64 research outputs found

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Multi-user detection for multi-carrier communication systems

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringBalasubramaniam NatarajanWireless broadband communications is a rapidly growing industry. New enabling technologies such as multi-carrier code division multiple access (MC-CDMA) are shaping the future of wireless systems. However, research efforts in improving MC-CDMA receiver performance have received limited attention and there is a need for innovative receiver designs for next generation MC-CDMA. In this thesis, we propose novel multi-user detection (MUD) schemes to enhance the performance of both synchronous and asynchronous MC-CDMA. First, we adapt the ant colony optimization (ACO) approach to solve the optimal MUD problem in MC-CDMA systems. Our simulations indicate that the ACO based MUD converges to the optimal BER performance in relatively few iterations providing more that 95% savings in computational complexity. Second, we propose a new MUD structure specifically for asynchronous MC-CDMA. Previously proposed MUDs for asynchronous MC-CDMA perform the detection for one user (desired user) at a time, mandating multiple runs of the algorithm to detect all users' symbols. In this thesis, for the first time we present a MUD structure that detects all users' symbols simultaneously in one run by extending the receiver's integration window to capture the energy scattered in two consecutive symbol durations. We derive the optimal, decorrelator and minimum mean square error (MMSE) MUD for the extended window case. Our simulations demonstrate that the proposed MUD structures not only perform similar to a MUD that detects one user at a time, but its computational complexity is significantly lower. Finally, we extend the MUD ideas to multicarrier implementation of single carrier systems. Specifically, we employ the novel MUD structure as a multi-symbol detection scheme in CI-CDMA and illustrate the resulting performance gain via simulations

    Evaluation of Overlay/underlay Waveform via SD-SMSE Framework for Enhancing Spectrum Efficiency

    Get PDF
    Recent studies have suggested that spectrum congestion is mainly due to the inefficient use of spectrum rather than its unavailability. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) are two terminologies which are used in the context of improved spectrum efficiency and usage. The DSA concept has been around for quite some time while the advent of CR has created a paradigm shift in wireless communications and instigated a change in FCC policy towards spectrum regulations. DSA can be broadly categorized as using a 1) Dynamic Exclusive Use Model, 2) Spectrum Commons or Open sharing model or 3) Hierarchical Access model. The hierarchical access model envisions primary licensed bands, to be opened up for secondary users, while inducing a minimum acceptable interference to primary users. Spectrum overlay and spectrum underlay technologies fall within the hierarchical model, and allow primary and secondary users to coexist while improving spectrum efficiency. Spectrum overlay in conjunction with the present CR model considers only the unused (white) spectral regions while in spectrum underlay the underused (gray) spectral regions are utilized. The underlay approach is similar to ultra wide band (UWB) and spread spectrum (SS) techniques utilize much wider spectrum and operate below the noise floor of primary users. Software defined radio (SDR) is considered a key CR enabling technology. Spectrally modulated, Spectrally encoded (SMSE) multi-carrier signals such as Orthogonal Frequency Domain Multiplexing (OFDM) and Multi-carrier Code Division Multiple Access (MCCDMA) are hailed as candidate CR waveforms. The SMSE structure supports and is well-suited for SDR based CR applications. This work began by developing a general soft decision (SD) CR framework, based on a previously developed SMSE framework that combines benefits of both the overlay and underlay techniques to improve spectrum efficiency and maximizing the channel capacity. The resultant SD-SMSE framework provides a user with considerable flexibility to choose overlay, underlay or hybrid overlay/underlay waveform depending on the scenario, situation or need. Overlay/Underlay SD-SMSE framework flexibility is demonstrated by applying it to a family of SMSE modulated signals such as OFDM, MCCDMA, Carrier Interferometry (CI) MCCDMA and Transform Domain Communication System (TDCS). Based on simulation results, a performance analysis of Overlay, Underlay and hybrid Overlay/Underlay waveforms are presented. Finally, the benefits of combining overlay/underlay techniques to improve spectrum efficiency and maximize channel capacity are addressed

    Impacto dos canais não lineares em sistemas UWB

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesEsta dissertação tem como principal objectivo o estudo da tecnologia Ultra Wideband (UWB). Serão também apresentadas propostas para arquitecturas de transmissores e receptores, baseados na comunicação por pulsos e verificação do impacto, que canais de transmissão nãolineares provocam nas arquitecturas propostas.The main purpose of this MSc thesis is the study of the Ultra Wideband (UWB) technology. Will be also proposed transceiver architectures, based on pulsed communications. The impact of non-linear channels in the quality of communication will be verified

    Modulation and Multiple Access Techniques for Ultra-Wideband Communication Systems

    Get PDF
    Two new energy detection (ED) Ultra-Wideband (UWB) systems are proposed in this dissertation. The first one is an ED UWB system based on pulse width modulation (PWM). The bit error rate (BER) performance of this ED PWM system is slightly worse than ED pulse position modulation (PPM) system in additive white Gaussian noise (AWGN) channels. However, the BER performance of this ED PWM system surpasses that of a PPM system in multipath channels since a PWM system does not suffer cross-modulation interference (CMI) as a PPM system. In the presence of synchronization errors, the BER performance of a PWM system also surpasses that of a PPM system. The second proposed ED UWB system is based on using two pulses, which are the different-order derivatives of the Gaussian pulse, to transmitted bit 0 or 1. These pulses are appropriately chosen to separate their spectra in frequency domain.The receiver is composed of two energy detection branches and each branch has a filter which captures the signal energy of either bit 0 or 1. The outputs of two branches are subtracted from each other to generate the decision statistic and the value of this statistic is compared to a threshold to determine the transmitted bits. This system is named as acf{GFSK} system in this dissertation and it exhibits the same BER performance as a PPM system in AWGN channels. In multipath channels, a GFSK system surpasses a PPM system because it does not suffer CMI. And the BER performance of a GFSK system is better than a PPM system in the presence of synchronization errors. When a GFSK system is compared to a PWM system, it will always achieve approximately 2 dB improvement in AWGN channels, multipath channels, and in the presence synchronization errors. However, a PWM system uses lower-order derivatives of the Gaussian pulse to transmit signal, and this leads to a simple pulse generator. In this dissertation, an optimal threshold is applied to improve PPM system performance. The research results show that the application of an optimal threshold can e

    Modulation and Multiple Access Techniques for Ultra-Wideband Communication Systems

    Get PDF
    Two new energy detection (ED) Ultra-Wideband (UWB) systems are proposed in this dissertation. The first one is an ED UWB system based on pulse width modulation (PWM). The bit error rate (BER) performance of this ED PWM system is slightly worse than ED pulse position modulation (PPM) system in additive white Gaussian noise (AWGN) channels. However, the BER performance of this ED PWM system surpasses that of a PPM system in multipath channels since a PWM system does not suffer cross-modulation interference (CMI) as a PPM system. In the presence of synchronization errors, the BER performance of a PWM system also surpasses that of a PPM system. The second proposed ED UWB system is based on using two pulses, which are the different-order derivatives of the Gaussian pulse, to transmitted bit 0 or 1. These pulses are appropriately chosen to separate their spectra in frequency domain.The receiver is composed of two energy detection branches and each branch has a filter which captures the signal energy of either bit 0 or 1. The outputs of two branches are subtracted from each other to generate the decision statistic and the value of this statistic is compared to a threshold to determine the transmitted bits. This system is named as acf{GFSK} system in this dissertation and it exhibits the same BER performance as a PPM system in AWGN channels. In multipath channels, a GFSK system surpasses a PPM system because it does not suffer CMI. And the BER performance of a GFSK system is better than a PPM system in the presence of synchronization errors. When a GFSK system is compared to a PWM system, it will always achieve approximately 2 dB improvement in AWGN channels, multipath channels, and in the presence synchronization errors. However, a PWM system uses lower-order derivatives of the Gaussian pulse to transmit signal, and this leads to a simple pulse generator. In this dissertation, an optimal threshold is applied to improve PPM system performance. The research results show that the application of an optimal threshold can e

    Power Control In Optical CDMA

    Get PDF
    Optical CDMA (OCDMA) is the multiplexing technique over the fiber optics medium to increase the number of users and this is a step towards all optical Passive Optical Networks (PON). Optical OFDM, WDM and Optical TDM have also been studied in this thesis which are also candidates to all optical passive optical networks. One of the main features of Optical CDMA over other multiplexing techniques is that it has smooth capacity. The capacity of OCDMA is constrained by the interference level. Hence, when some users are offline or requesting less data rates, then the capacity will be increased in the network. Same feature could be obtained in other multiplexing techniques, but they will need much more complicated online organizers. However, in OCDMA it is critical to adjust the transmission power to the right value; otherwise, near-far problem may greatly reduce the network capacity and performance. In this thesis Power control concepts are analyzed in optical CDMA star networks. It is applied so that the QoS of the network get enhanced and all users after the power control have their desired signal to interference (SIR) value. Moreover, larger number of users can be accommodated in the network. Centralized power control algorithm is considered for this thesis. In centralized algorithm noiseless case and noisy case have been studied. In this thesis several simulations have been performed which shows the QoS difference before and after power control. The simulation results are validated also by the theoretical computation.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    MIMO underwater acoustic communications over time-varying channels: from theory to practice

    Get PDF
    Despite more than 70% of our planet surface is covered by water, today the underwater world can still be considered largely unknown. Rivers, lakes, seas and oceans have always been a fundamental resource for human life development, but at the same time they have often represented natural obstacles very hard to surmount. The most impressive example is probably given by the ocean, whose vastness severely limited geographical explorations and discoveries for tens of centuries. Anyway, the growing curiosity about what happens below the water surface has gradually led man to immerse in this unknown environment, trying to overcome its inaccessibility and figure out its secrets. Underwater investigation and exploring have been increasingly supported by technology, advanced over time for different purposes (military, commercial, scientific). In this regard, providing a communication link between remote users has been recognized as one of the main issues to be addressed. The first significant solutions derived from the radio-frequency world, subject of study since the 19th century. Unfortunately both wired and wireless RF inspired signal propagation strategies were not evaluated as successful. The former ones, since considering the deployment of meters (up to kilometers) of cable in depth, were too costly and difficult, while the latter ones did not offer good performance in terms of communication range due to signal attenuation. An alternative way, examined with particular interest from the beginning of the 20th century, has been that one offered by acoustics. Actually, the study of sound and its propagation through different media has been an intriguing topic since the Old World Age, hence the attempt of messaging underwater has seemed to be a great opportunity to convey theoretical principles in a real application. In addition, not only humans but also marine animals use acoustic waves to communicate, even over several kilometers distances as demonstrated by whales. So, since already existing in nature, acoustic communications have been considered as potentially successful, furthermore representing an effective trade-off between feasibility and performance, especially if compared to the other electromagnetic signals-based methods. Communication over RF channels has been extensively investigated so as to become a mature technology. The thorough knowledge about OSI (Open Systems Interconnection) model physical layer issues has allowed the researchers attention to be drawn to the upper layers. Following this direction, the recent advances in technology in this field have been accomplished mainly due to novelties in networks managing rather than to enhancements in the signal propagation study. Moving to acoustics, unfortunately this approach results to be failing if applied in the underwater scenario, as the major challenges rise indeed from physics matters. The underwater environment is varied and variable, so understanding the mechanisms that govern the propagation of sound in water is a key element for the design of a well-performing communication system. In this sense, the physical layer has therefore regained the centrality that has been diminished in other contexts. The underwater acoustic communications can be adopted in a wide range of applications. The best-known are coastal monitoring, target detection, AUVs (Autonomous Underwater Vehicles) remote control, tsunami alarm, environmental data collection and transmission. Those ones are very specific activities, so the devices to be employed must sometimes meet very strict requirements. In this regard, the solutions commercially available provide good performance (that are paid in terms of high costs). On the other hand, the fact that hardware and software are usually copyrighted leads to have a closed system. Having reconfigurable devices is instead an opportunity to match the technology with the environment features and variations, especially in real-time applications. Recently, the need to overcome these constraints has encouraged the debate about underwater technology challenges. The work by Demirors et al. [1] reports an interesting discussion about the implementation of software-defined underwater acoustic networks (UWANs), highlighting how this solution can provide enhancements in terms of software portability, computational capacity, energy efficiency and real-time reconfigurability. Furthermore, the authors propose the architecture of a software-defined acoustic modem and evaluate its performance and capabilities with tank and lake experiments. Considering the comments outlined above, the following dissertation deals with the design of an acoustic communication system. The preliminary theoretical analysis regarding physical layer concerns, such as signal propagation and channel behavior, represents the starting point from which several proposals regarding the implementation of UWANs are introduced. In particular the context of Multiple-Input Multiple-Output (MIMO) communications is investigated, presenting several solutions about transmission schemes and receiver implementation. Furthermore, concerning UWANs management, some strategies for access and error control, established at the data link layer level, are detailed. It is worth highlighting that the goal of this contribution is not to present a disjointed discussion about the topics just listed. The objective is instead to propose practical solutions developed hand in hand with theory, making choices firstly by looking at what nature allows

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Photonic logic-gates: boosting all-optical header processing in future packet-switched networks

    Full text link
    Las redes ópticas de paquetes se han convertido en los últimos años en uno de los temas de vanguardia en el campo de las tecnologías de comunicaciones. El procesado de cabeceras es una de las funciones más importantes que se llevan a cabo en nodos intermedios, donde un paquete debe ser encaminado a su destino correspondiente. El uso de tecnología completamente óptica para las funciones de encaminamiento y reconocimiento de cabeceras reduce el retardo de procesado respecto al procesado eléctrico, disminuyendo de ese modo la latencia en el enlace de comunicaciones. Existen diferentes métodos de procesado de datos para implementar el reconocimiento de cabeceras. El objetivo de este trabajo es la propuesta de una nueva arquitectura para el procesado de cabeceras basado en el uso de puertas lógicas completamente ópticas. Estas arquitecturas tienen como elemento clave el interferómetro Mach-Zehnder basado en el amplificador óptico de semiconductor (SOA-MZI), y utilizan el efecto no lineal de modulación cruzada de fase (XPM) en los SOAs para realizar dicha funcionalidad. La estructura SOA-MZI con XPM es una de las alternativas más atractivas debido a las numerosas ventajas que presenta, como por ejemplo los requisitos de baja energía para las señales de entrada, su diseño compacto, una elevada relación de extinción (ER), regeneración de la señal y el bajo nivel de chirp que introducen. Este trabajo se ha centrado en la implementación de la funcionalidad lógica XOR. Mediante esta función se pueden realizar diversas funcionalidades en las redes ópticas. Se proponen dos esquemas para el reconocimiento de cabeceras basados en el uso de la puerta XOR. El primer esquema utiliza puertas en cascada. El segundo esquema presenta una arquitectura muy escalable, y se basa en el uso de un bucle de realimentación implementado a la salida de la puerta. Asimismo, también se presentan algunas aplicaciones del procesado de cabeceras para el encaminamiento de paquetes basadas en el uso dMartínez Canet, JM. (2006). Photonic logic-gates: boosting all-optical header processing in future packet-switched networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1874Palanci
    corecore