51 research outputs found

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. Tiivistelmä. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistä tärkeämmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnän kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa käytetään ylinäytteistystä ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. Tämän työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjärjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. Ylinäytteistyssuhde on 25 ja AD muuntimen näytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). Tämä työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmä esitetään yksityiskohtaisesti, ja vaatimusten täyttyminen varmistetaan “top-down” -suunnitteluperiaatteella. Liitteenä on kertoimien laskemiseen käytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkän silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentä -DA muunninta. Viivekompensointipolkua käyttämällä modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. Lisäksi FIR takaisinkytkentä -DA-muuntimen käyttö pienentää kellojitteriherkkyyttä, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyä ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty peräkkäin integraattoreita myötäkytkentärakenteella (CIFF) ja toisessa sekä myötä- että takaisinkytkentärakenteella (CIFF-B). Päähuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa käyttäen 0.8 voltin käyttöjännitettä. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. Lisäksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    Low Power High Dynamic Range A/D Conversion Channel

    Get PDF

    K-Delta-1-Sigma Modulators for Wideband Analog-to-Digital Conversion

    Get PDF
    As CMOS technology scales, the transistor speed increases enabling higher speed communications and more complex systems. These benefits come at the cost of decreasing inherent device gain, increased transistor leakage currents, and additional mismatches due to process variations. All of these drawbacks affect the design of high-resolution analog-to-digital converters (ADCs) in nano-CMOS processes. To move towards an ADC topology useful in these small processes a first-order K-Delta-1-Sigma (KD1S) modulator-based ADC was proposed. The KD1S topology employs inherent time-interleaving with a shared integrator and K-quantizing feedback paths and can potentially achieve significantly higher conversion bandwidths when compared to the traditional switched-capacitor delta-sigma ADCs. The shared integrator in the KD1S modulator settles over a half the clock period and the op-amp is designed to operate at the base clock frequency. In this dissertation, the first-order KD1S modulator topology is analyzed for the effects of the non-idealities introduced by the K-path operation of the switched-capacitor integrator. Then, the concept of KD1S modulator is extended to higher-order modulators in order to achieve superior noise-shaping performance. A systematic synthesis method has been developed to design and simulate higher-order KD1S modulators at the system level. In order to demonstrate the developed theory, a prototype second-order KD1S modulator has been designed and fabricated in a 500-nm CMOS technology. The second-order KD1S modulator exhibits wideband noise-shaping with an SNDR of 42.7 dB or 6.81 bits in resolution for Kpath = 8 paths, an effective sampling rate of ƒs,new=800 MHz, effective oversampling ratio Kpath•OSR=64 and a signal bandwidth of 6.25 MHz. The second-order KD1S modulator consumes an average current of 3.0 mA from the 5 V supply and occupies an area of 0.55 mm2

    Data acquisition techniques based on frequency-encoding applied to capacitive MEMS microphones

    Get PDF
    Mención Internacional en el título de doctorThis thesis focuses on the development of capacitive sensor readout circuits and data converters based on frequency-encoding. This research has been motivated by the needs of consumer electronics industry, which constantly demands more compact readout circuit for MEMS microphones and other sensors. Nowadays, data acquisition is mainly based on encoding signals in voltage or current domains, which is becoming more challenging in modern deep submicron CMOS technologies. Frequency-encoding is an emerging signal processing technique based on encoding signals in the frequency domain. The key advantage of this approach is that systems can be implemented using mostly-digital circuitry, which benefits from CMOS technology scaling. Frequencyencoding can be used to build phase referenced integrators, which can replace classical integrators (such as switched-capacitor based integrators) in the implementation of efficient analog-to-digital converters and sensor interfaces. The core of the phase referenced integrators studied in this thesis consists of the combination of different oscillator topologies with counters and highly-digital circuitry. This work addresses two related problems: the development of capacitive MEMS sensor readout circuits based on frequency-encoding, and the design and implementation of compact oscillator-based data converters for audio applications. In the first problem, the target is the integration of the MEMS sensor into an oscillator circuit, making the oscillation frequency dependent on the sensor capacitance. This way, the sound can be digitized by measuring the oscillation frequency, using digital circuitry. However, a MEMS microphone is a complex structure on which several parasitic effects can influence the operation of the oscillator. This work presents a feasibility analysis of the integration of a MEMS microphone into different oscillator topologies. The conclusion of this study is that the parasitics of the MEMS limit the performance of the microphone, making it inefficient. In contrast, replacing conventional ADCs with frequency-encoding based ADCs has proven a very efficient solution, which motivates the next problem. In the second problem, the focus is on the development of high-order oscillator-based Sigma-Delta modulators. Firstly, the equivalence between classical integrators and phase referenced integrators has been studied, followed by an overview of state-of-art oscillator-based converters. Then, a procedure to replace classical integrators by phase referenced integrators is presented, including a design example of a second-order oscillator based Sigma-Delta modulator. Subsequently, the main circuit impairments that limit the performance of this kind of implementations, such as phase noise, jitter or metastability, are described. This thesis also presents a methodology to evaluate the impact of phase noise and distortion in oscillator-based systems. The proposed method is based on periodic steady-state analysis, which allows the rapid estimation of the system dynamic range without resorting to transient simulations. In addition, a novel technique to analyze the impact of clock jitter in Sigma-Delta modulators is described. Two integrated circuits have been implemented in 0.13 μm CMOS technology to demonstrate the feasibility of high-order oscillator-based Sigma-Delta modulators. Both chips have been designed to feature secondorder noise shaping using only oscillators and digital circuitry. The first testchip shows a malfunction in the digital circuitry due to the complexity of the multi-bit counters. The second chip, implemented using single-bit counters for simplicity, shows second-order noise shaping and reaches 103 dB-A of dynamic range in the audio bandwidth, occupying only 0.04 mm2.Esta tesis se centra en el desarrollo de conversores de datos e interfaces para sensores capacitivos basados en codificación en frecuencia. Esta investigación está motivada por las necesidades de la industria, que constantemente demanda reducir el tamaño de este tipo de circuitos. Hoy en día, la adquisición de datos está basada principalmente en la codificación de señales en tensión o en corriente. Sin embargo, la implementación de este tipo de soluciones en tecnologías CMOS nanométricas presenta varias dificultades. La codificación de frecuencia es una técnica emergente en el procesado de señales basada en codificar señales en el dominio de la frecuencia. La principal ventaja de esta alternativa es que los sistemas pueden implementarse usando circuitos mayoritariamente digitales, los cuales se benefician de los avances de la tecnología CMOS. La codificación en frecuencia puede emplearse para construir integradores referidos a la fase, que pueden reemplazar a los integradores clásicos (como los basados en capacidades conmutadas) en la implementación de conversores analógico-digital e interfaces de sensores. Los integradores referidos a la fase estudiados en esta tesis consisten en la combinación de diferentes topologías de osciladores con contadores y circuitos principalmente digitales. Este trabajo aborda dos cuestiones relacionadas: el desarrollo de circuitos de lectura para sensores MEMS capacitivos basados en codificación temporal, y el diseño e implementación de conversores de datos compactos para aplicaciones de audio basados en osciladores. En el primer caso, el objetivo es la integración de un sensor MEMS en un oscilador, haciendo que la frecuencia de oscilación depe capacidad del sensor. De esta forma, el sonido puede ser digitalizado midiendo la frecuencia de oscilación, lo cual puede realizarse usando circuitos en su mayor parte digitales. Sin embargo, un micrófono MEMS es una estructura compleja en la que múltiples efectos parasíticos pueden alterar el correcto funcionamiento del oscilador. Este trabajo presenta un análisis de la viabilidad de integrar un micrófono MEMS en diferentes topologías de oscilador. La conclusión de este estudio es que los parasíticos del MEMS limitan el rendimiento del micrófono, causando que esta solución no sea eficiente. En cambio, la implementación de conversores analógico-digitales basados en codificación en frecuencia ha demostrado ser una alternativa muy eficiente, lo cual motiva el estudio del siguiente problema. La segunda cuestión está centrada en el desarrollo de moduladores Sigma-Delta de alto orden basados en osciladores. En primer lugar se ha estudiado la equivalencia entre los integradores clásicos y los integradores referidos a la fase, seguido de una descripción de los conversores basados en osciladores publicados en los últimos años. A continuación se presenta un procedimiento para reemplazar integradores clásicos por integradores referidos a la fase, incluyendo un ejemplo de diseño de un modulador Sigma-Delta de segundo orden basado en osciladores. Posteriormente se describen los principales problemas que limitan el rendimiento de este tipo de sistemas, como el ruido de fase, el jitter o la metaestabilidad. Esta tesis también presenta un nuevo método para evaluar el impacto del ruido de fase y de la distorsión en sistemas basados en osciladores. El método propuesto está basado en simulaciones PSS, las cuales permiten la rápida estimación del rango dinámico del sistema sin necesidad de recurrir a simulaciones temporales. Además, este trabajo describe una nueva técnica para analizar el impacto del jitter de reloj en moduladores Sigma-Delta. En esta tesis se han implementado dos circuitos integrados en tecnología CMOS de 0.13 μm, con el fin de demostrar la viabilidad de los moduladores Sigma-Delta de alto orden basados en osciladores. Ambos chips han sido diseñados para producir conformación espectral de ruido de segundo orden, usando únicamente osciladores y circuitos mayoritariamente digitales. El primer chip ha mostrado un error en el funcionamiento de los circuitos digitales debido a la complejidad de las estructuras multi-bit utilizadas. El segundo chip, implementado usando contadores de un solo bit con el fin de simplificar el sistema, consigue conformación espectral de ruido de segundo orden y alcanza 103 dB-A de rango dinámico en el ancho de banda del audio, ocupando solo 0.04 mm2.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Georges G.E. Gielen.- Secretario: José Manuel de la Rosa.- Vocal: Ana Rus

    Robust sigma delta converters : and their application in low-power highly-digitized flexible receivers

    Get PDF
    In wireless communication industry, the convergence of stand-alone, single application transceiver IC’s into scalable, programmable and platform based transceiver ICs, has led to the possibility to create sophisticated mobile devices within a limited volume. These multi-standard (multi-mode), MIMO, SDR and cognitive radios, ask for more adaptability and flexibility on every abstraction level of the transceiver. The adaptability and flexibility of the receive paths require a digitized receiver architecture in which most of the adaptability and flexibility is shifted in the digital domain. This trend to ask for more adaptability and flexibility, but also more performance, higher efficiency and an increasing functionality per volume, has a major impact on the IP blocks such systems are built with. At the same time the increasing requirement for more digital processing in the same volume and for the same power has led to mainstream CMOS feature size scaling, leading to smaller, faster and more efficient transistors, optimized to increase processing efficiency per volume (smaller area, lower power consumption, faster digital processing). As wireless receivers is a comparably small market compared to digital processors, the receivers also have to be designed in a digitally optimized technology, as the processor and transceiver are on the same chip to reduce device volume. This asks for a generalized approach, which maps application requirements of complex systems (such as wireless receivers) on the advantages these digitally optimized technologies bring. First, the application trends are gathered in five quality indicators being: (algorithmic) accuracy, robustness, flexibility, efficiency, and emission, of which the last one is not further analyzed in this thesis. Secondly, using the quality indicators, it is identified that by introducing (or increasing) digitization at every abstraction level of a system, the advantages of modern digitally optimized technologies can be exploited. For a system on a chip, these abstraction levels are: system/application level, analog IP architecture level, circuit topology level and layout level. In this thesis, the quality indicators together with the digitization at different abstraction levels are applied to S¿ modulators. S¿ modulator performance properties are categorized into the proposed quality indicators. Next, it is identified what determines the accuracy, robustness, flexibility and efficiency of a S¿ modulator. Important modulator performance parameters, design parameter relations, and performance-cost relations are derived. Finally, several implementations are presented, which are designed using the found relations. At least one implementation example is shown for each level of digitization. At system level, a flexible (N)ZIF receiver architecture is digitized by shifting the ADC closer to the antenna, reducing the amount of analog signal conditioning required in front of the ADC, and shifting the re-configurability of such a receiver into the digital domain as much as possible. Being closer to the antenna, and because of the increased receiver flexibility, a high performance, multi-mode ADC is required. In this thesis, it is proven that such multi-mode ADCs can be made at low area and power consumption. At analog IP architecture level, a smarter S¿ modulator architecture is found, which combines the advantages of 1-bit and multi-bit modulators. The analog loop filter is partly digitized, and analog circuit blocks are replaced by a digital filter, leading to an area and power efficient design, which above all is very portable, and has the potential to become a good candidate for the ADC in multimode receivers. At circuit and layout level, analog circuits are designed in the same way as digital circuits are. Analog IP blocks are split up in analog unit cells, which are put in a library. For each analog unit cell, a p-cell layout view is created. Once such a library is available, different IP blocks can be created using the same unit cells and using the automatic routing tools normally used for digital circuits. The library of unit cells can be ported to a next technology very quickly, as the unit cells are very simple circuits, increasing portability of IP blocks made with these unit cells. In this thesis, several modulators are presented that are designed using this digital design methodology. A high clock frequency in the giga-hertz range is used to test technology speed. The presented modulators have a small area and low power consumption. A modulator is ported from a 65nm to a 45nm technology in one month without making changes to the unit cells, or IP architecture, proving that this design methodology leads to very portable designs. The generalized system property categorization in quality indicators, and the digitization at different levels of system design, is named the digital design methodology. In this thesis this methodology is successfully applied to S¿ modulators, leading to high quality, mixed-signal S¿ modulator IP, which is more accurate, more robust, more flexible and/or more efficient

    Robust sigma delta converters : and their application in low-power highly-digitized flexible receivers

    Get PDF
    In wireless communication industry, the convergence of stand-alone, single application transceiver IC’s into scalable, programmable and platform based transceiver ICs, has led to the possibility to create sophisticated mobile devices within a limited volume. These multi-standard (multi-mode), MIMO, SDR and cognitive radios, ask for more adaptability and flexibility on every abstraction level of the transceiver. The adaptability and flexibility of the receive paths require a digitized receiver architecture in which most of the adaptability and flexibility is shifted in the digital domain. This trend to ask for more adaptability and flexibility, but also more performance, higher efficiency and an increasing functionality per volume, has a major impact on the IP blocks such systems are built with. At the same time the increasing requirement for more digital processing in the same volume and for the same power has led to mainstream CMOS feature size scaling, leading to smaller, faster and more efficient transistors, optimized to increase processing efficiency per volume (smaller area, lower power consumption, faster digital processing). As wireless receivers is a comparably small market compared to digital processors, the receivers also have to be designed in a digitally optimized technology, as the processor and transceiver are on the same chip to reduce device volume. This asks for a generalized approach, which maps application requirements of complex systems (such as wireless receivers) on the advantages these digitally optimized technologies bring. First, the application trends are gathered in five quality indicators being: (algorithmic) accuracy, robustness, flexibility, efficiency, and emission, of which the last one is not further analyzed in this thesis. Secondly, using the quality indicators, it is identified that by introducing (or increasing) digitization at every abstraction level of a system, the advantages of modern digitally optimized technologies can be exploited. For a system on a chip, these abstraction levels are: system/application level, analog IP architecture level, circuit topology level and layout level. In this thesis, the quality indicators together with the digitization at different abstraction levels are applied to S¿ modulators. S¿ modulator performance properties are categorized into the proposed quality indicators. Next, it is identified what determines the accuracy, robustness, flexibility and efficiency of a S¿ modulator. Important modulator performance parameters, design parameter relations, and performance-cost relations are derived. Finally, several implementations are presented, which are designed using the found relations. At least one implementation example is shown for each level of digitization. At system level, a flexible (N)ZIF receiver architecture is digitized by shifting the ADC closer to the antenna, reducing the amount of analog signal conditioning required in front of the ADC, and shifting the re-configurability of such a receiver into the digital domain as much as possible. Being closer to the antenna, and because of the increased receiver flexibility, a high performance, multi-mode ADC is required. In this thesis, it is proven that such multi-mode ADCs can be made at low area and power consumption. At analog IP architecture level, a smarter S¿ modulator architecture is found, which combines the advantages of 1-bit and multi-bit modulators. The analog loop filter is partly digitized, and analog circuit blocks are replaced by a digital filter, leading to an area and power efficient design, which above all is very portable, and has the potential to become a good candidate for the ADC in multimode receivers. At circuit and layout level, analog circuits are designed in the same way as digital circuits are. Analog IP blocks are split up in analog unit cells, which are put in a library. For each analog unit cell, a p-cell layout view is created. Once such a library is available, different IP blocks can be created using the same unit cells and using the automatic routing tools normally used for digital circuits. The library of unit cells can be ported to a next technology very quickly, as the unit cells are very simple circuits, increasing portability of IP blocks made with these unit cells. In this thesis, several modulators are presented that are designed using this digital design methodology. A high clock frequency in the giga-hertz range is used to test technology speed. The presented modulators have a small area and low power consumption. A modulator is ported from a 65nm to a 45nm technology in one month without making changes to the unit cells, or IP architecture, proving that this design methodology leads to very portable designs. The generalized system property categorization in quality indicators, and the digitization at different levels of system design, is named the digital design methodology. In this thesis this methodology is successfully applied to S¿ modulators, leading to high quality, mixed-signal S¿ modulator IP, which is more accurate, more robust, more flexible and/or more efficient

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 μW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 μm2 of silicon area, consumes 0.72 μW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore