36 research outputs found

    Performance Improvement of Dense Dielectric Patch Antenna using Partially Reflective Surfaces

    Get PDF
    Recently, millimeter-wave (MMW) band is being considered as the spectrum for future wireless communication systems. Several advantages are achieved by utilizing the millimeter-wave range, including high gain with large available bandwidth, compact size, and high security. Nevertheless, attenuation loss may restrict wireless communication systems’ transmission range. Meanwhile, printed antenna technology has gained the attention of antenna designers’ due to its low profile and ease of fabrication. High-gain antennas are very desirable as a critical part of MMW systems. Designing millimeter wave antennas with high gain characteristics would be a significant advantage due to their high sensitivity to atmospheric absorption losses. Moreover, planar configurations are required in many applications, such as for wireless communication. The main goal of this thesis is to design and propose state of the art designs of Fabry Pérot Cavity antenna (FPCA) designs with several types of superstrates to achieve high gain, wide bandwidth, and high efficiency to satisfy the requirements of today’s advanced wireless communication systems. A dense dielectric patch (DD) antenna is used as the main radiator and designed to operate at 28 GHz. The thesis presents several contributions related to the design and analysis of FPC antennas using several types of superstrates. The first research theme of this thesis has two parts. The first part presents a holey dielectric superstrate applied over a 2×2 dense dielectric square patch antenna array to enhance the gain, improve the bandwidth and efficiency, as well as to reduce the side lobe levels (SLLs). A dense dielectric patch replaces the metallic patch and is used as a radiated element. The measured results show a high gain of 16 dBi, with radiation efficiency of about 93 %, wide bandwidth of 15.3 %, and a reduced SLL. The second part focusses on a partially reflective surface (PRS) unit cell composed of two thin perforated dielectric slabs. The effect of the thicknesses of the unit cell dielectric slabs is discussed in detail. An array of the proposed PRS unit cell is applied over a dense dielectric square patch antenna array to broaden the bandwidth and to enhance the gain as well. The measured results exhibit a 3 dB gain bandwidth of 27 % with a high gain of 16.8 dBi. The second research theme presents an effective method to design a tapered superstrate of an FPC antenna with a DD patch element. This type of superstrate is designed to correct the phase above the superstrate to be almost uniform. The proposed single-layer perforated tapered superstrate is constructed by tapering the relative permittivity to be high in the center of the superstrate slab and then decrease gradually as it moves towards the edges. This tapered relative permittivity is then applied over a single DD patch antenna. The proposed antenna exhibits good performance in terms of the antenna gain and bandwidth. The antenna gain becomes flat and as high as 17.6 dBi. The antenna bandwidth is about 16 %, and the side lobe level of the antenna is very promising. A third theme presents the implementation and design of a high gain dense dielectric patch antenna integrated with a frequency-selective surface (FSS) superstrate. A 7×7-unit cell is used to build the superstrate layer, and applied above the high DD patch antenna. A modified unit cell is proposed to generate a positive reflection phase with high reflection magnitude within the frequency design in order to broaden the antenna bandwidth. A bandwidth of 15.3 % with a high gain of 16 dBi is obtained. Finally, a high gain linearly polarized (LP) substrate integrated waveguide (SIW) cavity antenna based on a high-order mode is implemented, fabricated, and tested. A TE440 mode is excited at 28 GHz. In this design, 4×4 slots are cut into the top metal of the cavity, where each slot is placed above each standing wave peak. These slot cuts contributed to a high gain of 16.4 dBi and radiation efficiency of about 96 %. The LP SIW cavity antenna was then integrated with a linear-to-circular polarization converter developed as a high gain circularly polarized (CP) SIW cavity antenna with high gain and high radiation efficiency of 16 dBi and 96 %, respectively

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array

    Quarter wavelength fabry–perot cavity antenna with wideband low monostatic radar cross section and off-broadside peak radiation

    Get PDF
    Since antennas are strong radar targets, their radar cross section (RCS) reduction and radiation enhancement is of utmost necessity, particularly for stealth platforms. This work proposes the design of a Fabry–Perot Cavity (FPC) antenna which has wideband low monostatic RCS. While in the transmission mode, not only is gain enhancement achieved, but radiation beam is also deflected in the elevation plane. Moreover, the design is low-profile, i.e., the cavity height is ~λ/4. A patch antenna designed at 6 GHz serves as the excitation source of the cavity constructed between the metallic ground plane and superstrate. The superstrate structure is formed with absorptive frequency selective surface (AFSS) in conjunction with dual-sided partially reflective surface (PRS). Resistor loaded metallic rings serve as the AFSS, while PRS is constructed from inductive gradated mesh structure on one side to realize phase gradient for beam deflection; the other side has fixed capacitive elements. Results show that wideband RCS reduction was achieved from 4–16 GHz, with average RCS reduction of about 8.5 dB over the reference patch antenna. Off-broadside peak radiation at −38◦ was achieved, with gain approaching ~9.4 dB. Simulation and measurement results are presented

    A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications

    Get PDF
    Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications

    New solutions for directive antennas and components for millimeter wave-band applications

    Get PDF
    Mención Internacional en el título de doctorEn las últimas décadas se ha producido un avance tecnológico exponencial en el área de las telecomunicaciones. Cada pocos años surgen sistemas de comunicaciones de nueva generación, siendo el 5G el que, hoy en día, se va implementando y ofreciendo progresivamente a los usuarios de todo el mundo. Los sistemas de comunicaciones 5G permiten tasas de datos mucho más altas, una velocidad ultrarrápida y un mayor ancho de banda que el 4G no soportaba debido a las bandas excesivamente utilizadas por debajo de los 6 GHz. Sin embargo, este aumento de la frecuencia introduce retos que no existen en frecuencias inferiores, como la absorción ambiental. Además, los obstáculos físicos que se interponen en el trayecto entre el emisor y el receptor también son un problema a estas frecuencias y las pérdidas inherentes a la propagación en el espacio libre son muy elevadas. El objetivo de esta tesis ha sido desarrollar e introducir nuevos e innovadores diseños de antenas que puedan ser utilizados en las bandas de frecuencia de las comunicaciones 5G y superiores así como en otras aplicaciones de ondas milimétricas. Los diseños que se presentan tienen como principal objetivo conseguir una alta directividad, manteniendo bajas pérdidas. Estos diseños se pueden agrupar en dos categorías principales: antenas Fabry-Pérot, y antenas gap waveguide. En la primera parte de esta tesis se han desarrollado tres diseños de antena Fabry-Pérot, incluyendo una metodología innovadora para el diseño de una metasuperficie que permite un funcionamiento en doble banda con control de directividad y que también puede ser utilizada también para implementar arrays de antenas en bandas de ondas milimétricas. Además, se muestra que este concepto de antenas Fabry-Pérot, implementado en un rango de frecuencias mucho más bajas, puede utilizarse también en aplicaciones de sistemas radar. En la segunda parte, se han desarrollado e implementado diseños innovadores de antenas y arrays usando la tecnología gap waveguide en particular su versión groove. En ellos, se han diseñado novedosas redes de alimentación y sistemas de corrección de fase que proporcionan bajas pérdidas y alta eficiencia.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: José Luis Masa Campos.- Secretario: Óscar Quevedo Teruel.- Vocal: Guido Valeri

    Pattern and Polarization Reconfigurable Antennas for Gain Enhancement

    Get PDF
    Since the rapid proliferation of the wireless communication systems, the effective use of the allocated spectrum has become vital. The desire for generating equipment that can adopt their characteristics for different and challenging environments where excessive interference and mobile traffic is present has been increased. Pattern reconfigurable antennas have been an ideal candidate with conformal radiating characteristics, low cost and low power consumption features. A pattern reconfigurable dipole antenna placed over a ground plane with parasitic reflectors for continuous beam control has been considered as a starting point of the project where the well known Fabry Pérot resonance modes were utilized. The model was designed to be operating within 1.8GHz frequency band of current wireless communication systems. The continuous beam steering over the azimuth plane has been achieved by manipulating the surface currents along the parasitic strips by varying the capacitance between the conducting strips of the elements. Furthermore, a partially reflecting surface formed of periodic dipoles, was allocated on top of a metallic ground and the radiating structure formed of a half wavelength dipole and two parasitic strips for further gain enhancement and pattern reconfigurability. PIN diodes have been biased to switch between "ON" and "OFF" states and achieve beam switching from a high gain boresight direction to endfire radiation along the azimuth. Latterly the dual polarised version of the model was evaluated for an extra step of freedom where the operating frequency has been increased up to 3.6GHz which will be within the predicted frequency bands of next generation communication systems. Two orthogonally positioned dipole antennas with single parasitic elements have been used as the radiating structure. A total of four PIN diodes have been initialized for achieving pattern reconfiguration in both polarizations where the beam is switched from boresight to endfire directions. The evaluation process of three different models supported with, current curves and polar plots have been extensively studied in the thesis. Prototypes have been generated for each model and tested in a fully anechoic chamber for the proof and validation of the theory and simulation results

    Performance Enhancement of Radiation and Scattering Properties of Circularly Polarized Antennas Using Frequency Selective Surface

    Get PDF
    At millimetre-wave (MMW) frequencies, losses associated with wireless link and system are critical issues that need to be overcome in designing high-performance wireless systems. To compensate the overall loss in a wireless communication system, a high-gain antenna is required. Circularly polarized (CP) antennas are among preferred choices to design because they offer many advantages due to their good resistance to polarization mismatch, mitigation of multipath effects, and some phasing issues and immunity to Faraday rotation. On the other hand, frequency selective surface (FSS) technology is recently employed to enhance the performance of radiation and scattering properties of antennas used in different sectors such as aerospace, medical, and microwave industry. Therefore, it is appropriate and attractive to propose the use of FSS technology to design practical and efficient CP antennas. CP Fabry-Perot cavity (FPC) antennas based on FSS are investigated in this thesis to fulfil the growing demand for broadband high-gain antennas with low radar cross section (RCS). The thesis investigates both characteristic improvement of CP antennas and RCS reduction issues employing FSS structures. Initially, a high gain CP dielectric resonator (DR) antenna is proposed. Using an FSS superstrate layer, a gain enhancement of 8.5 dB is achieved. A detailed theoretical analysis along with different models are presented and used to optimize the superstrate size and the air gap height between the antenna and superstrate layer. The second research theme focusses on developing an effective approach for mitigating the near-field coupling between four-port CP antennas in a Multiple-Input, Multiple-Output (MIMO) system. This is obtained by incorporating a two-layer transmission-type FSS superstrate based on planar crossed-dipole metal strips. Another technique for suppressing the spatially coupling between DR antennas using a new FSS polarization-rotator wall is studied as well. The coupling reduction is achieved by embedding an FSS wall between two DRAs, which are placed in the H-plane. Utilizing this FSS wall, the TE modes of the antennas become orthogonal, which reduces the spatially coupling between the two DRAs. The third research theme of this thesis is to enhance the purity and bandwidth of CP with the least amount of insertion loss by the use of an LP-to-CP-polarizer which is based on multilayer FSS slab. This polarizer is approximately robust under oblique illuminations. To have a high-gain CP antenna, an 8-element LP array antenna with Chebyshev tapered distribution is designed and integrated with the polarizer. Eventually, in order to enhance the scattering property, the fourth research theme investigates on RCS reduction by the use of two different approaches which are based on FSS. Initially, a wideband FSS metasurface for RCS reduction based on a polarization conversion is proposed. To distribute the scattered EM waves and suppress the maximum bistatic RCS of the metasurface over a broad band of incident angles at both polarizations, the elements are arranged using the binary coding matrix achieved by group search optimization (GSO) algorithm. The reflective two-layer metasurface is designed in such a way to generate reflection phase difference of 180° between two elements “0” and “1” on a broad frequency band. A theoretical analysis is performed on the ratio of the “0” and “1” elements using Least Square Error (LSE) method to find the best ratio value. As the second activity of this research theme, wideband CP antenna with low RCS and high gain properties is presented. The proposed antenna is based on a combination of the FPC and sequential feeding technique

    Analysis and design of new electronically reconfigurable periodic leaky-wave antennas

    Get PDF
    [SPA] El principal objetivo de la tesis es el estudio de nuevas tecnologías en el campo de las antenas reconfigurables. En particular, la tesis se centra en explorar y explotar el potencial que presentan un tipo de antenas denominadas como ¿Antenas basadas en Modos de Fuga¿ para controlar electrónicamente su diagrama de radiación. La tesis desarrolla el análisis, diseño y fabricación de tres novedosas antenas basadas en modos de fuga capaces de variar mediante unas pocas señales de control y de forma continua su ángulo de apuntamiento. El mecanismo de reconfiguración electrónica principalmente se basa en el control de la dispersión de los modos de fuga excitados en dichas estructuras, mediante un control electrónico introducido empleando estructuras periódicas resonantes combinadas con elementos activos tales como diodos varactores. La tesis demuestra claramente la utilidad de estas antenas en el campo de la reconfiguración electrónica, proponiendo estas nuevas estructuras como alternativas a otras soluciones más clásicas (como antenas en array de fase reconfigurables o reflectores parabólicos mecánicamente re-orientables mecánicamente) y otras de actualidad (como reflectarrays, transmitarrays, antenas metamateriales o antenas pixeladas), las cuales todas ellas presentan otros problemas en términos de coste, complejidad de diseño o limitaciones de escalabilidad en frecuencia, aportando así esta tesis novedosos conceptos de reconfiguración electrónica.[ENG] The thesis aims the design of novel reconfigurable antennas with electronic beam-scanning. In particular, the antennas analyzed are known as Fabry-Perot Antennas (FPA) and are currently of high interest in the scientific community because of their high-directivity, low-profile and structure simplicity, what allow them to be an interesting alternative to other technologies (e.g. parabolic reflectors, phased arrays, etc.) which require of complex power distribution networks, bulky external sources or costly techniques to achieve reconfigurable capabilities. In this thesis, the integration of active components, such as varactor diodes, with FPRA structures, is exploited to achieve electronic control of their aperture illumination, which in turn results in the electronic steering of the radiation-pattern main beam. A modal analysis based on the leaky-wave theory has allowed to understand and predict the behavior of these structures. An equivalent circuit model was developed to design and optimize the dimensions of theses complex structures, saving computational cost and time. The antennas are based on the control of the frequency dispersion response and the electromagnetic band-gap (EBG) properties of periodic structures, employing specially designed Frequency-Selective Surfaces (FSS) loaded with varactor diodes. Three novel antenna prototypes were manufactured to demonstrate electronic steering capability operating at 5.5GHz. Continuous scanning in elevation (1D scanning) and also in elevation and azimuth simultaneously (2D scanning) have been achieved employing just a few control signals (between 1 and 4 signals). The antenna structures have been implemented in a low-cost technology based on parallel plate waveguides and printed circuit boards which have allowed to design antennas with a reduced profile. Theoretical, simulated and experimental results are shown for each prototype to demonstrate the concepts. Also, some future lines related to novel planar reconfigurable antennas in development are also outlined. One of the main potential advantages of the reconfiguring principles presented for future applications is their frequency scalability. This would allow to apply these concepts to other technologies, such as MEMS or graphene, to build new reconfigurable antennas able to operate at higher frequency bands (e.g. mm-bands) for future applications.Universidad Politécnica de Cartagen

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    High gain CPW‐fed UWB planar monopole antenna‐based compact uniplanar frequency selective surface for microwave imaging

    Get PDF
    YesIn this article, a novel uniplanar ultra‐wideband (UWB) stop frequency selective surface (FSS) was miniaturized to maximize the gain of a compact UWB monopole antenna for microwave imaging applications. The single‐plane FSS unit cell size was only 0.095λ × 0.095λ for a lower‐operating frequency had been introduced, which was miniaturized by combining a square‐loop with a cross‐dipole on FR4 substrate. The proposed hexagonal antenna was printed on FR4 substrate with coplanar waveguide feed, which was further backed at 21.6 mm by 3 × 3 FSS array. The unit cell was modeled with an equivalent circuit, while the measured characteristics of fabricated FSS array and the antenna prototypes were validated with the simulation outcomes. The FSS displayed transmission magnitude below −10 dB and linear reflection phase over the bandwidth of 2.6 to 11.1 GHz. The proposed antenna prototype achieved excellent gain improvement about 3.5 dBi, unidirectional radiation, and bandwidth of 3.8 to 10.6 GHz. Exceptional agreements were observed between the simulation and the measured outcomes. Hence, a new UWB baggage scanner system was developed to assess the short distance imaging of simulated small metallic objects in handbag model. The system based on the proposed antenna displayed a higher resolution image than the antenna without FSS
    corecore