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ABSTRACT

This dissertation addresses the seemingly inevitable compromise between modeling fidelity
and simulation speed in power electronics. Higher-order effects are considered at the component
and system levels. Order-reduction techniques are applied to provide insight into accurate,
computationally efficient component-level (via reduced-order physics-based model) and system-
level simulations (via multiresolution simulation). Proposed high-order models, verified with
hardware measurements, are, in turn, used to verify the accuracy of final reduced-order models

for both small- and large-signal excitations.

At the component level, dynamic high-fidelity magnetic equivalent circuits are introduced for
laminated and solid magnetic cores. Automated linear and nonlinear order-reduction techniques
are introduced for linear magnetic systems, saturated systems, systems with relative motion, and
multiple-winding systems, to extract the desired essential system dynamics. Finite-element

models of magnetic components incorporating relative motion are set forth and then reduced.

At the system level, a framework for multiresolution simulation of switching converters is
developed. Multiresolution simulation provides an alternative method to analyze power
converters by providing an appropriate amount of detail based on the time scale and phenomenon
being considered. A detailed full-order converter model is built based upon high-order
component models and accurate switching transitions. Efficient order-reduction techniques are
used to extract several lower-order models for the desired resolution of the simulation. This
simulation framework is extended to higher-order converters, converters with nonlinear
elements, and closed-loop systems. The resulting rapid-to-integrate component models and
flexible simulation frameworks could form the computational core of future virtual prototyping

design and analysis environments for energy processing units.
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CHAPTER 1

INTRODUCTION

1.1 Modeling and Simulation Diagram

Switching power converters are building blocks of energy processing units. They are
integrated to form complex interconnected multi-converter systems with provisions for hybrid dc
and ac distribution, advanced power-system architecture, and improved reliability and
performance [1]. These multi-converter structures have also recently found application in hybrid
electric vehicles, photovoltaic energy conversion systems, wind farms, and modular microgrids.
Future energy processing systems and green energy technologies are likely to be more dependent

on power converters.

Modeling and simulation of components and systems of power converters is essential to mimic
actual hardware and, therefore, to minimize hardware design iterations and retrofits. Dynamic
models are required to study the large signal time-domain transients (e.g., to characterize the
losses in the power electronics devices, batteries, and ultra capacitor [2]) as well as small-signal
frequency-domain stability and controller design. Simulation-based design tools are used in
electric ships for risk analysis, for configuration, and to ensure the final model meets design
tolerances [3]. A truly functional virtual/computational prototyping environment [2, 4] is built on

existing accurate and efficient modeling and simulation tools (See Fig. 1.1).

Fundamental obstacles to the modeling and simulation are a lack of high-fidelity models, an
exhaustive computational burden, and rigid simulation platforms. Automated order-reduction

techniques facilitate efficient physics-based component models and flexible simulation
1



environments that help designers synthesize dynamic behavior of the original system within a
tight design cycle. A candidate for efficient simulation frameworks is shown in Fig. 1.2. First
physics-based descriptions of components provide highly accurate models. Then, order reduction
facilitates system-level integration of physics-based component models in a switching converter

model. Order-reduction techniques are then used to provide a flexible-resolution simulation

environment.

Virtual Prototyping

* Rapid system Multi-domain Computational Prototyping
prototyping

. ® Multi physics

* Distributed i i i
modeling and « Multi solver Modeling and Simulation
simulation * Multi disciplines * Accurate and efficient modeling

* Data visualization * Multi objective ¢ Efficient simulation environment

Fig. 1.1. Hierarchical modeling and simulation diagram.
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Fig. 1.2. Efficient simulation framework for switching power converters.



1.2 Component-level Modeling and System-level Simulation

Physics-based models are available for various power electronics components, including
capacitors [5], IBGTs and MOSFETs [6-8], and diodes [9-11]. Magnetic components are,
arguably, the most important ingredients of power electronics systems. Thus, rapid-to-integrate
magnetic component models are of paramount value and constitute an active research area [12].
An accurate magnetic model needs to have enough resolution to capture the highest expected
frequency. Using the Nyquist criterion as a crude approximation, for a 50 kHz PWM used in
motor-drive applications, a minimum of 100,000 samples/second are needed for an adequate
sampling. It has been shown in [13] that even if computational power increases exponentially, it
will be decades before it reaches the level required for real-time solution of magnetic systems.
Iterative methods to implement nonlinear magnetic characteristics add to the computational
costs. This becomes a problem especially since magnetic components are part of a larger, more

complex and dynamically diverse system.

Magnetic models conventionally lend themselves to behavioral modeling, where many
simplifying assumptions severely affect the final macro-model performance. More rigorous
approaches, e.g., harmonics analysis, require prior knowledge of system frequencies and need a
large number of harmonic field simulations to reach an acceptable level of accuracy [13]. First-
principle methods, e.g., finite element methods (FEM) or high-fidelity magnetic equivalent
circuits (HFMEC), are highly accurate but computationally expensive. The presence of eddy
currents in dynamic FEM or HFMEC models introduces large sets of differential equations, very
fast dynamic modes, and ill-conditioned matrix equations. This inevitably leads to numerical
instability and slow simulation runs. The problem is exacerbated when nonlinear magnetic

systems (e.g., saturated inductors), systems with relative motion (e.g., actuators), and multi-port



systems (e.g., transformers) are considered. Mathematically rigorous order-reduction techniques

can be applied to extract low-order dynamic models from high-order, physics-based models.

Although system designers often concentrate on only a few critical issues at a time, the general
trend is toward an integrated design approach [14]. Power-processing and energy-conversion
systems are complex multi-domain mixtures of electrical, magnetic, mechanical, thermal, and
fluid dynamic components that exhibit a wide range of time scales. Consider a typical power
propulsion system in transportation fleets such as hybrid vehicles or all-electric ships. These
systems include solid-state switching converters with nanosecond-level time constants as well as
mechanical prime movers or fuel cells with second-level time constants. Now, if one takes a
system snapshot that goes into more detail, each subsystem may also represent a stiff subsystem.
For example, a switching converter represents a wide range of dynamics: very high-frequency
magnetic components that include eddy current dynamics, high-frequency switching spikes
imposed by semiconductor switches and packaging and parasitic effects resulting from circuit
layout; medium-range dynamics associated with thermal effects; and, finally, slower dynamics
associated with external controller circuitry. Thus, a detailed switch-by-switch simulation of a
typical power electronics-based system may include time constants that span ten orders of
magnitude. Simulation of this system can be tedious, especially when multi-objective parametric

multiple-run optimization studies or real-time simulations are desired.

System-level simulation of power electronics may be conducted at several resolution levels,
e.g. steady-state characterization, average-value modeling, switch-level waveforms, etc. If a
higher level of resolution is required (e.g., to study very high frequency effects such as switching
spikes and transients [15]), the resulting ill-conditioned systems of equations jeopardize

simulation stability and make it computationally prohibitive. This is further pronounced when



higher-order converters (e.g., cascaded converters), nonlinear elements (e.g., saturated magnetic
components), and external circuitry (e.g., closed-loop systems) are considered. However, a very
high level of simulation resolution is not needed for a complete simulation cycle. Thus, a
simulation engine with flexible resolution levels is desirable. Order-reduction techniques can be
used to extract different simulation resolutions. Such a multiresolution simulation engine can
both result in accelerated simulation speed in a lower resolution mode, and utilize a high-

resolution mode to “zoom-in” for study of higher-frequency phenomena.

1.3 Dissertation Outline

This dissertation is organized as follows. Chapter 2 covers the fundamentals of order reduction
techniques and tools used in the remaining chapters for linear, nonlinear, and multiple-
input/multiple-output systems. In Chapter 3, dynamic HFMEC models are introduced that
include eddy current effects. Reduced-order magnetic models of linear, nonlinear, time-varying,
and multiple-input/multiple-output systems are developed. Chapter 4 utilizes a fixed grid concept
in FEM to incorporate relative motion in the final reduced model. Chapter 5 considers the use of
order-reduction techniques in flexible simulation of switching converters. Multiresolution
simulation environments are developed for different order-reduction techniques and several
classes of switching converters. The contributions of this dissertation and future directions are

discussed in Chapter 6. Parts of this dissertation are published in [16-24].



CHAPTER 2

MODEL ORDER REDUCTION

The order reduction process replaces the original high-order state space with a lower-order
space, while preserving the input-output relationship. Order reduction and model simplification
are not new ideas; Newton [25], Taylor [26], Euler [27], Lagrange [28], and Fourier published
their work on model simplification and function approximation in 1704, 1715, 1755, 1759, and
1807, respectively. Pade’s PhD dissertation and his approximations were published in 1892 [29].
Lanczos [30], Arnoldi [31], Saad/Schultz [32], and Fletcher [33] published their iterative
methods, foundations of moment-matching Krylov-subspace techniques, in 1950, 1951, 1976,
and 1986, respectively. Moore introduced truncated balanced realization (TBR) [34] in 1981, and
Glover published his famous work on Hankel-norm reduction [35] in 1984. Proper orthogonal
decomposition was introduced by Sirovich in 1987 [36]. Different classes of Krylov-subspaces
methods, explicit moment matching (asymptotic waveform evaluation introduced in 1990 [37])
and implicit moment matching (Pade via Lanczos introduced by Freund in 1993 [38] and Pade

via Arnoldi introduced by Silveira in 1995 [39]) currently dominate the order-reduction realm.

2.1 Order Reduction Framework

Power electronics systems can generally be represented by a nonlinear differential algebraic

equation (DAE)



% = F(x,z,u,t)
z =G(X,z,u,t) (2.1)
y = H(x,z,u,t)

where X, z, u, and y are state variable, algebraic variable, input, and output vectors, respectively.
Many order-reduction techniques are applicable only to linear models [40]. Nonlinear order-
reduction methods are conventionally based on piecewise linear approaches using various
training, projection and weighting processes [41]. Computational efficiency and numerical
accuracy can be improved by partitioning the original large system into weakly connected
smaller (and possibly linear) subsystems and then applying order-reduction techniques [42].
Linear, time-invariant (LTI) systems are considered first. The algebraic variables in (2.1), z, can
be removed using primary reduction techniques (e.g., Kron reduction) to form a standard state-

space model

d—XzAx+Bu,Aem“X”,Besﬁ“Xp,xGm”
dt (2.2)

y=Cx+Du,CeRP" DeRP*P uecnP

The state trajectory and output of system (2.2) can be computed as

t
x(t) = eAl-0)x(ty) + j eA)Buw)dw
t

t (2.3)
y(t) = CeA-)x(t,) + CIeA(‘-”)Bu(U)du +Du(t)

t

which is computationally infeasible for a large system(n>>1). A model reduction process seeks

to replace (2.2) with a “similar” system

dx,
oA +BU, A e R B e RIP x. e RY
dt rr r r r r (24)

¥ =CX; +Du, C, e R4 D, e RPP ueRP



of the order g, much smaller than the original order, n. Meanwhile, for the input u(t), the

reduced-order model output, ¥(t), closely resembles the original outputs, y(t):

Iy(©)-50)|< e 29)
Likewise, transfer functions of systems in (2.2) and (2.4) match for a given tolerance and
frequency range:

H(s)=D+C(sl-A)™B A
{Hr s):Dr+cr(s|—Ar)1Br:>"H() H(s) < (2.6)

The goal of order reduction is to find {A,,B,,C,,D, }in (2.4) or H(s) in (2.6).

2.2 Linear Order Reduction

Linear order-reduction techniques have mainly been categorized based on their properties or
implementation methodologies. Based on their properties, order-reduction techniques are
classified as moment matching (e.g., Pade, partial realization, etc.) and singular-value
decomposition (SVD) (e.g., Hankel norm approximation, singular perturbation, etc.). Moment-
matching techniques utilize the Arnoldi or Lanczos methods to find an orthonormal
transformation basis for system matrices using Krylov subspaces. The SVD-based reduction
family acts on the information extracted from Hankel singular values of the balanced system.
Based on implementation methodologies, order-reduction techniques are categorized as
projection-based (e.g., proper orthogonal decomposition, Krylov-subspace methods, etc.) and
non-projection-based (e.g., Hankel optimal model reduction, singular perturbation
approximation, transfer function fitting, etc.) [43]. The interested reader can find rigorous

discussion of the various reduction techniques and their classifications in [43-48].



Other linear order-reduction methods are based on minimizing the integral of the square error
between the impulse response of the high-order and low-order model (Walsh functions [49]). In
contrast to “mathematically driven” order-reduction techniques, there are bond-graph based
order-reduction techniques that seek to remove those energy components, i.e., state variables,
that contribute the least amount of energy to the total system energy [50]. This should effectively
be equivalent to “modal reduction” based on the Hankel singular values. In addition to the LTI
systems, linear order reduction has been extended to time-varying [51] and frequency-dependent
systems [52]. Multiple-input/multiple-output systems are also accommodated by PRIMA [53],

block Arnoldi, global Lanczos [54], and global Arnoldi algorithms [55].

Among linear reduction tools used in this dissertation are Kron reduction, fast state
elimination, quasi-pole/zero cancellation, state residualization, singular perturbation, and Krylov
methods. It should be noted that order-reduction techniques are implemented as tools tailored to
our application; their theoretical characteristics are beyond the scope of this thesis. The
numerical aspects and error bounds in the final reduced-order model are well known and
discussed [56]. Moreover, the majority of these techniques have recently been automated in

available numerical toolboxes [57].

2.2.1 Kron reduction

Formulations of HFMEC and FEM vyield hundreds or thousands of differential and algebraic
variables. For example, the algebraic variables resulting from the FEM formulation forthcoming
in Chapter 4 are the magnetic vector potentials, A, associated with the nodes in the air. There are
systematic ways to extract several sets of ODEs from the original DAESs. The algebraic variables

are excluded from the DAE, e.g., using Kron reduction [58-59], named after the famous power

9



system engineer Gabriel Kron in 1939 [60]. Kron reduction is used to eliminate the magnetic
vector potentials in the magnetic materials of a power transformer [61] or induction machine
[58], assuming linearity of the magnetic material. After differential equations associated with
FEM are discretized and replaced by algebraic equations (similar to EMTP simulation
environments [62]), Kron reduction is used to eliminate air-gap variables [63]. This leaves us

with a minimal set of differential equations.

A simple demonstration of Kron reduction is given here. One may consider a linear DAE in
descriptor form, where the variable vector, X, is partitioned into the state variables, xs, and

algebraic variables, x,, with zero dynamics:

Ess 0 d | Xs X bs
= sl ATl -

Subscripts s and a denote state and algebraic variables, respectively. By eliminating the algebraic

ASS Asa

Aas Aaa

variable, x5, using Gaussian elimination, the state-variable dynamics are found:

dx,

E —
S dt

=Ass _A;%aAas]xs + [bs _A;;ba}] . (28)
The algebraic variables, x,, can be obtained from state variables, Xs, and input, u, as

= A A Xs —Aib 2.9

Xa =~AaafasXs —Maalal - (2.9)

This is a primary stage in reducing the model order. Kron reduction will be used in Chapter 4 to

remove the air-gap nodes from a FEM formulation of electromechanical systems.
2.2.2 Fast state elimination

Formulations of HFMEC and FEM usually yield a wide range of dynamic modes. Consider the

state equations

10



x=Ax, xeR" (2.10)

We make the blanket assumption that A has a set of n distinct eignevalues. One may form a

diagonal matrix of eigenvalues, 4., and matrices whose columns are sets of corresponding left,

l,, and right, r,, eigenvectors as

A =diag{i,, 2, -+ A, }
V=[r,r,r] (212)
V=l 0]

which can be used to decouple the dynamic modes in (2.10)
2=VAVz =Az = z,(t)=z (0)e™ (2.12)

Some dynamic modes are beyond what is physically meaningful. This is mainly because of the
assumptions made in the model development stage. Stray capacitors and displacement currents
are neglected in both FEM and HFMEC formulations, and resulting dynamic modes beyond a
few MHz are invalid. Also, the fast dynamic modes subside quickly and their contribution is
small. Thus, the fast eigenvalues of the decoupled system can be eliminated. This leads to a
reduced-order model

X, =V,A, VX, ,x, € R

A, =diagiy, Ay 2e) (2.13)

V, =|r g,

The fast state elimination belongs to the SVD-based, non-projection methods.

11



2.2.3 Quasi pole/zero cancellation

Quasi pole/zero cancellation is similar to the transfer-fitting approach and the simplified
convex optimization method [64], which are non-projecting approaches. This method aims to
approximate the transfer function of the original model in (2.6) at a given frequency range
(usually a lower frequency range). Dynamic input-impedance characterization of a HFMEC

usually leads to closely spaced poles and zeros that vary over a wide range of frequencies

Vil8) 1, 5-2)
Z: (S): .m = k ! 214
" i (5) 1.:1[ (s-p;) (2.14)
The quasi pole/zero cancellation is utilized to eliminate the pole/zero pair if their difference is
less than some tolerance level (e.g., 10%). An updated gain/pole/zero set constitutes a new state-

space formulation, with a new order, gq<<n. The dc gain of the resulting reduced-order model is

adjusted to be the same as the dc gain of the original full-order model

"> £ (2.15)

2.2.4 Balanced system approaches

Balanced system approaches are SVD-based methods. They first transform the coordinates of
the original state space, i.e., balance the system. The main idea is to transform the system to a
base where the states that are difficult to reach are simultaneously difficult to observe, and later
truncate those states or associated dynamics. This is done by changing the system coordinates
such that the observability and controllability Gramian matrices are equal. The state vector of the
balanced system is ordered based on the state contributions to the input-output relationship

(Hankel singular values). Then, for a given cut-off Hankel singular value, the last (n-q) state

12



variables, or their dynamics, are eliminated. The variables n and q are the model order for the full
and reduced order models, respectively. In truncated balanced residualization (TBR) methods,
unimportant state variables are set to zero. In singular perturbation approximation (SPA)
methods [65], one may set the derivative of the “unimportant” states to zero. Both methods rely

on the information obtained from the controllability, W,, and observability, W,, Gramians

W, :j e BB eA tdt
0

. (2.16)
A =I et tcTce™Mdt
0
These Gramians are found by solving the following (dual) Lyapunov equations:
AW, +W.AT =-BB'
. (2.17)

W,A+A"TW, =-C'C

Hankel singular values are extracted as the square roots of the products of eigenvalues of two

Gramians:
& = Jeig(W,W,), i=1--n (2.18)

Hankel singular values contain useful information about the input-output relationship; the states
with small singular values have a weaker effect on input-output relationships and most likely are
less controllable/observable. Thus, states with smaller Hankel singular values can be removed.
To accomplish this, one should use a change of coordinates to balance the system, i.e., give it

equal, diagonal Gramians. In particular, one may solve for a balancing transformation matrix T

W, W, T =Tz’ (2.19)
% = diaglo,, 8,. .5, } '

This matrix then can be used to equate and diagonalize the Gramian matrices in (2.15)

13



W, > TW. T
(2.20)

W, >TTW,T

and to balance the state equations in (2.2) by a change of coordinates
X _Ax+Bu A-TATLB-TB
- T T (2.21)

In the resulting balanced system, the full state vector is balanced and partitioned, based on

state contributions to the input-output response (or corresponding Hankel singular values):
~ i1
X=Tx=|- (2.22)

where X, and X, are state variables associated with significant and small Hankel singular values,

respectively. The system matrices are partitioned accordingly. Magnetic systems are usually

modeled with voltage as the input variable, vi,, and current, i;,, as the output variable. Thus, one

may have a partitioned system as in

x|l o~ - Ay AL X b
X3 Az i Ay | X2 b, (2.23)
- _ 11X
i, = CX+dv;, :[Cl Cyo| o |+dvy,
X2

From this point, one can use either the state truncation (TBR) or state residualization (SPA)
approaches. In SPA, the reduced-order model is extracted by setting the derivative of the state

variables with small Henkel singular values, X,, to zero and modifying (2.23)

14



X, = (;\11 - '5\12('&22)_1'&21);(1 + (61 - AlZ(A22>_162jVin
o O (2.24)
fin = (Cl _Cz(Azz) 1A21)§1 +(d _Cz(Azz) 1b2)vin
c D,

The resulting reduced-order model does not match at very high frequency (d =D, ), but the dc-

gain match between the reduced and full-order models is guaranteed [44]:
H(0)=CA™'B+D=C,A;'B, + D, =H,(0) (2.25)

In the TBR method, the reduced-order model is extracted by eliminating the state variables

with small Henkel singular values, X,, and truncating (2.23):

;(1 = Ag1% +byvi, (2.26)
iin = 61;(1 + dVin l

It should be noted that (2.26) is the same as (2.13) if the participation factors of the fast dynamic
modes are small. The reduced- and full-order model transfer functions in (2.6) do not match in

DC, but converge to d at a very high frequency:
H(w)=d = H, () (2.27)

Error bounds for the q™-order reduced model in the frequency domain can be calculated [66] as

IHE)-HG), <2 36, (2.28)

k=q+1

TBR and SPA methods are projection-based and non-projection-based methods, respectively.
For relatively small systems, e.g., fewer than 100 state variables, SVD-based methods are
superior in accuracy to moment-matching techniques (e.g., Krylov subspace). For larger systems,

balancing and truncating the equations makes the reduction process computationally intractable.
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The computational intensity is O(n®), where n is the model order. Thus, SVD-based methods are
usually used in a hybrid fashion in conjunction with another method. For example, in Chapter 3,
SPA follows the initial reduction technique, quasi pole-zero cancellation, to reduce the HFMEC

of a linear inductor.

2.2.5 Kirylov-subspace methods

Krylov-subspace order-reduction techniques have long been used in many applications (e.g.,
communication systems [51], [67], electric circuits [68], [69], digital VLSI [70], MEMS [71],
high-speed interconnection [72-73], multi-conductor transmission line [74], electromagnetic [75-
77], and power systems [78]); their application in power electronics has been little researched.
Krylov-subspace-based methods are projection-based, moment-matching techniques that project
a higher-order state space into a lower-order space. The space projection and order reduction is

in following form:

dx, T T
—=A B A, =W AV,B, =W'B
dt rXr + ru r r (2.29)

y=C,x,+D,u ,C,=CV,D,=D

where columns of matrices W and V span Krylov subspaces. The Krylov subspace K (M, v) of
order q is the space spanned by the set of vectors generated from matrix M and vector v

Kq(M,v):span{v, Mv, -, Mq‘lv} (2.30)

Different choices of W, V, M, and v in (2.29)-(2.30) lead to different Krylov methods. For
example, this thesis utilizes the Arnoldi implementation which is a variation of modified Gram-

Schmidt orthogonalization [79]. The components of Krylov subspace in (2.29) and (2.30) are
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W=V, M=A1 v=A"'B . (2.31)

Thus, an orthogonal projection matrix, W, is extracted from the q™-order Krylov subspace:

Kq(A‘l,B): span{B,A‘lB,---,(A‘l)q_lB} (2.32)

Then, the full-order state vector is projected into a lower-order state vector by a similarity

transform:
X, =W, X, e R, We RT" xeR" (2.33)
By a similar transformation, the resulting reduced-order model is

% ~WAW'X, + WBU=A X, +B,u

y=CW'x, + Du=C,x, + D,u

(2.34)

Based on the moment-matching property of Krylov-subspace methods, the reduced- and full-
order model transfer functions in (2.6) match up with the first ¢ moments around a chosen

frequency point, s,.
H(k)(so) = Hgk)(so), k=1-q (2.35)

where the transfer-function moments, H(s,), H®(s,)...., at the frequency point, so, are defined as

terms in Taylor series expansion of the transfer function, H(s), around the point spas

H® (sy) = %% HE),, = c((A— sol)? |)k (A=s,1)'B (2.36)

Krylov-subspace methods are valid only in a narrow frequency range and large-signal fidelity

is not always guaranteed. Also, as opposed to the SVD-based method, error bounds are not
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known a priori. Krylov-subspace methods are computationally efficient(o(n)), especially with a

sparse A matrix, and are thus attractive options for large scale systems.

2.3 Nonlinear and Parametric Order Reduction

Magnetic systems are mainly nonlinear due to the presence of saturation. Order-reduction of
weakly and strongly nonlinear systems is usually addressed by trajectory piecewise linear
techniques (moment matching [79], [80] truncated balance realization [81], and piecewise
polynomial [82]). Order reduction of nonlinear systems represents a special challenge, requiring
good local and global accuracy. Piecewise polynomial nonlinear order-reduction techniques [42]
mix polynomial-based order-reduction techniques (with good small-signal fidelity [83], [84]) and
piecewise linear methods. The latter represents a nonlinear system as a collage of linear models
in adjoining polytopes centered around an expansion point in state space (with large-signal
fidelity [58]). Because covering the entire state space with linear approximations would be
computationally expensive, the nonlinear system is simulated with some training input, and only
the trajectory of the states excited by those inputs is populated by the linearized models. As an

example, consider the nonlinear system

dx

E=f(x)+ Bu (2.37)

The nonlinear function can be approximated with a convex combination of affine functions

k-1

%zgwi (x X)Ax+h; ]+ Bu (2.38)

The weighting functions o (x,X) depend on the current state, x, and k linearization point in
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X =[xg, Xz, %, ] (2.39)

In a standard trajectory piecewise linear method [79], the linearization points, x;, are chosen as

the state vectors along trajectories of (2.37). The first-order linearized coefficients are found

through the Jacobean of the nonlinear matrix, f:

Ai =Jy (f(x)jxl (2.40)
h; :f(xi)_‘]f(f(x)j Xi .

Xj

Using the projection-based order-reduction techniques, one can reduce (2.38) to

k-1

dx
o Zwl(xrvxr)[Ai,rXr + hi,r]+ Bru, Ajr = V'AV, B, =V'B (2.41)

i=1
X, = [VTxl,Vsz,---,VTxk] xr =V hi =V'h

There are different weighting schemes, «,(x,X) [85], as well as methods for generating the

columns of projection matrix, V (e.g., Krylov vectors of the individual linearized systems [79] or

dominant singular vectors from simulated trajectories [86]).

However, the accuracy of the final reduced-order model depends highly on the input chosen
for training and the resulting linearized point in (2.39). Also, large-signal time-domain transients
of the full-order model are required for the training. This process is very time-consuming. Later,
an approximate training trajectory is introduced by simulating only the partially created reduced-
order model. A new linearized/reduced model is generated when a new approximated state falls
outside a pre-defined neighborhood of the previous state [79]. Reliability and stability of the

reduction process for piecewise linear models are discussed in [87].

Magnetic systems might have time-varying external parameters. For example, it will be shown

in Chapters 3 and 4 that an electromechanical system can be modeled as a position/speed-
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dependent inductor coupled with force formulation. Mechanical position and speed are externally
provided by the mechanical domain subsystem as parameters into the magnetic domain
subsystem. Parametric order-reduction techniques have long been investigated in the literature.
Different techniques for linear systems are developed (e.g., statistical performance valuation
[88], moment matching [89], [90], truncated balance realization [91], and quasi-convex
optimization [64]). In general, nonlinear parametric order-reduction techniques require
linearization and subsequent order reduction in parameter space as well as state space [71], [92].
Therefore, the computational burden of time-domain training is still unavoidable and even more

time-consuming.

To avoid costly large-scale transient simulation required for time-domain training, we will
resort to training based on steady-state solutions. A magnetic system is usually modeled with v,
as the input, ii, as the output, ¢ as the state variable, and mechanical position and speed, X, and
Vm, as parameters. The general form can be both nonlinear, i.e., a function of flux, and time-

varying, i.e., a function of mechanical position/speed

do
E = I:(CD’XmIVmIVin)

iin = g(q)vxm’vm’vin)

(2.42)

The mechanical position and speed are provided by the external mechanical sub-domain. Thus,

piecewise representation of (2.42) is

do
E=Aq>+bvin = Je ()0 + Ig (Vig Vi

iin =Co+ dVin = ‘Jg (CI))Q) + ‘Jg (Vin )‘/in

(2.43)
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where the Jacobian matrices are evaluated at externally determined mechanical operating points,

(X Vi), and the nominal flux, o, (determined by the dc input current, I;,). The details of model

derivation in (2.42) will be given in the corresponding sections in Chapters 3 and 4.

The linear model in (2.43) can be reduced using any linear order-reduction technique in
Chapter 2.2. The resulting reduced-order model can be represented by a state-space model,

rational function, or set of gain/pole/zero associated with the input-admittance transfer function

4o _ q
E—Ar®+brvin :>Ii—n=Cr[S| _Ar]_lbr +dr :Hk (S—Zi)
iir‘l :er)+drvin Vin i=1 (S_ pl)

(2.44)
g a1
ags? +ag 187+ + s +ay

by +bgysT 4+ +bys+by

One may save the state matrices, {A,,b,,C,.d,}, rational function coefficients, {a;b;}, or
gain/pole/zero sets, {k,z;,p;}, for future use as lookup tables. These lookup tables are
parameterized, possibly as functions of dc input current levels, 1;,, and mechanical
characteristics, {x,,,v,,}. The final piecewise linear model is shown in Fig. (2.1) and can be used
for time-domain transient simulation. At a given point in time, t,, the mechanical subsystem
inputs {x,(t, ) v (t,)} and the current i;,(t,) are fed to the lookup tables to interpolate and find
corresponding gain/pole/zero sets {K(t, ) z(t,) p;(t,)}. This set is transformed into a canonical
state space form, which is implemented by any general-propose ODE solver. This yields the
system output at the next time step, i, (t,.;). This process is repeated for the full cycle of

transient simulation run.
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Fig. 2.1. Nonlinear order-reduction framework.

2.4 Order-reduction Criteria

To effectively utilize the reduction process in an automated design environment, special
attention should be paid to the choice of reduction technique and the final model order. Among
the techniques introduced in this chapter, Kron reduction is used to remove the algebraic
variables from the DAE set of equations. If an impedance/admittance transfer function of a
magnetic system is available, quasi pole/zero cancellation is a more suitable reduction tool.
Considering the computational costs involved in balanced reduction techniques, they are
typically used in combination with other reduction techniques. Among balanced reduction
techniques, state residualizations and truncations are more accurate at dc and very high
frequencies, respectively. For systems with more than 100 state variables, Krylov-subspace

techniques are preferred.

The final model order is determined based on the assumptions in model formulation, desired
model bandwidth, numerical stability, and computational costs. For example, displacement
currents and windings capacitance are neglected in HFMEC and FEM formulation of the linear

inductor in Section 3.2. Thus, the original full-order model is valid in frequency ranges up to
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several MHz. Subsequently, a low order sufficient to resemble system dynamics within a few
MHz range is satisfactory. The desired model bandwidth depends on the underlying application
and frequency content of excitation signal. For example, higher-order models are required for
applications in which the magnetic system is excited with high-frequency PWM signals that have

rich harmonic content.

The model order determination for nonlinear systems has not yet been fully formulated and is
a subject of ongoing research. In those applications, the final model order is decided empirically.
If the time-domain transient of the original high-order model is available, one can compare it to a
medium model-order and, if a match is reported, further reduce the model order. This cycle is
repeated until an acceptable match is no longer found. Without the response from the higher-
order model, one can start with the lowest-order model plausible considering the engineering
judgment. Then, the model order is increased and resulting waveforms are compared to those of
previous-order models. If a noticeable difference is reported, the order of the reduced model is
increased until sequentially reduced models produce similar results. This approach is

computationally more efficient.

Engineering judgment and intuition can help in determining the final model order. For
example, in a two-winding transformer with external inductances, there are four state variables
(two for external inductances, one for dominant eddy-current dynamics, and one for the
magnetizing inductance). The designer can then set the final model order at 4 or 5 (to ensure

numerical stability and convergence).
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2.5 Summary

An overview of different reduction tools and techniques is presented. Reduction techniques
used in the following chapters are discussed in detail. A primary reduction technique to remove
algebraic variables from DAEs, Kron reduction, is discussed. Krylov-subspace method using the
Arnoldi technique is chosen as an example of the moment-matching class of reduction tools.
Singular perturbation approximation and truncated balanced residualization are discussed as
examples of SVD-based techniques. Quasi pole/zero cancellation and fast state elimination are
shown to be complimentary methods along with SVD-based techniques. A nonlinear order-
reduction framework is set forth that relies on previously stored characteristics of linear reduced-

order models and their parametric representation in lookup tables.
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CHAPTER 3
MAGNETIC EQUIVALENT CIRCUITS MODELING

3.1 Magnetic Modeling Overview

Accurate modeling and formulation of magnetic components that include nonlinear B-H
characteristics have been investigated in the literature for a century (e.g., Jiles and Atherton [93-
94], Preisach [95], Chan [96], Carpenter [97], Hodgdon [98], Wilson [99]). Magnetic component
modeling usually deals with loss characterization based on the Steinmetz equation (or its
extension) [100]. It is parameterized empirically [101-102] or formulated analytically [103-106]
as a function of flux density magnitude/frequency and magnetic materials characteristics.
However, loss characterization is a static phenomenon which is only valid for low single-
frequency excitation signals [101-102, 104-111]. Alternatively, the approach set forth in this
chapter provides accurate and rapid-to-simulate dynamic models for system-level transient

studies.

Dynamic modeling of magnetic components represents a special challenge, as the results
should be accurate over a wide range of operating conditions and frequencies. They are usually
represented by behavioral models based on often unreliable approximations. Physics-based
models, such as finite-element models (FEM), are based on established principles (e.g., Maxwell
equations) and are considered to be fundamentally reliable. FEM-based approaches are highly
accurate and, therefore, desirable for design verification and analysis purposes. Boundary-based
methods, that mainly concentrate on exterior regions of electromechanical systems (e.g., air gap),
are used alone (Schwarz-Christoffel (SC) [112-113]) or along with FEM (Hybrid [13]) to

expedite accurate steady-state characterizations of electrical machines. In particular, SC
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transformations and the SC toolbox in MATLAB are used to solve boundary-value problems in
two-dimensional linear magnetic materials [112-114]. Various hardware platforms, e.g., graphic

processor units [115], are investigated for boundary element methods.

The eddy current is automatically included in dynamic FEM. However, FEM models are not
intuitive and do not facilitate design. Including system nonlinearity (e.g., saturation) and
geometrical complexity (e.g., laminations and 3-D effects) substantially complicates model
formulation. Optimization routines of magnetic components can require on the order of 10°
solutions [116], [117]. Although significant work has been done on meshing and sparse matrix
algebra [118-120], FEM tools are unlikely to be used in an iterative design framework. Rather,
due to their high reliability, they are more suitable for design verification and analysis. Order

reduction of FEM with relative motion will be considered in Chapter 4.

Magnetic equivalent circuits (MECs) are more intuitive while remaining based on physics
[121-124]. MEC models are easily parameterized and allow for a fast parameter sweep, which is
ideal for iterative design optimizations. They include local saturation effects and require fewer
computational resources as compared to lumped-parameter models and FEM, respectively. The
extension to 3-D cases is straightforward as MEC uses tube elements rather than point elements
in FEM. An interested reader can find an excellent comparison between FEM and MEC in [125]
(and references within it) with special emphasis on saturation and iron losses. MEC models are
growing as an alternative design tool to lumped-parameter models and FEM for modeling and
simulation of electrical machines [126-127], e.g., induction machines [125-126, 128-135],
hysteresis synchronous motors [136], switched-reluctance machines [137], and brushless motors

[138].
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Crude geometrical simplifications often degrade the accuracy of the final MEC model.
Significant analysis of leakage and fringing permeances is required to make the MEC models
achieve a level of accuracy comparable to that of the FEM approach for an EI core [116]. Hybrid
methods use the computational efficiency and model accuracy of MEC and FEM [139-141].
MEC parameters are refined using FEM solutions [142]. MEC models can be improved by
introducing more reluctance terms in the air gap [143]. For example, a denser grid and,
subsequently, a larger reluctance network are implemented in [126, 128-129, 135]. MEC models
with relative motion are refined to include leakage and fringing effects [144]. However, MEC
models normally omit a precise consideration of eddy currents. Eddy currents are not easily
accommodated as magneto-motive force (MMF) formulation is a scalar magnetic potential
problem without the geometric properties necessary to induce eddy currents [125]. In general,
static MEC models are only valid for low-frequency excitations, as they assume the magnetic

field penetrates the core completely.

Accurate dynamic models for solid powdered iron or laminated steel cores [145-146] require
the inclusion of eddy currents. In conductive magnetic materials, such as laminated steel, change
in the magnetic field induces eddy currents that oppose the change, so the MMF is not uniform
within the core cross section. The flux distribution changes as the excitation frequency increases
(skin effect). Thus, both the effective equivalent inductance, representing the magnetic path, and
the equivalent resistance, representing the eddy currents path, are frequency-dependent [147].
“Foster” or dual “Cauer” equivalent circuits are proposed for eddy-currents and skin effects in
transformer winding [147-149] and magnetic cores [99, 150-156]. Using a continued fraction
expansion, a standard Cauer equivalent circuit can be derived from the original Foster equivalent

circuit [147]. The challenge is accurate representation of the magnetic core using “Cauer”
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models. Linear, static parameter models fail to reproduce the actual material behavior over a
large range of input frequency and excitation levels without resorting to adaptively re-tuning the
Cauer model parameters [157]. The accuracy of the final Cauer model depends on the number of
terms retained in a partial fraction expansion, which determines the number of circuit stages.
However, the large number of subcircuit stages introduces hundreds to thousands of state
variables, often with very fast dynamic modes that are not physically meaningful. The physics-
based models (either FEM or MEC), despite their high accuracy, then, are computationally

expensive, memory-consuming, and vulnerable to numerical instability.

Model order-reduction techniques are considered to reduce the number of equations and
achieve a computationally tractable model. Low-order dynamic magnetic models are mainly
behavioral models that are parameterized from post-processing of FEM simulations (2™ order
RLC equivalent models [158], bond graph [132], lumped parameters [159]). Empirical
eigenvectors are used to reduce the nonlinear FEM toroidal core model [160]. This requires
extensive time-domain excitation/training and computationally sensitive singular-value
decomposition and eigenvector extraction from the covariance matrix. Proper orthogonal
decomposition reduces the model order in low-frequency hysteresis [161]. Chapman has
provided some insight into FEM-based order-reduction techniques for 2-D, single-lamination
stationary magnetic components (e.g., linear [162-163], saturated [164-166], multiple-winding
[167], and hysteresis cases [168]). However, to the best of our knowledge, neither a high-fidelity

MEC model nor its reduced-order model has been developed.

In this chapter, we first try to provide an accurate dynamic model of magnetic systems, and
then develop linear and nonlinear order-reduction frameworks. This methodology is then

extended to systems with linear motion and multiple winding systems. In all cases, the magnetic
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component is modeled as a subsystem with voltage as the input variable and current as the output
variable. This is to implement dynamic equations in an integral form and avoid the numerical

noise associated with differentiation.

3.2 High-fidelity Dynamic Magnetic Equivalent Circuits

A simple representation of an MEC model is shown in Fig. 3.1(a). Two approaches to MEC
are nodal-based methods that use magnetic scalar potentials as unknowns, and mesh-based
approaches that use magnetic flux. Although identical in the linear magnetic region, nodal-based
approaches are shown to have ill-conditioned matrices in saturated regions [127]. Thus, mesh-
based approaches are considered here. The interaction between the electric and magnetic
domains is facilitated by a magneto-electric differential gyrator [123]. Electromagnetic curl

equations of Maxwell’s equations can be reduced to equivalent electric circuits

VxE:—% = v=ri+L%i (3.2)
VxH=] = F=0R®)
where F, R, and ¢ represent magneto-motive force, magnetic reluctance, and magnetic flux,
respectively. Using a stacking factor, laminated cores are usually treated as a single bulk core
[126]. We consider individual laminations as parallel magnetic cores in order to effectively

capture the actual eddy-current path (Fig. 3.1(b)).

In the presence of eddy currents, the magnetic core is divided into a few concentric zones,
each carrying flux perpendicular to the zone and behaving as a current sheet circulating around

the cross section (Fig. 3.1(c)) [99], [150-154]. Each zone is modeled as a magnetic-domain R-L

pair (Fig. 3.1(d)), where R, represents the k™ zone flux path reluctance, and transference Gy
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Fig. 3.1 MEC model of a laminated structure: (a) Coupled electric-magnetic domain circuits; (b) Laminated
magnetic core; (c) Single-lamination representation with opposing eddy currents in each magnetic zone; (d)
Equivalent magnetic R-L ladder structure with (possibly) nonlinear reluctances.

accounts for the conductivity of the k™ zone eddy-current path. The reluctance terms could be

nonlinear functions of corresponding fluxes to represent possible saturation.

In available models with few magnetic zones, the mutual interaction between the eddy current,

i, » and the magnetic flux, ¢, is neglected [150-154]. This implies a uniform flux density B, in

each magnetic zone. This simplification is justifiable when the segmentation thickness, A, , is

less than the magnetic skin depth

3.2)

Thus, available models with few magnetic zones are not suitable for PWM excitation
waveforms with rich high-frequency content, commonly used in motor drives [145]. Moreover,
MEC models are based on the assumption that the magnetic flux should not cross the permeance
tube walls and should be distributed homogeneously in the tube cross section. This is not
satisfied by a single permeance in true 3-D cores, as the flux lines are not uniformly distributed

and have sharp gradients [143].

A high-fidelity magnetic equivalent circuit (HFMEC) is considered as a modular assembly of

flux-tube building blocks. These flux tubes (Fig. 3.2(a)) form concentric magnetic zones (Fig.
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3.2(b)), which in turn form the final reluctance networks for each lamination. The resulting
reluctance network of a laminated magnetic structure is shown in Fig. 3.2(c). As the laminated
plates are in parallel, a single lamination is discussed first. The magnetic core cross section is
considered as a dense uniform grid (Fig. 3.3(2)) that effectively captures corner effects and can
be extended outwardly to include external leakage and fringing effects. Grid thickness is defined
by considering magnetic skin depth ¢ based on material characteristics and desired model
bandwidth. Magnetic flux density in each element is now safely assumed to be uniform. Flux
tubes are equal in area, but their depth into the third dimension varies based on the core
geometry. As an example, the reluctance and transference formulations are shown in (3.3) and

(3.4) for a toroidal core; s, is the relative permeability, o is the electrical conductivity, N, is
the number of magnetic zones, r,, and r,, are the inner and outer radii, respectively, and d, and
d, are the flux tube’s lengths in x and y directions, respectively.

Each magnetic zone is the combination of several associated flux tubes, where the number of
associated flux tubes decreases from the outside zone to the center. As an example, the second
zone and its associated flux tubes are shown as black in Fig. 3.3(a). The k™ zone overall
reluctance is calculated as the parallel combination of its associated flux-tube reluctances. The

time-varying fluxes in the zones enclosed by that k™ zone cause the eddy current, ig, - This eddy

current passes through a series combination of flux-tube electrical resistances. Alternatively, the
equivalent magnetic-domain inductance of each zone is the parallel combination of associated
flux-tube electrical conductances. The final magnetic R-L ladder structure is shown in Fig. 3.3
(b). The equivalent circuit is extracted via a parallel combination of R’s and G’s associated with

each magnetic zone. This results in a large set of ODEs, (3.5), with v;, as the input variable, i,

as the output variable, and ¢, as the state variables.
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Fig. 3.2 Geometrical terminologies for the proposed HFMEC system: (a) A single flux tube element; (b) A magnetic
zone and corresponding flux tubes; (c) Laminated magnetic structure with insulations and flux tubes.
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Fig. 3.3 Detailed 3-D MEC model including eddy current: (a) Detailed core cross-section meshing and associated
flux tubes; (b) Equivalent magnetic R-L structure made of reluctances and transferences.
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3.3 Linear Order-reduction in HFMEC

A hybrid linear order-reduction technique from Chapter 2, quasi pole/zero cancellation and
the subsequent balanced residual method, is used. To verify the proposed linear high- and low-
order HFMEC models, a T400-26 powdered-iron toroidal core, commonly used in PWM dc-dc
converters, with parameters summarized in Appendix A.l, is considered here. The core input
impedance is measured over a wide range of frequencies and is shown in Fig. 3.4, along with the
input impedance extracted from the full-order HFMEC model. As expected, at very high
frequencies, the effects of the eddy-current losses become significant. This is especially evident
in the phase plot. As seen in Fig. 3.4, the full 400™ order model correctly represents the dynamics
of the underlying hardware prototype. The proposed HFMEC is compared with a 2-D FEM
model presented in [163]. As see in Fig. 3.5, the proposed model is more accurate, especially at
higher frequency where the effects of eddy current are more pronounced. This can be attributed
to the inherent 2-D approximations involved in the FEM model of [163]. On the other side, the
FEM more accurately models wire-by-wire representation of the winding than does the lumped
representation used in HFMEC. This comes at the cost of 822 state variables in FEM compared
to 400 state variables in HFMEC. A 3-D FEM model with wire-by-wire representation of
winding structures will be computationally prohibitive (due to the significant increase in the
number of elements required), and numerically unstable (due to the mesh generation process,
grid details, and round-off errors frequently encountered in FEM models). Once the HFMEC
model is verified with hardware measurements and compared to the FEM model, quasi pole/zero

cancellation followed by the balanced residual method is implemented.

When considering the input-impedance transfer function of the inductor core, a large number

of closely spaced poles and zeros is observed (Fig. 3.6). The quasi pole/zero cancellation with
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10% tolerance is applied. The resulting model is of order 10, while keeping close agreement with
the original full-order model (Fig. 3.7). To further reduce the model order from 10 to 2, balanced

truncation is used (Fig. 3.8). The condition number of the system matrix is improved from

4.88x10" in the original full-order model to 6.22x10* in the final reduced-order model. This

greatly improves the simulation stability.

The model order is further reduced from 2 to 1 using balanced residualization. As seen in Fig.
3.9, this extra level of reduction jeopardizes model accuracy in the desired frequency range (2
MHz). Thus, the choice of 2"-order model as the final reduced model is justified. If model

fidelity in a higher frequency range is desired, then of course higher-order models can be used.
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Fig. 3.4 Input impedance characterization of example inductor predicted both by the full-order model and hardware
measurements.
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Fig. 3.7 Input-impedance characterization of original full-order model and resulting reduced-order model by quasi

pole/zero cancellation.
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Fig. 3.8 Input-impedance characterization of original full-order model and resulting reduced-order model by quasi

pole/zero cancellation and subsequent balanced residualization method.
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Fig. 3.9 Input-impedance characterization of original full-order model and resulting 2" and 1% -order models.

The resulting low-order system can be transformed to a behavioral model suitable for system-

level simulation. The impedance transfer function of the resulting 2"-order model is

Vin(8) | (ST 2)S++2) _ppnyq (S+924.7)(s+ 5.78x10")
in(s)  (s+ p)(s++p2) (s +3.32x10%)(s +1.79x107)

(3.6)

As an example of a behavioral model, a 2"%-order lumped-parameter equivalent circuit is shown

in Fig. 3.10. The overall impedance transfer-function extracted from Fig. 3.10 is
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Vin(s)  (rcLCL +1,LC )s® + (rreCp + L+ 11cCL + 1, C)s+ 1 +T, 3.7)
Iin () LC s? +(rcC_ +1.C )s +1

Fitting the equivalent circuit impedance of Fig. 3.10 to the transfer function of (3.7) leads to a set

of nonlinear equations

1

P1P2
rcC,+rC, =—p:3+pp2
1F2

ro+r =k Fz)lzpz (3.8)
1P2

rcLCL +r,LC_ =

LCL =

k
PP

rer C+r,rC+rrcC +L=k

(21 + Zz)
P P2

which can be iteratively solved to find the circuit parameters in Fig. 3.10

R=77mQ, r =153mQ, r.=255kQ, L=2485,H, C,_=241pF  (3.9)

re |CL
iin
—
+ ¥y rr L

Vin

Fig. 3.10. An equivalent lumped-parameter inductor model.

3.4 Order-reduction in HFMEC with Saturation

The proposed HFMEC is a nonlinear system when saturation is considered in reluctance

formulation in (3.1), and resulting permeabilities are a nonlinear function of the flux (4 (4)).

This will modify the HFMEC LTI system of equations to a nonlinear set of equations

d
2= A@)D+bv, ©=[g ¢y, T (3.10)

iil’l = C((D)q) + dvin
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In order to use piecewise-linear reduction techniques established in Chapter 2, one may linearize
the system in (3.10) at several steady-state points or along an excited trajectory. In stationary
magnetic systems with fixed-coil windings distribution, the magnetic flux distribution and
resulting effective permeability are determined by the input current level in steady state. It is
shown in [165] that the magnetic vector potentials of the static Maxwell’s equations can be
determined solely by the dc input current. The resulting magnetic vector potentials are used to
determine the flux density and, therefore, the effective permeabilities. A similar approach is
taken to determine the effective permeabilities in the HFMEC circuit corresponding to a dc input
current level in steady state. The flux derivatives, and therefore the eddy currents, are zero in the
steady state associated with the dc current excitation. As shown in Fig. 3.2(b), the eddy currents
are the MMF drops over the transferences (magnetic inductances) in the magnetic domain
circuit. Therefore, zero eddy current implies a zero MMF drop over magnetic inductances. This
simplifies the R-L ladder structure of the magnetic domain circuit to a parallel combination of the
nonlinear reluctances (Fig. 3.11), from which corresponding permeability and reluctance terms
are iteratively extracted. In particular, using the magnetic-domain circuit in Fig. 3.11, one may

solve the nonlinear equations

NI =@, (%, i=1-N,, j=1-k, (3.11)

where N is the number of winding turns, 155 is the given dc input current magnitude, N, is the
number of magnetic zones, and k, is the number of flux tubes in the n™ magnetic zone. The
saturated nonlinear model is linearized around the steady state associated with a given input
current 1. Thus, the small-signal parameters corresponding to different values of input dc
currents are extracted and used to form appropriate transfer functions (dynamic impedance

and/or admittance). Now, any linear reduction process introduced in Chapter 2 can be applied to

38



reduce the model order. It should be noted that the steady-state points are only used for model

extraction, whereas the resulting final model is dynamic.
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| | 1 th

15t Zone Nz Zone

Fig. 3.11 Magnetic-domain circuit in steady state.
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Fig. 3.12 Nonlinear magnetic charactersitics, B-H curve, for powdered iron [169] and laminated steel cores [170]
considered.

The nonlinear magnetic characteristics, B-H curves, for the two considered cases here, T200-
26 powdered iron and M-19 laminated steel, are shown in Fig. 3.12. The geometrical data of
toroidal cores for both powdered iron and laminated steel are given in Appendix A.1. The input
admittance of the laminated steel core is extracted over a wide range of frequencies
corresponding to the unsaturated (i, =0) and saturated (i;, =5) cases. Linear order-reduction
techniques reduce the model order from 300 to 3. The results are overlaid in Fig. 3.13, where an

excellent match between corresponding reduced- and full-order models is observed. The
condition number of the system matrix is greatly improved from 1.28x10™ and 4.17x10% in

the full-order models, to 3x10* and 2.96x10* in the reduced-order models, for unsaturated and
saturated cases, respectively. This greatly simplifies model execution for transient simulations. A

similar process is done for powdered iron cores.
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Fig. 3.13 Full- and reduced-order transfer functions for different current magnitudes: unsaturated (i =0) and

saturated laminated steel (i =5).

The transfer-function extraction and order-reduction are implemented in an automated loop.
The resulting gains, poles, and zeros are saved as numerical functions of the input current
magnitude. For a T200-26 powdered iron core, the gain, poles, and zeros of the reduced-order
model transfer function are plotted in Fig. 3.14, as functions of the input current magnitude.
These data are re-organized and stored as lookup tables with appropriate interpolation. Then, the
nonlinear order-reduction method is implemented, as shown in Fig 3.15. For a given input
current value, ii,, the corresponding gain, poles, and zeros are extracted from previously

developed lookup tables to form a transfer function valid for the vicinity of i,

ii.n(s) :ﬁK(im)(s—zj(i_m)) (3.12)
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Fig. 3.14 Gain, zeros, and poles as functions of input currents for the reduced-order model of the T200-26 powdered

iron core considered here.
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Fig. 3.15 Implementation of the nonlinear order-reduction framework.
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It should be noted that the resulting systems (3.12) are used to approximate the original
nonlinear system within a corresponding current region, instead of the entire state-space region.
This greatly simplifies the weighting procedure. As opposed to the computationally intensive and
numerically sensitive time-domain training procedure involved in the conventional Krylov-
subspace methods [164], numerical transfer function extraction is a rapid and almost
instantaneous procedure. Also, as the steady-state solutions are used to extract the linear models,
instead of state variables populated along a training trajectory, the resulting model is not limited

by a training input voltage. Moreover, the higher currents can be accommodated by assuming

15 is valid for |13, o). This is a

v in in

that the model extracted for the highly saturated current

reasonable assumption; a magnetic system behaves almost linearly when it is highly saturated.

To verify the original full-order model (300 states) and the resulting reduced-order model (3

states), a sinusoidal input voltage (v,, =7.5sin(1207t)) is applied to a toroidal core consisting of

stack of a 50 laminations of M-19 steel. The hardware measurement results are shown in Fig.
3.16(a), where the current waveform clearly indicates saturation. The proposed full-order
HFMEC model accurately portrays the system dynamics, as seen in Fig. 3.16(b). The proposed
reduced-order model accurately reproduces the input currents predicted by the hardware

measurement and the full-order model, as shown in Fig. 3.16(c).

Next, to verify the proposed nonlinear reduction methodology under the nonsinusoidal
excitation, a PWM input voltage, with 10 V amplitude and 500 Hz frequency, is applied to the
T200-26 powdered iron core. As shown in Fig. 3.17(a) and (b), the input current of the proposed
nonlinear HFMEC model and the measured c