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Temperature distributions in a parallel-walled channel 

(a typical slot in a slotted slab) and in a hollow cylinder are 

considered. Each end of the channel or cylinder faces an environment 

of uniform but alterable temperature. Black wall surfaces are assumed, 

and for most solutions presented the radiant heat flux is linearized 

with respect to temperature. Transient solutions are obtained for 

cases where the walls are thin, and where they are (thermally) thick; 

in the latter case, transient conduction normal to the wall surfaces 

is coupled into the problem. Examples of superposition are given. 

For the hollow cylinder, prescribed heat generation along the wall is 

also treated. The concept of the radiation mean free effective path 

is found'to be useful. Generalization. to non-black surfaces is 

discussed. 
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1. INTRODUCTION 

Thermal radiation in cavities and enclosures has been a 

problem of practical importance for many years, the principal interest 

being furnace design and operation. More recently, many new practical 

examples of radiation in cavities and enclosures have arisen; aero- 

space vehicle structures, the surface structure of the moon and other 

bodies in the solar system, and the solid core of a gaseous-fuelled 

nuclear propulsion reactor are typical. Radiation heat exchangers are 

important for heat rejection from power-generating space vehicles, and 

it is plausible that some use may be found for radiation regenerators. 

In general, the formulation of a radiant interchange problem 

requires the use of an energy balance at points within a region of an 

absorbing and emitting continuum or at points on opaque surfaces, and 

this energy balance leads to an integro-differential equation for the 

local temperature or heat flux, whichever is unknown. Because of the 

complexity of the governing equations, a closed-form analytical solu- 

tion can only rarely be obtained. Consequently, it is common to employ 

numerical techniques or various approximate analytical approaches. For 

example, for problems which involve radiant interchange between sur- 

faces of steady but non-uniform temperature distribution, Sparrow and 

Haji-Sheikh Cl] applied a variational method, while Keshock and Siegel [2] 

used an iteration technique, and Viskanta [31 has suggested the method 

of successive substitutions to obtain solutions for the same problem. 

Usiskin and Siegel [4] also obtained approximate solutions for steady- 

state-radiation in a finite tube by three different methods: use of an 

approximate separable kernel, numerical integration and a variational 

method. 
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The more general problem where the temperature of bodies 

involved in radiant interchange is considered to vary not only with 

position but also with time has received very little attention. 

Winter [s] recently has presented results from a ccmputed solution. 

based on a finite-difference method for a restricted class of problems 

involving a semi-infinite slotted slab. 

The principal objective of the present investigation is to 

look more generally at problems involving transient combined radiative 

interchange and conduction. Considerations have been restricted to 

simple geometries --slotted slabs and hollow cylinders (or holes in 

slabs), but for slabs of finite thickness as well as the semi-infinite 

configuration. Attention is concentrated here on the cases which 

permit use of approximate analytical methods. It is to be expected 

that treatment of cases for the full range of the parameters (which 

arise naturally for the geometries considered) will involve a combina- 

tion of numerical and analytical techniques, and indeed the authors 

have found that a readily usable numerical scheme can be devised. 

However, the analytical methods used here are important in solution of 

the general problem because they rapidly provide significant details 

of the structure of the solutions, and can also be used as (asymptotic) 

checks on numerical solutions. 

The distinguishing characteristic of some particular cases 

for which approximate analytical techniques can readily be devised is 

that conduction in the direction normal to the slot side walls (or to 

the cylinder wall) does not give significant temperature variations. 

This implies that the walls are thermally thin, i.e. the time for the 

transient penetration depth to traverse the wall thickness is small 
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compared with the time-scale of the radiation transient. For the slab, 

this usually requires that the slot width is much greater than the wall 

thickness (as in a set of fins). The results can also be applied to 

thick-walled situations. For thin-wall circumstances, radiation is the 

dominant mode of energy transfer. At short times after the initiation 

of a transient, the change in wall temperature is governed.by radiative 

transfer and is linearly proportional to time. With thermally thick 

walls, the local temperature change is initially proportional to the 

square-root of time. At longer times, and in the steady-state, longitu- 

dinal conduction can become more significant; its effect is to reduce 

temperature gradients. In the course of the analysis it is found 

possible to evoke the concepts of photon mean free effective path, 

radiation conductivity and diffusivity and to use these in defining 

dimensionless variables in terms of which the pertinence of the 

solutions to particular physical problems can be assessed. 
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2. STATEMENT OF THE PROBLEM 

The geometrical systems considered are shown in Fig; l(a) 

for a symmetrical component of the slotted slab and in Fig. l(b) for 

the hollow cylinder. Throughout this section, the designations (a) 

and (b) given to equations are appropriate to the respective geometries. 

The two parallel plates which constitute the typical component of the 

slotted slab are infinitely wide, and have a separation a and a 

length L in the x-direction. By symmetry, it is assumed that the 

outer surfaces of the plates, away from the slot, are adiabatic (these 

surfaces represent the mid-planes of the plates in a.repeatedly 

slotted slab). For the cylindrical case the outer surface is also 

considered adiabatic. For both geometries, the inner surfaces are 

assumed black. It is also assumed that each end of the slot or 

cylinder sees a uniform external environment, such that the radiation 

properties can be represented by a black isothermal plane covering each 

end. 

Transient solutions can be obtained for a large set of initial 

and boundary conditions. With radiation in the problem, the governing 

equation is not linear in temperature and superposition is not formally 

justified as a means for constructing solutions for complex initial 

and boundary conditions. (Nevertheless, superposition can often give 

a good approximation.) The conditions chosen here are that the system 

is initially at a uniform temperature Ti ; then, at time t q 0, there 

is a step change of environment temperature from T i to To at one 

end of the slot (or tube), with To c Ti . 

The energy balance equation is formed for unit length of a 

typical elemental strip on the plates (or for an elemental ring in-the 



cylinder). By consideration of the radiation from the element, its 

change in internal energy, conduction along the wall,and the radiant 

transfer from the end planes and from other elementary surfaces of the 

wall surface, the following nonlinear integro-differential equations 

are obtained: 

aT1 4(x l,t) + 6pc 
aT1(xl,t) 

at 
- bk 

a2Tl(xl,t) 
= 

ax,2 
(la) 

= aTi4(F(Xl) + oTo4F(L - Xl) + 
I 

L 
0 

cTz'(X2,t) E ((Xl - x21) dx2 

oT14(x,,t) + bpc 
aT1(xl,t) a2Tl(xl,t) 

at + 6k = 
3X; 

(lb) 

= cT;F@] + .T;F[q] + ,I T;(x2,t) K [lx1 ; X2')d@ 

Since the walls have been assumed thin, as explained earlier, radiant 

interchange between the end surfaces of the plates (or tube), at x=0 

and x = L, and the environments is neglected here. The initial and 

boundary conditions are that 

T(xl,O) = Ti 

T=T i for t > 0 and x1 = 0 

T = To for t>o and x1 
= L+ 

(2) 

It must be realized that T(O,t) and T(L,t) are not equal to Ti 

and To respectively, but are determined as part of the solution of 

eqn. (1). 

The angle factor F(xj) for the planes is given by Hottel 

and Keller [ 61’ as 
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F(xj) = $ (1 - xj/(xj2 + a2)l'2) (3a) 

and E (Ix, - x21) is 

E(xj) = * a2/(Xi 2 3/2 +a) . (4a) 

The corresponding factors for the cylinder are given by Buckley [7] 

as 

and 

2 x. + l/2 
F(xj) = ; l/2 - xj ' xi )O 

(Xi + 1) J 

3 x. t 3xj/2 
K(xj) = 1 - I2 

(Xj t 1) 
3/2 ' 

The equations can be expressed in terms of 

T 

V 
Z 

5 

11 
Z 

5 

such that eqn. (1) becomes 

= T/Ti 

(3b) 

x. > 0 
I-- 

(4b) 

dimensionless variables 

2 (5) 
q t/t Gpc/oTi”) 

= a/L 

= Xl/L 

= x2/L 

= L/D 

= xl/D 

= x2/D 

.r84 

(Sal 

(5b) 

TB4(z,~) = $l- 
[ (v 

2 z + z2p/2] + G- [1 - (v2 + (: : :)2p2 ] + 

I 
1 :':4 

t T (6,~) v2dc ~T"(z,T) + 

0 2[(z - El2 t v213’2 - aT 
. 

+k6 a2Tx(z,T) 

oTi3L2 az2 



and, correspondingly, 

Tfi4(z,r) = F(z) + Tz4F(p. - z) + 

11 . 
t 

I 0 
Tft4(&,~) K (lz - ~1) d< - "";,,,) + 

+kb. a2T*(z,d 

UT 3L2 az2 
. 

i 

The initial and boundary conditions transform to 

(6b) 

T = 0, T* = 1; 
fc 

z = 0-, T = 1, for T>o, 

Z = 1+ (plates) 9; %t 
T = To for T > 0 . 

Z q II+ (cylinder) 

From this point it is most convenient to separate the discussion 

of the two geometries. However, the treatments given here are interleaved 

because features found in solutions for one geometry are broadly applicable 

to the other geometry, and undue repetition of physical interpretations 

and of examples can be avoided. 

2.1 The photon mean free effective path 

A concept which can be used in both the cylindrical and plate 

geometries is the mean free effective apth. To define this, it is 

desirable to consider that L + 0~ and to center attention on an emitting 

elementary surface on the wall. Photons emitted from this elementary 

surface strike other parts of the walls and are absorbed. For the 

parallel plates this absorption occurs on the opposite plate; in the 

cylinder it can occur anywhere except on the same generator as the 

emitting element. For the problems considered here, radiant transfer 



in the x-direction is significant; symmetry of initial and boundary 

conditions in the directions orthogonal to x has assured that trans- 

verse variations are absent. Since x is the direction significant 

for net radiation flux, the componentof a photon path in the x- 

direction can be considered the effective path. Further, since the 

problem is concerned with net radiation flux in the x-direction, it is 

pertinent to consider photons emitted from the element in the positive 

direction, say, and to ignore those emitted in the opposite direction. 

The photon effective path then varies from zero to infinity. However, 

a mean free effective path can be defined by weighting each effective 

path by the proportion of the total photons emitted which take that 

path. Thus for long plates the mean free effective path is .a , and 

for long cylinders it is D/2. 

Generalization of this concept to other geometrical configu- 

rations and to non-black surfaces is discussed in Section 6. 
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3. STEADY STATE SOLUTIONS 

When time t becomes very large, the temperature distribu- 

tions can be expected to settle to values essentially independent of t. 

In this section the solutions of eqns. (6a) and (6b), reduced by removal 

of the transient term, are discussed. 

3.1 The cylindrical geometry 

The steady-state solution for this case can be investigated very 

readily if the axial conduction term is dropped from the equation. When 

this is done, the local energy balance equation (6b) becomes 

i'E4 *4 
I 

11 
T (z) = F(z) + To F(I1 - z) + Ta4(c) K (lz - 51) d[ 

0 

with boundary conditions 

x=0-, T 
:‘; 

=l 

t 9: 9: 
and x=ll, T =To. 

(7) 

(8) 

Usiskin and Siegel [4] have shown that the angle factor F(z) can be 

approximated by (l/2) exp(-2z), and Buckley [7] demonstrated that the 

kernel K can be approximated by exp(-2z). Usiskin and Siegel 

used these approximations to obtain an analytic solution: 

where 

T 
4 4 

= TZ4 + (1 _ Tz4) (cl _ c2z) 

5 = 
l/2 t L 

l+R = 1 - l/2(1 t II) 

(9) 

and c2 = l/(1 + II) . (10) 

This solution serves to illustrate typical steady state results. The 

temperature distribution along the tube is approximately linear in T4; 
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there are temperature defferences between the ends and the reservoirs 

at T. 
1 

and To. Figure 2 illustrates T/Ti vs. x/L for 

9, = 1, 2, 5 and 10, for the extreme case T = 0. 
0 

The axial temperature 

distribution is close to linear except when II becomes large. Figure 3 

shows how the total heat flux through the tube is affected by 9. ; the 

part of the flux which goes straight through is shown as a dashed line. 

The heat flux which goes straight through decreases very rapidly with 

increase in II because the cylinder walls intercept a large solid 

angle of the total, hemispherical radiation from points on the end 

plane. For small 9. , much of the once-absorbed radiation is re-emitted 

without repeated capture on the cylinder walls, but by 11 q 2 the 

majority of the heat flux is transmitted by multiple absorption and 

re-emission. If an analogy is made with radiation in gases, E > 2 

corresponds to an optically thick gas layer. When II + m, Cl + 1 

and c2 + 1/e, which gives the same temperature distribution as would 

be found in the Rosseland limit for a grey gas. When II is large 

but finite, the solution is similar to that in a gas with radiation 

"slip" [E] at z = 0, z = II+. 

The overall net heat flux can be expressed as 

bi + 0 

ilR2 o(Ti4 - To41 
= 2 Cl2 t (l/2) - ((a2 + l/2j2 - l/4)1/21 + 

+ 4 {Cl C(11/2)(E2 + lY2 - a2/21 t 

+ (c2/6) [(C2 t 1)3'2 - 1 - e31} . (11) 

12 



3.2 The hollow cylinder with distributed heat sources 

It is possible to extend the solution given in Section 3.1 

to include the effects of a specified heat source distribution along 

the wall. If this heat source is azimuthally uniform, it can be 

represented by a term q(x)/oTi4 , giving the heat flux density at x, 

added to the right-hand side of eqn. (7). This form of the energy 

equation is still linear in T 
R 4 

, and a solution to the equation with 

distributed heat sources can be obtained by superposition, i.e. 

T54(z) 
= T:" t (1 - TE4)(cl - c2z) t Tt4(z) (12) 

where T:(z) is the solution of the amended eqn. (7) with boundary 

conditions that the reservoir temperatures at both ends of the cylinder 

are zero. A variational method can be introduced to obtain the solution 

for T:(z). 

Let B(z) = T:(z), and o(z) = q(z)/a. A variational 

expression for B(z) can be found as 

II II 
I I 

9. 
I 

q= 
K+ - 5) > B(z) B(E) dzdc - B2(z) dz t 

0 0 0 
II 

t2 B(z) $I (z) dz , (13) 
0 

and a solution obtained using the rational expression for K, eqn. (4b). 

A solution for this problem can be obtained more expeditiously by 

further use of the approximation K(xj) = exp(-2xj), i.e. 

Z II 
B(z) = 

I 
B(S) exp(-2(z - 5)) dg + 

I 
B(S) exp(-2(E - z))dS t c$(z) 

0 Z 

= em2' 
I 

' B(E)e2' dg + e 2z ' B(c)em2' dg t +(z) . 
0 I Z 

The integrals can be removed by double differentiation, after which a 
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simple differential equation is obtained 

d2B 

d22 

so that 

where 

B(z) = az t b + Q(z) 

(14) 

and a and b are constants of integration determined from the boundary 

conditions: 

at x = 0, B(O) = b t ~(0); 

I 
II 

also, B(0) = B(S) e -2'dc + 4(O) 
0 

I 

a 
so that b t ~(0) = Gag + b + ~(511 e-2’dc t 4(o). 

0 

Similarly, for x = 9, , 

ak t b t cp(~) = em2' 
I 

L 
CatI + b + o(()l e’25 dg t ~(a). 

0 

From these relations, a and b can be determined once 4(z) is 

specified. This can be illustrated by two examples: 

(i) q(z) q constant q Q, 

so that 0 = Q/U 

o(z) = -(2Q/a)z2 

and a = (2Q/a)e, b = (1 t &)(Q/a), 

whence 

B(z) = T4(z) = (Q/a) [l t II t 2x(11 - x)1. (15) 
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(ii) q(z) = 2z 

so that cb(z) = 2z/a, 

Q(z) = -(22/3u)z3, 

a = (Q/3u)(2a3 t 3g2 t 311 t 3)/(11 t 1) 

and b = (w6u)a2(211 t 3)/(& t l), 

whence 

(2E3 t 3E2 t 311 t 3)z + 1_ E2(2a. t 3) - Rtl 2 fit1 2z3 (16) 

The consequent temperature distributions for examples (i) are illustrated 

in Figure 4, for various 11, for the case Q/u = Ti4 . 

3.3 The plate geometry 

The steady-state solution for this case is considered here 

with inclusion of the heat conduction term. Obviously, this will 

render the energy balance equation no longer linear in T4 , but it is 

convenient to work wi.th linear equations. This is still a reasonable 

possibility if [l - T*4(z)] << 1. The departure from effective 

linearityof this sort in the previous solution (Section 3.1) was 

slight, except at the cold end for large z?., so linearization may be 

introduced: let 

at 
T = 1 _ T+ 

and let it be assumed that Tt is a small perturbation, so that 

Tft4 = 1 _ 4T+ 

By substituting eqn. (17) into eqn. (6a) and omitting the time- 

dependent term, it is found that 

15 
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T+(z) = (l/8)(1 - Tt4) ' - ' 
cu 

2 

t I 
’ T+:E) v2dE 
0 C(z - cl2 t “213’2 + 'k 

a2T+(z) 

S2 
(18) 

where 

'k q k&/(40T;L2) . (19) 

The boundary conditions are 

t z=O-,T =0 
9: 

z = l+, T+ q l-To 

Equation (18) is of .the form 

1 
#$,(z) = lqz) t 

d2+, 

o2 ' 
Cp (C)K1 2 dS + h - 

dz2 

(20) 

(21a) 

or 

1 
qo = $,W + d24, 

$I (z)K2 1 dz t ,j - . o1 ’ dc2 
(21b) 

It can be shown that the integro-differential equations (21a) and (21b) 

can be solved by obtaining the extremum of the associated variational 

principle 

I = 2 @,(Z) +2(S)Kl ,(z,[) dz dg - 3 

-I 
l2 $I (z)dz - 

I 
l2 

0 1 0 
o,(5) de + 

1 1 
t2 J, 

1 
(z) +9dz + 2 

0 0 
UJ,W +2Wd5 - 

- x dz x - 

16 
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It is clear that the functions in (22) can be identified as: 

4,(z) = T+(z), 4,(C) = T+(C), 

ql(z) = (l/8)(1 1 TE4) 1 - 
1 

' - ' 2 2 l/2 ' 
CW t(l - z) 1 

Kl ,(z,c) = v2/2[(z -,g2tv 1 2 3/2 
, 

and 

Solutions can be obtained with the aid of the variational principle once 

the class of admitted functions for 4l and e2 is selected. Here, 

it is convenient to consider the most simple form, 

T+(z) = cl t c2z (23) 

T+(c) = cl t c2c : (24) 

Upon substitution of these equations into equation (22), a simple 

algebraic expression for I is obtained, and equating the differentials 

of I with respectto cl and c2 to zero gives 

(25a) 

where 

Al = 2al-4, A2=Al/2 

(25b) 

Bl = Al/Z, B2 = 2a2 - 4/3 - 4Ak 

Dl 
:'; 4 

= (l/2)(1 - To )(f3, - 1) 

D2 = (l/2)(1 - TE4)(B2 - 8, - l/2) 

17 
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and 

al 
= 2((v2 t lP'2 - "I 

a2 = -5"/3 t (v2 t 1)1'2 t (2v/3>(v2 + 1) - 

-(v2 t 1)3'2 /3 i 4v3/3 t v2(v2 t 1)1'2 

61 cl/2, 62 sinh -l = = (l/v) - 6, 

and 

B3 = 2” - 3(v2 t 1P2 /2 t (l/2)(2 - v2) sinh-'(l/v) 

The accuracy of solutions obtained by a variational method can be 

improved by assuming Tt to be a more complicated function of the 

space coordinate. However, the algebra is already somewhat complicated 

for the simplest form of T'; and the solution which has been obtained 

is not exactly linear in z when transformed back into physical 

coordinates, since 

T(z) = T$l - ~T+(z+~ 

= Tic1 - 4(c1 t c2zH1’4 
(26) 

This is illustrated below for a specific example. 

The net rate of heat transfer through unit width of channel, 

corresponding to this temperature distribution, is 

i, i-to - = (1 - Tz4)[(v2 + 1)1'2 - l]/v t 
auT 4 

i 

t (l/v){(l - 4c1)(l + v - (v2 t 1)1'2)- 

- 4c2[1/2 t v - (v2 t 1) 1'2/2 - (v2/21sinh-'(l/v)lI - 

5': 4 - (To /"I(1 + v - (v 2 t 1) 1'2) - 8c2Xk/v . (27) 

For pure radiation (i.e. no conduction), Sparrow [91 derived the asymptotic 

18 



expression for the heat flux through a long channel as 

6 i+o - = vlln(2/v) - v/2 . 
auT 4 

i 
(28) 

Details of'the temperature distribution and an indication of 

the significance of conduction can be obtained once a specific set of 

physical circumstances is considered. For an illustrative example, the 

following conditions were used: 

6 = l/8 inch 

k= 12 Btu/hr ft OF 

p = 490 lb/ft3 

c = 0.11 Btu/lb OF 

and T. = 1000 OF = 1460 1 OR, To = 0 OR 

Figure 5 shows T(z)/Ti as a function of z for v = 0.2 and 1.0. 

The temperature-levelling effect of the conductivity of the plates is 

also illustrated. It can be seen that the solution achieves temperature 

distribution similar in shape to those found for the hollow cylinder 

without linearization. 
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4. TRANSIENT SOLUTIONS 

For the plates, if 

oTza2 

6k >> 1 

the steady heat transfer is dominated by the radiation; and if this 

parameter is significantly smaller than unity, the steady heat transfer 

is dominated by the longitudinal conduction. It is possible to form a 

similar expression for the cylinder. The solutions obtained in Section 

3 are appropriate for radiation-dominated heat transfer. 

It might be thought that the same parameter is appropriate 

for determining when radiation dominates transient heat transfer as 

well, because the material in the walls provides the heat capacity on 

which the diffusivity for both the radiation and the conduction is 

based. However, if simple lumping of the heat capacity in the walls 

is to be used in analysis, the pertinent comparison is between the 

relaxation time for transverse conduction through the wall (cpS2/k) 

and the characteristic penetration time for radiation along the 

cylinder or channel. For the plates trad >> ~~~~~ if 

32 
uTia 

6k << 1 . (30) 

When this is combined with the condition for one-dimensional treatment 

of the wall in steady conduction, it is clear that (62/L2) <<< 1 is 

required. When Trad ' Tcond 3 y et (29) is fulfilled, it is to be 

expected that the initial (short-time) solution for a transient will 

have to include treatment of the transverse conduction, but that at 

later times it is acceptable to revert to a one-dimensional treatment. 

In this section the plane and cylindrical geometries are discussed 

first under the assumption that both (29) and (30) hold. 
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4.1 The plate geometry 

The equation for local energy balance, subject to the same 

linearization as in the steady-state problem, is 

T+(z,T) = (l/8)(1 - Tt4) 
t 

1 - l-z 

cv2 t (1- 

1 
t 

I 
T+(~,T) v2dE 

0 2C(z - 5)2 t v2]3'2 
t 

+A 
a2T;(z,T 1 1 aTYz,d -- 

k az2 
4 aT (31) 

with initial and boundary conditions 

T = 0, T+ = 0 

z=o-, T >o : T t = 0 

t z=l, T > 0 T+ = 1 - T; 

(32) 

Equation (31) can be put in a more convenient form by multiplying it 

bY 4e4T , and then integrating from 0 to T, giving 

T’(z,T) q (l/8)(1 - Tt4) l-z 1 - ~ 
[v2 + (1 - z)211’2 

(1 - e-4T) t 

T 1 

+ I I 4e4(s-T) t T ([,T) 
v2dE 

0 0 2C(z - (I2 t v213'2 

rT 
+ ‘k J 

4,4(S-T) a2T+(Z,S) ds 
. 

0 az2 

ds t 

(33) 

Because of the complexity of this equation, approximate solutions for 

short and long times only are described here. 

4.1.1 Short-time solution 

By direct substitution it is possible to obtain an approximate 

solution valid for short times: 
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T'(z,T) = (l/2)(1 - Tt4) l-z 

cv2 + (1 - 2 l/2 T (34) 
z) 1 

and 

T(z,T) = T$l -' 4T+(Z,T )11’4 (35) 

Temperature profiles along plates have been plotted on Figure 6 for 

T = 0.02,.0.05 and 0.10, for v = 0.2, 0.5 and 1.0. It can be seen 

clearly that these profiles are similar to profiles found in other 

diffusion problems under corresponding boundary conditions. For the 

case involving the longest plates (v = a/L = 0.2) the profiles exhibit 

a penetration depth effect (increasing with time) rather clearly. These 

profiles also serve to illustrate the utility of obtaining solutions in 

terms of T'; because this is the deviation from. the initial value, 

determination of Tt can give the value of T. with considerable 

precision. Eqn. (34) shows that for T << 1 the effect of longitudinal 

conduction is negligible. 

4.1.2 Full-range solution 

At large values of T, the solution is affected by the conduction 

term, just as in steady-state problems. However, the conduction term is 

dropped here because this considerably facilitates generation of an 

approximate solution. By the method of successive substitutions it 

is possible to obtain a solution of eqn. (33), less the conduction term, 

and valid for the full range of time, as 

T'(z,T) = (1 - e-4T N+,(z) t iqz) t !$,(z) t . . . ..I - 

- 4Te -4T(l#ll(z) t f$,(z) t . . . ..I - 

- (1/2!)(4~)~ e-4T($2(z) t (I,(Z) t . . . ..I - 

- (1/3!)(4T)3 e-4T(rp3(z) t . . . . . ) - . . . . . (36) 
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where 

4,(z) 

4Jz) = ; I 
1 V24 n-l(S ME 

El2 2 3/2 ' n>O. 0 C(z - + v 1 

To evaluate +n(z) numerical methods must be used, except for the case 

v = 01 for which #o = (l/8)(1 - Tz4), en=0 for n>O. 

Figure 7 shows T/Ti at the mid-point along a plate, i.e. 

at z = l/2 as a function of TI for v = 1. Figure 8 illustrates 

the effect of different v by presenting T/Ti for v = m, 2 and 1 

for To=O. 

4.2 The cylindrical geometry 

In the steady-state analysis for heat transfer through a 

hollow cylinder no linearization was employed. The steady-state and 

transient analyses for the parallel plates were carried out using line- 

arization, and the results give a posteriori justification to the line- 

arization as a useful approximation. For analysis of a transient in 

the cylindrical geometry it is useful to employ the same linearization, 

as this permits demonstration of a Laplace Transform method; because 

the previous example demonstrated that longitudinal conduction is less 

important in transient conduction than in steady-state, the conduction 

term is dropped. The equation for local energy balance becomes 

T'(z,T) = (l/8)(1 - TE4)exp[-2(2 - z)] + 

II 
t 1 aT(Z,T) 

0 
T(E,T)exP[-2lz - Fl]dC - r aT 

(37) 
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The initial and boundary conditions considered correspond to those 

used in Section 4.1. If eqn. (37) is differentiated twice and the 

result substituted back to eliminate the integral term, there results 

1 a3T+ -- t a2T+ aT+ 
4 

aZ2aT 

---= 0. 
az2 aT 

(38) 

If a Laplace transformation in T is applied to this equation, it 

becomes 

d2? - (p/4 t 1) - pF+ = 0 , 
dz2 

where T+ is the Laplace transform of T'. The solution of this 

equation can be written 

rz 
F(z,p) = Ale ' 

rz 2 t A2e 

where 

'1,2 - = + C4p/(p + 411 l/2 . 

(39) 

(40) 

(41) 

The integration constants, Al and A2, are determined by requiring 

that the solution, eqn. (40) satisfies the Laplace transformation of 

eqn. (37). The result is 

Al = bl a22 - b2 al2 

all a22 - al2 a21 

and 

A2 = b2 all - bl a21 

all a22 - al2 a21 

where 

(r - 2111 

all = (1 t p/4) - (e 1 - l)/(rl - 2) 

(r - 2)R 

al2 = (1 + p/4) - (e 2 - l)/(r2 - 21 

(42) 
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rll (rl t 219. 
a21 =e ' (1 t p/4) - em2' (e - l)/(rl t 2) 

r2g a22 = e (1 t p/4) - ee2' (e (r2 + 2)n. - 'l)/(r 2 t 2) 

bl 
= .-211 (1 44 

- To )/8p 

b2 = (1 - Tt4)/8p 

By use of the inversion integral, the solution for T'(z,T) can be 

written 

T'(z,T) q & 
r 1 

A exp(pt t rlz) dp t 

t 
I 

A2 exp (PT t r2z) dp , (43) 
r 

where r is the path to the right of all singularities such that the 

real part of p is equal to a constant. A complete analytic solution 

does not appear possible, but asymptotic solutions for T CC 1 and 

T >> 1 can be found. 

4.2.1 Short-time solution 

Large p corresponds to small T; thus 

rl,2 - = t 2(1 - 2/p), 

Al = e -2R(l - Tt4) [l t (49. - 3)/p]/2p2 

A2 =-e -2"(1 - TE4)[l - 2(3 - 2iwPl/2P3 

whence 

T'(z,T) = (1/2)e -2CR - z+, - TE4) {l t [q - 2[z + q]t\t 

t.0 (T3) 
(44) 
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and, following previous usage, 

T(z,T) = T$l - 4Tt(z,T)11'4 . (45) 

4.2.2 Long-time solution 

For large 7, the form of the integrals in the inversion 

equation suggests that the dominant contribution comes from the neigh- 

borhood of the stationary (saddle) point enclosed by the contour path 

is located near the origin. Thus rl, r2, Al and A2 can be approxi- 

mated adequately by expanding these functions for small p ClOl, When this 

is done, the transformed temperature distribution becomes 

?(z,p) = l+ 2z 
(1 - Tt4) 

8(1t a) ~(1 + pM) 

whence 

T+(z,T) = 8~l+t2~) (1 - Tt4) Cl-eXp(-T/M)] 

where 

(l-es2' 1 + 5~12 + a 
-4!J. 2(1-e 1 4 

M= 
l+R 

. 

(46) 

(47) 

(48) 

As T + W , eqn. (47) provides exactly the steady-state distribution 

obtained previously. 

Sample results are shown in Figure 9 for T/Ti at the mid- 

position of the cylinder (at z = 9./2) as a function of T for various 

values of Tz but with 2 = 1 for all cases. Figure 10 illustrates 
:t 

the effect of different R with To = 0 . 

For large values of L compared with the radiation mean free 

path (say 11 > 21, the accuracy of these asymptotic approximations can be 
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improved by taking terms of higher order of smallness into considera- 

tion. It is also possible to obtain transient solutions appropriate 

for semi-infinite cylinder length, as described next. 

4.2.3 The semi-infinite cylindrical geometry 

In the previous work the origin of the coordinate system has 

been taken on the edge of the plates (or at the end of the cylinder) 

where the radiation boundary conditions remained constant at all times. 

When a semi-infinite geometry is considered the cylindrical tube has 

only one end, so to speak, and it is from that end that transients 

must be induced and also any coordinate system must begin. Accordingly, 

attention is given here to the case II + m, with the initial and 

boundary conditions: 

T = Ti for -r=o 

T = T for 0 
x = o-, T>o. 

(49) 

The analysis of this case follows that for the finite length tube, 

through the first Laplace transformation to the solution of the form 

rz 
? (z,p) = Al e 1 rz 

+ A2 e 2 

with 

5,2 - = + E4p/(P + 411 l/2 

but since T+ is finite, Al is zero. A2 can then be found once 

TO has been selected. For simplicity in illustration, it is assumed 

here that To = 0. Then 

A2 = A = 1/8p (1 - l/(r + 2) + p/4) . 
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Again, it is possible to obtain short-time and long-time approximations: 

(i) For short times, i.e. p-1 9 

r s 2(1 - 2/p) 

A s (1/2p2) - (3/2p3) 

when these values are substituted and the inverse Laplace transform 

is taken 

T+(z,T) = e -2z[ (T/16~)l'~ 11(4&j - (3~/8~)1~(4G)] . 

The modified Bessel function has an asymptotic form for x. + 0: 
1 

I"(Xj) s (Xj/2)%Wl) ? 

provided that v is a non-negative integer, whence 

1 
T+(z,T) = ye -22 (T - 3~~/2) 

with 

T(z,T) q T$l - 4T+(Z,T)l 
l/4 

as usual. 

(ii) For long times, 

r-p 
l/2 

A s 1/4p 

whence 

0 (P 
WI 

l/gp l/2 

(51) 

1 T+(z,T) q c erfc z - 
2T1'2 

exp( -Z2/4T) (52) 

It is interesting that this long-time solution contains a term which 
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corresponds to the transient pure conduction solution for corresponding 

boundary conditions. The argument of the complementary error function 

here can be compared with that for pure conduction; the quantity which 

replaces the conductive diffusivity is (a TfD2/Spc), and this is the 

radiation diffusivity adduced previously. Here, it is seen to arise 

naturally in the solution of a problem where the geometry is optically 

thick. 

4.3 The hollow cylinder with distributed heat sources 

In Section 3.2 the steady-state temperature distribution for 

this configuration was discussed. Here, it is intended to seek a 

solution for atypical transient condition. From the steady-state 

solution, for q(z) = Q, 

T(O) = TiCcl + (Q/u T;) (1 + e)11'4 . 

It is more convenient to non-dimensionalize temperatures and time 

using T(0) q Tw, than to use Ti as previously. If conduction is 

ignored, the local energy balance becomes 

fc 4 
(Z,T) q TT4F(z) + 

I 

n. .r 2 

T T'r4(~,r)K(jz-El)d~ - 3T ;;'T) . (53) 
0 

The initial and boundary conditions are that for 

;‘; 
‘I = 0, T (x) is the steady-state distribution with Q = constant 

T > 0, T=T at i z q o-, Q = 0, (54) 

and T = 0 at z = Et . 

The technique used previously for the cylindrical geometry can be 
;'; 

employed again. T is linearized, which places restriction on the 
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combination of Q/ Tr and II which can be considered; indeed, it is 

convenient to assume 

c2 - (2Q/oT;) R << Cl + (Q/GT~) (1 + II) , 

where C 1 and C 2 are constants from the steadystate solution, 

since this makes Tt. directly proportional to x . Twice-repeated 

differentiation and substitution dispose of the integral and give 

exactly the same equation as eqn. (38) in Section 4.2, except that 

here the variables have different non-dimensionlization. If a Laplace 

transformation in T is applied, the resulting equation is 

- (p/4+1) - pp q $ d2T+(z,0). d2.T3 

dz2 dx2 
- T+(z,O) 

= al(l t blz - 2z2) 

where 

al = (Q/40T;)/[cl t (Qicr~r) (1 + a)1 

and 

bl = 2Q - c2c+Q . 

The complementary solution is given by 

rz rz 
= Bl e 1 t B2 e 2 

with 

(55) 

(56a) 

= + C4p/(p + 4H1'2 , y2 - 

and the particular solution by 
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% 
= 2alz2/p - alblz/p t 4al/p2 , (56b) 

so that 

Since a finite tube is considered (i.e. Bl is not eliminated), it is 

possible to find Bl and B2 by taking the Laplace transform of the 

linearized integral equation and substituting z = 0 and z = II. 

Again, no complete inversion can be found, but the short-time approxima- 

tion (p >> 1) comes out to be 

T'(z,T) = (2alz2 - alblz) + 

{ 
22 

+ 4Cf(fi)e + g(a)e 
-22 

1 
.211 + .-211 

+ 4a 
1 

1 T (57) 

where 

f(Q) = F(R) e -211 - G(Q) 

g(g) = G(Q) - F(E) e 21 

F(Q) = (1 - T14)/8 + e -2'1/8 - al - 

- a 1 (eW2'(g2tg) - l/2) t (albl/4) (eW2'(2&t1) - 1) 

G(Q) = (l/8) (em2"(1 - Ti4) t 1) - al - (2alfi2 - alblg) t 

t e-211{al[e 2"(&2 - & t l/2) - l/21 - 

- (albl/4)[e2'(2fi - 1) + 11) 

and 

T(z,T) = Tw[l - ~T+(z,T)]~'~ . 

The first term in the short-time transient solution, eqn. (571, is 

simply the steady-state solution, as expected. 
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4.4 Accounting for transverse temperature variation in the wall 

When the parameter 

32 CJ Tia 
6k 

is smaller than unity, but not by a very large factor, it is necessary 

to make an accounting for transverse temperature variaticnin the wall. 

If (L2/S2) >> 1, this accounting for transient wall conduction is 

important only for short times. It is a characteristic of short-time 

solutions that the linearized wall temperature perturbation, T', 

changes linearly with T. The solution of the transient conduction 

problem in a wall of finite thickness with a constant heat flux 

applied at each surface, or with a surface temperature which changes 

linearly with time, is quite simple. Fortimes smaller than the wall 

penetration time, the temperature distribution is very close to that in 

a semi-infinite slab subjected to the same boundary conditions; for 

larger times, the wall transverse temperature distribution is para- 

bolic, with the average temperature through the wall different from 

the wall surface temperature by (l/Sag) (aT/at), and the latter case 

is only a minor modification of the cases discussed above. For times 

smaller than the wall penetration time, however, the effective heat 

capacity of the walls depends upon thepenetration depth, which is a 

function of time. As a consequence of this, the radiation diffusivity 

is itself a function of time, and the wall temperature does not change 

linearly with time, even at short times. 

In order to treat this problem simply, but without destroying 

essential features, an approximation method is used here to represent 

the transient transverse conduction. It is convenient to use a parabolic 
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profile approximation for the region of the penetration depth (cf. 

Lardner Cll]). If y ,is the coordinate normal to the wall surface and 

with its origin on it, the temperature distribution may be taken as 

T(z,y,t) = Ti - CTi - T(z,O,~)l(l - y/yj2 . (58) 

It is obvious that y is the penetration depth in the wall, and this 

is known to vary as the square-root of time from initiation of the 

transient. Eqn. (58) has been written for the initial condition that 

T = Ti everywhere. The mean temperature within the section of wall 

which has been passed by the transient front (i.e. the secticnfrom 

y=o to Y = y) is 

I Y 
Tm(z,t) = (l/y) T(z,y,t) dy 

0 

= (Ti/3) [2 t T?z,O,t)l 

so that 

T;(z,t) = (l/3) T+ (z,O,t) . (59) 

The term which represents the internal energy change in the local 

energy balance equation becomes 

a -- at = T+ (z, t) = - + s cy T; (z, t)] 
4T3 m ai 4oTi 

q - -f?% ?- cy T+ (z,O,t>l 

120T3 at 
(60) 

i 

1 aT+(z,O,n) = -- 
4 a0 

where 
3oT; 

n = 
j(kpc)l'2 

t1/2 
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with 

y = j(at)1’2 . 

This solution is based on the approximation that the penetration depth 

increases as &2 
, no matter how the surface temperature may be 

changing as a (monotonic) function of time, and on the assumption that 

the mean temperature within this depth can be regarded as a constant 

proportion of the surface temperature. It is no longer necessary that 

T+ varies linearly with time. With this transformation, the local 

energy balance equation for the plate geometry is the same as eqn. (31) 

and for the cylindrical geometry becomes identical with eqn. (37), 

except that I-I replaces T. The initial and boundary conditions 

considered here are the same as in Sections 4.1 and 4.2. Consequently, 

all the solutions obtained previously in Sections 4.1 and 4.2 can be 

applied, except that T is replaced by n, so that the solutions 

differ when expressed in terms of t. A further feature of the solutions 

is that the z-dependence of Tt is exactly the same whether n or T 

is the dimensionless time variable; thus, if y becomes equal to 6 

at some finite n, the solution can be switched over to the expressions 

for T'(z,T) but with use of a matching time variable, T', defined by 

T’(z,O,n) q T’(z,T’) when y = 6 . 

This technique should be satisfactory when T' falls within the range 

of values appropriate to a short-time solution. 

If 6 # a (or D), the energy balance must be modified to 

include the energy flux at the solid surfaces in the planes x q 0, 

x = L. This can be readily accomplished in a variational formulation 
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for the problem, or in a numerical scheme (such as used by Winter [5]). 

It is more difficult to incorporate it into the scheme used previously 

in this section, because it destroys the one-dimensional treatment of 

transient conduction in the walls. A proposal for rapid treatment of 

this case is given in the Discussion. 

As an illustration of a solution involving use of n, a 

comparison has been made with Winter's results. To make this comparison, 

the solution for short times (Section 4.1.1) has been used, with v 

small enough that the radiation "penetration depth" has not reached 

z = 1. The comparison cannot be expected to be good near the open end 

of the slots, because the analysis here takes no account of the end- 

surface heat transfer. However, at very short times the penetration 

depth is only a very small fraction of the slab half-width for Winter's 

parameters; for example, Winter's (dimensionless) time t for half- 

thickness penetration is about 0.8 for s = 5 and about 3 for 

s = 10. The short-time solution was compared with Winter's solutions 

for w=2, s=5 with t = 0.01, and for w = 1, s q 10 with 

t = 0.002, 0.006 and 0.01. (A computer output tabulation was kindly 

provided by Dr. Winter for w = 1 and s = 10, and this permitted 

close comparison.) The results were very close indeed to the analysis 

here, departing in the region of small y, i.e. in the region of z 

close to unity, due to the different boundary conditions applied to the 

end plane y q 0 (z = 1) in the two cases. The difference between the 

solutions is presented in terms of their respective differences from the 

initial temperature, T i' in Fig. 11. The magnitude of the difference 

between the solutions is dividedby (1 - T/Ti). For Winter's t = 0.006 

and 0.01 the magnitude of this difference is of the order of 5 per cent; 
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for t = 0.002 it is about 27 per cent. This larger difference may 

be due to the difficulties in obtaining anmadequate numerical solution 

after only one time-increment in Winter's solution. Even with this, the 

error in T/Ti is extremely small and the! comparison between the 

solutions must be considered very satisfactory. 

Transverse conduction in the wall of a hollow cylinder (or 

hole in a solid) can be treated in a similar manner, particularly if 

the penetration depth is not large compared with the hole radius over 

the time interval of interest. Even when this latter condition is not 

satisfied it is still possible to perform an analysis, but the details 

are more cumbersome. 
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5. SUPERPOSITION 

It is natural to examine the practical feasibility of super- 

position of the results obtained in the previous section for analysis 

of problems with continuously varying boundary conditions. The analysis 

of transient solutions (above) involved linearization, and the results 

exhibited a diffusion effect rather clearly, with a radiation diffusi- 

vity which is distinct from the molecular diffusivity. 

Superposition of solutions for T is possible with some 

similarity to the methods and results for ordinary conduction in a 

solid, but with some difference as well. It is well known that for 

ordinary conduction in a semi-infinite slab with a harmonically 

oscillating boundary temperature of frequency I,J the solution posses 

a characteristic diffusion length, y' = (2a/w) l/2 . If the radiation 

diffusivity is substituted for a, a characteristic radiation diffusion 

length A is obtained, e.g. for a hollow cylinder 

(62) 

If the wall has a small thermal diffusivity, 6 can be replaced by 

( 2a/u)1’2 for the wall. It is obvious that A can be large or small 

compared with the radiation mean free path, depending upon whether w 

is small or large. In the latter case no significant variation of 

wall temperature occurs beyond the order of one radiation mean free 

path into the slot or hole, but it always occurs to that depth because 

the dominant cause of wall surface temperature change at short times is 

direct exchange with the outside environment. The attenuation of 

temperature change which occurs with increasing z in the short-time 

solutions, eqns. (34) and (441, is due entirely to the reduction of the 
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view factor of the environment with increasing z. 

There are convenient non-dimensional forms for W, corres- 

ponding to the transformations for T and n used in the previous 

sections; for thin walls, 

n - wbc 
3 

UTi 
(63) 

and for thick walls 

:= kfi 

c$y ’ 
(64) 

The cases i-2 + 0, E-+0 correspond to the radiation mean free path 

being much smaller than the radiation diffusion length, A. 

5.1 High-frequency oscillations 

Two methods can be applied to obtain solutions for high 

frequency oscillations. The first method is to consider each section 

of the wall (at different z> as autonomous, to determine the local 

"heat transfer coefficient" for linearized radiation, and then apply 

the results to the solutions described by Carslaw and Jaeger [12]. 

The periodic boundary condition can be specified as To(z = l',t) q 

q . Ti - Ta coswt. Solution for R + ~0, t + m gives a result where 

4Tz/R replaces (1 - TE4) in th e short-time solution, eqn. (341, and 

cos(wt - a/2) replaces T. A similar result is obtained for E + ~0 

except that the wall surface phase lag in temperature is reduced from 

a/2 to lT/4. 

The second method is to use superposition directly with the 

solutions obtained in the previous section. Duhamel's theorem can be 

written for a region bounded by two planes: 
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t v(x,t) = 
0 Cxltx) at 1 ii- F (x,t - A) + x,(A) & F2(x,t - X)1 dX 

and for the parallel-plane example the functions can be taken as 

. 
X1(T) q 0, X2(T) = T; COSi-iT 

and 

F2(z,t) = (l/2) 1 - z 

cv2 t (1 - z12P2 
T 

which lead, by substitution and integration, to 

T'(z,T) = (Tz/2R) 1 - 
I 

l-z 

[v2 t (1 - z)211’2 
COS(nT - ll/2) (65) 

in agreement with the result for thin walls from the first method. For 

the thick-walled case, a solution can also be obtained; it is convenient 

for this to retain the definitions of both T -and n. Thus E2T q wt. 

By Duhamel's theorem and the short-time solution, eqn. (341, 

T'(z,T) = 
T . 

" Ta cos(E2X) & (66) 
0 

The T-dependent term in this equation is 

I 
T 2 COSE h 
0 (T - 1)1/2 dA * 

This can be reduced by the substitution T - A = u, separation of T 

and 2 u by use of a trigonometric identity; substitution of v = E u 

then gives the T-dependent factor as 

The integrals can be recognized as Fresnel integrals, so that the 

temperature distribution is 
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T+(z,T) = 3(2~)l'~ Ta l- 1 
7 4j =. 

cv2 + (1 
(67) 

x Ccos(E2 t)C2(S2t) t sin(f2t)S2(t2t)l . 

When T #O and S+-, the time-dependent factor (in brackets in 

eqn. (67)) becomes 

(l/i% COS (B2T - il/4) . 

When this is substituted in eqn. (67) the result corresponds to the 

solution obtained for the wall surface by the first method, if the 

exact value for j for the transient wall conduction is used. The 

results obtained by the second method, i.e. by direct superposition of 

the solutions in Section 4, involved use only of.short-time solutions 

even though X progresses to values of T which were not small. 

While this is intuitively reasonable, further justification can be found 

below. 

5.2 Low-frequency solutions 

Equation (36) is in fact the full-range transient solution 

for the parallel plate case; the leading term contracts to the short- 

time solution for SInall T. With this solution it is therefore 

possible to apply Duhamel's theorem and to obtain a full-range solution 

for, say, To = Ti - Ta cos RT. This solution is 
R B 

T 
T'(z,T) = $ 4,(z) 

16T, 
sinat - - 

s-l2 
I$ 1 (z) (COSi-iT - e -4T) - . . . . (68) 

When Q + - this reduces to eqn. (65) obtained previously with use of 

the short-time solution. 

These examples serve to illustrate that superposition can be 

readily accomplished. 
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6. DISCUSSION 

6.1 The photon mean free effective path 

There are two generalizations of this concept which are 

particularly useful. The first concerns geometries other than parallel 

plates and circular cylinders; the second concerns non-black surfaces. 

The (black) photon mean free effective path at xjo and in 

direction x. 
1 

is defined as the integral of radiation intensity 

absorbed by elements dA2 of surfaces at a displacement (x. - x. 
3 30 

) 

from an elementary area dA1 at xjo times (x. - x and divided 
1 

jo), 

by the integral of radiation from the element at x. to all 
30 

x. > x. * 
3 30, 1-e. 

I (x 
h 

A2: x.>x. jmxjo) 
= 3 30 

' TZjo F12 dA2 

I 
4 

A2: aTx. F12 dA2 
x.>x. 

3 lo I0 

This can be regarded as the integral of distance (x. - x. ) weighted 
1 lo 

by the proportion of the radiation from an elementary area at xjo 

which is. absorbed at xi . For the parallel flat plates and for the 

hollow cylinder with black surfaces this came out to be particularly 

simple. However, there is nothing in principle to prevent application 

ofthe concept to other well-defined geometries involving cavities, e.g. 

hexagonal tubes, loosely stacked mats of crossed cylindrical rods 

(fibrous insulation) and so on. The quantity A is non-isotropic in 

general. In every case it is assumed that the geometrical pattern is 

continued for an infinite distance in order to calculate h. 

One advantage of the concept of A is found in bodies where 

the radiation path length is much larger than X. In the interior the 

41 



basic integro-differential equation can be appreoximated with good 

accuracy by a differential equation involving a weighted conductivity 

(radiation plus molecular conduction), and the solution for this matched 

to solutions for the Yedges" of the body which can see the radiation 

environments fairly directly. The "edges" can be taken to extend 

about 2)( into the body from its external surfaces. This method of 

approximation can work well for steady-state and low-frequency 

oscillatory solutions, but for high-frequency oscillations or short- 

time transients the considerations in the previous sections apply again. 

In order to understand how X can be computed for non-black 

surfaces it is useful to revert to its interpretation as the integral 

of distance (x. - x. ) 
1 30 

weighted by the proportion of the radiation 

from an elementary area at x. which is absorbed at x.. For the 
70 1 

non-black case some of the radiation incident at x. is reflected. 
1 

The subsequent distribution of unabsorbed radiation and its eventual 

absorption can be computed. The quantity h is affected by whether 

reflection is computed for x. > x. 
3 only, or whether reflection is 

70 
considered for all x., 

1 
absorption being considered only in the region 

x. > x. in either case. 
1 lo 

The former case is appropriate for "edge" 

regions of a body, and the latter case for deep regions. With Lambertian 

surfaces, X -,always increases as the reflectivity increases. 

The increase in h does not imply that the radiation 

conductivity is increased; for grey surfaces this latter quantity is 

E u Ti 3x (70) 

and it varies roughly as E l/2 for l-E <Cl. A corresponding 

radiation diffusivity can be defined. Use of the two grey h's, the 
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grey radiation-conductivity and diffusivity as appropriate permit some 

of the solutions obtained in the previous sections to be applied to 

problems where E < 1. 

The fact that X is controlled by both the geometry and 

emissivity of the surfaces can be used to advantage. For example, a 

multilayer insulation for cryogenic systems often consists of several 

thicknesses of polished foil. This gives excellent resistance to heat 

flow normal to the foil layers, but suffers from a high radiation 

conductivity along the layers if an end is exposed to a non-cryogenic 

heat source. The A for this entering radiation can be greatly 

reduced by making the foil strongly wavy near the ends: it is best 

if the waviness varies from one layer to the next. 

6.2 Treatment of transient radiation problems 

Many problems of physical interest can be treated within the 

framework of the solutions presented in earlier sections, especially 

with the extensions of the concepts of photon mean free effective path, 

radiation conductivity and diffusivity outlined in Section 6.1. However, 

there are some situations for which these solutions are insufficient. 

For example, w hen the thickness of the solid sections of a slotted 

slab is not small compared with the slot widths, the transient 

conduction problem can be treated as approximately one-dimensional at 

neighboring faces only at very short times. The slots might not be 

normal to the end faces, but inclined through the slab (like a tilted 

Venetian blind), or the slab sections might not have flat ends . . . . 

In all such problems it is still possible to follow the general scheme 

for calculations described explicitly here (for two geometries), but 
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making some necessary adaptations. If the radiation diffusivity is 

large compared with the (molecular) thermal diffusivity, and the cavities 

are long compared with the radiaticnmean free path, the region where 

two-dimensional effects are significant in the solid extends only to 

about 36 in the slot direction. For this length into the slot, or 

for 2 radiation mean free paths, whichever is greater, the transient 

in this edge region can be studied with the help of numerical methods 

and matched to an analytic solution for the deeper regions where the 

effects are more simply accounted for. This hybrid scheme has the 

advantage that it can considerably reduce the time consumed in numerical 

analysis in studies like that undertaken by Winter [51. The authors 

have found that a numerical program based on the method of finite 

elements Cl31 is useful for this. 

It is worthwhile to note that at the beginning of this 

investigation the authors had in mind the possibility of generating 

a variational principle for combined radiation and conduction which 

could be used to solve steady-state and transient problems in various 

geometries. It turned out that while this could be established, in 

use it was not as accurate (for a given level of computational effort) 

as the set of techniques described here. 

6.3 The significance of linearization 

Extensive use has been made here of a linearization of 

the radiation heat flux with respect to temperature. Linearization 

of one kind or another is frequently used in radiation analyses to 

make calculations tractable, but this often means that only a very 

approximate answer is obtained. At first sight, the use of a lineari- 

zation for the problems discussed here seems reasonable in the light 
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of the solutions themselves; the temperatures obtained in the solutions 

do not differ substantially from Ti.# The worst case--the greatest 

deviation from Ti --seems to be in the steady-state solutions when L 

is many times the radiation mean free effective path, and even then 

only in the immediate vicinity of the cold end. It should be emphasized 

that the linearization employed here is in making the approximation 

T44 = 1 - 4T+ 

and this relation is used both for substitution in the energy balance 

relation and in recovering the physical temperature after a solution 

in terms of T ' has been found, e.g. eqns. (26), (351, (45) and so on. 

It is possible to demonstrate that this linearization 

technique gives excellent results. In particular, if this technique 

is applied to the energy balance equation for the hollow cylinder to 

obtain a steady-state solution, the result can be shown to be exactly 

the same as eqns. (9) and (lo), Section 3.1. This is so for any L/R. 

For the parallel plates, a comparison of steady-state solutions for the 

energy balance equation with and without linearization, using variational 

techniques in both cases, shows that very small differences exist, e.g. 

for v = 0.2, To = 0, the difference at the cold end (Tic = 0.61) is 

only 5 per cent. 

# Except for the hollow cylinder with heat generation along its walls, 
for which a different linearization is employed and certain restrictions 
are invoked: confer Section 4.3. 
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7. SUMMARY 

1. Temperature distributions in a parallel-walled channel and in a 

hollow cylinder are considered, where each end of the channel or 

cylinder faces an environment of uniform but alterable temperature. 

The wall surfaces .are assumed to be black. 

2. The concept of mean free effective path for radiation in a channel 

is introduced. 

3. A particular technique is used for linearizing the radiant heat 

flux in terms of temperature. Comparison with steady-state 

solutions which do not involve linearizationis surprisingly good. 

This linearization is applied for some steady-state solutions 

and exclusively for transient solutions. 

4. Steady-state solutions are obtained for both geometries with _ 

conduction in the walls omitted. Additionally, a solution for the 

parallel plates including the effect of longitudinal conduction is 

given. 

5. Transient solutions valid for short and long times are obtained for 

a parallel-walled channel and a hollow cylinder having thin walls; 

in addition, a full-range solution is obtained for the channel, and 

a solution is found for a hollow cylinder of semi-infinite length. 

Some similarities to solutions for transient conduction are noted. 

6. Steady-state and transient solutions are obtained for a hollow 

cylinder with heat generation at the wall. 
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7. Transient solutions are obtained for a parallel-walled channel and 

a hollow cylinder having (thermally) thick walls, so that transient 

conduction normal to wall surfaces is coupled into the problem. 

8. It is demonstrated that computation can be carried out easily for 

problems which involve superposition of the transient solutions 

already obtained. 

9. The concept of mean free effective path for radiation is generalized 

to non-black surfaces and to other geometries. The mean free effective 

path is significant to the determination of optical thickness in 

any geometry, and to the calculation of radiation conductivity and 

radiation diffusivity. 

10. The use of the analytical results in conjunction with numerical 

solutions for restricted portions of other geometries is discussed. 
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FIGURE CAPTIONS 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

Figure 9. 

Figure 10. 

Figure 11. 

Geometries of configurations: (a) parallel-plate channel 
'(b) hollow cylinder, radius R. 

Steady temperature distribution in a hollow cylinder with 
one end facing an environment at T = T., the other end an 
environment at T = 0, for II = 1, 2, 5' and 10. 

Total heat flux through a hollow cylinder as a function of 
R. a represents the radiation which passes straight 
through without absorption; b is the radiation which is 
absorbed just once before passing out of the hollow cylinder; 
and c is the radiation which is absorbed.and re-radiated 
at least twice before passing out of the hollow cylinder. 
The sum of these is the uppermost (solid) line. 

Steady temperature distribution in a hollow cylinder with 
uniform heat flux along the wall with the ends facing environ- 
ments at T = Ti and T = 0 respectively. 

Steady temperature distribution along parallel plates, with 
the ends facing environments at T = Ti and T q 0 
respectively. 

Transient temperature distribution-along parallel plates 
at short times. 

Transient temperature at the mid-point of parallel plates 
for v=l. 

Transient temperature at the mid-point of parallel plates 
for To=O. 

Transient temperature at the mid-point of a hollow cylinder 
for 11 = 1. 

Transient temperature at the mid-point of a hollow cylinder 
for To=O. 

Comparison of transient temperature distribution on the 
thick walls in a slot from analysis given here and Winter's 
numerical solution. 
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