time-frequency analysis 

shows higher distortion in the processed data using this combination. As these metrics 

analyze different performances of the algorithm, so none of the combinations was 

superior based on all metrics. Based on these results, DWT with ST using coif3 and 

bior4.4 wavelet basis functions have performed well for OA removal while preserving 

neuronal signals in the non-blink regions based on CC, MI, SAR, NMSE and time-

frequency analysis.  

As fast algorithms are required for real-time systems, a trade-off must be considered 

for an efficacious method with low distortion. It is known that DWT is a faster technique 

requires less computational resources than SWT for real-time analysis [43]. According to 

the results presented in this paper, DWT+ST+coif3 or DWT+ST+bior4.4 could be an 

optimum choice. For the applications, where computation time is not critical, SWT with 

haar wavelet can be used with the statistical threshold. Instead of applying OA removal 

algorithm over the whole dataset as outlined in this paper, another approach is to identify 
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blink regions and apply OA removal algorithm only to these OA regions to develop a 

faster OA removal technique, which we have reported previously [44]. Our future 

research directions include hardware implementation and optimization of efficacious OA 

removal technique for a single channel EEG system, real-time OA removal, feature 

extraction, and cognitive load classification to monitor brain engagement in natural 

environment within a wearable embedded system. 
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3.  A SINGLE-CHANNEL EEG-BASED APPROACH TO DETECT MILD 

COGNITIVE IMPAIRMENT VIA SPEECH-EVOKED BRAIN 

RESPONSES  

Abstract— Mild Cognitive Impairment (MCI) is the preliminary stage of Dementia, 

which may lead to Alzheimer’s disease (AD) in the elderly people. Therefore, early 

detection of MCI has the potential to minimize the risk of AD by ensuring the proper 

mental health care before it is too late. In this study, we demonstrate a single-channel 

EEG based MCI detection method, which is cost-effective and portable, and thus suitable 

for continuous patient monitoring. We collected the scalp EEG data from 23 subjects, 

while they were stimulated with five auditory speech signals. The cognitive state of the 

subjects was evaluated by the Montreal Cognitive Assessment Test (MoCA). We 

extracted 590 features from the Event-Related Potential (ERP) of the collected EEG 

signals, which included time and spectral domain characteristics of the response.  The top 

25 features, ranked by the random forest method, were used for classification models to 

identify subjects with MCI. Robustness of our model was tested using leave-one-out 

cross-validation while training the classifiers. Best results (leave-one-out cross-validation 

accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained 

using support vector machine (SVM) method with Radial Basis Kernel (RBF) (sigma = 

10/cost = 102). Similar performances were also observed with logistic regression (LR), 

further validating the results. Our results suggest that single-channel EEG could provide a 

robust biomarker for early detection of MCI.  
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Index Terms— Electroencephalography, Event-related potential, Mild cognitive 

impairment, Speech-Evoked Brain Responses. 

3.1 Introduction 

Memory impairment due to aging is common. However, if the level of impairment 

progresses beyond what is expected in normal aging, mild cognitive impairment (MCI) 

can ensue [1]. MCI is a prodromal state of cognitive aging between changes deriving 

from natural/normal aging and dementia [2-3]. Alzheimer’s disease (AD) is the most 

prevalent dementia [4-7] for elderly people [1, 3] in many countries, and it is 

accompanied by progressively worsening memory, reasoning, and other aspects of 

cognition [7-8]. As MCI is a preliminary stage of cognitive impairment, most often it is 

not treated properly despite the fact that there is up to 54% chance that MCI may lead to 

AD or related dementias [8]. The cost of providing care for the AD patients in the US 

was $200 billion in 2012 and it is estimated to grow to $1.1 trillion per year by 2050 [9]. 

Therefore, preventing this disease is of great importance for better healthcare as well as 

for the national financial interest. The root cause of this neurodegenerative disease is still 

unclear; Thereby, early MCI detection may play a critical role to enhance the 

management of the AD and dementia care.  

Detection and characterization of MCI is an active field of research. Various 

physiological data such as resting-state functional magnetic resonance imaging (rs-fMRI) 

[4], structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI) [5], 

positron emission tomography (PET) [10], fluorodeoxyglucose positron emission 

tomography (FDG-PET) [11], cerebrospinal fluid (CSF) [11,12], and 

magnetoencephalography (MEG) [13] are being investigated to study the effect of MCI 
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and its underlying biomarkers in elderly people. Although these physiological data 

provide multi-dimensional information about the brain, these methods are costly and also 

impractical in terms of portability. Relatively low-cost electroencephalography (EEG) is 

also being investigated to detect [2, 7, 14-19] and classify [17] MCI from other diseases 

that affect the cognitive state. There are different examples that multi-channel EEG data 

have been used to characterize MCI or AD using EEG signals in various literature such 

as: (i) mismatch negativity (MMN) and auditory P300 component from 256-channel EEG 

[2], (ii) features extracted by recurrence quantification analysis (RQA) and cross 

recurrence quantification analysis (CRQA) from 14-channel EEG [17], (iii) spectral 

features extracted from 19-channel EEG [7], (iv) auditory P2 component computed from 

64-channel EEG [18], (v) the auditory mismatch negativity (MMN) from 19-channel 

EEG [19], (vi) ERP amplitude and latency from 256-channel EEG [20], (vii) accuracy 

and response time during low and high working memory conditions of memory task 

using 32-channel EEG [15] etc. Non-ERP based multi-channel EEG approach has also 

been investigated to detect MCI, e.g. using data from a 19-channel EEG system [16]. 

Low cost spontaneous speech data had also been used by researchers to detect MCI or 

AD [21 -24].  

Although multi-channel EEG has been studied rigorously, we did not find any study 

that focuses on the single-channel EEG-based MCI detection and classification which 

incorporates optimal feature search. This kind of system can be integrated to the wearable 

headband (i.e. MUSE™ headband with a mobile application), which will allow the 

elderly people to assess their cognitive strength on a regular basis by their own. In this 

study, we have used single-channel EEG data from Fpz (near forehead) as this location is 
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considered optimal for analyzing auditory evoked potential [25-27] to classify between 

MCI and normal functioning individuals using five sound stimuli for better sensitivity in 

MCI detection [20, 28].  It is important to mention that EEG data may be affected by 

different types of artifacts such as ocular, muscle, electrode artifacts, which can be 

removed using either multi-channel [29] or single-channel [30-31] EEG data. Therefore, 

studying EEG data obtained from a single-channel is not hindered by the artifacts that 

might degrade the quality of the EEG signal.  Initial findings of this study were reported 

elsewhere [32]. In this paper, we provide our complete and comprehensive study results.  

3.2 Method  

We designed our experiments with five contrastive speech sounds along a vowel 

continuum (/a/ vs. /u/) [33]. Subjects took part in an identification task where they were 

required to identify the vowel sounds while their EEG were collected.  We obtained 590 

features from the event-related potential (ERP) extracted from the EEG signal, which 

included time domain and spectral domain characteristics from the windowed ERP data. 

The top 25 features ranked by the random forest algorithm were used in several 

classification models that are widely used in the literature (Support Vector Machine 

(SVM) and Logistic Regression (LR)).  We described our method of the study below in 

six steps: Subjects, Experimental Design, Data Collection, Event-Related Potential 

Processing, Features Extraction and Ranking, and Classification. 

3.2.1 Subjects 

The physiological data used in this study was collected from an experiment where 

twenty-three older adults (age ranges from 52-86 years; mean ± standard deviation: 

70.2±7.2 yrs) participated. All the subjects were strongly right handed [28] with no 
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known history of psychiatric or neurological illness. The cognitive state of the 

participants was evaluated by the well-established Montreal Cognitive Assessment 

(MoCA) test [34]. In this assessment, among all the participants, fifteen older adults (8 

male, 7 female) were normal (MoCA score ≥26 points; mean± standard deviation: 

27.6±1.18; range: 26-30), and eight participants’ (4 male, 4 female) were found to have 

MCI (MoCA score <26; mean ± standard deviation: 23.0±1.85; range: 20-25).  It is worth 

mentioning that patients having Alzheimer’s disease or severe dementia generate MoCA 

score within 11.4 to 21 [35]. The age of the MCI group and the control group was 

74.6±3.3 years, and 67.5±8.2 years, respectively (𝑡21 = 2.34, 𝑝 = 0.03). The chi-square 

test for the gender of the two groups gave a p value of 0.81. The total years of formal 

education of the MCI, and normal group was 14.6±3.2 years, and 17.4±3.75 years, 

respectively ( 𝑡21 = −1.68, 𝑝 = 0.11). Participants in the study were compensated for 

their time and they gave their written consent under the protocol approved by the 

Baycrest Centre Ethics Committee (REB #06-31). The study was designed to observe the 

aging effect on the auditory system and to evaluate the cognitive state of the subjects. 

While recruiting the participants, exclusion criteria were based on age, musical training, 

handedness, and hearing loss [33]. 

3.2.2 Experiment design  

The phonetic continuum was generated by varying the first formant (F1) frequency 

within 430 Hz and 730 Hz over five equal steps. Fundamental (F0), second (F2), and 

third formant (F3) frequencies were kept the same for all five sound tokens. The values of 

F0, F2 and F3 were 100 Hz, 1090 Hz, and 350 Hz, respectively. The five-stepped vowel 

continuum (vw1-vw5) was constructed in a way so that each sound token of 100 ms 
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would differ minimally acoustically, still be perceived categorically [36-37]. We were 

aware that hearing loss due to aging may alter cortical auditory evoked potentials [25], 

and may influence the response; however, audiometric testing showed that hearing 

thresholds did not differ between groups at octave frequencies between 250 and 4000 Hz 

[33], which is well beyond the bandwidth of the stimuli. 

3.2.3 Data Collection  

Data collection technique and response evaluation were homogeneous to the studies 

reported in [25-26, 32-33, 36]. During EEG recording, participants went through 200 

trials for each sound token. Each participant took part in the data collection twice. The 

experiment was conducted in an electroacoustically shielded chamber (Industrial 

Acoustics, Inc.). Subjects experienced the stimuli through earphones (ER-3A, Etymotic 

Research) in both ears at an intensity of 83 dB SPL. To eliminate electromagnetic 

stimulus artifact from corrupting neurophysiological responses, extended acoustic tubing 

(50 cm) was used [27,33, 36]. Sound token came to subjects randomly, and they were 

requested to rapidly categorize them with a binary response (“u” or “a”) by pressing 

specific buttons on the keyboard. In this study, their response does not matter as we were 

only interested to see how the ERP changes with different stimulus. However, we wanted 

them to focus while the stimulus was applied. This was done to make sure that the 

resulting ERP is produced only due to the applied stimulus. Each sound token was 100 

ms duration with 10 ms of rise and fall time to reduce the spectral splatter [25]. After the 

participants’ response, an inter-stimulus interval (ISI) followed randomly between 400 

and 600 ms (20-ms steps, rectangular distribution) to avoid subjects anticipating 

subsequent stimuli [38]. SynAmps RT EEG amplifiers (Compumedics Neuroscan, 
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Charlotte, NC, USA) were used to capture EEG data. EEGs was recorded differentially 

between an electrode placed on the high forehead at the hairline referenced to linked 

mastoids. To record auditory evoked potentials from cortical origin, this montage ( ̴Fpz-

A1/A2) is considered optimal [36, 39-40]. Throughout the duration of the experiment, 

contact impedances were maintained below 3 kΩ, and the EEG signal was captured at 20 

kHz sampling rate and then filtered by a band pass filter having passband within 0.05 Hz 

– 3500 Hz.  

3.2.4 Event Related Potential Processing  

EEG data were processed using ERPLAB, an open source toolbox, which runs in the 

MATLAB environment [41]. An interval of 700 ms (100 ms pre-stimulus and 600 ms 

post-stimulus) constituted an EEG epoch as shown in Fig. 1 [32]. The left part of Fig. 1 

represents five grand average ERP from a normal subject due to five auditory stimuli. 

The right part of Fig. 1 contains comparison between the ERPs of Normal and MCI 

group. The pre-stimulus region was used for baseline correction, where the subtraction 

method [42] was used.  Trials exceeded ± 50 μV were excluded from the analysis as they 

were probably contaminated by different artifacts such as eye-blinks, eye-movements etc 

as mentioned in [30-31]. For each auditory stimulus, artifact free epochs were used to 

calculate the grand average ERP. Finally, the grand average ERP is bandpass filtered 

from within (0-30) Hz because of a priori knowledge of the ERP bandwidths and the 

stimuli [26, 32, 33 ,36, 40, 43]. It is to be noted that data from the different subjects do 

not go into the ERP calculation, rather each subject has its own ERP, which is calculated 

from the 200 trials of two sessions. 
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Fig. 9: Visualization of the ERP at different auditory stimuli. Left: individual response for the auditory 

stimulus vw1, vw2, vw3, vw4, and, vw5 of a normal subject; right: comparison between the ERPs of two 

subjects that belong to the Normal and the MCI group. ERP responses in the case of four auditory stimulus 

vw1, vw2, vw3, vw4 are visualized 

 

3.2.5 Features extraction and ranking 

We extracted total 590 candidate features from the ERP prominent points and the 

time and spectral domain characteristics, and used top 25 features in the classification 

models, which were ranked by the random forest algorithm. In the cortical auditory 

evoked responses, prominent ERP points seem to have discriminatory power between 

normal and MCI stage [18] in the older adults. For that reason, we included the ERP 

prominent points in the candidate feature vector (CFV). The ERP prominent points such 

as Pa, P1, N1, and P2 were defined as the peak points between the intervals [25 ms - 35 

ms], [60 ms – 80 ms], [90 ms – 110 ms], and [150 ms -  250 ms], respectively [32] as 

shown in Fig. 9. The peak amplitudes and their respective latencies of these prominent 

points, and the mean amplitudes of the intervals containing the prominent points were 

also included in the CFV because of their known importance in separating groups in the 

experiments involving evoked responses [44]. Relative powers in the EEG bands (i.e. 

delta/theta/alpha/beta) were also useful in classifying normal, mild cognitive impaired, 
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and Alzheimer’s’ disease group [45]; thereby, included in the CFV. Total 16 features 

were calculated from the ERP prominent points from each stimulus, which resulted in 

total 80 feature points in the CFV.  

As the ERP changes rapidly with time within the window over which the stimulus is 

applied, it was important to track the variation of the time-domain characteristics in high-

resolution. In order to accomplish that, we applied a 25ms window, with a 50% overlap 

through the entire ERP signal as depicted in Fig. 10.  The sliding window allowed us to 

observe the variation of the time domain properties, which has shown significance in 

classifying MCI and normal subject in earlier studies [33]. Total 107 time-domain 

characteristics such as signal statistics, correlation properties, entropies, etc. from each 

window were calculated using the opensource software package “HCTSAtool” [46-47] 

written in Matlab. For the details of the extracted time domain characteristics, please see 

Ref. [46-47]. To calculate the variation of the time-domain characteristics over time, we 

computed the slope and the coefficient of variation (CV), which constituted two feature 

points at each time-stamp for each stimulus. The feature points that had intra-class 

similarity and inter-class variability (judged by visual inspection) were included in the 

CFV. For example, Fig. 10 (a &b) show the slope and CV of one of the time domain 

characteristics (computed by the HCTSAtool known as “proportion of data within two-

standard deviation of mean [46-47]”) for the normal and the MCI group, respectively. 

Here we observed that this feature point was different for two classes and the shaded 

regions depict that there was intra-class similarity, but this feature was different between 

the classes (i.e. interclass variability), thereby selected as a feature point in the CFV. 

Similarly, the slope and CV shown in Fig. 10 (c&d) at a different timestamp also have 
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intra-class similarity and inter-class variability, which fulfill their requirement to be in the 

CFV. Among all the time-domain feature points, 510 such feature points met the 

condition as mentioned above and were included in the CFV. 

 

Fig. 10: Schematic of the feature extraction process: (a) and (c) are slopes and (b) and (d) are covariances 

for two different time windows from timestamp t1 to t2 

All 590 features of the CFV (i.e. 80 from the prominent points and 510 from the time-

domain characteristics) were ranked by the random forest algorithm [48], and top 25 

features were used in the classification models. The random forest algorithm was 

implemented using the “randomForest” package of R.  In the random forest algorithm, 

total 590 trees were constructed and at each split, 50 randomly sampled features were 

considered. As the feature ranking criteria, we set the “mean decrease in accuracy” to be 

greater than 0.002 to include only the most significant features in the final feature vector. 
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The fewer number of features kept the computation cheap and also reduces the 

probability of overfitting the data. 

TABLE 3. MODELS SELECTED FOR OBSERVING AGGREGATED SOUND FEATURES’ PERFORMANCE 

Model 

Name 

Combination Type  

SVMDn

Cm 

SVM (degree = n, cost = m) Polynomial kernel degree = {2, 3, 4}, 

cost = {0.01, 0.1, 1, 10, 100} 

SVMSig

manCm 

SVM (sigma = n, cost = m) Radial basis kernel sigma = {10-5, 10-4, 10-3, 10-

2, 10-1, 1, 10}, cost = {0.01, 0.1, 

1, 10, 100} 

LRl1Cm LR (regularization = 1, cost = 

m) 

l1 regularization cost = {0.01, 0.1, 1, 10, 100} 

LRl2Cm LR (regularization = 2, cost = 

m) 

l2 regularization cost = {0.01, 0.1, 1, 10, 100} 

3.2.6 Classification  

In this study, we used support vector machine (SVM), and logistic regression (LR) as 

they have already been used in the study related with EEG/ERP [48] data, and at the 

same time inference from these algorithms were computationally efficient. In the SVM 

grid search, we implemented polynomial and radial basis kernel, and varied the cost, C = 

{10-2, 10-1,1, 101, 102}.  

The degree and sigma used in the case of polynomial and RBF kernel, respectively 

are reported in TABLE I. Similar approach was followed while LR grid search were 

implemented. For the detail grid search parameters, please see TABLE I. 

It was necessary to find a model that balances between bias and variance to prevent 

overfitting and ensure generalization. Preventing overfitting is especially challenging if 

the sample size is small. To overcome this challenge, we followed the approach of [22] 

that means we used leave-one-out cross validation set fixed for all classifiers (SVM, LR). 

In leave-one-out cross validation, the model is trained with N-1 samples and tested by the 

Nth sample. This process is repeated for all N samples. The experimental setup, EEG pre-
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processing, feature exraction, and classification method are summarized through a 

flowchart in Fig. 11 to help the readers. 

3.3 Result 

To evaluate the classification models, we observed the key performance attributes 

such as leave-one-out cross-validation accuracy, sensitivity of the positive class (i.e. MCI 

group), and support vector ratio (SVR) (when applicable) in our SVM/LR grid search. In 

Fig. 12, we demonstrate the variation of the performance metrics in the case of the SVM 

for both the polynomial (𝑑 = 2, 3, and 4), and the RBF (𝜎 = 10) kernels.   Top row of 

Fig. 12 shows the variation of the leave-one-out cross-validation accuracy with respect to 

the cost parameters, 𝐶 = {10−2, 10−1, 1, 101, 102}. The results show that with the 

increase of  𝐶, both the leave-one-out cross-validation accuracy initially increases and 

reaches at the maximum for the optimal values of 𝐶. In Fig. 12(a), Fig. 12(b) and Fig. 

12(c), the cross-validation accuracy reaches at the maximum point and did not change 

later with the increment in C. The optimal 𝐶 also provides the highest sensitivity and the 

lowest SVR as shown in the bottom row of Fig. 12(exception for Fig. 12(e), the 

sensitivity increased after the optimal C).  Lower support vector ratio ensures model’s 

stability with respect to the overfitting.  
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Fig. 11 Flow diagram of the study 

The variation of the sensitivity, and, leave-one-out cross-validation accuracy with 

respect to the cost parameter, 𝐶 = {10−2, 10−1, 1, 101, 102} in the case of LR for both the 

L1 and L2 regularization is shown in Fig. 13.  Likewise, SVM, the variation of the leave-

one-out cross-validation accuracy, and sensitivity follow the similar trend with C, and 

becomes maximum for the optimal value of C. 

 



65 
 

 

Fig. 12: Performance evaluation of SVM models: Leave-One-Out Cross Validation accuracy of Polynomial 

kernel (a) d=2, (b) d=3, (c) d=4, Leave-One-Out Cross Validation accuracy of RBF kernel (d) σ=10, 

Support vector ratio and Sensitivity of Polynomial kernel (e) d=2, (f) d=3, (g) d=4, Support vector ratio and 

Sensitivity of RBF kernel (h) σ=10 

 

 

Fig. 13: Performance evaluation of LR models: (a) Sensitivity of L1 and L2 regularization, Leave-One-Out 

Cross-Validation accuracy of (b) L1 regularization, (c) L2 regularization 

We observed that SVMSigma10C100 works best among all the models considered here. 

The performance attributes for the best classification models for different cases are 
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summarized in TABLE II. These observations suggest that the selected feature vector is 

robust to multiple classification models in classifying between the normal and the MCI 

group.  

TABLE 4. PERFORMANCE OF SVMSIGMA10C10 MODEL SELECTED FOR OBSERVING AGGREGATED SOUND 

FEATURES’ PERFORMANCE 

Sen. Spec. Prec. F ROC 

0.85 0.95 0.92 0.88 0.91 

 

In order to investigate the impact of different sounds used in the experiment, we used 

features collected from each sound in our classification models. The results obtained with 

the best models are summarized in Fig. 14. The sounds were ranked according to the 

leave-one-out cross validation accuracy, sensitivity for MCI, and F score in TABLE III. 

We observed that the clear sounds (vw1: /u/, vw4, and vw5: /a/) are perceived differently 

by the normal and impaired individuals and thereby are a better candidate to be used for 

future study related to MCI detection. 

 

 

Fig. 14: Comparison among best performance of each stimulus 
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3.4 Discussion 

We obtained the best performance from the classifier SVM (leave-one-out cross-

validation accuracy 87.9% with 84.8 % sensitivity and 85% F score) and demonstrated 

the robustness of our approach using leave-one-out cross-validation. Additionally, we 

explored the effects of an ambiguous/non-ambiguous auditory stimulus on the MCI 

detection, and observed that ambiguous stimulus has less performance than non-

ambiguous stimulus in the classification. Pekkonen et al, (1994) [49] reported that 

dementia patients have faster decay in auditory sensory memory than the age-matched 

controls, which gets reflected in the mismatch negativity (MMN) (a component measured 

from ERP). In our previous study (Bidelman et al, (2017) [33]), we observed that, 

prefrontal dysfunction via efferent connections or abnormalities within the ascending 

auditory pathways may be related to MCI. Therefore, we could assume that it is possible 

to have differential properties in the EPR responses between the MCI and HCs due to 

auditory stimulus. Our current study also supports this hypothesis.   

We tabularized our result with the existing work in the literature in TABLE IV. As 

we discussed earlier, most of the authors used costly neurological data to classify 

between the normal and the MCI group. Zhang et al, (2011) [11] solved two binary 

classification problem AD vs. HC, and MCI vs. HC. They extracted features from sMRI, 

FDG-PET, and CSF data and used them in a linear svm classifier. The achieved 76.4% 

accuracy with 81.8% sensitivity and 66% specificity. Sui et al, (2014) [12] used the fMRI 

and DTI data to detect MCI vs. HC. They achieved 96.3% accuracy with 100% 

sensitivity and 94.1% specificity. Suk et al, (2015) [10] used a stacked auto- encoder 
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(SAE) with a deep learning-based latent feature representation to solve the four binary 

classification problems:  

AD vs. health normal control (HC), MCI vs. HC, AD vs. MCI, and MCI converter 

(MCI-C) vs. MCI non-converter (MCI-NC). They achieved 90.7% accuracy, 95% 

sensitivity, and 85% specificity in classifying MCI vs. HC. They used MRI and PET data 

in the MCI detection. Ruzzoli et al (2016) [19] used features from multichannel EEG 

system to classify MCI vs. HC. The authors used LR and achieved 76.9% sensitivity and 

73.3% specificity. Kashefpoor et al, (2016) [16] used features from multi-channel EEG 

system to detect MCI. They used neurofuzzy system and k-nearest classifier and achieved 

88.9% accuracy, 100% sensitivity, and 83.3% specificity. Ahmed et al, (2017) [5] used 

sMRI and DTI data for solving three binary classification problem: AD vs NC, MCI vs 

NC, and AD vs MCI. They used multiple kernel learning as the classifier and achieved 

79.4% accuracy with 71.6% sensitivity and 84.7% specificity. Toth et al, (2018) [22] 

used spontaneous speech features to classify MCI vs. NC and they got 71.4% cross-

validation accuracy with 79.2% sensitivity, and 61.1% specificity. In our work, we used 

ERP features from single-channel EEG data and we achieved our best performance with 

SVM. Our performance achieved 87.9% accuracy, 84.8% sensitivity, and 95% specificity 

in the MCI detection. 
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TABLE 5. LITERATURE SUMMARY 

Paper Source of 

Data 

Focus Classification 

Method 

Accuracies 

(%) 

Sensitiv-

ity 

Specifi-

city 

Stimuli 

Zhang et al [11]. sMRI, FDG-

PET, CSF 

Classification  AD vs HC,  

MCI vs HC 

Linear SVM 93.2,  

76.4 

93.0,  

81.8 

93.3,  

66.0 

N/A 

Sui et al.[12] fMRI, DTI Classification MCI vs. HC Multi kernel SVM 96.3 100 94.1 N/A 

Suk et al.[10] MRI, PET Classification AD vs. HC, MCI vs. 

HC, AD vs. MCI, MCI-C vs. MCI-NC 

Deep learning 98.8, 90.7, 

83.7, 83.3 

N/A N/A N/A 

Ruzzoli et al [19] Multi-ch. EEG Classification MCI vs. HC LR N/A 76.9 73.3 Auditory 

Kashefpoor et al 

[16] 

Multi-ch. EEG Classification NC vs MCI Neurofuzzy 

system and KNN 

88.9 100 83.3 N/A 

Ahmed et al.[5] sMRI, DTI Classification AD vs. NC, MCI vs. 

NC, AD vs. MCI 

Multiple kernel 

learning 

90.2,  

79.4,  

76.6 

82.9, 

71.6, 

65.5 

94.6, 

84.7, 

81.3 

N/A 

Toth et al. [22] Speech Classification NC vs. MCI Naïve Bayes, 

Linear SVM, 

Random Forest 

71.4 79.2 61.1 Visual 

This Study Single ch. 

EEG 

Classification NC vs MCI SVM, LR 87.9 84.8 95.0 Auditory 

 

Our results are comparable to those observed with multi-channel EEG, and fMRI-

based techniques in terms of classification accuracy, sensitivity, and specificity. This 

suggests that our single- channel based method may provide an alternative way of MCI 

detection, which is easy-to-use, and cost-effective.  

The primary goal of this work is to investigate the use of the single-channel EEG data 

in detecting the early cognitive impairment to support the wearable technology.  As we 

mentioned earlier in the discussion section, multi-channel EEG and other physiological 

data have proven to be a reliable source for the MCI detection; however, the idea of using 

the single-channel EEG data in determining complex neurological phenomena is 

relatively new. We believe that our work will motivate further study in this area. 
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In MRI technique, a patient needs to lie in the MRI scanner (a very large, strong 

magnet) and a radio wave is used to send signals to the part of the body of interest and 

receive them back. A computer attached to the scanner converts the returning signal into 

images. In PET technique, a patient swallows, inhales, or gets injected by radioactive 

tracer and then lies under a big PET scanner for generating PET image for diagnosis. 

fMRI uses the same basic principles as MRI. However, MRI scans anatomical structure 

whereas fMRI scans metabolic function. DTI, and sMRI also have similarities with MRI 

technique. High-density multichannel EEG setup requires patient to sit in a quiet 

environment for a certain time determined by the study for data collection. All the 

techniques discussed so far here can only be employed in a hospital environment but not 

in wearable or portable devices. Conversely, the technique discussed in this paper can be 

implemented in a home environment. 

3.5 Conclusion 

In this study, we targeted to find a solution in the MCI detection using minimalistic, non-

invasive, and low-cost approach –via ERP responses from the scalp EEG data. We selected 

existing algorithms such as SVM, LR and extracted features from time and frequency domain 

responses during speech processing responses reflected in the single-channel EEG data 

obtained from Fpz location. We observed that the top 25 ranked features ranked by the 

random forest method performed well with most of the classification models. Based on the 

best performances from SVM model, we can predict MCI with 87.9% leave-one-out cross-

validation accuracy, 84.8% sensitivity, and 95% specificity. In future, this study can be 

expanded to real-time implementation of the system with the hardware-software 

implementation. 
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4. Regression Based Approaches to Monitor the Severity of Mild Cognitive 

Impairment from Single Channel EEG Data 

Abstract—Cognitive health is one of the aspects of a human life which cannot be 

ignored and proper care of it ensures a healthy, happy, and balanced life. The deviation of 

the soundness of cognitive health is mild cognitive impairment (MCI) is important to 

detect early and monitor progression to reduce the risk of complicated diseases such as 

Dementia, Alzheimer’s Disease (AD), and Parkinsons Disease (PD). In this study, we 

developed single channel Electro-encephalography (EEG) based MCI severity 

monitoring algorithm by generating Montreal Cognitive Assessment (MoCA) scores 

from the features extracted from EEG. We performed multi-trial and single-trail analysis 

for the algorithm development of the MCI severity monitoring. For multi-trial analysis, 

we extracted 590 features from the prominent ERP points and time domain characteristics 

of the ERP. We used lasso regression technique to select best feature set. 13 best features 

were used in the classical regression techniques: Multivariate Regression (MR), 

Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression 

(RR). The best results came from ER according to the RMSE (0.08) and residual 

analysis. In our single-trial analysis, we extracted time-frequency images from each trial, 

and used it as an input to the constructed convolutional deep neural network (CNN). This 

deep CNN model gave 0.09 RMSE. We are the first one to report this novel method to 

generate MCI severity from single channel EEG data for both multi-trial and single-trial 

data. This method will be implementable in portable setup and provide cognitive 

healthcare for elderly people with MCI or patients who have self-reporting concerns. 
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Index Terms—Electroencephalography, Event related potential, Mild cognitive 

impairment, Montreal Cognitive Assessment, Deep Neural Network, Single trial, 

Ensemble regression.  

4.1 Introduction 

Memory disorder in a human being brings difficulties in performing basic (BADL) 

[walking, eating, dressing, showering, feeding, continence etc.] and instrumental (IADL) 

[preparing meals, solving everyday situations, managing finances, doing laundry, taking 

medications etc.] activities of daily living [1].  Mild cognitive impairment (MCI) is 

considered to be the state between the normal cognition and dementia [2]. There are 

many reasons that the MCI should be detected quickly. MCI has a 54% chance to get 

converted in to Alzheimer’s disease (AD) or related dementia [3]. MCI deteriorates the 

ability of the elderly people to perform daily activities and to live an independent life. In 

some cases, patients suffering from complicated diseases (e.g. Parkinson’s Disease) may 

have develop MCI later [4] and progression of cognitive impairment monitoring is crucial 

for their caregivers, doctors and families. MCI may be associated with cardiovascular 

disease, metabolic syndrome, type 2 diabetes, sedentary activity, obesity, excess alcohol, 

and smoking [5]. According to a group from the Alzheimer’s Association, persons who 

already have been suspected to have cognitive impairment based on clinical observations 

or who have self-reported concerns, can undergo cognitive impairment assessment. For 

the cognitive health screening, they have recommended any one of the cognitive 

screening tests of the lists: a) Montreal Cognitive Assessment (MoCA), b) Mini-Mental 

State Examination (MMSE), c) St. Louis University Mental Status Exam (SLUMS), d) 

General Practitioner Assessment of Cognition (GPCOG), e) Mini-Cog, f) Memory 
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Impairment Screen (MIS), g) AD8, or h) Informant Questionnaire on Cognitive Decline 

in the Elderly (short-IQCODE) [6]. Scientists compared the performances of widely used 

cognitive assessment tests and showed so far that when a patient’s cognitive impairment 

goes beyond memory impairment, MoCA should be used [7] and MoCA is more 

sensitive than widely used MMSE [7][8]. Researchers have predicted cognitive scores 

based on the physiological data (Electroencephalogram (EEG)) in a motivation that it 

might be helpful to monitor a person’s cognitive health easily and at the time, when a 

patient is unable to undergo a cognitive assessment. All of the research related with 

measuring the severity of cognitive impairment were based on features extracted from 

multi-channel EEG system: EEG power ratio from 16 channel system by Bennys et al 

[9], EEG power spectra and other information from 16 channel system by Kowalski et al 

[10], EEG power of prominent bands from 20 channel EEG system [11], spectral 

characteristics of EEG from 20 channel system [12], EEG power ratio from 19 channel 

system [13], grand total EEG score from 16 channel system [14] etc.  To our knowledge, 

we didn’t see anyone oher than us reported work on MCI severitiy detection based 

generating score from single channel EEG system.  

In this work, we performed MCI severity generation based on single channel EEG data 

collected from Fz location. Our analysis divided in to two parts: a) Multi-trial, and b) 

Single-trial. We followed multi-trial approach based on classical regression techniques. 

We used features extracted from grand average event related potential (ERP) in this case. 

In single-trial analysis, we generate MCI severity based on convolutional deep neural 

network. We used the time-frequency image of each trial as input to the deep neural 

network. Our key contribution here is to propose model based on multi-trial (best for 
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offline system) and model based single-trial (best for real-time system) to predict the 

severity of cognitive impairment and thus helping to assess the cognitive health at ease. 

4.2 Method 

4.2.1 Participants 

Twenty-three older adults were recruited under a study which was designed to 

observe the aging effect on the auditory system and to evaluate the cognitive performance 

of the subjects. Electroencephalography (EEG) data was collected in this study under an 

experiment where twenty-three older adults (age ranges from 52-86 years; mean ± 

standard deviation: 70.2±7.2 yrs) received auditory stimuli. All the participants had no 

known history of neurological or psychiatric illness and they all were strongly right 

handed [15]. During the participants’ recruitment process, exclusion criteria was followed 

based on age, hearing loss, musical training, and, handedness [16]. Written consent under 

the protocol approved by the Baycrest Centre Ethics Committee (REB #06-31) was 

collected from each participant before data collection and participants were compensated 

for their time after data collection. The cognitive health status of the participants was 

assessed by the well-established cognitive screening tool called Montreal Cognitive 

Assessment (MoCA) test [17]. In this cognitive screening test, among all the participants, 

fifteen older participants (8 male, 7 female) were found to have normal cognition (MoCA 

score ≥26 points; mean± standard deviation: 27.6±1.18; range: 26-30), and eight 

participants’ (4 male, 4 female) were assessed to have MCI (MoCA score <26; mean± 

standard deviation: 23.0±1.85; range: 20-25).  Also, it is important mentioning that in 

general patients having Alzheimer’s disease or more severe dementia generate MoCA 

score within 11.4 to 21. 
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4.2.2 Study Design 

The study was designed in such a way that the subjects will hear five auditory stimuli. 

Stimuli was constructed by constructing a perceptual phonetic continuum from   ∕ 𝑢/ to 

∕a/ by varying parametrically the first formant (F1) frequency between 430 and 730 Hz  

over five equal steps (For further stimulus details, see [27,28] ). The synthetic five-

stepped vowel continuum (denoted hereafter by “vw1-5”) was built in a way such that 

each token of 100 ms sound would differ minimally acoustically while hearing, still be 

perceived categorically [28-29]. As we are aware of the fact that hearing loss due to aging 

may alter auditory evoked potentials from cortical region [20], and also may affect the 

response that the participant makes, an audiometric testing was performed. However, the 

audiometric testing demonstrated that hearing thresholds were not distinguishable 

between groups (Normal and MCI) at octave frequencies between 250 and 4000 Hz [16], 

which is well outside of the bandwidth of the stimuli.  

 

4.2.3 Data Collection and Event Related Potential Processing 

Data collection technique and response evaluation were homogeneous to the studies 

reported in [22,26,28,30,31]. During EEG recording, participants went through 200 trials 

for each sound token. The experiment was conducted in an electroacoustically shielded 

chamber (Industrial Acoustics, Inc.). Subjects experienced the stimuli through earphones 

(ER-3A, Etymotic Research) in both ears at an intensity of 83 dB SPL. To eliminate 

electromagnetic stimulus artifact from corrupting neurophysiological responses, extended 

acoustic tubing (50 cm) was used [26,28,32]. Sound token came to them in a randomly 
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ordered way and they were requested to rapidly categorize them with a binary response 

(“u” or “a”). Each sound token was 100 ms duration with 10 ms of rise and fall time to 

reduce the spectral splatter [20]. After the participants’ response, an inter-stimulus 

interval (ISI) followed randomly between 400 and 600 ms (20-ms steps, rectangular 

distribution) to avoid subjects anticipating subsequent stimuli [24]. SynAmps RT EEG 

amplifiers (Compumedics Neuroscan, Charlotte, NC, USA) were used to capture EEG 

data. EEGs was recorded differentially between an electrode placed on the high forehead 

at the hairline referenced to linked mastoids. To record auditory evoked potentials from 

cortical origin, this montage ( ̴Fpz-A1/A2) is considered optimal [28, 34-35]. Throughout 

the duration of the experiment, contact impedances were maintained below 3 kΩ, and the 

EEG signal was captured at 20 kHz sampling rate and then filtered by a band pass filter 

having passband within 0.05 Hz – 3500 Hz.  

 

Fig. 15.  A multi-trial ERP from subject ID 3610 for five auditory stimuli (vw1, vw2, vw3, vw4, vw5) 
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EEG data were processed using ERPLAB, an open source toolbox, which runs in the 

MATLAB environment [26]. An interval of 700 ms (100 ms pre-stimulus and 600 ms 

post-stimulus) constituted an EEG epoch as shown in Fig. 15 [3]. The pre-stimulus region 

was used for baseline correction, where the subtraction method [27] was used.  Trials 

exceeded ± 50 μV were excluded from the analysis as they were probably contaminated 

by different artifacts such as eye-blinks, eye-movements etc as mentioned in [38-39]. For 

each auditory stimulus, artifact free epochs were used to calculate the grand average ERP 

(i.e. average of 200 trails). Finally, the grand average ERP is bandpass filtered from 

within (0-30) Hz because of a priori knowledge of the ERP bandwidths and the stimuli 

[22, 26,28, 31, 35,40]. A visual representation of the extracted ERP from the multi trials 

from a subject ID 3610 is presented in Fig. 15. 

4.3 Multi trial analysis 

4.3.1 Feature Extraction and Ranking 

We extracted total 590 candidate features from the ERP prominent points and the 

time and spectral domain characteristics, and used top 25 features in the classification 

models, which were ranked by the random forest algorithm. In the cortical auditory 

evoked responses, prominent ERP points seem to have discriminatory power between 

normal and MCI stage [31] in the older adults. For that reason, we have included the ERP 

prominent points in the candidate feature vector (CFV). The ERP prominent points such 

as Pa, P1, N1, and P2 were defined as the peak between the intervals [25 ms - 35 ms], [60 

ms – 80 ms], [90 ms – 110 ms], and [150 ms -  250 ms], respectively [3] as shown in Fig. 

16. The peak amplitudes and their respective latencies of these prominent points, and the 

mean amplitudes of the intervals containing the prominent points are also included in the 
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CFV because of their known importance in separating groups in the experiments 

involving evoked responses [32]. Relative powers in the EEG bands (i.e. 

delta/theta/alpha/beta) are also useful in classifying normal, mild cognitive impaired, and 

Alzheimer’s’ disease group [33]; thereby, included in the CFV. Total 16 features were 

calculated form the ERP prominent points from each stimulus, which resulted in total 80 

feature points in the CFV.  

As the ERP changes rapidly with time within the window over which the stimulus is 

applied, it is important to track the variation of the time-domain characteristics in high-

resolution. In order to accomplish that, we applied a 25ms window, with a 50% overlap 

through the entire ERP signal as depicted in Fig. 16.  The sliding window allows us to 

observe the variation of the time domain properties, which has shown significance in 

classifying MCI and normal subject in earlier studies [16]. Total 107 time-domain 

characteristics such as signal statistics, correlation properties, entropies, etc. from each 

window were calculated using the opensource software package “HCTSAtool” [43] 

written in Matlab. For the details of the extracted time domain characteristics, please see 

Ref. [44-45]. To calculate the variation of the time-domain characteristics over time, we 

computed the slope and the coefficient of variation (CV), which constituted two feature 

points at each time-stamp for each stimulus. The feature points that had intra-class 

similarity and inter-class variability (judged by visual inspection) were included in the 

CFV. For example, Fig. 16 (a &b) show the slope and CV of one of the time domain 

characteristics (computed by the HCTSA tool known as “proportion of data within two-

standard deviation of mean [44-45]”) for the normal and the MCI group, respectively. 

Here we observe that this feature point is different for two classes and the shaded regions 
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depict that there is intra-class similarity, but this feature is different between the classes 

(i.e. interclass variability), thereby selected as a feature point in the CFV. Similarly, the 

slope and CV shown in Fig. 16 (c&d) at a different timestamp also have intra-class 

similarity and inter-class variability, which fulfill their requirement to be in the CFV. 

Among all the time-domain feature points, 510 such feature points met the condition as 

mentioned above and were included in the CFV.  

All 590 features of the CFV (i.e. 80 from the prominent points and 510 from the time-

domain characteristics) were ranked by the lasso regression algorithm, and top 13 

features were used in the regression methods. The lasso regression algorithm was 

implemented using MATLAB. Lasso is a regularization technique to find the good 

features in a regression problem and thus to reduce the number of features in a large 

feature set [34]. For a given value of λ, lasso solves the below mathematical 
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Fig. 16 Schematic of the feature extraction process: (a) and (c) are slopes and (b) and (d) are covariances 

for two different time windows from timestamp t1 to t2 

 

 

problem: 

min
𝛽0,𝛽

(
1

2𝑁
∑(𝑦𝑖 − 𝛽0 −  𝑥𝑖

𝑇𝛽)2 +  𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

) 

 

(10) 

 

Here, N is the number of observations, yi is the response at observation i, xi is data, a 

vector of p values at observation i, λ is a positive regularization parameter corresponding 

to one value of Lambda, 𝛽0, 𝛽 are scalar parameters and p is vector parameters. 
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:  

Fig. 17: Lasso regression-based feature selection: five-fold cross-validated mean squared error/deviance vs. 

lambda 

According to the above figure (Fig. 17), when the lambda is close to 10-1, the cross-

validated deviance is the lowest and the number of features that has generated the 

deviance is 13. 

 

4.3.2 Regression 

As the MoCA scores are bounded 0-30, so instead of straight linear regression, 

multivariate regression with logit link function, ensemble regression, support vector 

regression and ridge regression were tried. We performed five-fold cross-validation to 

ensure the robustness of the model and the reliability of the results.  
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4.4 Single trial analysis 

4.4.1 Feature Extraction  

For the single trial analysis, we consider each trial length from the onset of the 

stimulus to the response of the subjects. We excluded those responses which are less than 

0.2 ms or greater than 1.5 ms [16] or where the range of the magnitude of the signal is 

greater than 100 µV as they might be contaminated by artifacts. [35]. We then did a time 

frequency analysis over each individual trial from (0-100) Hz frequency. We collected 

the generated image of time-frequency in png format and used it for deep neural network 

analysis. pspectrum.m from MATLAB 2018a was used to extract the time frequency 

feature. A sample image is given in Fig. 18. 

 

Fig. 18: Time Frequency Image Feature Sample 
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4.4.2 Deep Neural Regression and Bayesian Optimization 

We have total 2848 samples as our input. We constructed our deep neural network 

with the help of keras package from python. We used sequential model. We constructed 

three sets of convolutional 2D layer and maxpooling layer with ‘relu’ activation layer. 

Then, we used the flatten layer, two dense layers with ‘tanh’ activation layer in between. 

To find out the optimal convolutional filter size, dropout rate, and no. of epoch, we used 

gaussian process-based Bayesian optimization. The whole process of the gaussian 

process-based Bayesian optimization can be divided into four steps. For the convenience 

of the explanation, we will explain the third and fourth steps together. The steps are: a) 

Presample, b) Kernel Comparison, and c) Exploration and Exploitation. The details of the 

Bayesian optimization stages are depicted in Fig. 19. 

 

Fig. 19: Bayesian Optimization Stages 

In the presample stage, we define a uniform distribution for each of our 

hyperparameter (convolutional filter size, dropout rate, and no. of epoch). Each time we 

randomly sampled from the uniform distributions without repetition and we used them in 

the deep neural network and obtained the cross-validated root mean square error. We 

repeated the process five times in the presample stage. Then we entered into the Kernel 
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Comparison stage. We used five kernels: i) Matern, ii) Radial Basis Function, iii) 

Rational Quadratic, iv) Exponential Sinsquared, and v) Dot Product to compare the 

performance of sample fitting in to gaussian process. The kernel performances in terms of 

sum square error (SSE) are given below: 

TABLE 6. KERNEL PERFORMANCE OF DATA FITTING IN GAUSSIAN PROCESS 

Kernel SSE 

Matern 5.45e-19 

Radial Basis Function 5.45e-19 

Rational Quadratic 3.59e-19 

Exponential Sinsquared 2.48 

Dot Product 54.14 

 

 

Fig. 20: Presample fit performance to gaussian kernel dot product 
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Fig. 21: Presample fit performance to gaussian kernel rational quadratic 

According to Fig. 20, the gaussian model defined with kernel dot product did not fit 

the data well and that is why there are big differences between actual and predicted 

samples. Whereas Fig. 21 reflected that the gaussian model defined with the rational 

quadratic kernel fitted the data well. So, we used this kernel for our rest of the Bayesian 

optimization process. In the exploration stage, we defined the gaussian process with the y 

kernel. We fit it with presampled data. Then we used the following acquisition function 

to calculate our next sample.  

𝐸𝐼(𝑥) =  {
(𝜇(𝑥) − 𝑓(𝑥+))Φ(𝑍) +  𝜎(𝑥)𝜙(𝑍)                               𝑖𝑓 𝜎(𝑥) > 0 

   0                                                                                               𝑖𝑓  𝜎(𝑥) = 0  
 

𝑍 =  
𝜇(𝑥) − 𝑓(𝑥+)

𝜎(𝑥)
 

(11) 

Where x is the array of possible samples that can be taken in the next steps, 𝜇(𝑥) and 

𝜎(𝑥) are the mean and standard deviation of the output values returned by the gaussian 
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process against x, 𝑓(𝑥+)  is the lowest RMSE obtained so far, Φ(𝑍) and 𝜙(𝑍)  are the 

PDF and CDF of the standard normal distribution respectively [36]. We took the sample 

for our deep neural network implementation which got highest EI value according to 

equation z. We repeated the process fifteen times and we concluded the exploration stage. 

As we get many similar performing samples in the exploration stage, so we didn’t want to 

exploit around some samples. Finally we selected convolutional filter size, dropout rate , 

and epoch .The detail parameters of the model is depicted in Fig. 22. In the bayesian 

optimization phase and in the final phase, after constructing the deep neural network 

model, we compiled it with ‘adadelta’ optimizer. We evaluate the model always with 

five-fold cross-validation.   
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Fig. 22: Convolutional Deep Neural Network for Regression: Layers and Their Parameters 

 

Fig. 23: Flow Diagram of the method 
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4.5 Results 

In the multi-trial analysis, we used the top 13 features which were decided by the 

outcome of the lasso regression-based feature extraction techniques in all the regression 

techniques mentioned in the regression section to predict MoCA scores from neural 

measures. To compare among the regression techniques used in the multi-trial analysis, 

we used normalized mean square error (NMSE). The scores are reported in TABLE 7. 

TABLE 7. RMSE FOR REGRESSION METHODS USED FOR MULTI-TRIAL ANALYSIS 

Method NMSE 

Multivariate Regression (link 
function = logit) (MR) 

1.55 

 

Ensemble Regression(ER) 0.08 

Support Vector Regression(SVR) 0.01 

 

The regression methods MR, ER, and SVR generates five-fold cross-validated NMSE 

1.55, 0.08, and 0.01 respectively. Based on NMSE, Support Vector Regression (SVR) 

performs the best among all techniques. The second-best technique is the ensemble 

regression (ER). The actual and the predicted MoCA scores for different samples for MR, 

ER, and SVR were presented in Fig. 24. In the case of SVR, the actual and predicted data 

match very well. MVR fails to predict the data and performance of ER is in the middle. 

We performed residual analysis to check the robustness of the models. 

 
 

Fig. 24: Actual and Predicted MoCA score for Multivariate Regression (MVR), Ensemble Regression (ER) 

and Support Vector Regression (SVR) 
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In Fig. 25, we plotted the residual analysis results of the first two well performing 

regression model (SVR, ER). For each regression model, we presented two graphical 

analysis: a) sample quantiles vs. theoretical quantiles of the residuals or quantile-quantile 

plot (qqplot) and b) residuals vs fitted data by the regression model.  The qqplot of the 

residuals is generally used to verify the assumption that the residuals are normally 

distributed. As both of the models show normal patterns (approximately straight line) in 

the qqplot, the models pass the normality test. Then we analyzed the residual vs fitted 

plot. A good regression model should be homoscedastic which means its residual should 

be uncorrelated, uniform, should be random over the fitted or predicted value. The plot of 

SVR shows a pattern whereas the plot for ER shows randomness of the residual. After 

this analysis, we recommend ER model for this data rather than SVR although SVR gave 

NMSE lower than the ER. It is because the ER model shows robustness in all the 

analysis, we state that ER the best among all the model we experimented. For the 

implementation of applying ER, we used MATLAB and for implementing MR, and, 

SVR, we used several packages such as “e1071”, “caret” etc. For residual analysis, we 
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used MATLAB. 

 

Fig. 25: Residual Analysis for Support Vector Regression (SVR) and Ensemble Regression (ER) Used in 

Multi Trial Analysis 

 

TABLE 8. NMSE AND MAE FOR DEEP NEURAL NETWORK USED IN SINGLE TRIAL ANALYSIS 

NMSE MAE 

0.09 1.1 
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Fig. 26: Residual Analysis for Deep Neural Network Regression Model Used in Single Trial Analysis 

In the single trial analysis, we calculated the cross validated NMSE and mean 

absolute error (MAE) for the constructed convolutional deep neural network. To check 

the robustness of the model, we also did a residual analysis which we presented in Fig. 

26. We tried different combination of convolutional, max-pooling, and activation layer 

and calculated NMSE and MAE for all of them. The best result is reported here. Our deep 

neural network regression model able to achieve 0.09 NMSE and 1.1 MAE (TABLE 8).  

In Fig. 26, We performed residual analysis of the deep neural network. We observed 

that the qqplot (sample quantiles vs. theoretical quantiles) of the residuals can be 

approximated as linear. So, the model maintains the normality assumption. Also, 

residuals vs. fitted plot shows that the residuals are not following pattern with the change 

of the fitted value. 
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4.6 Conclusion 

Although MCI detection is being investigated by researchers in recent years, MCI 

severity measurement is a relatively new topic. In the current study, we generated the 

MoCA score automatically with good correlation from the single channel EEG data 

which will help to assess a person’s cognitive health automatically with a low cost, 

portable, and less-burdensome setup. We carried out multi and single trial analysis and 

the results of both cases were promising.  In the multi-trial analysis, we applied several 

classical regression models and found that the ER (Ensemble Regression) performed best 

with NMSE = 0.08. In the single trial analysis, our constructed convolutional deep neural 

network generated the MoCA scores with NMSE = 0.09. We are the first one as per our 

knowledge to generate MoCA score from single channel EEG data and also from both 

multi trial or single trial data from single channel EEG. We believe that our current study 

has a broad scope in cognitive health monitoring for MCI patients in mobile health 

(mHealth) and health status monitoring in a smart and connected community (SCC).  
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5. Conclusion and Future Directions  

Brain monitoring using a small number of EEG sensors in non-clinical settings has 

drawn a lot of attention lately due to ease-of-use and low-cost. These real-time BCI 

applications like cognitive load assessment, diagnosis of brain disorders, fatigue 

prediction, and cognitive biometrics, need fast and efficient pre-processing algorithms to 

process and analyze raw brain signals reliably in real time. The most common artifact in 

the EEG signal is due to the ocular activity. This dissertation presents an effort to develop 

unsupervised ocular artifact removal algorithm and to develop algorithms to detect MCI 

and to measure MCI severity. The key findings of this dissertation are: (a) developing a 

wavelet based ocular artifact removal algorithm for single channel EEG system (Chapter 

2); (b) developing a classical machine learning based algorithm to detect MCI from the 

single channel EEG data in response auditory stimulus (Chapter 3);  (c) developing a 

classical regression with grand average ERP and a deep learning with single trial ERP 

based method to measure the severity of MCI from a single channel EEG system. This 

chapter summarizes the key findings from each chapter and outlines future directions of 

this research that can further contribute to the studies presented here. Detailed discussions 

and conclusions reached from each study are presented at the end of the individual 

chapters.  

In Chapter 2, the data from the AF3 channel of a 10-20 EEG system was used as a 

proof of concept of a single channel EEG data, which was contaminated with ocular 

artifacts (OA).  In this study, several WT based methods were used to find out the best 

technique for OA removal. Based on the different performance metric-based results, 

DWT with ST using coif3 and bior4.4 wavelet basis functions have performed well for 
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OA removal while preserving neuronal signals in the non-blink regions based on CC, MI, 

SAR, NMSE and time-frequency analysis. However, the algorithm developed here is not 

specific to the channel and is applicable to EEG recordings from any channel of 10-20 

EEG system. It is to be noted that DWT is a faster technique which require less 

computational resources and thus it is suitable for real-time analysis. 

In Chapter 3, an MCI detection method based on single-channel EEG data was 

demonstrated. In the study, scalp EEG data from Fpz location of twenty-three subjects 

were collected while the subjects were stimulated with five auditory stimuli. All the 

subjects’ cognitive assessment was done by the Montreal Cognitive Assessment Test 

(MoCA). The 590 features from the Event-Related Potential (ERP) of the collected EEG 

signals, which included time and spectral domain characteristics of the response were 

extracted.  The top 25 features, ranked by the random forest method, were used for 

classification models to identify subjects with MCI. Robustness of our model was tested 

using five-fold cross-validation while training the classifiers. Best results (leave-one-out-

cross-validation accuracy 87.5%, sensitivity 85%, specificity 95%, and F score 88%) 

were obtained using support vector machine (SVM) method with Radial Basis Kernel 

(RBF) (sigma = 10/cost = 100). Similar performances were also observed with logistic 

regression (LR), further validating the results. These results suggest that this single-

channel EEG based algorithm could provide a robust biomarker for early, cost-effective 

and portable, and continuous MCI patient monitoring.  

In Chapter 4, a single-channel EEG based MCI severity monitoring algorithm was 

developed where MoCA score was generated from features extracted from single-channel 

EEG data. Two approaches have been taken to solve the problem: a) multi-trial analysis 
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and b) single-trial analysis. In the multi-trial analysis, 590 features were extracted from 

the prominent ERP points and time domain characteristics of the ERP. Lasso regression 

technique was used to select the best feature set. In this study, 13 best features were used 

in the classical regression techniques, which were Multivariate Regression (MR), 

Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression 

(RR). The best results were obtained from ER according to the RMSE  1.6 and residual 

analysis. In the single-trial analysis, time-frequency image from each trial was extracted 

and these image features used as input to the constructed convolutional deep neural 

network (CNN). This deep CNN model gave 1.43 RMSE. We believe that this method 

will be implementable in portable setup and provide cognitive healthcare for elderly 

people with MCI or patients who have self-reporting concerns. 

Future direction regarding artifact removal algorithm development includes 

development of other artifact removal algorithm such as ECG, motion, and other types of 

artifacts and incorporating all of them in a single algorithm. Implementation of combined 

artifacts removal algorithm in the embedded platform and validating the process with 

large number of subjects would be a feasible extension of this work. In future, different 

thresholding, adaptive wavelet, wavelet packet transform, and single channel ICA with 

wavelet transform can also be investigated and compared with these findings. Future 

direction regarding MCI detection and measurement of severity of the MCI can include 

collection of data from a large number of subjects, assessing the cognitive health of the 

subjects by more than one cognitive assessment tool such as MoCA, MMSE, GPCOG, 

and Recall test, comparing the sensitivity and effectiveness of various cognitive 

assessment tools, compare different EEG channel performance, investigating the impact 
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of classical and deep neural network based machine learning technique on them, and 

implementation of the algorithm in a wearable platform.  
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Appendix  

In this section, the code to produce results in different sections are provided. 

A1. Matlab code for the ocular artifact removal algorithm using statistical 

threshold 

 

function reconstructed_eeg = NonOverlap1(raw_eeg, wname)  

%% Parameter Description 

% raw_eeg = EEG signal contaminated with artifacts 

% wname = wavelet to decompose ('sym3', 'haar', 'coif3', 'bior4.4') 

 %% 

    Level = 8; 

    [C L] = wavedec(raw_eeg,Level,wname); % wavelet decomposition 

     j=L(1)+1;     

%% Statistical Thresholding 

    for i=1:1:6    

        x = C(j:1:(j+L(i+1)-1));   

        T = 1.5*std(x);              

        for k=j:1:(j+L(i+1)-1) 

  

              if(C(k)>T) 

                    C(k)=0; 

                elseif(C(k)<-T) 

                    C(k)=0; 

              end 

  

 end 

    j=j+L(i+1); 

    end 

%% 

  reconstructed_eeg = waverec(C,L,wname); % wavelet reconstruction 

end 

 

A2. Matlab code for ocular artifact removal algorithm using universal threshold 

 

function reconstructed_eeg = NonOverlap1(raw_eeg, wname)  

%% Parameter Description 

% raw_eeg = EEG signal contaminated with artifacts 

% wname = wavelet to decompose ('sym3', 'haar', 'coif3', 'bior4.4') 

 %% 
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    Level = 8; 

    [C L] = wavedec(raw_eeg,Level,wname); % wavelet decomposition 

     j=L(1)+1;     

%% Universal Thresholding 

    for i=1:1:6    

        x = C(j:1:(j+L(i+1)-1));   

        m1=median(abs(C(j:(j+L(i+1)-1)))/0.6745); %threshhold as per Journal article 

        T=sqrt(2*log(L(i+1))*m1);   

        for k=j:1:(j+L(i+1)-1) 

  

              if(C(k)>T) 

                    C(k)=0; 

                elseif(C(k)<-T) 

                    C(k)=0; 

              end  

        end 

    j=j+L(i+1); 

    end 

%% 

  reconstructed_eeg = waverec(C,L,wname); % wavelet reconstruction 

 end 

 

A3. Code to produce simulated artifact 

 

function bl = eyeblink(sFreq)  

%% Input 

%  sFreq: sampling frequency of data collection  

%sFreq = 128; 

freq = 2; 

nSample = ceil(sFreq/freq);  

t = linspace(-1,1,nSample); 

bl = (sinc(t)).^2*150; 

%figure, plot(t,bl) 

 

A4. Code to prove the ocular artifact removal algorithm with simulated artifact 

clc;clear all;close all; 

S = {}; 

CC = zeros(6, 1) ; MI = zeros(6, 1) ; MSE = zeros(6, 1) ; 

Mean_AE = zeros(1, 4, 6); 

 %input 

Fs = 128; 

wname = cellstr(['sym3   ';'coif3  ';'bior4.4';'db2    ';]); 

% wname = cellstr(['haar']); 
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% window = 128:128:1280; 

window = 128:128:1280; 

 for z = 1:length(wname) 

    for y = 1:length(window) 

         

        sig3=importdata('t.csv'); 

        sig1 = sig3(1:2927); sig2 = sig3(8159:9984); 

        sig = [sig1;sig2]; 

        sig = sig(1:4736) - mean(sig(1:4736)); 

  

        q = length(sig)/window(y); 

        t = 0:1/Fs:(q-1)/Fs; 

  

        sig_with_artifact = sig; 

        blink = eyeblink(Fs)'; 

        len = length(blink); 

        %% 

        index1 = 501:500 + len; 

        index2 = 1501:1500 + len; 

        index3 = 2501:2500 + len; 

        index4 = 3501:3500 + len; 

        %% 

        sig_with_artifact(index1) = sig_with_artifact(index1) + blink; 

        sig_with_artifact(index2) = sig_with_artifact(index2) + blink; 

        sig_with_artifact(index3) = sig_with_artifact(index3) + blink; 

        sig_with_artifact(index4) = sig_with_artifact(index4) + blink; 

         %% 

        dummy_sig = zeros(1,length(sig_with_artifact)); 

        dummy_sig(index1) = blink; 

        dummy_sig(index2) = blink; 

        dummy_sig(index3) = blink; 

        dummy_sig(index4) = blink; 

        reconstructed_signal_nonoverlapped = NonOverlap1(sig_with_artifact, 

window(y), wname{z}); 

         % figure() 

        % plot(t, sig+750), hold on, plot(t, dummy_sig+450, 'r'), hold on, plot(t, 

sig_with_artifact+200), hold on, plot(t, reconstructed_signal_nonoverlapped, 'k') 

        % legend('pure eeg', 'artificial blink', 'eeg with artifact added', 'after artifact 

removal') 

        % set(gca,'FontSize',10); 

        % figure() 

        % plot(sig_with_artifact) 

         %performance metric 
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        RR = corrcoef(sig, reconstructed_signal_nonoverlapped); 

        CC(1) = RR(2); 

  

        MM = minfo(sig', reconstructed_signal_nonoverlapped'); 

        MI(1) = MM; 

  

        MSE(1) = sum((sig - reconstructed_signal_nonoverlapped).^2)/length(sig); 

  

        Mean_AE(:, :, 1) = mae(reconstructed_signal_nonoverlapped, sig); 

         

%######################################################################

####### 

        sig3=importdata('FinalRuhi21.csv'); 

        sig1 = sig3(1:2596); sig2 = sig3(7374:9984); 

        sig = [sig1;sig2]; 

        sig = sig(1:5120) - mean(sig(1:5120)); 

  

        t = 0:1/Fs:(q-1)/Fs; 

         sig_with_artifact = sig; 

         sig_with_artifact(index1) = sig_with_artifact(index1) + blink; 

        sig_with_artifact(index2) = sig_with_artifact(index2) + blink; 

        sig_with_artifact(index3) = sig_with_artifact(index3) + blink; 

        sig_with_artifact(index4) = sig_with_artifact(index4) + blink; 

  

        reconstructed_signal_nonoverlapped = NonOverlap1(sig_with_artifact, 

window(y), wname{z}); 

         %performance metric 

        RR = corrcoef(sig, reconstructed_signal_nonoverlapped); 

        CC(2) = RR(2); 

  

        MM = minfo(sig', reconstructed_signal_nonoverlapped'); 

        MI(2) = MM; 

  

        MSE(2) = sum((sig - reconstructed_signal_nonoverlapped).^2)/length(sig); 

  

        Mean_AE(:, :, 2) = mae(reconstructed_signal_nonoverlapped, sig); 

  

  

        

%######################################################################

####### 

        sig3=importdata('Editedjack11.csv'); 

        sig1 = sig3(1:1140); sig2 = sig3(8447:9984); 
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        sig = [sig1;sig2]; 

        sig = sig(1:2560) - mean(sig(1:2560)); 

         t = 0:1/Fs:(q-1)/Fs; 

         sig_with_artifact = sig; 

         if(index1(end) < length(sig)) 

            sig_with_artifact(index1) = sig_with_artifact(index1) + blink; 

        end 

        if(index2(end) < length(sig)) 

            sig_with_artifact(index2) = sig_with_artifact(index2) + blink; 

        end 

        if(index3(end) < length(sig)) 

            sig_with_artifact(index3) = sig_with_artifact(index3) + blink; 

        end 

        if(index4(end) < length(sig)) 

            sig_with_artifact(index4) = sig_with_artifact(index4) + blink; 

        end 

  

        reconstructed_signal_nonoverlapped = NonOverlap1(sig_with_artifact, 

window(y), wname{z}); 

         %performance metric 

        RR = corrcoef(sig, reconstructed_signal_nonoverlapped); 

        CC(3) = RR(2); 

         MM = minfo(sig', reconstructed_signal_nonoverlapped'); 

        MI(3) = MM; 

         MSE(3) = sum((sig - reconstructed_signal_nonoverlapped).^2)/length(sig); 

         Mean_AE(:, :, 3) = mae(reconstructed_signal_nonoverlapped, sig); 

  

        

%######################################################################

####### 

        sig3=importdata('Editedjack21.csv'); 

        sig1 = sig3(1:2001); 

        sig = sig1; 

        sig = sig(1:1920) - mean(sig(1:1920)); 

         t = 0:1/Fs:(q-1)/Fs; 

         sig_with_artifact = sig; 

         if(index1(end) < length(sig)) 

            sig_with_artifact(index1) = sig_with_artifact(index1) + blink; 

        end 

        if(index2(end) < length(sig)) 

            sig_with_artifact(index2) = sig_with_artifact(index2) + blink; 

        end 

        if(index3(end) < length(sig)) 
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            sig_with_artifact(index3) = sig_with_artifact(index3) + blink; 

        end 

        if(index4(end) < length(sig)) 

            sig_with_artifact(index4) = sig_with_artifact(index4) + blink; 

        end 

  

        reconstructed_signal_nonoverlapped = NonOverlap1(sig_with_artifact, 

window(y), wname{z}); 

  

        %performance metric 

        RR = corrcoef(sig, reconstructed_signal_nonoverlapped); 

        CC(4) = RR(2);  

        MM = minfo(sig', reconstructed_signal_nonoverlapped'); 

        MI(4) = MM;  

        MSE(4) = sum((sig - reconstructed_signal_nonoverlapped).^2)/length(sig);  

        Mean_AE(:, :, 4) = mae(reconstructed_signal_nonoverlapped, sig); 

  

        

%######################################################################

####### 

        sig3=importdata('FinalANki11.csv'); 

        sig1 = sig3(1:2294); 

        sig = sig1; 

        sig = sig(1:2176) - mean(sig(1:2176));  

        t = 0:1/Fs:(q-1)/Fs;  

        sig_with_artifact = sig; 

  

        if(index1(end) < length(sig)) 

            sig_with_artifact(index1) = sig_with_artifact(index1) + blink; 

        end 

        if(index2(end) < length(sig)) 

            sig_with_artifact(index2) = sig_with_artifact(index2) + blink; 

        end 

        if(index3(end) < length(sig)) 

            sig_with_artifact(index3) = sig_with_artifact(index3) + blink; 

        end 

        if(index4(end) < length(sig)) 

            sig_with_artifact(index4) = sig_with_artifact(index4) + blink; 

        end 

  

        reconstructed_signal_nonoverlapped = NonOverlap1(sig_with_artifact, 

window(y), wname{z}); 
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        %performance metric 

        RR = corrcoef(sig, reconstructed_signal_nonoverlapped); 

        CC(5) = RR(2);  

        MM = minfo(sig', reconstructed_signal_nonoverlapped'); 

        MI(5) = MM;  

        MSE(5) = sum((sig - reconstructed_signal_nonoverlapped).^2)/length(sig);  

        Mean_AE(:, :, 5) = mae(reconstructed_signal_nonoverlapped, sig); 

  

  

        

%######################################################################

####### 

        sig3=importdata('FinalSah11.csv'); 

        sig1 = sig3(7596:9984); 

        sig = sig1; 

        sig = sig(1:2304) - mean(sig(1:2304)); 

  

        t = 0:1/Fs:(q-1)/Fs;  

        sig_with_artifact = sig; 

  

        if(index1(end) < length(sig)) 

            sig_with_artifact(index1) = sig_with_artifact(index1) + blink; 

        end 

        if(index2(end) < length(sig)) 

            sig_with_artifact(index2) = sig_with_artifact(index2) + blink; 

        end 

        if(index3(end) < length(sig)) 

            sig_with_artifact(index3) = sig_with_artifact(index3) + blink; 

        end 

        if(index4(end) < length(sig)) 

            sig_with_artifact(index4) = sig_with_artifact(index4) + blink; 

        end 

        reconstructed_signal_nonoverlapped = NonOverlap1(sig_with_artifact, 

window(y), wname{z}); 

  

        %performance metric 

        RR = corrcoef(sig, reconstructed_signal_nonoverlapped); 

        CC(6) = RR(2);  

        MM = minfo(sig', reconstructed_signal_nonoverlapped'); 

        MI(6) = MM;  

        MSE(6) = sum((sig - reconstructed_signal_nonoverlapped).^2)/length(sig);  

        Mean_AE(:, :, 6) = mae(reconstructed_signal_nonoverlapped, sig);         

        S = [S; {CC, MI, MSE, Mean_AE}];         
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    end 

end 

  

A5. R code to rank feature in Chapter 3 

 

install.packages('randomForest') 

library(randomForest) 

data <- read.csv("feature_vector.csv", header = FALSE) 

#data[, 1] <- factor(data[, 1], labels = c("Mild Cognitive Impairment", "Normal")) 

feature_name <- paste0(rep('F', 590), 1:590) 

names(data) <- c('Class',feature_name) 

data.rf <- randomForest(Class~., data, ntree=590, keep.forest=FALSE, mtry = 50,  

                          importance=TRUE) 

#imp <- data.rf$importance 

#write.csv(imp, "Ranking.csv") 

 

A6. Matlab code for SVM parameter search 

 

clc;clear all;close all; 

  

data = importdata('Feature_Vect.csv'); 

train = data(:, 1:501); 

k=1; 

degree = 2:4; 

cost = [0.01 0.1 1 10 100]; 

sigma = [10^-5 10^-4 10^-3 10^-2 10^-1 1 10]; 

  

result_len = length(degree)*length(cost) + length(sigma)*length(cost); 

  

crossvalidation_accuracy = zeros(1, result_len); 

support_vector = zeros(1, result_len); 

  

  

trainingData = train; 

inputTable = array2table(trainingData, 'VariableNames', {'column_1', 'column_2', 

'column_3', 'column_4', 'column_5', 'column_6',... 

'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 'column_12', 

'column_13', 'column_14', 'column_15', ... 

'column_16', 'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 

'column_22', 'column_23', 'column_24',... 

'column_25','column_26'}); 
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predictorNames = {'column_2', 'column_3', 'column_4', 'column_5', 'column_6',... 

'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 'column_12', 

'column_13', 'column_14', 'column_15', ... 

'column_16', 'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 

'column_22', 'column_23', 'column_24',... 

'column_25','column_26'} 

isCategoricalPredictor = []; 

  

predictors = inputTable(:, predictorNames); 

response = inputTable.column_1; 

         

for i = 1:length(degree) 

    for j = 1:length(cost) 

        predictors = inputTable(:, predictorNames); 

        classificationSVM = fitcsvm(... 

                 predictors, ... 

                 response, ... 

                 'KernelFunction', 'polynomial', ... 

                 'PolynomialOrder', degree(i), ... 

                  'KernelScale', 'auto', ... 

                    'BoxConstraint',cost(j) , ... 

                    'Standardize', true, ... 

                    'ClassNames', [0; 1]); 

  

            % Create the result struct with predict function 

    %         predictorExtractionFcn = @(x) array2table(x, 'VariableNames', 

predictorNames(1:i)); 

            predictorExtractionFcn = @(x) array2table(x, 'VariableNames', 

predictorNames(ind)); 

            svmPredictFcn = @(x) predict(classificationSVM, x); 

            trainedClassifier.predictFcn = @(x) 

svmPredictFcn(predictorExtractionFcn(x)); 

  

            % Add additional fields to the result struct 

            trainedClassifier.ClassificationSVM = classificationSVM; 

            trainedClassifier.About = 'This struct is a trained classifier exported from 

Classification Learner R2016a.'; 

            trainedClassifier.HowToPredict = sprintf('To make predictions on a new 

predictor column matrix, X, use: \n  yfit = c.predictFcn(X) \nreplacing ''c'' with the 

name of the variable that is this struct, e.g. ''trainedClassifier''. \n \nX must contain 

exactly 16 columns because this classifier was trained using 16 predictors. \nX must 

contain only predictor columns in exactly the same order and format as your training 

\ndata. Do not include the response column or any columns you did not import into 
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\nClassification Learner. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

  

            % Extract predictors and response 

            % This code processes the data into the right shape for training the 

            % classifier. 

            % Convert input to table 

  

            isCategoricalPredictor = [isCategoricalPredictor; false]; 

            % Perform cross-validation 

            partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 

33); 

  

            % Compute validation accuracy 

            validationAccuracy1 = 1 - kfoldLoss(partitionedModel, 'LossFun', 

'ClassifError'); 

            validationAccuracy(k) = validationAccuracy1; 

             

            supportvector1 = sum(classificationSVM.IsSupportVector); 

            supportvector(k) = supportvector1; 

            k = k +1; 

    end 

end 

  

for i = 1:length(sigma) 

    for j = 1:length(cost) 

%         predictors = inputTable(:, predictorNames(ind)); 

        classificationSVM = fitcsvm(... 

                 predictors, ... 

                 response, ... 

                 'KernelFunction', 'rbf', ... 

                 'KernelScale', sigma(i), ... 

                    'BoxConstraint',cost(j) , ... 

                    'Standardize', true, ... 

                    'ClassNames', [0; 1]); 

  

            % Create the result struct with predict function 

    %         predictorExtractionFcn = @(x) array2table(x, 'VariableNames', 

predictorNames(1:i)); 

            predictorExtractionFcn = @(x) array2table(x, 'VariableNames', 

predictorNames); 
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            svmPredictFcn = @(x) predict(classificationSVM, x); 

            trainedClassifier.predictFcn = @(x) 

svmPredictFcn(predictorExtractionFcn(x)); 

  

            % Add additional fields to the result struct 

            trainedClassifier.ClassificationSVM = classificationSVM; 

            trainedClassifier.About = 'This struct is a trained classifier exported from 

Classification Learner R2016a.'; 

            trainedClassifier.HowToPredict = sprintf('To make predictions on a new 

predictor column matrix, X, use: \n  yfit = c.predictFcn(X) \nreplacing ''c'' with the 

name of the variable that is this struct, e.g. ''trainedClassifier''. \n \nX must contain 

exactly 16 columns because this classifier was trained using 16 predictors. \nX must 

contain only predictor columns in exactly the same order and format as your training 

\ndata. Do not include the response column or any columns you did not import into 

\nClassification Learner. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

  

            % Extract predictors and response 

            % This code processes the data into the right shape for training the 

            % classifier. 

            % Convert input to table 

  

            isCategoricalPredictor = [isCategoricalPredictor; false]; 

            % Perform cross-validation 

            partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 

33); 

  

            % Compute validation accuracy 

            validationAccuracy1 = 1 - kfoldLoss(partitionedModel, 'LossFun', 

'ClassifError'); 

            validationAccuracy(k) = validationAccuracy1; 

             

            supportvector1 = sum(classificationSVM.IsSupportVector); 

            supportvector(k) = supportvector1; 

            k = k +1; 

    end 

end 

 

A7. Matlab code for feature selection with lasso regression 

 

clc;clear all;close all; 
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data = importdata('C:/Research1/DrBidelman/Feature_Vector.csv'); 

 

ind = find(data(:, 1) <= 26); 

data(ind, 1) = 0; 

ind = find(data(:, 1) > 26); 

data(ind, 1) = 1; 

 

%% deviance plot 

rng('default') % for reproducibility 

[B,FitInfo] = lassoglm(data(:, 2:end),data(:, 1),'binomial',... 

    'NumLambda',25,'CV',5); 

lassoPlot(B,FitInfo,'PlotType','CV'); 

legend('show','Location','best') % show legend 

 

%% trace plot 

lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log'); 

 

feature_no = 1:590; 

% non_zero_feature_no = feature_no(B0 ~= 0); 

 

%% Regularized model 

indx = FitInfo.Index1SE; 

B0 = B(:,indx); 

nonzeros = sum(B0 ~= 0); 

cnst = FitInfo.Intercept(indx); 

B1 = [cnst;B0]; 

 

%% Residual Analysis 

 

preds = glmval(B1,data(:, 2:end),'logit'); 

histogram(data(:, 1) - preds) % plot residuals 

title('Residuals from lassoglm model') 

 

A8. Matlab code to perform ensemble regression 

 

clear all; close all;clc; 

 

input = readtable('Feature_Vect.csv', 'ReadVariableNames', false); 

selected_feature_ind = [20 35 36 149 157 180 199 299 356 374 394 409 563]; 

selected_feature_ind = selected_feature_ind + 1; 

 

col_name = input.Properties.VariableNames; 
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for i = 1:13 

    if (i == 1) 

         formula = [col_name{1} '~' ]; 

         formula = [formula col_name{selected_feature_ind(1)}]; 

    elseif(i > 1 & i <= 590) 

        formula = [formula '+' col_name{selected_feature_ind(end)}]; 

    end 

end 

 

rng(1) 

Mdl = fitrensemble(input, formula,'OptimizeHyperparameters','auto',... 

    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',... 

    'expected-improvement-plus')) 

 

Mdlfinal = crossval(Mdl, 'kfold', 5); 

%mse = resubLoss(Mdlfinal); 

y = table2array(input(:, 1)); 

y1 = Mdlfinal.kfoldPredict; 

RMSE= sqrt(mean((y - round(y1)).^2));  % Root Mean Squared Error 

 

A9. Python  code to perform Bayesian optimization 

 

ObjectiveFunc.py: 

 

import os 

import dill 

import numpy as np 

import pandas as pd 

import subprocess as sp 

from colorama import Fore 

from sklearn.datasets import make_classification 

from sklearn.model_selection import cross_val_score 

from sklearn.svm import SVC 

 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Activation, Flatten 

from keras.layers import Convolution2D, MaxPooling2D 

 

from keras.wrappers.scikit_learn import KerasRegressor 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import KFold 
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def objetive_func_deep_NN_regression(selected_parameter, TRAIN_DATA_1, 

TRAIN_LABEL_1): 

    def model_builder(n, selected_parameter): 

        def mb(): 

            param1 = int(selected_parameter[0]) 

            param2 = selected_parameter[1] 

            model = Sequential() 

            model.add(Convolution2D(param1, 3, 3, input_shape=n)) 

            model.add(Activation('relu')) 

            model.add(MaxPooling2D(pool_size=(2, 2))) 

             

            model.add(Convolution2D(param1, 3, 3)) 

            model.add(Activation('relu')) 

            model.add(MaxPooling2D(pool_size=(2, 2))) 

             

            model.add(Convolution2D(param1*2, 3, 3)) 

            model.add(Activation('relu')) 

            model.add(MaxPooling2D(pool_size=(2, 2))) 

             

            model.add(Flatten())  

            model.add(Dense(param1*2))  

            model.add(Activation('tanh')) #-7.72 (3.61) MSE 

 

            model.add(Dropout(param2)) 

            model.add(Dense(1)) 

         

            model.compile(optimizer='adadelta',  loss='mean_absolute_error', 

metrics=['mae']) 

            return model 

        return mb 

    seed = 7 

    np.random.seed(seed) 

 

    isDataValid = True 

    n = TRAIN_DATA_1[0].shape 

    # evaluate model with standardized dataset 

    param3 = selected_parameter[2] 

    estimator = KerasRegressor(build_fn=model_builder(n, selected_parameter), 

nb_epoch=param3, batch_size=5, verbose=0) 

     

    kfold = KFold(n_splits=5, random_state=seed) 

    results = cross_val_score(estimator, TRAIN_DATA_1, TRAIN_LABEL_1, 

cv=kfold, n_jobs=1) 
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    return [isDataValid, results.mean()] 

 

 

BayesianUtility.py: 

 

import numpy as np 

import sklearn.gaussian_process as gp 

from scipy.stats import norm 

import ObjectiveFunc as ob 

from colorama import Fore 

import warnings 

warnings.filterwarnings('ignore') 

import pandas as pd 

import random 

 

 

""" 

These fucntion reshapes the array to feed to the  

gaussian model (2d and nd) 

""" 

def vector_2d(array): 

    return np.array(array).reshape((-1, 1)) 

def vector_nd(array, n): 

    return np.array(array).reshape((-1, n)) 

 

 

""" 

This function is using expected improvement acquisition function to calculate  

the expected improvement at varoius points in the parameter space and returns 

the expected improvement, sigma, and mu at various points in the parameter  

space. Help is taken from https://thuijskens.github.io/2016/12/29/bayesian-

optimisation/ 

to build this function 

"""     

def expected_improvement(x,                       # possible samples  

                         gaussian_process,        # gaussian model 

                         evaluated_loss,          # score/output array  

                         greater_is_better=False, # Define whether the desired score from 

objective  

                                                  # function is better to be high or low  

                         n_params=1):             # # number of hyper-parameters to be optimized 

 

    x_to_predict = x.reshape(-1, n_params) 
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    mu, sigma = gaussian_process.predict(x_to_predict, return_std=True) 

 

    if greater_is_better: 

        loss_optimum = np.max(evaluated_loss) 

    else: 

        loss_optimum = np.min(evaluated_loss) 

 

    scaling_factor = (-1) ** (not greater_is_better) 

 

    # In case sigma equals zero 

    with np.errstate(divide='ignore'): 

        A = (mu - loss_optimum) 

        Z = scaling_factor * A[0] / sigma 

        expected_improvement = scaling_factor * A[0] * norm.cdf(Z) + sigma * 

norm.pdf(Z) 

        expected_improvement[sigma == 0.0] == 0.0         

    return [-1 * expected_improvement, sigma, mu] 

   

 

""" 

This fucntion collects the presample (if they are not collected offline) and  

saves the parameters and corresponding scores in the 'parameter_presample.csv',  

and 'score_presample.csv' files. This fucntion returns void.  

"""   

 

def presample( 

    objective_func,           # objective function 

    TRAIN_DATA_1,  

    TRAIN_LABEL_1, 

    PRESAMPLE_PARAMETER_FILE, # filename of the presample parameter 

    PRESAMPLE_OUTPUT_FILE,    # filename of the output at the presample 

parameter 

    n_sample,                 # number of presamples  

    num_of_hyperparameter,    # number of hyper-parameters to be optimized 

    bounds,                   # bounds of each hyper-parameter 

    steps):                   # Search steps of each hyper-parameters 

   

    print('Presample collection started') 

    scores = [] 

    parameters = [] 

     

    for iteration in range(1, n_sample + 1):         
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        selected_parameter = [] 

        print(Fore.YELLOW +'-----------------------') 

        print(Fore.RED +'Sample No.{} collection: '.format(iteration)) 

        print(Fore.YELLOW +'-----------------------') 

        for hyperparameter in range(0, num_of_hyperparameter): 

            parameter_space = np.arange(bounds[hyperparameter, 0], 

bounds[hyperparameter, 1]+steps[hyperparameter], steps[hyperparameter]) 

            #parameter_space = np.arange(bounds[hyperparameter, 

PARAMS_LOWER_BOUND], bounds[hyperparameter, 

PARAMS_UPPER_BOUND]+steps[hyperparameter], steps[hyperparameter]) 

            temp = parameter_space[random.randint(0, np.size(parameter_space)-1)] 

            selected_parameter.append(temp) 

            print('Parameter {0:2d} : {1:.2f}'.format(hyperparameter, 

selected_parameter[hyperparameter])) 

        #print(Fore.WHITE + 

'No.ofHyperparameter#{}'.format(len(selected_parameter))) 

        if iteration != 1: 

            isTwoSamplesAreSame = True 

            isParamsPreviouslySeen = [] 

            while isTwoSamplesAreSame == True: 

              for i in range(0, num_of_hyperparameter): 

                  if selected_parameter[i] in np.matrix(parameters)[:,i]: 

                      print(selected_parameter) 

                      isParamsPreviouslySeen.append(True) 

                  else: 

                      isParamsPreviouslySeen.append(False) 

                       

              isTwoSamplesAreSame  = all(isParamsPreviouslySeen)   

              isParamsPreviouslySeen = [] 

               

              if isTwoSamplesAreSame == True: 

                 selected_parameter[0] = np.arange(bounds[0, 0], bounds[0, 1] + steps[0], 

steps[0]) 

                             

        isDataValid, area = objective_func(selected_parameter, TRAIN_DATA_1, 

TRAIN_LABEL_1) 

        if isDataValid == True: 

            parameters.append(selected_parameter) 

            scores.append(area) 

        print('score: {0:.2f}'.format(area)) 

        filename1 = PRESAMPLE_PARAMETER_FILE 

        filename2 = PRESAMPLE_OUTPUT_FILE 

        np.savetxt(filename1, parameters, fmt = "%2.6f", delimiter = ",") 
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        np.savetxt(filename2, scores, fmt = "%2.6f", delimiter = ",") 

""" 

This fucntion implements the 'switch' operation  

(used in Kernel Selection) 

""" 

def best_kernel(x): 

    return { 

            0: gp.kernels.Matern(), 

            1: gp.kernels.RBF(), 

            2: gp.kernels.RationalQuadratic(), 

            3: gp.kernels.DotProduct(), 

            4: gp.kernels.ExpSineSquared(), 

            }.get(x, gp.kernels.Matern()) 

     

""" 

This function finds the best Kernel used in the gaussian process (GP). This function 

fits the presamples in the GP and computes the performance of the fit in terms of  

the sum-squared-difference (SSD), and returns the 'best kernel' that has the smallest 

SSD between the true data and model predicted data.     

"""     

def kernel_comparison(num_of_hyperparameter,    # number of hyper-parameters to 

be optimized 

                      PRESAMPLE_PARAMETER_FILE, # filename of the presample 

parameter 

                      PRESAMPLE_OUTPUT_FILE):   # filename of the output at the 

presample parameter 

   

    filename1 = PRESAMPLE_PARAMETER_FILE 

    filename2 = PRESAMPLE_OUTPUT_FILE 

    xp = pd.read_csv(filename1, header = None) 

    yp = pd.read_csv(filename2, header = None) 

    xp1 = xp.values 

    yp1 = yp.values 

    xp1 = vector_nd(xp1, num_of_hyperparameter) 

    yp1 = vector_2d(yp1) 

    SSE = [] 

    print(Fore.GREEN + "Comparing Kernel Performance:\n") 

    # Specify Gaussian Process 

    kernel = gp.kernels.Matern() 

    gp1 = gp.GaussianProcessRegressor(kernel=kernel) 

    # Fitting data into Gaussian Process 

    gp1.fit(xp1, yp1) 

    # Predicting data using Gaussian Process 



126 
 

    y_pred, sigma = gp1.predict(xp1, return_std=True ) 

    # Calculating and appending sum squared error 

    er = np.sum((yp1-y_pred)**2) 

    SSE.append(er) 

    print(Fore.WHITE + "Sum square error of Matern Kernel: {}".format(er))    

     

    # Specify Gaussian Process 

    kernel = gp.kernels.RBF() 

    gp1 = gp.GaussianProcessRegressor(kernel=kernel) 

    # Fitting data into Gaussian Process 

    gp1.fit(xp1, yp1) 

    # Predicting data using Gaussian Process 

    y_pred, sigma = gp1.predict(xp1, return_std=True ) 

    # Calculating and appending sum squared error 

    er = np.sum((yp1-y_pred)**2) 

    SSE.append(er) 

    print(Fore.WHITE + "Sum square error of RBF Kernel: {}".format(er))  

     

    # Specify Gaussian Process 

    kernel = gp.kernels.RationalQuadratic() 

    gp1 = gp.GaussianProcessRegressor(kernel=kernel) 

    # Fitting data into Gaussian Process 

    gp1.fit(xp1, yp1) 

    # Predicting data using Gaussian Process 

    y_pred, sigma = gp1.predict(xp1, return_std=True ) 

    # Calculating and appending sum squared error 

    er = np.sum((yp1-y_pred)**2) 

    SSE.append(er) 

    print(Fore.WHITE + "Sum square error of Rational Quadratic Kernel: 

{}".format(er))  

     

    # Specify Gaussian Process 

    kernel = gp.kernels.DotProduct() 

    gp1 = gp.GaussianProcessRegressor(kernel=kernel) 

    # Fitting data into Gaussian Process 

    gp1.fit(xp1, yp1) 

    # Predicting data using Gaussian Process 

    y_pred, sigma = gp1.predict(xp1, return_std=True ) 

    # Calculating and appending sum squared error 

    er = np.sum((yp1-y_pred)**2) 

    SSE.append(er) 

    print(Fore.WHITE + "Sum square error of Dot Product Kernel: {}".format(er))  
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    # Specify Gaussian Process 

    kernel = gp.kernels.ExpSineSquared() 

    alpha=1e3 

    gp1 = gp.GaussianProcessRegressor(kernel=kernel, alpha = alpha) 

    # Fitting data into Gaussian Process 

    gp1.fit(xp1, yp1) 

    # Predicting data using Gaussian Process 

    y_pred, sigma = gp1.predict(xp1, return_std=True ) 

    # Calculating and appending sum squared error 

    er = np.sum((yp1-y_pred)**2) 

    SSE.append(er) 

    print(Fore.WHITE + "Sum square error of ExpSineSquared Kernel: {}".format(er))     

    min_error_kernel = np.argmin(SSE) 

    kernel = best_kernel(min_error_kernel) 

    return kernel 

 

""" 

This function explores through the search space with the help of expected  

improvement function. That means it evaluates at the sample suggested by the  

expected improvement function in each iteration. 

"""   

def explore(objective_func,            # objective function 

            TRAIN_DATA_1,  

            TRAIN_LABEL_1, 

            PRESAMPLE_PARAMETER_FILE,  # filename of the presample parameter  

            PRESAMPLE_OUTPUT_FILE,     # filename of the output at the presample 

parameter 

            EXPLORE_PARAMETER_FILE,    # filename of the explored parameter 

            EXPLORE_OUTPUT_FILE,       # filename of the output at the explored 

parameter 

            EXPLORE_VAR_FILE,          # filename of the variance at the explored 

parameter 

            exploration_count,         # Number of points to be explored 

            num_of_hyperparameter,     # number of hyper-parameters 

            bounds,                    # corresponding bounds of the parameters   

            model,                     # Fitted Gaussian model  

            granularity_dist,          # granularity of the distribution 

            greater_is_better):        # Define whether the desired score from objective  

                                       # function is better to be high or low 

   

    var_eimax = [] 

    mu_eimax = [] 

    eimax = [] 
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    filename1 = PRESAMPLE_PARAMETER_FILE 

    filename2 = PRESAMPLE_OUTPUT_FILE 

    xp = pd.read_csv(filename1, header = None) 

    yp = pd.read_csv(filename2, header = None) 

    xp1 = xp.values 

    yp1 = yp.values 

    parameters = list(xp1) 

    scores = list(yp1) 

     

    print(Fore.YELLOW + 'Exploration started') 

    for explore in range(1, exploration_count + 1):  

        print(Fore.LIGHTRED_EX + 'Exploration {} out of {}'.format(explore, 

exploration_count)) 

        x_train = vector_nd(parameters, num_of_hyperparameter) 

        y_train = vector_2d(scores) 

        model.fit(x_train, y_train) 

        x_test = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(granularity_dist, 

num_of_hyperparameter)) 

        ei_var_m = expected_improvement(x_test, model, y_train, greater_is_better, 

num_of_hyperparameter) 

        ei = -1*ei_var_m[0] 

        var = ei_var_m[1] 

        mu = ei_var_m[2] 

        var_eimax.append(var[np.argmax(ei)]) 

        mu_eimax.append(mu[np.argmax(ei)]) 

        eimax.append(ei[np.argmax(ei)]) 

        next_sample = x_test[np.argmax(ei), :] 

        if np.any(np.abs(next_sample - x_train) <= 1e-7): 

            next_sample = np.random.uniform(bounds[:, 0], bounds[:, 1], 

bounds.shape[0]) 

        for i in range(0, num_of_hyperparameter): 

            print('Parameter {0:2d}: {1:.2f}'.format(i, next_sample[i])) 

        isDataValid, score = objective_func(next_sample, TRAIN_DATA_1, 

TRAIN_LABEL_1)              

        if isDataValid == True: 

            parameters.append(next_sample) 

            scores.append(score) 

        print('score: {0:.2f}'.format(score)) 

                             

    filename1 = EXPLORE_PARAMETER_FILE 

    filename2 = EXPLORE_OUTPUT_FILE 

    filename3 = EXPLORE_VAR_FILE 
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    np.savetxt(filename1, parameters, fmt = "%2.6f", delimiter = ",") 

    np.savetxt(filename2, np.matrix(scores), fmt = "%2.6f", delimiter = ",") 

    np.savetxt(filename3, np.matrix(var_eimax), fmt = "%2.6f", delimiter = ",") 

 

 

""" 

This function defines the gaussian distribution with a mean at the exploitation 

centre and a standard deviation = sigma at the exploitation center*parameter step. 

Then it calulates the expected improvment at various points in the already 

defined gaussian distribution and selects the best point as the sample to  

evaluate. It continues to fit the newly evaluated sample and it's corresponding  

output in the existing gaussian model and to find new best point with the help 

of expected improvement function within a specified number of iterations. 

""" 

def exploit(objective_func,         # objective function 

            EXPLORE_PARAMETER_FILE, # filename of the explored parameter 

            EXPLORE_OUTPUT_FILE,    # filename of the output at the explored 

parameter 

            exploit_center,         # the sample around which we exploit 

            n_params,               # number of hyper-parameters   

            steps,                  # Search steps of each hyper-parameters 

            n_iters,                # number of times we will search for the  

                                    # best sample around exploitation center 

            kernel,                 # kernel of the gaussian model  

            granularity = 500,      # granularity of the distribution 

            sigma = 0.05):          # sigma  

  

    x_list = [] 

    y_list = [] 

    sigma_max = [] 

    mu_max = [] 

    ei_max = [] 

     

    # Find gaussian process regressor model 

    model = gp.GaussianProcessRegressor(kernel=kernel) 

    filename1 = EXPLORE_PARAMETER_FILE 

    filename2 = EXPLORE_OUTPUT_FILE 

    explored_parameter = pd.read_csv(filename1, header = None) 

    explored_score = pd.read_csv(filename2, header = None) 

    xp1 = explored_parameter.values 

    yp1 = explored_score.values 
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    xp = np.array(xp1) 

    xp = vector_nd(xp, n_params) 

    yp = np.array(yp1) 

    yp = vector_2d(yp) 

     

    for n in range(n_iters):     

        model.fit(xp, yp) 

        # Sample next hyperparameter            

        x_random = np.random.randn(granularity, n_params)              

        for i in range(1, n_params): 

          x_random[:,i] = x_random[:,i]* sigma*steps[i] + exploit_center[i] 

        ei_var_m  = expected_improvement(x_random, model, yp, True, n_params) 

        ei = -1*ei_var_m[0] 

        var = ei_var_m[1] 

        mu = ei_var_m[2] 

        selected_parameter = x_random[np.argmax(ei), :] 

        sigma_max.append(var[np.argmax(ei)]) 

        mu_max.append(mu[np.argmax(ei)]) 

        ei_max.append(ei[np.argmax(ei)]) 

        # Sample loss for new set of parameters 

        isDataValid, score = objective_func(selected_parameter) 

         

        if isDataValid == True:  

            # Update lists 

            x_list.append(selected_parameter) 

            y_list.append(score) 

        # Update xp and yp 

        xp = np.array(x_list) 

        yp = np.array(y_list) 

        xp = vector_nd(xp, n_params) 

        yp = vector_2d(yp)     

    return xp, yp 

 

Main.py: 

 

import tempfile 

import keras.models 

from keras.optimizers import SGD 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Activation, Flatten 

from keras.layers import Convolution2D, MaxPooling2D 

from keras.callbacks import EarlyStopping 
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from keras.wrappers.scikit_learn import KerasRegressor 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import KFold 

 

import dill 

from colorama import Fore 

import numpy as np 

import pandas as pd 

import sklearn.gaussian_process as gp 

import BayesianUtility as bu 

import ObjectiveFunc as ob 

 

 

 

PRESAMPLE_PARAMETER_FILE = 'parameter_presample.csv' 

PRESAMPLE_OUTPUT_FILE = 'score_presample.csv' 

EXPLORE_PARAMETER_FILE = 'parameters_explore.csv' 

EXPLORE_OUTPUT_FILE = 'scores_explore.csv' 

EXPLORE_VAR_FILE = 'var_explore.csv' 

 

#filename = 'train_data.pkl' 

#dill.load_session(filename) 

 

 

TRAIN_DATA_1 = np.delete(train_data, 2847, 0) 

TRAIN_LABEL_1 = np.delete(train_label, 2847, 0) 

 

 

 

#################################################################### 

num_of_hyperparameter = 3 # Filtersize, Dropout, Epoch 

bounds = np.array([[16, 80], [0.05, 0.9],[10, 100]]) 

steps = [8, 0.05, 10]  

 

 

n_pre_samples = 5                                          # No. of presamples to be collected 

exploration_count = 10                                      # How many samples will be explored 

greater_is_better = True 

 

objective_func = ob.objetive_func_deep_NN_regression        

 

exploitation_count = 5                                     # How many times to exploit around an 

exploitation center 
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max_exploitation_enter = 8                                 # Maximum number of exploitation 

centres to work on/ upper bound of the number of exploitations 

                                                             

granularity_dist=1000                                       # granularity of the distribution 

#********************************************************************

******************************************************************* 

def make_keras_picklable(): 

    def __getstate__(self): 

        model_str = "" 

        with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=False) as fd: 

            keras.models.save_model(self, fd.name, overwrite=True) 

            model_str = fd.read() 

        d = { 'model_str': model_str } 

        return d 

 

    def __setstate__(self, state): 

        with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=False) as fd: 

            fd.write(state['model_str']) 

            fd.flush() 

            model = keras.models.load_model(fd.name) 

        self.__dict__ = model.__dict__ 

 

 

    cls = keras.models.Model 

    cls.__getstate__ = __getstate__ 

    cls.__setstate__ = __setstate__ 

     

make_keras_picklable() 

 

#********************************************************************

************************************************************** 

 

### COLLECTING PRESAMPLE 

############################################# 

 

presample_already_collected = False                          #  

if presample_already_collected == False:                    #  

    bu.presample(objective_func, TRAIN_DATA_1, TRAIN_LABEL_1, 

PRESAMPLE_PARAMETER_FILE, PRESAMPLE_OUTPUT_FILE, 

n_pre_samples, num_of_hyperparameter, bounds, steps) 

     

filename1 = PRESAMPLE_PARAMETER_FILE                      #  

filename2 = PRESAMPLE_OUTPUT_FILE                          # 
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xp_1 = pd.read_csv(filename1, header = None) 

yp_1 = pd.read_csv(filename2, header = None) 

xp1 = xp_1.values 

yp1 = yp_1.values 

 

xp1 = bu.vector_nd(xp1, num_of_hyperparameter)             

yp1 = bu.vector_2d(yp1) 

 

### AUTOMATIC KERNEL SELECTION AND MODEL FITTING 

############################## 

kernel = bu.kernel_comparison(num_of_hyperparameter, 

PRESAMPLE_PARAMETER_FILE, PRESAMPLE_OUTPUT_FILE) 

model  = gp.GaussianProcessRegressor(kernel=kernel) 

 

### EXPLORATION 

############################################################### 

bu.explore(objective_func, TRAIN_DATA_1, TRAIN_LABEL_1, 

PRESAMPLE_PARAMETER_FILE, PRESAMPLE_OUTPUT_FILE, 

EXPLORE_PARAMETER_FILE, EXPLORE_OUTPUT_FILE, 

EXPLORE_VAR_FILE, exploration_count, num_of_hyperparameter, bounds, 

model, granularity_dist, greater_is_better) 
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