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ABSTRACT 

This dissertation addresses the seemingly inevitable compromise between modeling fidelity 

and simulation speed in power electronics. Higher-order effects are considered at the component 

and system levels. Order-reduction techniques are applied to provide insight into accurate, 

computationally efficient component-level (via reduced-order physics-based model) and system-

level simulations (via multiresolution simulation). Proposed high-order models, verified with 

hardware measurements, are, in turn, used to verify the accuracy of final reduced-order models 

for both small- and large-signal excitations. 

At the component level, dynamic high-fidelity magnetic equivalent circuits are introduced for 

laminated and solid magnetic cores. Automated linear and nonlinear order-reduction techniques 

are introduced for linear magnetic systems, saturated systems, systems with relative motion, and 

multiple-winding systems, to extract the desired essential system dynamics. Finite-element 

models of magnetic components incorporating relative motion are set forth and then reduced. 

At the system level, a framework for multiresolution simulation of switching converters is 

developed. Multiresolution simulation provides an alternative method to analyze power 

converters by providing an appropriate amount of detail based on the time scale and phenomenon 

being considered. A detailed full-order converter model is built based upon high-order 

component models and accurate switching transitions. Efficient order-reduction techniques are 

used to extract several lower-order models for the desired resolution of the simulation. This 

simulation framework is extended to higher-order converters, converters with nonlinear 

elements, and closed-loop systems. The resulting rapid-to-integrate component models and 

flexible simulation frameworks could form the computational core of future virtual prototyping 

design and analysis environments for energy processing units.    
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CHAPTER 1  

INTRODUCTION 

 

1.1 Modeling and Simulation Diagram 

Switching power converters are building blocks of energy processing units. They are 

integrated to form complex interconnected multi-converter systems with provisions for hybrid dc 

and ac distribution, advanced power-system architecture, and improved reliability and 

performance [1]. These multi-converter structures have also recently found application in hybrid 

electric vehicles, photovoltaic energy conversion systems, wind farms, and modular microgrids. 

Future energy processing systems and green energy technologies are likely to be more dependent 

on power converters.   

Modeling and simulation of components and systems of power converters is essential to mimic 

actual hardware and, therefore, to minimize hardware design iterations and retrofits. Dynamic 

models are required to study the large signal time-domain transients (e.g., to characterize the 

losses in the power electronics devices, batteries, and ultra capacitor [2]) as well as small-signal 

frequency-domain stability and controller design. Simulation-based design tools are used in 

electric ships for risk analysis, for configuration, and to ensure the final model meets design 

tolerances [3]. A truly functional virtual/computational prototyping environment [2, 4] is built on 

existing accurate and efficient modeling and simulation tools (See Fig. 1.1).  

Fundamental obstacles to the modeling and simulation are a lack of high-fidelity models, an 

exhaustive computational burden, and rigid simulation platforms. Automated order-reduction 

techniques facilitate efficient physics-based component models and flexible simulation 
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environments that help designers synthesize dynamic behavior of the original system within a 

tight design cycle. A candidate for efficient simulation frameworks is shown in Fig. 1.2. First 

physics-based descriptions of components provide highly accurate models. Then, order reduction 

facilitates system-level integration of physics-based component models in a switching converter 

model. Order-reduction techniques are then used to provide a flexible-resolution simulation 

environment. 

 

 

Fig. 1.1. Hierarchical modeling and simulation diagram. 

 

 

 

Fig. 1.2. Efficient simulation framework for switching power converters. 
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1.2    Component-level Modeling and System-level Simulation  

Physics-based models are available for various power electronics components, including  

capacitors [5], IBGTs and MOSFETs [6-8], and diodes [9-11]. Magnetic components are, 

arguably, the most important ingredients of power electronics systems. Thus, rapid-to-integrate 

magnetic component models are of paramount value and constitute an active research area [12]. 

An accurate magnetic model needs to have enough resolution to capture the highest expected 

frequency. Using the Nyquist criterion as a crude approximation, for a 50 kHz PWM used in 

motor-drive applications, a minimum of 100,000 samples/second are needed for an adequate 

sampling. It has been shown in [13] that even if computational power increases exponentially, it 

will be decades before it reaches the level required for real-time solution of magnetic systems. 

Iterative methods to implement nonlinear magnetic characteristics add to the computational 

costs. This becomes a problem especially since magnetic components are part of a larger, more 

complex and dynamically diverse system. 

Magnetic models conventionally lend themselves to behavioral modeling, where many 

simplifying assumptions severely affect the final macro-model performance. More rigorous 

approaches, e.g., harmonics analysis, require prior knowledge of system frequencies and need a 

large number of harmonic field simulations to reach an acceptable level of accuracy [13]. First-

principle methods, e.g., finite element methods (FEM) or high-fidelity magnetic equivalent 

circuits (HFMEC), are highly accurate but computationally expensive. The presence of eddy 

currents in dynamic FEM or HFMEC models introduces large sets of differential equations, very 

fast dynamic modes, and ill-conditioned matrix equations. This inevitably leads to numerical 

instability and slow simulation runs. The problem is exacerbated when nonlinear magnetic 

systems (e.g., saturated inductors), systems with relative motion (e.g., actuators), and multi-port 
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systems (e.g., transformers) are considered. Mathematically rigorous order-reduction techniques 

can be applied to extract low-order dynamic models from high-order, physics-based models.  

Although system designers often concentrate on only a few critical issues at a time, the general 

trend is toward an integrated design approach [14]. Power-processing and energy-conversion 

systems are complex multi-domain mixtures of electrical, magnetic, mechanical, thermal, and 

fluid dynamic components that exhibit a wide range of time scales. Consider a typical power 

propulsion system in transportation fleets such as hybrid vehicles or all-electric ships. These 

systems include solid-state switching converters with nanosecond-level time constants as well as 

mechanical prime movers or fuel cells with second-level time constants. Now, if one takes a 

system snapshot that goes into more detail, each subsystem may also represent a stiff subsystem. 

For example, a switching converter represents a wide range of dynamics: very high-frequency 

magnetic components that include eddy current dynamics, high-frequency switching spikes 

imposed by semiconductor switches and packaging and parasitic effects resulting from circuit 

layout; medium-range dynamics associated with thermal effects; and, finally, slower dynamics 

associated with external controller circuitry. Thus, a detailed switch-by-switch simulation of a 

typical power electronics-based system may include time constants that span ten orders of 

magnitude. Simulation of this system can be tedious, especially when multi-objective parametric 

multiple-run optimization studies or real-time simulations are desired. 

System-level simulation of power electronics may be conducted at several resolution levels, 

e.g. steady-state characterization, average-value modeling, switch-level waveforms, etc. If a 

higher level of resolution is required (e.g., to study very high frequency effects such as switching 

spikes and transients [15]), the resulting ill-conditioned systems of equations jeopardize 

simulation stability and make it computationally prohibitive. This is further pronounced when 
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higher-order converters (e.g., cascaded converters), nonlinear elements (e.g., saturated magnetic 

components), and external circuitry (e.g., closed-loop systems) are considered. However, a very 

high level of simulation resolution is not needed for a complete simulation cycle. Thus, a 

simulation engine with flexible resolution levels is desirable. Order-reduction techniques can be 

used to extract different simulation resolutions. Such a multiresolution simulation engine can 

both result in accelerated simulation speed in a lower resolution mode, and utilize a high-

resolution mode to ―zoom-in‖ for study of higher-frequency phenomena.  

 

1.3 Dissertation Outline 

This dissertation is organized as follows. Chapter 2 covers the fundamentals of order reduction 

techniques and tools used in the remaining chapters for linear, nonlinear, and multiple-

input/multiple-output systems. In Chapter 3, dynamic HFMEC models are introduced that 

include eddy current effects. Reduced-order magnetic models of linear, nonlinear, time-varying, 

and multiple-input/multiple-output systems are developed. Chapter 4 utilizes a fixed grid concept 

in FEM to incorporate relative motion in the final reduced model. Chapter 5 considers the use of 

order-reduction techniques in flexible simulation of switching converters. Multiresolution 

simulation environments are developed for different order-reduction techniques and several 

classes of switching converters. The contributions of this dissertation and future directions are 

discussed in Chapter 6. Parts of this dissertation are published in [16-24]. 
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CHAPTER 2 

MODEL ORDER REDUCTION 

 

The order reduction process replaces the original high-order state space with a lower-order 

space, while preserving the input-output relationship. Order reduction and model simplification 

are not new ideas; Newton [25], Taylor [26], Euler [27], Lagrange [28],  and Fourier published 

their work on model simplification and function approximation in 1704, 1715, 1755, 1759, and 

1807, respectively. Pade’s 
 
PhD dissertation and his approximations were published in 1892 [29]. 

Lanczos [30], Arnoldi [31], Saad/Schultz [32], and Fletcher [33] published their iterative 

methods, foundations of moment-matching Krylov-subspace techniques, in 1950, 1951, 1976, 

and 1986, respectively. Moore introduced truncated balanced realization (TBR) [34] in 1981, and 

Glover published his famous work on Hankel-norm reduction [35] in 1984. Proper orthogonal 

decomposition was introduced by Sirovich in 1987 [36]. Different classes of Krylov-subspaces 

methods, explicit moment matching (asymptotic waveform evaluation introduced in 1990 [37]) 

and implicit moment matching (Pade via Lanczos introduced by Freund in 1993 [38] and Pade 

via Arnoldi introduced by Silveira in 1995 [39]) currently dominate the order-reduction realm.  

 

2.1 Order Reduction Framework 

Power electronics systems can generally be represented by a nonlinear differential algebraic 

equation (DAE) 
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where x, z, u, and y are state variable, algebraic variable, input, and output vectors, respectively. 

Many order-reduction techniques are applicable only to linear models [40]. Nonlinear order-

reduction methods are conventionally based on piecewise linear approaches using various 

training, projection and weighting processes [41]. Computational efficiency and numerical 

accuracy can be improved by partitioning the original large system into weakly connected 

smaller (and possibly linear) subsystems and then applying order-reduction techniques [42]. 

Linear, time-invariant (LTI) systems are considered first. The algebraic variables in (2.1), z, can 

be removed using primary reduction techniques (e.g., Kron reduction) to form a standard state-

space model  
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The state trajectory and output of system (2.2) can be computed as 
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which is computationally infeasible for a large system  1n .  A model reduction process seeks 

to replace (2.2) with a ―similar‖ system 
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of the order q, much smaller than the original order, n. Meanwhile, for the input  tu , the 

reduced-order model output,  ty~ , closely resembles the original outputs,  ty : 

     tt yy ~           (2.5) 

Likewise, transfer functions of systems in (2.2) and (2.4) match for a given tolerance and 

frequency range: 
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    (2.6) 

The goal of order reduction is to find  rrrr D,C,B,A in (2.4) or  srH
 
in (2.6). 

 

2.2 Linear Order Reduction 

Linear order-reduction techniques have mainly been categorized based on their properties or 

implementation methodologies. Based on their properties, order-reduction techniques are 

classified as moment matching (e.g., Pade, partial realization, etc.) and singular-value 

decomposition (SVD) (e.g., Hankel norm approximation, singular perturbation, etc.). Moment-

matching techniques utilize the Arnoldi or Lanczos methods to find an orthonormal 

transformation basis for system matrices using Krylov subspaces. The SVD-based reduction 

family acts on the information extracted from Hankel singular values of the balanced system. 

Based on implementation methodologies, order-reduction techniques are categorized as 

projection-based (e.g., proper orthogonal decomposition, Krylov-subspace methods, etc.) and 

non-projection-based (e.g., Hankel optimal model reduction, singular perturbation 

approximation, transfer function fitting, etc.) [43]. The interested reader can find rigorous 

discussion of the various reduction techniques and their classifications in [43-48]. 
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Other linear order-reduction methods are based on minimizing the integral of the square error 

between the impulse response of the high-order and low-order model (Walsh functions [49]). In 

contrast to ―mathematically driven‖ order-reduction techniques, there are bond-graph based 

order-reduction techniques that seek to remove those energy components, i.e., state variables, 

that contribute the least amount of energy to the total system energy [50]. This should effectively 

be equivalent to ―modal reduction‖ based on the Hankel singular values. In addition to the LTI 

systems, linear order reduction has been extended to time-varying [51] and frequency-dependent 

systems [52]. Multiple-input/multiple-output systems are also accommodated by PRIMA [53], 

block Arnoldi, global Lanczos [54], and global Arnoldi algorithms [55].  

Among linear reduction tools used in this dissertation are Kron reduction, fast state 

elimination, quasi-pole/zero cancellation, state residualization, singular perturbation, and Krylov 

methods. It should be noted that order-reduction techniques are implemented as tools tailored to 

our application; their theoretical characteristics are beyond the scope of this thesis. The 

numerical aspects and error bounds in the final reduced-order model are well known and 

discussed [56]. Moreover, the majority of these techniques have recently been automated in 

available numerical toolboxes [57]. 

 

2.2.1 Kron reduction 

Formulations of HFMEC and FEM yield hundreds or thousands of differential and algebraic 

variables. For example, the algebraic variables resulting from the FEM formulation forthcoming 

in Chapter 4 are the magnetic vector potentials, A, associated with the nodes in the air. There are 

systematic ways to extract several sets of ODEs from the original DAEs. The algebraic variables 

are excluded from the DAE, e.g., using Kron reduction [58-59], named after the famous power 
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system engineer Gabriel Kron in 1939 [60]. Kron reduction is used to eliminate the magnetic 

vector potentials in the magnetic materials of a power transformer [61] or induction machine 

[58], assuming linearity of the magnetic material. After differential equations associated with 

FEM are discretized and replaced by algebraic equations (similar to EMTP simulation 

environments [62]), Kron reduction is used to eliminate air-gap variables [63]. This leaves us 

with a minimal set of differential equations.  

A simple demonstration of Kron reduction is given here. One may consider a linear DAE in 

descriptor form, where the variable vector, x, is partitioned into the state variables, xs, and 

algebraic variables, xa, with zero dynamics:  

u
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Subscripts s and a denote state and algebraic variables, respectively. By eliminating the algebraic 

variable, xa, using Gaussian elimination, the state-variable dynamics are found: 

   u
dt

d
aaassasaass

s
ss bAbxAAA

x
E

11    .       (2.8) 

The algebraic variables, xa, can be obtained from state variables, xs, and input, u, as  

uaaasasaaa bAxAAx
11    .        (2.9) 

This is a primary stage in reducing the model order. Kron reduction will be used in Chapter 4 to 

remove the air-gap nodes from a FEM formulation of electromechanical systems. 

2.2.2 Fast state elimination 

Formulations of HFMEC and FEM usually yield a wide range of dynamic modes. Consider the 

state equations 
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n xAxx ,

           

(2.10) 

We make the blanket assumption that A has a set of n distinct eignevalues. One may form a 

diagonal matrix of eigenvalues, i , and matrices whose columns are sets of corresponding left, 

il , and right, ir , eigenvectors as  
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which can be used to decouple the dynamic modes in (2.10) 

t
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Some dynamic modes are beyond what is physically meaningful. This is mainly because of the 

assumptions made in the model development stage. Stray capacitors and displacement currents 

are neglected in both FEM and HFMEC formulations, and resulting dynamic modes beyond a 

few MHz are invalid. Also, the fast dynamic modes subside quickly and their contribution is 

small. Thus, the fast eigenvalues of the decoupled system can be eliminated. This leads to a 

reduced-order model 
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The fast state elimination belongs to the SVD-based, non-projection methods. 
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2.2.3 Quasi pole/zero cancellation 

Quasi pole/zero cancellation is similar to the transfer-fitting approach and the simplified 

convex optimization method [64], which are non-projecting approaches. This method aims to 

approximate the transfer function of the original model in (2.6) at a given frequency range 

(usually a lower frequency range). Dynamic input-impedance characterization of a HFMEC 

usually leads to closely spaced poles and zeros that vary over a wide range of frequencies  
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The quasi pole/zero cancellation is utilized to eliminate the pole/zero pair if their difference is 

less than some tolerance level (e.g., 10%). An updated gain/pole/zero set constitutes a new state-

space formulation, with a new order,

 

nq  . The dc gain of the resulting reduced-order model is 

adjusted to be the same as the dc gain of the original full-order model 
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2.2.4 Balanced system approaches  

Balanced system approaches are SVD-based methods. They first transform the coordinates of 

the original state space, i.e., balance the system. The main idea is to transform the system to a 

base where the states that are difficult to reach are simultaneously difficult to observe, and later 

truncate those states or associated dynamics. This is done by changing the system coordinates 

such that the observability and controllability Gramian matrices are equal. The state vector of the 

balanced system is ordered based on the state contributions to the input-output relationship 

(Hankel singular values). Then, for a given cut-off Hankel singular value, the last (n-q) state 
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variables, or their dynamics, are eliminated. The variables n and q are the model order for the full 

and reduced order models, respectively. In truncated balanced residualization (TBR) methods, 

unimportant state variables are set to zero. In singular perturbation approximation (SPA) 

methods [65], one may set the derivative of the ―unimportant‖ states to zero. Both methods rely 

on the information obtained from the controllability, cW , and observability, oW ,

 

Gramians 
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These Gramians are found by solving the following (dual) Lyapunov equations: 
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Hankel singular values are extracted as the square roots of the products of eigenvalues of two 

Gramians: 

  nieig oci 1,  WW          (2.18) 

Hankel singular values contain useful information about the input-output relationship; the states 

with small singular values have a weaker effect on input-output relationships and most likely are 

less controllable/observable. Thus, states with smaller Hankel singular values can be removed. 

To accomplish this, one should use a change of coordinates to balance the system, i.e., give it 

equal, diagonal Gramians. In particular, one may solve for a balancing transformation matrix T 
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(2.19) 

This matrix then can be used to equate and diagonalize the Gramian matrices in (2.15) 
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and to balance the state equations in (2.2) by a change of coordinates 
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In the resulting balanced system, the full state vector is balanced and partitioned, based on 

state contributions to the input-output response (or corresponding Hankel singular values): 
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where

 

1
~x  and 2

~x

 

are state variables associated with significant and small Hankel singular values, 

respectively. The system matrices are partitioned accordingly. Magnetic systems are usually 

modeled with voltage as the input variable, vin, and current, iin, as the output variable. Thus, one 

may have a partitioned system as in 
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From this point, one can use either the state truncation (TBR) or state residualization (SPA) 

approaches. In SPA, the reduced-order model is extracted by setting the derivative of the state 

variables with small Henkel singular values, 2
~x , to zero and modifying (2.23)  
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The resulting reduced-order model does not match at very high frequency  rd D , but the dc-

gain match between the reduced and full-order models is guaranteed [44]: 

   00 1
rrrrr HH  

DBACDBCA
1        (2.25) 

In the TBR method, the reduced-order model is extracted by eliminating the state variables 

with small Henkel singular values, 2
~x , and truncating (2.23):  
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         (2.26) 

It should be noted that (2.26) is the same as (2.13) if the participation factors of the fast dynamic 

modes are small. The reduced- and full-order model transfer functions in (2.6) do not match in 

DC, but converge to d at a very high frequency:  

    rHdH           (2.27) 

Error bounds for the q
th

-order reduced model in the frequency domain can be calculated [66] as 

    
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n

qk

kr sHsH

1

2                (2.28) 

TBR and SPA methods are projection-based and non-projection-based methods, respectively. 

For relatively small systems, e.g., fewer than 100 state variables, SVD-based methods are 

superior in accuracy to moment-matching techniques (e.g., Krylov subspace). For larger systems, 

balancing and truncating the equations makes the reduction process computationally intractable. 
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The computational intensity is O(n
3
), where n is the model order. Thus, SVD-based methods are 

usually used in a hybrid fashion in conjunction with another method. For example, in Chapter 3, 

SPA follows the initial reduction technique, quasi pole-zero cancellation, to reduce the HFMEC 

of a linear inductor.  

 

2.2.5 Krylov-subspace methods 

Krylov-subspace order-reduction techniques have long been used in many applications (e.g., 

communication systems [51], [67], electric circuits [68], [69], digital VLSI [70], MEMS [71], 

high-speed interconnection [72-73], multi-conductor transmission line [74], electromagnetic [75-

77], and power systems [78]); their application in power electronics has been little researched. 

Krylov-subspace-based methods are projection-based, moment-matching techniques that project 

a higher-order state space into a lower-order space. The space projection and order reduction is 

in following form: 
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where columns of matrices W and V span  Krylov subspaces. The Krylov subspace  vMK ,q  
of 

order q is the space spanned by the set of vectors generated from matrix M and vector v 

    vMMvvvMK
1 q

q span ,,,,         (2.30) 

Different choices of W, V, M, and v in (2.29)-(2.30) lead to different Krylov methods. For 

example, this thesis utilizes the Arnoldi implementation which is a variation of modified Gram-

Schmidt orthogonalization [79]. The components of Krylov subspace in (2.29) and (2.30) are 
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BAvAMVW
11   ,, .       (2.31) 

Thus, an orthogonal projection matrix, W, is extracted from the q
th

-order Krylov subspace: 
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Then, the full-order state vector is projected into a lower-order state vector by a similarity 

transform: 

nnqq
rr  

xWxWxx ,,,      (2.33) 

By a similar transformation, the resulting reduced-order model is 
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Based on the moment-matching property of Krylov-subspace methods, the reduced- and full-

order model transfer functions in (2.6) match up with the first q moments around a chosen 

frequency point, so.  
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k 1),()( 00           (2.35) 

where the transfer-function moments,      ,..., 0
1

0
0 sHsH , at the frequency point, s0, are defined as 

terms in Taylor series expansion of the transfer function, H(s), around the point s0 as 
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Krylov-subspace methods are valid only in a narrow frequency range and large-signal fidelity 

is not always guaranteed. Also, as opposed to the SVD-based method, error bounds are not 
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known a priori. Krylov-subspace methods are computationally efficient   no , especially with a 

sparse A matrix, and are thus attractive options for large scale systems. 

 

2.3 Nonlinear and Parametric Order Reduction 

Magnetic systems are mainly nonlinear due to the presence of saturation. Order-reduction of 

weakly and strongly nonlinear systems is usually addressed by trajectory piecewise linear 

techniques (moment matching [79], [80] truncated balance realization [81], and piecewise 

polynomial [82]). Order reduction of nonlinear systems represents a special challenge, requiring 

good local and global accuracy. Piecewise polynomial nonlinear order-reduction techniques [42] 

mix polynomial-based order-reduction techniques (with good small-signal fidelity [83], [84]) and 

piecewise linear methods. The latter represents a nonlinear system as a collage of linear models 

in adjoining polytopes centered around an expansion point in state space (with large-signal 

fidelity [58]). Because covering the entire state space with linear approximations would be 

computationally expensive, the nonlinear system is simulated with some training input, and only 

the trajectory of the states excited by those inputs is populated by the linearized models. As an 

example, consider the nonlinear system 

  Buxf
x
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dt

d

          

(2.37) 

The nonlinear function can be approximated with a convex combination of affine functions 
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The weighting functions  Xx,i  depend on the current state, x, and k linearization point in 
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(2.39) 

In a standard trajectory piecewise linear method [79], the linearization points, ix , are chosen as 

the state vectors along trajectories of (2.37). The first-order linearized coefficients are found 

through the Jacobean of the nonlinear matrix, f: 

  

    











ifii

fi

i

i

xxfJxfh

xfJA

x

x
         (2.40) 

Using the projection-based order-reduction techniques, one can reduce (2.38) to 
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There are different weighting schemes,  Xx,i  [85], as well as methods for generating the 

columns of projection matrix, V (e.g., Krylov vectors of the individual linearized systems [79] or 

dominant singular vectors from simulated trajectories [86]). 

However, the accuracy of the final reduced-order model depends highly on the input chosen 

for training and the resulting linearized point in (2.39). Also, large-signal time-domain transients 

of the full-order model are required for the training. This process is very time-consuming. Later, 

an approximate training trajectory is introduced by simulating only the partially created reduced-

order model. A new linearized/reduced model is generated when a new approximated state falls 

outside a pre-defined neighborhood of the previous state [79]. Reliability and stability of the 

reduction process for piecewise linear models are discussed in [87]. 

Magnetic systems might have time-varying external parameters. For example, it will be shown 

in Chapters 3 and 4 that an electromechanical system can be modeled as a position/speed-
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dependent inductor coupled with force formulation. Mechanical position and speed are externally 

provided by the mechanical domain subsystem as parameters into the magnetic domain 

subsystem. Parametric order-reduction techniques have long been investigated in the literature. 

Different techniques for linear systems are developed (e.g., statistical performance valuation 

[88], moment matching [89], [90], truncated balance realization [91], and quasi-convex 

optimization [64]). In general, nonlinear parametric order-reduction techniques require 

linearization and subsequent order reduction in parameter space as well as state space [71], [92]. 

Therefore, the computational burden of time-domain training is still unavoidable and even more 

time-consuming.  

To avoid costly large-scale transient simulation required for time-domain training, we will 

resort to training based on steady-state solutions. A magnetic system is usually modeled with vin 

as the input, iin as the output,  as the state variable, and mechanical position and speed, xm and 

vm, as parameters. The general form can be both nonlinear, i.e., a function of flux, and time-

varying, i.e., a function of mechanical position/speed   
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The mechanical position and speed are provided by the external mechanical sub-domain. Thus, 

piecewise representation of (2.42) is  
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where the Jacobian matrices are evaluated at externally determined mechanical operating points,

  mm V,x , and the nominal flux, 0 (determined by the dc input current, Iin). The details of model 

derivation in (2.42) will be given in the corresponding sections in Chapters 3 and 4. 

The linear model in (2.43) can be reduced using any linear order-reduction technique in 

Chapter 2.2. The resulting reduced-order model can be represented by a state-space model, 

rational function, or set of gain/pole/zero associated with the input-admittance transfer function 
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One may save the state matrices,  rrrr d,,, CbA , rational function coefficients,  ii ba , , or 

gain/pole/zero sets,  ii pzk ,, , for future use as lookup tables. These lookup tables are 

parameterized, possibly as functions of dc input current levels, inI , and mechanical 

characteristics,  mm vx , . The final piecewise linear model is shown in Fig. (2.1) and can be used 

for time-domain transient simulation. At a given point in time, nt , the mechanical subsystem 

inputs     nmnm tvtx ,  and the current  nin ti  are fed to the lookup tables to interpolate and find 

corresponding gain/pole/zero sets       ninin tptztK ,, . This set is transformed into a canonical 

state space form, which is implemented by any general-propose ODE solver. This yields the 

system output at the next time step,  1nin ti . This process is repeated for the full cycle of 

transient simulation run. 
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Fig. 2.1. Nonlinear order-reduction framework. 

 

2.4 Order-reduction Criteria 

To effectively utilize the reduction process in an automated design environment, special 

attention should be paid to the choice of reduction technique and the final model order. Among 

the techniques introduced in this chapter, Kron reduction is used to remove the algebraic 

variables from the DAE set of equations. If an impedance/admittance transfer function of a 

magnetic system is available, quasi pole/zero cancellation is a more suitable reduction tool. 

Considering the computational costs involved in balanced reduction techniques, they are 

typically used in combination with other reduction techniques. Among balanced reduction 

techniques, state residualizations and truncations are more accurate at dc and very high 

frequencies, respectively. For systems with more than 100 state variables, Krylov-subspace 

techniques are preferred.  

The final model order is determined based on the assumptions in model formulation, desired 

model bandwidth, numerical stability, and computational costs. For example, displacement 

currents and windings capacitance are neglected in HFMEC and FEM formulation of the linear 

inductor in Section 3.2. Thus, the original full-order model is valid in frequency ranges up to 
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several MHz. Subsequently, a low order sufficient to resemble system dynamics within a few 

MHz range is satisfactory. The desired model bandwidth depends on the underlying application 

and frequency content of excitation signal. For example, higher-order models are required for 

applications in which the magnetic system is excited with high-frequency PWM signals that have 

rich harmonic content. 

The model order determination for nonlinear systems has not yet been fully formulated and is 

a subject of ongoing research. In those applications, the final model order is decided empirically. 

If the time-domain transient of the original high-order model is available, one can compare it to a 

medium model-order and, if a match is reported, further reduce the model order. This cycle is 

repeated until an acceptable match is no longer found. Without the response from the higher-

order model, one can start with the lowest-order model plausible considering the engineering 

judgment. Then, the model order is increased and resulting waveforms are compared to those of 

previous-order models. If a noticeable difference is reported, the order of the reduced model is 

increased until sequentially reduced models produce similar results. This approach is 

computationally more efficient. 

Engineering judgment and intuition can help in determining the final model order. For 

example, in a two-winding transformer with external inductances, there are four state variables 

(two for external inductances, one for dominant eddy-current dynamics, and one for the 

magnetizing inductance). The designer can then set the final model order at 4 or 5 (to ensure 

numerical stability and convergence).  
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2.5 Summary 

An overview of different reduction tools and techniques is presented. Reduction techniques 

used in the following chapters are discussed in detail. A primary reduction technique to remove 

algebraic variables from DAEs, Kron reduction, is discussed. Krylov-subspace method using the 

Arnoldi technique is chosen as an example of the moment-matching class of reduction tools. 

Singular perturbation approximation and truncated balanced residualization are discussed as 

examples of SVD-based techniques. Quasi pole/zero cancellation and fast state elimination are 

shown to be complimentary methods along with SVD-based techniques. A nonlinear order-

reduction framework is set forth that relies on previously stored characteristics of linear reduced-

order models and their parametric representation in lookup tables.  
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CHAPTER 3  

MAGNETIC EQUIVALENT CIRCUITS MODELING 

 

3.1 Magnetic Modeling Overview 

Accurate modeling and formulation of magnetic components that include nonlinear B-H 

characteristics have been investigated in the literature for a century (e.g., Jiles and Atherton [93-

94], Preisach [95], Chan [96], Carpenter [97], Hodgdon [98], Wilson [99]). Magnetic component 

modeling usually deals with loss characterization based on the Steinmetz equation (or its 

extension) [100]. It is parameterized empirically [101-102] or formulated analytically [103-106] 

as a function of flux density magnitude/frequency and magnetic materials characteristics. 

However, loss characterization is a static phenomenon which is only valid for low single-

frequency excitation signals [101-102, 104-111]. Alternatively, the approach set forth in this 

chapter provides accurate and rapid-to-simulate dynamic models for system-level transient 

studies. 

Dynamic modeling of magnetic components represents a special challenge, as the results 

should be accurate over a wide range of operating conditions and frequencies. They are usually 

represented by behavioral models based on often unreliable approximations. Physics-based 

models, such as finite-element models (FEM), are based on established principles (e.g., Maxwell 

equations) and are considered to be fundamentally reliable. FEM-based approaches are highly 

accurate and, therefore, desirable for design verification and analysis purposes. Boundary-based 

methods, that mainly concentrate on exterior regions of electromechanical systems (e.g., air gap), 

are used alone (Schwarz-Christoffel (SC) [112-113]) or along with FEM (Hybrid [13]) to 

expedite accurate steady-state characterizations of electrical machines. In particular, SC 
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transformations and the SC toolbox in MATLAB are used to solve boundary-value problems in 

two-dimensional linear magnetic materials [112-114]. Various hardware platforms, e.g., graphic 

processor units [115], are investigated for boundary element methods.  

The eddy current is automatically included in dynamic FEM. However, FEM models are not 

intuitive and do not facilitate design. Including system nonlinearity (e.g., saturation) and 

geometrical complexity (e.g., laminations and 3-D effects) substantially complicates model 

formulation. Optimization routines of magnetic components can require on the order of 10
6
 

solutions  [116], [117]. Although significant work has been done on meshing and sparse matrix 

algebra [118-120], FEM tools are unlikely to be used in an iterative design framework. Rather, 

due to their high reliability, they are more suitable for design verification and analysis. Order 

reduction of FEM with relative motion will be considered in Chapter 4. 

Magnetic equivalent circuits (MECs) are more intuitive while remaining based on physics 

[121-124]. MEC models are easily parameterized and allow for a fast parameter sweep, which is 

ideal for iterative design optimizations. They include local saturation effects and require fewer 

computational resources as compared to lumped-parameter models and FEM, respectively. The 

extension to 3-D cases is straightforward as MEC uses tube elements rather than point elements 

in FEM. An interested reader can find an excellent comparison between FEM and MEC in [125] 

(and references within it) with special emphasis on saturation and iron losses. MEC models are 

growing as an alternative design tool to lumped-parameter models and FEM for modeling and 

simulation of electrical machines [126-127], e.g., induction machines [125-126, 128-135], 

hysteresis synchronous motors [136], switched-reluctance machines [137], and brushless motors 

[138].  
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Crude geometrical simplifications often degrade the accuracy of the final MEC model. 

Significant analysis of leakage and fringing permeances is required to make the MEC models 

achieve a level of accuracy comparable to that of the FEM approach for an EI core [116]. Hybrid 

methods use the computational efficiency and model accuracy of MEC and FEM [139-141]. 

MEC parameters are refined using FEM solutions [142]. MEC models can be improved by 

introducing more reluctance terms in the air gap [143]. For example, a denser grid and, 

subsequently, a larger reluctance network are implemented in [126, 128-129, 135]. MEC models 

with relative motion are refined to include leakage and fringing effects [144]. However, MEC 

models normally omit a precise consideration of eddy currents. Eddy currents are not easily 

accommodated as magneto-motive force (MMF) formulation is a scalar magnetic potential 

problem without the geometric properties necessary to induce eddy currents [125]. In general, 

static MEC models are only valid for low-frequency excitations, as they assume the magnetic 

field penetrates the core completely.    

Accurate dynamic models for solid powdered iron or laminated steel cores [145-146] require 

the inclusion of eddy currents. In conductive magnetic materials, such as laminated steel, change 

in the magnetic field induces eddy currents that oppose the change, so the MMF is not uniform 

within the core cross section. The flux distribution changes as the excitation frequency increases 

(skin effect). Thus, both the effective equivalent inductance, representing the magnetic path, and 

the equivalent resistance, representing the eddy currents path, are frequency-dependent [147]. 

―Foster‖ or dual ―Cauer‖ equivalent circuits are proposed for eddy-currents and skin effects in 

transformer winding [147-149] and magnetic cores [99, 150-156]. Using a continued fraction 

expansion, a standard Cauer equivalent circuit can be derived from the original Foster equivalent 

circuit [147]. The challenge is accurate representation of the magnetic core using ―Cauer‖ 
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models. Linear, static parameter models fail to reproduce the actual material behavior over a 

large range of input frequency and excitation levels without resorting to adaptively re-tuning the 

Cauer model parameters [157]. The accuracy of the final Cauer model depends on the number of 

terms retained in a partial fraction expansion, which determines the number of circuit stages. 

However, the large number of subcircuit stages introduces hundreds to thousands of state 

variables, often with very fast dynamic modes that are not physically meaningful. The physics-

based models (either FEM or MEC), despite their high accuracy, then, are computationally 

expensive, memory-consuming, and vulnerable to numerical instability. 

Model order-reduction techniques are considered to reduce the number of equations and 

achieve a computationally tractable model. Low-order dynamic magnetic models are mainly 

behavioral models that are parameterized from post-processing of FEM simulations (2
nd

 order 

RLC equivalent models [158], bond graph [132], lumped parameters [159]). Empirical 

eigenvectors are used to reduce the nonlinear FEM toroidal core model [160]. This requires 

extensive time-domain excitation/training and computationally sensitive singular-value 

decomposition and eigenvector extraction from the covariance matrix. Proper orthogonal 

decomposition reduces the model order in low-frequency hysteresis [161]. Chapman has 

provided some insight into FEM-based order-reduction techniques for 2-D, single-lamination 

stationary magnetic components (e.g., linear [162-163], saturated [164-166], multiple-winding 

[167], and hysteresis cases [168]). However, to the best of our knowledge, neither a high-fidelity 

MEC model nor its reduced-order model has been developed. 

In this chapter, we first try to provide an accurate dynamic model of magnetic systems, and 

then develop linear and nonlinear order-reduction frameworks. This methodology is then 

extended to systems with linear motion and multiple winding systems. In all cases, the magnetic 
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component is modeled as a subsystem with voltage as the input variable and current as the output 

variable. This is to implement dynamic equations in an integral form and avoid the numerical 

noise associated with differentiation. 

 

3.2 High-fidelity Dynamic Magnetic Equivalent Circuits  

A simple representation of an MEC model is shown in Fig. 3.1(a). Two approaches to MEC 

are nodal-based methods that use magnetic scalar potentials as unknowns, and mesh-based 

approaches that use magnetic flux. Although identical in the linear magnetic region, nodal-based 

approaches are shown to have ill-conditioned matrices in saturated regions [127]. Thus, mesh-

based approaches are considered here. The interaction between the electric and magnetic 

domains is facilitated by a magneto-electric differential gyrator [123]. Electromagnetic curl 

equations of Maxwell’s equations can be reduced to equivalent electric circuits 
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(3.1) 

where F, R, and represent magneto-motive force, magnetic reluctance, and magnetic flux, 

respectively. Using a stacking factor, laminated cores are usually treated as a single bulk core 

[126]. We consider individual laminations as parallel magnetic cores in order to effectively 

capture the actual eddy-current path (Fig. 3.1(b)).  

 In the presence of eddy currents, the magnetic core is divided into a few concentric zones, 

each carrying flux perpendicular to the zone and behaving as a current sheet circulating around 

the cross section (Fig. 3.1(c)) [99], [150-154]. Each zone is modeled as a magnetic-domain R-L 

pair (Fig. 3.1(d)), where kR  represents the thk  zone flux path reluctance, and transference kG   
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Fig. 3.1 MEC model of a laminated structure: (a) Coupled electric-magnetic domain circuits; (b) Laminated 

magnetic core; (c) Single-lamination representation with opposing eddy currents in each magnetic zone; (d) 

Equivalent magnetic R-L ladder structure with (possibly) nonlinear reluctances. 

 

accounts for the conductivity of the thk  zone eddy-current path. The reluctance terms could be 

nonlinear functions of corresponding fluxes to represent possible saturation. 

In available models with few magnetic zones, the mutual interaction between the eddy current, 

kei , and the magnetic flux, k , is neglected [150-154]. This implies a uniform flux density kB  in 

each magnetic zone. This simplification is justifiable when the segmentation thickness, k , is 

less than the magnetic skin depth 

fro
k




1
           (3.2) 

Thus, available models with few magnetic zones are not suitable for PWM excitation 

waveforms with rich high-frequency content, commonly used in motor drives [145]. Moreover, 

MEC models are based on the assumption that the magnetic flux should not cross the permeance 

tube walls and should be distributed homogeneously in the tube cross section. This is not 

satisfied by a single permeance in true 3-D cores, as the flux lines are not uniformly distributed 

and have sharp gradients [143].  

A high-fidelity magnetic equivalent circuit (HFMEC) is considered as a modular assembly of 

flux-tube building blocks. These flux tubes (Fig. 3.2(a)) form concentric magnetic zones (Fig. 
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3.2(b)), which in turn form the final reluctance networks for each lamination. The resulting 

reluctance network of a laminated magnetic structure is shown in Fig. 3.2(c). As the laminated 

plates are in parallel, a single lamination is discussed first. The magnetic core cross section is 

considered as a dense uniform grid (Fig. 3.3(a)) that effectively captures corner effects and can 

be extended outwardly to include external leakage and fringing effects. Grid thickness is defined 

by considering magnetic skin depth   based on material characteristics and desired model 

bandwidth. Magnetic flux density in each element is now safely assumed to be uniform. Flux 

tubes are equal in area, but their depth into the third dimension varies based on the core 

geometry. As an example, the reluctance and transference formulations are shown in (3.3) and 

(3.4) for a toroidal core; r  is the relative permeability,  is the electrical conductivity, zN  is 

the number of magnetic zones, inr  and outr  are the inner and outer radii, respectively, and xd  and 

yd  are the flux tube’s lengths in x and y directions, respectively. 

Each magnetic zone is the combination of several associated flux tubes, where the number of 

associated flux tubes decreases from the outside zone to the center. As an example, the second 

zone and its associated flux tubes are shown as black in Fig. 3.3(a). The k
th

 zone overall 

reluctance is calculated as the parallel combination of its associated flux-tube reluctances. The 

time-varying fluxes in the zones enclosed by that k
th

 zone cause the eddy current, 
kei . This eddy 

current passes through a series combination of flux-tube electrical resistances. Alternatively, the 

equivalent magnetic-domain inductance of each zone is the parallel combination of associated 

flux-tube electrical conductances. The final magnetic R-L ladder structure is shown in Fig. 3.3 

(b). The equivalent circuit is extracted via a parallel combination of R’s and G’s associated with 

each magnetic zone. This results in a large set of ODEs, (3.5), with inv  as the input variable, ini  

as the output variable, and k  as the state variables. 
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Fig. 3.2 Geometrical terminologies for the proposed HFMEC system: (a) A single flux tube element; (b) A magnetic 

zone and corresponding flux tubes; (c) Laminated magnetic structure with insulations and flux tubes. 

 

 
Fig. 3.3 Detailed 3-D MEC model including eddy current: (a) Detailed core cross-section meshing and associated 

flux tubes; (b) Equivalent magnetic R-L structure made of reluctances and transferences.  
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3.3 Linear Order-reduction in HFMEC  

A hybrid linear order-reduction technique from Chapter 2, quasi pole/zero cancellation and 

the subsequent balanced residual method, is used. To verify the proposed linear high- and low-

order HFMEC models, a T400-26 powdered-iron toroidal core, commonly used in PWM dc-dc 

converters, with parameters summarized in Appendix A.1, is considered here. The core input 

impedance is measured over a wide range of frequencies and is shown in Fig. 3.4, along with the 

input impedance extracted from the full-order HFMEC model. As expected, at very high 

frequencies, the effects of the eddy-current losses become significant. This is especially evident 

in the phase plot. As seen in Fig. 3.4, the full 400
th

 order model correctly represents the dynamics 

of the underlying hardware prototype. The proposed HFMEC is compared with a 2-D FEM 

model presented in [163]. As see in Fig. 3.5, the proposed model is more accurate, especially at 

higher frequency where the effects of eddy current are more pronounced. This can be attributed 

to the inherent 2-D approximations involved in the FEM model of [163]. On the other side, the 

FEM more accurately models wire-by-wire representation of the winding than does the lumped 

representation used in HFMEC. This comes at the cost of 822 state variables in FEM compared 

to 400 state variables in HFMEC. A 3-D FEM model with wire-by-wire representation of 

winding structures will be computationally prohibitive (due to the significant increase in the 

number of elements required), and numerically unstable (due to the mesh generation process, 

grid details, and round-off errors frequently encountered in FEM models). Once the HFMEC 

model is verified with hardware measurements and compared to the FEM model, quasi pole/zero 

cancellation followed by the balanced residual method is implemented.  

When considering the input-impedance transfer function of the inductor core, a large number 

of closely spaced poles and zeros is observed (Fig. 3.6). The quasi pole/zero cancellation with 
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10% tolerance is applied. The resulting model is of order 10, while keeping close agreement with 

the original full-order model (Fig. 3.7). To further reduce the model order from 10 to 2, balanced 

truncation is used (Fig. 3.8). The condition number of the system matrix is improved from 

101088.4 

 

in the original full-order model to 41022.6   in the final reduced-order model. This 

greatly improves the simulation stability.  

The model order is further reduced from 2 to 1 using balanced residualization. As seen in Fig. 

3.9, this extra level of reduction jeopardizes model accuracy in the desired frequency range (2 

MHz). Thus, the choice of 2
nd

-order model as the final reduced model is justified. If model 

fidelity in a higher frequency range is desired, then of course higher-order models can be used. 

 
Fig. 3.4 Input impedance characterization of example inductor predicted both by the full-order model and hardware 

measurements. 
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Fig. 3.5 Input impedance characterization of the example inductor predicted by the proposed HFMEC model and the 

2-D FEM in [163]. 

 
Fig. 3.6  Zoomed-in representation of selected pole/zeros of the full-order model. 

 

 
Fig. 3.7 Input-impedance characterization of original full-order model and resulting reduced-order model by quasi 

pole/zero cancellation.  
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Fig. 3.8  Input-impedance characterization of original full-order model and resulting reduced-order model by quasi 

pole/zero cancellation and subsequent balanced residualization method. 

 

 

Fig. 3.9  Input-impedance characterization of original full-order model and resulting 2
nd

 and 1
st
 -order models. 

 

The resulting low-order system can be transformed to a behavioral model suitable for system-

level simulation. The impedance transfer function of the resulting 2
nd

-order model is 
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As an example of a behavioral model, a 2
nd

-order lumped-parameter equivalent circuit is shown 

in Fig. 3.10. The overall impedance transfer-function extracted from Fig. 3.10 is  
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Fitting the equivalent circuit impedance of Fig. 3.10 to the transfer function of (3.7) leads to a set 

of nonlinear equations 
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      (3.8) 

which can be iteratively solved to find the circuit parameters in Fig. 3.10  

pF241CH,24.85L,k55.2,m3.15,m7.7 L  CLs rrr  (3.9) 

 

Fig. 3.10. An equivalent lumped-parameter inductor model. 

 

3.4 Order-reduction in HFMEC with Saturation  

The proposed HFMEC is a nonlinear system when saturation is considered in reluctance 

formulation in (3.1), and resulting permeabilities are a nonlinear function of the flux  ( )k k  . 

This will modify the HFMEC LTI system of equations to a nonlinear set of equations 
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In order to use piecewise-linear reduction techniques established in Chapter 2, one may linearize 

the system in (3.10) at several steady-state points or along an excited trajectory. In stationary 

magnetic systems with fixed-coil windings distribution, the magnetic flux distribution and 

resulting effective permeability are determined by the input current level in steady state. It is 

shown in [165] that the magnetic vector potentials of the static Maxwell’s equations can be 

determined solely by the dc input current. The resulting magnetic vector potentials are used to 

determine the flux density and, therefore, the effective permeabilities. A similar approach is 

taken to determine the effective permeabilities in the HFMEC circuit corresponding to a dc input 

current level in steady state. The flux derivatives, and therefore the eddy currents, are zero in the 

steady state associated with the dc current excitation. As shown in Fig. 3.2(b), the eddy currents 

are the MMF drops over the transferences (magnetic inductances) in the magnetic domain 

circuit. Therefore, zero eddy current implies a zero MMF drop over magnetic inductances. This 

simplifies the R-L ladder structure of the magnetic domain circuit to a parallel combination of the 

nonlinear reluctances (Fig. 3.11), from which corresponding permeability and reluctance terms 

are iteratively extracted. In particular, using the magnetic-domain circuit in Fig. 3.11, one may 

solve the nonlinear equations  

nzjiji
ss
in kjNiΦNI  1,1,,         (3.11) 

where N is the number of winding turns, ss
inI

 

is the given dc input current magnitude, Nz is the 

number of magnetic zones, and kn is the number of flux tubes in the n
th

 magnetic zone. The 

saturated nonlinear model is linearized around the steady state associated with a given input 

current ss
inI . Thus, the small-signal parameters corresponding to different values of input dc 

currents are extracted and used to form appropriate transfer functions (dynamic impedance 

and/or admittance). Now, any linear reduction process introduced in Chapter 2 can be applied to 
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reduce the model order. It should be noted that the steady-state points are only used for model 

extraction, whereas the resulting final model is dynamic. 

 
Fig. 3.11 Magnetic-domain circuit in steady state. 

 
Fig. 3.12  Nonlinear magnetic charactersitics, B-H curve, for powdered iron [169] and laminated steel cores [170] 

considered. 

 

The nonlinear magnetic characteristics, B-H curves, for the two considered cases here, T200-

26 powdered iron and M-19 laminated steel, are shown in Fig. 3.12. The geometrical data of 

toroidal cores for both powdered iron and laminated steel are given in Appendix A.1. The input 

admittance of the laminated steel core is extracted over a wide range of frequencies 

corresponding to the unsaturated  0ini  and saturated  5ini  cases. Linear order-reduction 

techniques reduce the model order from 300 to 3. The results are overlaid in Fig. 3.13, where an 

excellent match between corresponding reduced- and full-order models is observed. The 

condition number of the system matrix is greatly improved from 111028.1 

 

and 101017.4 

 

in 

the full-order models, to 4103  and 41096.2 

 

in the reduced-order models, for unsaturated and 

saturated cases, respectively. This greatly simplifies model execution for transient simulations. A 

similar process is done for powdered iron cores.  
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Fig. 3.13 Full- and reduced-order transfer functions for different current magnitudes: unsaturated  0i   and 

saturated laminated steel  5i .
 

 

The transfer-function extraction and order-reduction are implemented in an automated loop. 

The resulting gains, poles, and zeros are saved as numerical functions of the input current 

magnitude. For a T200-26 powdered iron core, the gain, poles, and zeros of the reduced-order 

model transfer function are plotted in Fig. 3.14, as functions of the input current magnitude. 

These data are re-organized and stored as lookup tables with appropriate interpolation. Then, the 

nonlinear order-reduction method is implemented, as shown in Fig 3.15. For a given input 

current value, iin, the corresponding gain, poles, and zeros are extracted from previously 

developed lookup tables to form a transfer function valid for the vicinity of ini  
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Fig. 3.14  Gain, zeros, and poles as functions of input currents for the reduced-order model of the T200-26 powdered 

iron core considered here. 

 

 

Fig. 3.15 Implementation of the nonlinear order-reduction framework. 
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It should be noted that the resulting systems (3.12) are used to approximate the original 

nonlinear system within a corresponding current region, instead of the entire state-space region. 

This greatly simplifies the weighting procedure. As opposed to the computationally intensive and 

numerically sensitive time-domain training procedure involved in the conventional Krylov-

subspace methods [164], numerical transfer function extraction is a rapid and almost 

instantaneous procedure. Also, as the steady-state solutions are used to extract the linear models, 

instead of state variables populated along a training trajectory, the resulting model is not limited 

by a training input voltage. Moreover, the higher currents can be accommodated by assuming 

that the model extracted for the highly saturated current, satss
inI , , is valid for  ,,satss

inI . This is a 

reasonable assumption; a magnetic system behaves almost linearly when it is highly saturated. 

To verify the original full-order model (300 states) and the resulting reduced-order model (3 

states), a sinusoidal input voltage   tvin 120sin5.7  is applied to a toroidal core consisting of 

stack of a 50 laminations of M-19 steel. The hardware measurement results are shown in Fig. 

3.16(a), where the current waveform clearly indicates saturation. The proposed full-order 

HFMEC model accurately portrays the system dynamics, as seen in Fig. 3.16(b). The proposed 

reduced-order model accurately reproduces the input currents predicted by the hardware 

measurement and the full-order model, as shown in Fig. 3.16(c).  

Next, to verify the proposed nonlinear reduction methodology under the nonsinusoidal 

excitation, a PWM input voltage, with 10 V amplitude and 500 Hz frequency, is applied to the 

T200-26 powdered iron core. As shown in Fig. 3.17(a) and (b), the input current of the proposed 

nonlinear HFMEC model and the measured current show an acceptable match. The difference 

can be attributed to the absence of magnetic hysteresis in the proposed model. Moreover, as the 

study demonstrates, the input current waveform resulting from the reduced-order model (Fig. 
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3.17(c)) closely resembles that obtained from the full-order model (Fig. 3.17(b)), which verifies 

the reduction procedure.  

 
Fig. 3.16 Sinusoidal input voltage and resulting current waveforms: (a) Hardware measurement; (b) Full-order 

HFMEC with 300 state variables; (c) Reduced-order HFMEC with only 3 state variables. 

 

 

 
Fig. 3.17 PWM input voltage and resulting current waveforms: (a) Hardware measurement; (b) Full-order HFMEC 

with 300 state variables; (c) Reduced-order HFMEC with only 3 state variables. 
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3.5 Order-reduction in HFMEC with Relative Motion 

Dynamic simulation of time-variant magnetic systems, e.g., magnetic systems with relative 

motion, is considerably more complex. Available reduced-order models are model specific [159]. 

A physics-based phase variable model of PM synchronous machines is developed to utilize an 

FE model and HIL real-time simulation [171]. The developed model uses tables that are obtained 

as a post-process of FE calculations over a complete ac cycle, to describe the variation of 

inductances with the rotor position and armature currents. A simpler, more efficient physics-

based approach based on the HFMEC model is considered. 

    

3.5.1 Model formulation 

A simple representation of a plunger is shown in Fig. 3.18(a). This plunger consists of a 

stationary and a moving U93/76/30 (Ferroxcube Inc. [172]) core. Material parameters and 

specifications are summarized in Appendix A.2. Mechanical and magnetic domains are coupled 

by incorporating relative motion in position-dependent air-gap and fringing reluctances. The 

interaction of the electric and mechanical domains is accounted for by the induced voltage term 

(back EMF) in the electric domain. Similarly to Section 3.2, a dense grid is imposed on the 

magnetic core cross section (Fig. 3.18(b)), where the second magnetic zone is shown in black. In 

the presence of eddy currents in dynamic MEC models, each magnetic zone is modeled as a 

magnetic-domain R-L pair (Fig. 3.18(c)). Magnetic-domain Rk represents the k
th

 zone flux-path 

reluctance, and transference Gk accounts for the conductivity of the k
th

 zone eddy-current path. 

The corresponding reluctance and transference terms are formulated in (3.13) and (3.14), 

respectively, based on the geometrical and material data. 



45 

 

  
  

  
     

 

 

2 1

0
1

0

1
1 1

2 1 2 1 2

0.5 0.5 0.5

2

k z
N kzz z

r x y
iin z out z in z

in out
Nz

r x y

k N
N k N k

d d
r k d r k d r k i d

r r

d d

 

 

 




                     


 



  (3.13) 

  
    

 2 1

1

1
1 1

2 1 21 1

0.5 (0.5 ) 0.5

k zN kzy z x

x in z out z i y in z

Nz

G k N
d N k d

d r k d r k d d r k i d

G arbitary

 

 




  

               
 


 (3.14) 

 

 

Fig. 3.18.  Detailed MEC representation of an actuator: (a) Actuator with stationary and moving legs; (b) Detailed 

core cross-section meshing and associated flux tubes; (c) Position-dependent MEC model with a long R-L ladder 

structure, back EMF and fringing. 

 

The full-order HFMEC model is constructed according to the methodology proposed in 

Section 3.2. It should be noted that the mechanical position is considered as a state variable in 

model formulation in order to facilitate the back EMF representation in the electric domain (Fig. 

3.18(c)). The mechanical equations provide the moving leg location, taking into account the 

possible positional constraints (damper, spring, etc.). The position-dependent air-gap and 

fringing reluctances are given (3.15). The magnetic flux is not confined to the core area and an 

equivalent air gap is considered. Fringing effects are incorporated, as shown in Fig. 3.18(c), by 

considering the spatial relationship between the air-gap distance, xm, and the core geometry  
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For a given position of the moving leg, xm, the resulting HFMEC model defines a linear system. 

When the change in position is considered, the final model is time-varying (position and speed 

dependent). Using the magnetic flux and mechanical positions as state variables, x, input voltage 

as the input variable, u, and the input current as the output variable, y, the final full-order, state-

space model is formulated as  

     

   

   
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.     (3.16) 

 

3.5.2 Order-reduction framework 

A dense grid in Fig. 3.18(b) produces a large R-L ladder structure that implies a time-varying 

system with a large set of state variables in (3.16). However, for a fixed mechanical position and 

speed, the resulting state-space model is linear. Quasi pole/zero cancellation and fast state 

eliminations are used to reduce the model order as set forth in Chapter 2. The remaining modal 

equations constitute the final reduced-order model for the given mechanical position and speed. 

For the position and speed range of interest, several input-admittance transfer functions are 

extracted numerically. This is easily implemented in an automated loop. The resulting gains, 

poles, and zeros are saved as numerical functions of the moving leg position and speed. These 

data are re-organized and stored as lookup tables with appropriate interpolation. The nonlinear 

order-reduction method is then represented by the block diagram shown in Fig. 3.19. For a given 

value of the mechanical position, xm, and speed term, vm, the corresponding gain, poles, and 
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zeros are extracted from previously developed lookup tables to form a transfer function valid for 

the vicinity of xm and vm : 
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Fig. 3.19. Implementation of the proposed reduced-order model for an electromechanical system. 

 

The model order is arbitrarily determined by n. The resulting transfer functions are converted 

to the state-space model in a controllable canonical form. For a given input voltage vin and 

mechanical variables  mm vx ,  at any time step, the input current, iin, is obtained for the next time 

step of the transient simulation. The final nonlinear reduced-order model replaces the original 

nonlinear full-order model. 

 

3.5.3 Model verification 

The full-order MEC model of the plunger in Fig. 3.18(c) is constructed according to the state 

equations in (3.16). The resulting state-space model is of the order 300. The input-admittance 

transfer function of the actuator is attempted at several points on the movement path. As 

expected, eddy current losses become significant at higher frequencies and the magnetic core 

reveals some resistive behavior, predominantly in the phase-domain. Respective full-order 
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models are successfully reduced from 300 to only 5 state variables, using quasi pole-zero 

cancellation and fast state elimination, as explained in Chapter 2. The full- and reduced-order 

transfer functions for two extreme locations of the moving leg,  0mx   and  2mx mm , where 

the moving leg is at stop, are plotted in Fig. 3.20. Moreover, for a given position on the 

movement trajectory,  mm1mx , and corresponding to different speed terms (accelerating 

 2mv  and decelerating  2mv ), respective full- and reduced-order models are shown in 

Fig. 3.21. As seen in Figs. 3.20 and 3.21, excellent matches between corresponding full- and 

reduced-order models are reported in all cases.  

 
Fig. 3.20. Full- and reduced-order transfer functions for different locations  0mx   and  mm2mx  with zero 

speed. 

 

Fig. 3.21.  Full- and reduced-order transfer functions for different speeds terms  2mv   and  2mv    

corresponding to a given mechanical position  mm1mx . 



49 

 

The nonlinear reduced-order model is constructed according to the methodology proposed in 

Chapter 2. A PWM input voltage and a sinusoidal varying mechanical position are considered, 

although the methodology is general and not restricted to any particular excitation/movement 

trajectory. As the moving leg leaves the stationary leg, the dominant air-gap reluctance is 

increased. This reduces the equivalent inductance magnitude, thereby increasing the current 

magnitude for a given input voltage. As seen in Fig. 3.22, the proposed reduced-order model 

accurately reproduces the input current predicted by the full-order model, while significantly 

reducing the model order and computational intensity. 

 

 

Fig. 3.22.  Input voltage, mechanical position, mechanical speed, and resulting input current for full- and reduced-

order models (300 and 5 state variables, respectively). 
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3.6 Order-reduction in HFMEC with Multiple Windings 

Magnetic components in power and energy systems, e.g., transformers, almost always are 

multi-port magnetic systems with multiple windings. Early reduced-order modeling efforts in 

[173] apply Kron reduction on the detailed lumped-parameter model of a utility-scale 

transformer. This is not a first-principle design approach, as the fundamental laws of physics are 

not followed and the transformer model is linear and lossless. In [174], the higher-order model of 

the transformer winding structure is considered. Then, several series-connected turns are lumped 

to structurally reduce the model order. The magnetic core does not consider the eddy current 

dynamics or magnetic nonlinearity, and the structural reduction is not mathematically rigorous. 

High-order transformer models conventionally focus on the high-frequency effects in 

transformer windings (e.g., proximity, skin , and capacitive effects [175]). A very high frequency 

transformer FEM model in [176] includes individual representations of winding turns and 

corresponding turn-to-turn capacitances. The resulting multi-conductor transmission line model 

is later reduced using moment-matching methods. Likewise, in [177], the high-frequency 

distributed capacitive effects between coil insulations are expressed as an extended--equivalent 

transmission-line model. This model is later reduced by the compensated truncation of balanced 

realizations. Lumped equivalent circuits are extracted from reduced-order high-frequency 

transformer winding models [178]. Order-reduction of high-frequency eddy current dynamics in 

multiple-winding systems has received little attention.  

 

3.6.1 Model formulation 

An example of multiple-winding systems with w sets of windings is considered in Fig. 3.23(a). 

The external resistance and inductance of the k
th

 winding are shown as rext,k and Lext,k, 
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respectively. In our context, the terminal voltage, vk, and current, ik, of the magnetic subsystems 

are interface variables required to integrate the magnetic subsystem in the overall electrical 

systems. The electric and magnetic domains are coupled though a differential gyrator (Fig. 

3.23(b)). The HFEMC model of the magnetic core that includes a large R-L ladder structure is 

considered in the magnetic domain (Fig. 3.23(c)).  

The dynamic HFMEC model of the multi-winding structure shown in Fig. 3.23(a) is extracted 

here. The electric-domain dynamics are sets of w differential equations associated with the 

external winding variables and the magneto-electric differential gyrator as 

wk
dt

dΦ
Np

dt

di
Lirv kk

k
kextkkextk 1,1

,,         (3.18) 

where w is the number of windings. Magnetic-domain dynamics are extracted from Fig. 3.23(b)  
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     (3.19) 

Assuming evenly distributed windings to minimize the leakage inductances, the algebraic 

relationship relating the electric and magnetic domains, based on Fig. 3.23(b), is  

 21,12,11,1

1
1

ΦΦRRRiNp k

w

k

kkk 


        (3.20) 

Here, pk represents the polarity and direction of the k
th

 winding voltage and current determined 

by the winding taps and configuration, respectively. From (3.18)-(3.20), one may drive the 

standard state equations of the overall system: 
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Fig. 3. 23.  HFMEC model of a multiple-winding structure: (a) The multiple-winding structure; (b) Coupled electric-

magnetic domain circuits; (c) Equivalent magnetic R-L structure resulting from detailed core cross-section meshing 

and associated flux tubes. 
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Matrices  ED,C,B,A,  define a standard state space form. Matrices E and A are large, sparse, 

and structured. The full state vector, fx , constitutes the external winding currents, ki , and the 

zonal flux variables, kΦ . The external winding input voltages, kv , are considered as the input to 

the system, u . The external winding currents, ki , are the resulting system output, y . The final 

model order is 1 zNw . 

 

3.6.2 Model-order reduction 

The proposed HFMEC is highly accurate but computationally expensive if a large set of 

magnetic zones, Nz, are required, e.g., for PWM excitations with rich frequency contents. The 

proposed HFMEC is a nonlinear system when saturation is considered in reluctance formulation. 

Iterative solvers required for accurate solution of nonlinear systems renders the full-order model 

impractical. This issue is addressed using MIMO order-reduction techniques. 

 

3.6.2.1 Linearization based on steady-state solutions 

Linear systems based on steady-state solutions are established. For stationary magnetic 

systems with fixed-coil winding distribution, the magnetic flux distribution and resulting 

effective permeability are determined by the steady-state input current level of all windings, 

 ss
w

ssss III ,,, 21  . The flux derivatives, and therefore the eddy currents, are zero in the steady state 

associated with dc current excitations. As seen in Fig. 3.23(b), the eddy currents are the MMF 
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drops over the transferences (magnetic inductances) in the magnetic domain circuit. In steady 

state, the R-L ladder structure of the magnetic domain circuit in Fig. 3.23(b) is simplified to a 

parallel combination of the nonlinear reluctances in Fig. 3.24. Then, corresponding permeability 

and reluctance terms are iteratively extracted by solving the nonlinear equations  

 

   

























1

,1,

1,1,

1

1,

jjjjj

j

jkjj

zjjkjj

w

k

ss
kkk

ΦΦAreaArea

l
RRR

NjΦΦRRINp

j

j







    

(3.22) 

where ss
kkk INp ,,  are the polarity/direction, number of turns, and the given dc input current 

magnitude of the k
th

 winding. As shown in the reluctance formulation, the magnetic 

permeability, j , is a function of the flux passing through the corresponding magnetic zone, 

 1 jj ΦΦ . The permeability, j , is formulated as a polynomial function based on the B-H 

relationship shown in Fig. 3.25. The iterative solution of (3.22) at given dc current magnitudes 

provides the effective permeability in the j
th

 magnetic zone, j . Thus, the saturated nonlinear 

model can be simplified to a simpler model around the steady state associated with given input 

currents ss
w

ssss III ,,, 21  . The small-signal parameters corresponding to different values of input 

dc currents are extracted and used to form appropriate transfer functions (dynamic admittance). It 

should be noted that the steady-state points are only used for model extraction, whereas the 

resulting final model is dynamic. The linear MIMO reduction techniques can now be applied.  

 
Fig. 3.24.  Magnetic-domain circuit in steady state. 
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Fig. 3.25.  Nonlinear magnetic charactersitics, B-H curve, for powdered iron [169] considered. 

 

3.6.2.2 MIMO order-reduction procedure 

The original model is of order n, i.e., it is described by n states. The goal is to generate a 

similar model with only q state variables  qn  , while preserving the original input-output 

relationship of the original model. Matrix Pade via Lanczos, PRIMA [53], block Arnoldi, global 

Lanczos [54], and global Arnoldi algorithms [55] are proposed for MIMO order reduction. The 

choice of order-reduction procedure is arbitrary and any linear MIMO method can be used. For 

the projection-type reduction techniques, an orthonormal projection matrix, nqW , can be 

generated from a p
th

-order Krylov subspace: 

     WBAEA,B,ABA,EAK colspspan
p

p 






  111111       (3.23) 

via the block Arnoldi method [79], where wpq   and w  is the number of inputs (i.e. number 

of winding sets). The reduced system matrices are extracted by applying the projection matix,
 

nqW , in (3.23) to the original state matrices in (3.21) and modifying the state vector 
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Equation (3.24) defines the new reduced-order ( thq -order) model. The resulting reduced-order 

transfer function will match the first p  of the Taylor series expansion in the Laplace variable, s , 

of the original high-order system transfer function. 

The order-reduction procedure is examined for a two-winding system, i.e., a transformer with 

geometrical data summarized in Appendix A.3. The magnetic core is a powdered iron core with 

material characteristics shown in Fig. 3.26. The high-order HFMEC model is linearized at the dc 

operating point    1,2, 21 ii . The transfer functions from the first voltage to the first and second 

winding currents are extracted and shown in Fig. 3.26. The resistive effects of eddy current 

dynamics are obvious in higher frequency ranges. Linear order-reduction techniques are used to 

reduce the model order from 300 to only 4 state variables. The results are overlaid in Fig. 3.26, 

where an excellent match between corresponding reduced- and full-order models is observed. 

The condition numbers are 61063.5   and 111033.3  ,
 and the fastest eigenvalues are 91039.1   

and 131004.1   for reduced- and full-order models, respectively. Thus, the order reduction 

process greatly simplifies model execution and improves the accuracy of numerical integration 

for transient simulation.  
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Fig. 3. 26.  Full- and reduced-order transfer functions at operating point 1,2 21  ii A: (a) From 1v to 1i ; (b) 

From 1v to 2i . 

 

3.6.2.3 Parameterization of reduced-order model 

To facilitate nonlinear order reduction, reduced-order linear models are combined in a 

piecewise-linear fashion based on the winding current magnitudes. Trivially, for the multiple-

winding case, the selection and combination of reduced-order linear models is based on the 

current level in each individual winding. This is a tedious process as the number of linearized 

systems increases on the order of m
w
, where w is the number of windings and m is the number of 

linearized points required to sweep each current axis. For example, a 4-winding system with only 

5 linearization points requires 62554   reduced-order models!  

Certain winding configurations, material characteristics, and winding distributions in power 

electronics applications can alleviate the complexity of model formulation. First consider a Y-

connected 3-phase transformer  
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Thus only two independent currents are required. This shows how winding configurations can be 

used for structural reduction. A more elaborate discussion of structural reduction is given in 

[174]. Secondly, as seen in Fig. 3.25, the magnetic B-H curve can be well approximated with a 

few straight lines, i.e., only a few points along each current axis are required. Finally, in order to 

maximize the mutual inductance and minimize the leakage inductances, windings are evenly 

distributed over the magnetic core and are overlapped. This winding distribution implies that, in 

steady-state, the effective permeability of the magnetic reluctances in Fig. 3.23(b) can be solely 

determined by effective magneto-motive force 


w

k

kkk iNp

1

. Thus, we use the total effective MMF 

to parameterize the reduced-order models 
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           (3.26)   

Localized reduced-order models  rrrr D,C,B,A , are formulated as numerical functions of   

and are saved as lookup tables. The nonlinear order-reduction method is implemented, as shown 

in Fig. 3.27. In the transient simulation, for the given input voltage values,     nwn tvtv ,,1  , and 

previously found  nt , the corresponding system matrices are extracted from lookup tables to 

form a transfer function valid for the vicinity of  nt : 

                   Twrrrr
T

w svsvssisi ,,,, 1
1

1  


 DΒAIC     (3.27) 

And the simulation proceeds to the next time step with updated current values,     111 ,,  nwn titi  .  
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Fig. 3. 27.  Implementation of the nonlinear order-reduction framework. 

3.6.3 Model verification 

The same two-winding system (e.g., a transformer) is discussed, although the proposed 

reduction framework is general and applicable to systems with an arbitrary number of windings. 

Two types of frequently encountered excitations in power electronics systems–PWM and 

sinusoidal excitations–are applied as the input voltage to the primary winding. The proposed full-

order model has 300 state variables, and the reduced-order models have only 4 state variables. 

First, a PWM input voltage with 12 V and 500 Hz frequency is applied to the primary winding. 

The measured current in Fig. 3.28(a) and the input current of the proposed nonlinear HFMEC 

model in Fig. 3.28(b) have an acceptable match. The slight difference can be attributed to the 

absence of magnetic hysteresis in the proposed HFMEC model, as well as the difference between 

the ideal voltage source used in the simulation study and the realistic voltage source used in the 

experimental setup. More importantly, as the study demonstrates, the input current waveform 

resulting from the reduced-order model (Fig. 3.28(c)) closely resembles that obtained from the 

full-order model (Fig. 3.28(b)), which verifies the reduction procedure. The induced secondary 

voltage and currents are extracted from the hardware measurement, full-order, and reduced-order 

models in Fig. 3.29(a), (b), and (c), respectively. The acceptable match among the respective 

model waveforms validates the accuracy of the original full-order HFMEC and verifies the 

proposed order-reduction process. 
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Fig. 3.28.  PWM input voltage and resulting input current waveforms: (a) Hardware measurement; (b) Full-order 

HFMEC; (c) Reduced-order model. 

 

 

 
Fig. 3.29.  Secondary voltage and current waveforms for a PWM excitation: (a) Measurement; (b) Full-order 

HFMEC; (c) Reduced-order model. 

 

 

Next, a sinusoidal excitation with 18.5 V and 300 Hz frequency is applied to the primary 

winding. The primary and secondary winding waveforms are shown in Figs. 3.30 and 3.31, 

respectively. The primary and secondary current waveforms resulting from the proposed 

HFMEC model (Fig. 3.30(b) and 3.31(b)) closely resemble those extracted from the hardware 

setup. Moreover, respective current waveforms obtained from the reduced-order model match 
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those obtained from the hardware measurement and full-order HFMEC model. This verifies the 

reduction method.  

 

 
Fig. 3.30.  Sinusoidal input voltage and resulting input current waveforms: (a) Measurement; (b) Full-order 

HFMEC; (c) Reduced-order model. 

 

 
Fig. 3.31.  Secondary winding waveforms for a sinusoidal excitation: (a) Measurement; (b) Full-order HFMEC; (c) 

Reduced-order model. 
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3.7 Summary  

A general framework for accurate modeling of power electronics magnetic components is set 

forth. The proposed HFMEC model consists of modular flux tubes and a long R-L ladder 

structure in MEC to accurately represent the high-frequency eddy-current dynamics and 3-D and 

corner effects. The large number of state variables (typically several hundred) resulting from the 

HFMEC models is required to justify the assumption of uniform flux density in each cross 

segment/element. To obtain a more efficient reduced-order linear model that can be used for 

small-signal analysis, the quasi pole/zero cancellation, truncated balanced residuals, and fast 

state elimination are considered. To incorporate the nonlinearity introduced by saturation in the 

large-signal dynamic model, a piecewise linear order-reduction technique is set forth. For the 

two types of magnetic cores (powdered iron toroid and laminated steel toroid), the computational 

efficiency of the HFMEC models (with 400 and 300 state variables) is greatly improved by 

constructing the linear/nonlinear reduced-order models (with only 2 and 3 state variables) using 

the proposed order-reduction frameworks. The proposed models are verified in time and 

frequency domains with numerical simulation and hardware measurements.  

Next, the proposed HFMEC model is extended to include relative motion and back EMF. The 

original high-order model is replaced with a piecewise linear reduced-order model that is a 

numerical function of the mechanical position and speed. The final reduced-order model is 

verified in both time and frequency domains. If this approach is to be employed as a design tool 

for electromechanical systems, force formulation is required. Direct Maxwell stress tensor [135] 

and virtual work methods based on the spatial derivatives of stored energy [131] are candidate 

approaches for force calculation, and are subjects of future work.  
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Finally, a technique for macro-modeling of a multiple-winding magnetic structure from 

physics-based HFMEC models is developed. Based on the effective magneto-motive force 

parameters in steady state, the nonlinear HFMEC model is linearized for different winding 

current combinations. As the model description is in state space form, many SISO reduction 

techniques can be generalized to the MIMO systems. The block Arnoldi method is used to 

reduce the resulting linear system in steady state. Then, a framework is provided to replace the 

original full-order model with a collection of parameterized reduced-order models. The final 

reduced-order model is verified in both time and frequency-domains for different excitation 

types using hardware measurements and the original full-order HFMEC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

CHAPTER 4  

FINITE ELEMENT MODELS WITH RELATIVE MOTION 

 

4.1 General Framework 

Conventional reduced-order modeling of electromechanical systems is model-specific and 

depends on expert knowledge (e.g., lumped-parameter extraction by FEA [179]). Alternatively, 

an automated methodology is sought where the mathematics are rigorous yet transparent to the 

end user. A conceptual schematic for automated low-order model extraction of electro-

mechanical systems is shown in Fig. 4.1(a). The basic principle of electromechanical systems 

requires three sets of equations (electromagnetic field, electric circuit, and mechanical laws) to 

be solved simultaneously [180]. The electrical and mechanical subsystems provide the input 

voltage, vin, and mechanical position, xp, to the magnetic subsystem. Although external and 

mechanical systems can be accurately modeled with a few state variables, the magnetic domain, 

where the diffusion and force components are coupled, significantly increases the system order. 

Thus, our order-reduction efforts are concentrated on physics-based models of the magnetic 

domain with interface variables from external electrical and mechanical domains (Fig. 4.1(b)). In 

this chapter, using a unified grid, magnetic field equations are modeled by FEM and later 

reduced. 
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Fig. 4.1. Reduced-order modeling of electromechanical systems: (a) Hybrid electromechanical system 

representation; (b) Magnetic domain, reduced-model generator block diagram. 

 

4.2 Mesh Generation for Incorporating Relative Motion  

Mesh generation, domain discretization, and element assignment are the first steps in FEM 

formulation. Relative motion necessitates updating the original mesh (conventionally obtained 

through Delauney triangularization) or applying an adaptive rotation mesh in system dynamics. 

State variables are represented by magnetic vector potentials, A, associated with nodes generated 

in meshing process. In the partial or full re-meshing process, some nodes are removed or 

renumbered, and the mesh integrity is disturbed when the nodes in the mesh cross edges. As a 

consequence, corresponding magnetic vector potentials may not act as state variables. In other 

words, state equations describing the system dynamics at each time step are of different 

dimensions. One may use hybrid approaches that combine Laplace equations in an adaptive 

macro-element of the moving part, with a fixed-size FEM model of the ferromagnetic parts 

[181]. This imposes heavy restrictions on the geometry of the studied models, is heavily 

analytical, and relies on expert knowledge. 
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To address the above-mentioned issues, a fixed grid is considered for the linear plunger shown 

in Fig. 4.2. A unified grid is implemented where the movement path is discretized along the x-

axis according to the device structure. The extension to the y-axis is straightforward. Also, rotary 

magnetic devices can be accommodated by considering the finite-element formulation in polar 

coordinates  ,r  . The magnetic domain is divided into two regions R1 and R2, where the second 

region contains the moving leg, as shown in Fig. 4.2. The movement path is discretized with fine 

grid resolution in R2 to accurately incorporate relative movement. Moreover, a fine mesh 

facilitates accurate representation of magnetic fields in the air gap, where energy transfer occurs. 

Special attention is paid to the nodes on the boundary of R1 and R2, when both grids are overlaid. 

This is to meet the boundary conditions when using first-order elements in finite-element 

formulations [182]. Using fixed grid generation for the plunger shown in Fig. 4.2, 3577 nodes 

are created. Once elemental coordinates are extracted, state-space models can be generated by 

FEM. 

 

 
Fig. 4.2 Linear plunger with decomposed fixed grids. 
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4.3 State Space Model Formulation 

A linear plunger, with geometrical and material data summarized in Appendix A.4, is 

considered in Fig. 4.2. The moving leg position is externally determined (through force 

formulation and mechanical constraint). A slow variation in mechanical position is considered 

and, therefore, the back EMF is neglected. FEM formulation of stationary inductors is described 

in the literature, e.g. [163], and is extended to the resulting position-dependent inductor. Starting 

from Gauss’s law, 

0 B            (4.1) 

, where B is the magnetic flux density, one can define a magnetic vector potential, A, such that 

BA             (4.2) 

The gauge condition (Coulomb gauge)  

0 A            (4.3) 

uniquely defines A and leads to better conditioned system matrices. One may formulate the 

magnetic field equations using (4.2), Ampere’s law, Faraday’s law, and material characteristics 

as 
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where H and E are magnetic and electric field intensities, J is the current density, and w10 is the 

depth into the page. Electric conductivity
 
 and magnetic permeability   vary in the x-axis and 

y-axis directions. There are three regions—air, magnet, and copper—with different material 
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characteristics—  1;0  r ,  4000;200  r  and )1;105( 7  r , respectively. 

The terms 
1bv  and 

2bv are the bar voltages over the left and right wires, respectively. The eddy-

current contribution is denoted by 
t

A
 . In the 2-D case considered, flux density

 
B and field 

intensity H have x-axis and y-axis components  
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Thus, magnetic vector potentials A and current density J have only z-axis components 
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This simplifies the vector-based partial differential equations into a scalar-based ODE for 

magnetic vector potentials in the z-axis, Az(x,y), as  
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Applying the Galerkin method [182] to first-order linear elements and patching the elemental 

equations into a global system of equations yields the global state equations  

 
dt

d
iin

A
TCPSA           (4.8) 

where matrices nnS , nnC , and nnT  , and vector 1nP
 
are standard notations found in all classic 

finite element textbooks [182-183]. 1nA
 
constitutes the global vector of the magnetic vector 

potential where n is the number of nodes after the redundant coincident elemental nodes are 

eliminated. Matrix C is a function of electric conductivity and thus zero outside the wire regions. 

Matrix S is a function of permeability and thus varies by the position of the moving leg. Matrix 
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T and vector P are constant. Moreover, over the wire regions, the FEM formulation leads to 

[163]
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Vector b is a standard FEA vector that is a function of electrical conductivity and thus is zero 

outside the wire regions. The details of model formulation are given in full in [163], and are 

omitted here for brevity. The finite element region and external circuit variables are coupled via  
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Equations (4.8)-(4.10) define the final full-order differential-algebraic equations. The original 

model is of order 3577, and is reduced to only 3 state variables in the next section.  

 

4.4 Order Reduction and Model Verification 

For a given position of the moving leg, xp, the resulting FEM is linear. The linear state-space 

model at each discreet point in the movement path is of order 3577, and includes both algebraic 

and state variables. The state variables are associated with the induced eddy current, 
t

A
 , 

corresponding to nodes in the magnet and copper regions. The electric conductivity of air is zero, 

and corresponding entries in matrices C and T in (4.8) are zero. Thus nodes in the air have 

associated algebraic variables. They can be algebraically related to the nodes in the magnet and 

copper and can be removed from the state equations.  Kron reduction, as set forth in Chapter 2, is 

used to eliminate the algebraic variables associated with the nodes in the air. The system 

equation in (4.8) is partitioned to  
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where vector nodes are associated with metal/magnet, air, and metal/magnet-air boundaries, 

denoted by subscripts m, a, and b, respectively. The magnetic vector potential, A, is partitioned 

as  

  abm AAAA .          (4.12) 

By applying Kron reduction to the symmetric equations in (4.11), one may have 
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where nodes in the air are eliminated, but can be retrieved algebraically from the state equations  

babaaa ASSA
1            (4.14) 

Equations (4.9) also will be modified accordingly. This reduces the model order from 3577 to 

1638. Equations (4.9) and (4.13) now define a new state equation after primary Kron reduction 
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where         psspsspsspss xxxx DCBA ,,,  are position-dependent state matrices. The input-impedance 

transfer function is formulated at each point on the path, where a small set of transfer functions is 

extracted. Respective full-order models are reduced using quasi pole-zero cancellation and fast 

state elimination, as explained in Chapter 2, corresponding to several points on the movement 

path. The full- and reduced-order transfer functions for two extreme locations of the moving leg 
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(all in and all out) are plotted in Fig. 4.3, where an acceptable match between respective models 

is observed. For the plunger at xp = 0, the condition numbers of full- and reduced-order models 

are 91056.1   and 735, respectively. For the plunger at xp = 4 cm, the condition numbers of the 

full- and reduced-order models are 91076.1 

 

and 270, respectively.  

The resulting reduced-order models are incorporated in a position-dependent, piecewise-linear 

reduced-order model as described in Chapter 2 and shown in the block diagram in Fig. 4.4. A 

PWM input voltage with a 1 V amplitude, 10 kHz switching frequency, and a sinusoidally 

varying position, )2000sin(22 txp   cm, are applied to the electromechanical system in Fig. 

4.2. The input current predicted by the reduced-order model is portrayed in Fig. 4.5. As expected, 

as the leg moves outward, the resulting air gap reluctance is increased. This, in turn, reduces the 

equivalent dynamic inductance magnitude, which increases the current magnitude for a given 

input voltage.  

 

 

Fig. 4.3 Reduced- and full-order transfer functions for different locations  0px  and  4px cm  of the moving 

leg in FEM. 
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Fig. 4.4. Implementation of the proposed reduced-order model. 

 

 

Fig. 4.5 Input voltage, moving leg position, and the input current in the reduced-order FEA model. 
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4.5 Summary 

A general framework for reduced-order finite-element modeling of magnetic devices in 

electromechanical systems is set forth. The relative movement in FEM is facilitated by 

discretizing the movement path. For each discrete point on the movement path, the state vector 

dimension is preserved. FEM is formulated as a position-dependent inductor. Kron reduction, 

quasi pole/zero cancellation, and fast-state elimination are considered to reduce the linear system 

order in a small-signal sense. Next, a piecewise linear order-reduction technique is set forth to 

dynamically incorporate the relative motion. Computational efficiency is greatly improved as the 

system order is reduced to only 3, starting from 3577 state variables originally introduced by the 

FEM. The proposed order-reduction framework is verified in time and frequency domains. The 

provided rapid-to-simulate magnetic-domain components are then integrated into the hybrid 

simulation environment, as shown in Fig. 4.1(b). 
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CHAPTER 5 

MULTIRESOLUTION SIMULATION OF CONVERTERS 

 

5.1 Switching Converter Simulation Overview 

Accurate and fast simulation environments are required for dynamic characterization and 

transient studies of switching converters [4, 184-187]. Accuracy and fidelity of simulation 

depends on the level of detail considered in model formulation. Thus, highly accurate models 

that incorporate high-frequency effects are inevitably slow to simulate and ill-conditioned. This 

is further pronounced in higher frequency cascaded converters, or in the presence of nonlinear 

components that require iteration. Simulation acceleration techniques are mainly geared toward a 

fast periodic steady-state characterization (e.g., shooting methods [188-189]), or a fast solution 

of differential equations (e.g., Chebyshev series expansion [186, 190] and envelope following 

[191]). Model restructuring may also improve simulation speed and accuracy (e.g., the voltage-

behind-reactance model of grid-interconnected electrical machines [192], [193]).  

Although power electronics systems can be simulated as purely continuous models (e.g., using 

bond graph formalism [194-196] or generalized state-space averaging [197-200]), they are often 

represented as a hybrid system that combines discrete transition conditions with continuous 

differential equations [201]. This requires accurate switching-event detection, solvers for 

(possibly stiff) piecewise-linear ordinary differential equations (ODE), and proper initialization 

of solution segments. Although some references have discussed numerically efficient switching-

event implementation [202-203], the main research thrust has been to find appropriate ODE 

solvers.  
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If one uses a fixed-step explicit solver (e.g., Euler, Runge-Kutta, Adams-Bashforth, etc.), fast 

state variables demand small step sizes to ensure numerical stability. This makes the simulation 

computationally intensive even though fast dynamics subside quickly. If one uses variable-step 

stiff solvers (e.g., Gear’s BDF or NDF, Adams-Moulton, etc.), the integration step size is 

adjusted to conform to system dynamics as simulation proceeds [204], [205]. The implicit ODE 

solvers may require solution of nonlinear equations, evaluation of Jacobian matrix (e.g. 

Rosenbrock formula), and iterations which add to the overall calculations. The periodic 

excitation of the switching transients prevents the integration step size from increasing 

significantly. This puts an additional challenge on the use of single-rate ODE solvers for high-

frequency switching converters [206-208]. Parallel computation, wherein computational tasks 

are executed on remote computer nodes, often leads to only a linear speedup. Alternative 

approaches are multirate/multiscale simulation techniques. 

In multirate/multiscale simulation schemes, using time-scale separation techniques, the overall 

system is decoupled into two [188, 208] or more [209-210] fast and slow subsystems. Likewise, 

the power-electronic circuit can be divided into subcircuits with different time constants [211]. 

Once partitioned, individual subsystems could be solved with different ODE solvers and 

integration step sizes. Multi-rate simulation usually requires modifying the built-in integration 

algorithms available in commercial simulation packages. The resynchronization of the different 

subroutines may occur at the largest step size. Fixed step-time solvers are used to simulate fast 

and slow subsystems in [212]. There, the step size used in the slow subsystem is an integer 

multiple of the step size of the fast subsystem. A zero-order hold is used to keep the output of the 

slow subsystem constant, and to transfer data between slow and fast subsystems at 

communication intervals. This imposes severe restrictions on communication intervals between 
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fast/slow subsystems and may potentially introduce sampling and aliasing errors [208]. The 

multi-rate method introduced in [208] requires a predictor step, an interpolation of the slow state 

variables within the fast subsystems, and an averaging of the fast variables within the slow 

subsystems. A mixture of multirate and parallel simulation (distributed heterogeneous 

simulation) is used to further speed up the simulation process [213]. Despite appreciable 

improvements in simulation speed, in general, multi-rate approaches can only be effectively 

realized for a carefully partitioned system and provide a single resolution. Thus, flexible 

resolution simulation frameworks are indispensible. 

Available multiresolution simulation (MRS) environments manually switch between two 

levels of pre-fixed simulation complexity. Switch-level model waveforms can be analytically 

constructed from an average-value model [214-215]. A combination of two diode models—a 

behavioral model based on Shockley equations and a physical model based on lumped charge 

theory—is considered in [216]. A multi-order model of super capacitors is presented by 

switching between different equivalent RLC ladder structures [217]. Reference [206] utilizes two 

models of a surface-mounted PMSM, a low-frequency model based on classic Park equations 

and a high-frequency model based on operating impedance matrix. Despite their relative 

accuracy, in all the above examples, only two levels of resolution are intuitively provided, and 

the transition from one resolution to another is neither clear nor mathematically rigorous. 

It seems intuitive to utilize order reduction and extract an arbitrary level of simulation 

resolution. The concepts of time-scale separation, integral manifold, and singular perturbation 

are used to extract the reduced-order models of interconnected multi-machine power systems 

[218-220], induction machines [221], and power-factor correction circuits [222]. Coherency 

[223-224] and synchrony [225-226] are common concepts in reduced-order modeling of power 
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systems. Order reduction has been widely used in power systems but has a small presence in 

power electronics. It is used to eliminate all but dominant eigenvalues in control-to-output 

transfer functions of a Cuk converter [227]. Black-box terminal characterization of multi-

converter systems is formed based on frequency responses, and is later reduced [228], [229]. 

Krylov subspace-based methods are used to extract compact thermal models of the IGBT 

modules from finite-element models [230]. Reduced-order models are also gaining interest in 

real-time simulation of power systems with power-electronics-based protection systems [231].  

 This chapter investigates the application of order reduction in variable-resolution simulation 

of switching converters. Several models with different resolution levels are numerically extracted 

using order-reduction techniques. The technique is examined on a switched linear system, and 

then extended to cascaded, nonlinear, and closed loop converters. MRS is also applied to the 

continuous representation of switching converters using generalized state-space averaging.  

 

5.2 Detailed Model Development 

Power-converter model synthesis consists of component models and control laws. First, high-

order detailed models of switching-converter components, shown in Fig. 5.1, are set forth. A 

wide-bandwidth inductor model includes equivalent series resistance, rL, and lumped shunt 

parasitic capacitance, cL [232]. Alternatively, the inductor macromodel developed in Chapter 4 

can be fit into second-order circuit parameters. The equivalent series resistance, rC, and 

inductance, LC, of the capacitor are extracted from the hardware prototype using impedance 

characterization. Switching-component modeling is more challenging, as the resulting model 

should predict accurately both steady-state characterizations as well as fast dynamics. The 

MOSFET is represented as a switching-state-dependent resistance  )(),( onroffr swsw  with 
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appropriate drain-to-source parasitic capacitance, Csw, and wiring inductance, Lsw. These values 

can be found in MOSFET data sheets [233], [234]. The static V-I characteristics of the diode can 

be modeled as a diode state-dependent series resistance  )(),( onroffr dd  and an offset voltage 

source  )(),( onVoffV dd . The capacitance exhibited by semiconductor-metal junctions plays a 

dominant role in turn-on/-off transients [235]. Therefore, the switching transient dynamics, such 

as reverse recovery, are accounted for by a diode state-dependent linear capacitor, Cd. The 

capacitance is higher when the diode is off. A series resistance is considered with this capacitor, 

rCd
, to damp the reverse-recovery current [236]. Wiring inductance and resistance of the diode 

(Ld and rLd
) are also considered. A different variation of this diode model is presented in [237]. It 

should be noted that proposed models in Fig. 5.1 are just one form of model development; one 

can also use alternative piecewise-linear high-fidelity component models.   

 
Fig. 5.1. Highly detailed behavioral component models: (a) Inductor; (b) Capacitor; (c) Diode; (d) MOSFET. 
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As seen in Fig. 5.1, switching component models and, subsequently, the final converter model 

depend on the state of switching components. Switching state and timing are either externally 

determined by a command signal (transistors turn on/off), or internally resolved by meeting 

appropriate threshold conditions (e.g., diodes). Mathematically, the switching time constraint 

equation can be expressed as [238] 
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where j
ft

 

is the time to exit the j
th

 topological instance. If the gate-drive dynamics are neglected, 

the MOSFET switching state and timing are determined solely by the duty cycle as 
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where d  is the MOSFET duty cycle and sT  is the switching interval. The diode is implemented 

as a module with autonomous control [239] that depends only on the terminal characteristics and 

previous switching state of the diode: 
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where  diodesw  and  diodesw  are current and previous switching stages of the diode, 

respectively. The variables diodev  and diodei  are the diode voltage and current, respectively. In a 

system with Ns switches, the topological instance, S, of the converter is an Ns-tuple of the 

switching states [240-242] 

  sN
1,0S

           

(5.4) 
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where 0 and 1 indicate that the corresponding switch is off or on. There are potentially 2
Ns

 

different topological instances, some leading to undesirable/unreachable topologies. The 

switching cycle is defined as a periodically repeated sequence of topologies observed in steady 

state: 
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The converter model is represented as a hybrid system. The state-space model of the converter 

in the k
th

 topological instance, Sk, is 
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which can be simplified to (5.7) for a converter with linear time-invariant (LTI) elements 
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where }{ kkkk D,C,B,A  are the system matrices in the k
th

 subinterval. Initial conditions of (5.6) 

and (5.7) are established from the final state values  f
kk t 11 x  in the previous topological 

instance, Sk-1,  

   f
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kkk tt 111

0
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where k
k 1T

 

is the boundary transformation matrix [241] relating two topological instances based 

on the continuity of capacitor voltages and inductor currents. In the cases considered here, there 

exists a global state vector independent of the switching instance. Thus, when a switching event 

is detected, the terminal value of the state vector in the previous topological instance is set as the 

initial condition of the state variables for the next topological instance. The time at which the 

switching converter leaves the topological instance, Sk, is found through the switching constraint 
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The continuous state-space model is determined by partitioning the circuit graph to the 

spanning tree and link branches, and choosing the inductive link currents and capacitive tree 

voltages as the state variable [240, 243-244]. This process is automated in available numerical 

toolboxes (e.g., automated state model generator [241-242]). Based on the component models in 

Fig. 5.1, the state vector consists of inductor currents and capacitor voltages of both bulky and 

parasitic components  
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(5.10) 

where dswCL kkkk ,,,  are the number of inductors, capacitors, active switches, and diodes. The 

input vector is composed of the input voltage sources, load currents, and the diode voltage drop  
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System dynamics (5.6), (5.7), initial and final conditions in (5.8) and (5.9), and switching logic 

(5.9) thus define the high-order model of the converter with the switching cycle in (5.5), and 

state and input variables in (5.10) and (5.11).  

 

5.3 MRS Frameworks for Switched Linear Systems 

Several model order/simulation resolutions of LTI systems in each topological instance (5.7) 

are achievable via linear order-reduction techniques of Chapter 2. Moment-matching, SVD-

based, and generic reduction schemes are adopted from Chapter 2 and corresponding MRS 

environments are developed. Each reduced-order model will have different system matrices and 

state vectors. The latter do not necessary refer to the same physical variables. This complicates 



82 

 

model derivation as the state continuity should be insured across both different simulation 

resolutions and different switching events. The state continuity across different switching events 

is accounted for in (5.8). The state continuity across different resolutions is ensured with careful 

initialization of the new resolution. As the reduction is applied in each topological instance, the 

system matrix subscripts of (5.7) are dropped for brevity. 

  

5.3.1 Krylov-subspace methods 

Krylov subspace-based methods are projection-based moment-matching order-reduction 

techniques that project a higher order state space into a lower order space. An orthonormal 

projection matrix, W , is generated from a qth -order Krylov subspace, 

   









BA,B,AB,B,AK

1111 q

q span         (5.12) 

using the Arnoldi method, where nq   and n  is the original system order. The full-order state 

vector is projected into a lower order state vector by a similarity transform: 

nqnq 
 11 ,,, WxzWxz        (5.13) 

Likewise the reduced system matrices are extracted by applying the projection matix (5.12) to 

the original state matrices in (5.7) and modifying the state vectors 












uDzCDuzWCy

uBzAWBuzWWAz

rr

rr


  

      (5.14) 

Switching between two arbitrary resolution levels is facilitated using different projection 

matrices. For example, two simulation resolution levels, 21,qq , can be extracted using two 
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 orthonormal projection matrices, 21, WW . The resulting system equations are  

 









n

q

xxWxDuxWCy

xxWxBuWxWAWx

,,

,,

1111

11111111
1

       (5.15)

 

 






n

q

xxWxDuxWCy

xxWxBuWxWAWx

,,

,,

2222

22222222
2

     (5.16) 

where 21,xx  and 2x  are the full-order, 1q -order, and 2q -order state vectors. Then, if the 

simulation resolution needs to change from 1q  to 2q  at an arbitrary time ts, one may re-initialize 

the state vector in (5.16) by applying a similarity transform to the state variables in (5.15): 

 

   ss tt 1122 xWWx            (5.17)  

The simulation engine proceeds with the system matrices shown in (5.16) and the initial values 

determined according to (5.17). 

5.3.2 Balanced reduction methods 

Balanced reduction methods are SVD-based methods used to eliminate state variables with the 

least contribution to the input-output relationship (e.g., [65]). The full-order system is first 

balanced using a balancing matrix, T, found in (2.20) and sorting the state vector based on the 

associated Hankel singular values: 


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
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

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
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





2

1

1

1

~

~
~

~
,

~
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~~~

~
,

~
,

~~~~

x

x
Txx

DDCTCuDxCy

TBBTATAuBxA
x

dt

d

        (5.18) 
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where

 

1
~x  and 2

~x

 

are state variables associated with significant and small Hankel singular values, 

respectively. The system matrices are partitioned accordingly: 

 
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      (5.19)  

From this point, one can use either the state-truncation or state-residualization approach. In the 

state-truncation method, a reduced-order model is extracted by eliminating the state variables 

with small Henkel singular values, 2
~x , and truncating (5.19):  

 

 




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
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r
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rr
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11111

~~

~~~~

 

         (5.20) 

In the state-residualization method, the reduced-order model is extracted by setting the derivative 

of the state variables with small Henkel singular values, 2
~x , to zero and modifying (5.19) 

accordingly:  

   

   
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     (5.21) 

Consider two simulation resolution levels, 21,qq , and the corresponding reduced models in 

either (5.20) or (5.21): 
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(5.22) 
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(5.23) 

If the simulation resolution needs to change from 1q  to 2q  at ts, one needs to consider proper 

initial values for (5.23). It should be noted that the state matrices in (5.23), 

},{ 22222 qq
r

q
r

q
r

q
r TD,C,B,A , are already available via either (5.20) or (5.21). First the full-order 

state vector at time ts is determined from the reduced-order state vector in (5.22) and the 

reduction methodology 
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where vector w depends on the reduction methodology used 
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Once the full state vector,  stx , is found at time ts, the reduced state vector in (5.23),  s
q

t2

1
~x , 

can be initialized by applying the balancing transformation, 2q
T : 
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The simulation engine proceeds with the system matrices shown in (5.23) and the initial values, 

 s
q

t2

1
~x , determined according to (5.26). 
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5.3.3 General reduction methods 

Sections (5.3.1) and (5.3.2) are suited to their specific reduction techniques. Here we develop a 

more general MRS framework for an arbitrary reduction scheme. The full-order model is 

modified to augment its state vector, x, in the output vector, y , by 
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where DC ˆ,ˆ  are the original matrices in (5.7). Consider two resolution levels, 21,qq , and 

corresponding reduced models extracted from (5.27) via any reduction method in Chapter 2: 
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By preserving the input-output response in the reduction process, the output of the reduced-

order models in (5.28) and (5.29) contains an approximation of the full-order state vector, x̂ . 

This enables the simulator engine to maneuver between different simulation resolutions by 

resorting to the full-order state vector and reinitiating the reduced state vector in (5.29). In 

particular, if the simulation resolution needs to change from 1q  to 2q  at ts, the reduced-order 

system matrices are already available in (5.29). One can retrieve an approximation of the full-

order vector,  stx̂ , from the output of (5.28) at transition time 
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and use that to initialize the reduced-order state model in (5.29): 

         22 :,ˆ qn
ss

q
r tt  xx         (5.31) 

Operator   is the reduction that yields (5.29). The simulation engine can proceed after ts
 
with the 

dynamic equations in (5.29) and the initial conditions in (5.31).   

 

5.3.4 Model verification using a boost converter 

The boost converter shown in Fig. 5.2 with parameters summarized in Appendix B.1 is 

considered. A detailed model is constructed according to the methodology given in Section 5.2. 

The full-order model (5.1)–(5.11) is formulated based on the system matrices given in Appendix 

C.1. The eigenvalues corresponding to each topological instance (see Sj in (5.4) and (5.5)) in Fig. 

5.2(b) are shown in Table 5.1. As indicated by large condition numbers, full-order models 

represent stiff differential equations, and eigenvalues cover several orders of magnitude. The 

model order is reduced from 8 to 2 in each topological instance. The resulting eigenvalues are 

shown in Table 5.2. The computational intensity is significantly reduced due to the elimination 

of the fast eigenvalues. The condition number of the system’s state matrix (see Table 5.1 and 

5.2) is also significantly improved from that of the full-order model (far exceeding 10
9
) to the 

reduced-order model (from 10
1
 to 10

5
, depending on topology). It should be noted that the third 

topological instance (S3: both MOSFET and diodes are off) corresponds to the discontinuous 

conduction mode, and thus the model order can be further reduced to a first-order system. 
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Fig. 5.2. Boost converter: (a) Circuit schematic; (b) Detailed high-order model. 

 

 

 

TABLE 5.1 

Full-order model eigenvalues and condition numbers 

Switching Instance, Sj 

S1 

MOSFET: On 

Diode: On  

S2 

MOSFET: On 

Diode: Off 

S3 

MOSFET: Off 

Diode: Off 

S4 

MOSFET: Off 

Diode: On 

1  -1.1×10
11

 -1.1×10
11

 -1.1×10
11

 -1.1×10
11

 

2  
-5×10

7
 

+j 1.57×10
10

 

-4.4×10
8
 

+j 1.57×10
10

 

-4.4×10
8
 

+j 1.57×10
10

 

-4.9×10
7
 

+j 1.57×10
10

 

3  
-5×10

7
 

-j 1.57×10
10

 

-4.4×10
8
 

-j 1.57×10
10

 

-4.4×10
8
 

-j 1.57×10
10

 

-4.9×10
7
 

-j 1.57×10
10

 

4  -2.5×10
10

 -2.5×10
10

 
-1.1×10

8
 

+j 7.65×10
10

 
-1.32×10

10
 

5  -1.32×10
10

 
-1.1×10

8
 

+j 6.2×10
8
 

-1.1×10
8
 

-j 7.65×10
10

 

-1.1×10
8
 

-j 7.65×10
10

 

6  -2.45×10
7
 

-1.1×10
8
 

-j 6.2×10
8
 

-1×10
3
 

+j 1.6×10
6
 

-8.34×10
6
 

-j 4.46×10
8
 

7  -256 -256 
-1×10

3
 

-j 1.6×10
6
 

-1.3×10
3
 

+j 4×10
3
 

8  -3.8×10
4
 -2.2×10

3
 -2.9×10

3
 

-1.3×10
3
 

-j 4×10
3
 

 matK A  9.77×10
9
 9.76×10

9
 3.97×10

9
 3.9×10

9
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TABLE 5.2 

Reduced-order model eigenvalues and condition numbers 

Switching Instance, Sj 

S1 

MOSFET: On 

Diode: On  

S2 

MOSFET: On 

Diode: Off 

S3 

MOSFET: Off 

Diode: Off 

S4 

MOSFET: Off 

Diode: On 

1̂  -256 -258 -2.2×10
3
 

-1.3×10
3
 

+j4×10
3
 

2̂  -3.8 ×10
4
 -2.2×10

3
 -1.6×10

9
 

-1.3×10
3
 

-j4×10
3
 

 matK A  
155 

 
8.5 

7.5×10
5 
(2

nd
  order) 

1 (1
st
 order) 

-4.9×10
7
 

-j 1.57×10
10

 

 

 

To verify the order-reduction process, several transfer functions from the input voltage to the 

original state variables of the detailed model are considered in several topological instances. 

Corresponding transfer functions from the input voltage to the ―pseudo-full-order‖ state variables 

( x̂  in (5.28) and (5.29)), projected by the reduced-order model outputs, are also considered. As 

seen in Figs. 5.3–5.6, the reduced-order models closely resemble the frequency-domain 

characteristics of the full-order models within the frequency range of interest (up to ten times the 

switching frequency). Different levels of accuracy and/or bandwidths are achievable by adjusting 

the model order.  

 

Fig. 5.3.  Audio susceptibility transfer functions, 
 

 sv
sv

g

out
ˆ

ˆ
, in the first topological instance, S1. 
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Fig. 5.4.  Input voltage to inductor voltage transfer functions, 
 

 sv

sv

g

CL

ˆ

ˆ
, in the second topological instances, S2. 

 

Fig. 5.5.  Input voltage to capacitor current transfer functions, 
 

 sv

si

g

LC

ˆ

ˆ
, in the fourth topological instance, S4. 

 

Fig. 5.6.  Input voltage to diode current transfer functions, 
 

 sv

si

g

Ld

ˆ

ˆ
, in the fourth topological instance, S4. 

 



91 

 

Next, a large-signal time-domain transient of the boost converter with a 50% duty cycle is 

considered. The computer simulations are carried out using Matlab/Simulink run on a personal 

computer with a T7700 Intel Core2 Duo processor (2.4 GHz). To achieve numerical stability and 

accuracy, a variable step-size solver, ODE23tb [245], is considered for both simulation 

resolutions with a maximum allowable step size of 10
-4

 seconds. The steady state of the 

converter is reached in 4105  seconds of simulation time. The full resolution simulation takes 

205.23 seconds of CPU time and 326514 time steps. Alternatively, the low resolution simulation 

takes only 0.48 seconds and requires only 332 time steps. This demonstrates approximately two 

orders of magnitude improvement in simulation speed and three orders of magnitude reduction 

of time steps. It should be noted that the factor by which the simulation is accelerated is case 

dependent, but a very significant improvement can be expected in general.  

The corresponding system waveforms, for two switching cycles in steady state, are shown in 

Figs. 5.7 – 5.11. The hardware measurements (a) are used to verify the high-fidelity full-order 

model (b) which, in turn, is used to verify the reduced-order model (c). The ringing, reverse 

recovery effects, switching edge transients, and high-frequency dynamics of the high-order 

model are absent in the low-resolution simulation, while the overall long-term behaviors are 

successfully captured. Finally, a similar study is conducted using an MRS environment (d). The 

simulation startup is conducted using the low-order model to reach steady state. Then, to study 

the switching transients, the system resolution is increased in the middle of a switching cycle 

(shown darker in Figs. 5.7–5.11, (d)). The pseudo-full-state vector, x̂ , projected by the reduced-

order model in (5.28), is fed as the initial condition to the full-order model in (5.29). Thus, the 

need to run the entire high-order model to reach steady state is eliminated. As seen in Figs. 5.7-

5.11, the MRS employs both low- and high-order models accurately. While the overall long-term 
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behavior is precisely captured by the low-resolution simulation of the proposed multiresolution 

model, the high-resolution simulation part successfully predicts the fast dynamics as verified in 

comparison with the detailed model and hardware measurements. 

 

Fig. 5.7. Inductor voltage,  tv
LC , waveforms extracted from hardware measurements, predicted by the reduced- 

and full-order models, and resulting from MRS. 
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Fig. 5.8. Diode current,  ti

dL , waveforms extracted from hardware measurements, predicted by the reduced- and 

full-order models, and resulting from MRS. 

 

 

Fig. 5.9. MOSFET current,  ti
swL , waveforms extracted from hardware measurements, predicted by the reduced- 

and full-order models, and resulting from MRS. 
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Fig. 5.10.  Output voltage,  tvout ,  waveforms extracted from hardware measurements, predicted by the reduced- 

and full-order models, and resulting from MRS. 

 

Fig. 5.11.  Diode voltage,      tvtvtv outCg L
 , waveforms extracted from hardware measurement, predicted by 

the reduced- and full-order models, and resulting from MRS. 
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5.3.5 Model verification using a class-E amplifier 

A 4 MHz, Class-E amplifier shown in Fig. 5.12 with parameters summarized in Appendix B.2 

is considered. The amplifier is in an off-nominal, zero-voltage switching mode of operation. The 

design procedure for resonant operation of Class-E amplifiers has been discussed in the literature 

(e.g., [246-249]). The full-order model is established based on the 10
th

-order circuit 

representation in Fig. 5.12(b). This is a single-switch system, and there are two possible 

topological instances (S1,S2). System eigenvalues for both instances are shown in Fig. 5.13, 

which indicates that eigenvalues span a wide frequency range (ten orders of magnitude). Several 

model orders (6
th

, 4
th

, and 2
nd

) and corresponding MRS environments are developed according to 

methodologies set forth in Section 5.3. As the simulation speed and accuracy are directly related 

to the fastest eigenvalue and system condition number, respectively, corresponding parameters 

are shown in Table 5.3 for each model order. 

 
Fig. 5.12. Class-E amplifier: (a) Circuit schematic; (b) Detailed high-order representation. 

 

 
Fig. 5.13. System eigenvalues for both topological instances (on and off states of the MOSFET). 
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TABLE 5.3 

Fastest eigenvalues and condition numbers for different model orders  

 Fastest Eigen-value Condition Number 

Full(10
th

)-order Model 

MOSFET: On 
-2.49×10

12
 1.7×10

8
 

Full(10
th

)-order Model 

MOSFET: Off 
-2.49×10

12
 1.12×10

8
 

6
th

-order Model 

MOSFET: On 
-2.1×10

10
 1.5×10

6
 

6
th

-order Model 

MOSFET: Off 
-1.21×10

9
 4.84×10

5
 

4
h
-order Model 

MOSFET: On 
-3.23×10

9
 2×10

5
 

4
th

-order Model 

MOSFET: Off 
-3.26×10

7
 1.2×10

5
 

2
nd

-order Model 

MOSFET: On 
-3.23×10

9
 1.6×10

5
 

2
nd

 -order Model 

MOSFET: Off 
-1×10

7
 4.95×10

4
 

 

The startup transients are considered for each simulation resolution. The same computational 

platforms and ODE solver algorithms as in Section 5.3.4 are used. The maximum allowable step 

size is set to 10
-7

 second, and the relative error tolerance is set to 10
-4

. Steady-state operation is 

reached in 15 s simulation time. Table 5.4 summarizes the actual CPU times and number of 

integration steps used in different simulation resolutions. As expected, both a significant 

improvement in simulation speed and noticeable reduction in the number of integration steps are 

observed as the model order is reduced. 

TABLE 5.4 

Transient simulation CPU times and integration steps for different model orders 

 Elapsed CPU Time Number of Integration Steps 

Full(10
th

)-order Model 74 s 73000 

MRS 68.5 s 36630 

6
th

-order Model 71 s 67000 

4
th

-order Model 5.8 s 5260 

2
nd

-order Model 3.2 s  2255 
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Fig. 5.14. MOSFET voltage waveforms in different simulation resolutions as well as MRS environment. 

 

The MOSFET voltage waveforms for the respective simulation resolutions are shown in Fig. 

5.14 for the amplifier in steady state. As the model order and, subsequently, the simulation 

resolution increases, higher frequency dynamics (ringing, switching edges, etc.) are more 

apparent in the transient waveforms. This is expected given the distribution of dynamic modes in 

Fig 5.13. In particular, the MOSFET voltage waveform for the full (10
th

)-order model shows an 

acceptable match with the experimental results in the literature (refer to Fig. 20 in [246]).  

Finally, a similar study is conducted in an MRS environment (see the bottom plot). The 

simulation resolution is increased from a 4
th

-order model to a 10
th

-order model at ts=0.74 s. The 

change in the simulation resolution occurs in the middle of a switching transient, where some 
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fast dynamics have not yet subsided. As seen in Fig. 5.14, the MRS employs both 4
th

- and 10
th

-

order models successfully. 

 

5.4 MRS of Cascaded Switching Converters 

5.4.1 Conceptual framework 

Multi-converter systems, e.g., cascaded converters, are commonly found in power electronics 

applications. MRS can be implemented modularly, where each converter is independently 

simulated with arbitrary resolution and communicates with other converters using exchange 

variables (see y1 and y2 in Fig. 5.15). To facilitate that, the exchange variable is formulated in the 

output vector of the source converter, and in the input vector of the destination converter. Since 

the order-reduction procedure preserves the input-output relationship, the output vectors of 

reduced-order source converters include an approximation of exchange variables ( *
2

*
1 , yy  in Fig. 

5.15). These variables are then fed into the reduced-order models of the respective destination 

converters as input variables. As opposed to the existing nested simulations, this approach does 

not require adaptive algorithms for communication or synchronization.  

1 1 1 1 2

1 1 1 1 2
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
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
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Fig. 5.15. Modular MRS framework. 
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5.4.2 Model verification 

A cascaded boost/buck-boost converter system is considered in Fig. 5.16. Model parameters 

are summarized in Appendix B.3 and system matrices for both converters are given in Appendix 

C.3. Each converter is modeled in full as a 7
th

-order system. The model order of each converter 

is reduced from 7 to 2. The fastest eigenvalue and condition numbers in each topological 

instance of boost and buck-boost converters are shown in Table 5.5 and Table 5.6, respectively. 

As expected, the condition number has improved and the fastest eigenvalue is significantly 

slower for the reduced-order models. 

 

 
Fig. 5.16. Cascaded boost/buck-boost converter system: (a) Circuit schematic; (b) High-fidelity model 

representation. 
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TABLE 5.5 

Fastest eigenvalues and condition numbers for the full- and reduced-order models of the boost converter 

 Fastest Eigenvalue Condition Number 

Full-order Boost Model 

MOSFET : On , Diode: On 
-4.999×10

9
 3.82×10

8
 

Full-order Boost Model 

MOSFET : On , Diode: Off 
-4.999×10

9
 6.82×10

12
 

Full-order Boost Model 

MOSFET : Off , Diode: Off 
-1.64×10

8
±j5.266×10

8
 2.4×10

12
 

Full-order Boost Model 

MOSFET : Off , Diode: On 
-2.73×10

9
 1.21×10

7
 

Reduced-order Boost Model 

MOSFET : On , Diode: On 
-18.52 967 

Reduced-order Boost Model 

MOSFET : On , Diode: Off 
-18.52 1.78×10

4
 

Reduced -order Boost Model 

MOSFET : Off , Diode: Off 

-1×10
-3 

(1
st
 order) 

-3.1×10
9
 (2

nd
 order) 

1 (1
st
 order) 

2.97×10
12

 (2
nd

 order) 

Reduced -order Boost Model 

MOSFET : Off , Diode: On 
-1.34×10

2
±j2.19×10

3
 22.5 

 

TABLE 5.6 

Fastest eigenvalues and condition numbers for the full- and reduced-order models of the buck-boost converter 

 Fastest Eigenvalue Condition Number 

Full-order Buck-boost Model 

MOSFET : On , Diode: On 
-4.99×10

9
 8×10

8
 

Full-order Buck-boost Model 

MOSFET : On , Diode: Off 
-4.99×10

9
 8×10

8
 

Full-order Buck-boost Model 

MOSFET : Off , Diode: Off 
-1.35×10

8
 3.52×10

6
 

Full-order Buck-boost Model 

MOSFET : Off , Diode: On 
-2.99×10

9
 5.97×10

7
 

Reduced-order Buck-boost Model 

MOSFET : On , Diode: On 
-163 19 

Reduced-order Buck-boost Model 

MOSFET : On , Diode: Off 
-162 18.3 

Reduced -order Buck-boost Model 

MOSFET : Off , Diode: Off 

-162 (1
st
 order) 

-1.48×10
9
 

1 (1
st
 order) 

9.1×10
6
 (2

nd
 order) 

Reduced -order Buck-boost Model 

MOSFET : Off , Diode: On 
-152 4 

 

To verify the efficacy of the modular MRS framework, a 1 ms startup transient of the cascaded 

system is considered. The same computational platform and ODE solver setup as in Section 5.3.4 

is used. Four possible combinations of model orders (mixture of full or reduced-order models of 
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either converter) are considered. To avoid an algebraic loop in the ―reduced-reduced‖ 

combination, data exchange between individual reduced-order blocks is facilitated using sample-

and-hold that introduces extra time delay. Despite this, two orders of magnitude increments in 

simulation speed, and an order of magnitude reduction in the number of integration steps are 

reported in Table 5.7. 

TABLE 5.7 

Transient simulation CPU times and integration steps for modular combination of model orders 

 Simulation Run Time Number of Integration steps 

Full-order Boost Model 

Full-order Buck-boost Model 
212 s 115000 

Full-order Boost Model 

Reduced-order Buck-boost Model 
142 s 78400 

Reduced-order Boost Model 

Full-order Buck-boost Model 
120 s 65440 

Reduced-order Boost Model 

Reduced-order Buck-boost Model 
15 s 10200 

 

The MOSFET voltage waveform of the boost converter is shown in Fig. 5.17 for different 

simulation resolution combinations. When labeling plots in Fig. 5.17, the first model-

order/simulation-resolution refers to that of the boost converter. First, the experimental results (a) 

are used to verify that the ―full-full‖ combination ((b), both boost and buck-boost converters are 

represented by full-order models) accurately resembles existing hardware setup. It should be 

noted that those converters have different switching frequencies (fsw,boost = 50 kHz and fsw,buck-boost 

= 30 kHz), and thus it is hard to match all the switching spikes of the measurement snapshots 

with simulations. In the remaining plots ((c) ―full-reduced,‖ (d) ―reduced-full,‖ and (e), (f) 

―reduced-reduced‖ combinations), the higher frequency dynamics are absent in the reduced-

order representation of the corresponding converter, while the overall waveform behaviors are 

accurately portrayed.  
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In the proposed modular MRS framework (see Fig. 5.17 (f)), both converters are first 

simulated at low resolutions. At t = 25 s, the boost converter simulation resolution is increased 

while the buck-boost converter is still in a lower resolution mode (shown darker in the bottom 

plot of Fig. 5.17). Finally, at t = 55 s, both converter simulation resolutions are switched to 

higher resolution modes and the simulation proceeds. As verified with the original resolution 

combinations in Fig. 5.17, the modular MRS framework accurately portrays the underlying 

cascaded converter dynamics for arbitrary resolution levels. 

 
Fig. 5.17. MOSFET voltage waveforms for different combinations of model order and resulting modular simulation 

resolutions, as well as a modular MRS environment. 
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To demonstrate the effect of appropriate initialization when the resolution changes, an MRS 

study is considered in Fig. 5.18. The boost converter is in high resolution mode and the 

resolution of the buck-boost converter changes from low to high at t = 20 s. Figure 5.18(a) 

shows an accurate initialization of the buck-boost converter at higher resolution, according to the 

methodology in Section 5.3. In Fig. 5.18(b), the final values of the state vector in the boost 

converter model are intentionally used to initialize the buck-boost converter model in high-

resolution mode. Although the dynamic equations of the buck-boost converter in the higher 

resolution mode are correct, the wrong initialization process leads to a 5 V offset in the 

MOSFET voltage waveform in steady state (Fig. 5.18(b) compared to Fig. 5.18(a)). This 

demonstrates the importance of appropriate initialization of the new simulation resolution. 

 
Fig. 5.18. Demonstration of the initialization process for the modular MRS; (a) Correct initializations; (b) Incorrect 

initialization. 

 

 

5.5 MRS of Switching Converters with Nonlinear Components 

5.5.1 Conceptual framework 

Switching converters are often described with nonlinear equations (5.6) due to the presence of 

magnetic saturation. A general framework for MRS of nonlinear systems is shown in Fig. 5.19. 

First, the nonlinear full-order system is represented as a piecewise-linear model. The output 

vector of the full-order model, y, is augmented to include the full-order state vector, xf. Since the 
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order reduction preserves the input-output relationship, the output of the reduced-order model 

approximates the state vector of the full-order model, 
fx . This estimation, 

fx , is then used to 

select the appropriate subinterval, k. The final model is a dual-nested switched linear system with 

two event detections. One is indicated by k in Fig. 5.19 that represents the structural change 

caused by the existing switching components. Another, indicated by j in Fig. 5.19, points to an 

appropriate linear segment within the k
th

 structural interval.  

)( ff
j
ff u,xfx 

Original Switched Full-order 
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
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ff
,,



fn xIy 

Fig. 5.19  Nonlinear MRS diagram. 

 

5.5.2 Piecewise representation of saturated inductors 

The nonlinear flux linkage-current relationship incorporates saturation effects (Fig 5.20(a)). 

The effective inductance is defined as the slope of the flux-linkage current curve  i  at the 

desired inductor current. Typical nonlinear i  relationships of power magnetic cores can be 

accurately replaced with several constant inductors corresponding to different current profiles: 

 
k1-k trtr I,I, 


 iL

i
L keff

         (5.32) 

This concept is shown in Fig. 5.20(a), where the nonlinear inductor is approximated with three 

effective inductances 
321

,, effeffeff LLL using two current thresholds,
 21

I,I trtr . The nonlinear 

inductor is presented as a current-controlled switched combination of linear inductors (Fig. 

5.20(b)). Thus, the original nonlinear system in (5.6) is replaced with a switched linear system 
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Fig. 5.20. Piecewise linear representation of a saturated inductor: (a) Flux linkage-current relationship; (b) Current-

dependent switched representation of the nonlinear inductor. 

 

   











uDxCy

uBxAx

jkjk

jkjk jpk

,,

,, 31,1 

        

(5.33) 

where jkjkjkjk ,,,, ,,, DCBA
 

are system matrices. The set  jk,  defines a combinational 

topological instance, where k is determined by the switching logics in (5.1)–(5.3) and (5.9), and 

j  is determined by the inductor current magnitude and refers to the topological subinterval due 

to the switched-linear representation of the nonlinear inductor in (5.32) and Fig. 5.20(b).  

 

5.5.3 Order reduction and MRS framework development 

The Krylov-subspace methods [79] are used to extract several reduced-order models and 

respective simulation resolutions. For each topological instance jk, , an orthonormal projection 

matrix, jk ,
W , is generated from a thq -order Krylov subspace of system matrices: 

     





























 jk
q

jkjkjkjkjkjk
q Span ,

1
1,,1,,,1, ,,,, BABABBAK 

      
(5.34) 

using the Arnoldi method. Order q n  , and n  is the original system order. The reduced system 

matrices,  jk
r

jk
r

jk
r

jk
r

,,,, ,,, DCBA , are extracted by applying the projection matix, jk ,
W , to the 

original state matrices in (5.33):  
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 
 


















uDzCuDzWCy

uBzAuBWzWAWz

jk
r

jk
r

jkjkjk

jk
r

jk
r

jkjkjkjkjk

,,,,,

,,,,,,,
       (5.35) 

As the full-order state vector, x, is projected into a lower order state vector, z, by a similarity 

transform: 

    
qnjkqnjk 

,,
,,, WzxxWz       (5.36) 

Equations (5.35) and (5.36) define the new reduced-order ( thq -order) model.  

Since the order-reduction process in (5.35) preserves the input-output response (while reducing 

the system dimension), the output of any reduced order model in (5.35) contains an 

approximation of the original state vector, *
fx . This ―psudo-state vector‖ is used to determine the 

switching in (5.1)–(5.3) and (5.9), and the effective inductance value in Fig. 5.20(b), thus 

obtaining the topological instance set  jk, . 

When switching between any two arbitrary resolution levels, 21,qq , at time ts, the projection 

matrix, jk

q

,

1
W , used in the reduction process in (5.35), is replaced with a new-order projection 

matrix, 
jk

q

,

2
W .  Moreover, the initial values of the new resolution state vector,  sq t

2
x , are 

obtained from the previous resolution state variables,  sq t
1

x :  

     sq
jk

q

jk

qsq tt
1122

,,
xWWx


           (5.37)  

 

5.5.4 Model verification 

The boost converter shown in Fig. 5.21, with parameters summarized in Appendix B.4, is 

considered. The model order is reduced from eight to two in each topological instance based on 
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the switching state and effective inductance value. The computational intensity is significantly 

reduced due to the elimination of the fast eigenvalues (exceeding 10
11

 in the full-order model). 

The condition number of the system’s state matrix is also significantly improved from those of 

the full-order model (exceeding 10
9
) to the reduced-order models (around 10

2
). 

 

Fig. 5.21. High-fidelity model of a boost converter with a nonlinear inductor: (a) Circuit schematic; (b) Detailed 

high-order model. 

 

To verify the order-reduction procedure, the transfer functions from the input voltage to the 

diode current are considered for both full-order and several reduced-order models. In the 

example topological instance, the MOSFET is on, the diode is off, and the inductor is in the first 

piecewise linear region    1,2, jk . As seen in Fig. 5.22, the 2
nd

-order models closely resemble 

the frequency-domain characteristics of the full-order models within the lower frequency range 

(up to 10 MHz). Higher order models can be utilized to achieve more fidelity in a higher 

frequency range. For example, as shown in Fig. 5.23, 4
th

-order and 6
th

-order models can 

accurately represent the dynamic characteristics up to 100 MHz and 10 GHz, respectively. 
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Fig. 5.22.  Input voltage to diode current transfer function in the 4

th
 topological instance and first inductor region 

(lower frequency range). 

 

 
Fig. 5.23.  Input voltage to diode current transfer function in the 4

th
 topological instance and first inductor region 

(higher frequency range). 

 

Next, a 1 ms setup transient of the boost converter with a 50% duty is considered. Similar 

computational platform and ODE solver settings are used. The full resolution simulation takes 

386 seconds of CPU time and 332,585 time steps. Alternatively, the low-resolution simulation of 

the reduced 2
nd

-order model takes only 11 seconds and requires only 1,356 time steps. This 

demonstrates orders of magnitude improvement in simulation speed and reduction in the number 

of time steps.  

The inductor current shown in Fig. 5.24 clearly indicates saturation. The MOSFET and diode 

currents for two switching cycles in steady state are shown in Figs. 5.25 and 5.26, respectively. 

The simulation resolution is increased at ts = 20 ms in the middle of a switching cycle (shown 
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darker in Figs. 5.25 and 5.26). While the overall long-term behavior is precisely captured by the 

low-resolution mode of the proposed MRS, the high-resolution simulation part successfully 

predicts the fast dynamics.  

 
Fig. 5.24  Inductor current indicating saturation. 

 

 
Fig. 5.25 Diode current waveforms predicted by the reduced- and full-order models, and resulted from MRS. 

 

 
Fig. 5.26  MOSFET current waveforms predicted by the reduced- and full-order models, and resulted from MRS. 
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5.6 MRS of Controlled Switching Converters 

5.6.1 Conceptual framework 

Switching converters require feedback and feedforward control loops to regulate the output 

voltage or the input current. The full-order state feedback determines the switching timing in 

(5.9). The candidate MRS environment is shown in Fig 5.27. The pseudo-full-order state vector, 


fx , is retrieved from the reduced-order model and is fed into the controller which, in turn, 

determines the topological instance, Sj, (switching state j in Fig. 5.27) and adopts the 

corresponding reduced-order model. It should be noted that the controller bandwidth is typically 

less than the converter’s cut-off frequency (and implicitly the fast dynamics within each 

topological instance). Thus, incorporating the controller dynamics should not affect the order-

reduction process and MRS environment development.  

Switched Full-order Model

Order reduction,

Multi-resolution framework 

development

Model order/ Bandwidth

Switched Reduced-order Model

Controller system,
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
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Fig. 5.27.  MRS framework for switching converters with state feedback loops. 

 

5.6.2 Model verification 

A synchronous buck converter shown in Fig. 5.28, with parameters summarized in Appendix 

B.5 and system matrices given in Appendix C.4, is considered. The full-order models in each 

topological instance are 8
th

-order, and are later reduced to 2
nd

 and 1
st
-order models. Condition 

numbers and fastest eigenvalues are shown in Table 5.8 for different loading conditions and 
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topological instances. As expected, reduced-order models are better conditioned and exhibit 

more manageable dynamics.  

A 5 ms transient startup study is conducted for different model orders and simulation 

resolutions. The input voltage is 6.5 V and the output voltage is regulated to 1.3 V. The same 

computational platform and ODE solver settings as in previous studies are used. The actual CPU 

time and the number of integration steps are shown in Table 5.9, where orders of magnitude 

improvement in simulation speed and number of integration steps is reported for the reduced-

order models. 

 
Fig. 5.28. High-fidelity model of a synchronous buck converter with a feedback loop: (a) Circuit schematic; (b) 

Detailed high-order model. 

 

TABLE 5.8 

Condition numbers and fastest eigenvalues for different loading  

 

Fastest Eigen-

value 

RLoad=0.65  

Condition Number 

RLoad=0.65  

Fastest Eigen-

value 

RLoad=0.13  

Condition Number 

RLoad=0.13  

Full-order Buck Model 

MOSFET-1 : On 
-6.5×10

8
 7.52×10

5
 -1.56×10

8
 3.18×10

5
 

Full-order Buck Model 

MOSFET-1 : Off 
-6.5×10

8
 8.73×10

5
 -1.54×10

8
 3.2×10

5
 

2
nd

 -order Buck Model 

MOSFET-1 : On 
-7.12×10

4
 41 -6.4×10

4
 16 

2
nd

-order Buck Model 

MOSFET-1 : Off 
-3.44×10

5
 139 -1.4×10

5
 20 

1
st
 -order Buck Model 

MOSFET-1 : On 
-2.12×10

5
 1 -1.1×10

5
 1 

1
st
-order Buck Model 

MOSFET-1 : Off 
-2.12×10

5
 1 -1.1×10

5
 1 
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TABLE 5.9 

Transient simulation CPU times and integration steps for different model orders 

 Simulation Run Time Number of Integration steps 

Full(8
th

)-order Model 320 s 331000 

MRS 305 s 151000 

2
nd

-order Model 15 s  11100 

1
st
-order Model 14 s  11300 

 

A 400% step change in load, from 0.65  to 0.15 , is considered to study the transient 

behavior of the closed-loop system. The output voltage waveforms in Fig. 5.29, for different 

simulation resolutions, verify that the output voltage is accurately regulated despite the 400% 

increase in the load current. A zoomed-in view of the first MOSFET voltage and current 

waveforms, around the load step change, are also shown in Figs. 5.30 and 5.31, respectively. The 

switching spikes and fast transients are apparent in the full-order model, while the 2
nd

-order 

model portrays only the dominant dynamical modes. Although the 1
st
-order model accurately 

represents converter dynamics in an ―average‖ sense, one can see that the 2
nd

-order model 

provides a better simulation resolution to study dominant dynamical modes. It should be noted 

that even the 1
st
-order model includes switching ripples, as the converter model is represented as 

a hybrid (switched) linear system (it is not averaged!). The MRS of time-invariant models is 

discussed in the next Section. In an MRS environemnt, the simulation resolution is increased 

from a low (2
nd

-order model) to a high resolution mode (8
th

-order model) at ts = 0.2 ms. As seen 

in Figs. 5.29-5.31, the MRS environment successfully employs both low and high resolution 

modes.   
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Fig. 5.29  Output voltage waveforms predicted by the 1

st
, 2

nd
, and 8

th
-order models, and resulting from MRS. 

 

 
Fig. 5.30 MOSFET voltage waveforms predicted by the 1

st
, 2

nd
, and 8

th
-order models, and resulting from MRS. 
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Fig. 5.31 MOSFET current waveforms predicted by the 1

st
, 2

nd
, and 8

th
-order models, and resulted from MRS. 

 

5.7 MRS for Time-invariant Modeling of Switching Converters 

5.7.1 Model formulation 

So far, switching converters have been modeled as hybrid systems using (5.1)–(5.11), and 

order reduction has been applied to the LTI systems within each topological instance, Si. 

Alternatively, switching-function equations can be incorporated in system formulation leading to 

a multiple-frequency time-invariant model that does not explicitly involve structural variation. 

There exist different variations of conceptually similar approaches, namely generalized state-

space/multi-frequency averaging [197-199,250], Krylov–Bogoliubov–Mitropolsky [222], 

dynamic phasors [251-253], and multi-frequency modeling [24]. The multi-frequency averaging 

(MFA) of an open-loop system is adopted from [200]. Time-invariant models of open-loop 

systems are periodic (closed-loop systems are aperiodic and a subject of further discussion). 

MFA is based on the Fourier series expansion of a signal,  x :  
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  (5.38) 

 tx
k

 are the complex Fourier coefficients,
1
 referred to as index-k average or the k-phasor, and 

are given by 
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using (5.39), the time derivative of  tx
k

 can be calculated as 
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Moreover, the index-k average of the product of signals  tx  and  tq  is computed by a discrete 

evolution 
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Equation (5.41) will be used to include the effects of switching function, q, in the time-invariant 

model formulation. Consider the original switched state-space model of a converter 
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where qs and  ssss DCBA ,,, are the switching signals and state matrices in topological 

instance, s, and x, u, and y are the state, input, and output vectors. The switching function, qs, 

                                                 

 

1 Technically, they are time-varying (except in steady state) which violates the definition of Fourier series coefficients. 
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and state vector x signals are expanded using (5.38). Then, using (5.38)–(5.42), the switched 

state-space model of (5.42) is replaced with a frequency-dependent time-invariant model 

    

   
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The new state vector is 

     
         

mnmnn xxxxxx ,,,,,,,,
1111001 


x     (5.44) 

where n is the order of the physical state vector in (5.42), and m is the number of harmonics 

considered in signal expansion of (5.38). The Fourier series coefficients of the switching 

function, q, are absorbed in the frequency-dependent system matrices         ssss  DCBA ,,, . 

The resulting model order is nm2 . The time-domain trajectory of the physical state vector 

 tx  is calculated using the Fourier expansion of (5.38) and coefficients  tx


 of (5.44) 
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 


    (5.45) 

As the MFA in (5.43) is an LTI system, linear order-reduction techniques in Chapter 2 and the 

MRS framework in Section 5.3 are directly applicable. This is explained using the following 

example. 

 

5.7.2 Model verification 

An ideal boost converter shown in Fig. 5.32, with parameters adopted from [200] and 

summarized in Appendix B.6, is considered. The switched state-space model representation, 

(5.42), is 
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Fig. 5.32 Ideal boost converter with state variables and switching functions (q). 
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Applying (5.38)–(5.41), the MFA model of (5.46) is 
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The output vector y includes the full-order state vector, x


, to facilitate the MRS framework in 

Section 5.3. System state matrices,    ss  BA , , are given in Appendix C.5. The dc term and first 

harmonics of switching function, q, and physical state variables, CL vi , , are considered in the 

Fourier expansion of (5.38). Thus, the 6
th

-order state vector, x


, is  

    
        

111100
,,,,, CCLLCL vviivix


      (5.48) 

Higher order models are achievable by incorporating more harmonics or higher order component 

models (see Fig. 5.1). Here, we only consider the first harmonics (which leads to a 6
th

-order 

model) for simplicity of model formulation and proof of concept.  

Time-domain trajectories of the original state variables (inductor current and capacitor 

voltage) resulting from the switched state-space model in (5.46) and the MFA model in (5.47) 

show an acceptable match in Figs. 5.33–5.34(a). Accurate dc terms (index-zero average) of the 

respective variables, that incorporate the large-ripple effects, are shown in Figs. 5.33–5.34(a). 

Using order-reduction techniques, a 2
nd

-order model is extracted from (5.48): 
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Fig. 5.33 Inductor current waveforms: (a) Predicted by the switching converter, 2

nd
- and 6

th
-order MFA models; (b) 

Resulting from MRS with appropriate initialization; (c) Resulting from MRS with incorrect initialization. 

 
Fig. 5.34 Capacitor voltage waveforms: (a) Predicted by the switching converter, 2

nd
- and 6

th
-order MFA models; (b) 

Resulting from MRS with appropriate initialization; (c) Resulting from MRS with incorrect initialization. 
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         (5.49) 

Eigenvalues of both reduced-(2
nd

)- and full-(6
th

)-order models are shown in Table 5.10. It should 

be noted that the resulting 2
nd

-order model is not the same as the conventional state-space 

averaged model. In particular, since the output vector of (5.47) carries the full state vector, x


, 

and the reduction process preserves the input-output relationship, one can retrieve the full-order 

state vector from the 2
nd

-order model. This is not feasible in conventional state-space averaging. 
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 TABLE 5.10 

Eigenvalues of the reduced- and full-order models 

Reduced 2
nd

-order model -1.62×10
4 
± j 2.3×10

4
 

Full 6
th

-order model -1.42×10
4 
± j 8.62×10

4
 -1.42×10

4 
± j 2.22×10

4
 -1.42×10

4 
± j 4.46×10

4
 

 

 

The MRS environment of the MFA model in (5.47) is constructed according to the 

methodology given in Section 5.3. The output of the 2
nd

-order model in (5.49) projects an 

approximation of the full-order state in (5.48), x


, which is used to construct the trajectories of 

physical variables of (5.46): 
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The inductor current and capacitor voltage waveforms constructed from the 2
nd

-order model 

(shown darker in Figs. 5.33–34(b) and Figs. 5.33–34(c)) closely resemble those of the original 

switching model of (5.46) and the 6
th

-order model of (5.47) in Fig. 5.33-34(a).  

The simulation resolution has changed from low to high at ts = 400 s. The output vector of the 

reduced-order model in (5.49) is used to initialize (5.47). This makes the simulation transition 

appear seamless in Figs. 5.33–34(b). If one initiates the state vector in (5.48) with actual dc terms 

while initial values of the harmonics terms are intentionally left at zero, then change in 

simulation resolution at ts = 400 s will lead to a transition spike (Fig. 5.33-34(c)).  
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5.8 Summary  

MRS provides an alternative method to analyze power converters by providing an appropriate 

amount of detail based on the time scale and phenomenon being considered. A framework for 

MRS of switched linear systems is developed. First, a detailed full-order model of the converter 

is built that accounts for the system parasitics, switching nonlinearity, and switching event 

detection. This model includes higher order effects such as stray capacitance of the inductor, 

equivalent series resistance and inductance of the capacitor, diode reverse-recovery phenomenon, 

wiring parasitics, and MOSFET dynamics. Efficient order-reduction techniques are then used to 

extract several lower order models for the desired resolution of the simulation. This results in 

different state matrices and state vectors for a given topological instance of the converter circuit, 

whereas the state variable continuity is insured across the switching events taking into account 

different levels of modeling resolutions. This methodology is demonstrated on switched linear 

systems, cascaded converters, converters with nonlinear elements, and closed-loop systems. 

MRS environments for time-invariant representation of switching converters are also discussed. 

Significant improvement (orders of magnitude) in simulation speed and reduction in the number 

of integration steps is reported. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

 

6.1 Contributions 

An effort is undertaken to break the compromise between modeling fidelity and simulation 

speed and realize an ideal computational prototyping environment for power electronics analysis 

and design. It is shown that a static MEC model can be extended, using modular conductive flux 

tubes, to incorporate eddy current dynamics while avoiding crude geometrical assumptions. The 

resulting HFMEC model is extended to saturated inductors, transformers, and linear plungers. In 

all cases, automated order-reduction tools are successfully applied to extract the essential system 

dynamics and thus ease the computational burden while preserving model accuracy. In 

particular, nonlinear reduced-order systems are constructed by applying reduction techniques on 

locally linearized systems and composing a parametric reduced-order model. Order reduction 

techniques are used in a hybrid fashion and are extended to time-varying and MIMO systems. 

Proposed models are verified for different magnetic materials (powdered iron and laminated 

steel) and various excitations (small and large signals), where the model orders have been 

reduced from several hundreds to a few state variables.  

As another subset of physics-based models, reduced-order modeling of FEA models with 

relative motion is studied. It is shown that an appropriate movement-path discretization 

conserves the state vector dimension and thus the consistency of the order-reduction process. The 

original 3577
th

-order model has been reduced to a 3
rd

-order model and dynamically incorporated 

the relative motion. 
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At the circuit level, wide-bandwidth component models are introduced to form high-fidelity 

models of switching converters. Both time-invariant and hybrid model formulations of switching 

converters are examined. Several model-order/simulation-resolutions are extracted from the 

high-fidelity converter model, and appropriately assembled in an MRS environment. In 

particular, proper initialization of hybrid models based on the underlying reduction technique are 

discussed.  Moreover, state continuity across different switching events and simulation resolution 

is preserved. This simulation framework is extended to resonant converters, converters with 

nonlinear elements, and controlled systems. In all cases, several orders of magnitude 

improvement in simulation speed and reduction in the number of integration steps is reported, 

enhancing simulation accuracy, stability, and speed. 

 

6.2 Future Work 

HFMEC models can be improved by including magnetic hysteresis effects [16]. Early work in 

reduced-order modeling of FEA-based models has shown promise [254]. Similar approaches 

may be used to include the memory effects of magnetic hysteresis in the reduced-order model in 

Section 3.4. Moreover, force and torque formulations are required in order to employ reduced-

order FEA/HFMEC models as design tools for electrical machinery. Direct Maxwell stress 

tensor [135] and virtual work methods [131] are candidate approaches for force formulation.  

The MRS framework can be extended to more complex power electronics-based systems, e.g., 

machine-inverter combinations. High-fidelity models of electrical machines that account for 

distributed effects of rotor circuitry or drive harmonics are readily available in the literature 

(induction machines [255], synchronous machines [256-258] and permanent magnet machines 
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[206, 259]). In these models, the main challenge is to tackle nonlinearities due to the presence of 

speed terms (i.e., back EMF) in Park equations. 
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APPENDIX A 

MAGNETIC CORE DIMENSIONS 
 

Tables A.1 to A.4 show the material properties of considered magnetic cores. 

TABLE A.1 

Toroidal core characteristics 

DIMENSIONS\CORE TYPE T400-26 [260] M19-26 T200-26 [261] 

Inner radius, rin 28.6 mm 46.75 mm 15.82 mm 

Outer radius, rout 51 mm 61.5 mm 25.72 mm 

Height, h 33 mm 0.475 mm 14.19 mm 

Conductivity,   20 s.m
-1

 [163] 6102  s.m
-1

 [262] 20 s.m
-1

 

Number of laminations, nL 1 50 1 

Number of turns, N 9 76 60 

External resistance, extR  23 m  85.76 m  70 m  

 

 

TABLE A.2 

U93/76/30 data 

Parameter Value 

w1 28 mm 

w2 48 mm 

w3 76 mm 

w4 36 mm 

w5 93 mm 

w6 30 mm 

N 15 turns 

Rext  
 100 m  

δ 200 s.m-1 

r  2200 

42 24 wwrin 
 264 mm 

53 24 wwrout 
 490 mm 

 

 

TABLE A.3 

Transformer specifications 

Parameter Value 

h 14.19 mm 

N1,N2 60 turns 

rext1, rext2  
 70  m 

σ
  
 20 s.m-1 

rin 15.82 mm 

rout 25.72 mm 
 

TABLE A.4 

FEM-plunger data 
 
Parameter Value 

w1 13 cm 

w2 5 cm 

w3 6 cm 

w4 1 cm 

w5 4 cm 

w6 2.5 cm 

w7 3 cm 

w8 4 cm 

w9 6.8 cm 

w10 10 cm 

σcopper  
 5×107 

δ 200 

r  4000 

rext  
 20 m 
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APPENDIX B 

CIRCUIT PARAMETERS 
 

Tables B.1 to B.6 show circuit parameters of switching converters. 

TABLE B.1 

Boost converter 

Parameter Value 

vg 5 volt 

L 1.316 mH 

rL 0.14  

CL  1 pF 

Lsw 20 nH 

Csw 200 pF 

rsw   
(on) 0.2   

rsw  
(off) 2.3 M  

dL
  

5 nH 

dLr
  1 m  

Vd   
(on) 0.61 volt 

Vd  
(off) 0 volt 

rd   
(on) 50 m  

rd  
(off) 40 M  

Cd   
(on) 15 pF 

Cd  
(off) 100 pF 

dCr   5 m  

C  42 F 

LC 100 pH 

rC  0.38  

Rload 10.5  

fsw 10 KHz 

Duty 0.5 

 

 

TABLE B.2 

Class-E Amplifier 

Parameter Value 

vg 20 volt 

L1 21.9 H 

L2 4.97 H 

rL1
 10 m  

rL2
 2 m  

CL1
  5 pF 

CL2
 5 pF 

Lsw 10 nH 

Csw 80 pF 

rsw   
(on) 0.6  

rsw  
(off) 2 M  

C1  442 pF 

C2 357 pF  

LC1
 5 pH 

LC2
 5 pH 

rC1
  0.1  

rC2
 0.1  

Rload 12.5  

fsw 4 MHz 

Duty 0.5 

 

 

TABLE B.3 

Cascaded converter 

Parameter Value 

vg 10 volt 

L1 2.16 mH 

L2 4.54 mH 

rL1
, rL2

 20 m  

CL1
, CL2

 5 nF 

Lsw1
, Lsw2

 20 nH 

Csw1
, Csw2

 10 nF 

rsw1
, rsw2   

(on) 20 m  

rsw1
, rsw2   

(off) 20 M  

rd1
, rd2   

(on) 220 m  

rd1
, rd2   

(off) 10 M 

Vd1
, Vd2   

(on) 0.58 Volt 

Cd1
, Cd2   

(on) 1.5 nF 

Cd1
, Cd2   

(off) 10 nF 

rLd
 1 m  

Ld 50 nH 

C1
, C2 

 96 F 

LC1
, LC2

 1 nF 

rC1
, rC2

 345 m  

Rload 64.5  

fsw1
 50 KHz 

fsw2
 30 KHz 

duty1, duty2 0.49 
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Controller: 









 
3.0

1
105

1101

1 3

5 ss
. The first transfer function is to avoid an algebraic loop due 

to the presence of the proportional gain. 

 

TABLE B.4 

Nonlinear boost converter 

Parameter Value 

vg 5 V 

Leff1 200 H 

Leff2 100 H 

Leff3 20 H 

Itr1 0.85  

Itr1 1.05 A 

rL 0.1  

CL  1 pF 

Lsw 20 nH 

Csw 200 pF 

rsw   
(on) 0.2   

rsw  
(off) 2 M  

dL
  

5 nH 

dLr
  10 m  

rd   
(on) 50 m  

rd  
(off) 40 M  

Vd   
(on) 0.61 V 

Vd  
(off) 0 V 

Cd   
(on) 15 pF 

Cd  
(off) 100 pF 

dCr   5 m  

C  42 F 

LC 100 pH 

rC  0.4  

Rload 20  

fsw 50 kHz 

Duty 0.5 
 

TABLE B.5 

Closed-loop synchronous buck converter 

Parameter Value 

vg 6.5 V 

Vref 1.3 V 

L 5  H 

rL 10 m  

CL 10 nF 

Lsw 10 nH 

Csw 20 nF 

rsw (on) 0.4   

rsw 
(off) 20 M  

rC 1 m  

C 288 F 

LC 1 nF 

fsw 100 kHz 

RLoad1 0.65  

RLoad2 0.13  
 

TABLE B.6 

Ideal boost converter 

Parameter Value 

vg 5 V 

duty 0.5 

L 100  H 

R 8  

C 4.4  F 

fsw 10 kHz 
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APPENDIX C 

SYSTEM EQUATIONS 
 

C.1 Boost Converter  
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C.2 Class-E Amplifier  
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C.3 Cascaded Converter 
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C.4 Synchronous Buck Converter  
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C.5 MFA Representation of an Ideal Boost Converter  
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APPENDIX D 

MATLAB CODES 
 

D.1 Quasi Pole/Zero Cancellation 

% Order reduction of the input system, ―sys‖, based on the quasi pole-zero method 

full_model=sys;              

 

full_dcgain=dcgain(full_model);       % Full-order model dc gain 

full_zero=zero(full_model);          % Full-order model zeros 

full_pole=pole(full_model);           % Full-order model poles 

 

full_zero_sorted=sort(abs(full_zero),'descend');   % Full-order model zeros SORTED 

full_pole_sorted=sort(abs(full_pole),'descend');   % Full-order model poles SORTED 

 

pp=full_pole_sorted; 

zz=full_zero_sorted; 

index_buffer=[]; 

 

for con=1:min(length(pp),length(zz)); 

     

    small=min(pp(con),zz(con)); 

    big=max(pp(con),zz(con)); 

 

    if (((big-small)/big)<0.10)   %  10% tolerance level; can be adjusted arbitrarily 

index_buffer=[index_buffer con]; 

    end 

 

end 

 

pole_reduced=-pp; 

zero_reduced=-zz; 

 

pole_reduced(index_buffer)=[]; 

zero_reduced(index_buffer)=[]; 

 

sys_reduced=zpk(zero_reduced,pole_reduced,1); 

al=dcgain(sys)/dcgain(sys_reduced); 

sys_reduced=zpk(zero_reduced,pole_reduced,al); 
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D.2 Arnoldi via Modified Gram-Schmidt 

 

function W=Arnoldi(A,B,E,q) 

 

% W is the projection vector used in projection and reduction 

% E could be the identity matrix in most cases 

% q is the reduced model order 

 

[m,n]=size(A); 

V=zeros(m,q); 

temp=A\B; 

V(:,1)=temp/norm(temp); 

for i=1 : q-1 

    V(:,i+1)=A\E*V(:,i); 

    for j=1 : i 

        V(:,i+1)=V(:,i+1)-(V(:,i+1)'*V(:,j))*V(:,j);    %Orthogonalize 

        V(:,i+1)=V(:,i+1)/norm(V(:,i+1));                 %Normalize 

    end  

end 

 

 

D.3 FEM of an Inductor 

 

%  FEM of a linear toroidal core adopted from modified PLC code.  

%  Core structure is first constructed  in MATLAB PDE toolbox.  

% ―P‖, ―e‖, and ―t‖ parameters from have to be retrieved from MATLAB’s PDE Toolbox 

 

Nel= max(size(t));  % Number of elements 

Nnodes= max(size(p));  % Number of nodes 

 

% Regions definition 

copperreg= [ 4:21 ]; 

ferritereg= [1]; 

airreg= [2 3]; 

metreg= union(copperreg,ferritereg); 

poscopreg= copperreg(1:2:length(copperreg)); 

negcopreg= copperreg(2:2:length(copperreg)); 

 

% define set of nodes in metal, possibly shared 

metind= find(ismember(t(4,:),metreg)); 

mnodes= unique(union(union(t(1,metind),t(2,metind)),t(3,metind))); 

 

% define set of nodes in air, possibly shared 

airind= find(ismember(t(4,:),airreg)); 

anodes= unique(union(union(t(1,airind),t(2,airind)),t(3,airind))); 
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% define set of nodes on outer boundary (with air, automatically) 

regbl= find(e(6,:) == 0); 

regbr= find(e(7,:) == 0); 

regbaonly= union(regbl,regbr); 

banodes= unique([e(1,regbaonly) e(2,regbaonly)]); 

 

% define set of nodes on metal-air boundary 

manodes= intersect(mnodes,anodes); 

 

% define set of nodes in metal only 

mmnodes= setdiff(mnodes,manodes); 

 

% define set of nodes in air only- not with metal or boundary 

aanodes= setdiff(setdiff(anodes,manodes),banodes); 

 

map= [mmnodes manodes aanodes banodes]; 

[y,index]= sort(map); 

list= [1:Nnodes]; 

imap= list(index); 

pnew= p(:,map); 

tnew(1,:)= imap(t(1,:)); 

tnew(2,:)= imap(t(2,:)); 

tnew(3,:)= imap(t(3,:)); 

tnew(4,:)= t(4,:); 

p=pnew; t=tnew; 

p=p'; t=t'; 

 

 

% Material Charactersitcs 

munot= 4*pi*1e-7; 

perm(copperreg)= munot; 

perm(ferritereg)= 80.43*munot;    % Actual expected value of mu 

perm(airreg)= munot; 

 

sigma(copperreg)= 5.8e7; 

sigma(ferritereg)= 20; 

sigma(airreg)= 0; 

 

% Current direction 

Jbar(poscopreg)= 1; 

Jbar(negcopreg)= -1; 

Jbar(ferritereg)= 0; 

Jbar(airreg)= 0; 

 

% Find triangle areas 

[AR,A1,A2,A3]=PDETRG(p',t'); 

 

% Formulation of FEA matrices  (S,C,T) and vectors ,b 

 

bcols= zeros(Nnodes,length(poscopreg)+length(negcopreg)); 
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Cglob= zeros(Nnodes,Nnodes); 

 

for x=1:length(poscopreg) 

    bfind= find(t(:,4)==poscopreg(x)); 

    areabp(x)= sum(AR(bfind)); 

 

    for y= 1:length(bfind) 

        z= bfind(y); 

        bcols(t(z,1),x)= bcols(t(z,1),x) + AR(z); 

        bcols(t(z,2),x)= bcols(t(z,2),x) + AR(z); 

        bcols(t(z,3),x)= bcols(t(z,3),x) + AR(z); 

    end 

 

    bcols(:,x)= bcols(:,x)*sigma(poscopreg(x))/3; 

    Ct= [1;1;1]*bcols(:,x)'; 

 

    for y=1:length(bfind) 

        z= bfind(y); 

        Cglob(t(z,1),:)= Cglob(t(z,1),:) + AR(z)*Ct(1,:)/areabp(x)/3; 

        Cglob(t(z,2),:)= Cglob(t(z,2),:) + AR(z)*Ct(2,:)/areabp(x)/3; 

        Cglob(t(z,3),:)= Cglob(t(z,3),:) + AR(z)*Ct(3,:)/areabp(x)/3; 

    end 

 

end 

 

for x=1:length(negcopreg) 

    bfind= find(t(:,4)==negcopreg(x)); 

    areabn(x)= sum(AR(bfind)); 

 

    for y= 1:length(bfind) 

        z= bfind(y); 

        bcols(t(z,1),x+length(poscopreg))= bcols(t(z,1),x+length(poscopreg)) + AR(z); 

        bcols(t(z,2),x+length(poscopreg))= bcols(t(z,2),x+length(poscopreg)) + AR(z); 

        bcols(t(z,3),x+length(poscopreg))= bcols(t(z,3),x+length(poscopreg)) + AR(z); 

    end 

 

    bcols(:,x+length(poscopreg))= bcols(:,x+length(poscopreg))*sigma(negcopreg(x))/3; 

    Ct= [1;1;1]*bcols(:,x+length(poscopreg))'; 

 

    for y=1:length(bfind) 

        z= bfind(y); 

        Cglob(t(z,1),:)= Cglob(t(z,1),:) + AR(z)*Ct(1,:)/areabn(x)/3; 

        Cglob(t(z,2),:)= Cglob(t(z,2),:) + AR(z)*Ct(2,:)/areabn(x)/3; 

        Cglob(t(z,3),:)= Cglob(t(z,3),:) + AR(z)*Ct(3,:)/areabn(x)/3; 

    end 

 

end 

 

Sglob= zeros(Nnodes,Nnodes); 

Tglob= zeros(Nnodes,Nnodes); 

q2glob= zeros(Nnodes,1); 
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for x=1:Nel 

    xi= p(t(x,1),1); 

    xj= p(t(x,2),1); 

    xk= p(t(x,3),1); 

    yi= p(t(x,1),2); 

    yj= p(t(x,2),2); 

    yk= p(t(x,3),2); 

     

    ai= xj*yk - xk*yj; 

    bi= yj - yk; 

    ci= xk - xj; 

     

    aj= xk*yi - xi*yk; 

    bj= yk - yi; 

    cj= xi - xk; 

 

    ak= xi*yj - xj*yi; 

    bk= yi - yj; 

    ck= xj - xi; 

     

    locperm= perm(t(x,4)); 

    locsig= sigma(t(x,4)); 

    locJbar= Jbar(t(x,4)); 

     

    Se= (1/(locperm*4*AR(x)))*[ (bi^2 + ci^2) (bi*bj +ci*cj) (bi*bk + ci*ck); 

        (bi*bj + ci*cj) (bj^2 + cj^2) (bj*bk + cj*ck); 

        (bi*bk + ci*ck) (bj*bk + cj*ck) (bk^2 + ck^2)]; 

    Te= (locsig*AR(x)/12)*[ 2 1 1; 1 2 1; 1 1 2]; 

     

    k=0; 

    if (ismember(t(x,4),negcopreg))  

        kfind= find(negcopreg==t(x,4)); 

        k= -1*AR(x)/areabn(kfind)/3; 

    end 

    if (ismember(t(x,4),poscopreg)) 

        kfind= find(poscopreg==t(x,4)); 

        k= 1*AR(x)/areabp(kfind)/3; 

    end 

    q2e= k*[1 1 1]'; 

     

    Sglob(t(x,1),t(x,1))= Sglob(t(x,1),t(x,1))+Se(1,1); 

    Sglob(t(x,1),t(x,2))= Sglob(t(x,1),t(x,2))+Se(1,2); 

    Sglob(t(x,1),t(x,3))= Sglob(t(x,1),t(x,3))+Se(1,3); 

    Sglob(t(x,2),t(x,1))= Sglob(t(x,2),t(x,1))+Se(2,1); 

    Sglob(t(x,2),t(x,2))= Sglob(t(x,2),t(x,2))+Se(2,2); 

    Sglob(t(x,2),t(x,3))= Sglob(t(x,2),t(x,3))+Se(2,3); 

    Sglob(t(x,3),t(x,1))= Sglob(t(x,3),t(x,1))+Se(3,1); 

    Sglob(t(x,3),t(x,2))= Sglob(t(x,3),t(x,2))+Se(3,2); 

    Sglob(t(x,3),t(x,3))= Sglob(t(x,3),t(x,3))+Se(3,3); 

 

    Tglob(t(x,1),t(x,1))= Tglob(t(x,1),t(x,1))+Te(1,1); 
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    Tglob(t(x,1),t(x,2))= Tglob(t(x,1),t(x,2))+Te(1,2); 

    Tglob(t(x,1),t(x,3))= Tglob(t(x,1),t(x,3))+Te(1,3); 

    Tglob(t(x,2),t(x,1))= Tglob(t(x,2),t(x,1))+Te(2,1); 

    Tglob(t(x,2),t(x,2))= Tglob(t(x,2),t(x,2))+Te(2,2); 

    Tglob(t(x,2),t(x,3))= Tglob(t(x,2),t(x,3))+Te(2,3); 

    Tglob(t(x,3),t(x,1))= Tglob(t(x,3),t(x,1))+Te(3,1); 

    Tglob(t(x,3),t(x,2))= Tglob(t(x,3),t(x,2))+Te(3,2); 

    Tglob(t(x,3),t(x,3))= Tglob(t(x,3),t(x,3))+Te(3,3); 

     

    q2glob(t(x,1))= q2glob(t(x,1))+q2e(1); 

    q2glob(t(x,2))= q2glob(t(x,2))+q2e(2); 

    q2glob(t(x,3))= q2glob(t(x,3))+q2e(3); 

      

end 

 

Sglob= 0.5*(Sglob + Sglob'); 

Tglob= 0.5*(Tglob + Tglob'); 

Cglob= 0.5*(Cglob + Cglob'); 

 

% Boundary condition 

lenouter= length(banodes); 

leninner= Nnodes - lenouter; 

 

Sglob= Sglob(1:leninner,1:leninner); 

Tglob= Tglob(1:leninner,1:leninner); 

q2glob= q2glob(1:leninner); 

Cglob= Cglob(1:leninner,1:leninner); 

 

T= -Cglob + Tglob; 

T= (T + T')/2; 

 

% Kron reduction 

numma= length(manodes); 

nummm= length(mmnodes); 

numaa= length(aanodes); 

Smm= Sglob(1:nummm,1:nummm); 

Smb= Sglob(1:nummm,nummm+1:nummm+numma); 

Sbb= Sglob(nummm+1:nummm+numma,nummm+1:nummm+numma); 

Sba= Sglob(nummm+1:nummm+numma,nummm+1+numma:leninner); 

Saa= Sglob(nummm+numma+1:leninner, nummm+numma+1:leninner); 

SBB= Sbb - Sba*inv(Saa)*Sba';  

 

numred= numma+nummm; 

Sred= [Smm Smb ; Smb' SBB]; 

Tred= T(1:numred,1:numred); 

q2red= q2glob(1:numred); 

bred= bcols(1:numred,:); 

 

 

% System formulation 

depth= 0.033 + 0.022;   % depth of system into 3-D 
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iTred= inv(Tred); 

Amat= -iTred*Sred; 

Bmat= iTred*q2red; 

Cmat1= 0*bred(:,1)'; 

Dmat1= 0; 

Cmat2= 0*bred(:,1)'; 

Dmat2= 0; 

 

for x= 1:9 

    Cmat1= Cmat1 -depth*bred(:,x)'*iTred*Sred/5.8e7/areabp(x); 

    y= x+9; 

    Cmat2= Cmat2 + depth*bred(:,y)'*iTred*Sred/5.8e7/areabn(x); 

    Dmat1= Dmat1 + depth*(1 + bred(:,x)'*iTred*q2red)/5.8e7/areabp(x); 

    Dmat2= Dmat2 + depth*(1 - bred(:,y)'*iTred*q2red)/5.8e7/areabn(x); 

end 

 

Cmat= Cmat1+Cmat2; 

Dmat= Dmat1+Dmat2; 

sys= ss(Amat,Bmat,Cmat,Dmat); 

 

 

D.4 Reduced-order Modeling of HFMEC 

D.4.1 HFMEC Formulation of a Toroidal Core  

 

function sys_full=mec_sat_full(jar) 

 

%%%%%%%%%%%%%%%%%% Geometrical Characteristics, jar is the magnitude of input current 

 

rad_in=46.75/2*1e-3;                                        % Inner diameter 

rad_out=61.5/2*1e-3;                                        % Outter diameter 

h=4.7498*1e-4*50;                                           % Height 

   

wind_num=76;                                                  % # of turns 

Sigma=200;                                                       % Conductivity 

 

wire_res=85.76*1e-3;    

 

slice_num=100; 

 

dx=(rad_out-rad_in)/(2*slice_num-1);            % x-axis incremetals 

dy=h/(2*slice_num-1);                                     % y-axis incrementals 

 

%%%%%%%%%%%%%%%%%%%%%%%% Slice Area and area_len Calculation 

 

for con=1:slice_num-1 
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    areaa(con)=0; 

    areaa_len(con)=0; 

     

% Permeance in parallel branches are added for the start side 

areaa_len(con)=areaa_len(con)+dx*dy*(2*(slice_num-con)+1)/(2*pi*(rad_in-dx/2+con*dx));               

 

% Permeance in parallel branches are added for the end side 

areaa_len(con)=areaa_len(con)+dx*dy*(2*(slice_num-con)+1)/(2*pi*(rad_out+dx/2-con*dx));             

   

areaa(con)=areaa(con)+dx*dy*(2*(slice_num-con)+1)*2; 

     

    for con2=1:2*(slice_num-con)-1 

        areaa_len(con)=areaa_len(con)+dx*dy*2/(2*pi*(rad_in+con*dx-dx/2+con2*dx));                               

        areaa(con)=areaa(con)+dx*dy*2; 

    end 

         

end 

 

areaa(slice_num)=dx*dy; 

areaa_len(slice_num)=dx*dy/pi*(rad_in+rad_out); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Muu calculation 

 

for con=1:slice_num 

        Muu(con)=gor(wind_num,jar,areaa_len(con),areaa(con)); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Slice Reluctance Calculation 

 

for con=1:slice_num-1 

     

% Permeance in parallel branches are added for the start side 

    permeance_start=Muu(con)*dx*dy*(2*(slice_num-con)+1)/(2*pi*(rad_in-dx/2+con*dx));            

 

% Permeance in parallel branches are added for the end side 

    permeance_end=Muu(con)*dx*dy*(2*(slice_num-con)+1)/(2*pi*(rad_out+dx/2-con*dx));                 

    permeance_between=0;                                                                                

     

    for con2=1:2*(slice_num-con)-1 

temp=Muu(con)*dx*dy*2/(2*pi*(rad_in+con*dx-dx/2+con2*dx));                               

permeance_between=permeance_between+temp; 

    end 

     

    permeance(con)=permeance_end+permeance_start+permeance_between;         % Total permeance 

     

    reluc(con)=1/permeance(con);                                                            % Total reluctance           

     

end 

 

reluc(slice_num)=(pi*(rad_in+rad_out))/(Muu(con)*dx*dy);                            % Last slice reluctance 
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%%%%%%%%%%%%%%%%%%%%%%%%% Slice Conductance Calculation 

 

for con=1:slice_num-1 

     

    Resistance_start=dy*(2*(slice_num-con)+1)/(Sigma*dx*2*pi*(rad_in+con*dx-dx/2));             

    Ressitance_end=dy*(2*(slice_num-con)+1)/(Sigma*dx*2*pi*(rad_out-con*dx+dx/2));                 

    Resistance_between=0;                                                                      

 

    for con2=1:2*(slice_num-con)-1 

temp=2*dx/(Sigma*dy*(2*pi*(rad_in+con*dx+con2*dx-dx/2)));                                     

Resistance_between=Resistance_between+temp; 

    end 

     

    Resistance(con)=Ressitance_end+Resistance_start+Resistance_between;         

    conduc(con)=1/Resistance(con);                                                             

     

end 

 

conduc(slice_num)=0;      % Doesn’t matter since doesn’t cause any eddy current 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Full order model formulation 

 

mat_D=[0]; 

mat_C=zeros(1,slice_num);mat_C(1,1)=reluc(1)/wind_num;mat_C(1,2)=-reluc(1)/wind_num; 

 

mat_B=zeros(slice_num,1);mat_B(1,1)=1/wind_num; 

mat_A=zeros(slice_num,slice_num); 

mat_A(1,1)=-wire_res*reluc(1)/wind_num/wind_num; 

mat_A(1,2)=wire_res*reluc(1)/wind_num/wind_num; 

 

for con=2:slice_num-1 

    mat_A(con,con-1)=reluc(con-1)/conduc(con-1); 

    mat_A(con,con)=-(reluc(con-1)+reluc(con))/conduc(con-1); 

    mat_A(con,con+1)=(reluc(con))/conduc(con-1); 

end 

 

    mat_A(slice_num,slice_num-1)=reluc(slice_num-1)/conduc(slice_num-1); 

    mat_A(slice_num,slice_num)=-(reluc(slice_num-1)+reluc(slice_num))/conduc(slice_num-1); 

 

sys_full=ss(mat_A,mat_B,mat_C,mat_D) 

 

 

 

D.4.2 Effective permeability 

function MM=gor(N,cur,areaa_lent,areaat) 

 

% N is the number of winding, M is the effective Mu, cur is current magnitude,  areaa_len is the flux tube 

% area divided by length, areaa is the flux tube area, p are the interpolating coefficients 

 

% Mu versus B are extracted from the data sheet 
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M=[ 0.00002373486190 

   0.00006386971345 

   0.00011844476451 

   0.00018539020587 

   0.00030405383441 

   0.00040703777188 

   0.00057118223318 

   0.00085489235813 

   0.00135335648920 

   0.00321625458309 

   0.00553584410620 

   0.00732732718430 

   0.00941300833039 

   0.01041000743758 

   0.00891231639793 

   0.00626751427485 

   0.00626751427485 

   0.00891231639793 

   0.01041000743758 

   0.00941300833039 

   0.00732732718430 

   0.00553584410620 

   0.00321625458309 

   0.00135335648920 

   0.00085489235813 

   0.00057118223318 

   0.00040703777188 

   0.00030405383441 

   0.00018539020587 

   0.00011844476451 

   0.00006386971345 

   0.00002373486190]; 

 

B=[-2.1 

-2 

-1.9 

-1.8 

-1.7 

-1.65 

-1.6 

-1.55 

-1.5 

-1.4 

-1.3 

-1.2 

-1 

-0.7 

-0.4 

-0.2 

0.2 

0.4 
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0.7 

1 

1.2 

1.3 

1.4 

1.5 

1.55 

1.6 

1.65 

1.7 

1.8 

1.9 

2 

2.1 

]; 

 

     

   function y=fun(x) 

             

            M_int=interp1(B,M,x/areaat,'linear');  

            M_int=max(M_int,1.2566e-006);    % Air permeance used for initiaization 

            M_int=min(M_int,max(M)); 

            y=N*cur-x/areaa_lent/M_int; 

   end 

 

% finding the effective flux with initial condition from linear material assumption 

phi=fsolve(@fun,N*cur*4*pi*1e-7*800*areaa_lent);  

 

MM=interp1(B,M,phi/areaat,'linear');  % Effective permeability 

 

end 

 

 

D.4.3 Lookup table generation 

con=1; 

for x=0:0.1:10   % current range to be covered 

     

sys_red=mec_sat(x);  % Accepting the reduced-order model 

[z,p,k] = ss2zp(sys_red.a,sys_red.b,sys_red.c,sys_red.d);  % generating the gain, pole, and zero 

     

% Poles and zeros are in the left half plane; use abs and then multiply with -1. 

z=abs(z);                    

p=abs(p); 

 

zz(con,1:2)=z; 

pp(con,1:3)=p; 

kk(con)=k; 
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 con=con+1 

end 

 

% clean up and sort the numerical data 

save num 

 

 

D.4.4 Transient simulation of the nonlinear reduced-order model  

 

load num; % Load the previously saved lookup tables that parameterized  

%gain/pole/zeros versus current magnitudes 

 

con=1; 

delta=1e-5;   % Step size for the Backward Euler 

xx(:,con)=zeros(5,1); 

i(con)=0; 

    x=0; 

    interpolator;     

v(con)=0; 

 

time=0; 

 

for t=0:delta:2 

    con=con+1; 

    time=[time t]; 

    v(con)=7.5*sin(120*pi*t);  % sinusoidal or PWM voltage waveform 

    x=abs(i(con-1)); 

 

 

    z1=interp1(x_num,z_num(:,1),x,'nearest','extrap'); 

    z2=interp1(x_num,z_num(:,2),x,'nearest','extrap'); 

     

    p1=interp1(x_num,p_num(:,1),x,'nearest','extrap'); 

    p2=interp1(x_num,p_num(:,2),x,'nearest','extrap'); 

    p3=interp1(x_num,p_num(:,3),x,'nearest','extrap'); 

 

     

    k=interp1(x_num,k_num,x,'nearest','extrap'); 

     

    z=-[z1,z2]; 

    p=-[p1,p2,p3]; 

    [A,B,C,D]=zp2ss(z,p,k); 

 

    xx(:,con)=(eye(3)-delta*A)\(xx(:,con-1)+delta*B*v(con)); % Backward Euler 

    i(con)=C*xx(:,con)+D*v(con);    % Current as the output variable 

     

end 
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D.5 FEM of a Plunger 

 

D.5.1 Fixed grid generation 
 

 

depth=1e-1;                       % Depth into Z-axis 

mu0=4*pi*1e-7;                % Free Space Permeability 

mur=4000;                        %  Steel Permeability 

 

%%%%%%%%%%%%%%%%  First Region 

out_len_x=12e-2;              % The containing box in x-axis 

out_len_y=2e-1;                % The containing box in y-axis 

dx=5e-3; 

dy=5e-3; 

sec_num_x=out_len_x/dx;       % number of sections in x-axis for a rectangular shape 

sec_num_y=out_len_y/dy;       % number of sections in y-axis for a rectangular shape 

ele_no=2*sec_num_x*sec_num_y; 

 

x=[];                         % Initializing x-coordinates 

y=[];                         % Initializing x-coordinates 

 

for con=1:((sec_num_x+1)*(sec_num_y+1))         % Node enumeration and coordination, from left to 

right, then bottom to top, for a rectangular shape 

    x=[x dx*rem((con-1),(sec_num_x+1))]; 

    y=[y dy*floor((con-1)/(sec_num_x+1))]; 

end 

 

nod_no=(sec_num_x+1)*(sec_num_y+1);     % Total # of nodes generated 

 

% Global Element-Nodal Identification, the order is 1-2-3 locally and CounterClockWise 

 

% Initializing nod_id; nod_id is a n*3 matrix, Each row is an element, and within each rwo there are three 

% components refering to nodes 1-2-3 in CounterClockWise order 

 

nod_id=[];           

 

for con=1:ele_no 

    if rem(con,2)~=0     % Iff it is an odd element 

        temp=floor((con-1)/(2*sec_num_x))*(sec_num_x+1)+(rem(con,2*sec_num_x)+1)/2; 

        nod_id=[nod_id;temp temp+1 temp+sec_num_x+1]; 

    else 

        temp=floor((con-1)/(2*sec_num_x))*(sec_num_x+1)+(rem(con-1,2*sec_num_x)+1)/2+1; 

        nod_id=[nod_id;temp temp+1+sec_num_x temp+sec_num_x]; 

    end       

end 

 

%%%%%%%%%%%  Globalization , First we only have first region 

x_glob=x; 

y_glob=y; 
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nod_glob=nod_id; 

 

%%%%%%%%%%%%%%%%  Bottom box- Second area 

out_len_x=12e-2;              % The containing box in x-axis 

out_len_y=8e-2;               % The containing box in y-axis 

x_offset=12e-2; 

dx=5e-3; 

dy=5e-3; 

 

sec_num_x=out_len_x/dx;       % number of sections in x-axis for a rectangular shape 

sec_num_y=out_len_y/dy;       % number of sections in y-axis for a rectangular shape 

ele_no=2*sec_num_x*sec_num_y; 

 

x=[];                         % Initializing x-coordinates 

y=[];                         % Initializing x-coordinates 

 

% Node enumeration and coordination, from left to right, then bottom to top, for a rectangular shape 

for con=1:((sec_num_x+1)*(sec_num_y+1))         

    x=[x dx*rem((con-1),(sec_num_x+1))]; 

    y=[y dy*floor((con-1)/(sec_num_x+1))]; 

end 

 

nod_no=(sec_num_x+1)*(sec_num_y+1); 

 

nod_id=[]; 

 

for con=1:ele_no 

    if rem(con,2)~=0     % Iff  it is an odd element 

        temp=floor((con-1)/(2*sec_num_x))*(sec_num_x+1)+(rem(con,2*sec_num_x)+1)/2; 

        nod_id=[nod_id;temp temp+1 temp+sec_num_x+1]; 

    else 

        temp=floor((con-1)/(2*sec_num_x))*(sec_num_x+1)+(rem(con-1,2*sec_num_x)+1)/2+1; 

        nod_id=[nod_id;temp temp+1+sec_num_x temp+sec_num_x]; 

    end       

end 

 

% Now, we have to shift elements to the right for bottom box; remember the  

% fixed grid generation is from left to right and bottom to top 

 

x=x+x_offset;             

 

%%%%% Globalization after the second block is added; Remove redundant nodes 

k=1; 

x_size=length(x); 

temp_nod=zeros(x_size,1); 

 

for con=1:x_size                                                  % Absorb the new node numbering into the global system                

            temp_flag=intersect(find(x_glob==x(con)),find(y_glob==y(con)));       

            if length(temp_flag)==0 

            temp_nod(con)=length(x_glob)+k; 

            k=k+1; 
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            else            

            temp_nod(con)=temp_flag; 

            end 

end 

 

for con=1:length(nod_id)                            % Absorb the new elemental numbering into the global system                

    new_column=temp_nod(nod_id(con,:)); 

    new_row=new_column'; 

    nod_glob=[nod_glob;new_row]; 

end 

 

for con=1:length(temp_nod)                                 % Absorb the new xy-coordinates into the global system 

    temp_con=temp_nod(con); 

    x_glob(temp_con)=x(con); 

    y_glob(temp_con)=y(con); 

end 

 

%%%%%%%%%%%%%%%%  Bottom box- Third area 

 

out_len_x=12e-2;              % The containing box in x-axis 

out_len_y=4e-2;                % The containing box in y-axis 

x_offset=12e-2; 

y_offset=8e-2; 

 

dx=4e-3; 

dy=1e-3; 

 

sec_num_x=out_len_x/dx;         % number of sections in x-axis for a rectangular shape 

sec_num_y=out_len_y/dy;         % number of sections in y-axis for a rectangular shape 

 

ele_no=2*sec_num_x*sec_num_y; 

 

x=[];                         % Initializing x-coordinates 

y=[];                         % Initializing x-coordinates 

 

% Node enumeration and coordination, from left to right, then bottom to top, for a rectangular shape 

for con=1:((sec_num_x+1)*(sec_num_y+1))          

    x=[x dx*rem((con-1),(sec_num_x+1))]; 

    y=[y dy*floor((con-1)/(sec_num_x+1))]; 

end 

 

nod_no=(sec_num_x+1)*(sec_num_y+1); 

 

% Global Element-Nodal Identification, the order is 1-2-3 locally and counterclockwise 

 

nod_id=[];           

for con=1:ele_no 

    if rem(con,2)~=0     % Iff it is an odd element 

        temp=floor((con-1)/(2*sec_num_x))*(sec_num_x+1)+(rem(con,2*sec_num_x)+1)/2; 

        nod_id=[nod_id;temp temp+1 temp+sec_num_x+1]; 

    else 
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        temp=floor((con-1)/(2*sec_num_x))*(sec_num_x+1)+(rem(con-1,2*sec_num_x)+1)/2+1; 

        nod_id=[nod_id;temp temp+1+sec_num_x temp+sec_num_x]; 

    end       

end 

 

x=x+x_offset; 

y=y+y_offset; 

 

%%%%%%%%%%%%%%%%% Globalization after the ―third‖ block (dense) is added 

 

k=1; 

x_size=length(x); 

temp_nod=zeros(x_size,1); 

 

for con=1:x_size                                                 % Absorb the new node numbering into the global system                

            temp_flag=intersect(find(x_glob==x(con)),find(y_glob==y(con)));        

           if length(temp_flag)==0 

                temp_nod(con)=length(x_glob)+k; 

                k=k+1; 

            else            

                temp_nod(con)=temp_flag; 

            end 

end 

 

for con=1:length(nod_id)                            % Absorb the new elemental numbering into the global system                

    new_column=temp_nod(nod_id(con,:)); 

    new_row=new_column'; 

    nod_glob=[nod_glob;new_row]; 

end 

 

for con=1:length(temp_nod)                       % Absorb the new xy-coordinates into the global system 

    temp_con=temp_nod(con); 

    x_glob(temp_con)=x(con); 

    y_glob(temp_con)=y(con); 

end 

 

%%%%%%%%%%%%%%%%  Top box- Fourth area 

 

out_len_x=12e-2;              % The containing box in x-axis 

out_len_y=8e-2;                % The containing box in y-axis 

x_offset=12e-2; 

y_offset=12e-2; 

 

dx=5e-3; 

dy=5e-3; 

 

sec_num_x=out_len_x/dx;         % number of sections in x-axis for a rectangular shape 

sec_num_y=out_len_y/dy;         % number of sections in y-axis for a rectangular shape 

 

ele_no=2*sec_num_x*sec_num_y; 
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x=[];                         % Initializing x-coordinates 

y=[];                         % Initializing x-coordinates 

 

for con=1:((sec_num_x+1)*(sec_num_y+1))         % Node enumeration and coordination, from left to  

       %  right, then bottom to top, for a rectangular shape 

    x=[x dx*rem((con-1),(sec_num_x+1))]; 

    y=[y dy*floor((con-1)/(sec_num_x+1))]; 

end 

 

nod_no=(sec_num_x+1)*(sec_num_y+1); 

 

% Global Element-Nodal Identification, the order is 1-2-3 locally and counterclockwise 

 

nod_id=[];          % nod_id is a n*3 matrix, providing overall nodal equation for each element  

 

for con=1:ele_no 

    

     if rem(con,2)~=0     % Iff it is an odd element 

        temp=floor((con-1)/(2*sec_num_x))*(sec_num_x+1)+(rem(con,2*sec_num_x)+1)/2; 

        nod_id=[nod_id;temp temp+1 temp+sec_num_x+1]; 

    else 

        temp=floor((con-1)/(2*sec_num_x))*(sec_num_x+1)+(rem(con-1,2*sec_num_x)+1)/2+1; 

        nod_id=[nod_id;temp temp+1+sec_num_x temp+sec_num_x]; 

    end       

 

end 

 

x=x+x_offset; 

y=y+y_offset; 

 

%%%%%%%%%%%%%%%%% Globalization after the ―Fourth‖ block (dense) is added 

 

k=1; 

x_size=length(x); 

temp_nod=zeros(x_size,1); 

 

for con=1:x_size                

            temp_flag=intersect(find(x_glob==x(con)),find(y_glob==y(con)));       

                if length(temp_flag)==0 

                temp_nod(con)=length(x_glob)+k; 

                k=k+1; 

            else            

                temp_nod(con)=temp_flag; 

            end 

end 

 

for con=1:length(nod_id) 

    new_column=temp_nod(nod_id(con,:)); 

    new_row=new_column'; 

    nod_glob=[nod_glob;new_row]; 

end 
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for con=1:length(temp_nod) 

    temp_con=temp_nod(con); 

    x_glob(temp_con)=x(con); 

    y_glob(temp_con)=y(con); 

end 

 

%%%%%%%%%%%%%%%% 

 

 

 

 

D.5.2 Global C matrix and b vectors 
 

 

function [C_glob,mat_b]= b_vecs(x_glob,y_glob,nod_glob) 

           

% Building two b-vectors 

% The final product is checked to see if it is in the copper area, and if so, which one!(+/-). 

% is a nod*2 Matrix; The elemental C_1 and C_2 are 3*nod; The final C matrix is nod *no 

                                                                       

cond_copper=5.8e7;                    % Assumed conductivity of the copper 

wire_area=4*1e-4; 

 

nod_no=length(x_glob);   % number of nodes 

ele_no=length(nod_glob);                    % Number of elements                  

 

mat_b=zeros(nod_no,2); 

C_glob=zeros(nod_no,nod_no); 

 

                                            % Building b-vectors 

for con=1:ele_no 

    

   n1=nod_glob(con,1); 

   n2=nod_glob(con,2); 

   n3=nod_glob(con,3); 

    

   x1=x_glob(n1); 

   x2=x_glob(n2); 

   x3=x_glob(n3); 

    

   y1=y_glob(n1); 

   y2=y_glob(n2); 

   y3=y_glob(n3); 

    

   A=0.5*abs(det([1 x1 y1;1 x2 y2;1 x3 y3])); 

       

                                                % Check for the copper area 

                                    

  if ((x1>=2e-2)&(x1<=3e-2))&((x2>=2e-2)&(x2<=3e-2))&((x3>=2e-2)&(x3<=3e-2))&((y1>=8e-

2)&(y1<=12e-2))&((y2>=8e-2)&(y2<=12e-2))&((y3>=8e-2)&(y3<=12e-2)) 
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      A=A*cond_copper/3;                        % Copper 

      mat_b(n1,1)=mat_b(n1,1)+A; 

      mat_b(n2,1)=mat_b(n2,1)+A; 

      mat_b(n3,1)=mat_b(n3,1)+A; 

             

  elseif ((x1>=7e-2)&(x1<=8e-2))&((x2>=7e-2)&(x2<=8e-2))&((x3>=7e-2)&(x3<=8e-2))&((y1>=8e-

2)&(y1<=12e-2))&((y2>=8e-2)&(y2<=12e-2))&((y3>=8e-2)&(y3<=12e-2)) 

 

      A=A*cond_copper/3;                        % Copper 

      mat_b(n1,2)=mat_b(n1,2)+A; 

      mat_b(n2,2)=mat_b(n2,2)+A; 

      mat_b(n3,2)=mat_b(n3,2)+A; 

   

  end 

 

end 

 

 

C_1=[1;1;1]*mat_b(:,1)'; 

C_2=[1;1;1]*mat_b(:,2)'; 

 

 

                                                % Building C_global 

for con=1:ele_no 

    

   n1=nod_glob(con,1); 

   n2=nod_glob(con,2); 

   n3=nod_glob(con,3); 

    

   x1=x_glob(n1); 

   x2=x_glob(n2); 

   x3=x_glob(n3); 

    

   y1=y_glob(n1); 

   y2=y_glob(n2); 

   y3=y_glob(n3); 

    

  A=0.5*abs(det([1 x1 y1;1 x2 y2;1 x3 y3]));       

                                                              % Check for the copper area 

                                    

  if ((x1>=2e-2)&(x1<=3e-2))&((x2>=2e-2)&(x2<=3e-2))&((x3>=2e-2)&(x3<=3e-2))&((y1>=8e-

2)&(y1<=12e-2))&((y2>=8e-2)&(y2<=12e-2))&((y3>=8e-2)&(y3<=12e-2))  

                                                                           

                                                                % The first matrx C_1 is incorporated                                                                                               

      C_glob(n1,:)= C_glob(n1,:) + A*C_1(1,:)/wire_area/3; 

      C_glob(n2,:)= C_glob(n2,:) + A*C_1(2,:)/wire_area/3; 

      C_glob(n3,:)= C_glob(n3,:) + A*C_1(3,:)/wire_area/3; 

             

  elseif ((x1>=7e-2)&(x1<=8e-2))&((x2>=7e-2)&(x2<=8e-2))&((x3>=7e-2)&(x3<=8e-2))&((y1>=8e-

2)&(y1<=12e-2))&((y2>=8e-2)&(y2<=12e-2))&((y3>=8e-2)&(y3<=12e-2)) 
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                                                                % The second matrx C_2 is incorporated 

      C_glob(n1,:)= C_glob(n1,:) + A*C_2(1,:)/wire_area/3; 

      C_glob(n2,:)= C_glob(n2,:) + A*C_2(2,:)/wire_area/3; 

      C_glob(n3,:)= C_glob(n3,:) + A*C_2(3,:)/wire_area/3; 

   

  end 

end 

 

 

 

 

D.5.3 Node grouping 
 

 

function [metal,bound,air,outter,new_order]= nod_group(k,x_glob,y_glob) 

           

% Finding the global node locations and their coordinates 

% K is the x-axis shift 

 

 

nod_no=length(x_glob); 

                                     

x_shift=k*5e-3;                                     

                                    % Initialize the node numbering 

nod_no=length(x_glob); 

 

outter_nod=unique([find(x_glob==0) find(x_glob==24e-2) find(y_glob==0) find(y_glob==20e-2)]); 

 

metal_nod=unique([find(2e-2<=x_glob & x_glob<=3e-2 & 8e-2<=y_glob & y_glob<=12e-2) find(7e-

2<=x_glob & x_glob<=8e-2 & 8e-2<=y_glob & y_glob<=12e-2) find(3e-2<=x_glob & x_glob<=7e-2 & 

1.5e-2<=y_glob & y_glob<=18.5e-2) find(7e-2<=x_glob & x_glob<=12e-2 & 1.5e-2<=y_glob & 

y_glob<=5.5e-2) find(7e-2<=x_glob & x_glob<=12e-2 & 14.5e-2<=y_glob & y_glob<=18.5e-2) 

find(12e-2<=x_glob & x_glob<=16e-2 & 1.5e-2<=y_glob & y_glob<=8.3e-2) find(12e-2<=x_glob & 

x_glob<=16e-2 & 11.7e-2<=y_glob & y_glob<=18.5e-2) find((x_shift+12e-2)<=x_glob & 

x_glob<=(x_shift+18e-2) & 8.5e-2<=y_glob & y_glob<=11.5e-2)]); 

 

bound_nod=unique([find(3e-2<=x_glob & x_glob<=16e-2 & y_glob==1.5e-2) find(3e-2<=x_glob & 

x_glob<=16e-2 & y_glob==18.5e-2) find(7e-2<=x_glob & x_glob<=12e-2 & y_glob==5.5e-2) find(7e-

2<=x_glob & x_glob<=12e-2 & y_glob==14.5e-2) find(5.5e-2<=y_glob & y_glob<=8e-2 & x_glob==7e-

2) find(12e-2<=y_glob & y_glob<=14.5e-2 & x_glob==7e-2) find(12e-2<=y_glob & y_glob<=18.5e-2 & 

x_glob==3e-2) find(1.5e-2<=y_glob & y_glob<=8e-2 & x_glob==3e-2) find(8e-2<=y_glob & 

y_glob<=12e-2 & x_glob==2e-2) find(8e-2<=y_glob & y_glob<=12e-2 & x_glob==8e-2) find(2e-

2<=x_glob & x_glob<=3e-2 & y_glob==8e-2) find(7e-2<=x_glob & x_glob<=8e-2 & y_glob==8e-2) 

find(2e-2<=x_glob & x_glob<=3e-2 & y_glob==12e-2) find(7e-2<=x_glob & x_glob<=8e-2 & 

y_glob==12e-2) find(5.5e-2<=y_glob & y_glob<=8.3e-2 & x_glob==12e-2) find(11.7e-2<=y_glob & 

y_glob<=14.5e-2 & x_glob==12e-2) find(1.5e-2<=y_glob & y_glob<=8.3e-2 & x_glob==16e-2) 

find(11.7e-2<=y_glob & y_glob<=18.5e-2 & x_glob==16e-2) find(12e-2<=x_glob & x_glob<=16e-2 & 

y_glob==8.3e-2) find(12e-2<=x_glob & x_glob<=16e-2 & y_glob==11.7e-2) find((12e-

2+x_shift)<=x_glob & x_glob<=(18e-2+x_shift) & y_glob==8.5e-2) find((12e-2+x_shift)<=x_glob & 

x_glob<=(18e-2+x_shift) & y_glob==11.5e-2) find(8.5e-2<=y_glob & y_glob<=11.5e-2 & 

x_glob==(12e-2+x_shift)) find(8.5e-2<=y_glob & y_glob<=11.5e-2 & x_glob==(18e-2+x_shift))]); 
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metal_metal_nod=setdiff(metal_nod,bound_nod); 

 

non_air_nod=unique(union(outter_nod,union(bound_nod,metal_nod))); 

 

air_air_nod=setdiff([1:nod_no],non_air_nod); 

 

metal=metal_metal_nod; 

bound=bound_nod; 

air=air_air_nod; 

outter=outter_nod; 

 

new_order=[metal,bound,air,outter]; 

 

 

 

 

D.5.4 Node renumbering 
 

 

function [newx,newy,newele]= nod_ren(x,y,ele,order) 

           

 % node renumbering and restructuring 

newx=x(order); 

newy=y(order); 

 

for con1=1:length(ele) 

 

    for con2=1:3 

        con3=ele(con1,con2); 

        con4=find(order==con3); 

        newele(con1,con2)=con4; 

    end 

 

end 

 

 

 

D.5.5 Elemental matrix T 
 

function ele_t = T_ele(n1,n2,n3,k,x_glob,y_glob) 

           

% n1,n2,n3 are the nodal numbers of the corresponding element in 1,2,3 order 

                                     

cond_steel=80;                       % Assumed conductivity of the steel ferrite 

cond_copper=5.8e7;                   % Assumed conductivity of the copper 

                                     

x_shift=k*5e-3;                      % Shift in plunger; our discreet movement step-size is 4 mm. 

  

   x1=x_glob(n1); 

   x2=x_glob(n2); 

   x3=x_glob(n3); 
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   y1=y_glob(n1); 

   y2=y_glob(n2); 

   y3=y_glob(n3); 

    

   A=0.5*abs(det([1 x1 y1;1 x2 y2;1 x3 y3])); 

       

% Initializ the T-matrix 

   ele_t=A/12*(ones(3,3)+eye(3,3));      

                                                                             

                

   % Including the conductivity of steel, copper, and air 

    

  if ((x1>=3e-2)&(x1<=16e-2))&((x2>=3e-2)&(x2<=16e-2))&((x3>=3e-2)&(x3<=16e-2))&((y1>=1.5e-

2)&(y1<=5.5e-2))&((y2>=1.5e-2)&(y2<=5.5e-2))&((y3>=1.5e-2)&(y3<=5.5e-2)) 

                    

      ele_t=ele_t*cond_steel;      % Steel 

 

  elseif ((x1>=3e-2)&(x1<=7e-2))&((x2>=3e-2)&(x2<=7e-2))&((x3>=3e-2)&(x3<=7e-2))&((y1>=5.5e-

2)&(y1<=14.5e-2))&((y2>=5.5e-2)&(y2<=14.5e-2))&((y3>=5.5e-2)&(y3<=14.5e-2)) 

       

      ele_t=ele_t*cond_steel;      % Steel 

 

 elseif ((x1>=3e-2)&(x1<=16e-2))&((x2>=3e-2)&(x2<=16e-2))&((x3>=3e-2)&(x3<=16e2))&((y1>= 

14.5e-2)&(y1<=18.5e-2))&((y2>=14.5e-2)&(y2<=18.5e-2))&((y3>=14.5e-2)&(y3<=18.5e-2)) 

 

      ele_t=ele_t*cond_steel;      % Steel 

 

  elseif ((x1>=12e-2)&(x1<=16e-2))&((x2>=12e-2)&(x2<=16e-2))&((x3>=12e-2)&(x3<=16e-2))&(( 

y1>=5.5e-2)&(y1<=8.3e-2))&((y2>=5.5e-2)&(y2<=8.3e-2))&((y3>=5.5e-2)&(y3<=8.3e-2))       

       

      ele_t=ele_t*cond_steel;      % Steel 

     

  elseif ((x1>=12e-2)&(x1<=16e-2))&((x2>=12e-2)&(x2<=16e-2))&((x3>=12e-2)&(x3<=16e-2))&(( 

y1>=11.7e-2) &(y1<= 14.5e-2))&((y2>=11.7e-2)&(y2<=14.5e-2))&((y3>=11.7e-2)&(y3<=14.5e-2)) 

       

      ele_t=ele_t*cond_steel;      % Steel 

 

  elseif ((x1>=(12e-2+x_shift))&(x1<=(18e-2+x_shift)))&((x2>=(12e-2+x_shift))&(x2<=(18e-2+x_shift 

)))&((x3>=(12e-2+x_shift))&(x3<=(18e-2+x_shift)))&((y1>=8.5e-2)&(y1<=11.5e-2))&((y2>=8.5e-2)& 

(y2<=11.5e-2))&((y3>=8.5e-2)&(y3<=11.5e-2)) 

     

      ele_t=ele_t*cond_steel;      % Steel 

 

  elseif ((x1>=2e-2)&(x1<=3e-2))&((x2>=2e-2)&(x2<=3e-2))&((x3>=2e-2)&(x3<=3e-2))&((y1>=8e-

2)&(y1<=12e-2))&((y2>=8e-2)&(y2<=12e-2))&((y3>=8e-2)&(y3<=12e-2)) 

       

      ele_t=ele_t*cond_copper;     % Copper 

 

  elseif ((x1>=7e-2)&(x1<=8e-2))&((x2>=7e-2)&(x2<=8e-2))&((x3>=7e-2)&(x3<=8e-2))&((y1>=8e-

2)&(y1<=12e-2))&((y2>=8e-2)&(y2<=12e-2))&((y3>=8e-2)&(y3<=12e-2))   
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      ele_t=ele_t*cond_copper;     % Copper 

     

  else 

       

      ele_t=ele_t*0;               % Air 

       

  end 

   

 

 

D.5.6 Elemental matrix S 
 

 

function ele_s = s_ele(n1,n2,n3,k,x_glob,y_glob) 

           

% Building elemental matrix 

% n1,n2,n3 are the nodal numbers of the corresponding element in 1,2,3 order 

% K is the shift made in the plunger (k*4e-3 is the mechanical shift) 

                                     

mu0=4*pi*1e-7;                      % Free Space Permeability 

mur=4000;                            % Steel Permeability 

                                     

x_shift=k*5e-3;                      % Shift in plunger 

  

   x1=x_glob(n1); 

   x2=x_glob(n2); 

   x3=x_glob(n3); 

    

   y1=y_glob(n1); 

   y2=y_glob(n2); 

   y3=y_glob(n3); 

    

   a1=x2*y3-x3*y2; 

   b1=y2-y3; 

   c1=x3-x2; 

    

   a2=x3*y1-x1*y3; 

   b2=y3-y1; 

   c2=x1-x3; 

    

   a3=x1*y2-x2*y1; 

   b3=y1-y2; 

   c3=x2-x1; 

    

   A=0.5*abs(det([1 x1 y1;1 x2 y2;1 x3 y3])); 

       

  ele_s=0.25/A/mu0*[(b1^2+c1^2) (b1*b2+c1*c2) (b1*b3+c1*c3);(b1*b2+c1*c2) (b2^2+c2^2) 

(b2*b3+c2*c3);(b1*b3+c1*c3) (b2*b3+c2*c3) (b3^2+c3^2)]; 

                                                                 % Here we check for the steel 

if ((x1>=3e-2)&(x1<=16e-2))&((x2>=3e-2)&(x2<=16e-2))&((x3>=3e-2)&(x3<=16e-2))&((y1>=1.5e-

2)&(y1<=5.5e-2))&((y2>=1.5e-2)&(y2<=5.5e-2))&((y3>=1.5e-2)&(y3<=5.5e-2)) 
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      ele_s=ele_s/mur; 

 

  elseif ((x1>=3e-2)&(x1<=7e-2))&((x2>=3e-2)&(x2<=7e-2))&((x3>=3e-2)&(x3<=7e-2))&((y1>=5.5e-

2)&(y1<=14.5e-2))&((y2>=5.5e-2)&(y2<=14.5e-2))&((y3>=5.5e-2)&(y3<=14.5e-2)) 

       

      ele_s=ele_s/mur;       

 

  elseif ((x1>=3e-2)&(x1<=16e-2))&((x2>=3e-2)&(x2<=16e-2))&((x3>=3e-2)&(x3<=16e-2))&((y1>= 

14.5e-2)&(y1<=18.5e-2))&((y2>=14.5e-2)&(y2<=18.5e-2))&((y3>=14.5e-2)&(y3<=18.5e-2)) 

 

      ele_s=ele_s/mur;       

 

  elseif ((x1>=12e-2)&(x1<=16e-2))&((x2>=12e-2)&(x2<=16e-2))&((x3>=12e-2)&(x3<=16e-

2))&((y1>=5.5e-2)&(y1<=8.3e-2))&((y2>=5.5e-2)&(y2<=8.3e-2))&((y3>=5.5e-2)&(y3<=8.3e-2))       

       

    ele_s=ele_s/mur;       

     

  elseif ((x1>=12e-2)&(x1<=16e-2))&((x2>=12e-2)&(x2<=16e-2))&((x3>=12e-2)&(x3<=16e-2))&((y1 

>=11.7e-2)&(y1<=14.5e-2))&((y2>=11.7e-2)&(y2<=14.5e-2))&((y3>=11.7e-2)&(y3<=14.5e-2)) 

       

    ele_s=ele_s/mur;       

 

  elseif ((x1>=(12e-2+x_shift))&(x1<=(18e-2+x_shift)))&((x2>=(12e-2+x_shift))&(x2<=(18e-

2+x_shift)))&((x3>=(12e-2+x_shift))&(x3<=(18e-2+x_shift)))&((y1>=8.5e-2)&(y1<=11.5e-

2))&((y2>=8.5e-2)&(y2<=11.5e-2))&((y3>=8.5e-2)&(y3<=11.5e-2)) 

     

     ele_s=ele_s/mur;       

  end 

   

 

 

 

 

D.5.7 Elemental matrix P 
 

 

function ele_p = p_ele(n1,n2,n3,x_glob,y_glob) 

           

% Building elemental p- matrix 

% n1,n2,n3 are the nodal numbers of the corresponding element in 1,2,3 order 

% The final product is checked to see if we are in the copper area (positive for the left-side copper, 

% negative for the right-side copper). 

% We do not need to consider the shift, 

% since there is no wire on the moving part 

                                                                       

   wire_area=4*1e-4;                % Wire area for each 1cm * 4 cm copper plates;  

    

   x1=x_glob(n1); 

   x2=x_glob(n2); 

   x3=x_glob(n3); 
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   y1=y_glob(n1); 

   y2=y_glob(n2); 

   y3=y_glob(n3); 

    

   p=[(y2-y3);(y3-y1);(y1-y2)]; 

   q=[(x3-x2);(x1-x3);(x2-x1)]; 

    

   A=0.5*(p(2)*q(3)-p(3)*q(2)); 

       

% Initializ the p-matrix, current direction will be taken into account later based on the coordinates 

 

   ele_p=A/3/wire_area*(ones(3,1));                                                                                       

                                             

 % Finding the wires and current polarities   

                                                                                        

  if ((x1>=2e-2)&(x1<=3e-2))&((x2>=2e-2)&(x2<=3e-2))&((x3>=2e-2)&(x3<=3e-2))&((y1>=8e-

2)&(y1<=12e-2))&((y2>=8e-2)&(y2<=12e-2))&((y3>=8e-2)&(y3<=12e-2)) 

       

      ele_p=ele_p;                           % Positive current 

 

  elseif ((x1>=7e-2)&(x1<=8e-2))&((x2>=7e-2)&(x2<=8e-2))&((x3>=7e-2)&(x3<=8e-2))&((y1>=8e-

2)&(y1<=12e-2))&((y2>=8e-2)&(y2<=12e-2))&((y3>=8e-2)&(y3<=12e-2)) 

       

      ele_p=-1*ele_p;                        % Negative Copper 

     

  else 

       

      ele_p=ele_p*0;                         % Air 

       

  end 

   

 

 

 

 

 

D.5.8 State model formulation 
 

function [A,B,C,D]= dis_state_model(P_g,C_g,S_g,T_g,b1,b2,nod_seg) 

     

% nod_seg=[metal,bound,air,outter] 

% Here are the system parameters 

 

depth=1e-1;                                             % Depth into Z-axis 

wide=4e-2;                                              % The leg width used in the compensation for the corner effect 

L=wide+depth;                                        % The effective depth including the corner effects               

wire_cond=5.8e7;                                   % The conductivity is assumed the same for both sides of wires 

wire_area=4e-4;                                      % The area at each side 

r_ext=0.02;                                              % 20 m-Ohm 

cond_copper=5.8e7;                                % Copper conductivity 
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T_g=T_g-C_g; 

T_g=(T_g+T_g')/2; 

 

 Smm=S_g(1:nod_seg(1),1:nod_seg(1)); 

 Smb=S_g(1:nod_seg(1),nod_seg(1)+1:nod_seg(1)+nod_seg(2)); 

 Sbb=S_g(nod_seg(1)+1:nod_seg(1)+nod_seg(2),nod_seg(1)+1:nod_seg(1)+nod_seg(2)); 

 Sba=S_g(nod_seg(1)+1:nod_seg(1)+nod_seg(2),nod_seg(1)+nod_seg(2)+1:sum(nod_seg)-nod_seg(4)); 

 Saa=S_g(nod_seg(1)+nod_seg(2)+1:sum(nod_seg)- 

 

nod_seg(4),nod_seg(1)+nod_seg(2)+1:sum(nod_seg)-nod_seg(4)); 

 

 SBB=Sbb-Sba*inv(Saa)*Sba'; 

  

 Sred=[Smm Smb;Smb' SBB]; 

 Tred=T_g(1:nod_seg(1)+nod_seg(2),1:nod_seg(1)+nod_seg(2)); 

 

 

 inv_Tred=inv(Tred); 

 

 Pred=P_g(1:nod_seg(1)+nod_seg(2)); 

  

b1red=b1(1:nod_seg(1)+nod_seg(2)); 

 b2red=b2(1:nod_seg(1)+nod_seg(2)); 

  

 % System matrix extraction                                                     

  A=-inv_Tred*Sred; 

  B=inv_Tred*Pred; 

  C=L/cond_copper/wire_area*(-b1red'*inv_Tred*Sred+b2red'*inv_Tred*Sred); 

  D=r_ext+L/cond_copper/wire_area*(2+b1red'*inv_Tred*Pred-b2red'*inv_Tred*Pred); 

 

 

 

 

D.5.9 Plunger full and reduced model generation 
 

%%% Plunger Modeling with a fixed grid; The movement is discretized in 0.5 cm segments 

 

 

function [sys,rsys]=plunger(seg); 

 

grid_gen;                                                 % Generates the fixed grid 

 

nod_no=length(x_glob); 

ele_no=length(nod_glob); 

  

% Node numbering is sorted 

[metal,bound,air,outter,new_order]=nod_group(seg,x_glob,y_glob);          

nod_seg=[length(metal),length(bound),length(air),length(outter)];          

 

% Sorted global x,y,element list 

[x_glob,y_glob,nod_glob]=nod_ren(x_glob,y_glob,nod_glob,new_order);     
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s_global=sparse(nod_no,nod_no);                         % Initialization the global S matrix 

T_global=sparse(nod_no,nod_no);                        % Initialization the global T matrix 

p_global=sparse(nod_no,1);                               % Initialization the global P matrix 

 

for con=1:ele_no 

       

   nod1=nod_glob(con,1);                               % Finding the overall nodes of the corresponding element 

   nod2=nod_glob(con,2); 

   nod3=nod_glob(con,3); 

     

   ele_tem_t=T_ele(nod1,nod2,nod3,seg,x_glob,y_glob);     % Create the temporary elemental T matrix 

   ele_tem_s=s_ele(nod1,nod2,nod3,seg,x_glob,y_glob);     % Create the temporary elemental S matrix 

   ele_tem_p=p_ele(nod1,nod2,nod3,x_glob,y_glob);            % Create the temporary elemental P matrix 

    

%%%% Creating the global T matrix    

 

   T_global(nod1,nod1)=T_global(nod1,nod1)+ele_tem_t(1,1); 

   T_global(nod1,nod2)=T_global(nod1,nod2)+ele_tem_t(1,2); 

   T_global(nod1,nod3)=T_global(nod1,nod3)+ele_tem_t(1,3); 

    

   T_global(nod2,nod1)=T_global(nod2,nod1)+ele_tem_t(2,1); 

   T_global(nod2,nod2)=T_global(nod2,nod2)+ele_tem_t(2,2); 

   T_global(nod2,nod3)=T_global(nod2,nod3)+ele_tem_t(2,3); 

    

   T_global(nod3,nod1)=T_global(nod3,nod1)+ele_tem_t(3,1); 

   T_global(nod3,nod2)=T_global(nod3,nod2)+ele_tem_t(3,2); 

   T_global(nod3,nod3)=T_global(nod3,nod3)+ele_tem_t(3,3); 

 

%%%% Creating the global S matrix    

 

   s_global(nod1,nod1)=s_global(nod1,nod1)+ele_tem_s(1,1); 

   s_global(nod1,nod2)=s_global(nod1,nod2)+ele_tem_s(1,2); 

   s_global(nod1,nod3)=s_global(nod1,nod3)+ele_tem_s(1,3); 

    

   s_global(nod2,nod1)=s_global(nod2,nod1)+ele_tem_s(2,1); 

   s_global(nod2,nod2)=s_global(nod2,nod2)+ele_tem_s(2,2); 

   s_global(nod2,nod3)=s_global(nod2,nod3)+ele_tem_s(2,3); 

    

   s_global(nod3,nod1)=s_global(nod3,nod1)+ele_tem_s(3,1); 

   s_global(nod3,nod2)=s_global(nod3,nod2)+ele_tem_s(3,2); 

   s_global(nod3,nod3)=s_global(nod3,nod3)+ele_tem_s(3,3); 

    

%%%% Creating the global P matrix  

 

   p_global(nod1)=p_global(nod1)+ele_tem_p(1); 

   p_global(nod2)=p_global(nod2)+ele_tem_p(2); 

   p_global(nod3)=p_global(nod3)+ele_tem_p(3); 

    

end 
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s_global=0.5*(s_global+s_global');                               

T_global=0.5*(T_global+T_global'); 

 

[C_glob,mat_b]= b_vecs(x_glob,y_glob,nod_glob);                          % Global C-matrix and b1,b2-vectors 

 

b1=mat_b(:,1); 

b2=mat_b(:,2); 

 

% State-Model Extraction 

[A,B,C,D]= dis_state_model(p_global,C_glob,s_global,T_global,b1,b2,nod_seg);         

 

%  Model-Order Reduction; different linear reduction techniques can be applied 

 

sys=ss(A,B,C,D); 

 

sys1=ssbal(sys); 

 

[z,p,k]=ss2zp(sys1.a,sys1.b,sys1.c,sys1.d); 

sys2=zpk(z,p,k); 

 

sys3=minreal(sys2,1e-6); 

 

z=zero(sys3); 

p=pole(sys3); 

k=dcgain(sys3); 

 

sys3=zp2ss(z,p,k); 

sys3=minreal(sys2,1e-6); 

sys3=sys3*dcgain(sys2)/dcgain(sys3); 

 

[sys4,G] = balreal(sys3);      % Balanced realization  

 

 rsys = modred(sys4,4:size(G));                   % Adjusting the bandwidth 
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