80 research outputs found

    Design of a Quasi-Adiabatic Current-Mode Neurostimulator Integrated Circuit for Deep Brain Stimulation

    Get PDF
    Electrical stimulation of neural tissues is a valuable tool in the retinal prosthesis, cardiac pacemakers, and Deep Brain Stimulation (DBS). DBS is being to treat a growing number of neurological disorders, such as movement disorder, epilepsy, and Parkinsonā€™s disease. The role of the electronic stimulator is paramount in such application, and significant design challenges are to be met to enhance safety and reliability. A current-source based stimulator can accurately deliver a charge-balanced stimulus maintaining patient safety. In this thesis, a general-purpose current-mode neurostimulator (CMS) based upon a new quasi-adiabatic driving technique is proposed which can theoretically achieve more than 80% efficiency with the help of a dynamic high voltage supply (DHVS) as opposed to most conventional general-purpose CMS having less than 25% efficiency. The high-voltage supply is required to withstand the voltage seen across the electrodes (>10V) due to the time-varying impedance presented by the electrode-tissue interface. The overall efficiency of the designed CMS is limited by the efficiency of the DHVS. A HVDD of 15V is created by the DHVS from an input voltage (VDD) of 3V. The DHVS circuit is made by cascading five charge pump circuits using the AMI 0.5Āµm CMOS process. It can maintain more than 60% efficiency for a wide range of load current from 25ĀµA to 1.4mA, with peak efficiency at 67% and this is comparable with existing specific-purpose state-of-the-art high-voltage supplies used in a current stimulator. The stimulator designed in this thesis employs a new efficient charge recycling mechanism to enhance the overall efficiency, compared to the existing state-of-the-art CMSs. Thus, the overall CMS efficiency is improved by 20% to 25%. A current source, programmable by 8-bit digital input, is also designed which has an output impedance greater than 2MĪ© with a dropout voltage of only 120mV. Measurements show voltage compliance exceeding +/-15V when driving a biphasic current stimulus of 10ĀµA to 2.5mA through a simplified R-C model of the electrode-tissue interface. The voltage compliance is defined as the maximum voltage a stimulator can apply across the electrodes to achieve neural stimulation

    A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation

    Get PDF
    This paper presents an integrated stimulator for a cardiac neuroprosthesis aiming to restore the parasympathetic control after heart transplantation. The stimulator is based on time-to-current conversion. Instead of the conventional current mode digital-to-analog converter (DAC) that uses ten of microamp for biasing, the proposed design uses a novel capacitor time-based DAC offering close to 10 bit of current amplitude resolution while using only a bias current 250 nA. The stimulator chip was design in a 0.18 m CMOS high-voltage (HV) technology. It consists of 16 independent channels, each capable of delivering 550 A stimulus current under a HV output stage that can be operated up to 30 V. Featuring both power efficiency and high-resolution current amplitude stimulation, the design is suitable for multi-channel neural simulation applications

    Piezoelectric Transducers Based on Aluminum Nitride and Polyimide for Tactile Applications

    Get PDF
    The development of micro systems with smart sensing capabilities is paving the way to progresses in the technology for humanoid robotics. The importance of sensory feedback has been recognized the enabler of a high degree of autonomy for robotic systems. In tactile applications, it can be exploited not only to avoid objects slipping during their manipulation but also to allow safe interaction with humans and unknown objects and environments. In order to ensure the minimal deformation of an object during subtle manipulation tasks, information not only on contact forces between the object and fingers but also on contact geometry and contact friction characteristics has to be provided. Touch, unlike other senses, is a critical component that plays a fundamental role in dexterous manipulation capabilities and in the evaluation of objects properties such as type of material, shape, texture, stiffness, which is not easily possible by vision alone. Understanding of unstructured environments is made possible by touch through the determination of stress distribution in the surrounding area of physical contact. To this aim, tactile sensing and pressure detection systems should be integrated as an artificial tactile system. As illustrated in the Chapter I, the role of external stimuli detection in humans is provided by a great number of sensorial receptors: they are specialized endings whose structure and location in the skin determine their specific signal transmission characteristics. Especially, mechanoreceptors are specialized in the conversion of the mechanical deformations caused by force, vibration or slip on skin into electrical nerve impulses which are processed and encoded by the central nervous system. Highly miniaturized systems based on MEMS technology seem to imitate properly the large number of fast responsive mechanoreceptors present in human skin. Moreover, an artificial electronic skin should be lightweight, flexible, soft and wearable and it should be fabricated with compliant materials. In this respect a big challenge of bio-inspired technologies is the efficient application of flexible active materials to convert the mechanical pressure or stress into a usable electric signal (voltage or current). In the emerging field of soft active materials, able of large deformation, piezoelectrics have been recognized as a really promising and attractive material in both sensing and actuation applications. As outlined in Chapter II, there is a wide choice of materials and material forms (ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe) which are actively piezoelectric and exhibit features more or less attractive. Among them, aluminum nitride is a promising piezoelectric material for flexible technology. It has moderate piezoelectric coefficient, when available in c-axis oriented polycrystalline columnar structure, but, at same time, it exhibits low dielectric constant, high temperature stability, large band gap, large electrical resistivity, high breakdown voltage and low dielectric loss which make it suitable for transducers and high thermal conductivity which implies low thermal drifts. The high chemical stability allows AlN to be used in humid environments. Moreover, all the above properties and its deposition method make AlN compatible with CMOS technology. Exploiting the features of the AlN, three-dimensional AlN dome-shaped cells, embedded between two metal electrodes, are proposed in this thesis. They are fabricated on general purpose Kaptonā„¢ substrate, exploiting the flexibility of the polymer and the electrical stability of the semiconductor at the same time. As matter of fact, the crystalline layers release a compressive stress over the polymer, generating three-dimensional structures with reduced stiffness, compared to the semiconductor materials. In Chapter III, a mathematical model to calculate the residual stresses which arise because of mismatch in coefficient of thermal expansion between layers and because of mismatch in lattice constants between the substrate and the epitaxially grown ļ¬lms is adopted. The theoretical equation is then used to evaluate the dependence of geometrical features of the fabricated three-dimensional structures on compressive residual stress. Moreover, FEM simulations and theoretical models analysis are developed in order to qualitative explore the operation principle of curved membranes, which are labelled dome-shaped diaphragm transducers (DSDT), both as sensors and as piezo-actuators and for the related design optimization. For the reliability of the proposed device as a force/pressure sensor and piezo-actuator, an exhaustive electromechanical characterization of the devices is carried out. A complete description of the microfabrication processes is also provided. As shown in Chapter IV, standard microfabrication techniques are employed to fabricate the array of DSDTs. The overall microfabrication process involves deposition of metal and piezoelectric films, photolithography and plasma-based dry and wet etching to pattern thin films with the desired features. The DSDT devices are designed and developed according to FEM and theoretical analysis and following the typical requirements of force/pressure systems for tactile applications. Experimental analyses are also accomplished to extract the relationship between the compressive residual stress due to the aluminum nitride and the geometries of the devices. They reveal different deformations, proving the dependence of the geometrical features of the three-dimensional structures on residual stress. Moreover, electrical characterization is performed to determine capacitance and impedance of the DSDTs and to experimentally calculate the relative dielectric constant of sputtered AlN piezoelectric film. In order to investigate the mechanical behaviour of the curved circular transducers, a characterization of the flexural deflection modes of the DSDT membranes is carried out. The natural frequency of vibrations and the corresponding displacements are measured by a Laser Doppler Vibrometer when a suitable oscillating voltage, with known amplitude, is applied to drive the piezo-DSDTs. Finally, being developed for tactile sensing purpose, the proposed technology is tested in order to explore the electromechanical response of the device when impulsive dynamic and/or long static forces are applied. The study on the impulsive dynamic and long static stimuli detection is then performed by using an ad hoc setup measuring both the applied loading forces and the corresponding generated voltage and capacitance variation. These measurements allow a thorough test of the sensing abilities of the AlN-based DSDT cells. Finally, as stated in Chapter V, the proposed technology exhibits an improved electromechanical coupling with higher mechanical deformation per unit energy compared with the conventional plate structures, when the devices are used as piezo-actuator. On the other hand, it is well suited to realize large area tactile sensors for robotics applications, opening up new perspectives to the development of latest generation biomimetic sensors and allowing the design and the fabrication of miniaturized devices

    Development and modelling of a versatile active micro-electrode array for high density in-vivo and in-vitro neural signal investigation

    Get PDF
    The electrophysiological observation of neurological cells has allowed much knowledge to be gathered regarding how living organisms are believed to acquire and process sensation. Although much has been learned about neurons in isolation, there is much more to be discovered in how these neurons communicate within large networks. The challenges of measuring neurological networks at the scale, density and chronic level of non invasiveness required to observe neurological processing and decision making are manifold, however methods have been suggested that have allowed small scale networks to be observed using arrays of micro-fabricated electrodes. These arrays transduce ionic perturbations local to the cell membrane in the extracellular fluid into small electrical signals within the metal that may be measured. A device was designed for optimal electrical matching to the electrode interface and maximal signal preservation of the received extracellular neural signals. Design parameters were developed from electrophysiological computer simulations and experimentally obtained empirical models of the electrode-electrolyte interface. From this information, a novel interface based signal filtering method was developed that enabled high density amplifier interface circuitry to be realised. A novel prototype monolithic active electrode was developed using CMOS microfabrication technology. The device uses the top metallization of a selected process to form the electrode substrate and compact amplification circuitry fabricated directly beneath the electrode to amplify and separate the neural signal from the baseline offsets and noise of the electrode interface. The signal is then buffered for high speed sampling and switched signal routing. Prototype 16 and 256 active electrode array with custom support circuitry is presented at the layout stage for a 20 Ī¼m diameter 100 Ī¼m pitch electrode array. Each device consumes 26.4 Ī¼W of power and contributes 4.509 Ī¼V (rms) of noise to the received signal over a controlled bandwidth of 10 Hz - 5 kHz. The research has provided a fundamental insight into the challenges of high density neural network observation, both in the passive and the active manner. The thesis concludes that power consumption is the fundamental limiting factor of high density integrated MEA circuitry; low power dissipation being crucial for the existence of the surface adhered cells under measurement. With transistor sizing, noise and signal slewing each being inversely proportional to the dc supply current and the large power requirements of desirable ancillary circuitry such as analogue-to-digital converters, a situation of compromise is approached that must be carefully considered for specific application design

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Enhancing selectivity of minimally invasive peripheral nerve interfaces using combined stimulation and high frequency block: from design to application

    Get PDF
    The discovery of the excitable property of nerves was a fundamental step forward in our knowledge of the nervous system and our ability to interact with it. As the injection of charge into tissue can drive its artificial activation, devices have been conceived that can serve healthcare by substituting the input or output of the peripheral nervous system when damage or disease has rendered it inaccessible or its action pathological. Applications are far-ranging and transformational as can be attested by the success of neuroprosthetics such as the cochlear implant. However, the bodyā€™s immune response to invasive implants have prevented the use of more selective interfaces, leading to therapy side-effects and off-target activation. The inherent tradeoff between the selectivity and invasiveness of neural interfaces, and the consequences thereof, is still a defining problem for the field. More recently, continued research into how nervous tissue responds to stimulation has led to the discovery of High Frequency Alternating Current (HFAC) block as a stimulation method with inhibitory effects for nerve conduction. While leveraging the structure of the peripheral nervous system, this neuromodulation technique could be a key component in efforts to improve the selectivity-invasiveness tradeoff and provide more effective neuroprosthetic therapy while retaining the safety and reliability of minimally invasive neural interfaces. This thesis describes work investigating the use of HFAC block to improve the selectivity of peripheral nerve interfaces, towards applications such as bladder control or vagus nerve stimulation where selective peripheral nerve interfaces cannot be used, and yet there is an unmet need for more selectivity from stimulation-based therapy. An overview of the underlying neuroanatomy and electrophysiology of the peripheral nervous system combined with a review of existing electrode interfaces and electrochemistry will serve to inform the problem space. Original contributions are the design of a custom multi-channel stimulator able to combine conventional and high frequency stimulation, establishing a suitable experimental platform for ex-vivo electrophysiology of the rat sciatic nerve model for HFAC block, and exploratory experiments to determine the feasibility of using HFAC block in combination with conventional stimulation to enhance the selectivity of minimally-invasive peripheral nerve interfaces.Open Acces

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue ā€œApplications in Electronics Pervading Industry, Environment and Societyā€”Sensing Systems and Pervasive Intelligenceā€ of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the ā€œApplications in Electronics Pervading Industry, Environment and Societyā€ (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Building And Validating Next-Generation Neurodevices Using Novel Materials, Fabrication, And Analytic Strategies

    Get PDF
    Technologies that enable scientists to record and modulate neural activity across spatial scales are advancing the way that neurological disorders are diagnosed and treated, and fueling breakthroughs in our fundamental understanding of brain function. Despite the rapid pace of technology development, significant challenges remain in realizing safe, stable, and functional interfaces between manmade electronics and soft biological tissues. Additionally, technologies that employ multimodal methods to interrogate brain function across temporal and spatial scales, from single cells to large networks, offer insights beyond what is possible with electrical monitoring alone. However, the tools and methodologies to enable these studies are still in their infancy. Recently, carbon nanomaterials have shown great promise to improve performance and multimodal capabilities of bioelectronic interfaces through their unique optical and electronic properties, flexibility, biocompatibility, and nanoscale topology. Unfortunately, their translation beyond the lab has lagged due to a lack of scalable assembly methods for incorporating such nanomaterials into functional devices. In this thesis, I leverage carbon nanomaterials to address several key limitations in the field of bioelectronic interfaces and establish scalable fabrication methods to enable their translation beyond the lab. First, I demonstrate the value of transparent, flexible electronics by analyzing simultaneous optical and electrical recordings of brain activity at the microscale using custom-fabricated graphene electronics. Second, I leverage a recently discovered 2D nanomaterial, Ti3C2 MXene, to improve the capabilities and performance of neural microelectronic devices. Third, I fabricate and validate human-scale Ti3C2 MXene epidermal electrode arrays in clinical applications. Leveraging the unique solution-processability of Ti3C2 MXene, I establish novel fabrication methods for both high-resolution microelectrode arrays and macroscale epidermal electrode arrays that are scalable and sufficiently cost-effective to allow translation of MXene bioelectronics beyond the lab and into clinical use. Thetechnologies and methodologies developed in this thesis advance bioelectronic technology for both research and clinical applications, with the goal of improving patient quality of life and illuminating complex brain dynamics across spatial scales
    • ā€¦
    corecore