
SIGNAL PROCESSING METHODS 

FOR 

EEG DATA CLASSIFICATION 

by 
ANDREAS SOTERIOU VARNAVAS 

M.Eng(Hons) 

A Thesis submitted in fulfilment of requirements for the degree of 
Doctor of Philosophy of University of London and 

Diploma of Imperial College 

Communications and Signal Processing Group 
Department of Electrical and Electronic Engineering 

Imperial College London 
University of London 

2008 



Abstract 

The scope of this thesis is to determine appropriate features of a person's electroencephalo-

graphic (EEG) data and the way in which they can be used to predict their performance 

in an "oddball" experiment. We classify a person's performance in one of the following 

classes: "success" or "failure", depending on the reaction time related with it. Predicting 

a person's performance means finding the correct class where the latter belongs to, using 

the person's EEG data corresponding to a time period before the reaction takes place. 
The problem is addressed in various ways as far as the feature construction process 

is concerned, whereas a Gaussian classifier is used in all cases. First, the raw time signals 

and the magnitude of their Fourier Transform are used as features. Then the number 

of these features is reduced, using various feature selection methods in combination with 

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non Neg-

ative Matrix Factorization (NMF). Subspace methods, using PCA and NMF to construct 

different spaces for the two classes, are also used to perform the desired classification. 

Features are also constructed using a Time-Frequency representation of the EEG signals. 

In this case we propose two novel algorithms which analyze the magnitude of the Time-

Frequency representation using NMF, in a single or multi-trial basis, and the coefficients 

of selected NMF components are used as features. 
Finally, a novel algorithm performing the desired classification based on the con-

struction of signals characterising each of the classes is proposed. These characteristic 

signals are constructed linearly combining the EEG signals of the various channels, min-

imising the variance of the time samples over the trials belonging to the same class. A 

novel algorithm is also proposed for selecting the appropriate channels to be used in the 

construction of the characteristic signals. This algorithm is based on the identification of 
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the channels showing the least interference from background brain activity. 
The maximum classification rate produced for one of the 11 subjects in our study is 

97.22%. However the rates usually vary between 70% and 80%. Considering the difficulty 

of the problem, this is encouraging. However, with these classification rates, real applica-

tions should only consider the generation of notification signals to increase the attention of 

operators and not involve any critical, automatic decision making process. Moreover, the 

variability in the methods and channels being optimal across the various subjects, implies 

that in a real case, a "tailor made" system should be designed for each user. 
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LPCA: Linear Principal Component Analysis 

MA: Moving Average 

NMF: Non Negative Matrix Factorization 

PCA: Principal Component Analysis 

PF: Performance Factor 

RBF: Radial Basis Function 

SNR: Signal to Noise Ratio 

SVM: Support Vector Classification 

WT: Wavelet Transform 



Chapter 1 

Introduction 

Electroencephalography is one of the easiest, cheapest and most widely used ways of 

recording the electrical activity of the brain. Since its discovery, there is a high inter-

est of associating the recorded signals of the brain with the cognitive processes or the 

physical/psychological condition of the person at the time of recording. A usual way 

of studying the relation between a person's cognitive processes and the recorded, elec-

troencephalographic (EEG) signals is through "oddball" experiments. During an oddball 

experiment a person monitors a screen, where various stimuli are presented, and has to 

respond by pressing a button upon the presentation of a specific type of stimulus. In 

this thesis we propose ways of using a person's EEG signals in order to "predict" their 

performance in such an experiment. 

In section 1.1 we give a description of the area of electrophysiological studies of 

cognition and the applications related to it. In section 1.2 we present the basic concepts of 

electroencephalography and the experimental procedures that are related to our study. In 

section 1.3 we define the problem we aim to solve, we explain our approach to it and give 

a detailed description of the experiment and the data we are going to use. The objective 

of this thesis is presented in section 1.4. Finally, in section 1.5 the outline of the thesis is 

given. 

24 
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1.1 Research Area 

Apart from the obvious clinical applications, EEG data can also be used for cognitive 

studies a special application of which is behavioural prediction. We will discuss next, in 

brief, the meaning of cognitive studies and then the meaning of behavioural prediction. 

1.1.1 Electrophysiological studies of cognition 

An Electrophysiological study of cognition tries to find correlations between a person's 

EEG data and their cognitive processes or physical/psychological condition at the time. 

The generalization of these correlations can give us a high level description of a person's 

unknown mental process or condition, provided that we have access to their EEG data. 

These mental processes and conditions can be divided into two categories. In the 

first category belong cases where the subject receives an external stimulus, most often 

visual or auditory. If this evokes a mental process then it is usually a cognitive one that 

has to do with recognizing and evaluating the stimulus. Parameters of the response, 

following the mental process, give a high level description of the latter. These parameters 

may be connected with the accuracy, the confidence and the time of the response. In 

the cases when the external stimulus evokes emotional conditions, the output usually is a 

binary high level description (e.g. "like" or "dislike"). 

In the second category belong cases when the subject receives no external stimulus. 

The mental processes that we would like to describe this time can be cognitive processes 

of different nature, such as those evoked by writing a letter or solving a mathematical 

problem. The description of the mental process in this case is in fact the subject's high 

level action that the process is related with. Another interesting case is imagining of 

different kinds of action. These actions should belong of course to a finite set, usually 

binary. Finally, examples of mental conditions belonging to this category are mainly 

clinical ones, where the description of the condition is the existence or not of a mental 

disease. 

Several potential applications of the correlation of EEG data with both kinds of 
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mental processes and conditions have been proposed. As far as the first category is con-

cerned, an interesting type of applications are the ones related to the field of Human 

Performance Monitoring (HPM). There are many taks such as air traffic control or mil-

itary applications where an officer's efficient response to an external stimulus is of high 

importance for safety reasons. It is natural the officer's performance to vary during the 

time period of the task, depending on their physiological condition. In such cases, a ma-

chine that would be able to indicate when a person's performance falls below an acceptable 

limit using their EEG data, could alert that a further action should be taken. Such an 

action could be the replacement of the officer with a new one. 

Applications in the field of Brain Computer Interface (BCI) concern data coming 

from the second category. The goal in this case is to provide the ability to people to in-

teract with a machine using their thought. This can be potentially useful to people facing 

a number of disabilities, from movement impairment to "locked in" syndrome. Finally 

various medical applications have been proposed, concerning the detection of mental dis-

eases at an early stage, such as Alzheimer's disease. These applications belong to both 

categories, as in some of them there is a use of an external stimulus whereas in other there 

is not. 

1.1.2 Human performance prediction 

A challenge similar to human performance monitoring is to predict a person's performance 

in an action following an external stimulus, using their EEG data. The notion of predic-

tion implies that the estimation of the person's performance should be computed before 

the action has taken place. This imposes two important constraints compared with the 

approaches followed for human performance monitoring: 

• Only the part of the EEG signals preceding the person's action can be used for the 

desired prediction. 

• No averaging can take place among the EEG data corresponding to consecutive 

stimuli presentations as the person's performance upon the presentation of a single 
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stimulus should be predicted. 

An efficient algorithm for the prediction of human's performance should be used in 

safety critical applications, enabling the machine to take a default action to minimize the 

losses if it indicates that the person's performance is not going to be adequate. 

1.2 Electroencephalography 

In this section we present some basic information concerning the way EEG data are col-

lected from the instrumentation point of view and from the experimental design point of 

view. We also explain what the event related potential is and the way its components are 

related to various cognitive processes. Relations between the frequency bands of an EEG 

waveform and various cognitive processes are also presented. 

1.2.1 The Electroencephalogram 

Electroencephalography is the first and most popular way of non-invasively observing hu-

man brain activity. The electroencephalogram is the recording of the electrical signals 

naturally produced by the brain, using electrodes placed on the subject's scalp. The 

recorded electrical potentials are produced by extracellular synaptic trans-membrane cur-

rents in neuronal dendrites. For a detailed study of the human brain electrophysiology we 

refer to [8,841. 

The standard system for placing the electrodes on the scalp is the 10-20 system. 

According to it, the nasion, inion, left and right pre-auricular points are used as reference 

points. We give below a description of the visible surface of the human scull that these 

points refer to. 

• The nasion is the distinctly depressed area directly between the eyes and superior 

to the bridge of the nose. 

• The inion is the bulging part at the lower rear part of the human skull. 
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Figure 1.1: The Electrode nomenclature according to the International Federation of 
Clinical Neurophysiology's 10-20 system. 

• The pre-auricular point is the point in front of the ear, between the ear's opening 

and the cheek. 

The electrodes are placed at fixed percentages of the distances between these reference 

points. The commonly used distance between two electrodes is 10% or 20 % of a scalp 

measurement. The locations of the electrodes are determined by an abbreviation which 

uses letters that refer to different regions on the scalp and numbers for relative locations. 

Figure 1.1 shows the electrode nomenclature in the 10-20 system. For more information 

concerning the standards of EEG recordings we refer the reader to [65]. 

The term channel refers to a pair of two recording electrodes between which the 

difference in electrical potential is being measured. There are two different ways of record-

ing the potential on the scalp. In bipolar recording, voltage differences are recorded be-

tween adjacent electrode sites, whereas in referential recording, the voltage differences are 

recorded between the various electrode sites and a common reference electrode. The refer-

ence electrode is usually placed at a location far from the source of electrical brain activity 

(e.g. ear, mastoid or chin). 
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Figure 1.2: The ERP signal as acquired by averaging 40 EEG signals corresponding 
to different trials of an oddball experiment, (taken from [51]). 

1.2.2 Event related potentials 

The changes on the ongoing electroencephalogram due to the occurrence of an event (e.g. 

an external sensory stimulus), which needs to be evaluated by the subject, constitute the 

Event Related Potential (ERP). This signal is of great interest as it is directly related to 

the cognitive process caused by the stimulus. 

The waveform of the ERP signal is the result of the superposition of the potentials 

of the neurons involved in the related cognitive processes. A description of the synchro-

nization processes of the neurons that lead to the creation of the ERP signals can be found 

in [141. In the time domain the ERP signal has a characteristic pattern (see Figure 1.2 [51]) 

which is usually acquired by computing a grand average of EEG signals, time locked to 

the event, across trials. This of course assumes that the ERP signal possesses the same 

amplitude and phase (latency) each time the event is repeated and that the background 

EEG is a zero mean stochastic process. 

The ERP signals are described in terms of the succession of the components that 

follow the event that evoked them. These components are characterized by their ampli- 
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tudes and latencies from the stimulus onset and are named as ano', where X is `P' or 'N' if 

the amplitude is positive or negative, respectively, and `no' denotes the approximate time, 

in milliseconds, at which the component usually appears after the stimulus. The ERP 

components are known to have functional meaning in relation to the cognitive processes 

in progress, some of which are given below [15,64,67,74]: 

• The P100 and N100 components are mainly generated in the sensory cortex and 

are associated with the encoding of basic stimulus features. They can be used as 

an indication of the point in the EEG sequence where selective attention begins to 

emerge. Their amplitude is larger when the stimulus presented is the attended one. 

• The N200 component is associated with sensory processing and with evaluation of 

stimulus information required for selecting a proper reaction. As such, it always 

precedes the reaction and is closely related to the reaction time. 

• The P300 component has the largest amplitude and duration. It indexes memory 

storage and serves as a link between stimulus characteristics and attention. Con-

cerning memory storage the amplitude of P300 has been found to be related to the 

initial encoding of the stimulus features in memory and has been used to predict 

whether a specific stimulus will be correctly recalled upon later presentation [30]. 

Moreover, the amplitude of P300 is related to the presentation frequency, stimulus 

sequence, stimulus quality, attention, and task relevance of the stimulus. It usually 

coincides or follows the person's reaction. 

1.2.3 EEG frequency bands 

As any waveform, the EEG recorded in each channel can be analyzed in terms of its 

frequency components. It has been found that the energy of the EEG in the frequency 

domain is concentrated in specific bands depending on the mental state and the cognitive 

processes that the subject undergoes. This is because of the synchronous depolarization 

of cells of neurons, involved in the foresaid mental state or cognitive processes, which 

results in the generation of rhythmical electrical activity. The above frequency bands are 
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named natural rhythms of the brain and their relation with various cognitive processes is 

summarized briefly as follows [71: 

• Delta (0.5-3.5 Hz): It is related to signal detection and decision making processes. 

• Theta (4-7 Hz): It is highly correlated with associative processing. It is present in 

oddball experiments 300 msec after the target of interest is shown and contributes 

to the formulation of the P300 component. 

• Alpha (8-13 Hz): It is associated with memory related processes. In oddball experi-

ments the energy of the alpha rhythm before the stimulus onset strongly affects the 

N100 and P200 components. 

• Beta (13-40 Hz): It is related to a wide range of mental activities such as integrated 

thinking, computing mathematical problems, planning and high level information 

processing. 

1.2.4 Experimental procedures 

The EEG data, which are used for the study of the cognitive processes related to the pre-

sentation of an external stimulus, are acquired through experiments that can be described 

as follows. Each person (subject) participating in the experiment receives a sequence of 

stimuli, each one separated from the other by a random period of time, which is long 

enough for the subject to respond. The stimuli are of the same nature (e.g. visual or 

auditory) but are divided into a finite number of types according to their characteristics. 

Each type of stimulus requires a different reaction from the subject. The EEG data of 

the subject are recorded for a specified duration of time, starting before the occurrence 

of each stimulus and ending after it. The part of the experiment over this period for a 

specific subject is named trial. Consecutive trials of the same subject constitute an epoch. 

Apart from the EEG data, various parameters characterizing the reaction of the subject 

are also recorded. The most common one is the time of the reaction. 

A usual experiment of this type is the "oddball" experiment. In this case a series of 

two different types of events is presented to the subject. The occurrence of the event of 
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one type is more frequent than that of the other. The subject has to respond in some way 

only to the less frequent event (target event) as soon as possible. Therefore, the recorded 

subject's EEG data are related to their cognitive process of recognizing the rare event. 

1.3 Problem definition 

The scope of this study is to determine appropriate features of a person's EEG data and 

the way in which they can be used to predict their performance in a visual "oddball" 

experiment. A person's performance belongs to one of the following three classes: "suc-

cess", "medium" or "failure", depending on the reaction time related to it. Predicting a 

person's performance means finding the correct class where the latter belongs to, using the 

person's EEG data corresponding to a time period before the reaction takes place. As we 

shall explain in section 1.3.4 we are only interested in correctly classifying performances 

belonging to classes "success" and "failure". 

1.3.1 The oddball experiment and the raw data 

The experimental data used in this study have been supplied by the Centre of Human 

Sciences of QinetiQ. They concern the EEG signals of 11 subjects which were recorded 

during an "oddball" visual detection experiment, as well as their corresponding reaction 

times. 

The oddball experiment took place as follows: each subject monitored a screen 

where various visual stimuli were presented in a random order. The subject had to re-

spond by pressing a button only when a specific type of stimulus (target) was presented. 

No reaction was required for the other type of stimuli (non-targets). The frequency of ap-

pearance of the target event was 1/10. The time period between two consecutive stimuli 

was random and lasted for at least 2304 msec. Overall each subject was shown 6 blocks 

of stimuli, with each block containing 400 stimuli (39 targets and 361 non-targets). The 

duration of the experiment for each subject was 2 hours, i.e. 20 minutes per block. 

An 18 channel EEG, with the electrodes placed according to the 10/20 system 
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(their positions are marked with grey circles in Figure 1.1), was recorded for each subject 

during the whole period of 2 hours that the experiment lasted. The sampling frequency 

was Fs  = 500 Hz and the type of recording referential. Then, blocks of duration of 2304 

msec (1152 samples) were extracted from the originally recorded EEG. Each block (trial) 

concerns the presentation of a single stimulus and it is time locked to it as follows. The first 

256 msec (128 samples) correspond to pre-stimulus activity and the remaining 2048 (1024 

samples) to post-stimulus activity. Thus we were finally given 234 and 2166 trials for each 

subject, corresponding to the presentations of target and non-target stimuli, respectively. 

The trials of target stimuli were accompanied with the corresponding reaction time, which 

is the time duration between the stimulus onset and the requested press of the button. 

We are interested here in predicting a subject's performance in the trials where a 

target stimulus was presented. Therefore, for this study only this type of trial will be used. 

Thus with the term "trial" from now on we shall mean a trial where a target stimulus is 

presented. 

1.3.2 Definition of the classes of categorization 

Since we want to predict a person's performance in each trial, we first have to decide the 

possible descriptions that this may have. Ideally a person's performance in a trial should 

be described by the corresponding reaction time and it would be the latter we should try 

to predict. However, because of the difficulty of the problem, arising from the need of 

early truncation of the EEG signals at an early point preceding the subject's reaction, 

we decided to focus our research on discriminating only between the very quick and very 

slow responses. For this reason we chose to describe a person's performance in a trial 

as successful, medium or failed, depending on the relative speed with which the person 

reacted. This results in three classes for the trials: "success" , "medium" and "failure" , 

which are defined as follows. Class "success" includes the 25% of the trials of a specific 

subject with the fastest reaction times and class failure includes the 25% of the trials 

with the slowest reaction times. The 50% of the trials with intermediate reaction times 

constitute the class "medium" and as explained in section 1.3.4 are ignored. 
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Table 1.1: Number of valid trials per subject 

Subject S1 S2 S3 S4 S5 S6 S8 S10 Sll S13 S14 
Valid trials 116 98 73 186 159 198 70 125 126 129 96 

1.3.3 Data selection 

As mentioned in section 1.3.1 the number of available trials per subject is 234. However, 

only trials processed by the eye movement correction algorithm will be included in the 

analysis. This algorithm was used routinely by the people who supplied the data. In some 

cases, however, it failed to perform the correction and those cases are identified in the 

data set supplied. The number of valid trials that finally remain for each subject is shown 

in Table 1.1. Let us note here that the labeling of the 11 subjects is the one that QinetiQ 

used in the provided data, i.e.: Si, S2, S3, S4, S5, S6, S8, S10, S11, S13, S14. 

As described in section 1.3.1 the data of each trial correspond to a time period 

of 2304 msec having both a pre-stimulus and a post-stimulus part. However since our 

purpose is to predict the subjects' performance in each trial, we are restricted to use in 

the analysis only the part of the data corresponding to the time period before the reaction 

time. Moreover, in a real time application the reaction time of a subject in a trial is not 

a-priori known. Thus, we decided to use in our analysis the parts of the EEG signals 

that correspond to the period before the smallest reaction time available in the set of 

valid data. In the single-subject based approach, we use in this thesis, this is the smallest 

reaction time of the specific subject studied. Thus, we finally keep the parts of the EEG 

signals which correspond to the time period between the stimulus onset and the minimum 

decision time to react. With the term EEG signals from now on we shall refer to the above 

parts of the signals unless it is otherwise stated. 

1.3.4 Statistics of the reaction times 

In order to appreciate how challenging it is to separate the three classes, in the way they 

have been defined, we have to look at the distributions of the reaction times for each 
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subject. Some statistics of the reaction time for each subject can be seen in Table 1.2 and 

the corresponding histograms are presented in Figures 1.3 and 1.4. 

It can be seen that most reaction times cluster around the median (or the aver-

age) value and it must be very difficult to develop a classifier that will separate them 

successfully. In such studies, what one is really interested in, is identifying the cases of 

extra slow response, i.e. separate the class "failure" from the other two classes. In order 

to improve the separability of the data we choose to remove from our analysis the trials 

belonging to class "medium". This is not necessarily a big problem as in a real application 

a "medium" performance could be classified as either "success" or "failure" without severe 

consequences. 

However, even distinguishing between the two classes "success" and "failure" is 

not an easy task. In order to gain some appreciation of the difficulty of the problem, 

in Figure 1.5 we plot the average signal for the class "success", for Subject 1, in all 18 

channels, alongside the average of the class "failure". In Figure 1.6 the averages of the 

magnitude of the spectrum of the EEG signals between the stimulus onset and the time 

point of truncation are plotted for Subject 1. The area between the average signal plus 

and minus one standard deviation is marked with blue ("success") and red ("failure"). 

The corresponding plots for the remaining 10 subjects are given in Appendix A. 

By observing the graphs of Figures 1.5, 1.6 and those in Appendix A we see that 

there is a huge overlap between the areas where the values of the majority of the signals 

of the two classes lie. This supports our argument concerning the difficulty in the discrim-

ination of the two classes. Judging from the degree of overlapping we can say that the 

recording of some channels are more useful than the recording of other and that the useful 

channels are not the same for all subjects. This leads to the speculation that one might 

have to develop a "tailor made" system for each subject. 

In tables 1.3 and 1.4 the number of valid trials and the statistics of the reaction 

times for classes "success" and "failure" are given, respectively. 
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Table 1.2: Statistics of the reaction times in ms 

Subject Valid 
trials 

Mean Median Minimum 
reaction time 

Standard 
deviation 

Mode 

S1 116 539 522 360 94 472 
S2 98 944 872 592 261 792 
S3 73 624 564 432 209 508 
S4 186 705 658 428 175 {616, 612, 588} 
S5 159 668 636 412 152 564 
S6 198 722 712 424 120 688 
S8 70 515 504 368 95 564 
S10 125 847 808 468 211 {872, 780} 
S11 126 662 654 436 99 680 
S13 129 830 776 456 222 732 
S14 96 995 960 540 272 864 

Table 1.3: Statistics of the reaction times in ms for class "success" 

Subject Valid trials Mean Median Minimum 
reaction time 

Standard 
deviation 

S1 29 436 444 360 26 
S2 25 721 732 592 52 
S3 19 481 496 432 26 
S4 47 560 568 428 37 
S5 40 530 546 412 43 
S6 50 587 600 424 48 
S8 18 410 414 368 21 

S10 32 658 686 468 78 
S11 32 554 564 436 36 
S13 33 615 628 456 56 
S14 24 711 718 540 , 	65 
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Table 1.4: Statistics of the reaction times in ms for class "failure" 

Subject Valid trials Mean Median Minimum 
reaction time 

Standard 
deviation 

S1 29 668 648 588 72 
S2 25 1312 1220 1000 251 
S3 19 880 784 644 267 
S4 47 929 844 764 204 
S5 40 859 800 728 173 
S6 50 875 842 784 99 
S8 18 641 620 564 66 

SW 32 1099 970 896 250 
Sll 32 789 758 708 85 
S13 33 1139 1088 916 191 
S14 24 1361 1258 1156 236 

1.4 Thesis objective 

The objective of this thesis is to develop methodology that will allow the detection of class 

"failure" with maximum specificity, distinguishing it from class "success". As mentioned 

in section 1.3.4 we are not interested in identifying trials belonging to class "medium" or 

even separating them from class "failure". For this reason the trials of class "medium" are 

removed from our analysis. Thus from now on we have trials that belong to one of only 

two classes: "success" and "failure" and we aim to classify them to the correct class. In a 

real application, of course, one cannot exclude class "medium", but in a real application if 

class "medium" is wrongly recognized as class "success" or class "failure" does not really 

matter. 

1.5 	Outline of the thesis 

This thesis is structured as follows: 

• In Chapter 2 we present a review of the literature concerning methods for enhancing 

the potential of the EEG evoked by an external stimulus. Thus, such methods 

could be used for constructing features correlated with a person's cognitive processes 

during an oddball experiment. Moreover, we review approaches proposed in the 
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Histogram of reaction time for subject s1 
	

Histogram of reaction time for subject s2 
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Figure 1.3: Histograms of the reaction time for subjects: Sl, S2, S3, S4, S5, S6. The 
two red, vertical lines indicate the boundaries among classes "success", "medium" 
and "failure". 

closely related to our problem field of Human Performance Monitoring. 

• In Chapter 3 an initial approach to the problem is done using time and spectral fea-

tures constructed from all channels and performing classification using a Gaussian 

Classifier. For a number of reasons we explain, we continue the analysis using spec-

tral features corresponding to frequencies smaller than 40Hz. A number of methods 
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Histogram of reaction time for subject s8 
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Figure 1.4: Histograms of the reaction time for subjects: S8, S10, S11, S13, S14. The 
two red, vertical lines indicate the boundaries among classes "success", "medium" 
and "failure". 

are then used for feature reduction such as: selection of features according to their 

Euclidean distance between the two classes, Principal Component Analysis (PCA), 

Linear Discriminant Analysis and Non Negative Matrix Factorization (NMF). Fi-

nally subspace methods of classification using PCA and NMF are also investigated. 

• In Chapter 4 the use of NMF for the analysis of time-frequency representations of 
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Channel: Fz (1) 
	

Channel: Cz (2) 
	

Channel: Pz (3) 

Figure 1.5: Subject 1. The blue and red lines are the average signals over the EEG 
signals of valid trials for classes "success" (blue) and "failure" (red). The area be-
tween the average signal plus and minus one standard deviation is marked with blue 
("success") and red ("failure"). The vertical line indicates the time of stimulus onset. 
The signals are truncated at the time point of the subject's quickest reaction. 

the EEG signals is proposed. The Continuous Wavelet Transform is used for the 

acquisition of these representations. We present two novel algorithms for feature 
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Figure 1.6: Subject 1. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 

construction based on the analysis of trials in a single or multi trial basis. The 

nature of features meant to be captured in both cases is explained. Finally, we 
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compare the produced classification rates with the ones acquired when the features 

are constructed using directly the time signals. 

• In Chapter 5 we propose a novel algorithm tackling the classification problem using 

signals constructed in such a way that they can be thought of as characterising each 

of the two classes. The idea is to construct a characteristic signal for each class to 

remain as invariant as possible over all data of the class. This is done by constructing 

a weighted signal for each trial, linearly combining the EEG signals of the various 

channels and then computing a mean signal for each class using the trials in the 

training set. The weights of the above combination are chosen so that the variance 

of the EEG samples over the trials in the training set belonging to the same class is 

minimised. 

In addition to that, we also propose a novel method for selecting the appropriate 

channels to be used for the classification purpose. The proposed algorithm is based 

on stretching and averaging the EEG signals of the available channels, to identify 

the ones that show the least interference from background activity. 

• In Chapter 6, Kernel PCA methods proposed in the Human Performance Monitoring 

literature are applied to our problem for feature construction. A Support Vector 

Machine as well as a Gaussian Classifier are used for the classification task. These 

methods are compared with some of the main methods proposed in this thesis. 

• Finally, in Chapter 7, we present the conclusions and describe some of the future 

work we intend to do. 



Chapter 2 

Literature survey 

In order to predict a person's performance in an oddball experiment using their EEG 

data, one has to extract suitable features from them. These features should be related 

to the cognitive processes of recognizing the target stimulus, so as they can be used by a 

classification method to indicate a quick or late reaction. There are two ways of processing 

the EEG data to extract these features. The first one is to estimate the ERP from the 

EEG signals, i.e. the signal of the potential resulting from the activity of the neural 

subsystems involved in the process of recognizing the stimulus. Then various features can 

be extracted from it, e.g. the latencies and the amplitudes of its components, and used 

for the desired prediction. The second way is to skip the first step of enhancing the ERP 

and directly extract features from the raw EEG signals. 

We present first in this chapter the most important techniques in the literature for 

the estimation of the Evoked Potential (EP) from an EEG signal. The evoked potential is 

the potential caused by stimulation of the somatosensory system. These methods can be 

used for any type of EP, as they make very general assumptions for its nature. Thus, they 

can be used for the estimation of the ERP which is a special type of EP occurring when 

the external stimulus has to be evaluated by the subject, i.e. the potential is connected 

with a cognitive process. In the rest of the chapter we review studies from the field of 

Human Performance Monitoring that use features of the EEG data to estimate a person's 

performance in an undertaken task. 

43 
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2.1 	Single trial estimation of the Evoked Potential 

The most common and widely used model for the observed EEG signal measured after the 

stimulation of the somatosensory system is the additive noise model. It assumes that the 

observed signal is the sum of the evoked potential with independent noise. The source of 

this noise is the background EEG activity which is irrelevant with the occurrence of the 

stimulus. This model can be expressed as: 

Z = S V 
	 (2.1) 

where z, s and v are the vectors containing the observed EEG signal, the evoked potential 

and the background EEG signal, respectively. 

If we assume that the evoked potential is a deterministic signal, having the same 

form each time the somatosensory system of the same person is stimulated in the same 

way, then we could estimate it by averaging a large number of time locked observations 

coming from different trials [5]. This of course requires the additional assumption that the 

background activity is a zero mean stochastic process. Under these conditions it can be 

proven that averaging is the best estimating technique with respect to the least squares 

criterion [42]. 

The assumption, however, that the nature of the evoked potential is deterministic 

is not a realistic one. There is much evidence indicating that the evoked potential is 

a stochastic signal and that the variations between its instantiations are related to the 

differences in the condition of the subject over the trials [13]. In the special case of an ERP, 

trial variability may reveal changes in the cognitive processes involved in the recognition 

of the target event. This information is lost through averaging. For this reason, a large 

variety of techniques have been proposed for the estimation of the evoked potential from 

a single trial. We review in the rest of this section the most important of them. 
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2.1.1 Time invariant filtering 

Time invariant filtering is the simplest way for estimating the evoked potential. A common 

method belonging to this category is low pass filtering using digital FIR (finite impulse 

response) filters. Such examples are the moving average filter proposed in [73] and the 

especially designed to detect peaks, such as P300, filter in [28]. Bandpass filtering has also 

been used in [59, 72]. 

Time invariant Wiener filtering has also been proposed for the extraction of the 

evoked potentials [4, 17]. The impulse response of such a filter is calculated minimizing 

the mean square error between the output of the filter and the desired output (i.e. the 

evoked potential). For its calculation the autocorrelation function of the input signal (i.e. 

the EEG signal) and the crosscorelation function between the EEG signal and the evoked 

potential have to be known. The invariant nature of the impulse response implies the 

assumption of stationarity for both the evoked response and the background EEG which 

is not usually true [46,94]. 

The problem with linear time-invariant filtering is the fact that the spectrum of the 

evoked potential and the background EEG activity usually overlap. This results in poor 

estimation of the evoked potential as it has been reported in [46,81]. 

2.1.2 Time varying filtering 

Most of the approaches using time varying filtering for the extraction of evoked potentials 

are based on Wiener formalism. The first approach was proposed in [24], where the 

frequency domain of the observed signal is divided into subbands, for each one of which a 

Wiener-like filter is designed. 

A more popular approach is presented in [93] where an optimal time-varying filter 

for evoked potential estimation is proposed. Assuming the model of Eq. (2.1) an estimate 

§(t) of the evoked potential at time t is computed as: 

(t) = h rtr  z 	 (2.2) 
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where ht  is the impulse response of the filter at time t and z the observed signal. This 

means that the estimated evoked potential can be computed as: 

= Hz 	 (2.3) 

where the rows of H contain the impulse response of the filter at different times. Matrix 

H is obtained minimizing the mean square error MP §ii2}.  This results in the time 

varying Wiener filter equation, i.e.: 

H = RazRzz -1 
	

(2.4) 

where Rsz  = E{szT } and R88  = E{ssT }. Let us note here that if matrix H in Eq. (2.4) 

is a Toeplitz one, then we have the time invariant version of Wiener filter mentioned in 

section 2.1.1. 

Usually the problem in time varying filtering is the estimation of the crosscorrelation 

matrix Raz . A common procedure to overcome this problem is the use of an analytical 

model for the evoked potential. Such an approach is proposed in [93] for the construction 

of a filter called the "time-varying minimum mean square error filter". In that case 

the evoked potential is modelled as the superposition of signals with random peaks at 

random latencies. Then a parametric form of the autocorrelation matrix of the evoked 

potential R88  is calculated. This is used as the desired crosscorrelation matrix because 

for uncorrelated evoked potential and background EEG activity (with zero mean) we have 

Raz  = Rs ,. The disadvantage, however, of this method is that in order to compute Ras 

from its parametric form, the probability densities of the peak locations and the means 

and variances of the peak amplitudes have to be known. Such information does not usually 

exist before the estimation of the evoked potential. An extention of this approach for the 

multichannel case is presented in [91]. 

Different time-varying methods are presented in [50,63]. In both cases the observed 

signal is divided in three segments. In [63] three different kinds of bandpass filter are used, 

one for each segment. In [50] a reference signal is first acquired through averaging. Then 
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Figure 2.1: The adaptive filtering scheme 

a filter is designed for each segment, with its transfer function matched to the spectrum 

of the reference signal in the corresponding segment. 

2.1.3 Adaptive filtering 

Adaptive filtering techniques [38] have been extensively used in the processing of the EEG 

signals for the extraction of the underlying evoked potential. The main advantage of 

adaptive filters is that they are self-designing filters that adjust their coefficients to track 

the desired signal. If a Least Mean Squares (LMS) algorithm is used for the update of 

the coefficients, then no knowledge about the statistics of the signal to be estimated or 

the existing noise is required. The first use of this kind of filtering for the estimation of 

evoked potentials was in [83]. 

The main scheme of the adaptive signal enhancer can be seen in Figure 2.1. The 

primary input signal, z(t) = s(t) + v(t), is the observed EEG signal modeled as the sum 

of the evoked potential s(t) and uncorrelated noise (background EEG) v(t). The reference 

input signal r(t) is a signal closely related to the signal we want to extract from the primary 

input, i.e. s(t). The output of the filter y(t) = wrtrrt  is the desired estimate of the evoked 

potential at time t. wt  = [wt(0), wt(M — 1)IT  and rt  = [r(t), r(t — M + 1)1T  are 

the time varying impulse response, of length M, of the adaptive filter and the reference 

vector, respectively. 

The impulse response of the filter can be computed at each time instant using 

an iterative algorithm. Usually an LMS algorithm is, used, minimizing the mean square 
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error between the output of the filter and the primary input. Using the normalized LMS 

algorithm [38] the filter coefficients are updated as follows: 

wt-Fi = wt + iirt il 2 
rt(z(t) — y(t)) +  

(2.5) 

where a is a small positive constant and it the step-size parameter constrained to 0 < p, < 

2. 

Several approaches have been proposed concerning the choice of the reference sig-

nal. In [19, 83] grand averaging is proposed in order to improve the power of the desired 

signal. In [66] a multireference method is presented where the signals from various physi-

cal channels are used as references for the estimation of the somatosensory potential of a 

peripheral nerve. A different approach is used in [88] where the reference signal is modeled 

as a combination of sines and cosines whereas in [47] a unit impulse sequence synchronized 

with the beginning of each iteration is used. Finally, adaptive filtering for the estimation 

of evoked potentials, has been used in relation with time varying Wiener filtering [95], 

Autoregressive modeling [60] and Neural Networks [32]. 

Let us note here that a critique on adaptive filtering is that the LMS algorithm 

used, is based on second order statistics and therefore is sensitive to the spread of the 

eigenvalues of the autocorrelation matrix of the reference signal. Moreover, as mentioned 

in [56], second order statistics fail to remove correlated or coloured noise. For these reasons 

learning algorithms based on third order statistics have been proposed for the adaptive 

filtering of evoked potentials [31, 56]. 

2.1.4 Parametric Modeling 

A different approach for the estimation of evoked potentials is through AutoRegressive 

(AR) and Moving Average (MA) modeling. The additive model of Eq. (2.1) is again 

assumed. Then the evoked potential is modeled as an Autoregressive-Moving Average 

(ARMA) filtering of a deterministic signal, which has the evoked potential's pattern. This 

acts like a reference signal and is usually chosen to be the average of the observed EEG 
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Figure 2.2: The parametric model for the observed EEG 

signals of many trials. On the other hand the background EEG is modeled as an AR 

process. This scheme (see Figure 2.2) is named AutoRegressive model with eXogenous 

input (ARX) and was first proposed in [16]. 

The output of the scheme i(t), which is the modeled EEG signal z(t), can be written 

as: 

q+d 

z(t) = — E aigt — i) 	bir(t — j) + n(t) 	 (2.6) 
i=i 	 j=d 

where, p is the order of the AR model, q is the order of the MA model, d is the delay 

introduced by the MA model, r(t) is the reference signal and n(t) white noise. Let us note 

here that the AR component, i.e. the coefficients an  on the two branches of the model is 

the same, which compromises the generalization of the model. This is done for reasons of 

simplicity [16]. 

The estimated evoked potential g(t) can be computed as: 

q+d 

ai:§(t — 1) 	bir(t — j) 	 (2.7) 
j=d 

The values of the parameters (p,q,d) are chosen optimizing the Final Prediction 

Error [2]. For a specific value of these parameters the coefficients ai and bi of the model 
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are computed using a Batch Least Squares algorithm [27]. This algorithm minimizes the 

quadratic function Q of the estimation error e(t) z(t) — z(t), where Q 	Er_i[e(t)]2, 

N is the number of samples to be estimated and y(t) the observed EEG signal. The 

suitability of the computed coefficients is tested by means of the cumulative Anderson 

test on the whiteness of the error signal e(t) [12]. In [16] a set of parameters is accepted 

only if e(t) is white with confidence 95%. 

Various other approaches using the ARX model have been presented. In [18] an 

additional ARMA filter is added to the scheme to model the Electro-oculogram (EOG) 

activity interfered in the recorded EEG signal. Let us mention here that the EOG signal 

is the electrical activity caused by the movement of a person's eyes and it can interfere 

with the EEG signal, especially on the electrodes placed on the front of the skull. The 

actual EOG signal of each trial, recorded on electrodes positioned on the skin near the 

eye, is given as input to the additional ARMA filter. In [49] the reference signal is first 

whitened using the inverse transfer function of an AR model which is trained to estimate 

the reference signal. Then the whitened reference signal is given as an exogenous input 

to an ARX model. The purpose of the prewhitening is to provide the ARX model with 

a wide band reference signal and prevent the least squares algorithm from estimating the 

EEG signal using mainly only the part of the AR modeling of the background EEG. The 

proposed scheme, which is named Robust-Evoked-Potential-Estimator, appears to achieve 

considerable Signal to Noise Ratio (SNR) improvements with respect to the original ARX 

model, in poor initial SNR conditions. 

2.1.5 The linear observation model and regularization methods 

Various methods of estimating evoked potentials are based on the regularization theory. 

These methods assume that the evoked potential can be expressed as a linear combination 

of a suitable, predefined set of vectors. This model is called the linear observation model 

and can be expressed as: 

z = HO + v 	 (2.8) 
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where z is the observed EEG signal, the columns of H are the predefined set of vectors, 

0 is the vector of the coefficients and v the background EEG. Thus the evoked potential 

is modeled as s = HO. In order to identify the evoked potential, an estimation 0 for the 

vector 0 is calculated using the observed data z and the evoked potential is computed as 

= HO. 

Regularization methods come from the theory of ill posed inverse problems [33], 

where a solution has to be identified such as an arbitrarily small perturbation on the 

observed data will not cause an arbitrarily large perturbation on the solution. For the 

identification of this kind of solution regularization methods use, apart from the observed 

data, initial knowledge that they have about the type of solution. This knowledge is for-

mulated in a mathematical way and is incorporated into the original constraint depending 

on the data, which has to be minimized. 

The most popular regularization approach is Tikhonov's regularization method [37], 

for solving the weighted least square problem. According to it the estimation for the vector 

0 of Eq. (2.8) is: 

	

= arg mein{ 11Li(z - H0)112  + ce211L2(19  - 0e)1121 
	

(2.9) 

where Li L1 	W1, LT L 2  E-_-  W2 are positive definite weighting matrices and 0, is an 

initial estimate for 0, based on existing knowledge. This solution is called the generalized 

Tikhonov regularized solution; its constraint is constituted of two parts: the constraint 

of the ordinary weighted least square solution IlL i(z - HO)II and the side constraint 

11L2(0 — ee )II. Parameter a determines the weight given to the side constraint. Usually 

L2 is chosen to be the second derivative operator which produces a smoother solution 

compared with the ordinary weighted least squares one. 

The analytical form of the solution occurring from the minimization process is: 

	

+ a2 W2 )-1(HTWiz + a2W20,) 	 (2.10) 

A special case for the selection of the columns of H is to be chosen as the first p 
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eigenvectors of the correlation matrix of the observed signals z. For a prefixed amount 

of basis vectors, this choice minimizes the mean square error between z and ,§ = 

when 0 is calculated using the mean square solution, i.e. 0 = (HT ) 	HT z and the 

elements of z are jointly Gaussian [44]. Let us call S the subspace spanned by the selected 

eigenvectors and Hs the corresponding matrix. Then the linear observation model of Eq. 

(2.8) takes the form: 

z=Hs0+v 	 (2.11) 

In [43] the model of Eq. (2.11) is used for the estimation of evoked potentials. For 

the estimation of 0 the Gauss-Markov (minimum variance) solution is used, i.e. 

= (filcVHs )-1HIC,71 z 	 (2.12) 

which can be obtained from Eq. (2.10) setting W1  equal to the covariance matrix C, of the 

background EEG and W2  = 0. The model of Eq. (2.11) has also been used in [23,49] using 

the least squares solution for the estimation of 0, i.e. 0 = (HT H s )-1H:Ez = HTz. This 

can be derived from Eq. (2.12) with the white background EEG assumption C, = o-21. 

When the least square solution is used in combination with the model of Eq. (2.11) we 

have the principal component regression method. Let us note here that all these methods 

are not regularization methods as the side constraint is not actually used. 

In [44] a regularization method which combines the model of Eq. (2.8) with the 

space spanned by the columns of Hs is presented. This method belongs to the category 

of subspace regularization methods. It assumes that the evoked potential belongs to a 

space spanned by the columns of H but is close to S. The columns of H are chosen 

in some generic way, e.g. a set of Gaussian shaped vectors with different delays and 

preselected widths. Then the Tikhnov's solution of Eq. (2.9) is used with Li L1  = C71 , 

L2  = (I — HSHDH and Be  = 0. Let us note that this produces a side constraint of 

the form 11(1 — Hs1-4)H011, which is the distance of the evoked potential s = HO from 

S. This is in accordance with the assumption that s is close to S. Using Eq. (2.10) the 
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evoked potential is estimated as: 

= H(HTC771.ff ct2H-Ta — HsHRH)—IHTciTiz 	(2.13) 

2.1.6 Wavelets 

A promising tool for the extraction of evoked potentials is wavelets. The Wavelet Trans-

form (WT), introduced in [34], enables the decomposition of a signal in a set of functions, 

the energy of which is localized in both time and frequency domains. Its main advantage 

is that the length of the time period where the energy of the decomposing functions is 

localized, varies depending on the range of frequencies of the function. More precisely, the 

length of the time window is enlarged in low frequencies and becomes smaller for the high 

ones, providing in this way any desirable trade-off between the time and the frequency 

resolution. 

The usual procedure for the enhancing of the EP using the WT is to compute the 

coefficients of the observed EEG signal and then manipulate them according to various 

criteria, before using them to reconstruct the enhanced EP. For the analysis and synthesis 

process the concept of Multiresolution Analysis [61] is used. The first use of wavelets 

in EP extraction is in [6]. The authors decompose contaminated auditory EP and pure 

EEG signals and then use correlation and discriminant analysis to find the scales, the 

coefficients of which best discriminate the two types of signal. The more discriminative 

coefficients of the selected scales are used to reconstruct the "clear" EP. 

In [68,69] the average signal of the single trial EPs/ERPs is first computed and de-

composed using the WT. The coefficients with high value, within a predefined time range, 

are identified for each scale. Then the EP/ERP is extracted from the signal of each trial by 

decomposing it using the WT and reconstructing it using only the identified coefficients. 

In [11] the WT coefficients are manually selected according to a priori knowledge for the 

time-frequency content of the general pattern of the somatosensory/auditory evoked po-

tentials which are enhanced. The authors also use the WT to propose a time-frequency 

extension of the a posteriori Wiener filter [89]. An adaptive filter using Multiresolution 
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Analysis is also proposed in [9] for the extraction of auditory EPs. In [75] the use of a 

mother wavelet function especially designed to match the shape of the evoked potential 

to be extracted, is proposed. The technique presented in [20] is used for the design of the 

mother wavelet function, which is a member of the class of Meyer wavelets 

2.2 	The use of ERP signals in human performance monitor- 

ing 

There are a number of fields relating a person's EEG data with their ongoing cognitive 

processes in order to satisfy the needs of a specific application. The field closer to our 

problem is that of Human Performance Monitoring. The applications of this field try to 

estimate a person's performance in a specific task using their EEG data at the time. In 

this section we review the most important studies of the field. 

In [85] the authors study the relation between the ERP and a person's performance 

in three visual display-monitoring tasks: signal detection, running memory and computa-

tion. The difficulty of each task is designed to vary resulting in a variation in the persons' 

performance. The indexes of performance are the reaction time, the confidence and the 

accuracy. A global measure for the characterization of performance, the Performance Fac-

tor (PF), is designed as a linear combination of the above indexes. Then, linear regression 

models are developed to relate the ERPs (specifically measures such as the amplitude and 

the latency of the ERP components) with the corresponding PFs. The models are distin-

guished by three factors: single subjects versus inter-subject based approach, relevance of 

the stimulus and SNR. The relevant stimuli are the ones connected with the undertaken 

task. The SNR of the ERPs are enhanced by computing the running average of ten con-

secutive ERPs. In such cases the ERP signals are related to the corresponding averages of 

the PFs. The results show that single subject based linear regression models, using ERPs 

elicited by the relevant stimuli and having sufficiently large SNR, can reliably estimate a 

person's performance factor. 

The data from the signal detection task of [85] are processed in different ways 
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in [45, 70, 71, 86] to develop a model capable of providing reliable estimations of a per-

son's performance in the task. In [45] ERP features are constructed through Principal 

Component Analysis (PCA) and modelling the observed ERP as an autoregressive (AR) 

process. The constructed features are related to human's performance using linear regres-

sion and Radial Basis Function (RBF) networks. The superiority of the combination of 

PCA features with the use of RBF networks for modeling is reported. 

The use of high power coefficients of the Discrete Wavelet Transform (DWT) for the 

construction of features is investigated in [86]. The authors report that the use of DWT 

coefficients in linear regression models lead to the same performance with PCA coefficients 

using half as many free parameters. This results in models more resistant to overfitting 

and thus capable of generalizing better to new data. The superiority of DWT features 

over PCA coefficients and raw ERP data is also reported when neural networks are used as 

models for estimating the human's performance. This superiority of the DWT features is 

discussed as far as decorrelation and energy compaction properties are concerned. Finally, 

evidence that low frequency (delta band) activity, occurring at specific times and scalp 

locations, correlates with signal detection performance is presented. 

In [70, 71] the use of Kernel PCA is proposed as a feature extraction method for a 

human's performance monitoring application. Kernel PCA [77] maps the observed feature 

vector x into a space .F of higher dimension, using a non linear function 0(x). The dot 

product in F is computed through a kernel function, i.e. K(x, y) = q5(x).q(y). After the 

mapping, standard (linear) PCA is performed in and the components across which high 

variance is achieved are selected for projection. The advantage of Kernel PCA over linear 

PCA is that higher order correlations between the selected variables are achieved and that 

more variables can be extracted in case the input data are more than the dimension of 

the original space. In the above studies Kernel PCA with Gaussian kernel is compared 

with linear PCA using Support Vector Regression and Kernel types of Regression and its 

superiority is reported. 

Let us mention here that all the above studies use averages of the observed EEG 

signals in order to enhance the buried ERP. This restricts them to estimating the average 
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performance in a period of consecutive trials. The preprocessing of the data using the 

methods described in section 2.1, in order to enhance the single trial ERP and permit the 

performance estimation in single trial, basis is of great interest. 



Chapter 3 

Classification using dimensionality 

reduction and subspace methods 

In this chapter we perform classification using very simple features for the characterisation 

of the subject's response in each trial and concentrate on a number of transforms of the 

initial feature space that are likely to enhance the separability of the two classes. 

We begin performing classification on the initial feature space. This is the simplest 

way to approach the problem and the results achieved will be used as benchmark to evalu-

ate the efficiency of more sophisticated methods. We then try to increase the classification 

results reducing the amount of features used, by selecting those with the highest discrim-

inating capability. The latter is computed by the data of the trials in the training set. 

Then we use a number of methods such as Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA) and Non Negative Matrix Factorization (NMF) to construct 

a new space of lower dimension for the representation of the features and investigate its 

suitability for the desired classification. Finally, we perform classification using PCA and 

NMF to construct different subspaces for the two classes. 

57 
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3.1 	Construction of the set of features 

We propose here an algorithm that can be used for constructing the initial set of features 

for the signals of each trial. When feature construction is done for the purpose of classi-

fication, it is important to isolate from the elements of a class those characteristics that 

make them different from the elements of the other classes. In our case, we search those 

characteristics in the magnitude of the Fourier coefficients that are known to be related 

with the cognitive processes of recognising a target (see Section 1.2.3). Moreover, the 

magnitude of the frequency components meets the non negative requirement of NMF, so 

its use for processing the constructed features is feasible. 

The proposed algorithm constructs the desired features as the magnitude of the 

Discrete Fourier Transform (DFT) of the EEG signals. The magnitude of the Fourier 

coefficients has been used as feature for discriminating between two different mental tasks 

in [57]. 

In our case the feature vector f t  of the tth trial is constructed as follows. 

• We first compute the mean value of vectors xri, t  and subtract it from their elements. 

Vector xri,t  contains the time samples of the EEG signal between the stimulus onset 

and the quickest reaction time of the subject, as recorded by the nth  channel. 

• For each of the N channels used, we compute the DFT of the corresponding vector 

x„,t  containing the EEG signal. This is computed as: 

1 	 . 
xn (k) = 	E 	(m)e-327

(k--1)(m-1)  

m=1 
k =1,...,M. 

• We construct vector "ir,,t  containing the magnitude of the positive digital frequencies 

corresponding to an analog frequency smaller than 40 Hz. This is because the 

majority of the energy of an EEG signal is concentrated in the frequencies smaller 

than 40 Hz (see Table 3.1). Moreover it is the band 0-40 Hz of the EEG spectrum 

which is mainly known to be connected with a person's ongoing cognitive processes 

[7]. We exclude from these frequencies the one of 0 Hz as this is always equal to zero 
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Table 3.1: Mean percentage (%) of the EEG signals' energy in the range 0-40Hz for 
the 11 subjects in the 18 channels 

Subject 1 2 3 4 5 6 8 10 11 13 14 
Ch. Fz 99.84 99.34 98.83 98.4 99.01 99.15 99.33 99.23 98.2 99.55 99.82 
Ch. Cz 99.79 98.62 99.78 98.86 98.7 98.12 98.74 98.73 99.65 99.36 97.8 
Ch. Pz 99.85 99.02 99.84 99.23 99.03 99.65 97.74 99.5 98.87 99.74 99.57 
Ch. F3 99.54 99.32 97.25 97.52 98.97 97 99.4 99.38 98.62 98.24 98.8 
Ch. F4 98.05 97.91 98.92 97.17 99.2 94.75 98.7 98.31 99.64 99.78 98.84 
Ch. T3 99.22 97.89 99.8 98.73 92.8 87.35 94.77 97.62 97.68 98.11 99.62 
Ch. T4 92.42 98.32 97.99 99.2 97.47 92.31 97.33 98.7 95.53 98.08 94.74 
Ch. C3 99.15 98.53 99.81 99.15 98.41 99.37 97.75 98.66 99.84 99.3 99.87 
Ch. C4 99.8 99.55 99.39 99.03 98.93 99.34 98.19 98.68 93.63 99.78 99.9 
Ch. T5 99.16 99.91 98.83 98.87 95.15 96.36 98.41 99.34 98.88 98.69 99.19 
Ch. T6 99.34 98.62 98.65 98.97 97.5 98.82 96.96 99.03 99.66 98.87 97.74 
Ch. P3 99.9 99.48 98.22 92.75 97.45 99.13 99.02 99.5 97.26 99.04 99.67 
Ch. P4 99.89 98.53 99.76 97.35 97.03 99.76 97.73 98.55 95.27 99.48 99.87 
Ch. 01 99.79 99.77 98.98 98.21 99.04 98.51 98.41 97.33 95.98 99.66 99.09 
Ch. 02 99.54 99.01 99.65 98.66 99.16 98.86 97.62 98.56 96.33 98.5 99.78 
Ch. Oz 99.56 99.58 98.63 98.27 98.94 97.23 97.89 99.08 95.83 99.29 98.28 
Ch. F7 98.61 99.81 97.81 98.12 99.33 96.77 96.94 96.08 96.37 97.24 99.62 
Ch. F8 99.38 98.41 96.56 99.28 97.52 97.02 94.11 97.6 95.73 98.29 93.51 

because of the subtraction of the mean value of the signal. 

Let us note that a sample 'i(k), with k = 1, ..., [ 1'4 j + 1 since we are interested only 

in positive frequencies, corresponds to the continuous frequency kiqFs. We repeat 

here that Fs  = 500 Hz is the sampling frequency of the continuous EEG. 

• The feature vector f t  is constructed by concatenating vectors X-„,t  across channels, 

i.e. f t  = 	•••; 1N,t)• 

3.2 The Gaussian Classifier 

In most cases in this chapter the Gaussian classifier [26] is used for the purpose of classi-

fication. We give here a brief description of the way that this classifier works. 

Let us assume that we have a training set which is constituted from N dimensional 

data samples belonging to M different classes. We denote with xi the random vector 

of the ith  class. The data samples in the training set are instantiations of these random 
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vectors. The Gaussian classifier assumes that xi follow a multivariate normal distribution, 

which means that the probability density function of each one is given by: 

1 
Pi(x) = (27 )N / 2

1 
 1Ri p./ 2 exp r 

L 2 	mi)TR2 1(x mi) 	= 1, —, C 

where mi and Ri  are the mean vector and the covariance matrix of xi. In the following 

sections these quantities are calculated from the samples in the training set. 

A sample xt  in the testing set is assigned by the classifier to the ith  class Ci if: 

P(Cilx = xt ) = max P(Ci Ix = xt ). 	 (3.2) 

Using Bayes' theorem: 

P(x =  xt ri)P(Ci)  P(Ci I x = xt) = P(x = xt) 
(3.3) 

Assuming that each sample has the same a-priori probability of belonging to any 

class we have that: 

arg { max P (Cj Ix = xt )} = arg { max P(x = xt ri)} = arg { max pi (xt )} 
j=1 ,...,M 

(3.4) 

Thus using Eq. (3.2), (3.4) and the negative hi of Eq. (3.1) a sample xt  is assigned 

to class Ci if: 

Li(xt ) = min Li (xt) 	 (3.5) 

where Li(x) is defined for class Ci  as: 

Li(x) (x — mi)T  Ri 1(x — mi ) + In iRi i 	 (3.6) 

In some of the cases in this chapter we assume that the covariance matrices of the 

classes have specific forms which make Eq. (3.6) having a simpler form. In the case that 

the random variables xi ,k , k = 1, N of each random vector xi are uncorrelated, Eq. 

(3.1) 



3.3 Classification in the initial feature space 	 61 

(3.6) reduces to: 

(x) = E -1 2 (Xk — Mi,k)2  In H Cri k
2
) 	 (3.7) 

(k=1 
Li 

k=1 a  'k  

where riti,k and a are the mean and the variance of xi ,k , respectively. Moreover if we 

assume that the variance of Xj,k is the same in all classes and equal with cri2c , we take 

obtain: 
, 

Li(x) = E-kxk  - 
k=1 C7k  

(3.8) 

where the second term in Eq. (3.7) was omitted because it is the same for all classes and 

plays no role in the classification process. 

3.3 Classification in the initial feature space 

We present in this section the classification results we get performing classification in the 

initial feature space. The set of features characterising each trial is constructed as described 

in Section 3.1, i.e. using the magnitude of the frequencies smaller than 40Hz. In addition 

to that, we construct the features here in two more ways: a)keeping the magnitude of all 

frequencies up to 250Hz and b)using the time samples instead of the magnitude of the 

spectrum. In the case of time samples two ways are used for the classification task. The 

first one is the Gaussian classifier, as done with the previous types of features. The second 

one is through correlation of the testing time signals with the mean time signal of each 

class as computed from the trials in the training set. 

The classification process takes place with respect to each subject separately. The 

trials of each subject are divided in two sets in a random way and the two subsets created 

are used as training and testing sets. We make sure that there is an equal number of trials 

from each class in each one of the two sets. The processes of the random splitting of the 

available trials and the one of subsequent classification are repeated 500 times in order to 

reduce the variability of the results. The classification results are computed as the average 

of the classification results of each repetition. 

As far as the classification task is concerned using the Gaussian classifier and the 
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criterion of Eq. (3.6) we have the problem that the covariance matrix of each class is 

not invertible. This is because the dimensionality of the feature space is larger than the 

available samples of each class in the training set. The number of trials in the training 

set of each subject and the dimensionality of the feature space for each one of the feature 

construction algorithms can be seen in Table 3.2. In order to overcome the problem of 

the non invertibility of the covariance matrices we assume that the features are mutually 

uncorrelated and use Eq. (3.7) for the definition of Li(x). In a second round of experiments 

the variance of the features is assumed the same for all classes and Eq. (3.8) is used. 

The correlation type of classification, which is used only for the time features, can 

be described as follows. A mean signal is first computed for each class using the signals 

of the trials in the training set. The mean signals are normalised to have energy equal 

with one. In order to classify each trial in the testing set, the energy of its corresponding 

signal is normalised and then the inner product of the normalised signal with the mean 

signal of each of the two classes is computed. Let as denote with a the correlation of the 

testing signal with the mean signal of class success, with b the corresponding correlation 

with class "failure" and with d their difference, i.e. d = a — b. Then the testing trial is 

classified to class "success" if d > t, to class "failure" if d < t and a random choice is 

made if d = t, where t is a suitably chosen threshold. The value of t is evaluated in the 

following way. We repeat the correlation process described earlier for each trial in the 

training set, computing each time the mean signals of the two classes using the signals of 

the remaining trials. We denote with d3  the value of difference d when the trial belongs to 

class "success" and with d f  when it belongs to class "failure". We then compute the mean 

values of d, and ci f  over the trials belonging to class "success" and "failure" respectively 

and the value of the threshold t is computed as t = (d f)
2 

The rate of correct classification for each combination of feature construction algo-

rithm and type of classification are presented in Figures 3.1 and 3.2. We can see that the 

correct classification rate varies across subjects, with the best being achieved for subject 

14 and the worst for subject 3. In the majority of cases the time domain features achieve 

the best classification accuracy. As far as the accuracy of the features constructed from 
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the magnitude of the spectrum is concerned, the algorithm keeping only the frequencies 

smaller than 40Hz outperforms the one using all the available frequencies. This is some-

thing we expected as the EEC signal is a lowpass signal so the high frequencies contain 

mostly noise which deteriorates the classification. The only exception is subject 6. This 

can be explained observing the magnitude of the spectrum of subject 6 across frequencies 

and noticing that in contrast with the other subjects, subject 6 has a significant amount 

of energy in frequencies larger than 40Hz. Finally, we observe that in most cases the clas-

sification accuracy is better when the variance of the features is assumed the same for the 

two classes. This is probably because the variance of the features is the same for the two 

classes in the majority of cases, something which we fail to estimate because of the small 

size of the testing set. This can be seen in Figures 1.5, A.1,-A.10 and 1.6, A.11,-A.20, in 

which the variance of each class is computed from all the available trials of each class (i.e. 

both testing and training sets). Thus, in the majority of the experiments following in this 

chapter, the features will be assumed to have the same variance in the two classes. 

In order to check whether the difference in the estimated classification rates of two 

algorithms is large enough to permit us conclude about the superiority of one of them, we 

perform the following test of significance. We compute the observed level of significance of 

the hypothesis that the algorithm with the larger estimated classification rate has a true 

classification rate equal or smaller than the other algorithm. If this level of significance 

is small enough (< 5%) then the difference in the classification rates is significant and we 

can assume that the algorithm with the larger estimated classification rate is superior. We 

refer to Appendix C for more details concerning the computation of the observed level of 

significance. 

We performed this test here for the algorithm having the best estimated classifica-

tion rate for each subject (see Figures 3.1 and 3.2) against all other algorithms and the 

results are presented in Table 3.3. We denote in bold the cases for which the observed 

level of significance is smaller than 5%, i.e. the cases we can be confident (at a level of 

95%) that the algorithm with the best estimated classification rate is actually superior. 

One can see that in most cases the significance level is not small enough to give us such 
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Table 3.2: Number of trials of the same class in the training set and dimension of the 
feature space per subject 

Subject 1 2 3 4 5 6 8 10 11 13 14 
Number of trials 

per class 
in the training set 

14 12 9 23 20 25 9 16 16 16 12 

Dimens. 
of initial 
feature 
space 

Spectrum 
(<40Hz) 270 432 324 324 306 306 270 342 324 342 396 

Spectrum 1620 2664 1944 1926 1854 1908 1656 2106 1962 2052 2430 
Time 3240 5328 3888 3852 3708 3816 3312 4212 3924 4104 4860 

confidence. However, we have to note here that because of the small number of available 

trials, a small difference in the true classification rate of two algorithms is not likely to be 

adequate to support the superiority of one of them with such a high level of confidence. 

In the remaining sections of this chapter we use only the magnitude of the fre-

quencies smaller than 40Hz as features. Although the time samples give in general better 

results in the initial features space, the magnitude of the spectrum has a number of char-

acteristics that makes it more appealing for this study. First of all, the resulting number 

of features is much smaller which is an advantage especially in our case that the size of 

the testing set is small. Moreover the positive nature of the features will enable us to use 

the Non Negative Matrix Factorization for their processing. Finally, since the magnitude 

of the spectrum is known to be connected with various cognitive processes, we want to 

investigate the possibility of a suitable transformation to exploit this connection and boost 

the classification accuracy in our problem. 
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Figure 3.1: Classification accuracy for subjects 1,2,3,4,5,6. 

Figure 3.2: Classification accuracy for subjects 8,10,11,13,14. 
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Table 3.3: Observed level of significance (%) for the hypothesis that the algorithm 
with the best estimated classification rate for each subject is equivalent or inferior 
than the other algorithms. 

Subjects 
Algorithms 

Spectrum 
(0-40Hz) 

Spectrum 
(0-250Hz) Time  

same 
variance 

different 
variance 

same 
variance 

different 
variance 

same 
variance 

different 
variance correlation 

1 20.49 11.93 3.37 3.66 - 45.27 44.65 
2 - 36.56 19.16 13.55 49.26 28.42 17.91 
3 31.19 37.61 36.69 40.98 - 39.21 46.07 
4 26.49 36.35 7.78 5.27 - 41.55 33.87 
5 47.41 - 11.02 18.78 13.18 14.23 8.41 
6 3.13 1.34 29.9 20.19 31.12 - 39.76 
8 14.53 8.7 5.15 4.87 49.54 - 32.07 
10 - 40.58 5.68 11.47 30.99 41.59 19.47 
11 5.03 2.73 6.2 2.5 - 40.94 22.38 
13 35.11 19.87 14.75 15.48 39.73 31.37 - 
14 25.26 22.34 1.79 0.66 44.6 - 34.92 

3.4 	Classification selecting the most discriminating features 

In this section we investigate the possibility of increasing the classification accuracy keeping 

only a subset of the constructed features. These features are selected with respect to their 

discriminating capability, with the latter being measured from the data in the training 

set. 

We begin first by reducing the number of channels used. We use the following three 

ways to measure the discriminating capability of a channel: 

• The Bhattacharyya distance between the classes "success" and "failure" which is 

measured as: 

d 	 nt2)T  (Ri  ± R2  ) 1  (7711 	 IR 
2  77.12 ) ± in 	i  

8 	 2 	 2 VIR1.11R21 
(3.9) 

where ml , m2, R1  and R2 are the mean vectors and the covariance matrices of the 

feature vectors of the two classes constructed from the corresponding channel. 

• The Bhattacharyya distance between the two classes, assuming that they both have 
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the same covariance matrix R,. This makes Eq. (3.9): 

d = (ml — m2 ) r 	— m2) 	 (3.10) 

• The Euclidean distance between the mean feature vectors of each class, i.e: 

d = (m1  — m2)T  (ml  — m2) 	 (3.11) 

Obviously the larger the distance is between the two classes for a specific channel, 

the larger its discriminating capability will be. We perform the classification experiments 

splitting the set of available trials into two halves and using them as training and testing 

sets. We use the trials in the training set to measure the discriminating capability of 

each channel. Then 18 sets of channels are constructed with the nth  set, n = 1, ..., 18, 

containing the n channels with the largest discriminating capability. The classification 

experiments are performed for each set of channels separately, using each time only the 

available channels for the feature construction of each trial. The whole process is repeated 

500 times for randomly different compilations of the training and testing sets and the 

classification accuracy is measured through averaging. Let us repeat here that the features 

are constructed according to the process described in Section 3.1. 

Because of the small size of the training set, the features in each channel are assumed 

mutually uncorrelated to ensure the invertibility of the covariance matrices in Eq. (3.9), 

(3.10) and (3.11). When Eq. (3.10) and (3.11) are used for the computation of the distance 

between the two classes, Eq. (3.8) is used for the classification task (same variance for each 

feature in the two classes). On the other hand, when Eq. (3.9) is used for the computation 

of the distance between the two classes, Eq. (3.7) is used for the classification task (different 

variance for each feature in the two classes). The results of correct classification can be 

seen in Figure 3.3. 

One can observe that in some cases (e.g. subjects 2, 3, 14) the classification ac-

curacy is increased for a reduced number of channels. In the majority of cases the best 

results are produced when the Euclidean distance is used to estimate the discriminating 



Subject 1 Subject 2 Subject 3 

20 5 	10 	15 
Number of Channels 

a  65 75 

• 70 

ig 65 
3 

60 

75 
,1? 

70 
C 

65 

• 60 

c 55 

20 

.2 55 

0. 500 
 20 20 

°60 

55 

• 50  

• 45 
0 O 5 	10 	15 

Number of Channels 

Subject 4 
0 70 

6 65 
-g 60 
C 60 
E 55 

55 
a 50 

§ 50 g 45 
ct 0 	 

20 
0 

0 
55 

0 20 20 5 	10 	15 
Number of Channels 

Subject 8 

5 	10 	15 
Number of Channels 

Subject 5 

I 80 

3  75 

70 
3 • 65 

60 

5 	10 	15 
Number of Channels 

Subject 10 

5 	10 	15 
Number of Channels 

Subject 6 

5 	10 	15 
Number of Channels 

Subject 11 

5 	10 	15 
Number of Channels 

20 

Subject 14 

80 

75 

70 

65 

60 

0 	5 	10 	15 
Number of Channels 

20 

70 

65 
ZS 

PL,  60 

." 55 

150 

O 5 	10 	15 
Number of Channels 

Subject 13 
• 65 

60 

55 
8 

50 

a 45  
0 0 

60 

20 " 0 

P
er

ce
nt

ag
e  

of
 c

or
re

ct
 c

la
ss

ifi
ca

tio
n  

20 5 	10 	15 
Number of Channels 

70 

2 ▪ 65 z 

8 60 

• 55 

50 
0. 

0 

75 

z 70 

3 65 

Euclidean 
Bhattacharyya (same variance) 
Bhattacharyya (different variance) 

3.4 Classification selecting the most discriminating features 	 68 

Figure 3.3: Classification accuracy as a function of the number of channels used. 



3.4 Classification  selecting the  most discriminating features 	 69 

Table 3.4: Number of channels achieving maximum classification accuracy per subject 

Subject 1 2 3 4 5 6 8 10 11 13 14 
Number of channels 11 9 7 4 18 18 3 13 18 18 9 

capability of the channels. This is probably because of the inadequate estimation of the 

features' variances from the training set. The number of channels that achieve maximum 

classification accuracy per subject, when Euclidean distance is used, can be seen in Table 

3.4. 

We next compute the distance between the two classes for each feature separately, 

i.e. for the magnitude of each frequency (smaller than 40 Hz) of the signal recorded on each 

channel. Eq. (3.9), (3.10) and (3.11) are again used but this time the mean vectors are the 

mean values of the feature and the covariance matrices are its variances. The classification 

experiments are repeated in the same way as above, using this time a reduced number of 

features achieving maximum distance between the two classes. In the beginning we select 

a number of channels, according to Table 3.4, having the maximum Euclidean distance 

and take into account only the features constructed from these channels. In a second 

round of experiments, the features from all channels are taken into account. The results 

of correct classification across the number of features that are used can be seen in Figure 

3.4. 

One can observe that in the vast majority of subjects (all subjects except 5 and 

13) the classification accuracy is increased for a reduced number of features comparing 

with the classification accuracy when all features are used. This effect is more prominent 

for subject 8, something that agrees with Figure A.16 in which one can see that there 

are specific frequencies much more suitable for separating the two classes than others. 

Moreover, let us note here that the Euclidean distance is proven again more suitable for 

evaluating the discriminating capability of the features. Finally, we can see that reducing 

first the number of channels to the one giving better results and then reducing the number 

of features gives slightly better results compared with the case that a reduced number of 

features are selected from all the channels. 
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3.5 	Classification in a feature space of reduced dimension- 

ality 

In this section we use a number of methods to construct a new feature space for the 

two classes, which is of a lower dimensionality than the original one. We then perform 

classification using the new features. The motivation for the construction of a new feature 

space of lower dimensionality is twofold. First, the reduction in dimensionality can prevent 

overfitting that could result from our inability to populate a highly dimensional feature 

space with a limited number of samples in our training set. Second, the various criteria 

that are used for the construction of the new space may construct more discriminative 

features and enhance the classification accuracy. 

We give below a brief description of the various methods used for the construction 

of the new spaces. Then we present the classification results acquired. 

3.5.1 Methods 

Principal Component Analysis 

Having a random vector f = 	..., f (2 )T, containing Q random variables fi, PCA finds a 

linear Q x Q transformation BT  which decorrelates them and at the same time projects 

them onto axes ranked in order of decreasing variance: h = BT  f . The new variables are 

called principal components of f . The rows of BT are directional vectors, with norm one. 

It can be proven [39] that the matrix BT which achieves this, has as rows the eigenvectors 

of the covariance matrix of f , denoted as C f  = E{ (f —7)(f — 7)11 An estimation of 

Cf is usually computed as C f  = —N1  (F — F)(F — F)T, where F is a Q x N matrix the 

columns of which are different instantiations of f and F is a Q x N matrix the columns 

of which are the mean feature vector f as estimated by the available instantiations. The 

variance of the retained variable hi is the eigenvalue of the its̀  corresponding eigenvector. 

Thus, dimension reduction can take place by keeping the P variables hi , computed as 

the projections of f on the eigenvectors with the P largest eigenvalues, i.e. the principal 

components with the largest variance. 
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PCA has been used to process EEG features before classification in various cases, 

such as [54,55,58]. In our case it is used as follows. 

• Let us denote with S f  = { 	i = 1,...,L and Si- = 	 j =1,...,1, the training and 

the testing set, respectively, both containing different instantiations of the feature 

vector f . The mean feature vector f is computed, using the elements of the training 

set and the Q x L matrix F = (f 1 -1,..., f L  -7) is constructed. 

• We perform PCA on the feature vector f calculating the eigenvalues and eigenvectors 

of the covariance matrix C f  = 1 1  FFT . We then construct the P x Q matrix BT, 

the rows of which are the eigenvectors corresponding to the P largest eigenvalues and 

the new feature vector for each trial in the training set is computed as hi = BTf i . 

Parameter P is chosen such that a large percentage of the total variance in the data 

is encapsulated. 

• Finally the new feature vectors kJ  of the trials in the testing set are constructed from 

the original ones f 3  by projecting on the selected eigenvectors, i.e. 	= BT :f. ' 

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) [29] is a well known technique which finds the trans-

formation maximizing the between-class scatter to within-class scatter. For a classifica-

tion problem of K equiprobable classes the within-class scatter is described by matrix 

Sy, = Ek  Rf k  /K, where Rfk  is the covariance matrix of the kth  class. The between-class 

scatter is described by matrix S b = x Ek(76 - l) (f k  -1)T, where f k  is the mean fea-

ture vector of the kth class and f the mean feature vector with respect to all classes. The 

desired transformation B is defined as the transformation maximising function: 

J(B) = BT  SbB  BT  S„,B 
(3.12) 

Matrix B is constructed using the eigenvectors of matrix C = 	1 Sb, corre- 

sponding to non zero eigenvalues, as columns. For a K class problem the number of such 

eigenvectors is K —1. In our case LDA is used as follows: 
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• Let us denote with S1  = {f 1 },i = 1,...,L and ST  = {fi }, j = 1, 	the training 

and the testing set respectively, both containing different instantiations of the feature 

vector f . 

• Having two classes in our problem the inequality P < L - 2, should be true to 

ensure the invertibility of St„, where L is the size of the training set and P is the 

dimensionality of the feature vector. For this reason we reduce the dimensionality 

of the original feature vector, either using PCA and keeping the coefficients in the 

directions of larger power or by selecting a number of discriminating features using 

the Euclidean distance as in Section 3.4. Thus, a new feature vector f' of dimension 

P is constructed. The new training and testing sets are denoted as: Sp = {f i}, i = 

1, 	L and Sf, = {://j}, j = 1, ..., L. 

• Matrices Su, and Sb are constructed using the vectors in the training set Sp. Then 

the eigenvectors of C = S,,,-1Sb corresponding to non zero eigenvalues are used for 

the construction of the desired transformation B. Since there are only two classes 

in our problem, B is a column vector. 

• The new feature vectors of the training and testing sets are constructed as hi  = 

BT  f'i  and hi = BTf'..i' respectively. 

Non Negative Matrix Factorization 

We describe here how to use the recently proposed technique of Non Negative Matrix 

Factorization (NMF) [52] to construct a new, low dimensionality feature space for the 

desired classification. 

Let us consider a space of feature vectors IF C IRQ(+), where RQ(+)  is the space 

of real, non negative numbers of dimension Q, and a Q x N matrix F, the columns of 

which are different instantiations of feature vectors belonging to IF. NMF factorizes F in 

the form F ti BH, where B and H are Q x P and P x N matrices with non negative 

elements. There are a variety of algorithms that have been proposed for this factorization. 

We use here the simplest one [53] which minimizes the Euclidean distance IIF BHII 
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under the update rules: 

(FHT )ij , (BT F)jk  
Bij 	Di j 	 Hjk 4-  njk 

(BHHT )ij 	 (BT BH)jk 
(3.13) 

The columns of matrix B form a basis for the approximation of space F. These 

columns are usually called parts, since they are constructively (because of the non neg-

ativity of both their elements and the coefficients) combined to form a feature vector. 

Moreover, each column of H contains the coefficients for the construction of the feature 

vector at the corresponding column of F, and therefore can be thought of as its encoding. 

Because of the non negativity constraint of the algorithm, both matrices B and H are 

usually sparse. This is especially obvious when P < Q. The sparsity of the columns 

of B implies that each 'part' of the feature vectors incorporates specific only features. 

Moreover, the sparsity of the columns of H shows that each of the feature vectors mainly 

needs few of the 'parts' for its formation, i.e. it belongs to a subspace of the space spanned 

by the columns of B. If we find an approximation with these characteristics for a space 

of feature vectors IF and it is adequate, then we say that space IF has a meaningful part 

based representation. 

If the nature of the original feature space F permits a meaningful part based rep-

resentation, then the encodings of the feature vectors, i.e the columns of H, can have a 

large classifying capability. This is because their elements denote the importance that has 

the corresponding basis vector in the representation of the original feature vectors and 

this importance will be similar for trials belonging to the same class (i.e. objects of the 

same class are composed of the same parts). Thus, the columns of H can be used as the 

new feature vectors according to which we shall perform the classification. We give below 

a detailed description of the algorithm that is used for the construction of the new feature 

vectors in our case. Similar algorithms have been used in [57] for EEG data classification 

and in [36] for image classification. 

• Let us denote with Sf  = {f i} , i = 1, 	L and Si = { }, j = 1, ..., L the training 

and the testing set, respectively, both containing different instantiations of feature 
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vector f. We construct the Q x L matrix F the columns of which are the elements 

of the training set, i.e. F = 	 f L)• 

• We factorize F using NMF to find the Q x P matrix B = (bi,...,bp) and the P x L 

matrix H = (hi,...,hL) which satisfy F BH. P < Q is a free parameter of the 

algorithm. The set of vectors (parts) 01,1, k = 1,..,P, is a basis which can span 

a good approximation of the feature space and 	i =1,...,L, are the encodings 

of the feature vectors of the trials (i.e. the coefficients used to construct the feature 

vectors as a linear combination of vectors bk ). These encodings are the new feature 

vectors of the trials in the training set, that will be finally used in the classification 

process. 

• Finally, in order to find the new feature vectors hj from the feature vectors fi  in the 

testing set, we first construct matrix F, the columns of which are vectors 13 . We 

then use the iterative algorithm of NMF to factorize F in the form F BH. The 

difference with the case of the training set is that now matrix B is not updated at 

each iteration but is fixed with the values that have been previously computed, as 

suggested in [36]. Let us mention that this means that the encoding h of a feature 

vector f depends on the fixed matrix B and not on the other feature vectors in the 

testing set. 

3.5.2 Results 

In all cases below, the classification experiments take place as follows. The original feature 

space is constructed and then the methods described above are applied to create a new 

feature space. The set of available trials is splittted into two halves with the one being 

used as training and the other as testing set. The classification task is performed using 

the Gaussian classifier. The whole process is repeated 500 times for randomly different 

compilations of the training and testing sets and the classification accuracy is measured 

through averaging. 
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Table 3.5: Size of original feature space and training set per subject 

Subject 1 2 3 4 5 6 8 10 11 13 14 
Size of training set 28 24 18 46 40 50 18 32 32 32 24 

Dimension of original feature space 
(All features) 270 432 324 324 306 306 270 342 324 342 396 

Dimension of original feature space 
(Reduced features) 27 23 17 45 39 49 17 31 31 31 23 

Classification results using Principal Component Analysis 

We present here the classification results we obtain when the new feature space is con-

structed using PCA. Two different ways are used for the construction of the original feature 

space. In the first way, the features are constructed as described in Section 3.1. In the 

second way the dimensionality of the original feature space is reduced by keeping only a 

subset of size L — 1, of the features producing, each one separately, the largest Euclidean 

distance between the two classes, as it is computed from the training set. Let us repeat 

here that the Euclidean distance between the two classes with respect to a certain feature 

is the Euclidean distance between the means of the feature in the two classes. L is the 

number of trials in the training set. The dimension of the feature space in the second case 

is chosen as L — 1 in order to guarantee a non singular feature covariance matrix in the 

PCA which will follow. The size of the original feature space in the two cases as well as 

the size of the training set can be seen in Table 3.5. 

After constructing the original feature space, PCA is applied to construct the new 

one as described in Section 3.5.1. The number of the new features constructed, which are 

the principal components of the original feature vector, equals the number L of the non 

zero eigenvalues of the covariance matrix of the original feature vector. L sets of features 

are constructed, with the nth  set, n = 1, ..., L, containing the n features with the largest 

variance, i.e. those corresponding to the directions of the largest eigenvalues. Since the 

new features are mutually uncorrelated, Eq. (3.8) is used for the classification task with 

the Gaussian classifier. This also means that we assume that the feature vectors of the two 

classes have the same covariance matrices. Experiments estimating a separate covariance 
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Figure 3.5: Classification accuracy in the space constructed with PCA as a function 
of the number of principal components used. 

matrix for each class were performed as well, but the results were worse (or the same) so 

they are not presented here. The classification accuracy as a function of the number of 

features kept can be seen in Figure 3.5. 

Observing Figure 3.5, we can see that for most subjects the classification accuracy is 

maximised for a certain number of principal components kept and then it starts decreasing. 

Moreover, we can see that there is no significant improvement for the case when the 

number of the original features is initially reduced. In order to evaluate the classification 

results we obtain using PCA, we compare them with the results that the use of the initial 

features produces (i.e those acquired in Sections 3.3 and 3.4). The number of principal 
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Figure 3.6: Comparison of the classification accuracy achieved in the initial feature 
space, reduced feature space (selection of specific features) and PCA. 

components or initial features giving maximum classification accuracy is used for the 

purpose of comparison. For the case that PCA is used, the original features are not first 

reduced, since this is the case that gives best results for the majority of subjects. The 

results can be seen in Figure 3.6. 

As seen from Figure 3.6 PCA improves the classification accuracy for the majority 

of subjects compared with the classification accuracy achieved in the initial feature space. 

As far as the comparison with the reduced feature space created from the selection of 

specific features is concerned, PCA improves the classification accuracy only for Subjects 

1, 2 and 3. 

Classification results using Linear Discriminant Analysis 

We present here the classification results in the space constructed by LDA. As explained 

in Section 3.5.1 the dimensionality of the original feature vector is first reduced either by 

keeping the directions of largest power through PCA or by selecting the most discriminat-

ing features according to the Euclidean distance of the two classes in the training set. This 

is done in order to ensure the invertibility of the matrix S. The Gaussian classifier, i.e. 
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Figure 3.7: Classification accuracy in the space constructed with LDA as a function 
of the number of initial features used. 

Eq. (3.8) since the feature vector constructed with LDA is actually a scalar, is used for 

the task of classification. The classification results as a function of the number of features 

initially used can be seen in Figure 3.7. Let us repeat here that Eq. (3.8) assumes that the 

feature variable in the two classes has the same variance. Experiments estimating different 

variance for the feature variable of each class were carried out but since the results were 

similar or worse they are not presented here. 

Observing Figure 3.7 we can see that in general, better results are acquired when 

the dimensionality of the original feature vector is reduced through PCA. Only for Subject 

8 the reduction through selection of the most discriminating features is clearly superior. 
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Figure 3.8: Comparison of the classification accuracy achieved in the initial feature 
space, the reduced feature space (selection of specific features) and the space con-
structed with LDA (2 cases of initial reduction of feature vectors). 

We next compare the classification results we get using the space constructed with LDA 

with the results coming from the use of the initial feature space (i.e those acquired in 

Sections 3.3 and 3.4). In all cases the number of features giving the maximum accuracy 

is used. The results can be seen in Figure 3.8. We can see that the results with LDA 

are better only for Subjects 1 and 8 as for all other cases the method using directly the 

features with the largest distance produces higher classification accuracy. 

Classification results using Non Negative Matrix Factorization 

We present here the classification results obtained in a feature space constructed using 

NMF. We describe below the three different ways we used NMF to construct the new 

space. In the first two cases NMF is applied in two different features spaces for various 

levels of reduction (i.e. different sizes of the NMF basis). In the third case the original 

feature space is reduced with NMF only once and then the NMF coefficients (i.e. new 
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features) are further reduced based on the producing Euclidean distance between the two 

classes. More precisely we have: 

• Case 1 ("All features"): The original feature space of Section 3.1 is analysed using 

NMF. The number of NMF basis vectors and consequently the dimensionality of the 

new space varies between 1 and the size L of the training set of each subject. 

• Case 2 ("Reduced features"): The original feature space of Section 3.1 is first re-

duced, computing the Euclidean distance between the two classes resulting from the 

use of each feature and keeping the L features corresponding to the L largest dis-

tances. Then the reduced space is analysed with NMF L times with the number of 

NMF basis vectors varying between 1 and L. The new feature spaces are constituted 

each time from the coefficients of the NMF basis vectors. 

• Case 3 ("Selected subset of NMF components"): The original feature space of Section 

3.1 is first analysed using NMF, for L basis vectors. The new feature space of 

size L produced (i.e. coefficients of NMF) is further reduced L times, to a size 

varying from 1 to L. This is done computing the Euclidean distance between the 

two classes resulting from the use of each feature and keeping each time the features 

corresponding to the largest distances. 

As far as the classification task, is concerned the Gaussian classifier is used, with a 

common diagonal covariance matrix for the NMF features of the two classes. Experiments 

with a separate covariance matrix for each class were carried out as well, but the results 

were worse so they are not presented here. The classification accuracy produced across the 

number of NMF features used for the three cases can be seen in Figure 3.9. There is no 

specific tendency common in all subjects as far as the relation between the dimensionality 

of the space and the classification accuracy is concerned. 

For reasons of simplicity we use only the first case for the construction of the original 

feature space (all features constructed as described in Section 3.1 are used) to compare 

the results with the cases when classification is performed in the initial feature space (i.e. 

Sections 3.3 and 3.4). In all cases the number of features giving the maximum accuracy is 
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Figure 3.9: Classification accuracy on the space constructed with NMF as a function 
of its dimensionality. 
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Figure 3.10: Comparison of the classification accuracy achieved with the initial fea-
ture space, the reduced feature space (selection of specific features) and the space 
constructed with NMF. 

used. The results comparing the methods can be seen in Figure 3.10. As one can observe, 

there is an improvement for Subjects 1 and 2 but for the rest of the subjects the method 

using the space constructed with NMF is outperformed by the one using the space of the 

features with the largest distance. 

3.6 Classification using subspace methods 

In this section we perform classification constructing a different subspace for each of the 

two classes in our problem. For the construction of the subspace of each class two methods 

are used: Principal Component Analysis and Non Negative Matrix Factorization. In order 

to classify a trial in the testing set, we project its feature vector on the two subspaces and 

choose the class the subspace of which gives the best approximation for the feature vector. 

We first give a brief description of the methods used and then present the acquired 

results. 
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3.6.1 Methods 

Principal Component Analysis 

Let us assume that we have a Q dimensional random vector f and we want to find a P 

dimensional subspace (i.e. P < Q), such that the mean square error between f and its 

projection on the subspace is minimized. It can be proved [25] that the desired subspace 

can be found performing PCA on f, as described in Section 3.5.1, but using this time the 

correlation matrix Rf  = Elf P.} of the random vector f. Thus, the desired subspace is 

spanned by the P eigenvectors corresponding to the P largest eigenvalues of R f . 

We use here this technique to construct two subspaces for the two classes of our 

problem, using the feature vectors in the training set. If the subspaces constructed are 

representative for each class and different between them, then they are suitable for classi-

fication. The classification process can be described as follows: 

• Let us assume that we have L1  trials in our training set belonging to the class "suc-

cess" and L2 trials belonging to the class "failure". We construct the feature matrices 

F1  and F2 the columns of which are the feature vectors f of the trials belonging to 

the classes "success" and "failure", respectively. The correlation matrices of the two 

classes are computed as Rfi = 111  1  Fin and Rf2 = e-i-F2FT• 

• We perform PCA on the feature vector of each class computing the eigenvalue de-

composition of matrices R fi  and R12. Matrices BT and BT, constructed using as 

columns the P eigenvectors of Rfi and Rf 2  corresponding to the P largest eigen-

values, span the subspace of the "success" and "failure" class, respectively. P is a 

free parameter of the algorithm and it should be chosen such that the ratio of the 

sum of the rejected eigenvalues over the sum of the retained eigenvalues is small. 

• For each trial in the testing set we project the equivalent feature vector f on the 

constructed subspaces. The distance between f and its projection on the two spaces, 

i.e. f - Bi EtT fl, i = 1, 2, is computed and the trial is classified to the class which 

gives the minimum distance. 
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Non Negative Matrix Factorization 

Another way to construct the desired subspaces for the two classes is using NMF. The 

idea of constructing suitable subspaces for classification using NMF has been proposed 

in [351 for image classification. As explained in Section 3.5.1, NMF constructs a basis for 

a random Q dimensional vector f, the elements of which are always positive, minimizing 

the Euclidean distance: 

IMF - BHII 
	where MA — BII = 	Bii)2 . 

	 (3.14) 

F is a matrix the columns of which are the available instances of f, the P <Q columns 

of B are the basis vectors and the columns of H the coefficients for the approximation of 

the corresponding instance of f. This is similar to the minimization criterion of the mean 

square error that PCA uses. However, the main difference is that in NMF the elements of 

the basis vectors and the coefficients are forced to be non negative. 

If the nature of f is "suitable" then the above approximation can be quite good. 

This means that the instances of f have a good approximation on the subspace spanned 

by the columns of B, under the constraint of non negativity of the coefficients. Thus, 

constructing one such subspace for each of the two classes, an unknown feature vector 

can be classified to the class the subspace of which produced the best approximation. We 

present below a detailed description of the way that the classification process takes place. 

• Let us assume that we have L1  trials in our training set belonging to the class 

"success" and L2  trials belonging to the class "failure". We construct the feature 

matrices F1  and F2  the columns of which are the feature vectors f of the trials 

belonging to the classes "success" and "failure", respectively. 

• We factorise both of the above matrices using NMF to find two Q x P matrices B1  

and B2  satisfying F1 	and F2  P--1 B2 H2. The columns of matrices B1  and 

B2  are the bases for the classes "success" and "failure", respectively. The size P of 

the two bases is a free parameter of the algorithm and it has to satisfy P <Q and 
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P < L1, P < L2. 

• For each trial in the testing set, we project the equivalent feature vector f on the 

space spanned by the two computed bases. The projection of a vector f on the 

space spanned by the linear independent columns of a matrix B, i.e. the vector 

in this space having the minimum distance from f, is given by B(BT B) -1BT I. 

However the contributions of the vectors of the basis in this way are not necessarily 

constructive, because the coefficients (BT B) -1 BT fare not necessarily non negative. 

Thus, we prefer to use the approach proposed in [36] and use the NMF algorithm to 

get f B 1 h1 and f B 2h2 , keeping matrices B1 and B2 fixed. Vectors B1h1 and 

B2h2 are the projections of vector f on the space of classes "success" and "failure", 

respectively. 

• The distances If -Bihi~ , i = 1, 2, are calculated and the trial with the feature vector 

f is classified to the class which gives the minimum distance. 

3.6.2 Results 

In all cases below, the classification experiments take place as follows. The original feature 

space is constructed and then the methods described above are applied to construct a 

subspace for each class. The set of available trials is splitted into two halves with the one 

being used as training and the other as testing set. The classification task is performed 

projecting the testing feature vectors on the two subspaces and classifying them according 

to the minimum distance between the original and the projection. The whole process is 

repeated 500 times for randomly different compilations of the training and testing sets 

and the classification accuracy is measured through averaging. 

Classification results using Principal Component Analysis 

We present here the classification results we obtain when the subspace for each class is 

constructed using PCA. The initial feature space is constructed according to Section 3.3. 

Then the eigenvalue decomposition of the correlation matrix of each class, as computed 
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Table 3.6: Size of initial feature space and samples per class in the training set for 
each subject 

Subject 1 2 3 4 5 6 8 10 11 13 14 
Samples per class 
in the training set 14 12 9 23 20 25 9 16 16 16 12 

Size of initial 
feature space 270 432 324 324 306 306 270 342 324 342 396 

from the samples in the training test, is used for the construction of a subspace for each 

class. Because of the limited number of samples in the training set, which is smaller for 

each class than the number of features (see Table 3.6), we cannot "see" the whole space 

of each class. However, even for the subspace observed, PCA shows that the power is 

concentrated in very few dimensions (see Figure 3.11). Therefore the construction of a 

smaller subspace than the one observed, capable of providing a good approximation for 

the feature vectors of each class, is feasible. 

The classification accuracy obtained across the number of eigenvectors kept for the 

construction of each subspace is presented in Figure 3.12. For certain subjects (i.e. 5, 

6 and 8) the classification accuracy is maximised when few eigenvectors are used for the 

construction of the subspaces and it is decreased thereafter. For other subjects (i.e. 1 and 

14) the classification accuracy does not really depend on the number of eigenvectors used. 

In order to evaluate the effectiveness of the method, we compare the classification results 

(the maximum one achieved for each subject) with the results acquired using the initial 

feature space (Section 3.3) and those using the most discriminating features (Section 3.4). 

The comparison can be seen in Figure 3.13. As one can observe, there is an improvement 

for Subjects 1, 8 and 11. However, in the majority of subjects performing Gaussian 

classification in a space constructed using features having the largest distance produces 

the best results. 

Classification results using Non Negative Matrix Factorization 

We present here the classification results we get when the subspace for each class is con-

structed using NMF. The initial space is constructed as described in Section 3.3. The 
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Subject 1 
	

Subject 2 
	

Subject 3 

Subject 4 
	

Subject 5 
	

Subject 6 

Figure 3.11: Ratio of power kept as a function of the number of eigenvectors corre-
sponding to non zero eigenvalues used. 



0 5 
Number of elgenvectors used 

Subject 13 

10 

15 5 10 20 

15 O 5 	10 
Number of eigenvectors used 

Subject 4 

Subject 1 Subject 2 
S  

	

70 		 

8 65 

	

60 	 
0. 

0 

0 

70 
is 

E 65 

g 60 

Subject 3 

5 
Number of eigenvectors used 

Subject 6 

60 

3 

e 50 

58 

56 

54 

52 

50 

48 

46
0  5 	 10 

Number of eigenvectors used 

Subject 5 

10 

55 

P
er

ce
nt

ag
e  

of
 c

or
re

ct
  c

la
ss

ifi
c a

tio
n  

0 

z 

0 
8 78 

z 76 

8  74 

g 72 

g ▪ 70 

,E3  58 

g • 56 

54 

8  • 52 

& 50 

p 48 

20 5 	10 	15 
Number of eigenvectors used 

Subject 10 

25 0 O 5 10 15 20 
Number of eigenvectors used 

Subject 8 

5 10 15 20 25 
Number of eigenvectors used 

Subject 11 

r3 65 

E 60 
3 

55 

.5 

4 75 

t 70 

g 65 

68 
8 

66 

64 

8 62 

13  60 
a 
g 58 

0  56 

Number of eigenvectors used 

5 	10 	15 
Number of eigenvectors used 

Subject 14 

5 	10 
Number of eigenvectors used 

5 
• 60 
is 

• 55 

• 50 

0. 
0 

P
er

ce
nt

ag
e  

of
 c

or
re

ct
  c

la
ss

ifi
ca

tio
n  

20 	0 	5 	10 	15 	20 
Number of eigenvectors used 

76 

74 

72 

70 

68 

66 

3.6 Classification using subspace methods 	 89 

Figure 3.12: Classification accuracy constructing different subspaces for the two 
classes using PCA. 
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Figure 3.13: Comparison of the classification accuracy achieved in the initial fea-
ture space, the reduced feature space (selection of specific features) and the different 
subspaces for each class using PCA. 

dimensionality of the constructed subspaces varies between one and the number of sam-

ples for each class in the training set (which is always smaller than the dimensionality of 

the original space - see Table 3.6). The percentage of correct classification as a function of 

the dimensionality of the subspaces can be seen in Figure 3.14. We can observe that the 

results are similar with those obtained when the subspaces were constructed using PCA 

(see Figure 3.12). As in that case, for certain subjects (i.e. 5, 6 and 8) the classification 

accuracy is maximised when few dimensions are used for the construction of the subspaces, 

whereas for other (i.e. 1 and 14) the classification accuracy does not really depend on the 

dimensionality of the subspace. 

A comparison between the results achieved here and those performing classification 

in the original feature space or the one constructed from a subset of selected features 

can be seen in Figure 3.15. As in the case in which the subspaces are constructed with 

PCA, there is an improvement for subjects 1, 8 and 11 whereas for the other subjects 

performing Gaussian classification in a space constructed using the features having the 
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Figure 3.14: Classification accuracy constructing different subspaces for the two 
classes using NMF. 
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Figure 3.15: Comparison of the classification accuracy achieved in the initial feature 
space, a reduced feature space (selection of specific features) and in different subspace 
for each class using NMF. 

largest distance produces the best results. 

3.7 Conclusions 

From the experiments presented in this chapter various conclusions can be drawn that 

motivate the work presented in the next chapter. 

1. In some cases frequency features produce better results than time domain features 

and vice versa. 

2. In general, reducing the number of features used, increases the correct classification 

rates. However, no algorithm appears to be universally optimal for the process of 

feature selection. 

3. There are no universally good channels or frequency bands. 

4. In general, frequencies below 40 Hz are the most useful. 
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For the last two reasons, in the next chapter we shall use time - frequency joint 

representations, tailor made to individual subjects, using frequencies below 40 Hz. 



Chapter 4 

Classification analyzing EEG 

wavelet transforms with NMF 

In this chapter we use Non Negative Matrix Factorization (NMF) to analyse the time-

frequency representation of the EEG signals of the trials in order to construct features to 

be used in the prediction problem. The time frequency representations are acquired using 

a discretised version of the Continuous Wavelet Transform (CWT). In sections 4.1 and 4.2 

the CWT and the Discrete Wavelet Transform (DWT) are presented whereas in section 

4.3 the reasons for choosing CWT for our experiments are explained. In section 4.4 the 

classification rates acquired with time domain features are computed. Then in sections 4.5 

and 4.6 two algorithms analysing the time frequency representations of the EEG signals 

with NMF in two different ways are presented and the corresponding classification results 

are calculated. Finally, in section 4.7 we compare the classification rates acquired with 

the three algorithms. 

4.1 The continuous wavelet transform 

The Continuous Wavelet Transform (CWT) enables the decomposition of a function f (t) 

into a set of functions 	a E R±, b E R, which are localised in time and frequency 

providing thus a time-frequency representation of f . It is defined as: 

94 
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Wf(a,b) = 1 f  +00 
' 

t` -' -  ( t 	dt 
	

(4.1) 

As it can be seen from this definition the atoms of the decomposition 00 ,6 (0 = 
a-1/2 /, , (tab) ,  .., 	named wavelets, are shifted and dilated versions of a function OM, named 

mother wavelet. Wavelets must satisfy the following condition: 

f-1-00 
J-00  7,b(t)dt = O. (4.2) 

Their Fourier transform should be continuously differentiable. These two conditions are 

sufficient for the existence of the reconstruction formula, which states that any function 

f E L2(1[8) can be written as: 

f (t) = G`0 Jo a° 	w f  (a, 	lao(t a b )db1-2 da 	 (4.3) 

where 
co  = +00  k3(w)i2  dcv < +00 	 (4.4) 

with ii;(w) being the Fourier transform of 0. Relation (4.4) is named "admissibility con-

dition". 

The way that the wavelet transform provides a time-frequency representation of a 

function can be described as follows. The scaling parameter a of a wavelet atom determines 

its scale. The notion of scale is related to that of frequency, with large values of scale 

corresponding to bands of small frequencies and small values of scale corresponding to 

bands of high frequencies. Moreover the value of scale determines the width of the wavelet 

both in time and frequency. As a decreases, i.e. we are moving to high frequencies, the 

width in time decreases whereas the width in frequency increases. The time-frequency 

resolution remains the same for all values of a, as it depends only on the choice of the 

mother wavelet, but the intrinsic variability of the time and frequency windows gives us 

a good trade-off between the time and frequency resolutions, depending on the range of 

frequencies we are looking at, each time. Thus the scaling parameter a determines the 
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frequencies we are looking at. On the other hand, the shifting parameter b changes the 

time localisation centre of the wavelet, associating the corresponding wavelet coefficients 

with a specific time period. 

4.2 The discrete wavelet transform 

The CWT is highly redundant as it represents a function of one variable as a combination 

of functions of two variables. This redundancy can be reduced by sampling the wavelet 

coefficients, i.e. keeping those corresponding to specific scales and time shifts. The scaling 

parameter is discretised as a = as', for a fixed positive value ao , (ao 	1). The discretisa- 

tion of the shifting parameter should depend on agl, in order to use large steps for large 

scales, for which the width of the wavelet in the time domain is large and vice versa. 

Because the width of the wavelet is proportional to its scale, the shifting parameter is dis-

cretised as b = nboacT. Setting these parameters to (4.1) the Discrete Wavelet Transform 

(DWT) is defined as: 

+00 
Df (m, n) = ao m/2 I 	f (t)11)(aE,m t — nbo)dt, m, n E Z 

—oo 
(4.5) 

In this case the atoms of the decomposition constitute a discrete set of functions 

Orn,n(t) = ao—m/20(aE, mt — nbo). With the appropriate choice of the mother wavelet OM 

and constants ao and bo, the above set is a frame for space of L2(1l) (for more details we 

refer to [22], section 3.1). This means that any function f E L2 (R) can be reconstructed 

from its discrete wavelet coefficients using the dual set of functions Vm,n  such as: 

f (t) = E D f 	 (4.6) 
ram 

The DWT is still a redundant transformation. However, there are special choices 

of ly , ao and 1)0  for which 1Prn,n constitute an orthonormal basis for L2(R). In this case the 

redundancy is eliminated and any L2-function can be approximated with arbitrarily large 

precision by a finite linear combination of functions 7,bm,n• 
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4.3 Comparison of CWT and DWT for the analysis of a 

discrete signal 

We describe in this section how CWT and DWT can be applied on a discrete signal of 

finite duration and compare between the decompositions that the two transforms produce. 

In order to apply CWT ( see Eq. (4.1) ) a type of interpolation should be applied 

between the samples of the discrete signal. The simplest approach is to use piecewise 

constant interpolation. In this case the CWT of a signal f (n), n = 1, N can be 

computed as follows: 

W f(a, b) = —1 	f 	
a 

t - b 
-00 	

N-1 
(4.7) 	 dt = 

n
E
=i
f 
 

f 	(
t -a b

) dt 

and assuming that f (t) = f (n) for t E [n, n + 1] we have: 

W f (a, b) = -7 
x--% 

 f (n) f 1p (-7,—) 	d t. 

	

v n=1 	n  

	

N -1 	n+1 	— 	
(4.8) 

The integrals of relation (4.8) can be evaluated numerically. Thus the wavelet coefficients, 

at any desired scale and for a number of shifts equal to the number of samples of f , can be 

computed. Frequency Fa  corresponding to a scale a can be computed from the following 

formula [1): 

Fa  = 
aTs 
	 (4.9) 

where F, is the central frequency of the mother wavelet and T, the sampling period of the 

discrete function f . The central frequency of the mother wavelet is the frequency with the 

maximum energy in the Fourier transform of the signal and captures its main oscillations. 

In the case of the DWT, the wavelet coefficients can be computed using the scheme 

of multiresolution analysis [611. Qnce an orthogonal wavelet has been chosen, the coeffi-

cients of a half-band lowpass and a half-band highpass filter can be computed. Convolving 

the discrete signal with these filters we get two sets of coefficients, corresponding to two 

frequency bands: [0, Fs /41 and [F,/4, Fs / 21, where F, is the sampling frequency of the 

discrete signal. The output of the highpass filter is the wavelet coefficients, corresponding 
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to scale 2. The output of the lowpass filter constitutes the "scaling" coefficients which 

describe the lowpass part of the signal. The filtering procedure can be repeated with 

the "scaling" coefficients, getting at each level of decomposition two sets of coefficients, 

corresponding to two sequential frequency bands with half the bandwith of the original 

one. After each convolution, the resulting sequence is downsampled by a factor of two, so 

the resolution in time is halved as we move to lower frequencies. 

To illustrate the differences between the CWT and DWT, we use them to decompose 

two different types of signal. The mother wavelet used in both cases is the quadratic 

biorthogonal spline with 7 vanishing moments ( [62], section 7.4.3), and the DWT is 

applied up to the fifth level of decomposition. 

The first signal has duration 5.12 sec, the first half of it is constructed as the 

superposition of 10 cosines with frequencies 1,2,...,10 Hz and the second half is constructed 

as the superposition of 5 cosines with frequencies 11,...,15 Hz. The amplitudes of the 

cosines are normalised so that the two parts have the same energy. The sampling frequency 

is 50 Hz and the number of samples is 256. The signal in the time domain as well as the 

absolute value of its continuous and discrete wavelet transforms can be seen in Figures 4.1 

and 4.2. 

For the presentation of the CWT and DWT in figure 4.2 a time-frequency rep-

resentation is used instead of a time-scale one. The same type of representation is also 

used for analysis with NMF in the next sections of this chapter. This is because the 

correlations between the EEG signals and a person's undergoing cognitive processes are 

described in the literature with respect to various frequency bands of these signals. Thus, 

it is natural to work with frequencies rather than scales. The correspondence from scale 

to frequency for the CWT takes place through Eq.(4.9). This is the frequency around 

which the spectrum of the wavelet at the corresponding scale is localised. For the DWT 

the jth  level of decomposition corresponds to scale 23  and as we said before is associated 

with the frequency band [F8 /2i+1, F8 /23] (F, is the sampling frequency of the signal). 

In the second signal which we use as an example, we used two Gaussian functions 

to resemble the components of the ERP. This signal has a duration of 510 msec and is 
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Figure 4.1: A superposition of cosines of different frequencies 

constituted of two Gaussian functions of opposite amplitude centered at 200 msec and 250 

msec. Both functions have a width of 100 msec. We superimposed on this signal a true 

EEG signal from our data, acquired before the stimulus onset, to simulate the background 

EEG activity. We scaled the amplitude of this signal in order to have SNR=5dB. The 

sampling frequency used is 500 Hz, which produces 256 samples. The time domain repre-

sentation of this signal as well as the absolute value of its continuous and discrete wavelet 

transforms can be seen in Figures 4.3 and 4.4. 

In both cases it is obvious that the CWT provides a better insight of the time-

frequency components of the signals compared with the DWT. This is due to its redun-

dancy. This is more obvious in the second case, in which the time duration of the signal 

is small and the sampling frequency large. In that case the CWT managed to isolate 

the peaks of the two Gaussian functions, the energy of which is concentrated in the low 

frequencies. On the contrary, the DWT failed to isolate these components, because of 

its very small resolution in the low frequencies. Since the EEG signals of the oddball 

experiment we want to analyse are very similar to this one, concerning their duration and 

their frequency content, we are going to use the CWT to acquire their time-frequency 

decomposition. 

In the results presented in the following sections of this chapter, the second deriva-

tive of the Gaussian probability density function is used as a mother wavelet. This function 
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Figure 4.2: Wavelet transform of the signal in Fig. 4.1 (a) CWT (b) DWT. 

was not used here for the comparison between CWT and DWT as it does not have reali-

sation of discrete filters for the implementation of DWT. However, since we decided to use 

the CWT in the following experiments, both the Gaussian and the spline mother wavelets 

were tested. The results with the Gaussian mother wavelet were generally better. We 

decided to present only those in order to reduce the volume of the results and make the 

comparison between the different methods easier. 
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Figure 4.3: A simulated ERP signal 

4.4 Classification in the time domain 

Before using NMF to analyze the wavelet representations of the EEG signals in order to 

construct the features for the desired prediction, we present in this section the classification 

results we get using the time domain representation of the signals. As in Chapter 3, the 

signal of each electrode is truncated at the point corresponding to the subject's quickest 

reaction time. The difference here is that the starting point of the signal is chosen such 

that the length of the signal is 256 samples. This is in order to have a signal the length of 

which is a power of two and make the wavelet transform, used in the next section, easier. 

The number 256 is chosen because it is the power of two which makes the starting point 

of the signals being closest to the time point corresponding to the stimulus onset. 

The features are constructed from the time signals in two ways. In the first way, 

each time sample is considered to be a feature, so in total 256 features are produced. In 

the second way, the classification capability p(n) for each time sample n is computed as 

the percentage of correct classification produced using as only feature for the trials of the 

two classes the corresponding time sample. The classification task takes place using a 

Gaussian classifier and the trials in the training set. Then, the samples ni for which p(n2 ) 

are maxima, are identified. For each sample nZ , the mean of the time signal over a region 

around it for which the values of p(n) remain larger than p(ni ) — 0.1, is computed. The 
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Figure 4.4: Wavelet transform of the signal in Fig. 4.3 (a) CWT (b) DWT. 

six largest means, under the constraint that the centres of their corresponding regions are 

at least ten samples away from each other, are kept as features. 

For the classification task, a Gaussian classifier with a common diagonal covariance 

matrix for the two classes, see section 3.2 and Eq. (3.8), is used. The reason for assuming 

uncorrelated features is that in the first case, when 256 features are used, the small number 

of trials does not permit the estimation of an invertible covariance matrix. In the second 

way of feature construction (six features) where this is possible, the use of the covariance 

matrices in the classification (i.e. Eq. (3.6)) produced similar and in some cases worse 

results which are not reported. The same holds for the use of different variances for the 
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features in the two classes. 

Let us also report here that the trials having an extreme value for a specific feature, 

are excluded from the computation of the statistics of the specific feature. This is done, 

for a given feature, by initially computing the mean 171 and the standard deviation s of 

each class, using all the trials in the training set. Then these statistics are computed again 

using only the trials for which the value of the feature is in the area [m — s, m + s]. 

For the construction of the training and testing sets the "leave one out" method is 

used, which means that for the classification of a single trial, the training set is constituted 

from the rest of the trials. The procedure is repeated for all the trials and the classification 

rate is computed as the ratio of the correctly classified trials over their total number. 

The classification results produced with the first way of feature construction are 

presented in Tables 4.1 and 4.2. In Table 4.1 the classification rates produced for each 

subject and channel are presented. In Table 4.2 the maximum classification rate and the 

channel for which it is produced is given for each subject. In the same table we also give 

the 95% confidence interval of the classification rates. This is the interval where the true 

classification rate lies with probability 95% and depends on the estimated classification 

rate and the size of the testing set. We explain in detail the way that this is computed in 

Appendix B. 

In Tables 4.3 and 4.4 the classification results for the second way of feature con-

struction are presented. The six features were sorted with respect to the corresponding 

classification capability and the classification process was repeated six times, where in 

the nth  time we use the n features with the largest classification capability. In Table 4.3 

the maximum classification rate produced for a number of features for each channel and 

subject is given. In Table 4.4 we present the maximum classification rate produced for 

each subject along with the channel and the number of features for which this happens. 

Since we use the "leave one out method" to compute the classification rate, the training 

set changes in each round of classification. This means that there is a possibility that not 

all the times the same areas are chosen to construct a feature by averaging over the values 

of the samples contained in it. In order to quantify the consistency in choosing the same 
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Table 4.1: Time domain classification. The classification rates (%) for each channel 
and subject (1.8t  way of feature production) 

Subject S1 S2 S3 S4 S5 S6 S8 S10 S11 S13 S14 
Ch. Fz 72.41 62 52.63 68.09 60 63 77.78 54.69 57.81 43.94 66.67 
Ch. Cz 72.41 64 52.63 62.77 53.75 70 75 50 50 56.06 68.75 
Ch. Pz 56.9 66 68.42 51.06 56.25 75 66.67 65.63 62.5 53.03 77.08 
Ch. F3 68.97 62 57.89 67.02 65 60 55.56 62.5 56.25 53.03 64.58 
Ch. F4 72.41 54 57.89 63.83 65 66 77.78 53.13 57.81 53.03 62.5 
Ch. T3 62.07 66 47.37 57.45 55 66 52.78 46.88 59.38 60.61 64.58 
Ch. T4 56.9 60 55.26 56.38 57.5 53 58.33 43.75 68.75 57.58 60.42 
Ch. C3 70.69 54 63.16 60.64 55 67 75 42.19 60.94 53.03 68.75 
Ch. C4 72.41 66 71.05 46.81 56.25 66 72.22 51.56 62.5 59.09 72.92 
Ch. T5 79.31 54 68.42 59.57 66.25 65 52.78 68.75 76.56 57.58 72.92 
Ch. T6 58.62 60 68.42 63.83 66.25 46 41.67 50 70.31 54.55 68.75 
Ch. P3 58.62 54 73.68 53.19 62.50 70 69.44 68.75 70.31 59.09 72.92 
Ch. P4 55.17 64 60.53 51.06 63.75 65 58.33 54.69 67.19 59.09 66.67 
Ch. 01 60.34 46 65.79 64.89 61.25 62 61.11 73.44 79.69 60.61 79.17 
Ch. 02 60.34 64 65.79 69.15 68.75 47 61.11 65.63 75 57.58 70.83 
Ch. Oz 51.72 62 65.79 61.70 56.25 54 58.33 68.75 73.44 53.03 79.17 
Ch. F7 72.41 62 36.84 60.64 67.5 62 58.33 59.38 64.06 37.88 70.83 
Ch. F8 75.86 64 36.84 64.89 67.5 66 63.89 56.25 67.19 39.39 64.58 

Table 4.2: Time domain classification. The maximum classification rate (%) for each 
subject, the channel for which it is produced and the 95% confidence interval (1st  way 
of feature production) 

Subject Classification rate (%) Confidence interval (95%) Channel 
1 79.31 67.23 - 87.75 T5 
2 66 52.15 - 77.56 Pz 
3 73.68 57.99 - 85.03 P3 
4 69.15 59.22 - 77.58 02 
5 68.75 57.93 - 77.85 02 
6 75 65.7 - 82.45 Pz 
8 77.78 61.92 - 88.29 Fz 
10 73.44 61.52 - 82.71 01 
11 79.69 68.29 - 87.73 01 
13 60.61 48.55 - 71.5 T3 
14 79.17 65.74 - 88.27 01 
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Table 4.3: Time domain classification. The maximum classification rates (%) produced 
for a certain number of features for each channel and subject (2nd way of feature 
production) 

Subject S1 S2 S3 S4 S5 S6 S8 S10 Sll S13 S14 
Ch. Fz 68.97 62 42.11 68.09 57.5 64 88.89 62.5 64.06 57.58 64.58 
Ch. Cz 77.59 76 60.53 65.96 58.75 73 83.33 53.13 54.69 66.67 75 
Ch. Pz 51.72 68 76.32 51.06 66.25 74 75 65.63 71.88 74.24 87.5 
Ch. F3 68.97 70 60.53 65.96 58.75 66 66.67 75 60.94 66.67 70.83 
Ch. F4 70.69 58 65.79 59.57 67.5 71 77.78 60.94 67.19 59.09 66.67 
Ch. T3 63.79 66 39.47 50 65 71 58.33 67.19 70.31 60.61 70.83 
Ch. T4 60.34 72 73.68 61.7 60 55 50 43.75 65.63 62.12 72.92 
Ch. C3 65.52 62 65.79 63.83 60 70 61.11 57.81 64.06 60.61 77.08 
Ch. C4 75.86 72 68.42 55.32 52.5 65 86.11 64.06 68.75 72.73 75 
Ch. T5 79.31 54 81.58 54.26 70 66 58.33 64.06 78.13 68.18 87.5 
Ch. T6 70.69 72 65.79 62.77 66.25 53 61.11 67.19 79.69 69.7 66.67 
Ch. P3 58.62 68 71.05 58.51 63.75 71 72.22 70.31 76.56 72.73 77.08 
Ch. P4 70.69 70 57.89 59.57 65 68 61.11 48.44 78.13 75.76 70.83 
Ch. 01 68.97 52 65.79 68.09 68.75 68 52.78 71.88 78.13 63.64 81.25 
Ch. 02 63.79 68 73.68 65.96 70 55 80.56 62.5 67.19 65.15 72.92 
Ch. Oz 60.34 60 28.95 63.83 71.25 64 80.56 73.44 71.88 62.12 81.25 
Ch. F7 70.69 68 71.05 65.96 66.25 68 69.44 62.50 62.5 46.97 79.17 
Ch. F8 77.59 78 63.16 63.83 67.5 72 75 65.63 71.88 66.67 66.67 

areas for different training sets, areas the centres of which are five or fewer samples away 

from each other, are considered to be instances of the same area. Then we compute the 

rate of a specific area being chosen for feature construction for the different training sets. 

The rates that concern the features producing the maximum classification rate for each 

subject are presented in Table 4.4. 

Comparing the classification rates produced with the two ways of feature construc-

tion (using especially Tables 4.2 and 4.4) we see that the second one is superior. This 

is something we expected as isolating the samples with high distance and averaging in a 

neighbourhood to increase the robustness of the feature is better than simply considering 

as features all the time samples. Thus, in the next section the concept of the second way 

will be used for the construction of features from the NMF coefficients. 

Before ending this section we also present the classification results produced using 

all the channels at the same time for the feature construction. The corresponding results 
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Table 4.4: Time domain classification. The maximum classification rate (%) for each 
subject along with the 95% confidence interval, the channel, the number and the 
appearance rate of features for which it is produced (2nd  way of feature production) 

Subj. Classification 
rate (%) 

Confidence 
interval (95%) 

Ch. Number of 
features 

Appearance 
rate 

1 79.31 67.23 - 87.75 T5 4 1, 0.97,  0.97, 0.9 
2 78 64.76 - 87.25 F8 3 1, 1, 1 
3 81.58 66.58 - 90.78 T5 2 1, 	1 

4 68.09 58.12 - 76.64 Fz 6 1, 1, 0.95,  0.79, 0.76, 0.76 
5 71.25 60.54 - 80.01 Oz 1 1 
6 74 64.63 - 81.6 Pz 2 1, 1 
8 88.89 74.69 - 95.59 Fz 2 1, 1 
10 75 63.18 - 83.99 T5 2 1, 1 

11 79.69 68.29 - 87.73 T6 4 1, 1  1, 0.47 
13 75.76 64.19 - 84.49 P4 1 1 

14 87.5 75.3 - 94.14 Pz 3 1, 0.98, 
0.96 

can be seen in Table 4.5. However, comparing Tables 4.4 and 4.5 we see that for all 

subjects, there is a channel that when used on its own, better rates are produced. 

4.5 Classification analyzing the single-trial time-frequency 

representations with NMF 

We present in this section the classification results we acquire producing a time - frequency 

representation of the EEG signals and then decomposing it with NMF. Our motivation 

for this is to study whether NMF can produce spectral components which are correlated 

with cognitive processes and thus differences in the time of their appearance can be used 

to enhance the classification rates in our problem. 

The procedure we use can be described as follows. For each trial, the EEG signal 

of a selected electrode, truncated as explained in section 4.4 to contain 256 samples, 

is transformed in the time-frequency domain using the Continuous Wavelet Transform 

(CWT) (see sections 4.1-4.3). The second derivative of the Gaussian probability density 
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Table 4.5: Time domain classification. The maximum classification rate (%) for each 
subject when all channels are used, along with the 95% confidence interval, the number 
and the appearance rate of features for which it is produced. 

Subj. Classification 
rate (%) 

Confidence 
interval (95%) 

Number of 
features 

Appearance 
rate 

1 79.31 67.23 - 87.75 6 1, 0.86, 0.83,  0.83, 0.69, 0.66 
2 54 40.4 - 67.03 1 0.32 
3 73.68 57.99 - 85.03 2 0.74, 0.47 
4 65.96 55.92 - 74.74 3 0.9, 0.59, 0.54 

5 61.25 50.29 - 71.18 6 0.94, 0.74, 0.66, 
0.64, 0.56, 0.55 

6 69 59.37 - 77.22 3 0.96, 0.9, 0.7 

8 88.89 74.69 - 95.59 4 1, 	1,  0.94, 0.94 
10 65.63 53.41 - 76.08 1 0.77 
11 78.13 66.57 - 86.5 1 1 
13 72.73 60;96 - 82 3 0.98, 0.74, 0.59 

14 83.33 70.42 - 91.3 4 0.98, 0.92,  0.81, 0.6 

function is used as the mother wavelet. The range of frequencies we look at is 1-40 Hz, 

since this is where the vast majority of the energy of the EEG signals is concentrated 

(see Table 3.1) and the resolution used is 1 Hz. Then we keep the absolute value of 

the transform, which is directly related to the evolution of the energy across time and 

frequency. This produces a 40 x 256 matrix F with the spectral information lying across 

its rows and the temporal information across its columns. 

Then the matrix F is decomposed using NMF, i.e. F BH. For more information 

concerning the repetitive algorithm of NMF and its general concept see section 3.5.1. In 

this case the columns of B carry spectral information with each one having its energy 

concentrated in different frequency bands. This is due to the sparsity imposed by NMF. 

On the other hand, the rows of H carry temporal information with each one showing the 

evolution of the importance of the corresponding column of B across time. The number 

of columns of B is chosen to be four to match the number of natural rhythms of the brain 

in the band 1-40 Hz (see section 1.2.3). 

The motivation for the NMF analysis is that NMF may isolate spectral components 
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(columns of B) that are correlated with different undergoing cognitive processes and thus 

the coefficients of the components connected with the identification of the target stimulus 

can be used to discriminate between the two classes. This idea has been used for music 

transcription in [79, 90]. In these cases the magnitude of the time-frequency transform 

of a musical piece is analyzed with NMF to produce a number of components carrying 

the spectral content of different notes. Then the corresponding coefficients (rows of H), 

denoting the time points where the different notes appear, are used for the transcription 

of the musical piece. 

The four columns of B are normalised and the two having maximum energy in 

the bands 8-13 Hz (alpha band) and 1-3 Hz (delta band) are identified. These two bands 

are chosen because their energy is known to be correlated with the activity preceding a 

subject's reaction in an oddball experiment [7,10,41,80]. Then the corresponding rows of 

H, showing the temporal evolution of the usage of these components, are used for feature 

construction. Three features are constructed from each row using the method described 

in section 4.4, i.e. computing the classification capability for each coefficient, finding the 

three largest maxima and constructing the features as an average over a corresponding 

neighbourhood. The three features are sorted in descending order with respect to the 

corresponding classification capability and a feature vector of six features is constructed 

concatenating in turn the features of the two components. The classification task is re-

peated six times, where at the nth  time the n first features in the feature vector are used. 

As in section 4.4, a Gaussian classifier with common diagonal covariance matrix for 

the two classes is used for the classification task. The "leave one out" method is again used 

for the construction of the training and testing sets. The classification task is repeated for 

all channels for each subject. The classification rates acquired can be seen in Table 4.6. 

In this table in correspondence with Table 4.3, the maximum classification rate produced 

for a certain number of features for each subject is presented. Finally in Table 4.7 we 

give the maximum classification rate for each subject, the channel and number of features 

for which it is produced and the appearance rate of the corresponding features. The 95% 

confidence interval for the classification rate is also presented. For details concerning the 
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Table 4.6: Single-trial time-frequency analysis with NMF. The maximum classification 
rates (%) produced for a certain number of features for each channel and subject. 

Subject S1 S2 S3 S4 S5 S6 S8 S10 Sll S13 S14 
Ch. Fz 72.41 50 76.32 48.94 56.25 48 75 57.81 56.25 51.52 72.92 
Ch. Cz 60.34 68 47.37 62.77 58.75 64 80.56 54.69 60.94 42.42 62.5 
Ch. Pz 68.97 60 47.37 55.32 71.25 68 75 59.38 64.06 66.67 72.92 
Ch. F3 68.97 52 55.26 55.32 67.5 42 75 53.13 46.88 66.67 79.17 
Ch. F4 70.69 68 71.05 57.45 62.5 45 61.11 54.69 70.31 50 70.83 
Ch. T3 48.28 68 50 56.38 63.75 62 61.11 65.63 39.06 59.09 66.67 
Ch. T4 62.07 66 55.26 73.4 52.5 52 72.22 57.81 60.94 59.09 66.67 
Ch. C3 53.45 66 39.47 50 46.25 64 75 70.31 51.56 56.06 68.75 
Ch. C4 53.45 58 57.89 61.70 60 61 63.89 56.25 62.5 62.12 64.58 
Ch. T5 55.17 62 73.68 60.64 67.5 66 77.78 65.63 50 68.18 77.08 
Ch. T6 67.24 56 73.68 74.47 63.75 59 72.22 57.81 65.63 37.88 68.75 
Ch. P3 72.41 44 50 44.68 75 65 61.11 67.19 59.38 72.73 72.92 
Ch. P4 63.79 66 50 63.83 65 52 52.78 70.31 67.19 62.12 70.83 
Ch. 01 62.07 64 65.79 68.09 56.25 53 80.56 67.19 70.31 57.58 56.25 
Ch. 02 70.69 76 47.37 62.77 58.75 57 72.22 53.13 57.81 69.7 77.08 
Ch. Oz 55.17 50 55.26 64.89 58.75 62 52.78 65.63 64.06 57.58 68.75 
Ch. F7 72.41 56 44.74 56.38 45 56 47.22 68.75 68.75 62.12 68.75 
Ch. F8 65.52 34 50 55.32 68.75 54 63.89 50 59.38 63.64 68.75 

computation of the appearance rate we refer to the procedure described in section 4.4. 

Comparing this method of feature construction with the equivalent one in the time 

domain (i.e. Tables 4.4 and 4.7) we see that in general the classification rates are not 

improved. In fact for 9 out of the 11 subjects the use of the raw time signals produced 

better results. We present a more detailed comparison of the methods in section 4.7. 

4.6 Classification analysing multi-trial time-frequency rep-

resentations with NMF 

In the previous section the time-frequency representation of each single trial was analysed 

with NMF. In that case we considered as feature vector the spectral content of the EEC 

signal in a specific time point and we decomposed it using its different instantiations 

across time. In this section, for each trial, each time-frequency point is considered to be 
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Table 4.7: Single-trial time-frequency analysis with NMF. The maximum classification 
rate (%) for each subject along with the 95% confidence interval, the channel, the 
number and the appearance rate of features for which it is produced. 

Subj. Classif. 
rate (%) 

Confidence 
interval (95%) 

Ch. Number 
of features 

Appearance 
rate 

8-13 Hz 1-3 Hz 8-13 Hz 1-3 Hz 

1 72.41 59.79 - 82.24 Fz 3 2 0.97, 0.86, 
0.52 1, 0.48 

2 76 62.59 - 85.7 02 3 2 1, 1, 0.96 1, 0.48 
3 76.32 60.8 - 87.01 Fz 1 0 1 - 
4 74.47 64.82 - 82.2 T6 2 2 1, 0.53 1, 0.71 
5 75 64.52 - 83.19 P3 1 1 1 1 

6 68 58.34 - 76.33 Pz 3 3 1, 	1, 1, 0.85,
1 	0.79 

8 80.56 64.98 - 90.25 Cz 1 0 1 
10 70.31 58.23 - 80.09 C3 1 0 1 - 

11 70.31 58.23 - 80.09 F4 3 3 1, 0.97, 
0.55 

1, 	1, 
0.52 

13 72.73 60.96 - 82 P3 1 0 1 - 
14 79.17 65.74 - 88.27 F3 2 2 0.96, 0.79 0.96, 0.85 

a different feature (variable) and the corresponding feature vector is analysed with NMF 

using its different instantiations across trials. 

The procedure of feature construction can be described as follows. For a given chan-

nel, an initial feature vector is constructed for each trial, computing the time-frequency 

representation of the EEG signal, keeping its absolute value and concatenating over the 

columns of the matrix containing the latter representation. The details concerning the 

length of the EEG signal used and its time frequency representation are the same as in 

the previous section. Then a matrix F, the columns of which are the feature vectors of the 

trials, is constructed and analysed with NMF as F BH. The number of columns of B 

is chosen to be ten. As explained in section 3.5.1, due to the non negative constraints, the 

columns of H are sparse. This means that only a subset of the atoms (columns of B) are 

mainly needed for the approximated reconstruction of the feature vector of a trial. Thus, 

if there exist atoms which are mainly needed for the reconstruction of the trials of one of 

the two classes, their corresponding coefficients would be suitable to be used as features 
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Table 4.8: Multi-trial time-frequency analysis with NMF. The maximum classification 
rates (%) produced for a certain number of features for each channel and subject 

Subject S1 S2 S3 S4 S5 S6 S8 S10 S11 S13 S14 
Ch. Fz 79.31 76 71.05 61.7 47.5 64 66.67 53.13 60.94 60.61 68.75 
Ch. Cz 75.86 64 57.89 64.89 55 69 83.33 60.94 70.31 57.58 64.58 
Ch. Pz 62.07 62 63.16 62.77 65 70 80.56 64.06 73.44 66.67 79.17 
Ch. F3 70.69 64 60.53 55.32 62.5 59 52.78 60.94 68.75 66.67 68.75 
Ch. F4 72.41 74 55.26 60.64 67.5 66 66.67 64.06 68.75 69.7 72.92 
Ch. T3 63.79 66 63.16 61.7 51.25 59 72.22 56.25 67.19 63.64 64.58 
Ch. T4 62.07 66 60.53 60.64 68.75 70 66.67 45.31 60.94 62.12 64.58 
Ch. C3 75.86 66 50 61.7 42.5 64 69.44 50 65.63 54.55 52.08 
Ch. C4 74.14 72 63.16 64.89 68.75 60 86.11 65.63 62.5 65.15 70.83 
Ch. T5 72.41 56 73.68 54.26 65 68 69.44 67.19 67.19 65.15 70.83 
Ch. T6 70.69 78 68.42 63.83 66.25 59 75 53.13 70.31 60.61 66.67 
Ch. P3 74.14 54 63.16 57.45 55 69 83.33 64.06 70.31 63.64 72.92 
Ch. P4 68.97 74 44.74 60.64 66.25 66 72.22 71.88 70.31 68.18 70.83 
Ch. 01 56.90 50 63.16 58.51 62.5 66 80.56 60.94 68.75 51.52 60.42 
Ch. 02 58.62 68 55.26 63.83 63.75 66 77.78 64.06 68.75 65.15 66.67 
Ch. Oz 62.07 64 65.79 53.19 66.25 59 77.78 65.63 57.81 60.61 68.75 
Ch. F7 74.14 66 78.95 60.64 72.5 62 69.44 64.06 67.19 56.06 68.75 
Ch. F8 70.69 60 60.53 56.38 66.25 66 75 54.69 70.31 57.58 77.08 

for classification. 

In consistency with the previous two sections, the classification capability is mea-

sured for each of the ten coefficients (features), using the trials in the training set. Then 

the classification task is repeated ten times where in the nth  time the n features with the 

highest classification capability are used. A Gaussian classifier, removing samples with ex-

treme values and assuming uncorrelated features with common variance in the two classes, 

is again used. The "leave one out" method is used for the construction of the training and 

testing sets. The classification task was repeated for all 18 channels and in Table 4.8 we 

present the maximum classification rate produced for each channel and subject. 

In Table 4.9 the maximum classification rate is given for each subject along with the 

channel and the number of features for which it was produced. Since we use the "leave one 

out method" to compute the classification rate, the training set changes in each round of 

classification. This means that there is a possibility that not all the times the coefficients of 
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Table 4.9: Multi-trial time-frequency analysis with NMF. The maximum classification 
rate (%) for each subject along with the 95% confidence interval, the channel, the 
number and the appearance rate of features for which it is produced. 

Subj. Classif. 
rate (%) 

Confidence 
interval (95%) 

Channel Number 
of features 

Appearance 
rate 

1 79.31 67.23 - 87.75 Fz 3 1, 1, 0.81 
2 78 64.76 - 87.25 T6 3 1, 1, 1 
3 78.95 63.66 - 88.93 F7 1 1 
4 64.89 54.83 - 73.78 Cz 5 1, 1, 1, 1, 1 
5 72.5 61.86 - 81.08 F7 5 1, 1, 1, 1, 1 

6 70 60.42 - 78.11 Pz 10 1, 1, 	1, 1, 1, 
1, 	1, 1, 1, 1 

8 86.11 71.34 - 93.92 C4 4 1, 1, 1, 0.81 
10 71.88 59.87 - 81.41 P4 3 1, 1, 1 

11 73.44 61.52 - 82.71 Pz 6 1, 	1, 	1, 1, 	1, 
0.7 

13 69.7 57.78 - 79.45 F4 2 1, 0.92 
14 79.17 65.74 - 88.27 Pz 3 1, 1, 0.94 

the same components are used as features. Thus, in Table 4.9 we also give the appearance 

rate for the coefficients used for the most times. We observe that in the vast majority 

of cases the same components are chosen for the purpose of classification. In general, 

the classification rates are equivalent with those produced analysing single trial's time-

frequency representations for the feature construction (section 4.5) and worse than those 

produced when the raw time signals are used (section 4.4). A more detailed comparison 

of the methods follows in section 4.7. 

Finally, in consistency with what we did in section 4.4, we used all channels at the 

same time for feature construction. This is done by constructing the (magnitude) time-

frequency representation for each channel of each trial and then constructing an initial 

feature vector for each channel by concatenating the columns of the matrix containing 

the latter representation. Then an initial feature vector is constructed for each trial 

concatenating over channels' feature vectors. Finally a matrix F, the columns of which 

are the feature vectors of the trials, is constructed and analysed with NMF as previously. 

The difference is that each feature-element of F corresponds to a time-frequency-channel 

point instead of a time-frequency point. 
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Table 4.10: Multi-trial time-frequency analysis with NMF. The maximum classifi-
cation rate (%) for each subject when all channels are used, the number and the 
appearance rate of features for which it is produced. 

Subj. Classif. 
rate (%) 

Confidence 
interval (95%) 

Number 
of features 

Appearance 
rate 

1 82.76 71.09 - 90.36 1 1 
2 68 54.19 - 79.24 8 1, 	1, 	1, 1, 1, 

1, 0.98, 0.88 
3 42.11 27.85 - 57.81 3 0.89, 0.58, 0.55 
4 62.77 52.67 - 71.86 1 1 
5 66.25 55.36 - 75.65 3 1, 1, 1 
6 67 57.31 - 75.44 1 1 
8 83.33 68.11 - 92.13 4 1, 1, 1, 0.64 
10 62.5 50.25 - 73.33 1 1 
11 70.31 58.23 - 80.09 5 1, 1, 1, 0.98, 0.98 
13 68.18 56.21 - 78.15 1 1 
14 79.17 65.74 - 88.27 2 1, 0.79 

The classification rates produced can be seen in Table 4.10. Comparing these with 

those produced when a single channel is used (see Table 4.9), we see that, apart from 

Subject 1, for all other subjects there is one channel, the use of which produces better 

results on its own. 

4.7 Comparison of the proposed methods 

In this section we compare the classification rates produced with the three algorithms 

presented in the previous sections, i.e. the one using time domain features, the one using 

NMF features analysing single trial time-frequency representations and the one using NMF 

features analysing a multi trial time-frequency representation. For this reason we compare 

the maximum classification rates produced for each subject with the three algorithms (see 

Tables 4.4, 4.7 and 4.9). Looking at these tables we see that there is not one algorithm that 

produces best classification rates for all the subjects universally. In Tables 4.11, 4.12 and 

4.13 we present the classification rates for the subjects for which each of the algorithms 

produces the best classification results, respectively. 

In order to quantify our confidence that a certain algorithm A produces a higher 
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classification rate than another algorithm B, we compute the observed level of significance 

of the estimated classification rates for the null hypothesis that A has the same or smaller 

classification rate than B. This level of significance is measured using the observed differ-

ence TA — T B  in the estimated classification rates of the two algorithms and the number of 

trials used to get these estimations. It is actually the (maximum) probability of observing 

a difference T A  — T B  or larger given that the null hypothesis holds. If the observed level 

of significance is adequately small then we can reject the null hypothesis and be confi-

dent that A produces a better classification rate than B. For more details concerning the 

computation of the observed level of significance see Appendix C. 

As can be seen from Tables 4.11, 4.12 and 4.13 the algorithm working in the time 

domain seems to be superior as it produces best classification rates for all subjects except 

for 4 and 5. For these subjects the best classification rates are produced from the algorithm 

using the NMF analysis of single trials' time-frequency representations. However, in all 

cases, the observed level of significance of the difference in the estimated classification 

rates is not sufficiently small to be confident that one algorithm is better than another. It 

is a common practice [21] that an observed level of significance smaller than 5% or 1% is 

needed to reject a null hypothesis and in our cases the levels of significance are well above 

these values. However, we have to notice here that the number of trials in the testing 

set is relatively small. This means that if two algorithms have a small difference in their 

correct classification rates, this difference will not be adequate to support with confidence 

the superiority of one of the two algorithms. 

In any case, if we have to make a choice between the algorithms with the given 

number of trials, then the algorithm with the largest estimated classification rate should 

be used for each subject. The fact that the channel giving the largest classification rate 

is different for each subject, even when the same algorithm is used, means that a "tailor 

made" classifier should be designed for each subject. 
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Table 4.11: The subjects for which the time domain algorithm is superior than the 
other algorithms. The classification rates and the observed level of significance when 
each of the other algorithms is considered equivalent or superior. 

Subj. Classif. rate of time 
domain algorithm (%) 

Single trial 
NMF algorithm 

Multi trial 
NMF algorithm 

Classif. 
rate (%) 

Signif. 
level (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

1 79.31 72.41 19.39 79.31 50 
2 78 76 40.7 78 50 
3 81.58 76.32 28.91 78.95 38.81 
6 74 68 17.56 70 26.52 
8 88.89 80.56 16.47 86.11 36.24 
10 75 70.31 27.71 71.88 34.58 
11 79.69 70.31 11.07 73.44 20.32 
13 75.76 72.73 34.63 69.7 21.84 
14 87.5 79.17 13.78 79.17 13.78 

Table 4.12: The subjects for which the single trial analysis with NMF algorithm is 
superior than the other algorithms. The classification rates and the observed level of 
significance when each of the other algorithms is considered equivalent or superior. 

Subj. Classif. rate of single trial 
NMF algorithm (%) 

Time domain 
algorithm 

Multi trial 
NMF algorithm 

Classif. 
rate (%) 

Signif. 
level (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

4 74.47 68.09 16.75 64.89 7.65 
5 75 71.25 29.73 72.5 36.05 

Table 4.13: The subjects for which the multi trial analysis with NMF algorithm is 
superior than the other algorithms. The classification rates and the observed level of 
significance when each of the other algorithms is considered equivalent or superior. 

Subj. Classif. rate of multi trial 
NMF algorithm (%) 

Time domain 
algorithm 

Single trial 
NMF algorithm 

Classif. 
rate (%) 

Signif. 
level (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

1 79.31 79.31 50 72.41 19.39 
2 78 78 50 76 40.7 



Chapter 5 

Construction of trial-invariant 

characteristic signals 

We present in this chapter a novel method to tackle the classification problem. The idea 

is to construct a characteristic signal for each of the two classes that remains as invariant 

as possible over all data of the same class and thus it may be thought of as characterising 

the class. This is done by constructing a weighted signal for each trial, linearly combining 

the EEG signals of the various channels and then computing a mean signal for each class 

using the trials in the training set. The weights of the above combination are chosen so 

that the variance of the EEG samples over the trials in the training set belonging to the 

same class is minimised. In order to classify an unknown trial, two characteristic signals 

are constructed for it, using the weights of the two classes. The distance of each one from 

the corresponding class characteristic signal is computed. Then the trial is classified to 

the class producing the smallest distance. 

Since for this algorithm to be effective it is very important which EEG channels are 

used, we also propose a novel algorithm for channel selection. The algorithm is based on 

stretching and averaging the EEG signals of the available channels, to identify the ones 

that show the least interference from background activity. This is based on the idea that 

when we average signals time locked to the stimulus and the response, interfering processes 

will be averaged out of phase and thus high frequency components of the useful channels 
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will be significantly reduced, while the processes of interest will be averaged in phase and 

dominate the signal appearance. 

We first describe the method in detail in section 5.1. An expression for the variance 

of each sample is constructed and is minimised subject to two different constraints. The 

algorithm for channel selection is described in section 5.2. We then present the classifica-

tion results obtained with the two different constraints in sections 5.3 and 5.4 respectively. 

Both, results using all 18 channels as well as a selected subset of channels for the construc-

tion of the characteristic signals, are presented. Then in sections 5.5 and 5.6 we present 

the classification rates produced when features are constructed from the characteristic sig-

nals and used for the classification task. Finally, in section 5.7 we compare the algorithms 

proposed in this chapter. 

5.1 	Description of the method 

In this section we describe the method we intend to use for the classification of the two 

classes. As mentioned earlier, we are going to construct a characteristic signal from the 

trials of each class, linearly combining the EEG signals of the various channels. 

Let us assume that we have the EEG signals of one person's trials during an oddball 

experiment recorded with M channels. Half of these trials belong to class "success" and the 

other half to class "failure" . We denote with cid  (n), with i = 1, ..., L and j = 1, 	the 

signal of the ith  trial of class "success", recorded on the ith  channel at time n. Equivalently, 

we denote with c'ij(n) the signals of class "failure". Let us note here that the mean value 

of these signals is removed and no other normalisation is applied. Our purpose is to find 

the set of coefficients wi(n) for class "success" that can be used to construct, for each trial, 

a linear combination of the channels' EEG signals, which has, at each time n, minimum 

variance across trials. An equivalent set of coefficients w'a  (n) has to be obtained for class 

"failure". 

Thus restricting the analysis to class "success" we have to obtain w3  (n) that min-

imise: 
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L 1 	 1 

	

s2(n) = E[x2  (n)] — E[x(n)]2  = -L E xi(n)2  — 	(E xi (n) 

for each n, where 

xi(n) = wi(n)ci,i(n) + 	+ wm (n)ci,m (n), 	i = 1, ..., L. 	(5.2) 

Since the minimisation has to take place for each time point n separately, we assume 

a fixed value for n and continue the analysis with s2  = s2(n), xi = xi(n), wi = w3  (n) and 

cij = ci,j(n). The variance s2  which has to be minimised can be written as: 

) 2 

	
(5.1) 

(5.3) 
=—WT CT  CW — —

L2
W T CT 1L1TCW 

=wT L R 	1 A  
2  

1
— 	c c L 44) v.) 

=wT Rw  

where 

cr,,i 	• • • CL,M 

Rcc  = CTC, A = CT  1L1iC,  R = 1 	 1 A 
 

For the minimisation of Eq.(5.3) a constraint should be introduced for w, as for the 

unconstrained case and a non singular matrix R, it is obvious that we obtain the useless 

solution w = 0. 

We consider two different constraints for the minimisation of s2. In the first case 

wl 

w(Mxl) = 	i(LL x = 

wm 
	

(5.4) 

C1,1 	• • • 	el ,M 
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we choose to minimise s2  subject to: 

.7=1 w, = 	wTim  _ = 0 
	

(5.5) 

The minimisation of Eq.(5.3) with respect to w subject to Eq.(5.5) can be solved 

using the method of Lagrange multipliers [3]. According to this method the wanted wj 

are given by the minimum point of the Lagrangian function which is defined as: 

A(w, A) = wTRID )1/4(wTim 1)  (5.6) 

where A is an additional variable called Lagrange multiplier. 

Thus taking the first derivatives of A(w, A) with respect to all its arguments and 

setting them equal to zero, we have to solve the system of the following M 1 equations: 

DA 
= 2Rw + A1m = 0 

OA 
OA 

=w. im  — = o 

Solving Eq.(5.7) with respect to w we find w = -221-R-11m and substituting into 

Eq.(5.8) we get A = 	 (H-.1 )T1m  . Therefore the wanted vector w is: 

R-1  
W = 1m 114(R-1)T1m 

(5.9) 

Note that this solution corresponds to the case in which we consider the elements of w as 

weights that have to sum up to 1. 

In the second case we minimise s2 subject to: 

E we 	1 .#> wTW = 1 
	

(5.10) 
j=1 

When this constraint is used, vector w is considered as a direction on which the projections 

of all data vectors have as invariant value as possible. In this case, since matrix R is 

ow (5.7) 

(5.8) 
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symmetric, see its definition in Eq.(5.4), s2  is minimised when w equals the eigenvector 

corresponding to the minimum eigenvalue of R [82]. Thus, the wanted vector w can be 

found computing the eigenvalue decomposition of R. 

Let us mention here that R is actually the covariance matrix of the random variables 

rj, j = 1, M, where rj denotes the value of the potential recorded on channel j and has 

different instantiations for the trials of class "success". This means that the procedure is 

actually a PCA on the random variables rj, keeping only the smallest eigenvector. This 

is natural as we know that this is the vector minimising the variance of the projected 

variables. Thus, subject to the constraint of Eq.(5.10), x2 for i = 1, 	L are instances of 

the smallest principal component of variables rj. 

As mentioned earlier, this procedure is followed for every time point n, so we finally 

end up with the set of coefficients tvi(n) for class "success". The same procedure can be 

followed using the trials of class "failure" to get the equivalent coefficients wii (n). Then we 

can compute the mean signals Y(n), 'X'(n) for classes "success" and "failure" respectively, 

as: 
T(n) = wi (n)-el  (n) + + wm (n)em  (n) 

T/(n) = wl.(n)e(n) + + w'm  (n)em  (n) 

where Zj(n), 	j = 1, M are the mean values of the EEG signals of the two classes, 

at channel j and time point 71, computed over the trials of each class, respectively. 

In order to classify an unknown trial, we compute the equivalent signals i(n), "i'(n) 

for each of the two classes using the EEG signals of the unknown trial and the coefficients of 

each class. Then we compute the Euclidean distance between "i(n) and Y(n) and between 

V(n) and T'(n) and the trial is classified to the class producing the smallest distance. 

5.2 A proposed algorithm for channel selection 

One can use all the available EEG channels to tackle the classification problem. However, it 

is likely that selecting a subset of channels, the signals of which are particularly correlated 

with the undergoing process of recognising the target, will boost the classification results. 
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In the literature of Human Performance Monitoring [45,70,71,86] the subset of the midline 

frontal, central and parietal channels (Fz, Cz, Pz) is used as the most suitable for feature 

construction. Moreover physiological studies such as [40] also report that the signal of these 

channels exhibit correlations with the subjects' time of response in an oddball experiment. 

However, in all these studies the whole length of EEG signals is used, whereas in our cases 

the signals are truncated at an early stage before the subjects' response has taken place. 

Thus, due to the difficulty of our problem, a channel selection algorithm applied on each 

subject separately maybe more appropriate. The need of identifying the "useful" channels 

on a single subject basis, has also been reported in [48], in a study concerning channel 

selection algorithms for BCI. 

We propose here an automated method for evaluating the usefulness of a channel 

for studies concerning oddball experiments. In order to do that, we consider that there 

must be a characteristic process that takes place in the brain of the subject recorded by 

each channel. This process sometimes happens faster and sometimes more slowly. In all 

cases, however, it is superimposed with many other processes taking place in the brain of 

the subject at the same time. All these other processes may happen in a variety of phases, 

so if we average many trials these processes may be averaged out. On the other hand, the 

process of interest will dominate, as it will be always averaged in phase. 

The difficulty arises from the fact that in each trial we have two fixed points: the 

point the stimulus was shown and the point the action was taken, and that the time span 

between these two points is of a different duration for each trial and thus is sampled by 

a different number of samples. To identify the process that actually is repeated between 

these two fixed points from trial to trial, we must have the same number of samples over all 

trials and average them. To perform this averaging we consider the trial for each subject 

with the longest reaction time and upsample all other trials to have the same number of 

samples. In a sense, we stretch the time of short trials in order to make all trials last the 

same "time", in the hope that the process we are seeking to view will become apparent by 

the out of phase averaging of all other interfering processes. Note that now we are using 

all trials we have for a subject, including those with the average time response which we 
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had omitted from either class "success" or class "failure". 

In order to perform the upsampling of the trials we use Lagrange interpolation. 

According to Lagrange interpolation the value y of an interpolated point at time x is 

computed using the polynomial: 

(X -  X2)(X  - X3)...(X - XN) 	(x—xi)(x — x3)•••(x —  xN)  y = 	 m. 	Y2 ± •••+ (Xi - X2)(51 - 53)...(X1 - SN) 	(52 - 51)(X2 - 53)...(52 - SN)  
(X - Xi)(X - 52)...(5 -  XN-1)  

+ 
\ YN) 

(XN - x1)(XN - X 2)•••( XN - XN-1) 

(5.11) 

where yi, yN  are the values of N neighbours at time points xi , xN . For the compu-

tation of each interpolated point we used six neighbouring samples, three preceding and 

three following the point. This approach has been used in [76] for the upsampling of heart 

signals. 

After all signals of each channel have been truncated at the two points of interest, 

stretched and averaged, we have to identify the channels that exhibit some indication of 

useful information. Mean signals that have high degree of fluctuation, i.e. high frequency 

components, may be thought of as rather noisy: the interfering components have not really 

been removed effectively. Channels exhibiting some degree of smoothness are most likely 

to contain the sought out recording of the process of interest. In order to quantify the 

smoothness of a mean signal f, we perform a low pass filtering to construct a signal hp, 

using an elliptic IIR low pass filter with a cut off frequency of 13Hz. This frequency is 

chosen because the band 0-13 Hz contains the Delta, Theta and Alpha rhythms which are 

known to be related to the cognitive processes occurring in an oddball experiment [7] and 

contribute in the formation of the main components of the ERP signal [10,41]. We then 

remove the low pass signal from the original one and compute the ratio of the energy of 

the resulting signal over the energy of the original one, i.e. IS = Ilf -fLpI12  We call this 11f11 2 	• 
the "index of smoothness" and is considered as a quantity characterising the usefulness of 

a channel. The closer to zero its value is, the more smooth the signal is and thus the more 

useful the corresponding channel. 

In table 5.1 the channels sorted in ascending order with respect to the index of 

smoothness, are presented for each subject separately. Let us note here that the compu- 
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Table 5.1: The EEG channels presented in decreasing order with respect to their 
importance for each subject as indicated by the proposed algorithm. The channels 
Fz, Cz, Pz, the signals of which are considered by the literature to be correlated with 
the reaction to stimulus cognitive processes are presented in bold. 
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Fz Cz P4 Fz Fz Cz Pz Pz T5 Pz 
T5 Fz Cz 01 Pz C4 P3 T5 Cz Oz 
F4 P4 P3 C4 T6 Pz Fz Fz C3 Cz 
F3 C4 C4 P3 T5 Fz P4 P3 P3 P4 
C3 F4 T6 Pz P4 C3 C4 C4 T6 P3 
01 P3 Fz F4 Oz P4 01 C3 Pz Fz 
Oz F8 Oz T5 P3 F4 C3 P4 P4 C4 
Pz T4 01 P4 02 02 F4 Oz T3 T6 
P3 F7 02 Oz C4 P3 02 T6 F7 F4 
C4 02 F4 C3 01 01 F3 F4 F3 C3 
F8 Oz F3 F3 C3 T5 Oz F8 F4 01 
P4 C3 T5 F8 F4 F3 T6 F3 02 T5 
F7 01 T4 T4 F3 T6 T5 Cz C4 T3 
02 T5 C3 F7 T4 F8 T4 F7 F8 T4 
T6 F3 F8 T6 F8 F7 T3 02 Oz F3 
T3 T3 F7 02 T3 T4 F7 T3 T4 F8 
T4 T6 T3 T3 F7 T3 F8 T4 01 F7 

tation of the index of smoothness of each channel was done using all subject's available 

trials, including the 50% of the trials having medium reaction times. One can see that 

the ranking of channels is different among subjects, as expected. However, channels Fz, 

Cz, Pz, the signals of which, as we said above, are considered in the literature to be cor-

related with the cognitive processes of recognising a target stimulus, are ranked in high 

positions for the vast majority of subjects. This is a strong indication that the proposed 

algorithm succeeds in indicating the channels, the signals of which exhibit correlations 

with the underlying cognitive processes. 

5.3 	Classification results using the whole characteristic sig-

nals with weights that sum up to 1 

We present in this section the classification results we get, using the method described 

in section 5.1. As far as the construction of the training and testing sets is concerned, 

we use the "leave one out" method, as in the previous chapters. We construct here the 
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characteristic signal for each class, finding the vector of coefficients v.) which minimises 

the variances subject to the first constraint, i.e.: E3M. 2V1 = 1. 

5.3.1 A universal set of channels used 

We first use a common set of channels for all the subjects to construct the signals for the 

classification. We consider two types of sets. The first one is constituted from all the 

available 18 channels and the second one from channels Fz, Cz, Pz, which are considered 

in the literature as suitable for studies concerning an oddball experiment. The correct 

classification rates produced are presented in Table 5.2. In the same table we give the 95% 

confidence interval for the correct classification rate of each subject. This is the interval 

where the true correct classification rate lies with a probability of 95%. For more details 

concerning the way that this interval is computed from the estimated correct classification 

rate produced by the classification task, see Appendix B. 

Subjects 3 and 8 constitute special cases as for these subjects there are not enough 

trials in the training set to construct an invertible matrix R (see its definition in Eq. 

(5.4)). In order to permit the inversion of R, we discard channel F8 for subject 3 and 

channels F7 and F8 for subject 8. The selection of these channels is done because they are 

the last in the order in which the data was given. The results using a more sophisticated 

way for the selection of channels are presented in section 5.3.2. 

As we can see in Table 5.2, the correct classification rates produced, when all chan-

nels are used, are very low. It is worth indicating that the lower bound of the 95% confi-

dence interval is below 50%, i.e. random performance, for the majority of subjects. The 

same observation holds when channels Fz, Cz, Pz, although there is a slight improvement 

for some subjects. 

5.3.2 Channel selection applied on a single subject basis 

We then perform the classification experiments using the channel selection algorithm pre-

sented in section 5.2. The classification procedure takes place as follows. First the "index 

of smoothness" is computed for every channel and the channels are sorted with respect to 
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Table 5.2: The correct classification rates when all channels or channels Fz, Cz, Pz 
are used (when 	 1 3 = Em  w1) and the corresponding 95% confidence intervals. These 3=  
are the intervals where the true correct classification rates lie, with a probability of 
95%. 

Subj. 
All channels Channels: Fz, Cz, Pz 

Classification 
rate (%) 

Confidence 
Interval 

Classification 
rate (%) 

Confidence 
Interval 

1 53.45 40.80 - 65.67 56.9 44.12 - 68.82 
2 54 40.40 - 67.03 66 52.15 - 77.56 
3 36.84 23.38 - 52.71 55.26 39.71 - 69.85 
4 52.13 42.15 - 61.94 55.32 45.26 - 64.96 
5 56.25 45.34 - 66.59 70 59.23 - 78.94 
6 60 50.20 - 69.06 43 33.73 - 52.78 
8 72.22 56.01 - 84.15 75 58.93 - 86.25 

10 53.13 41.07 - 64.82 51.56 39.58 - 63.37 
11 40.63 29.46 - 52.85 43.75 32.29 - 55.91 
13 51.52 39.71 - 63.15 40.91 29.87 - 52.95 
14 47.92 34.47 - 61.67 62.5 48.36 - 74.78 

their importance (see Table 5.1. We then perform the classification task 17 times where 

in the ith  time we use the i 1 most important channels for classification. As usual, the 

"leave one out" method is used for the classification task. Let us note here that the com-

putation of the "index of smoothness" takes place once, using all the available trials. This 

means that in each round of the classification task the testing trial has been considered 

for the above computation. However, during this computation the trials are not divided 

into classes, so there is no use of the knowledge of the class where the testing trial belongs 

to, in the training process. 

The classification rates produced across the number of "important" channels used 

can be seen in Figure 5.1(a). The equivalent rates when the set of channels Fz, Cz, Pz 

is used are denoted with a dotted straight line. Observing the classification rate across 

the number of channels used we see that there is not a tendency common for all subjects 

and methods of classification. However, in the majority of cases the rates are maximised 

for a small/moderate number of "important" channels. This means that it is usually 

better to reduce the number of channels used for feature construction instead of using all 

the available ones. Moreover, one can see that the set of channels Fz, Cz, Pz is not the 
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Table 5.3: The maximum correct classification rates for a selected subset of channels 
(when E3=1 W3 = 1) the names of these channels and the corresponding 95% confidence 
intervals. These are the intervals where the true correct classification rates lie, with 
a probability of 95% 

Subject Classification 
rate (%) 

Confidence 
interval (95%) Channels 

1 77.59 65.34 - 86.41 Cz, Fz 
2 66 52.15 - 77.56 Pz, Cz, Fz, P4, C4, 

F4, P3, F8, T4, F7, 
02, Oz, C3, 01, T5, 

F3 
3 60.53 44.72 - 74.4 Pz, P4, Cz, P3 
4 61.7 51.6 - 70.89 Cz, Fz 
5 62.5 51.55 - 72.31 Cz, Fz, Pz, T6, T5, 

P4, Oz, P3, 02, C4, 
01, C3, F4, F3, T4 

6 67 57.31 - 75.44 Oz, Cz, C4, Pz, Fz, 
C3, P4, F4, 02, P3, 

01, T5, F3 
8 80.56 64.97 - 90.25 Cz, Pz, P3 
10 71.88 59.87 - 81.41 01, Pz 
11 75 63.18 - 83.99 Fz, T5 
13 62.12 50.06 - 72.85 02, Pz, Oz, Cz, P4, 

P3, Fz 
14 79.17 65.74 - 88.27 Pz, P4 

ideal one as in 9 out of 11 cases there is a subset of channels producing better results. 

This again supports the need of a channel ranking algorithm, which will indicate for each 

subject separately, the channels correlated with the ongoing cognitive processes. 

We present in Table 5.3 the maximum correct classification rates we get for a specific 

number of channels used for each subject, the corresponding 95% confidence intervals, as 

well as the names of the channels producing these results. We also present in Figure 5.2 the 

mean characteristic signal for each of the two classes, using for each subject the channels 

producing the best classification rates. Let us note here that all available trials have 

been used for the computation of these signals, so the actual mean characteristic signals 

constructed in each round of the "leave one out" method in the classification process may 

have slightly different shapes. 

Comparing Tables 5.2 and 5.3 one can make the same observations as looking 
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Figure 5.1: The correct classification rates across the number of "important" channels 
used for each subject. The dotted lines indicate the correct classification rates pro-
duced when the subset of channels Fz, Cz, Pz, is used. (a) Constraint: Ejm=i  w3  = 1. 
(b) Constraint: Ejm_ i 	1. 
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Figure 5.2: The mean characteristic signal for class "success" (blue) and class "failure" 
(red) for the 11 subjects, using all available trials. For each subject the channels 
producing the best classification rates (see Table 5.3) are used. The areas used for 
feature construction (see section 5.5) are marked with green rectangles. Constraint 

1 w3  Em used: 	= 1 EM 
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at Figure 5.1, i.e. the selection of a subset of channels prior to the application of our 

method increases the correct classification rates in general. Another observation is that 

the channels producing best results are different for each subject. This supports our belief 

that a "tailor-made" system has to be designed for each subject. 

5.4 Classification results using the whole characteristic sig-

nals with squared weights that sum up to 1 

We present in this section the classification results we get, constructing the characteristic 

signal for each class, finding the vector of coefficients w which minimises the variance 

subject to the second constraint, i.e.: E3m._ i 	= 1. 

5.4.1 A universal set of channels used 

As we did in section 5.3 we first construct the characteristic signals using all 18 channels 

or the subset of channels Fz, Cz, Pz. The classification rates acquired as well as the 

corresponding 95% confidence intervals are presented in Table 5.4. As explained in section 

5.3, we discarded channel F8 for subject 3 and channels F7 and F8 for subject 8 in order 

to have a non singular matrix R. 

In consistency with what we observed when the first constraint was used (see Table 

5.2) the classification rates we acquire when all channels are used are very low. When the 

set of channels Fz, Cz, Pz is used there is a considerable improvement for Subjects 1, 3 

and 4 but for the rest of them the rates remain low. 

5.4.2 Channel selection applied on a single subject basis 

We then apply the method described in section 5.3.2 to sort the channels according to 

their "usefulness" and apply the proposed method using a selected subset of channels. We 

perform the classification task 17 times where in the ith  time the i + 1 most important 

channels are used. The produced correct classification rates across the number of "impor-

tant" channels used are presented in Figure 5.1(b). The classification rates acquired with 
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Table 5.4: The correct classification rates when all channels or channels Fz, Cz, Pz 
are used (when 	 1 3 Em  w2  = 1) and the corresponding 95% confidence intervals. These 3= 
are the intervals where the true correct classification rates lie, with a probability of 
95%. 

Subj. 
All channels Channels: Fz, Cz, Pz 

Classification 
rate (%) 

Confidence 
Interval 

Classification 
rate (%) 

Confidence 
Interval 

1 56.9 44.12 - 68.82 87.93 77.12 - 94.03 
2 66 52.15 - 77.56 64 50.14 - 75.86 
3 60.53 44.72 - 74.41 73.68 57.99 - 85.03 
4 55.32 45.26 - 64.96 69.15 59.22 - 77.58 
5 70 59.23 - 78.94 63.75 52.81 - 73.43 
6 43 33.73 - 52.78 53 43.29 - 62.49 
8 72.22 56.01 - 84.15 69.44 53.14 - 81.99 

10 51.56 39.58 - 63.37 59.38 47.15 - 70.55 
11 43.75 32.29 - 55.91 45.31 33.73 - 57.42 
13 40.91 29.87 - 52.95 56.06 44.08 - 67.37 
14 62.5 48.36 - 74.78 47.92 34.47 - 61.67 

the set of channels Cz, Pz, Fz are indicated with a dotted line. We again observe that 

there is always a subset of channels producing better results than the ones produced when 

all channels are used. The same holds for the comparison with the case when channels 

Cz, Pz, Fz, with the exception of Subjects 3 and 4. 

In Table 5.5 we present the maximum correct classification rates produced for 

a certain number of channels, the names of these channels and the corresponding 95% 

confidence intervals. One can see that the channels producing the best results are again 

different across subjects. Moreover as we see from Tables 5.3 and 5.5 the subset of channels 

producing best results for the same subject is generally different for the two constraints. 

The same also stands for the shape of the mean characteristic signals (see Figure 5.3). A 

comparison between the classification rates produced with the two constraints is presented 

in section 5.7. 



5.4 Classification results using the whole characteristic signals with squared 
weights that sum up to 1 	 131 

Table 5.5: The maximum correct classification rates for a selected subset of channels 
(when 1 3 Em  w2  = 1) the names of these channels and the corresponding 95% confidence EM 
intervals. These are the intervals where the true correct classification rates lie with a 
probability of 95% 

Subject 
Classification 

rate (%) 
Confidence 

interval (95%) 
Channels 

1 86.21 75.07 - 92.84 Cz, Fz, T5 
2 74 60.45 - 84.13 Pz, Cz, Fz, P4, C4, 

F4, P3, F8, T4, F7, 
02, Oz, C3, 01 

3 65.79 49.89 - 78.79 Pz, P4, Cz, P3 
4 61.7 51.6 - 70.89 Cz, Fz, 01, C4 
5 75 64.52 - 83.19 Cz, Fz, Pz, T6, T5, 

P4, Oz, P3, 02, C4, 
01, C3, F4 

6 66 56.28 - 74.54 Oz, Cz 
8 75 58.93 - 86.25 Cz, Pz, P3 

10 65.63 53.4 - 76.08 01, Pz, T5 
11 75 63.18 - 83.99 Fz, T5 
13 69.7 57.78 - 79.45 02, Pz 
14 66.67 52.54 - 78.32 Pz, P4, P3, Cz, T6, 

01, Oz, 02, C4, Fz, 
T5, F4, F3, C3, T3 
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Figure 5.3: The mean characteristic signal for class "success" (blue) and class "failure" 
(red) for the 11 subjects, using all available trials. For each subject the channels 
producing the best classification rates (see Table 5.5) are used. The areas used for 
feature construction (see section 5.6) are marked with green rectangles. Constraint 
used: 	 1 3  Em w2 = 1 ,= 
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5.5 	Classification results constructing features from charac- 

teristic signals with weights that sum up to 1 

In the previous sections we used the whole length of the characteristic signals to perform 

the desired classification which means that we considered each sample of the signals as 

a distinct feature. We present here the classification results we get when we construct a 

number of features from the characteristic signals and use these features for classification. 

The feature construction can be described as follows. We first construct the mean 

characteristic signals for the two classes as described in section 5.1. We then compute the 

absolute difference between the two signals and we find its maxima. For each maximum 

m, an area around it the samples of which remain larger than 0.9m, is identified. Then 

the mean over this area in the characteristic signals of the two classes is computed. The 

six means corresponding to the six largest maxima, under the constraint that the centres 

of their corresponding areas are at least ten samples away from each other, are selected as 

features. This procedure is equivalent to the one used in sections 4.4 and 4.5. Thus, we 

have finally constructed two feature vectors y and y' of size six, for classes "success" and 

"failure", respectively. 

The procedure described above takes place using only the data in the training set, 

as it only involves the trial-invariant signals, which are produced from these data. Once 

the starting and ending points of the areas that are used for the feature construction have 

been identified, they are used to construct features for the trials in the testing set. For 

each trial in the testing set two feature vectors f and f' are constructed through averaging 

over the selected areas of its characteristic signals. f is produced from the characteristic 

signal constructed using the coefficients of class "success" and f' from the one using the 

coefficients of class "failure". In order to classify the trial we compute the Euclidean 

distance between f and 7 and between f' and y' and the trial is classified to the class 

producing the smallest distance. 

In order to perform the classification task we used the "leave one out" method as 

usual to construct the training and testing sets. For the construction of the characteristic 
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signals the first constraint is used, i.e. E3M. Wi = 1. The subset of channels used for 

each subject is the one producing maximum classification rates when the whole signals are 

used (section 5.4.2) and can be seen in Table 5.3. During the feature production the six 

features were sorted in descending order with respect to the value of their corresponding 

maxima in the difference between the two mean characteristic signals, which is assumed 

to denote their importance. We performed the classification task six times where in the 

ith  time the i most important features were used. The maximum classification rates we 

got for a certain number of features each time are presented in Table 5.6. The areas used 

for the construction of these features, when all available trials in classes "success" and 

"failure" are taken into account, are presented in Figure 5.2. 

As we have noticed in sections 4.4 and 4.5 the use of the "leave one out method" 

means that the training set changes in each round of classification. In order to quantify 

the consistency in choosing the same areas for the feature construction for different train-

ing sets, areas the centres of which are five or fewer samples away from each other, are 

considered to be instantiations of the same area. We then compute the ratio of selection of 

each area for feature construction over the different training sets. The rates that concern 

the features producing the maximum classification rate for each subject are presented in 

Table 5.6. 

Comparing the classification rates we get here with the ones when the whole char-

acteristic signals are used (see Table 5.3) we see that the rates are improved for all subjects 

with the exception of subjects 5, 10, and 14. Another observation is that the ratios of 

selection of the areas used for the feature construction are high. This is encouraging as it 

implies that the process of feature construction for each subject generally does not depend 

on the constitution of the training set. 
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Table 5.6: The maximum correct classification rates and the corresponding 95% con-
fidence intervals when features are constructed from the trial-invariant signals (when 
Em  w = 1), the number of features producing these rates and the ratios of selection 3=1. 3 
of these features. 

Subject Classification 
rate (%) 

Confidence 
interval (95%) 

Number 
of features 

Ratio of selection 

1 81.03 69.15 - 89.07 4 1, 1, 1, 	1 
2 66 52.15 - 77.56 1 0.88 
3 68.42 52.54 - 80.92 2 1, 1 
4 67.02 57.01 - 75.69 2 1, 0.98 
5 57.5 46.57 - 67.74 3 1, 0.93, 0.88 
6 70 60.42 - 78.11 6 1, 1, 1, 0.9, 0.88, 0.76 
8 91.67 78.17 - 97.13 2 1, 1 

10 54.69 42.57 - 66.27 6 1, 1, 1, 0.97, 0.91, 0.72 
11 78.13 66.57 - 86.5 1 1 
13 69.7 57.78 - 79.45 6 1, 1, 1, 1, 0.94, 0.55 
14 83.33 70.42 - 91.3 6 1, 1, 0.96, 0.96, 0.92, 0.67 

5.6 Classification results constructing features from char-

acteristic signals with squared weights that sum up to 

1 

In this section we present the results we get when the characteristic signals, which are used 

to produce the features, are constructed using the second constraint, i.e. Eim_i 	= 1. 

The procedure of constructing the features from the characteristic signals as well as the 

details of performing the classification task is exactly the same as the one described in 

section 5.5. The channels used for the construction of the characteristic signals for each 

channel are those producing the best results when the whole signal is used in section 5.4.2 

and can be seen in Table 5.5. 

We therefore give the maximum correct classification rates as well as the number of 

features for each subject used to produced them, in Table 5.7. We also present the ratio of 

selection of the areas used for the feature construction. These areas, when all trials of the 

two classes are taken into account for the construction of the class characteristic signals, 

are marked with green rectangles in Figure 5.3. 
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Table 5.7: The maximum correct classification rates and the corresponding 95% con-
fidence intervals when features are constructed from the trial-invariant signals (when 
Em 1 j  w2  = 1), the number of features producing these rates and the ratios of selection 3= 
of these features. 

Subject Classification 
rate (%) 

Confidence 
interval (95%) 

Number 
of features 

Ratio of selection 

1 81.03 69.15 - 89.07 4 1, 1, 0.83, 0.79 
2 54 40.4 - 67.03 1 0.64 
3 55.26 39.71 - 69.85 2 0.74, 0.53 
4 64.89 54.83 - 73.78 5 1, 1, 0.98, 0.96, 0.89 
5 66.25 55.36 - 75.65 5 1, 1, 0.98, 0.98, 0.83 
6 65 55.25 - 73.64 6 1, 1, 1, 0.9, 0.74, 0.68 
8 66.67 50.33 - 79.79 6 1, 0.94, 0.89, 0.89, 0.83, 0.78 
10 64.06 51.82 - 74.71 4 1, 0.97, 0.97, 0.91 
11 75 63.18 - 83.99 4 1, 1, 0.97, 0.78 
13 62.12 50.06 - 72.85 6 1, 1, 1, 1, 0.97, 0.91 
14 64.58 50.44 - 76.57 1 0.33 

Comparing the results produced here, with those acquired when the whole charac-

teristic signals were used (see Table 5.5) we see that the classification rates produced here 

are inferior for most of the subjects. Moreover the ratio of selection of the areas for the 

feature construction is considerably low in several cases. This indicates that the algorithm 

is not reliable as the feature construction process varies with the changes in the training 

set. 

5.7 Comparison of the proposed methods 

In this section we compare the algorithms proposed in this chapter in an attempt to 

conclude which one is superior. These algorithms are: the algorithm using the whole 

characteristic signal to perform classification using the 1st constraint (Ej=i  wi = 1, section 

5.3.2) , the equivalent algorithm using the 2nd constraint (E3m=i 	= 1, section 5.4.2), the 

algorithm using features constructed from the characteristic signal to perform classification 

using the 1st constraint (section 5.5) and the equivalent algorithm using the 2nd constraint 

(section 5.6). 
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Table 5.8: The subjects for which the algorithm using the whole signal (when 
_ w j  = 1) produces better classification rates than the other algorithms. The classi-

fication rates and the observed level of significance when each of the other algorithms 
is considered equivalent or superior. 

Subj. Algorithm 
using 

whole signal 
E 	= 1 ...71.11_ 1 1v5 

Algorithm 
using whole 

signal 
E f_i  q -.-_. 1 

Algorithm 
using 

features 
Er-i wi = 1  

Algorithm 
using 

features 
E-jq = 1  

Classif. 
rate (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

Signif. 
level (%) 

Classif. 
rate (%) 

10 71.88 65.63 22.41 54.69 2.1 64.06 17.26 

Table 5.9: The subjects for which the algorithm using the whole signal (when 
Em. 7L)3  = 1) produces better classification rates than the other algorithms. The 

3  
classification rates and the observed level of significance when each of the other algo-
rithms is considered equivalent or superior. 

Subj. Algorithm 
using 

whole signal 
E17: 1 1/4 = 1 

Algorithm 
using whole 

signal 
Er_i  wi  = 1 

Algorithm 
using 

features 
Eljt-1--iwi = 1 

Algorithm 
using 

features 
E i_ 1  ul = 1 

Classif. 
rate (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

Signif. 
level (%) 

Classif. 
rate (%) 

1 86.21 77.59 11.45 81.03 22.69 81.03 22.69 
2 74 66 19.29 66 19.29 54 1.75 
5 75 62.5 4.36 57.5 0.9 66.25 11.26 
13 69.7 62.12 18.02 69.7 50 62.12 18.02 

In Tables 5.8 - 5.10 the subjects for which each of the above algorithms produces 

the best classification rates are presented respectively (the algorithm producing features 

using the second constraint does not produce better results than the other algorithms for 

any subject). In each of these Tables we present the corresponding classification rates as 

well as the observed levels of significance of the hypothesis that the other algorithms are 

equivalent or superior than the one that produced the best results. As we explained in 

section 4.7 (and in more detail in Appendix C), when the level of significance is below 

5% we can reject the null hypothesis and we can be confident (at a 95% level) that the 

algorithm which produced better results is actually superior. In the opposite case we lack 

such confidence and the algorithms should be considered equivalent. 
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Table 5.10: The subjects for which the algorithm uses features constructed from the 
characteristic signal (when E.r i w3  = 1) produces better classification rates than the 
other algorithms. The classification rates and the observed level of significance when 
each of the other algorithms is considered equivalent or superior. 

Subj. Algorithm 
using 

features 
E,14-1w3 = 1  

Algorithm 
using whole 

signal 
Vi'_/, wi  = 1 

Algorithm 
using whole 

signal 
Er_, w.  = 1 

Algorithm 
using 

features 
E,w_ i tv.; 

Signif. 
level (%) 

= 1 
Classif. 
rate (%) 

Classif. 
rate (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

Classif. 
rate (%) 

Signif. 
level (%) 

3 68.42 60.53 23.84 65.79 40.48 55.26 11.98 
4 67.02 61.7 22.4 61.7 22.4 64.89 37.96 
6 70 67 32.47 66 27.3 65 22.6 
8 91.67 80.56 8.66 75 2.74 66.67 0.34 
11 78.13 75 33.91 75 33.91 75 33.91 
13 69.7 62.12 18.02 69.7 50 62.12 18.02 
14 83.33 79.17 30.24 66.67 2.87 64.58 1.7 

As can be seen from Tables 5.8 - 5.10 there is not one algorithm producing best 

results for all subjects. The algorithm producing best results for most of the subjects 

(7 out of 11) is the one constructing features from the characteristic signal using the 

1st constraint. However, the 95% level of confidence for the superiority of one of two 

algorithms holds only for few cases (they are indicated with bold letters). Although this 

fact does not permit us to be confident for the superiority of the latter algorithm, we 

should keep in mind that the number of trials in the testing set is relatively small. As 

commented in section 4.7 this means that if two algorithms have a small difference in 

their true classification rates, then it is likely that this difference will not be adequate to 

support with confidence the superiority of one over the other. 



Chapter 6 

A comparison with methods from 

the field of Human Performance 

Monitoring 

In this chapter, we apply to the prediction problem a number of methods proposed in the 

closely related field of Human Performance Monitoring (HPM). In section 6.1, we briefly 

describe the HPM problem, focusing on the differences with the one in our case. Let us 

note here that the relevant literature has already been presented in Chapter 2. We then 

describe the methods we apply to the prediction problem and present the acquired results. 

These results are compared in section 6.2 with the ones acquired with some of the main 

methods proposed in this thesis. 

6.1 Methods from the Human Performance Monitoring 

Field 

The most relevant, to the problem we are tacking, field in the literature is the one of 

Human Performance Monitoring during critical tasks. These tasks, e.g. air traffic control 

or military applications, usually involve an operator detecting various signals on a screen, 

evaluating them and proceeding into appropriate actions. The errors are very rare so it 

139 
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is not possible to evaluate the operator's performance through them, however just one 

error could have very serious consequences. HPM aims to use the operator's ongoing EEG 

signals to detect when their performance related to factors such as the reaction time, the 

accuracy and the confidence falls beyond an acceptable level. In such cases the operator 

could be replaced by someone else and a potential error could be avoided. 

As in our case, studies in HPM use data acquired from an oddball experiment, in 

which a subject monitors a screen and has to respond upon the presentation of a specific 

stimulus. Parameters concerning the performance of their response are recorded and then 

combined to produce a performance factor. Then this factor has to be estimated using the 

subject's recorded EEG signals. However, on contrast to the prediction problem we are 

studying in this thesis, there is no restriction on the length of the EEG signals used. This 

permits the use of the most important components of the Event Related Potential, such as 

the P300, which are known to be correlated with the reaction time [40]. Moreover, since 

the estimation of the performance has to take place for a time duration in the near past 

and not on a single trial basis, averaging of the EEG signals over a window of a number 

of trials can be used. This is again important as averaging can enhance the ERP which is 

heavily buried into the background EEG activity (averaging of several trials has actually 

been used in all studies of HPM referenced in section 2.2). 

Although the absence of the two restrictions presented above make the HPM prob-

lem much easier than the one of prediction, the methods proposed for HPM can still be 

used in our case. The relevant literature of HPM has been presented in section 2.2. Since 

approaches using PCA [45] and wavelets [86] have already been used in this thesis, we de-

cided to apply to the prediction problem the Kernel PCA (KPCA) method in combination 

with Support Vector Regression, proposed in [70,71]. Since our problem is a classification 

and not a regression one, Support Vector Classification is used here. Moreover, the Gaus-

sian classifier, used throughout this study, is used here as well for comparative purposes. 

Finally, apart from KPCA, linear PCA (LPCA) and time features are also used. 

In the rest of this section, we first give a brief description of the new methods 

used (Kernel Principal Component Analysis and Support Vector Classification) and then 
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present the acquired results. 

6.1.1 Kernel PCA 

Kernel Principal Component Analysis (KPCA) [40] uses a non linear function to map the 

original vectors of variables (features) xi, belonging to a space RM, to a new space 	of 

a higher dimensionality M' (M < M' < oo). PCA is then applied on the mapped data 

q5(x). The key point of the algorithm is that there is no need to explicitly compute the 

mapped data as KPCA can be computed knowing only the inner products between them. 

The inner product between two instances (..1)(xi), (1)(xi) of mapped data can be computed 

using a function k, named kernel function, which takes as input vectors xi , xi in their 

original form, i.e.: 

k(xi,xi) = (4)(xj).4)(xi)) 	 (6.1) 

The advantage of KPCA is that the elements of the vectors belonging to the higher 

dimensionality space ,F, are usually constructed by taking higher order correlations be-

tween the input variables. This is likely to enhance the classification capability of the (non 

linear) principal components extracted from them compared with that of the linear case. 

The type of correlations used depends on the chosen mapping, i.e. the choice of the kernel 

function. We use here the Gaussian kernel function defined as: 

k(xi,xi) = e L 
ii.i-.•112  

(6.2) 

This kernel is proposed in [71] to address the HPM problem due to its smoothness prop-

erties. In the rest of this section we describe how KPCA works. 

Let us assume we have N feature vectors xi, i = 1, ...,.N, on the initial space IRM. 

The covariance matrix of their mapped version can be written as C = kill•PT , where (I) is 

an M x N matrix the 	column of which is the vector (://(xi). The PCA on space .F lies 

in finding the eigenvectors vk  of C corresponding to eigenvalues 1> 0 (we are interested 
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only in the positive ones), i.e. solve: 

lv = Cv <=> lv = 1 
	

(6.3) 

In the case of positive eigenvalues, the eigenvectors lie in the space spanned by the 

columns of 4), i.e. vk  = (Dak. Based on this notice it can be proven [71] that as far as the 

positive eigenvalues and corresponding eigenvectors are concerned, the eigenvalue problem 

of Eq.(6.3) is equivalent to the one of: 

Nla = (1314a <#. Aa = Ka 	 (6.4) 

For the computation of the N x N matrix K the explicit knowledge of ill is not needed 

as its elements can be computed through: 

= (0(xj).0(xj)) = k(xi , xi ) 	 (6.5) 

After solving the eigenvalue problem of Eq.(6.4), we find the eigenvectors ak  corre-

sponding to non zero eigenvalues \k. The maximum number of these vectors is N. Since 

the norm of the non linear eigenvectors vk  should be equal with one, the vectors ak should 

be normalised to satisfy: 

Vk Vk = 1 <=> ak  w wak  = 1 4=> Aka',T  ak  = 1 
	

(6.6) 

After the normalisation of the vector ak , the kth non linear principal component 

of a feature vector x can be computed as: 

N 
b(x)(k) = v0(X) = 	'PT q(x) = E a(kz)  k(xi, x) 

i=i 
(6.7) 

Thus it is obvious from Eq.(6.7) that the non linear principal components are computed 

without the explicit knowledge of the mapped vectors cb(x) in the higher dimensional 

space. Their maximum number is N, i.e. equal with the number of instances. This means 
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that, since usually N < M', we only "see" a subspace of 	In practice we select the first 

p < N components describing a certain amount of the data variance and use them for the 

classification task. 

6.1.2 Support vector classification 

The Support Vector Machine (SVM) [87] is a tool performing classification in the following 

way. Let us suppose we have a two class problem and a training set xi, i = 1, ..., N of N 

instances of feature vectors x E Rm. Let us also associate a scalar yi E {1, —1} with each 

instance xi denoting the class where the latter belongs to. SVM performs the classification 

task using a hyperplane, i.e. a subspace of dimension M — 1, defined as: 

wTx + b = o 
	

(6.8) 

The hyperplane divides the feature space into two halves and an unknown feature 

vector "i is classified according to which half it belongs to, i.e. 

	

y(-X") = sgn(wTi b) 	 (6.9) 

In the case that the instances in the training set are linearly separable, the separat-

ing hyperplane is found as the one which classifies the data without error and maximises 

the distance from the closest feature vector. Since the same hyperplane can be described 

through Eq.(6.8) with many different w pointing to the same direction, the norm of w is 

constrained to be equal to the inverse of the distance of the nearest feature vector in the 

training set to the hyperplane. Such hyperplanes are called canonical and they satisfy: 

min IwT xi + bj = 1 
	

(6.10) 

A canonical hyperplane which separates the data without errors should satisfy the 

following relation: 

	

Yi(wT  xi + b) > 1, i = 1, 	N 	 (6.11) 
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Moreover in order for such a hyperplane to be optimal it has to maximise the margin 

m between the two classes. Noticing that the distance of a vector xi from a hyperplane 

(w, b) is computed as d ( „,,b) (x i ) 	l inTilZfbl and that the distances of the hyperplane from 

the closest vector of each class should be the same, the margin m is given by: 

m(w, b) = min 1  d(u, b)(Xi) + 
m
min 1  d(v, (Xi) 

i= 

IWTXi  bl 	 IWTXi bl 
= min 1 	 + 

i:Y
M 

IlwII 	
m

i=1 	II W II 

I 
= -

1 

C
umin IwTxi + bl + min iwTxi + bl) 

1. 

(6.12) 

 

2 

  

 

llwlI 

  

Maximising Eq.(6.12) is equivalent to minimising: 

 

  

1 
(75(w) = (6.13) 

Thus the separating hyperplane that SVM uses is the one occurring from the min-

imisation of Eq.(6.13) subject to the constraint of Eq.(6.11). This optimisation problem 

is solved using Lagrange multipliers and for more details we refer to [87]. 

In the case that the data in the training set is not linearly separable, a set of 

parameters ei  > 0, i = 1, N is introduced to account for the classification errors. Thus 

Eq.(6.11) that the separating hyperplane should satisfy, is modified to: 

Yi(wi  xi + b) > 1 —i , i = 1, , N 	 (6.14) 

At the same time the cost function of Eq.(6.13) is modified to: 

g5(w) = 	+ 
	

(6.15) 
1 

in order to account for the minimisation of the classification error measured by 

C is a scalar parameter adjusting the trade-off between maximising the margin between 

the two classes and minimising the classification error. It is seen from the optimisation 
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process of Eq.(6.15) subject to Eq.(6.14) [87] that the larger the value of C is, the closer 

the produced hyperplane is to the one of the separable case. 

6.1.3 Classification Results 

Before performing any classification task we computed the index of smoothness for each 

channel with respect to each subject separately, as described in section 5.2. This was 

done using all the available trials, including the 50% of the trials having medium reaction 

times. Then the channels were sorted in ascending order with respect to their index of 

smoothness as seen in Table 5.1. We performed the classification experiments 18 times, 

where in the ith  time the feature vectors, for the classes "success" and "failure", were 

constructed concatenating the signals of the subject's i most important channels. The 

EEG signals were first filtered with a lowpass filter at a cut off frequency of 25Hz and then 

decimated to correspond to a sampling rate of 50Hz. This was done in order to reduce the 

amount of features used and be consistent with [71] where the use of KPCA is proposed. 

After the downsampling the dc component was removed in order to have signals with a 

zero mean value. 

The use of three types of feature vectors is studied. In the first case the original 

feature vectors containing the raw time samples, constructed as described above are used. 

In the other two cases LPCA and KPCA are applied on the time features and the new 

feature vectors are constructed using the first largest principal components accounting for 

the 99% of the data variance. As far as the width L of the Gaussian kernel is concerned the 

experiments are repeated 10 times, choosing L uniformly from the range (0.2a2M, 50-2M), 

where o-2  is the variance of the EEG samples over all time points and channels used and 

M the length of the original time feature vectors. 

As far as the construction of the training and testing set is concerned we use the 

"leave one out" method. The support vector and the Gaussian classifier are used for the 

classification task. The experiments were repeated five times when the support vector 

classifier was used with the parameter C taking values from the set {0.1, 1, 10, 100, oo}. 

The results reported here are the best ones, produced when C = 0.1 for the time and 
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LPCA features and when C = co for the KPCA features. When the Gaussian classifier 

was used, a common diagonal covariance matrix was constructed for the two classes (see 

Eq.(3.8). 

The correct classification rates produced across the number of "important" chan-

nels used can be seen in Figure 6.1 for SVM and in Figure 6.2 for Gaussian classification. 

We also computed the correct classification rates when the set of channels Fz, Cz, Pz is 

used. We repeat here that these channels were used in the HPM study in [71], as the 

signals of them are considered in the literature to exhibit correlations with the cognitive 

processes of recognising a target. The classification rates when these channels are used are 

denoted in the figures with a straight dotted line. Observing the classification rate across 

the number of channels used we see that in the majority of cases the rates are maximised 

for a small/moderate number of "important" channels. Moreover, for all subjects, this 

set of channels produces better results than the ones when Fz, Cz, Pz are used. These 

observations are qualitatively similar to the ones of chapter, 5 when classification is per-

formed using the class characteristic signals, and imply the need of an individual channel 

selection. 

In order to compare the six methods resulting from the different combinations of 

feature construction and classification method, we present in Table 6.1 the maximum 

correct classification rates produced per subject for each methods combination. The rate 

which is maximum for each subject is indicated in bold. Although the differences are not 

very big, we observe a consistent superiority of the KPCA features for 9 out of 11 subjects. 

This is in consistency with the work in [71] where the superiority of KPCA over LPCA and 

raw time features for the human performance monitoring problem is reported. Concerning 

the comparison between the two types of classifiers we see that remarkably the Gaussian 

classifier is better for seven subjects, for three of them the two classifiers produce the same 

maximum rates (for different type of features) and for only one subject the SVM produces 

best results. This is not however the case if we restrict the comparison in time features for 

which SVM is superior to Gaussian classification with 7 over 4 subjects. Based on these 

two observations we conclude that it is worth using the more complicated SVM algorithm 
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Figure 6.1: Correct classification rates vs number of channels used. Time, LPCA, 
KPCA features with Support Vector classification. The dotted horizontal lines denote 
the classification rates produced when channels Fz, Cz, Pz are used. 
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Figure 6.2: Correct classification rates vs number of channels used. Time, LPCA, 
KPCA features with Gaussian Classification. The dotted horizontal lines denote the 
classification rates produced when channels Fz, Cz, Pz are used. 
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Table 6.1: The correct classification rates for time, LPCA, KPCA features and Sup-
port Vector and Gaussian type of classification. 

Subj. SVM Gaussian Classif. 
Time LPCA KPCA Time LPCA KPCA 

S1 89.66 91.38 94.83 82.76 86.21 96.55 
S2 70.00 64.00 68.00 72.00 66.00 68.00 
S3 89.47 89.47 81.58 65.79 86.84 86.84 
S4 71.28 67.02 68.09 67.02 69.15 72.34 
S5 62.50 63.75 70.00 68.75 66.25 70.00 
S6 68.00 71.00 73.00 71.00 73.00 74.00 
S8 86.11 91.67 91.67 83.33 86.11 97.22 
S10 67.19 70.31 75.00 73.44 75.00 71.88 
SU 81.25 79.69 82.81 76.56 82.81 81.25 
S13 71.21 71.21 72.73 66.67 71.21 75.76 
S14 83.33 83.33 85.42 79.17 79.17 87.50 

for classification when raw time features are used, but the simpler Gaussian classification 

algorithm is equivalent or even better when the time features have been processed with 

LPCA and especially with KPCA. 

6.2 	Comparison of various methods 

Throughout this study a variety of methods were used to tackle the classification problem 

of predicting a person's performance in an oddball experiment. Since none of them appears 

to produce best classification rates for all subject universally we are restricted here in 

comparing the real novel ones. These methods are: 

• NMF for analysis of single trial's time-frequency representation for feature construc-

tion combined with Gaussian Classification (section 4.5). 

• NMF for analysis of multi trial's time-frequency representation for feature construc-

tion combined with Gaussian Classification (section 4.6). 

• Classification using class characteristic signals with squared weights that sum up to 

1 (section 5.4). 

• Classification using features constructed from class characteristic signals with 

weights that sum up to 1 (section 5.5). 
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"'Single trial NMF - 
Gaussian Classif. 

Multi trial NMF - 
Gaussian Classif. 

Class characteristic signal 

Class characteristic signal 
(feature construction) 

KPCA - SVM 

KPCA - Gaussian Classif. 

1 	2 	3 	4 	5 	6 
Subject 

Figure 6.3: The correct classification rates for Subjects Si, S2, S3, S4, S5, S6 produced 
by various methods. 

Together with these methods we also consider, for comparison purposes, the clas-

sification results produced with the Kernel PCA methods proposed for HPM, i.e. use 

of KPCA features with SVM or Gaussian Classification (section 6.1). The classification 

results produced with all these methods are presented in the bar Figures 6.3 and 6.4 for 

subjects 1-6 and 8-14, respectively. 

Observing Figure 6.3 and 6.4 we see that there is not one algorithm producing best 

classification rates for all subjects. However the KPCA features seem to be superior as 

for 6 out of the 11 subjects, KPCA features combined with the Gaussian classifier seems 

to be optimal. The same holds for two more subjects when KPCA features are combined 

with Support Vector Classification. For the rest three subjects some of the other other 

methods produces the best classification rates. However, the differences in the estimated 

classification rates are generally small and as can be seen in Tables 6.2- 6.6, for few cases 

(they are indicated in bold) we can be confident at a level of 95% that the algorithm 
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8 	 10 	 11 	 13 	 14 
Subject 

Figure 6.4: The correct classification rates for Subjects S8, S10, S11, S13, S14 pro-
duced by various methods. 
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Table 6.2: The subjects for which the method using NMF of single trial's time-
frequency representations and Gaussian classification produces better rates than the 
other algorithms. The observed level of significance when each of the other algorithms 
is considered equivalent or superior. 

Subj. Classif. rate 
of single trial 

NMF - Gauss. (%) 

Significance Level (%) 
Multi trial 

NMF- 
Gauss. 

Class 
charact. 
signal 

Class charact. 
signal 

(feat. constr.) 

. Time- 
SVM 

Time-
Gauss. 

4 74.47 7.66 2.97 13.14 16.74 37.13 
5 75 36.05 50 0.9 24.04 24.04 

Table 6.3: The subjects for which the method using NMF of multi-trial's time-
frequency representations and Gaussian classification produces better rates than the 
other algorithms. The observed level of significance when each of the other algorithms 
is considered equivalent or superior. 

Subj. 
Classif. rate 
of multi-trial 

NMF - Gauss. (%) 

Significance Level (%) 
Single-trial 

NMF- 
Gauss. 

Class 
charact. 
signal 

Class charact. 
signal 

(feat. constr.) 

Time- 
SVM 

Time- 
Gauss. 

2 78 40.7 32.13 9.1 13.09 13.09 

estimating the best results 'is actually better than the others. (For more information 

concerning the meaning and the computation of the level of significance see Appendix C.) 

As a final remark, let us repeat here, that the observed variability in the algorithm 

producing best classification rates across the subjects, probably indicate that in a real 

application, a separate system should be designed for each person. 

Table 6.4: The subjects for which the method using class characteristic signals pro-
duces better rates than the other algorithms. The observed level of significance when 
each of the other algorithms is considered equivalent or superior. 

Subj. 
Classif. rate 

of class charact. 
signal (%) 

Significance Level (%) 
Single-trial 

NMF- 
Gauss. 

Multi-trial 
NMF- 
Gauss. 

Class charact. 
signal 

(feat. constr.) 

Time- 
SVM 

Time-
Gauss. 

5 75 50 36.05 0.9 24.04 24.04 
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Table 6.5: The subjects for which the method using KPCA features and Support 
Vector Classification produces better rates than the other algorithms. The observed 
level of significance when each of the other algorithms is considered equivalent or 
superior. 

Subj. Classif. rate 
of KPCA - 
SVM (%) 

Significance Level (%) 
Single-trial 

NMF- 
Gauss. 

Multi-trial 
NMF- 
Gauss. 

Class 
charact. 
signal 

Class charact. 
signal 

(feat. constr.) 

Time-
Gauss. 

10 75 27.72 34.56 12.35 0.73 34.56 
11 82.81 4.7 10.01 14.01 25.31 40.96 

Table 6.6: The subjects for which the method using KPCA features and Gaussian 
classification produces better rates than the other algorithms. The observed level of 
significance when each of the other algorithms is considered equivalent or superior. 

Subj. Classif. rate 
of KPCA - 
Gauss. (%) 

Significance Level (%) 
Single-trial 

NMF- 
Gauss. 

Multi-trial 
NMF- 
Gauss. 

Class 
charact. 
signal 

Class charact. 
signal 

(feat. constr.) 

Time- 

SVM 

1 96.55 0.01 0.17 2.26 0.34 32.5 
3 86.84 11.92 18.23 1.4 2.56 26.68 
6 74 17.56 26.52 10.88 26.52 43.67 
8 97.22 1.07 4.3 0.23 15.34 15.34 

13 75.76 34.63 21.84 21.84 21.84 34.63 
14 87.5 13.77 13.77 0.66 28.32 38.39 



Chapter 7 

Conclusions and future 

perspectives 

We proposed in this thesis a number of methods aiming to discriminate between a person's 

quick and slow responses in an oddball experiment, using only an early part of their EEG 

signals, i.e. a part always preceding the person's response. In Chapter 3 we focused on 

using the magnitude of the spectrum of the signals as features. These features were then 

processed with a number of techniques such as: their Euclidean distance, PCA, LDA and 

NMF. In all cases a Gaussian classifier was used for the classification task. Moreover, 

PCA and NMF were also used for the construction of a subspace of the original feature 

space where the classification task could be easier. In Chapter 4 the Time-Frequency 

representations of the EEG signals, acquired using the Continuous Wavelet Transform, 

were analyzed using NMF to construct features for the desired classification. The analysis 

was done in a single-trial as well as in a multi-trial basis. In Chapter 5 the use of a 

characteristic signal for each class, constructed by combining the signals of the various 

channels, was proposed to perform the classification task. A channel selection algorithm 

was also developed for choosing the appropriate channels. Finally, in Chapter 6 the KPCA 

method proposed for tackling the HPM problem was applied to our problem. Taking into 

account the results acquired by all these approaches we can draw the following conclusions: 

154 

• There is a large variability in the classification rates both across subjects and meth- 
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ods used. There is no method appearing to be optimal for all the subjects. This 

observation supports our belief that in a real application a "tailor made" system 

should be designed for each user separately. 

• The right selection of EEG channels can considerably improve the classification 

results. The channel selection algorithm we propose, indicates a subset of channels 

which produces better classification rates compared with the ones acquired when all 

channels are used. This stands for all subjects. However, the subset of channels 

is not identical across subjects. This again implies the need of designing a "tailor 

made" system for each user. 

• Channels Fz, Cz, Pz, the signals of which are considered in the literature to exhibit 

correlations with the cognitive processes of recognising a target, are generally ranked 

high by our channel selection algorithm. Although in most cases there is a different 

subset of channels producing better results (usually containing them), these channels 

are a good choice if a universal set has to be used for all subjects. 

• KPCA features performed quite well for most subjects. Although they were not the 

best in all cases, they seem to be the best choice if there is a need of a universal 

approach to the problem. 

• Although the classification rates produced were up to 97.22%, they are usually be-

tween 70% and 80%. This is certainly encouraging if we consider the difficulty of the 

problem. However, unless there is a remarkable improvement in the classification 

performance, real applications should only consider the generation of notification 

signals to increase the attention of operators and not involve any critical, automatic 

decision making process. 

A number of issues concerning the work presented here should be investigated in the 

future. First, the presented methods should be applied to more subjects and with more 

trials to be able to acquire more accurate classification rates and verify their validity. 

Moreover, we intend to compare the channel selection method we proposed here with 

other methods in the literature such as the ones presented in [48], which are based on SVM 
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techniques for the identification of the useful channels. Towards this direction, we are also 

going to investigate the possibility of analysing the data in a cross-subjects manner, in 

order to produce a set of channels for the classification task, being robust across subjects. 

Such an approach was followed in [78] using the methods of [48], producing moderate 

results. 

Another issue that is worth looking at, is the application of the proposed methods 

in the field of Human Performance Monitoring. As explained in section 6.1 this area is 

closely related to the one of our problem but due to the lack of the need of prediction 

the problem is easier. This is because we are able to use the preprocessing technique of 

averaging as well as take advantage of components in the EEG signals appearing after 

the person's reaction to the stimulus. These two facts are likely to enable our methods 

to capture more characteristic features correlated with the subjects' performance so we 

expect that the classification rates should be higher. The results should then be compared 

with the ones presented in the HPM literature. 

Finally, methods from the field of Neuroimaging, such as functional Magnetic Res-

onance Imaging (fMRI), are interesting to be investigated whether they can be applied 

to the performance prediction problem. There is the possibility that such methods could 

produce good results as they provide much better insight to the human brain's states 

due to their excellent spatial resolution. On the other hand, problems arising from the 

poor time resolution of fMRI should be addressed. Moreover, fMRI is quite expensive 

for the time being and of course could not be applied in a real application due to the 

"heavy" equipment needed to be acquired. However, fMRI has been used in the litera-

ture to study human cognition, so its use to tackle the prediction problem is certainly of 

academic interest. 
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Appendix A 

Averages of EEG signals 

We present here (Figures A.1-A.10) the averages of the EEG signals, in all 18 channels, 

of subjects S2, S3, S4, S5, S6, S8, S10, S11, S13, S14, for classes "success" and "failure". 

The mean value of each signal has been subtracted from its samples. 

The averages of the magnitude of the spectrum over the EEG signals of valid trials 

for the two classes are presented in Figures A.11-A.20 
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Figure A.1: Subject 2. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 
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Figure A.2: Subject 3. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 
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Figure A.3: Subject 4. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 
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Figure A.4: Subject 5. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 
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Figure A.5: Subject 6. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 
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Figure A.6: Subject 8. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 
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Figure A.7: Subject 10. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 
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Figure A.8: Subject 11. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 

?.,-  •  v.,  , 

-200
-200 0 200 400 

Time (msec) 
Channel: F8 (18) 

200 0 200 400 
Time (msec) 

200 

0 

-200 
400 0 	200 

Time (msec) 
-200 

A4 200 	 200 
131) 	 1:54)  

IR- 	0 :e" — 	 a 0 •''''' 
44  r4"" ...trirs  ''''. 

-200 0 200 400 
Time (msec) 

Channel: Oz (16) 

V 200  	-200 

200 
-8 
— 0 

-200 
-200 0 200 400 

Time (msec) 
Channel: P4 (13) 

200 

.8  0 

-200 

200 

0 

-200 

200 

2 0 

-200 

ry,  

-200 	0 	200 	400 
Time (msec) 

Channel: F7 	(17) 

8 
1_ 

-200 	0 	200 	400 
Time (msec) 

.." 	,v+ 	„of  

II)t)  



200 0 	200 400 
Time (msec) 

Channel: F4 	(5) 

a) 

200 0 	200 400 

200 

0 

-200 
-200 0 200 400 

Time (msec) 
Channel: T3 (6) 

200 

-200 

200 
-3" 3 

0 

-200 

tie7.0v4, '‘f< 

200 a) 

0 

-200 
-200 0 200 400 

Time (msec) 
Channel: F3 (4) 

200 
3 
-9. 	0 

-200 
-200 0 200 400 

Time (msec) 
Channel: T4 (7) 

Time (msec) 
Channel: C3 (8) 

0 200 400 
Time (msec) 

Channel: Oz (16) 

0 200 400 
Time (msec) 

Channel: F7 (17) 

200 0 200 400 
Time (msec) 

Channel: F8 (18) 

200 
-3" 

-200 
200 

0 

200 
ma)  

0 

-200 
200 

200 

a 0 

-200 

dAYseto4mitype 
200 

`;) 
0 

-200 
-200 0 200 400 

Time (msec) 

200 a) 

-200 
200 

0 
! .4446541\heA revrom  

0 	200 
Time (msec) 

400 

200 a) 

-200 
-200 0 	200 

Time (msec) 
400 

A. Averages of EEG signals 
	 176 

Channel: Fz (1) Channel: Cz (2) Channel: Pz (3) 

200 

-200 

0 9.1*440b4="1:49104141r4# 
WionciolifickwrON4 
-200 
	

0 
Time (msec) 

Channel: C4 (9) 

200 
	

400 

200 

0 

200 a) 

a 0 

-200 

-200 0 	200 400 
Time (msec) 

Channel: T6 	(10) 

-200 0 	200 400 
Time (msec) 

Channel: P4 (13) 

200 0 	200 400 
Time (msec) 

Channel: T6 	(11) 

-ca3 
2 a 
de  

200 0 	200 400 
Time (msec) 

Channel: 01 (14) 

200 0 200 400 
Time (msec) 

Channel: P3 (12) 

200 0 200 400 
Time (msec) 

Channel: 02 (15) 

200 
43)  
a 0 

-200 

200 

-200 -200 

200 

0 

-200 

200 a) 

14- 
-200 

Figure A.9: Subject 13. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
onset. The signals are truncated at the time point of the subject's quickest reaction. 
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Figure A.10: Subject 14. The blue and red lines are the average signals over the 
EEG signals of valid trials for classes "success" (blue) and "failure" (red). The area 
between the average signal plus and minus one standard deviation is marked with 
blue ("success") and red ("failure"). The vertical line indicates the time of stimulus 
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Figure A.11: Subject 2. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 
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Figure A.12: Subject 3. The blue and red lines are the averages of the magnitude 
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Figure A.13: Subject 4. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 
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Figure A.14: Subject 5. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 
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Figure A.15: Subject 6. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 
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Figure A.16: Subject 8. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 
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Figure A.17: Subject 10. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 
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Figure A.18: Subject 11. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 
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Figure A.19: Subject 13. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 
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Figure A.20: Subject 14. The blue and red lines are the averages of the magnitude 
of the spectrum over the EEG signals of valid trials for classes "success" (blue) and 
"failure" (red). The area between the average signal plus and minus one standard 
deviation is marked with blue ("success") and red ("failure"). The spectrum plotted 
is for EEG signals truncated between the stimulus onset and the time point of the 
subject's quickest reaction. 



Appendix B 

Computation of the confidence 

interval 

In the experiments of this thesis we gave to each classifier the feature vectors of the trials in 

the testing set and calculated an estimate for its correct classification rate as the percentage 

of the correctly classified trials. This procedure can be described as follows. Let us assume 

a random variable x which takes the value 1 when a trial is correctly classified and 0 in 

the opposite case. The correct classification rate is the mean value m of x. We make an 

estimate of the mean of x by sampling it L times, where L is the size of the testing set. 

Of course the larger L is, the more confident we are that the mean of x is close to the 

estimate we compute. 

We are interested in finding a confidence interval for the correct classification rate 

m using the estimate we made. This is an interval where m lies with a high probability p. 

We choose here p = 0.95. The procedure of finding this interval is based on the procedure 

described in [211, with the difference that the variance of x is computed analytically as a 

function of m and incorporated in the results. 

The procedure can be described as follows. Let us assume that we draw all possible 

samples of size L from the population of trials and for each sample we compute an estimate 

of the mean of x. The probability distribution of T.  is named sampling distribution. If 

L is large enough (i.e. L > 30) then it can be proven using the Central Limit Theorem 

188 
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that the sampling distribution is normal with mean m and variance s2/L, where s2  is 

the variance of x [21]. Then z = s/VT, T-rn is N(0,1) and from the definition of the normal 

distribution we have that: 

P(-1.96<
- 

s/ 
	 < 1.96I = 0.95 4=> P - 	

VT;
< m < + 1.96—

s 
= 0.95 

VL  
(B.1) 

Thus the 95% confidence interval of the correct classification rate m is given by 

the double inequality of Eq. (B.1). However, this inequality has to be simplified as the 

standard deviation s is a function of m. Indeed, if the probability of x taking the value 1, 

i.e. the classifier makes a correct classification, is /31, then m = p1 and s2  = E[ x2]_ m2 = 

P112  + (1 - P1)02  - m2  = m - m2. The results of the following analysis have also been 

reported in [92]. 

Let us first consider the right part of the inequality in Eq. (B.1), which gives: 

m < 	1.96-Z-- 4#. s > 	 
L(m -Y) 

1.96 
	 (B.2) 

The inequality of Eq. (B.2) is true for m < -0 as s is positive and for m > x we 

have: 
2 	LT)/2  -02L - 2LYm 	2  L7112  Y2L - 2L7m 

s > 	 •#> m m > 	  
3.8416 	 3.8416 

4=(L + 3.8416)m2  - (3.8416 + 2LT)m + Lx2  < 0 

The two roots of the second order polynomial of Eq. (B.3) are: 

D = (3.8416 + 2LY)2  - 4(L + 3.8416)EZ2  

3.8416 +  2L7 - 
= 2(L -I- 3.8416) 

3.8416 + 2LY + 
rn2 2(L + 3.8416) 

and thus the solution of Eq. (B.2) is the union of the intersection of mi < m < m2 

and m > -±" with m < T. Equivalently, the left part of the inequality in Eq. (B.1), i.e. 

(B.3)  

(B.4)  
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— 	< m, has as solution the union of the intersection of ml  < m < m2  and m < 

with m > Y. The intersection of the two unions is ml < m < m2 so Eq. (B.1) can be 

written us: 

P(mi < m < m2) = 0.95 	 (B.5) 

where ml  and m2 are given from Eq. (B.4). Thus the interval between ml  and m2  is the 

95% confidence interval for the correct classification rate. This means that if we get an 

estimate Y for the correct classification rate m of one classifier then the latter lies with 

probability 95% in the interval between m1  and m2. 



Appendix C 

Significance test 

Let us assume that we get an estimation rrml  for the correct classification rate of a classifier 

A and an estimation Fri 2  > frii for another classifier B. Let us denote by x1  and x2  the 

random variables of the two classifiers respectively, in the way defined in Appendix B. We 

also define the random variable z •=.-- x 2  — x1. We want to check whether the difference 

between riti and fr12  is adequate to be confident that the correct classification rate of B is 

larger than the one of A. 

In order to check this we make the following significance test. We test the null 

hypothesis Ho against the alternative hypothesis H1, where: 

Ho: Classifier A has equal or smaller classification rate than classifier B, i.e. E[z] < 0. 

H1: Classifier B has a larger classification rate than classifier A, i.e. E[z] > 0. 

Let us assume that H0  is true and particularly that the two classifiers have equal 

classification rates, i.e. E[z] = 0. Then the random variable z, the values of which are the 

estimations of the mean of z using L samples, is Ar(0, s2/L), where s 2  is the variance of 

z [21]. From the definition of the normal distribution we have: 

VT, 	in  2 —;r71 	L72  
PrZ > r'n2  — 	= 1  	e Td2=p 

27rs o0  
(C.1) 
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The variance of z s2  can be computed from s2  = .9? + 4, where s2  and 4 are 
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the variances of xi and x2 , respectively. This is because the variance of the difference 

of two independent random variables is equal with the sum of the variances of the two 

variables [21]. The variances 81 and 4 can be estimated from the available samples using 

formulae: 

L i) ,x1( - m,i)2  

L —1 

E

(  (x2i)  -  M2)
2 

L —1 i=1 
(C.2) 

Thus, the probability of observing a difference ift2 — mi or a larger one if the two 

classifiers have equal classification rates is p given by Eq. (C.1). The probability p is the 

observed level of significance of the observation m2 — 6/1  when E[z] = 0. In the general 

case of Ho being true, i.e. E[z] < 0 	< 0, the probability of observing a difference 

fr12  — mi  or a larger one is smaller or equal with p. 

In practice we calculate p using Eq. (C.1) and if it is sufficiently small (smaller 

than 5% or 1%) we reject the null hypothesis and we are confident that classifier B has a 

larger correct classification rate than classifier A. In the opposite case, we have to accept 

the null hypothesis which means that the difference between the estimated classification 

rates ffii and fn- 2 is not large enough, for the given number of samples L, to be confident 

that B is better than A. 

s2 
1 

s2 
2 
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