1,746 research outputs found

    Regression modeling for digital test of ΣΔ modulators

    Get PDF
    The cost of Analogue and Mixed-Signal circuit testing is an important bottleneck in the industry, due to timeconsuming verification of specifications that require state-ofthe- art Automatic Test Equipment. In this paper, we apply the concept of Alternate Test to achieve digital testing of converters. By training an ensemble of regression models that maps simple digital defect-oriented signatures onto Signal to Noise and Distortion Ratio (SNDR), an average error of 1:7% is achieved. Beyond the inference of functional metrics, we show that the approach can provide interesting diagnosis information.Ministerio de Educación y Ciencia TEC2007-68072/MICJunta de Andalucía TIC 5386, CT 30

    Contribución al modelado y diseño de moduladores sigma-delta en tiempo continuo de baja relación de sobremuestreo y bajo consumo de potencia

    Get PDF
    Continuous-Time Sigma-Delta modulators are often employed as analog-to-digital converters. These modulators are an attractive approach to implement high-speed converters in VLSI systems because they have low sensitivity to circuit imperfections compared to other solutions. This work is a contribution to the analysis, modelling and design of high-speed Continuous-Time Sigma-Delta modulators. The resolution and the stability of these modulators are limited by two main factors, excess-loop delay and sampling uncertainty. Both factors, among others, have been carefully analysed and modelled. A new design methodology is also proposed. It can be used to get an optimum high-speed Continuous-Time Sigma-Delta modulator in terms of dynamic range, stability and sensitivity to sampling uncertainty. Based on the proposed design methodology, a software tool that covers the main steps has been developed. The methodology has been proved by using the tool in designing a 30 Megabits-per-second Continuous-Time Sigma-Delta modulator with 11-bits of dynamic range. The modulator has been integrated in a 0.13-µm CMOS technology and it has a measured peak SNR of 62.5dB

    Output Filter Aware Optimization of the Noise Shaping Properties of {\Delta}{\Sigma} Modulators via Semi-Definite Programming

    Full text link
    The Noise Transfer Function (NTF) of {\Delta}{\Sigma} modulators is typically designed after the features of the input signal. We suggest that in many applications, and notably those involving D/D and D/A conversion or actuation, the NTF should instead be shaped after the properties of the output/reconstruction filter. To this aim, we propose a framework for optimal design based on the Kalman-Yakubovich-Popov (KYP) lemma and semi-definite programming. Some examples illustrate how in practical cases the proposed strategy can outperform more standard approaches.Comment: 14 pages, 18 figures, journal. Code accompanying the paper is available at http://pydsm.googlecode.co

    Adaptive Neural Coding Dependent on the Time-Varying Statistics of the Somatic Input Current

    Get PDF
    It is generally assumed that nerve cells optimize their performance to reflect the statistics of their input. Electronic circuit analogs of neurons require similar methods of self-optimization for stable and autonomous operation. We here describe and demonstrate a biologically plausible adaptive algorithm that enables a neuron to adapt the current threshold and the slope (or gain) of its current-frequency relationship to match the mean (or dc offset) and variance (or dynamic range or contrast) of the time-varying somatic input current. The adaptation algorithm estimates the somatic current signal from the spike train by way of the intracellular somatic calcium concentration, thereby continuously adjusting the neuronś firing dynamics. This principle is shown to work in an analog VLSI-designed silicon neuron

    Analytical Evaluation of VCO-ADC Quantization Noise Spectrum Using Pulse Frequency Modulation

    Get PDF
    Oversampled ADCs based on voltage-controlled oscillators have been analyzed using statistical models inherited from sigma-delta modulation. This letter shows that the discrete Fourier transform of a VCO-ADC output sequence can be calculated analytically for single tone inputs. The calculation is based on the transformation of the VCO output into a pulse frequency modulated signal that can be represented by a trigonometric series. Knowledge of the VCO-ADC output spectrum allows accurate evaluation of the SNDR dependence with the VCO oscillation frequency and gain constant. The SNDR predictions of the proposed model have been compared to behavioral simulations displaying only a deviation of 0.7 dBThis work was supported by the CICYT project under Grant TEC2010-16330.Publicad

    Contribution to the design of continuous -time Sigma - Delta Modulators based on time delay elements

    Get PDF
    The research carried out in this thesis is focused in the development of a new class of data converters for digital radio. There are two main architectures for communication receivers which perform a digital demodulation. One of them is based on analog demodulation to the base band and digitization of the I/Q components. Another option is to digitize the band pass signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma- Delta modulators can be implemented with discrete-time circuits, using switched capacitors or continuous-time circuits. The main innovation introduced in this work is the use of passive transmission lines in the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the conventional solution with gm-C or LC resonators. As long as transmission lines are used as replacement of a LC resonator in RF technology, it seems compelling that transmission lines could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma- Delta modulator using distributed resonators has led to a completely new family of Sigma- Delta modulators which possess properties inherited both from continuous-time and discretetime Sigma-Delta modulators. In this thesis we present the basic theory and the practical design trade-offs of this new family of Sigma-Delta modulators. Three demonstration chips have been implemented to validate the theoretical developments. The first two are a proof of concept of the application of transmission lines to build lowpass and bandpass modulators. The third chip summarizes all the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which combines subsampling techniques, a mismatch insensitive circuitry and a quadrature architecture to implement the IF to digital stage of a receiver

    Design and Control of Power Converters 2020

    Get PDF
    In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields

    Frequency-Domain Modeling of Harmonic Interactions in Voltage-Source Inverters with Closed-Loop Control

    Get PDF
    Power electronic converters, together with their loads, sources, and controls, form a coupled system that includes many nonlinear interactions, for instance due to pulse-width modulation (PWM) and feedback control. In this paper we develop a complete, nonlinear modeling approach for voltage-source inverters in the frequency domain, taking into account the harmonic components introduced into the system from the inputs and from the nonlinear digital PWM. The most important contribution is a method for analyzing how these harmonics propagate through the nonlinear system in steady state. To enable this, an analytic model of PWM with arbitrary, multiple-frequency input is necessary. A revised model of Asymmetrical regularly-sampled double-edge PWM (AD-PWM) is proposed and its incorporation into the system model regarding sampling effects is discussed. The resulting nonlinear equation system is numerically and simultaneously solved, yielding the spectra of all relevant signals in the converter. The results are validated with time-domain simulations and with measurements, proving the effectiveness of the proposed approach

    Reduced-order modeling of power electronics components and systems

    Get PDF
    This dissertation addresses the seemingly inevitable compromise between modeling fidelity and simulation speed in power electronics. Higher-order effects are considered at the component and system levels. Order-reduction techniques are applied to provide insight into accurate, computationally efficient component-level (via reduced-order physics-based model) and system-level simulations (via multiresolution simulation). Proposed high-order models, verified with hardware measurements, are, in turn, used to verify the accuracy of final reduced-order models for both small- and large-signal excitations. At the component level, dynamic high-fidelity magnetic equivalent circuits are introduced for laminated and solid magnetic cores. Automated linear and nonlinear order-reduction techniques are introduced for linear magnetic systems, saturated systems, systems with relative motion, and multiple-winding systems, to extract the desired essential system dynamics. Finite-element models of magnetic components incorporating relative motion are set forth and then reduced. At the system level, a framework for multiresolution simulation of switching converters is developed. Multiresolution simulation provides an alternative method to analyze power converters by providing an appropriate amount of detail based on the time scale and phenomenon being considered. A detailed full-order converter model is built based upon high-order component models and accurate switching transitions. Efficient order-reduction techniques are used to extract several lower-order models for the desired resolution of the simulation. This simulation framework is extended to higher-order converters, converters with nonlinear elements, and closed-loop systems. The resulting rapid-to-integrate component models and flexible simulation frameworks could form the computational core of future virtual prototyping design and analysis environments for energy processing units
    corecore