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Abstract—Oversampled ADCs based on voltage-controlled 

oscillators have been analyzed using statistical models inherited 
from sigma-delta modulation. This paper shows that the discrete 
Fourier transform of a VCO-ADC output sequence can be 
calculated analytically for single tone inputs. The calculation is 
based on the transformation of the VCO output into a pulse 
frequency modulated signal that can be represented by a 
trigonometric series. Knowledge of the VCO-ADC output 
spectrum allows accurate evaluation of the SNDR dependence 
with the VCO oscillation frequency and gain constant. The 
SNDR predictions of the proposed model have been compared to 
behavioral simulations displaying only a deviation of 0.7 dB. 
 

Index Terms—Sigma-Delta Modulation, Data Conversion, 
Voltage-Controlled Oscillators, Time Encoding 

I. INTRODUCTION 
ne of the most promising analog-to-digital converter 
(ADC) architectures nowadays is the VCO-based 

oversampled converter (VCO-ADC) [1-4]. A characterization 
of its quantization noise spectrum and signal-to-quantization 
noise ratio (SQNR) would represent a valuable design tool. 
VCO-ADCs have been described [3-4] as first-order sigma-
delta modulators. Based on these analyses, the SQNR of such 
converters has been defined for sinusoidal inputs [3-4] using 
statistical models for quantization noise. In [5], a formal 
analysis of a discrete-time first-order sigma-delta modulator 
showed that its quantization error displays a discrete spectrum. 
A discrete quantization error would invalidate the premises of 
statistical models. According to [3-4], a VCO-ADC can be 
modeled as a sigma-delta modulator, especially if the center 
frequency of the VCO equals the sampling rate. In case the 
VCO center frequency and sampling rate differ, [3] shows that 
the output spectrum contains spurious components. The 
spurious components due to an arbitrary VCO center 
frequency cannot be modeled using [5], as the VCO 
oscillation frequency is not explicitly present in the model of a 
discrete-time sigma-delta modulator. Therefore, the models to 
date do not include all effects present in a VCO-ADC in a 
comprehensive way. 

An analysis based on frequency modulation (FM) seems the 
natural way to model a VCO-ADC. The spectrum of FM 
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signals for sinusoidal inputs is well known and has been 
applied to VCO-ADCs in [6]. However, direct application of 
FM spectral coefficients to a VCO-ADC requires a least-
squares minimization technique. In [7-8], the link between 
quantization, first-order sigma-delta modulation, and pulse 
frequency modulation (PFM) was established. 
In this letter, we propose a new analysis approach where a 
VCO-ADC is first transformed into a pulse frequency 
modulator whose spectrum is also well known [10-12]. As a 
difference to FM, the spectrum of a PFM signal does convey 
the baseband modulating input signal. The transformation into 
a PFM brings two advantages. First, the FFT of a finite 
sequence of a VCO-ADC output can be calculated analytically 
considering all parameters, such as the VCO center oscillation. 
The analytical calculation does not resort to statistical 
assumptions for quantization noise. Second, the model 
proposed in this letter does not require expressing the VCO-
ADC as a first-order sigma-delta modulator to prove first-
order noise shaping. Instead, the VCO-ADC is modeled as a 
pulse modulation signal coder whose spectral components 
produce first-order shaped aliases when sampled. This new 
point of view about VCO-ADCs may extend the research in 
new data converter topologies [13]. 

The proposed model allows the evaluation of the peak 
SQNR and dynamic range of a VCO-ADC at the system level 
design stage. This analysis is necessary before any other 
circuit-related consideration such as distortion, thermal noise, 
or clock jitter. Our analysis will be restricted to sinusoidal 
inputs, which are the standard test signals used to evaluate 
ADC parameters. 

II. SYSTEM LEVEL MODEL OF A VCO-BASED ADC 
In this section, we will identify the points that explain the 

differences between a discrete-time sigma-delta modulator and 
a VCO-ADC, introducing our model afterwards. 

A. Classical analysis of a VCO-ADC 
Figure 1 displays the building block diagram of a single-bit 
VCO-ADC. In [3], a multiple-phase VCO-ADC implemented 
with a ring oscillator is shown equivalent to a single-bit VCO-
ADC followed by a moving average filter (MAF). Therefore, 
the basic principles discussed in the following sections could 
be applied to ring oscillator VCOs as well. However, we will 
restrict to the single-bit case for simplicity. 
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Figure 1. Block diagram of a single-bit VCO-ADC. 
 
 In Fig. 1, a VCO is modulated by input signal x(t) defined 
between -1≤x(t)≤1. We will define parameter fv as the center 
oscillation frequency of the VCO (x(t)=0) and parameter fd as 
the VCO frequency gain constant. The sampling frequency for 
the ADC is fs. We will assume the bandwidth of the input 
signal x(t) to be much smaller than the center oscillation 
frequency fv. Then, the instantaneous frequency of the 
oscillator can be written as follows: 

( ) ( )txfftf dv +=                                (1) 
Previous analyses of this architecture [3-4] use the fact that 
x(t) modulates the frequency of the VCO; hence, the VCO 
phase φ(t) represents the integral of x(t). In [3], the ADC 
output (ys[n] in Fig. 1) is shown to depend on the sampled 
VCO phase φ[n] and a phase quantization error φq[n] at the 
sampling instants: 
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2
1
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                  (2) 

Based on the fact that (2) shows a first-order shaped 
quantization error, most system level analyses [3-4] assume 
the VCO-ADC to be similar to a discrete sigma-delta 
modulator. However, the spectral properties of φq[n] and the 
quantization error of a sigma-delta modulator could not be the 
same. As a matter of fact, [3] explains that the phase 
quantization error φq[n] needs to be corrected if fv≠fs. The 
correction requires an additional periodic term φmm[n] not 
present in the analysis of a sigma-delta modulator [3]. For 
example, Figure 2.a shows a 16k point FFT of ys[n] obtained 
by behavioral simulation in Matlab of Fig. 1, considering fs=1, 
fv=fs/8, fd=fv/4, and a -6dBFS input tone at fx=fs/8192. The 
peaks at high frequency in Fig. 2.a show that a white spectrum 
model for quantization noise φq[n] may not be correct. 

 
Figure 2. DFT of ys[n] in Fig. 1: a) simulated, b) calculated 

 

B. Equivalence of a VCO-ADC with a Pulse Frequency 
Modulator 

Figure 3.a shows a modification of Fig. 1 where the XOR 
gate and discrete unit delay have been moved to the left side 
of the sampler. The discrete unit delay in Fig. 1 has been 
replaced by a continuous time delay of Ts=1/fs seconds. We 
will define as tk (k=1,2…) the time instants coincident with the 
edges of w(t). We will impose that the minimum time between 
consecutive edges in w(t), Tmin, is larger than the sampling 
period Ts: 

( ) sskk fTTttT /1,min min1min =−= −            (3) 
Otherwise, some edges in w(t) will not be detected after 

sampling and the VCO-ADC will not encode the input signal 
properly. The output signal, ysa[n] in Fig. 3.a is equivalent to 
ys[n] in Fig. 1 because the XOR operation may be assumed to 
be independent of time and the continuous time delay matches 
with one sample delay. This is expressed in the following 
equation, where  represents the XOR operation: 

      ( ) ( ) ( )
  ( ) ( ) ( )  nyTnTwnTwnTpny
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sssssasa
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=−==
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Figure 3. Transformation of a VCO into a PFM 
 

In Fig. 3.a, we define the output of the XOR gate as pa(t), 
which will be composed of square pulses of constant duration 
Ts located at tk. The modulation of pa(t) is usually referred to 
as PFM [9-12]. Note that the frequency of pa(t) is twice that of 
the VCO because both rising and falling edges in w(t) produce 
a pulse in pa(t). Therefore, we will define the pulse frequency 
as fo=2fv. 

We may propose a further equivalent system to Fig. 3.a. In 
Figure 3.b, we have replaced the delay and XOR gate of Fig 
3.a by a filter with square impulse response h(t) of duration Ts 
that is driven by signal d(t). Signal d(t) will have a Dirac delta 
at times tk. Signal pb(t) in Fig. 3.b will be the output of the 
filter and can be computed as follows:  

( ) ( ) ( ) ( ) ( ) ( ) ( )sk
k

kb
k

k Tttuttutdthtptttd −−−−==−= 


=



= 00
,  (5) 

Therefore, pa(t)=pb(t) and ysa[n]=ysb[n]=ys[n] in Figs. 1, 3.a, 
and 3.b. The model of Fig. 3.b reveals that filter h(t) will 
shape the spectrum of pb(t). The transfer function of this filter, 
H(ω), will be a sinc function whose zeroes are located at 
integer multiples of fs. 
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III. SPECTRAL ANALYSIS OF A PULSE FREQUENCY 
MODULATOR 

The spectrum of pulse modulations was analyzed at the 
beginning of digital communications. In particular, a 
trigonometric series expansion for a PFM signal having a 
center frequency fo and linear FM (1) was calculated in [10-
11] for sinusoidal inputs x(t) of the form: 

( ) ( ) 1,2cos == AftAtx xxx                    (6) 
Signal pb(t) in Fig. 3.b corresponds to this class of 
modulations. Knowledge of a trigonometric series expansion 
of pb(t) permits calculation of its Fourier transform, Pb(ω), 
which will be a sum of Dirac delta functions. Once Pb(ω) is 
known, we may calculate the DFT of ysb[n] in Fig. 3.b that 
will be coincident with the DFT of ys[n] in Fig. 1. An 
analytical representation of the DFT of ys[n] allows prediction 
of the spectrum and SQNR of an ideal VCO-ADC without 
resorting to simulation. 

A. Oscillator Spectrum Before Sampling 
According to [10], signal pb(t) in Fig. 3.b can be expanded into 
the following trigonometric series: 
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In (7), Jr is the rth order Bessel function of the first kind. This 
series contains a constant component (DC) and a baseband 
component (BB) representing the input signal. Coefficients 
CH(q,r) represent the amplitudes of the harmonics of the 
center frequency fo, and sideband tones around such 
harmonics. Integer q indexes the harmonics of fo and integer r 
indexes the sideband tones around each harmonic at qfo. The 
sinc transfer function corresponding to filter h(t) in Fig. 3.b is 
reflected into coefficient CH(q,r), which is zero at integer 
multiplies of fs. The attenuation and phase shift of x(t) due to 
h(t) are also reflected in BB. 
The Fourier transform Pb(ω) will be a sum of Dirac deltas 
weighted by the coefficients expressed in (7): 
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We have represented in Figure 4.b part of the modulus of 
Pb(ω) predicted by (8) with the same parameters defined for 
the simulation of Fig. 2.a. The modulus of H(ω) is also 

represented in Fig. 4.b as a dotted line. We have marked the 
tones weighted by CH(q,r) corresponding to the sidebands of 
the first three harmonics of fo. The harmonic sidebands 
represented by CH(q,r) occupy a bandwidth that increases 
with q and whose average level decays with q. After some 
harmonics, the sidebands overlap resembling a noise shaped 
by H(ω). 
We may also observe in Fig. 4.b the gap between the center 
frequency sidebands and DC, inside of which the sideband 
energy is small. If the input analog band width (ABW) of the 
ADC fits in this gap, the input signal will be encoded in pb(t) 
with nearly no error. 

 
Figure 4. Modulus of Pb(ω): a) simulated, b) calculated 
 
As a comparison, Fig. 4.a represents the modulus of Pb(ω) 
plotted with data from the behavioral simulation of Fig. 2.a. In 
Fig. 4, we may observe the agreement of the simulated and 
calculated values of Pb(ω) and also the nulls imposed by H(ω). 

B. Sampled spectrum 
Our interest in the system of Fig. 1 is to obtain a sampled 
sequence of integer values that may represent x(t). Therefore, 
we predict the DFT of a finite set of N samples of ys[n] (N 
even), as is usually done to evaluate the performance of an 
ADC. This DFT can be calculated if the input tone at fx, the 
sampling frequency fs, the center frequency fo, and the 
sequence length N are all linked by integer factors Ks, Ko, and 
Kx as follows: 

sxxooxss KKNfKffKf 2,,2 ===          (9) 
These definitions force all tones in the spectrum of pb(t) to fit 
into a bin of the DFT of ys[n]. All DFT bins that are not an 
integer multiple of Kx will be zero. Therefore, the DFT of ys[n] 
may be indexed by an integer k (k=0,1,2…) multiplied by Kx. 
In practice, fx<<fo and we may find an integer Ko that closely 
approximates the desired fo. 
We may evaluate Y[kKx], the DFT of ys[n], using the 
coefficients of Pb(ω). A delta located at frequency ω in Pb(ω) 
will alias to DFT bin kKx as follows: 
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In (10), mod represents the reminder of integer division by 
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2Ks. To calculate DFT bink Kx, it suffices to add all the 
complex coefficients of the Dirac deltas in Pb(ω) that alias to 
that particular index k. Let R(k) be the set of all pairs (q,r) of 
integers complying with condition (10). The values of Y[kKx] 
can be calculated as follows: 
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(11) 

In (11), we have approximated the DFT bins of the DC 
component and input signal component BB neglecting the 
contributions of the center frequency harmonic sideband 
aliases due to their proximity to the nulls of sinc function 
H(ω). We have applied (11) to reproduce the simulation in 
Fig. 2.a by analytical calculation of Y[k]. The result is shown 
in Fig. 2.b, which replicates the peaks and shape of Fig. 2.a. 

IV. SQNR PREDICTION 
Equation (11) describes the spectrum of ys[n] and hence, it 

is possible to predict the SQNR of the ADC. For this purpose, 
we only need to calculate the DFT bins of Y[kKx] that lie 
inside the ABW defined by the sampling frequency and the 
oversampling ratio (OSR). We may define index kABW as the 
closest DFT bin index corresponding to the edge of the ABW. 
Then, the value of the SQNR will be: 
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Observing (11), we see that each set R(k) contains an infinite 
number of values of q and r. However, CH(q,r) quickly 
decreases away from the center frequency harmonics, as 
shown in Fig. 4. Therefore, to practically calculate (12), we 
may define some bounds for q and r to truncate the 
summation. A simple algorithm to calculate the SQNR is 
described next. Coefficients Y[kKx] can be computed by 
adding all the tone complex coefficients (11) that alias to DFT 
bin kKx. We will establish a noise floor Yref below in which a 
term CH(q,r) in (7) can be discarded. As larger values of 
CH(r,q) correspond to smaller values of q, we will start at q=1 
and sweep index r. When Yref reaches in the computation of 
CH(q,r), we no longer need to increase r further and can jump 
to the next value of q. If the resulting index k (10) is above 
kABW, it can be discarded, which significantly speeds the 
computation of SQNR. 

Figure 5 shows a comparison between the dynamic ranges 
obtained by the behavioral simulation of Fig. 2.a (simulated 
SQNR) and the proposed method (calculated SQNR), 
considering an OSR=64 and fs=1. In Fig. 5, two cases have 
been plotted (5.a and 5.b) to evaluate different center 
oscillation frequencies fv, VCO gain constants fd, and input 
tone frequencies fx. The SQNR calculations were performed 
with 32k point FFTs and Yref=-150dBFS. The simulations 
deviate from the analytical calculations in less than 0.7 dB. 

 
Figure 5: Dynamic range comparison: a) fv=fs/8, fd=fs/16, 

fx=fs/8192; b) fv=fs/16, fd=fs/64, fx=fs/4096 

V. CONCLUSIONS 
In this paper, we have discussed the analogy between a 

VCO-ADC and a pulse frequency modulator. This analogy 
allows analytical calculation of the DFT of the output 
sequence and expected SQNR of the converter for single tone 
inputs. This modeling takes into account parameters such as 
center oscillation frequency and gain constant of the VCO. 
The mathematical derivations have been verified by evaluating 
the dynamic range of a VCO-ADC example by calculations 
and by a behavioral simulation, achieving a 0.7 dB mismatch 
only. 

In addition, the model of a VCO-ADC proposed here shows 
an alternative explanation for noise shaping in which 
discretization and quantization of the VCO phase are not 
required. Instead, the model shows that the VCO acts as an 
analog pulse frequency signal coder (similar to other pulse-
coded modulators such as PWM, PDM, etc.) [7]. This is 
shown in the example of Fig. 4, where a low-frequency input 
signal is encoded with nearly no error in a narrow band. 
Quantization error is generated afterwards by aliases produced 
by sampling. Therefore, the noise-shaping effect seems to 
depend on the square pulse embedded in the postprocessing of 
the VCO output. This different point of view allows devising 
other data-converter topologies [13]. 
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