17,739 research outputs found

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach

    Transient radiation and conduction in a slotted slab and a hollow cylinder

    Get PDF
    Transient radiation and conduction in slotted slab and hollow cylinde

    2-D Magnetohydrodynamic Simulations of Induced Plasma Dynamics in the Near-Core Region of a Galaxy Cluster

    Full text link
    We present results from numerical simulations of the cooling-core cluster A2199 produced by the two-dimensional (2-D) resistive magnetohydrodynamics (MHD) code MACH2. In our simulations we explore the effect of anisotropic thermal conduction on the energy balance of the system. The results from idealized cases in 2-D axisymmetric geometry underscore the importance of the initial plasma density in ICM simulations, especially the near-core values since the radiation cooling rate is proportional to ne2{n_e}^2. Heat conduction is found to be non-effective in preventing catastrophic cooling in this cluster. In addition we performed 2-D planar MHD simulations starting from initial conditions deliberately violating both thermal balance and hydrostatic equilibrium in the ICM, to assess contributions of the convective terms in the energy balance of the system against anisotropic thermal conduction. We find that in this case work done by the pressure on the plasma can dominate the early evolution of the internal energy over anisotropic thermal conduction in the presence of subsonic flows, thereby reducing the impact of the magnetic field. Deviations from hydrostatic equilibrium near the cluster core may be associated with transient activity of a central active galactic nucleus and/or remnant dynamical activity in the ICM and warrant further study in three dimensions.Comment: 16 pages, 13 figures, accepted for publication in MNRA

    Pre- and postprocessing techniques for determining goodness of computational meshes

    Get PDF
    Research in error estimation, mesh conditioning, and solution enhancement for finite element, finite difference, and finite volume methods has been incorporated into AUDITOR, a modern, user-friendly code, which operates on 2D and 3D unstructured neutral files to improve the accuracy and reliability of computational results. Residual error estimation capabilities provide local and global estimates of solution error in the energy norm. Higher order results for derived quantities may be extracted from initial solutions. Within the X-MOTIF graphical user interface, extensive visualization capabilities support critical evaluation of results in linear elasticity, steady state heat transfer, and both compressible and incompressible fluid dynamics

    Equation level matching: An extension of the method of matched asymptotic expansion for problems of wave propagation

    Full text link
    We introduce an alternative to the method of matched asymptotic expansions. In the "traditional" implementation, approximate solutions, valid in different (but overlapping) regions are matched by using "intermediate" variables. Here we propose to match at the level of the equations involved, via a "uniform expansion" whose equations enfold those of the approximations to be matched. This has the advantage that one does not need to explicitly solve the asymptotic equations to do the matching, which can be quite impossible for some problems. In addition, it allows matching to proceed in certain wave situations where the traditional approach fails because the time behaviors differ (e.g., one of the expansions does not include dissipation). On the other hand, this approach does not provide the fairly explicit approximations resulting from standard matching. In fact, this is not even its aim, which to produce the "simplest" set of equations that capture the behavior

    A two step viscothermal acoustic FE method

    Get PDF
    Previously, the authors presented a finite element for viscothermal acoustics. This element has the velocity vector, the temperature and the pressure as degrees of freedom. It can be used, for example, to model sound propagation in miniature acoustical transducers. Unfortunately, the large number of coupled degrees of freedom can make the models big and time consuming to solve. A method with reduced calculation time has been developed. It is possible to partially decouple the temperature degree of freedom, as result of the differences in the characteristic length scales of acoustics and heat conduction. This leads to a method that uses two sequential steps. In the first step, a scalar field containing information about the thermal effects is calculated (not the temperature). This is a relatively small FE calculation. In the second step, the actual viscothermal acoustical equations are solved. This calculation uses the field calculated in the first step and has the velocity vector and the pressure as the degrees of freedom. The temperature is not a degree of freedom anymore, but it can be easily calculated in a post processing step. The required computational effort is reduced significantly, while the difference in the results, compared to the fully coupled method, is negligible. Along with the theoretical basis for the method, a specific FE calculation is presented to illustrate its accuracy and improvement in calculation time

    Shearing Box Simulations of the MRI in a Collisionless Plasma

    Full text link
    We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities. Such instabilities provide an effective ``collision'' rate in a collisionless plasma and lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma, with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collisionless plasma.Comment: 20 pages, 9 figures, submitted to Ap

    Development of BEM for ceramic composites

    Get PDF
    It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry
    corecore