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Resumen

En las últimas décadas se ha producido un avance tecnológico exponencial en el

área de las telecomunicaciones. Cada pocos años surgen sistemas de comunicaciones de

nueva generación, siendo el 5G el que, hoy en día, se va implementando y ofreciendo

progresivamente a los usuarios de todo el mundo.

Los sistemas de comunicaciones 5G permiten tasas de datos mucho más altas, una

velocidad ultrarrápida y un mayor ancho de banda que el 4G no soportaba debido a las

bandas excesivamente utilizadas por debajo de los 6 GHz. Sin embargo, este aumento de

la frecuencia introduce retos que no existen en frecuencias inferiores, como la absorción

ambiental. Además, los obstáculos físicos que se interponen en el trayecto entre el emisor

y el receptor también son un problema a estas frecuencias y las pérdidas inherentes a la

propagación en el espacio libre son muy elevadas.

El objetivo de esta tesis ha sido desarrollar e introducir nuevos e innovadores diseños

de antenas que puedan ser utilizados en las bandas de frecuencia de las comunicaciones

5G y superiores así como en otras aplicaciones de ondas milimétricas. Los diseños que

se presentan tienen como principal objetivo conseguir una alta directividad, manteniendo

bajas pérdidas. Estos diseños se pueden agrupar en dos categorías principales: antenas

Fabry-Pérot, y antenas gap waveguide.

En la primera parte de esta tesis se han desarrollado tres diseños de antena Fabry-Pérot,

incluyendo una metodología innovadora para el diseño de una metasuperficie que permite

un funcionamiento en doble banda con control de directividad y que también puede ser

utilizada también para implementar arrays de antenas en bandas de ondas milimétricas.

Además, se muestra que este concepto de antenas Fabry-Pérot, implementado en un rango



xx

de frecuencias mucho más bajas, puede utilizarse también en aplicaciones de sistemas

radar. En la segunda parte, se han desarrollado e implementado diseños innovadores de

antenas y arrays usando la tecnología gap waveguide en particular su versión groove. En

ellos, se han diseñado novedosas redes de alimentación y sistemas de corrección de fase

que proporcionan bajas pérdidas y alta eficiencia.
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Introduction

Nowadays, wireless communications have a crucial role in the modern society. The

first generation of wireless cellular communications (1G) was initially introduced in the

1980s, and supported analog audio transmissions. A few years later, the transmissions

became digital and the second generation (2G) emerged. In the past decades, rapid and

ground breaking technological progress has lead to the incorporation of wireless systems in

the modern society as an integral part, from daily life to medical and science applications.

The increasing number of mobile users, and the need for internet access and wireless

data communications have paved the way for new generations of communications that are

developed every few years, with the current fifth generation (5G) [1], [2] being introduced

to users worldwide since 2019. This new generation is expected to allow significantly

higher data rates that were not possible with 4G, due to the heavily saturated frequencies

below 6 GHz. The 5G communications networks will provide ultra-fast speed (up to 10

Gbit/s) and increased bandwidth, while the delays will be minimized, to cover the needs

of a predicted 1.7 billion users by 2025. In addition, the 5G communication systems are

expected to provide the means for new IoT (internet of things) "smart" applications and

devices; a trending topic in technological progress in our days.

Unlike the over-used frequencies below 6 GHz, the millimeter wave (mm-wave)

frequency bands (typically above 24 GHz and up to 300 GHz) are vastly unoccupied.

Therefore, the interest of the researchers was drawn towards implementations of wireless

communication systems operating in mm-wave bands. However, the increase of frequency,

gives rise to undesired effects that are usually ignored in low frequencies. For instance,

round 60 GHz, the resonance frequency of oxygen and water molecules, introduce losses,

limiting these frequencies to indoor applications. Apart from the environmental absorption,
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physical obstacles between the direct path from the transmitter to the receiver are also

an issue at these frequencies and the inherent losses of free space propagation are very

high. Nevertheless, high speed communications are allowed by these frequencies for

over-crowded areas with a more efficient use of the spectrum compared to communication

systems of previous generations.

In order to reach these new frequency bands, as the antenna is a key element in enabling

the use of these frequencies, new antenna design technologies have been developed by

the researchers in the past few years. One of the emerged technologies is known as

gap waveguide, which is a contact-less technology that can be used to implement highly

directive wideband antennas with low losses and easy integration. In addition, leaky-wave

antennas are always a good option for medium to high directivity applications due to their

simplicity and without requiring complicated and lossy feed networks. Among them, the

Fabry-Pérot type antennas can be used in mm-wave bands, maintaining a low-profile and

easy fabrication, while they achieve medium directivity enhancement.

In this direction lies the motivation of the present thesis. The aim has been to develop

innovative antenna designs that can be used in 5G and beyond communication frequency

bands and other millimeter wave applications. The antenna designs that will be presented

aim to achieve high directivity, maintaining low losses and implementing novel design

methodologies.

The antenna designs that were developed during this thesis, can be gathered in two main

categories: Fabry-Pérot type antennas, and gap waveguide antennas. Three Fabry-Pérot

antenna designs have been developed, including a novel methodology for the design of

a metasurface that allows dual-band performance with a single layer and with directivity

control and can be also used to implement antenna arrays in mm-wave bands. In addition,

it will be shown that the Fabry-Pérot antenna concept was also implemented in much lower

frequencies and can be used in applications of radar systems.

The second main category of the developed designs is the design of innovative antennas

in gap waveguide technology. By using the groove version of this technology, because it

is the one with less losses, antenna and array designs have been implemented during this

work. Novel feeding and phase correction networks have been also designed providing
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low losses and high efficiency designs.
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Thesis organization

The current PhD dissertation is organized in two main parts, in order to present the

obtained results with optimum consistency. In Part I the Fabry-Pérot type leaky-wave

antennas are studied, more specifically as follows:

Chapter 1: The principles and the theory behind the Fabry-Pérot antennas are discussed

in detail. After presenting the initial studies that introduced the first antennas using a

resonant cavity, then the state of the art is presented, where we discuss the different

applications found in literature that make use of Fabry-Pérot antennas. Afterwards the

radiation mechanism in these antennas is explained, followed by the dispersion equation.

Finally, the existence of an equivalence between a dielectric slab and a metasurface for the

implementation of leaky-wave antennas is presented. The importance of this chapter is

high, since it establishes the theoretical background for the designs carried out in the first

part of this thesis.

Chapter 2: This chapter presents the design of a single layer dual-band Fabry-Pérot

antenna, based on the equivalence of the resonant cavity made by a dielectric slab and a

metasurface. This equivalence is the basis for a novel design methodology that was derived

during the present thesis. Two examples of designs are presented for a dual band antenna.

Their difference is found in the equivalence used at each of the two bands, that allows for

directivity control.

Chapter 3: The design methodology for dual-band leaky-wave antennas using metasur-

faces, is extended to a planar array configuration in this chapter. In addition to directivity

control, this design achieves grating lobe suppression, and a planar thinned array is imple-

mented fed by stacked patches.

Chapter 4: This chapter presents the design of a leaky-wave antenna using a metasurface
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following the principles of Chapter 1, that was developed as a candidate for an overlapped

feed of a large reflector used for Earth observation.

In Part II innovative antenna designs based on gap waveguide technology are presented,

organized as described:

Chapter 5: The principles of gap waveguide technology are presented. In particular, the

groove version of gap waveguide is reviewed, as it will be used in all the designs of this

part of the thesis. Afterwards, the leaky-wave antenna made in groove gap waveguide is

presented.

Chapter 6: Based on the leaky-wave antenna presented in the previous chapter, an array of

stacked elements in groove gap waveguide technology is presented. For the implementation

of the array, a novel feeding and phase shifters network is developed by using the same

technology.

Chapter 7: In this chapter, the dispersive nature of gap waveguide leaky-wave antennas is

addressed. The combination with a metamaterial prism is proposed, using holes as unit

cells, to compensate the dispersion of leaky-wave antennas.

Chapter 8: This chapter presents the design of an array of low profile horn antennas

entirely made in groove gap waveguide technology with high aperture efficiency and

minimized losses.

The present thesis is then summarized in Part III where the conclusions of each chapter

are gathered. In addition, guidelines for future work are discussed. Finally the related

publications to this thesis are listed.
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Part I

Design of Fabry-Pérot leaky-wave

antennas
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Chapter 1

Leaky-wave antennas based on partially

reflective surfaces

1.1 Introduction

The simplest form of a leaky-wave antenna consists of a radiating slot edged on a

ground plane, and above it a surface that reflects back a part of the incident waves, while

the rest "leaks" to free space. This concept was first introduced in 1956 by von Trentini

[3], where multiple reflections in a parallel plate cavity were studied. The lower limit of

the cavity was defined by a metallic ground plane, while the upper limit was a partially

reflective surface (PRS) made by metallic patches, metallic grid or even wires. It was

shown that the PRS obtained the increase of directivity of a simple radiation source that in

this case was a slot on the ground plane, located centrally and fed by a waveguide. The

importance of the height of the cavity was observed and simple formulas for its calculation

were presented. It was reported that for specific values of height, high directivity radiation

patterns are produced.

Some years later, this idea was explored again in [4] but this time with a dielectric

material of high permittivity as a PRS and the cavity between the parallel plates was filled

with another dielectric. A more complete study of the same design was presented in [5],

where asymptotic formulas were derived for the leaky-wave propagation properties. This
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configuration was then extended to multilayered dielectric PRS structures that further

improved the directivity levels obtained [6]–[8]. Cascaded dielectrics were also used in

[9]–[11] to create wideband performance.

In [12], [13] the authors addressed the similarities of the resonant cavity of [3] and the

Fabry-Pérot interferometer [14] that consists of two reflective surfaces that create as well a

resonant cavity. Therefore, in literature these antennas are often referred to as Fabry-Pérot

antennas [15]–[17]. In other works, the term "electromagnetic band-gap (EBG) antennas"

has been also used [18]–[20], referring to multilayered structures that form a band-gap and

are used as a PRS.

The main advantage of this type of antennas is that they achieve directive beaming by

using rather simple non-directive radiation sources. Many studies have been presented

over the years, describing the case of a dielectric superlayer since it is the simplest

solution for directivity enhancement [21]–[23]. Nevertheless, in some cases there are no

commercially available materials with the required high permittivity and specific thickness.

Furthermore, this is a solution with limited bandwidth performance, since the Fabry-Pérot

cavity is designed for a single frequency, as it will be explained later. Lastly, there are

applications in environments where the use of dielectric materials is not suitable due to

the surrounding conditions. As a consequence, the use of periodic metamaterial structures

gained popularity very quickly, and it is nowadays encountered in most research works on

Fabry-Pérot leaky-wave antennas.

Metasurfaces (MTS) provide tailored electromagnetic performance. They have similar

properties with frequency selective surfaces (FSS) that have been widely used to filter the

incident EM waves, creating band-stop or band-pass performances [24]–[29]. Different

approaches to the use of an MTS to design resonant cavity antennas have been presented.

In its simplest implementation, an MTS can be made using metallic patches on a dielectric

[13], [30]–[33] or they can have a grid-like form [34], [35]. In [36], [37] these configura-

tions were studied and categorized in inductive and capacitive MTSs depending on their

impedance characteristics. Based on this analysis, it is possible to design metasurfaces

equivalent to dielectric slabs, as it will be discussed later, which allows for further flexibility

in the design.
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Regarding the bandwidth, the MTS based leaky-wave antennas, show advantageous

properties. Wideband performance was reported in [38] by implementing cascaded MTS

structures, in the same way that multilayered dielectric materials have been used, but

enhanced with tunable characteristics. The same idea can be found as an array of printed

unit cells on both sides of a dielectric [39]–[41]. In [42], [43] the wideband was achieved

by extending the concept of the patch MTS in the combination with its complementary

structure and this idea was used in other unit cells in [44]–[46]. Moreover, in [47]–[50]

more complex wideband structures were designed. Multi-band designs [51], [52] and

dual-band [53]–[55] designs have been also presented. Later in this thesis the design of

dual-band Fabry-Pérot antennas and arrays will be presented.

In general, these leaky-wave antennas have the polarization of the source antenna [56].

Nevertheless, one more property of the metasurfaces, is the manipulation of polarization.

In [57]–[60] a linear to circular polarization conversion MTS was included in the design

of a Fabry-Pérot antenna. The authors of [61] reported that circular polarization was

obtained by a planar array of patch antennas when the metasurface above each element

of the array is rotated by 90o. In [62] a fully metallic polarizing surface was added to the

antenna design. By using a MTS to manipulate the polarization, bulky feeding networks

are avoided; instead, simple linear polarization feed antennas can be used to excite the

MTS that modifies the polarization.

This type of antennas provides a simple solution for directivity and therefore gain

enhancement. Their low profile has gained them an increased popularity. In addition,

when metasurfaces are used, the design gains degrees of freedom and flexibility, unlike

the dielectric slab designs. From frequency band performance, to the manipulation of

polarization, MTS based leaky-wave antennas provide tailored electromagnetic behavior

following a simple principle [3], [5]. In the following chapters a novel design methodology

for resonant cavity antennas using metasurfaces will be presented and validated through

simulated and experimental results.
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1.2 Radiation in PRS based leaky-wave antennas

The general case of a PRS leaky-wave antenna is shown in Fig. 1.1. A dielectric slab

of ϵr2 and thickness h2 is located above the ground plane at a height h1, forming a cavity.

This cavity is excited by a source that can be modelled either as an electric dipole placed in

the middle of the cavity, or as a magnetic dipole (e.g. a slot) on the ground plane level. The

cavity can be filled with a dielectric material of ϵr1. Initially general formulas including

ϵr1 ≠ 1 will be presented, nevertheless later in this thesis, this region will be considered

air-filled.

Inside the resonant cavity, the waves that emerge from the source, propagate with

multiple reflections between the two limits of the cavity; however some of the incident

EM waves get through the PRS and are leaking to free space, hence an antenna is created.

Consequently, the shape of the produced radiation patterns depend mainly on the properties

of the chosen PRS and to a less significant level, on the radiation source. As it will be

discussed later, the pattern geometry of the PRS determines the beamwidth [63]. On the

other hand, the type and location of the antenna that excites the cavity influences the levels

of produced radiation.

In [23] the PRS leaky-wave antenna was modelled in parallel plate propagation terms.

Let’s consider Fig. 1.1 but with two parallel fully metallic plates. As it is well known,

inside this waveguide T Ei and T Mi modes can propagate, and the vertical wavenumber of

each mode is kpp
z = nπ/h1. In addition, both modes have the same radial wavenumber with

real value:

kpp
ρ =

√︃
k2

1 − (
π

h1
)2 (1.1)

Now we suppose that the top plate is replaced by a surface that allows partial leakage

of the energy outside the cavity; such as a dielectric slab. Fig. 1.1 illustrates the radially

propagating leaky-modes in the parallel plate structure. In this case, TEi and TMi still

propagate between the upper and lower plates. However, part of their energy is transferred

to radiation and they are now called leaky-modes. Consequently, the vertical wavenumber

along the propagation direction is complex : kρ = β − jα. In other words, the complex
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nature of the wavenumber expresses the amplitude decrease of the leaky-modes due to

radiation [30]. Each mode has different wavenumbers: kT E,T M
ρ = βT E,T M − jαT E,T M. For the

phase constants βT E,T M we can assume that they are approximately equal to kpp
ρ , thus they

are correlated with the radiation angle θ0 as : kpp
ρ = k0sinθ0, and by using this expression

as well as Eq. 1.1 we find the height of the cavity h1 as a function of the radiation angle θ0

[23]:

h1 =
π

k0

√︂
n2

1 − sin2θ0

(1.2)

where n1 is the refractive index of the dielectric in region 1, and the numerator can be

written as nπ if we wish to include higher order modes, which would lead to higher h1.

From the radiation angle:

θ0 = sin−1(
β

k0
) (1.3)

it is apparent that there can be radiation either at broadside (θ0 = 0) or as a conical scanning

beam (θ0 > 0). If in the above Eq. 1.2 we substitute θ0 = 0 for broadside direction, then

we find that the height of the cavity should be h1 = λ0/(2n1), where λ0/(2n1) = λd1 is the

wavelength in the dielectric of region 1. Therefore the height is directly connected with the

radiation angle θ0 and depending on its value, a pencil beam on broadside or a scanning

conical beam can be produced.

In [23] a design restriction regarding the height is reported in order to ensure a single

lobe in the case of conical beam. The height should be:

h1 <
λ0
√
ϵr1µr1

(1.4)

in order to avoid the n = 2 parallel plate modes propagating. In addition, in a case of a

periodic metasurface used to replace the dielectric PRS, in order to have only the (0,0)

Floquet mode, the period of the unit cells should be per < λ0/2, otherwise higher Floquet

modes would result in undesired lobes in the radiation pattern. This will be taken under

consideration when designing the proposed MTS later in this thesis.
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Regarding the thickness of the dielectric that forms the PRS, according to the resonant

condition [7] it should be: h2 = λ0/(4
√
ϵr2).

Furthermore, another consideration that must take place is regarding the illumination of

the radiating aperture, which is determined by the attenuation constant α. In [64] it is stated

that when the attenuation is low, the effective radiating aperture is large, and the radiation

pattern has narrow beamwidth. Both the attenuation and the phase constants, depend on

the chosen geometry of the MTS. A condition for maximum radiation at broadside was

reported in [32]: when α = β then maximum power density is radiated at θ0 = 0, that is the

broadside direction.

1.3 The dispersion equation

In a PRS-based leaky-wave antenna, it is critical to study the characterization of the

dominant leaky-wave modes. In this direction, the leaky-wave poles should be determined

in the spectral representation of Green’s function. In [5], the authors presented approximate

expressions for these poles, around a central frequency or in the case of high permittivity

of the dielectric slab. A more wideband localization of the leaky-poles was presented in

[22], including high or low permittivities.

Fig. 1.1. The resonant cavity between a partially reflective surface (PRS) and a ground plane, of

height h1 (left). The same configuration can be represented as a transmission line (right).

In this section a multilayered configuration is considered and Fig. 1.1 shows the

transmission line equivalent of this leaky-wave antenna made by a dielectric PRS of

permittivity ϵr2. Initially we will suppose that the resonant cavity has a dielectric constant
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ϵr1 to create generalized expressions, but afterwards this region will be considered air-

filled (ϵr1 = 1). Each region of the antenna is represented by the TE/TM characteristic

impedance Zi (i = 0, 1, 2), and has a vertical propagation constant kzi = k0

√︂
n2

i − sin2θ0

[5], [63] with ni being the refractive index of each region. The expression for the vertical

propagation constant can be transformed into kzi =
√︂
ϵrik2

0 − k2
ρ [22], [36], by substituting

the refractive index and also kpp
ρ = k0sinθ0 [23] for the parallel plate waveguide analysis

that was presented before.

Now we can calculate the input admittance by taking as a reference a point on the

ground plane level [22]:

Yin(kp) =
Z1 + jZLtan(kz1h1)

Z1(ZL + jZ1tan(kz1h1))
(1.5)

where TE/TM impedance ZL is at the interface of regions 1,2 and as it is well known from

the transmission line theory it can be calculated as:

ZL = Z2
Z0 + jZ2tan(kz2h2)
Z2 + jZ0tan(kz2h2)

(1.6)

Regarding the height hi of each region, as explained previously, for a broadside beam

and considering an air-filled region, it should be h1 = λ0/2 [23], while the thickness of

the dielectric PRS is h2 = λ0/(4
√
ϵr2), satisfying the resonant condition [5], with λ0 the

wavelength at the central frequency of the design.

By solving the denominator of Eq. 1.5 in order to find its poles, with the obvious

solution Z1 = 0, we can define the dispersion equation [22]:

DT E,T M(kp) = Zl + jZ1tan(kz1h1) = 0 (1.7)

where Zi is the TE/TM characteristic impedance with ZT E
i = η0k0/kzi and ZT M

i = η0kzi/k0

corresponding to the TE and TM modes respectively in the case of region 1 being air-filled.

In order to solve the dispersion equation, the authors of [22] used an approximation

of the function tan(x) around its zeros in the region x = ±nπ resulting to: tan(x)|x±nπ|≈0 =

x± nπ. In addition, in the multilayered configuration that we are considering (Fig. 1.1), the
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leaky-waves propagate along x > 0 and also z > 0, thus resembling a plane wave parallel

to the z-axis. More specifically, in region 1, two waves with opposite directions emerge

from the source and propagate with multiple reflections in between the limits of this region

(between the ground plane and the PRS). Thus, in the above approximation, for the term

n = 1 we can write:

tan(kz1h1) ≈ kz1h1 − π (1.8)

By replacing Eq. 1.8 in Eq. 1.7, the following approximate solution of the dispersion

equation is derived:

kz1 = j
ZL

Z1h1
+
π

h1
(1.9)

Therefore, it is apparent that the propagation inside the resonant cavity, is directly affected

by the load impedance ZL which is located at the top of the cavity. In addition, when

ZL = 0, Eq. 1.9 corresponds to the modes propagating in a parallel plate waveguide [31]

with kz1 = nπ/h1, that has a height h1. Finally, for the load impedance in the case of a

single dielectric slab, and for radiation at broadside (θ0 = 0), we can assume:

ZL =
η0

ϵr2
(1.10)

with the thickness of the dielectric slab being h2 = λ0/(4
√
ϵr2). The above represents a

case where the PRS consists of only one layer. Nevertheless, this analysis can be extended

in a multiple cascaded PRSs configuration, with the load impedance being in the form of

Eq. 1.6 instead of Eq. 1.10.

1.4 Equivalence between PRS and metasurfaces

In the previous section, the leaky-wave antenna made with a partially reflective surface

was discussed and its radiation mechanism was analyzed. So far in the analysis, a dielectric

of a single or multiple layers, has been used to partially leak the energy to free space,

creating a resonant cavity whose characteristics have been presented.
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Although the dielectric PRS is a simple and useful way to enhance the directivity of

low profile radiation sources such as printed patch antennas, it does not allow a tailored

performance. In addition, in some applications, it can be difficult to find commercial

materials that fulfill high permittivity requirements. Lastly, there are environments where

the use of dielectric materials is not preferable (e.g. to avoid dielectric break down).

However, it is possible to design a textured surface or metasurface (MTS) that has

an equivalent performance to the dielectric slab. In [36] it was demonstrated that there

are similarities in Green’s functions of the two configurations shown in Fig. 1.2. More

specifically, it was shown that a dielectric PRS above a slot edged on the ground plane, can

be equivalent in propagation terms, to an MTS with inductive or capacitive characteristics

[36], [37]. Said equivalence, can be shown by imposing the same solutions (Eq. 1.9) for

the dispersion equation (Eq. 1.7).

Fig. 1.2. Equivalent transmission line circuits for the two leaky-wave antennas that are being

compared. On the top, the antenna is made using a dielectric slab as a PRS, and on the

bottom, a metasurface is used to form the resonant cavity.

Let us consider the case of a dielectric PRS (Fig. 1.2(top)), with permittivity ϵr2 and

thickness h2 = λ0/(4
√
ϵr2). Assuming normal incidence, the load impedance is ZL = η0/ϵr2.

In addition, for an air-filled region 1, the impedance is considered Z1 = η0 and the height
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of the cavity is h1 = λ0/2. Under these conditions, the propagation constant along the z

direction (Eq. 1.9), of the dominant leaky-wave TE/TM modes becomes:

kz1,diel = j
1
ϵr2h1

+
π

h1
(1.11)

In the case of the metasurface (Fig. 1.2(bottom)), the load impedance around broadside

is ZL,MTS = Zshunt//Z0, meaning that it can be calculated as a shunt impedance parallel to

free space. In [65] it was reported that the electromagnetic properties of an MTS with

small periodicity, can be considered as an imaginary shunt impedance i.e. Zshunt = jX.

Consequently the load impedance is:

ZL,MTS =
jη0X
η0 + jX

(1.12)

If we replace Eq. 1.12 in Eq. 1.9 we derive the following formula for the vertical

propagation constant:

kz1,MTS =
π(η2

0 + X2) − Xη0

hMTS (η2
0 + X2)

− j
X2

hMTS (η2
0 + X2)

(1.13)

Towards the equivalence of the PRS and the MTS case, we equalize the real and

imaginary parts of (1.11) and Eq. 1.13. If we solve towards X in Eq. 1.13 in order to

define ZMTS and we suppose that hMTS = h1, we can derive the following expressions for

the impedance and the height of the equivalent MTS configuration [36], [37]:

ZMTS
ind,cap = jη0

⎛⎜⎜⎜⎜⎜⎝−1 ±
√︁

1 + 4π2(ϵr − 1)
2π(ϵr − 1)

⎞⎟⎟⎟⎟⎟⎠ (1.14)

hMTS
ind,cap =

λ0

2
ϵr|Zind,cap|

2

η2
0 + |Zind,cap|

2
(1.15)

With these two formulas, it is possible to define an inductive ("+" sign), or capacitive

("-" sign) metasurface that will be placed on a certain height creating a resonant cavity

where the propagation has same characteristics as in the case of the dielectric of ϵr PRS.

The solutions of the T E1 and T M1 modes for the dielectric, the equivalent inductive and
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capacitive surfaces, are presented in Fig. 1.3 for two examples of permittivity ϵr1 = 6

and ϵr2 = 10. It can be seen that the three equivalent surfaces have practically identical

solutions of the dispersion equation.

One should note that the equivalent impedance ZMTS
ind,cap is frequency independent and is

controlled only by the permittivity, and only the height of the MTS hMTS
ind,cap changes with

frequency. In the following chapters it will be demonstrated how from the system of Eq.

1.14 & Eq. 1.15 it is possible to define a single MTS fulfilling two equivalences of ϵr1 and

ϵr2 at two different frequencies.

Fig. 1.3. Solutions of the dispersion equation for a dielectric slab of permittivity ϵr = 6, 10 and the

equivalent inductive and capacitive MTS.
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Chapter 2

Design of dual-band single layer

leaky-wave antenna

2.1 Introduction

Fabry-Pérot leaky-wave antennas have been gaining popularity over the years [12],

[13], [15], [31], [34] since their first appearance [3]. By using a partially reflective surface

(PRS) on top of a non directive source, they achieve narrow beams, thus being a good

solution for directivity enhancement of a simple radiating element such as a slot on a

ground plane fed by a waveguide [4], [5].

In the literature, many studies of leaky-wave antennas have been presented, and their

operating principles have been studied in detail [22], [23], [32], [36], [63]. Although the

use of the dielectric slab as a PRS is the simplest solution for directivity enhancement, it

introduces limits on the performance in terms of bandwidth, since its height over the radia-

tion source depends on the operating frequency. To overcome the single-band performance,

many works have been presented using multiple cascaded dielectric slabs [9]–[11], [66].

Each slab forms a resonant cavity of different height, thus creating multiple resonances and

wideband performance. Inhomogeneous implementations of the multilayered wideband

dielectric PRS have been also presented [67].

An additional limitation in the use of dielectric slabs as a PRS, is found in the commer-
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cially available thicknesses and permittivities which can be difficult to obtain. This has

turned the interest of researchers to other solutions such as metasurfaces (MTS) that par-

tially reflect the waves, and provide the required design flexibility. Following the concept

of the cascaded dielectrics, wideband performance has been achieved with multilayered

metasurfaces [38], [42], [44]. Dual-band performance has been also reported by following

the same methodology of multiple layers [53], [54], [68]–[73], with some of the existing

examples implementing complex geometries [49].

In this chapter, the design of a dual-band leaky-wave antenna is presented. The dual-

band is obtained with a single layer metasurface. Other works have also used a single

layer MTS [74]–[76], however they had printed elements on both sides of the MTS, on

contrary to the presented MTS that has metallizations only on one side. Furthermore, the

MTS is composed of an array of simple unit cells (interleaved slots and squares) while

in other designs of metasurfaces, the dual band has been obtained with unit cells of high

complexity for the design of filters [46], [50], [77]. A diode loaded MTS was presented

in [78], where by changing the state of the diodes different reflection phase was obtained

and so the resonance of the antenna can be tuned. Other examples using active (varactor

diodes) and lumped elements (capacitive loads) were presented respectively in [79], [80].

In [81] the lower resonance of the dual-band was achieved with a single layered MTS,

however for the higher frequency resonance, a ground plane made of an artificial magnetic

conductor was required.

In this work we present a design methodology that has two important assets; it provides

flexibility in the design process and it can be scaled to meet the requirements of the

operation band of a potential application, maintaining the low profile of a Fabry-Pérot

leaky-wave antenna. While in the majority of the examples in literature the multiple band

performance was obtained through the reflection coefficient’s phase analysis [53], [70],

[74] or the characteristic modes’ analysis [82], the basis of the proposed methodology is

the analysis of the leaky modes with the transverse resonance method.
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2.2 Single layer metasurface design methodology

In Chapter 1 the radiation mechanism of a leaky-wave antenna based on a resonant

cavity h1, was analyzed. More specifically, the propagation inside the cavity was discussed

initially for the case of a dielectric PRS and afterwards the existence of an equivalent

metasurface was demonstrated, following the works in [36], [37]. The equivalence between

a dielectric slab of certain permittivity ϵr and a metasurface, was derived from the dispersion

equation (Eq. 1.7) imposing the same solutions for the dielectric kz1,diel and the metasurface

kz1,MTS for the TE1/TM1 modes, as seen in Fig. 1.3. In both cases, a source located at the

bottom of the cavity (ground plane level), excites leaky-modes that are bouncing between

the upper and lower limits of the cavity (multiple reflections) and part of their energy is

transformed into radiation in free space. For an air-filled cavity (ϵr1 = 1), an expression for

the impedance of the MTS (that can be either inductive or capacitive) ZMTS
ind,cap was derived in

case of an equivalence with a dielectric ϵr (Eq. 1.14) as in [36]. While for the dielectric slab

the height of the cavity is h1 = λ0/2 at a central frequency f0, the approximated analytical

solution of Eq. 1.7 results to the required cavity height hMTS
ind,cap where the equivalent MTS

should be placed. It is worth noting that only the height (Eq. 1.15) depends on frequency,

while the equivalent impedance (Eq. 1.14) is only a function of the permittivity.

From Eq. 1.15 it can be predicted that the inductive solution will give the same

TE1/TM1 leaky-mode at a frequency f1 lower than f0 for a fixed cavity height. In the

same way, there will be a frequency f2 higher than f0, where in a fixed cavity height the

capacitive solution will result to the same TE1/TM1 leaky-modes. In other words, the

cavity is reacting as inductive at f1 < f0 and as capacitive at f2 > f0. Consequently, if

a metasurface is designed with impedance that ranges between inductive and capacitive

passing through a central frequency f0, then a single layer dual-band leaky-wave antenna

can be created.

If Eq. 1.14 and Eq. 1.15 are solved as a system towards a common solution, for

a certain cavity height h0, the two frequencies that define the dual-band f1, f2 can be

calculated as well as the impedance values required for each band. For instance, for a fixed

cavity h0 = 5.79 mm, the solutions for f1 corresponding to the inductive case, and f2 that is

the capacitive case, are represented in Fig. 2.1, as a function of the dielectric permittivities
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of the equivalent surface. With this methodology, it is possible to achieve permittivity

equivalence of high values, that in commercially available materials could not be found.

Higher permittivity will result in higher directivity.

This design methodology provides flexibility and it can be scaled by choosing a different

height h0. From Fig. 2.1 it is apparent that while ϵr increases, the distance between f2 and

f1 decreases. This relative bandwidth can be seen in Fig. 2.2. Evidently, a compromise

must take place between the separation of the two bands and the permittivity equivalence

(and thus the directivity).

Fig. 2.1. Permittivity equivalence for the inductive (red) and the capacitive (blue) cases as a

function of the frequency, for h0 = 5.79 mm.

Fig. 2.2. Ratio of the two frequencies as a function of the permittivity.

Two implementations of the proposed methodology will be presented. In the first

case of study, both frequency bands will correspond to the same equivalence of dielectric
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permittivity. In the second case, a single metasurface will be designed, which will be

equivalent to two different ϵr1 and ϵr2 for f1 and f2 respectively. In particular, at f2 a

higher permittivity ϵr2 > ϵr1 will be chosen, thus increasing the directivity and the aperture

efficiency at the higher frequency band.

2.2.1 First case of study: Metasurface equivalent to the same permit-

tivity at f1 and f2

The first implementation of the presented theory, corresponds to a common permittivity

equivalence at both bands. After solving the system of Eq. 1.14 and Eq. 1.15, from the

results of Fig. 2.1 we have chosen f1 = 23 GHz, f2 = 29 GHz, for a common permittivity

ϵr = 6 and assuming h0 = 5.79 mm. This solution will provide medium directivity levels

at the Ka band with sufficient separation between the two bands. This solution is also

depicted in Fig. 2.3, where the red line is the inductive equivalent at f1, and the blue line

is the capacitive equivalent at f2. The two curves meet at ϵr = 6, indicating that for these

frequencies and permittivity a single cavity height is possible.

Fig. 2.3. For a common ϵr = 6 equivalence, and a single cavity height, the resulting frequencies of

the dual-band are f1 = 23 GHz (inductive) and f2 = 29 GHz (capacitive).

The next step in the designing process is the calculation of the impedance of the MTS.

The unit cell that will be used to form the MTS, should have an impedance that varies with

frequency. To this end and to maintain the low profile of the antenna, the unit cell that is

seen in Fig. 2.4 has been chosen. From Eq. 1.14 and by substituting ϵr = 6, the calculated
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required impedance is: ZMTS
ind = 157 j Ω for the inductive and ZMTS

cap = −181 j Ω for the

capacitive behavior. By changing the values of the parameters that control the geometry

of the unit cell, it is possible to obtain the theoretically calculated values of impedance.

Indeed, Fig. 2.5 shows that for b1 = 0.51 mm, b2 = 2.77 mm, b3 = 0.15 mm, per = 3.99

mm, the impedance reaches the calculated values for each one of the two frequencies. The

assumed material of the unit cell is a perfect conductor (PEC). As mentioned in Chapter 1,

the period of the unit cell should be less than half wavelength at both frequencies, in order

to avoid undesired grating lobes.

Fig. 2.4. The proposed MTS consists of a unit cell of square rings interleaved with slots (left). The

unit cell and its excitation in the simulation environment can be seen on the right.

Fig. 2.5. Obtained impedance for the unit cell dimensions: b1 = 0.51 mm, b2 = 2.77 mm,

b3 = 0.15 mm, per = 3.99 mm. The theoretically calculated values are Zind = 157 j Ω

and Zcap = −181 j Ω.

The synthesis of the unit cell’s impedance, was performed in CST Microwave Studio,

assuming periodic boundary conditions to simulate an infinite array. The unit cell is excited
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by a port that is defined at the limits of z-direction as seen in Fig. 2.4. Since the unit cell is

symmetric one Floquet mode is sufficient to calculate the value of impedance.

2.2.2 Second case of study: Metasurface equivalent to two different

permittivities at f1 and f2

For the second case of study, the two frequencies of the dual-band are maintained

f1 = 23 GHz and f2 = 29 GHz. The aim is to increase the directivity at f2 by introducing a

higher permittivity equivalence and thus improving the aperture efficiency at the higher

frequency.

Fig. 2.6. Cavity height solutions as a function of frequency, for various values of ϵr = 4, 6, 10, 12.

The solid line represents the inductive equivalence and the dashed line is the capacitive

equivalence.

Fig. 2.6 shows solutions for the cavity height, for the inductive hMTS
ind (solid lines) and

the capacitive hMTS
cap case (dashed lines), as a function of frequency. Each coloured line

corresponds to a different permittivity equivalence.

For the higher frequency f2 = 29 GHz, we have chosen ϵr2 = 10, while maintaining

ϵr1 = 6 at f1 = 23 GHz. The resulting common height solution can be seen in Fig. 2.7, and

is approximately 5.75 mm.

Since ϵr1 remains the same, the theoretical value of impedance at this frequency does

not change ZMTS
ind = 157 j Ω. For ϵr2 = 10 at Eq. 1.14, the resulting impedance is

ZMTS
cap = −132 j Ω. The same type of unit cell as in the first case of study (Fig. 2.4) is used.
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Fig. 2.7. At f1 = 23 GHz and f2 = 29 GHz, although the permittivity equivalence is for different

ϵr1, ϵr2, an almost identical height can be found.

Fig. 2.8. For the second design, the obtained impedance of the unit cell with dimensions: b1 =

0.487 mm, b2 = 2.75 mm, b3 = 0.11 mm, per = 3.95 mm. The theoretically calculated

values are Zind = 157 j Ω and Zcap = −132 j Ω.



23

The theoretical values were practically reached in Fig. 2.8 for the following parameters of

the unit cell: b1 = 0.487 mm, b2 = 2.75 mm, b3 = 0.11 mm, per = 3.95 mm.

2.3 Antenna design

In this section the details of the antenna design will be presented, for both cases of

study.

A 3D model of the antenna with the MTS is shown in Fig. 2.9. The radiation source

that excites the resonant cavity, was chosen to be a double iris slot, edged on a metallic

ground plane following the design presented in [37]. As discussed in [83], this feeding

slot avoids the excitation of the TM0 mode. The geometry of the double iris is shown in

Fig. 2.10. The values of the parameters are: α = 127o, rout = 3.75 mm, rin = 0.55 mm. The

slot is fed by a squared waveguide with side 9.4 mm. A transition to a standard rectangular

waveguide WR34 was used and is depicted in Fig. 2.10.

Fig. 2.9. 3D model of the antenna, where the double iris on the ground plane and the MTS can be

seen.

The total size L of the ground plane and the MTS in both designs, is 9λ1 x 9λ1 at f1

and 12λ2 x 12λ2. Since the aperture is bigger at the higher frequency, it is evident that by

using a higher permittivity to achieve higher directivity, the aperture efficiency is improved.

In addition, the size of the ground plane, must be 9λ1 at the lowest frequency so that the

wave reaching the edges will be significantly attenuated to avoid diffraction.

For the design of the unit cell used in each design, the parametric study was done using
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Fig. 2.10. The double iris slot on the ground plane was used to excite the resonant cavity. The

parameters that define the iris slot are shown. Behind the slot, a WR-34 standard

waveguide transition was used and can be seen here.

a perfect conductor (PEC). Since this is an ideal material used only in simulations, in order

to approach a realistic case scenario, the unit cells were re-designed with copper on a very

thin layer of kapton material (with ϵ = 3.6 and thickness 0.025 mm). The new dimensions

for the first design are: b1 = 0.83 mm, b2 = 2.65 mm, b3 = 0.51 mm, per = 4.56 mm.

Respectively for the second design: b1 = 0.73 mm, b2 = 2.6 mm, b3 = 0.4 mm and

per = 4.2 mm.

2.4 Results

2.4.1 Simulated antenna

The simulated results of the complete antenna model, were obtained using CST Mi-

crowave Studio. More specifically, the time domain solver was used for the complete

antenna for both designs, whilst the frequency domain solver was used to synthesize the

impedance of the unit cell.
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First design

Initially, the reflection coefficient of the iris slot was calculated to ensure low return

losses. Fig. 2.11 shows the resulting S 11 of the antenna, reaching acceptable levels around -

10 dB at 23 GHz and 29 GHz. The choice of the separation of the two bands, in combination

with the feeding source, limits the levels obtained of the S 11. However, the iris slot is

required to avoid the TM0. Additionally, let us note that the matching of the iris does not

only depend on its geometry, but also in this case, on the impedance seen from the ground

plane, of the air-filled cavity parallel to the metasurface. Thus the height of the cavity

should be re-adjusted to achieve optimum return loss results. To get an insight of the new

height, one should observe the variation of the impedance of the MTS shown in Fig. 2.5.

From inductive to capacitive, the impedance passes through a point of infinite value at 27.2

GHz approximately, indicating an open circuit behavior. Therefore, the new height will be

close to half wavelength at this frequency. In this case the re-adjusted height is 5.6 mm.

Fig. 2.11. S 11 parameter of the first antenna design.

The normalized simulated radiation patterns at both planes are presented in Fig. 2.12

at f1 = 23 GHz (left) and f2 = 29 GHz (right). The directivity of the two bands is very

close with 15.8 dBi at f1 and 15 dBi at f2. Regarding the realized gain, it is 15.1 dBi and

14.3 dBi at 23 GHz and 29 GHz respectively. The pencil beam is observed at the broadside

direction (θ = 0) at both frequencies, and the patterns are symmetrical at both E and H

planes. The cross polarization is practically zero (-200 dB in CST).

Following the 3-dB gain definition, the frequency range between 22.5-23.8 GHz is the
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Fig. 2.12. Normalized radiation patterns at f1 = 23 GHz (left) and f2 = 29 GHz (right). At both

frequencies the MTS is equivalent to ϵr = 6

lower band, and the higher band covers the frequencies from 27.9 GHz to 29.6 GHz. The

3D radiation patterns are shown in Fig. 2.13 at f1 (left) and f2 (right). The deterioration of

the radiation patterns for different frequencies than f1, f2 can be evidenced in Fig. 2.14.

Fig. 2.13. 3D radiation patterns of the first design case for 23 GHz (left) and 29 GHz (right).

Second design

The simulated return loss of the second antenna is presented in Fig. 2.15, with accept-

able S 11 levels; -10.5 dB at 23 GHz and -8 dB at 29 GHz. As explained before, the higher

the permittivity equivalence, the higher the directivity obtained, however this has an impact

on the reached S 11 levels as the matching of the antenna becomes more difficult. As for
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Fig. 2.14. Examples of radiation patterns of different frequencies compared to f1 and f2.
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the cavity height, following the optimization as explained for the previous MTS design,

the new value is 5.5 mm.

Fig. 2.15. S 11 parameter of the second antenna design.

Pencil beams at broadside were observed at this case as well. Fig. 2.16 shows the

normalized radiation pattern at 23 GHz and 29 GHz. The directivity corresponding to

permittivity ϵr1 = 6 at 23 GHz is 15.3 dBi, and the realized gain 14.3 dBi. At 29 GHz for

ϵr2 = 10 the directivity reaches 17.2 dBi and the realized gain 15.2 dBi. Therefore, the goal

set by designing the second MTS to have higher directivity at f2 is achieved. The lower

band at this case is 22-24.6 GHz considering the 3-dB gain definition, and the frequency

range 28.4-29.3 GHz corresponds to the higher band. The 3D radiation patterns of this

design are shown in Fig. 2.17, where the narrower beam at 29 GHz indicates the higher

directivity levels.

2.4.2 Experimental validation

To validate the proposed methodology, a prototype was manufactured and its experi-

mental results are presented in this section.

The prototype corresponds to the first case of design as presented previously, with an

equivalent permittivity of ϵr = 6 at f1 and f2. The MTS was made of a very thin layer of

copper on top of kapton, and it was placed on top of a foam layer, as seen in Fig. 2.18. A

support was made in 3D printing to fix the MTS at the required height. The iris slot edged

on the ground plane and the standard waveguide feeding are presented in Fig. 2.19.
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(a) (b)

Fig. 2.16. Normalized radiation patterns at (a) f1 = 23 GHz for ϵr1 = 6, and (b) f2 = 29 GHz

ϵr2 = 10.

Fig. 2.17. 3D radiation patterns of the second design case for 23 GHz (left) and 29 GHz (right).
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Fig. 2.18. Prototype of the designed metasurface on top of a foam layer (left), shown in the

laboratory environment (right).

Fig. 2.19. A double iris slot was used as a radiation source (left). A standard waveguide transition

was used to feed the iris slot (right).

Fig. 2.20. Comparison between the simulated and the experimental S 11 for the 1st antenna design.
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Fig. 2.21. Influence of height change hMTS ± 0.3 on the S 11 of the antenna.

(a) (b)

Fig. 2.22. Measured radiation patterns for: (a) 21.5 GHz and (b) 27.5 GHz.
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Fig. 2.20 shows the measured S 11 compared with the simulated result. A shift towards

lower frequencies is apparent. This result of the S 11 of the antenna, is due to a change in

the cavity height, whose exact value is difficult to be implement with standard laboratory

equipment. Small variations in the order of 10−1 mm can alter significantly the load

impedance and thus the resonant frequency. The effect of this change of height on the S 11

of the antenna is shown in Fig. 2.21. In addition, tolerances in fabrication also affect the

matching of the antenna. Therefore, the new frequencies of the dual-band antenna are 21.5

GHz and 27.5 GHz as seen in Fig. 2.20.

The normalized measured radiation patterns are presented in Fig. 2.22 for both fre-

quencies. At 21.5 GHz the measured realized gain is 13.4 dB while at 27.5 GHz it reaches

16.78 dB. The cross-polarization is below -20 dB for both frequencies. The difference

in the realized gain at f1 and f2 is due to manufacturing tolerances and lack of sufficient

characterization of the kapton material for the frequency band of this design, in addition to

the variation of height with respect to the simulated 3D model. Nevertheless, the pencil

beams with maximum at the broadside direction (θ = 0o), as well as the symmetrical E and

H planes at both cases, are aligned with the expected performance of this type of antennas.

2.5 Conclusions

In this chapter a dual-band leaky-wave antenna has been presented. The proposed

antenna, was designed using a novel methodology that allows dual-band performance with

a single layer and single sided metasurface. In addition, it was shown that this methodology

allows separate directivity control at each band.

The key aspect of the design methodology is that there can be an equivalence between

a dielectric slab and an inductive or capacitive metasurface. For these two equivalent

surfaces, there is a cavity height respectively lower and higher than the dielectric slab case.

Therefore, by designing an MTS with impedance varying between inductive and capacitive

behavior, a dual-band performance can be achieved. Equations for the impedance and the

height have been presented for both equivalents. The unit cell can obtain these theoretical

values by properly adjusting the parameters that define its geometry.
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Furthermore, a metasurface designed to allow different permittivity equivalence at the

two bands, has been presented. By choosing a higher permittivity at the higher band, the

directivity is increased and the aperture efficiency is improved. The proposed methodology

for the design of metasurface based leaky-wave antennas, allows flexibility in the design in

terms of choice of the dual-band, and directivity achieved at each band. However, there is

a limit for the separation between the two frequencies, which depends on the permittivity

equivalence, and therefore a trade-off must take place between separation of bands and

maximum directivity achieved.

A fabricated prototype of the case of same equivalent permittivities corresponding to

both bands, has been also presented and the experimental results validated the simulations

of the proposed design.
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Chapter 3

Design of dual-band single layer

leaky-wave antenna array

3.1 Introduction

In Chapter 1.4 the design methodology of single layer metasurfaces was presented.

It was shown how the equivalence between a dielectric slab and an MTS [36], [37], can

exist on a single metasurface for two different frequencies, thus creating a dual-band

performance that can be tailored to the directivity requirements of the application under

study.

In the literature there are many examples of leaky-wave antennas based on Fabry-

Pérot resonant cavities [12], [13] as discussed in the previous Chapter. When it comes

to operation frequencies, many dual-band and multi-band designs have been presented.

Nevertheless, only a few examples can be found of arrays using Fabry-Pérot leaky-wave

antennas. For instance, in [84] the authors designed an array where the basic element

consisted of two waveguide apertures, that produced the dual-band, and above an MTS

was placed, having metallic square patches on both sides.

The presented methodology for the design of dual-band single layer metasurfaces, can

be extended to the case of arrays. In particular, the implementation of such MTS in thinned

arrays, can have very interesting results. As discussed in [85] for the case of a thinned
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array of radiating waveguide apertures, the use of dielectric partially reflective surfaces of

a certain permittivity ϵr can reduce significantly the grating lobes. This technique made use

of multiple dielectric layers, that were designed to have Chebyshev filters characteristics,

reducing the grating lobes up to -20 dB. The same method was proposed in [86] to control

the grating lobes. In [87] the multiple layer dielectrics configuration was used to suppress

the grating lobes of a patch antenna array with inter-element spacing of 2.8λ0. Similarly,

in [88] an array with large periodicity was presented, and more recently in [89], a thinned

array of iris slots fed by waveguides, again using a dielectric slab as a PRS to control the

grating lobes.

Although this concept has been explored, none of the above implementations presented

a dual-band resonance. In the current Chapter, the design of a thinned array will be

presented, with significant attenuation of the multiple maxima occurring in undesired

directions, by the use of a dual-band metasurface with more sophisticated design than the

previously reported works. To demonstrate the potential of the MTS-based Fabry-Pérot

array, a 3x3 sub-array has been studied, in order to evaluate the embedded radiation pattern

as well as the mutual coupling between the elements. The advantages of thinned arrays

such as reduced cost and reduced complexity compared to large arrays, are combined

with the simple solution for directivity enhancement that the MTS offers. In addition, this

particular metasurface has the advantage of consisting of a single layer and also due to its

design methodology, it allows directivity control which will be translated in control over

the obtained attenuation of the grating lobes.

3.2 Planar thinned array

The proposed array consists of a 3x3 planar configuration of leaky-wave antennas, in

this way we model a sub-array. The leaky-wave modes propagate in a resonant cavity of a

certain height h, that is formed between the ground plane level and the metasurface placed

above the array. In the following sections, the design of the metasurface will be presented,

and also its usefulness in the suppression of grating lobes in thinned arrays. In addition, the

stacked patch antenna that is used to excite the leaky-wave modes will be also presented.
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3.2.1 Suppression of grating lobes

Thinned arrays make use of large periodicities. In this type of arrays, the distance

between two contiguous elements is larger than a wavelength in the design frequency,

d > λ. Thus, grating lobes appear in the radiation pattern. These unintended lobes, present

equally strong radiation levels as the main lobe. The existence of grating lobes, is the main

drawback of thinned arrays, as there is radiation in undesired directions which leads to

important losses.

The formation of the grating lobes at an angle θ from the broadside direction (θ = 0),

can be predicted from the known equation derived from the array factor [90]:

2π = k0dsinθgl (3.1)

where k0 is the free space wavenumber and d is the inter-element distance expressed in λ.

In Fig. 3.1, examples of two inter-element distances and the corresponding grating lobes,

are presented for a planar patch antenna array. As expected from Eq. 3.1, the larger the

inter-element distance, the closer the grating lobes will be to broadside direction. Indeed

in Fig. 3.1, for d = 4λ, the grating lobes are located at θgl = 14.5o, while for d = 3λ the

grating lobe is at θgl = 19.5o.

Fig. 3.1. Example of grating lobes in a planar 3x3 array, for two inter-element spacings.

Considering the above, we get an insight of the performance of the thinned dual-band

array. If we suppose that the two frequencies of the dual-band are f1 and f2, with f1 < f2,

then the electrical distance between the elements will be bigger for the higher frequency,
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with d1 < d2.1 As a result, the grating lobes will be closer to broadside at f2.

A method for grating lobe suppression, is by placing a metasurface above the planar

array [89], creating a leaky-wave antenna array. The metasurface, as discussed before,

increases the directivity of the individual elements of the array, leading to significant

attenuation of the grating lobes [88]. Previously, it was mentioned that θgl is closer to

broadside for higher frequencies. In that case, to achieve severe attenuation of the grating

lobes, higher directivity levels are required. This leads to the need of directivity control in

the case of a dual-band array, aiming to achieve good grating lobes suppression levels at

both bands of operation.

3.2.2 Single layer dual-band metasurface

As mentioned in the previous section, a good method for the suppression of the

undesired grating lobes in a thinned planar array, is by achieving directivity enhancement

with the use of a metasurface superstrate.

In Chapter 1.4 it was shown that there is an equivalence between a simple dielectric

slab of a certain permittivity ϵr, and a metasurface [36], [37]. The equivalence is in

terms of the propagation constant kz which was derived from the dispersion equation (Eq.

1.7). Furthermore, it was shown that the impedance of the metasurface [37], [91] can be

inductive and/or capacitive (Eq.1.14), leading to two height solutions of Eq. 1.15, which

defines the resonant cavity. Afterwards it was demonstrated that a single cavity height

can be defined, that has inductive characteristics for one frequency f1 and capacitive for

another frequency f2, thus producing a dual-band performance.

The above, can be extended in the case of a dual-band array. In fact, a metasurface

can be designed to exhibit an equivalence with two different dielectric permittivities at the

two frequencies of the dual-band [91], as seen in Chapter 1.4. By implementing a solution

that provides higher directivity at higher frequency, the grating lobe that will be closer to

broadside, can be severely attenuated.

The first step for the design of the metasurface, is to define a single cavity for both

1di is the distance referring to the corresponding wavelength
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Fig. 3.2. Cavity height for the inductive (solid line) and the capacitive (dashed line) case for

different values of ϵr = 4, 6, 10, 12.

cases of equivalence of the different permittivities. In Fig. 3.2, different height solutions

are presented, for several values of permittivity (ϵr = 4, 6, 10, 12), for the inductive

(solid line) and the capacitive (dashed line) case equivalence and for a selected frequency

range. Defining a single cavity height for the inductive and capacitive case that each one

corresponds to a different ϵr, means that a single metasurface can be designed. Fig. 3.3

shows a cavity solution for the two bands at 18 GHz and 22 GHz, with permittivities 6 and

10 respectively, and a common height 7.4 mm. By introducing these values of permittivity

in Eq. 1.14, the impedance that the unit cell should achieve, can be calculated. Let us note

here that the impedance is not a function of frequency, and depends only on the permittivity

equivalence that was chosen.

Although the latter is a good solution, we have chosen to implement an array design in

the X band. Fig. 3.4, shows that at f1 = 10.5 GHz and f2 = 13 GHz a common cavity can

be defined having a height of 12.7 mm. The equivalent slab has a dielectric constant of

ϵr1 = 6 and ϵr2 = 10 at f1 and f2 respectively. The choice of a higher permittivity for f2

means that the metasurface will be more reflective, thus obtaining higher directivity which

is critical for the attenuation of the grating lobes that are higher at f2

From Eq. 1.14 the impedance was calculated to be Zind = 157 j Ω and Zcap = −132 j Ω.

The unit cell that forms the metasurface is shown in Fig. 3.5, and is of the same shape as in

Chapter 1.4. In order to obtain the required impedance, the parameters of the geometry of

the unit cell should be adjusted. Indeed, the theoretical impedance values were achieved
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Fig. 3.3. A possible solution for a single cavity height is at the frequencies 18 GHz and 22 GHz,

with permittivities 6 and 10 respectively. The cavity in this case has a height of 7.4 mm.

at the two frequencies as seen in Fig. 3.6, for the dimensions denoted in Table 3.1. One

should note that between the inductive and capacitive regions, the impedance becomes

infinite approximately at fcentral = 12.15 GHz. This means that there is no radiation at this

frequency, indicating the two bands of operation of the design. Moreover, the height of the

cavity can be re-adjusted using the new value λcentral/2. Although the impedance has the

same value in this case, and in the design implementation presented in Chapter 1.4 due to

the same permittivity used, the dimensions of the unit cell are different since the frequency

band has changed. The restriction of the periodicity of the unit cells that was discussed

in Chapter 1.4 applies in this case as well; the period should be smaller than λ0/2 at the

lowest frequency, to avoid higher order Floquet modes that will lead to grating lobes in the

radiation pattern of the single element [23].

b1 b2 b3 per

1.47 mm 6.3 mm 0.37 mm 9.8 mm

Table 3.1. DIMENSIONS OF THE UNIT CELL

3.2.3 Stacked patch antenna design

As seen in Fig. 3.7, the basic element of the array consists of a radiation source that

excites the leaky-modes, and a metasurface placed at a certain height, forming like this a
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Fig. 3.4. A single cavity of 12.7 mm height is calculated at 10.5 GHz and 13 GHz, for the respective

dielectric constants ϵr1 = 6 and ϵr2 = 10.

Fig. 3.5. Unit cell of the single layer dual-band metasurface, with its respective geometry parame-

ters (left), and in the simulation environment (right with Zmax indicating the excitation

port).
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Fig. 3.6. Obtained impedance for the dimensions of the unit cell in Table 3.1. From inductive at

10.5 GHz, the impedance becomes capacitive at 13 GHz, passing through infinity, thus

creating the dual-band.

resonant cavity. A stacked patch antenna was chosen in this case to excite the resonant

cavity (see Fig. 3.7(right)). This antenna consists of two metallic patches each one lying

on top of a dielectric substrate.

Each square patch antenna, should have the adequate dimensions to excite one of the

two frequency bands. For this design, the bottom patch antenna, with dimensions 8.8 x 8.8

mm is responsible for the resonance at 10.5 GHz, whilst the top square patch resonates

at 13 GHz with a size of 7.3 x 7.3 mm, thus creating the dual-band performance. Both

antennas are fed by using a single coaxial probe. The dielectric used for each layer is

Rogers RT/Duroid 5880 with ϵr = 2.2 and tanδ = 0.0009, having a thickness of 0.5mm.

Underneath the two antennas lies a metallic ground plane.

3.3 Results

3.3.1 Simulated antenna array

To simulate the proposed 3x3 array, CST Microwave studio was used. In particular

for the whole array simulation, the time domain was used, while for the unit cell of the

metasurface, we used the frequency domain solver. Additionally, the unit cell´s dimensions
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Fig. 3.7. The basic element of the array consists of a stacked patch antenna (right) and a metasurface

with interleaved squares (left). The inset shows the side view of the stacked patch.

(Table 3.1) were slightly modified when the material was changed from PEC to copper and

a layer of Rogers 5880 (ϵr = 2.2) of thickness 0.25 mm was used instead of kapton as in

the design of Chapter 2, to simulate the fabrication materials. The new dimensions are :

b1 = 1.97 mm, b2 = 5.8 mm, b3 = 1.16 mm and per = 9.97 mm. The obtained impedance

is Zind = 157.7 j Ω and Zcap = −132.7 j Ω.

The total length of the metasurface and the ground plane, is 31 cm. This size corre-

sponds to approximately 11λ0 at the lowest frequency 10.5 GHz, which is sufficient for the

propagating waves to get attenuated before reaching the edges of the antenna.

The separation of elements affects the design of the array in two aspects. On one hand,

the distance between the elements affects the location of the grating lobes. Therefore the

metasurface should be designed in such way to attenuate sufficiently the grating lobes at

both frequencies of the dual-band. On the other hand, the spacing of the elements affects

directly the mutual coupling. This is a critical point for the resulting radiation patterns

of the array [92]. To avoid the deformation of the radiation patterns, the mutual coupling

should be below -25 dB according to [89], [93]. In these antennas, the coupling is mostly

due to the leaky-waves propagating in the resonant cavity, apart from the coupling due to

the surface waves on the dielectric layer where the array lies.

The chosen spacing between the elements of the array is 1.9λ1 at 10.5 GHz and 2.4λ2

at 13 GHz. To obtain the presented results, only the central element was excited, and

the surrounding elements were considered to be connected to a matched load. The S-
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Fig. 3.8. S-parameters of the array. The elements are numbered as indicated on the right. The

S 41 and S 71 correspond to the neighbouring elements on the E-plane, while S 21 and S 31

correspond to the H-plane.

parameters can be seen in Fig. 3.8. The S 11 of the central element, reveals good matching

levels with -10 dB at 10.5 GHz and -19 dB at 13 GHz. The mutual coupling is maintained

below -25 dB at both frequencies.

(a) (b)

Fig. 3.9. Directivity at (a) f1 = 10.5 GHz and (b) f2 = 13 GHz, the solid and dashed lines represent

the E and H planes respectively.

The corresponding embedded radiation patterns of the lower frequency, are presented

in Fig. 3.9(a). At 10.5 GHz, the directivity reaches 14.6 dBi. A small ripple can be noted

in the E-plane of the radiation pattern, indicating either that there is some influence from
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(a) (b)

Fig. 3.10. Comparison of the radiation patterns for two different inter-element distances.

Fig. 3.11. S-parameters of the array for a smaller inter-element distance equal to 1.2λ1 and 1.5λ2.

The configuration of the array is as shown in Fig. 3.8.
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the surrounding array elements, or that the height of the metasurface should be slightly

modified. Let us note here that the height of the cavity h was changed after the introduction

of the real materials in the MTS (copper and Rogers 5880) in order to achieve the best

result in the radiation patterns. Since this parameter also affects the resonance of the

stacked patch antennas, the height should be optimized. For the presented case, the final

value of the height is 11.5 mm.

Regarding the grating lobes at f1 = 10.5 GHz where the inter-element distance is 1.9λ1,

the radiation pattern without the metasurface, exhibits grating lobes at θgl1 = 32o. At this

angle θgl1 we see in the embedded radiation pattern with the MTS, that the directivity is

only 2 dBi, which indicates a decrease of 12.6 dBi.

At 13 GHz, 16.8 dBi of directivity is observed in Fig. 3.9(b). The approximately 2 dB

of increase in the directivity of f2 is a result of the equivalence of the metasurface, with a

higher permittivity (ϵr2 = 10) with respect to f1 (ϵr1 = 6). As for the grating lobes, from

Eq. 3.1 they are calculated to be at θ = 25.7o (for inter-element distance 2.4λ2), which is

closer to the broadside direction than at f1 as already discussed. In this case the attenuation

is 10.6 dB as observed in Fig. 3.9(b).

To observe the effect of the mutual coupling on the radiation patterns, in Fig. 3.10

we present the results of inter-element distances 1.2λ1 and 1.5λ2 at f1 = 10.5 GHz and

f2 = 13 GHz respectively. Evidently, the directivity decreases, and the radiation patterns

are deformed. This gives us an intuition of the stronger coupling than in Fig. 3.8. Indeed,

Fig. 3.11 the mutual coupling is around 20 dB at f1 and f2, indicating a significant increase

compared to the coupling in Fig. 3.8.

3.3.2 Experimental validation

The manufactured prototype that was used to validate the presented array, is shown

in Fig. 3.12. As mentioned previously, the MTS was fabricated using a very thin layer of

copper on top of a dielectric, that in this case was Rogers 5880 of thickness 0.25 mm. The

stacked patches were fabricated in two layers that afterwards were glued together. The

experimental results are currently taking place.
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Fig. 3.12. The fabricated prototype: the MTS is seen on the left, while the top layer of the array is

on the right.

3.4 Conclusions

The design of a dual-band planar thinned array with grating lobe suppression has been

presented. The basic element of the 3x3 array, consists of a stacked patch and a metasurface

that is located at a certain height h to create a resonant cavity.

The dual-band metasurface was designed following the methodology presented in

Chapter 1.4. Since the MTS has the ability to enhance the directivity of a simple radiation

source, in this case when it is combined with a thinned planar array, it attenuates the grating

lobes that would occur due to large inter-element spacing. Furthermore, since the array

has two bands of operation, the distance between the stacked patches is different at f1 < f2,

with d1 < d2. Therefore, the grating lobes will be closer to the broadside direction (θ = 0).

This means that at f2 higher directivity is required than at f1.

In this direction, the metasurface was designed so that it exhibits an equivalence with

different dielectric permittivities at the two frequencies of operation, which means that

different directivities are obtained at each frequency. At f1 = 10.5 GHz and f2 = 13 GHz,

the designed MTS is equivalent to a dielectric slab of ϵr1 = 6 and ϵr2 = 10 respectively.

The simulated embedded pattern of the array showed that indeed the directivity at f2 is

enhanced by 2 dB reaching 16.8 dBi, whilst at f1 14.6 dBi are obtained. The attenuation of

the grating lobes is 12.6 dB at f1 and 10.6 dB at f2.

In conclusion, with the presented method for the design of a metasurface, a planar

array using large inter-element spacing can be created, with good grating lobe suppression



48

levels at both operating frequencies of the design.
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Chapter 4

Design of leaky-wave antenna as

overlapped feed for a reflector

4.1 Introduction

In this chapter, a Fabry-Pérot array is presented, following the concept of leaky-wave

antennas made with a metasurface as it was discussed in the previous Chapters 1-3. The

array was developed as a part of the Airbus/ESA project for the Overlapped Feed for a

Reflector-"OLAF". The difference with the designs presented in the previous chapters, is

the significantly lower targeting frequencies, from 1.215 GHz to 1.3 GHz.

The designed array was proposed as a candidate feed-array of a large reflector, part of

an instrument of a L-band SAR system for Earth observation [94]–[96].

The array has to have 34x3 elements and should meet the following strict requirements:

return loss below -20 dB, mutual coupling less than -30 dB, low cross-polarization (below

-30 dB), taper at 27o between -10 and -12 dB, isolation between H/V ports at -30 dB,

insertion losses less than 1 dB, with a limitation of the inter-element distance having a

maximum of 1.25λ0 at 1.25 GHz. This value of inter-element distance was chosen so

that the overlapping between contiguous beams would not be less than a critical level

defined by the application. However, as it will be demonstrated later, this limitation affects

significantly the performance of the leaky-wave array, and despite the advantage of the
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simple low-profile directivity enhancement, the otherwise narrow pencil beam array does

not have the expected performance. In the following sections, the different approaches to

the implementation of the leaky-wave array that were evaluated will be presented, as well

as the results of the fabricated prototype.

4.2 Metasurface design

For the implementation of the leaky-wave array, two metasurfaces were evaluated.

Aiming to increase the directivity of a non directive source antenna, the first MTS that was

studied is a simple metallic grid, that was designed to behave as its equivalent dielectric

slab [36], [37]. The second MTS was studied to increase the bandwidth, and consists

of a double sided dielectric, with complementary geometrical patterns on each side [42].

The choice of MTS plays a significant role for the directivity reached, depending on the

geometry of the metallic printed pattern, and therefore affects the taper at 27o, for this

specific application. In addition, the reflectivity of the MTS which is desirable to obtain

narrow beamforming, affects negatively the performance of the array as it increases the

coupling between the elements. Therefore and since the inter-element spacing has strict

limitations, the design of each MTS must be evaluated and a trade-off between directivity

and mutual coupling must take place. Furthermore, as it will be explained in the next

stage of design, the impedance matching of the antenna is also affected by the MTS, which

should be also taken into consideration.

4.2.1 Single layer inductive grid

As explained in Chapter 1.4, in a leaky-wave antenna the performance of a dielectric

slab can find an equivalent in a metallic grid in terms of propagation inside the resonant

cavity, following the studies presented in [36], [37]. Since the grid MTS shows an inductive

character, the system of Eq. 1.14 & Eq. 1.15 leads to the inductive impedance Z and the

height of the MTS hgrid for a given ϵr. The choice of the equivalent permittivity is subjective,

and follows the directivity requirements of the application. For the presented design, and

following the specifications for the taper (-10 dB to -12 dB at 27o), the permittivity should
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be such to produce directivity levels around 16 dBi. Therefore, we have chosen ϵr = 5.

This value results to a height hMTS = 105.5 mm. The impedance was calculated to be

Z = 174 j Ω, and the width of the grid can be found from the formula [37]:

w =
2per
π
+ e−

2πZ0
η0k0 per (4.1)

where η0 = 120π and k0 are the impedance and propagation constant in free space re-

spectively. The periodicity of the MTS should be less than half wavelength at the central

frequency f0 = 1.25 GHz to avoid grating lobes. For per = λ0/5 and the aforementioned

value of impedance, the width of the grid is w = 3 mm. Before the incorporation of the

grid in the design of the leaky-wave element, the frequency solver of CST Microwave

studio was used, to validate the calculated impedance for a unit cell with per = λ0/5 and

w = 3 mm, shown in Fig. 4.1. In the same figure, the reflectivity of the grid MTS is also

presented as the S 11 parameter of the unit cell. For these results, the thickness of the grid,

was considered infinitesimally small. For an increased thickness, it was observed that the

directivity is increasing. In the following sections, the grid in the full antenna simulations

will be considered without thickness and placed on a FR4 layer of 0.5 mm.

Fig. 4.1. Impedance of the simulated unit cell (inset) of the grid MTS (left). The S 11 showing the

reflectivity of the grid (right).
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4.2.2 Complementary MTS

The second MTS that was designed, consists of a dielectric slab with metallic elements

on both sides. More specifically, the 2D periodic printed arrays on the two sides are

complementary with each other, following in particular the design presented in [42]. The

top layer consists of an array of metallic patches, while the bottom array is made of square

loops.

The performance of the MTS depends on the parameters of the complementary patterns.

On the top layer, the gaps between the patches grant the surface a capacitance that is

controlled by the size of the gap or in other words, the size of the metallic patches. On the

bottom side of the MTS, the 2D array of square loops can be also considered as a grid, and

shows an inductance that is controlled by the width of the grid.

Fig. 4.2. Magnitude of S 11 (left) and the corresponding phase (right) of the complementary unit

cell compared to the grid unit cell.

In general, in the case of a dielectric PRS, the main disadvantage is the narrow band

performance. In [42] it was reported that the complementary MTS can achieve a wideband

performance when the reflection phase is increasing with frequency, thus having a positive

phase gradient [20].

The unit cell can be seen in the inset of Fig. 4.2 along with its S 11. The dielectric

layer between the complementary patterns is made of FR4 with thickness 2 mm. For

the following parameters: a = 40 mm, b = 27.5 mm, per = 52 mm, this unit cell

achieves higher reflectivity than the grid unit cell. These parameters where chosen after
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an optimization process, taking into consideration the positive gradient of the reflection

phase (reported in Fig. 4.2) as well as the reflectivity of the unit cell. As in the case of

a simple dielectric slab, the theoretical value for the cavity height is hcomp = λ/2 at the

central operating frequency.

4.3 Leaky-wave array

As mentioned before, the feed array will consist of 34x3 elements. However, for the

initial stage of studies and performance evaluation, a 3x3 planar array has been designed

and will be presented in the following sections. This corresponds to a subarray and studying

the embedded radiation pattern will be representative of a larger array. Nevertheless, a 5x5

array was also evaluated; however the 3x3 array results were considered sufficient for this

stage of the initial studies of the embedded radiation patterns.

In the following sections, the array will be evaluated with the two designs of MTS that

were described in the previously. In addition, two dual-polarization radiation sources have

been used to excite the resonant cavity between the ground plane and the MTS, the first

being a differential patch antenna, and the second a magneto-electric dipole.

4.3.1 3x3 planar array

The basic element of the 3x3 array, consists of a leaky-wave antenna made of a

differentially fed patch antenna [97]–[99] inside a resonant cavity that is defined by a

metallic ground plane and a metasurface. This type of feeding antenna was chosen due

to the low cross polarization levels required, that cannot be obtained with a conventional

patch.

An illustration of the differential patch antenna is presented in Fig. 4.3. The radiating

patch is fed by coupling from 4 patches placed underneath it. The coupling patches are

directly fed with a phase difference of 180o in pairs by an external microwave circuit. The

radiating patch is placed on a post located centrally, that is not connected to any feeding.

Initially, a single patch antenna was combined with the grid and the complementary
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MTS in order to obtain the resulting radiation patterns and good impedance matching

levels. At this stage, the differential feeding was done by introducing a phase difference in

the ports used in the simulated model with post-processing in CST Microwave Studio. For

the values presented in Table 4.1 the S 11d of the antenna with the grid MTS is shown in

Fig. 4.4. The differential S 11d is challenging to minimize, because it should be S 11 = S 31.

Fig. 4.5 shows the S 11 and S 31 parameters, and the result of their combination with the

same amplitude but 180o phase difference. The minimum happens when they have the

same value. In this section, the combined return loss will be discussed; however the

coupling presented here is not the combined one, which would be expected to be lower.

Later in the final results, the microwave circuit that provides the phase difference will be

simulated with the array and we will calculate the coupling among differential ports.

Fig. 4.3. Schematic representation of the differentially fed patch antenna. The side view shows the

feeding patches beneath the top radiating patch.

Another parameter of the design that affects significantly the matching of the antenna,

is the cavity height. In this case, for the grid MTS, the height was calculated to be

hgrid = 105.5 mm using the analytical formula of Eq. 1.15. Since the cavity height directly

affects the beamforming of the antenna, after optimization it was changed to hgrid = 102

mm. The change of height is due to the fact that hgrid was calculated for an ideal source

like a slot on a ground plane, and the patch used is quite different to that.

However, this has an impact on the impedance perceived from the source antenna, and

therefore limitations in the matching levels are introduced. The effect of the height on

the combined S 11 of the patch antenna can be observed in Fig. 4.4. Let us note here, that
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despite the further optimization of the parameters of the antenna regarding the new height

hgrid, the impedance matching levels were not improved. Nevertheless, it was observed that

when the complementary MTS was used instead, better return loss levels were obtained.

The optimized height in this case is hcomp = 117 mm.

p1 p2 p3 h1 h2 d x

87 54 15.5 13 19.5 17 12.16

Parameters of the patch antenna in mm.

Table 4.1. INDIVIDUAL ELEMENT

Fig. 4.4. S 11 of the patch antenna with the grid MTS for two cavity heights, compared with the

S 11 obtained with the complementary MTS.

Fig. 4.5. S-parameters of the patch antenna before and after the post processing combination of

ports 1,3 with phase difference 180o.
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For an MTS with total size of 7λ at f0 the directivity of the individual element in the

case of the grid is 15 dBi at f1 = 1.21 GHz, 16 dBi at f0 = 1.25 GHz and 16 dBi at f2 = 1.3

GHz. The 3D radiation patterns can be seen in Fig. 4.6. For these values of directivity,

the taper requirements are fulfilled with : -10 dB at f1, -11 dB at f0 and -11 dB f2. For

the same size of aperture, the complementary MTS enhances the directivity of the patch

antenna reaching: 18 dBi at f1, 16 dBi at f0, 16.15 dBi at f2, and it also fulfills the taper

requirements. The corresponding 3D radiation patterns are shown in Fig. 4.7. This was

expected according to the reflectivity seen in Fig. 4.2.

Fig. 4.6. 3D radiation patterns of the individual element with the grid MTS.

Fig. 4.7. 3D radiation patterns of the individual element with the complementary MTS.

For the evaluation of the planar array, the starting distance between the elements was

1λ at f0. The total aperture of the MTS and the ground plane is 9λ. For the complementary

MTS, and maintaining the height hcomp and the same parameters of the patch antenna, the
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Fig. 4.8. S 11 and coupling with the neighboring element for the same polarization.

S-parameters are shown in Fig. 4.8 (not combined). Due to the proximity of the elements,

the coupling is high.2 According to [93], the mutual coupling should be lower than -25

dB in order to avoid the deformation of the radiation patterns. Indeed the effect of strong

mutual coupling is observed in the embedded radiation patterns of the central element

shown in Fig. 4.9. Compared to the pencil beam obtained for the individual antenna seen

in the same figure, the performance of the array is significantly degraded.

In order to reduce the mutual coupling, the elements were further separated reaching

the maximum inter-element distance allowed by this specific application, that is 1.25λ0.

The coupling between the central element and its closest neighbor, was reduced (Fig. 4.8)

which is evidenced in the improvement of the radiation patterns in Fig. 4.9. Although

the separation of elements cannot be larger, we have performed simulations to find the

minimum distance between the elements where the coupling would not affect the radiation

of the array. In particular, it was observed that with 1.5λ0 between the patch antennas,

the coupling (Fig. 4.8) does not affect the radiation (i.e. the embedded pattern is almost

identical to the individual pattern in Fig. 4.9). For all the above cases, the simulated cross

polarization is practically zero.

An additional disadvantage of the array with the complementary MTS, is the level

of dielectric losses that is higher than the specifications of the application (1 dB), due

to the thickness of the dielectric layer (2mm-FR4) between the top and bottom metallic

2The final coupling between differential ports must be evaluated by calculating these parameters.



58

(a) (b)

(c)

Fig. 4.9. Radiation pattern of the embedded element (in a 3x3 array) with the complementary MTS

for three different inter-element distances, compared to the individual element at: (a) 1.21

GHz, (b) 1.25 GHz, (c) 1.3 GHz.
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patterns. The grid MTS does not require a thick dielectric layer, hence it exhibits lower

dielectric losses, consisting a preferable solution for the realization of the leaky-wave array

prototype. The results of the design with the grid MTS will be thoroughly presented in the

following sections.

4.3.2 Magneto-electric dipole antenna

Aiming to fulfill the requirement of impedance matching below -20 dB, with low

mutual coupling at the same time, one more antenna design was studied and evaluated

as an individual element as well as in a planar array configuration. Said antenna is the

MTS fed by a magneto-electric (ME) dipole that belongs to the category of complementary

antennas.

This type of antennas was introduced in 1954 by Clavin [100]. The initial design

consisted of an electric dipole and a coaxial line left with an open end, with the TE11

mode propagating, which performed like a magnetic dipole. It demonstrated that when

two complementary sources are excited simultaneously with equal amplitude and proper

phase, then unidirectional radiation patterns can be obtained, with identical E-H planes and

reduced back radiation. In Fig. 4.10 the combination of an electric and a magnetic source

is illustrated. Following this concept, other works based on the monopole/dipole and slot

combination were presented in [101], [102]. A few years later, in 1974 [103], Clavin

presented an improved version of the same idea; the complementary antenna consisted of

a slot on a ground plane and two inverted L-shaped parasitic wires on its sides. The slot

was used to perform like a magnetic dipole, whereas the L-wires had the role of a electric

dipoles.

Based on the same concept, the magneto-electric dipole antenna was presented in [104].

The authors reported wideband performance, low cross-polarization and low back radiation,

as well as symmetrical E-H planes radiation patterns. The antenna consisted of a λ0/2

electrical planar dipole, and a λ0/4 shorted patch vertically oriented and performing as a

magnetic dipole. This design has attracted the interest of researchers with many designs

found in literature [105]–[108]. Furthermore, these antennas have been reported to have
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Fig. 4.10. Radiation in the two planes of a magneto-electric dipole.

reduced mutual coupling when placed in an array [103].

Fig. 4.11. The magneto-electric dipole antenna. The inset shows the feeding lines.

The chosen topology of the ME dipole is shown in Fig. 4.11 and follows the dual-

polarized design presented in [109]. The upper part of the antenna consists of two square-

shaped electric dipoles of side approximately P = 0.25λ0. The vertical walls are the

magnetic dipoles of height h = 0.25λ0. The separation between the vertical walls should

be s = 0.05λ0 [109]. Two Γ-shaped probes are used to feed the antenna. They are made of

a folded metallic strip line of width w, that consists of three parts, as seen in the inset of

Fig. 4.11. With "a" is denoted the upper horizontal part of the probe, that is responsible

to couple the energy to the shorted patch and planar dipole. The connection to the SMA-

coaxial feed is denoted with "b". The third part "c" is an open ended transmission line and

enters the ME dipole vertical wall. This part presents a capacitive reactance, and is used to
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compensate the horizontal "a" part that is inductive [104]. The feeding lines have different

height to increase the isolation between the two ports [109].

The performance of the ME dipole when used to feed the leaky-wave antenna, was

evaluated as an individual element as well as in a 3x3 array, for the two MTS cases: with

the inductive grid, and the complementary MTS. When using the ME dipole as a feed

antenna, there is no need for a differential feeding like in the case of the patch antenna that

was presented. Therefore, the absence of the differential microwave circuit simplifies the

design.

Initially, the dipole was combined with the grid MTS to form a leaky-wave antenna.

After a parametric procedure, satisfying return loss levels were obtained. As seen in

Fig. 4.12 the result for both ports is below -15 dB at the central frequency 1.25 GHz, for

the following parameters: P = 51.2 mm, h = 51.2 mm, s = 8 mm, a = 24 mm, b1 = 62.2

mm, b2 = 50.2 mm, c1 = 22.4 mm, c2 = 42.2 mm and w = 1.9 mm, when the resonant

cavity has a height of 103.5 mm. The corresponding 3D radiation patterns are presented in

Fig. 4.13. The symmetrical shape of the beam in both planes is evident. The directivity

reaches 15.1 dBi at f1 = 1.21 GHz, 16.3 dBi at f0 = 1.25 GHz, and 15.3 dBi at f2 = 1.3

GHz. Since the performance of the ME dipole is symmetrical for both ports, only the

results of port 1 are represented in Fig. 4.13.

Fig. 4.12. Impedance matching of the ME dipole in a leaky-wave antenna made of: an inductive

grid MTS (blue lines), a complementary MTS (red lines).

If the grid is replaced by the complementary MTS, the radiation characteristics of the

antenna should be the same. In Fig. 4.12 good impedance matching is obtained for both
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ports, showing that this radiation source has potential when it comes to low return loss.

Since the impedance of the two MTSs is different, the parameters of the ME dipole should

be re-adjusted to center its response. For the presented results, the parameters that change

with respect to the ones reported for the grid case, are the following: P = 53.2 mm and

c2 = 49.2 mm. The 3D radiation patterns can be seen in Fig. 4.15. The directivity is 18

dBi at f1 = 1.21 GHz, 16.1 dBi at f0 = 1.25 GHz and 16.6 dBi at f2 = 1.3 GHz. Both

ports have symmetrical radiation patterns as expected (Fig. 4.14).

Fig. 4.13. 3D radiation patterns at three frequencies for the ME dipole with the inductive grid

MTS.

(a) (b)

Fig. 4.14. At the central frequency, the individual element has symmetrical radiation patterns at

both planes and for both ports, here presented in the case of (a) the complementary MTS,

and (b) the grid MTS.
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After studying the performance of the leaky-wave individual element with the ME

dipole as a radiation source and for the two cases of the MTS, the next step is the incorpo-

ration of the design in a 3x3 planar array to calculate the embedded radiation pattern.

Fig. 4.15. 3D radiation patterns at three frequencies for the ME dipole with the complementary

MTS.

Let us consider the complementary MTS and a 3x3 ME dipole array, with inter-element

distance 1λ0 at f0 = 1.25 GHz. For the aforementioned parameters of the ME dipole,

the S 11, S 22 of the central element are presented in Fig. 4.16(a). In the same figure, the

mutual coupling with the near neighboring elements of the same polarization can be seen.

Since the inter-element distance is small, the coupling is high enough to deteriorate the

performance of the array, reaching a maximum of -18 dB, when according to [93] it should

be less than -25 dB. As a consequence, an undesired ripple is apparent in the embedded

radiation patterns in Fig. 4.17, indicating the strong mutual coupling.

Consequently, the next step was to further increase the inter-element distance, reaching

the limit set by the requirements of the application 1.25λ0. The S-parameters are presented

in Fig. 4.16(b). The mutual coupling in this case has decreased and reaches a maximum

of -20 dB. The corresponding radiation patterns can be seen in Fig. 4.17. Due to the

reduced coupling, the ripple at broadside has decreased. Nevertheless, even a small defect

in the radiation pattern in the feed array can lead to significant deterioration of the reflector

performance. Therefore, this array of leaky-wave elements composed of a planar array

of ME dipoles and the complementary MTS, does not qualify as a candidate for the

application under study.
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(a) (b)

Fig. 4.16. S-parameters of the central element of the 3x3 array and examples of the coupling with

its near neighbors for distance: (a) 1λ0 and (b) 1.25λ0. The configuration of the array is

also presented.
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Fig. 4.17. Embedded radiation patterns of the 3x3 ME dipole-based leaky-wave array made with

the complementary MTS, for three different inter-element spacings and at the central

frequency 1.25 GHz.
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However, as a proof of concept, the results of the array with inter-element spacing

1.5λ0 are also reported for comparison. For this spacing, the mutual coupling is below the

required -25 dB and thus the radiation patterns are not affected as shown in Fig. 4.17.

While both MTSs have been used to implement the array, we present only a brief

comparison with the grid MTS, for a spacing of 1.25λ0 in Fig. 4.18. Given the proximity

of the elements, the results of mutual coupling and radiation patterns are similar with the

ones of the complementary MTS.

Fig. 4.18. Comparison of the embedded pattern at 1.25 GHz, for the grid MTS and the comple-

mentary MTS fed by the ME dipole.

In conclusion, the ME dipole shows promising results for the achievement of good

impedance matching, even at the order of -20 dB. In addition, although the ME dipole

antenna has a more complicated design than the patch antenna shown before, it achieves

low cross polarization levels without requiring a differential feeding network. However due

to the limitations of the inter-element spacing enforcing a maximum of 1.25λ0, the strong

mutual coupling affects significantly the radiation patterns of the array, independently of

the MTS used to create the leaky-waves. Therefore, this solution is unsuitable for the

specific application it would be designed for.
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4.4 Results

4.4.1 Simulations of the fabricated prototype

In this section, the final results of the simulated array are presented. All the simulations

were executed with CST Microwave Studio.

The design that was chosen to be implemented is composed of a 3x3 array of differential

patch antennas, and the inductive grid MTS. The spacing between the elements is d =

1.25λ0, and after simulations the final ground plane size was chosen to be L = 9λ0.

However, due to the low frequency of operation ( f0 = 1.25 GHz), a ground plane of 9λ0

would result to a very large prototype (almost 2m x 2m), and was not considered feasible

for the stage of experimental validation. Therefore, the prototype was scaled to the double

central frequency fsc = 2.5 GHz, and therefore the new band is 2.4 GHz to 2.6 GHz. The

MTS was scaled uniformly without a change of performance, resulting to a total physical

aperture of approximately 1m2.

Initially, a single differential patch antenna was simulated with the grid MTS on top.

While to feed the antenna with a phase difference of 180o between its two ports initially a

post processing was used for the simulated results, instead in this stage a microwave circuit

was simulated with the array. For the parameters shown in Table 4.2, the S-parameters of

the antenna are presented in Fig. 4.19. The return loss is at sufficiently low levels for both

ports although it doesn’t reach the -20 dB required, and the coupling between the feeding

patches of the antenna (isolation level), is practically zero.

p1 p2 p3 h1 h2 d x

48.5 11.5 46 6.5 10.25 9 12

Parameters of the patch antenna in mm for the scaled array.

Table 4.2. INDIVIDUAL ELEMENT

The starting height of the scaled MTS is 52.75 mm, being the height calculated from

Eq. 1.2 as explained before. Since the height affects the impedance it also affects the

response of the antenna’s return loss. On the other hand, the change of height has an
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Fig. 4.19. S-parameters of the individual antenna.

impact on the radiation patterns of the antenna. Thus, the optimization of the height should

take place considering the effect on the radiation pattern. Once the height is fixed, then

the parameters of the source antenna are re-adjusted to achieve impedance matching. The

resulting height of the inductive grid MTS is hsc = 51 mm.

Fig. 4.20 shows the radiation patterns of the individual element, at the three frequencies

of interest. Pencil beams are observed, almost symmetrical for the two planes as expected

for this type of leaky-wave antennas. The maximum directivity is 15.8 dBi at fsc = 2.5 GHz

and the realized gain at the same frequency is 14.6 dB. The values of both the directivity

and gain at the three frequencies are presented in Table 4.3.

Port 1 Port 2

Frequency (GHz) 2.4 2.5 2.6 2.4 2.5 2.6

Directivity (dBi) 15 15.8 14 15 15.8 14

Realized Gain (dBi) 12.5 14.6 12.7 12.4 14.4 12.7

Directivity and realized gain of the two ports of the individual element with the inductive

grid MTS.

Table 4.3. INDIVIDUAL ELEMENT

Afterwards, the array was simulated, using the same MTS and placed at the same height

above the ground plane, as in the case of the individual element. For the central element,

the S-parameters are presented in Fig. 4.21. We have chosen to excite only the central
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Fig. 4.20. Radiation patterns of a single patch antenna with the inductive grid MTS at the three

frequencies of interest.
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element of the array, while the others are considered connected to matched loads. The

coupling between the neighboring elements and the central one, is presented in Fig. 4.22.

This coupling corresponds to the excitation with the differential circuits in the simulation

of the array. For both ports, the coupling is maintained below -20 dB. However this is

not sufficient to ensure good radiation patterns. Indeed, in Fig. 4.23 the effect of coupling

on the embedded radiation patterns is apparent. For instance, the beam formed at 2.5

GHz, where the coupling is close to -20 dB, presents a ripple that can lead to significantly

reduced performance when combined with a reflector.

Fig. 4.21. S-parameters of the central element of the 3x3 array.

The directivity reached at 2.5 GHz is 11.8 dBi for the broadside direction (θ = 0o),

while the maximum is 13 dBi, indicating a ripple of 1.2 dB. At the same frequency, the

realized gain is 10.5 dBi. Detailed values of directivity and realized gain at each frequency

are presented in Table 4.4. In the same Table, the taper at 27o is also denoted. Since the

directivity does not reach 16 dBi, the array does not meet the -12 dB taper requirements

of the application. The 3D radiation patterns can be seen in Fig. 4.24. Let us comment

here that with a higher permittivity equivalence for the MTS, higher directivity would be

achieved in the individual element. Nevertheless, in the array this would result to higher

coupling between the elements, and would therefore deteriorate more the performance of

the array. Consequently, the permittivity equivalence was maintained as ϵr = 5.

However, if the application would allow for larger separation between the array ele-

ments such as 1.5λ0, the coupling would be lower thus leading to improved performance.
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Fig. 4.22. Coupling between the central element and its neighbors for both excitation ports. The

configuration of the elements in the array is also shown.
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For this case, the results of the directivity at the central frequency are presented in Fig. 4.25.

Fig. 4.23. Embedded radiation patterns of the array at the three frequencies of interest.

Fig. 4.24. 3D radiation pattern of the array at 2.4 GHz, 2.5 GHz and 2.6 GHz.
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(a) (b)

Fig. 4.25. Radiation patterns for inter-element distance 1.5λ0 for (a) the E plane and (b) the H

plane.

4.4.2 Experimental validation

In order to validate the simulated performance of the array, a prototype was manufac-

tured and the experimental results are presented in the current section.

Due to its large size, the MTS was fabricated in two pieces, that were then soldered

together. The metallic grid was printed on top of an FR4 layer of thickness 0.765 mm. The

effect of the thickness of the FR4 on the embedded radiation patterns and the matching of

the central antenna was studied before choosing this value, since it affects the impedance

of the MTS. A smaller thickness would be preferable, however since the MTS is very large,

the chosen value was considered sufficient to create a robust prototype. The same material

was used to fabricate the patch antennas, in this case, with thickness 0.4 mm for both the

upper patch and the feeding patches.

Fig. 4.26 shows the back side of the prototype, where the feeding circuits are connected,

having a spacing between them of 2.67 cm that is enough to connect the cables of the

network analyzer. Each circuit was measured separately to ensure that their performance

validates the simulations. The differential patch antenna is presented in the same figure.

The top patch that is responsible for the radiation is removed and the four feeding patches

are revealed printed on FR4. In addition, the positions of the other elements can be also

seen.
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Fig. 4.26. On the left: the back side of the ground plane of the array, where the microwave circuits

are located. On the right: the central element is shown with the top patch removed

(shown at its side) for the feeding patches to be revealed. The locations where the other

elements of the array will be placed, are also visible, with the central metallic ring.

Fig. 4.27. The 1m2 fabricated prototype in the Airbus anechoic chamber. The absorbers placed

around the prototype can also be seen (right).
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The array was measured in the anechoic chamber of Airbus (Fig. 4.27). An additional

metallic piece was fabricated to mount the prototype on the positioner in the anechoic

chamber. The 1x1 m2 MTS was held above the ground plane at the calculated height,

with 36 posts made with 3D printing that can be seen in Fig. 4.27(left). Furthermore, an

absorber was placed around the antenna. After simulations, it was evident that improved

results were obtained with an absorbing material around the antenna (conditions "open" in

CST), compared to the case without an absorber (conditions "add space" in CST).

The measured S-parameters of the central element are shown in Fig. 4.28. The return

loss is maintained below -10 dB from 2.4 GHz to 2.6 GHz, with the lowest being around the

central frequency. However, the requirement of -20 dB for the whole frequency band, is not

fulfilled. The measurements are in good agreement with the simulated results presented in

the previous section. Moreover, the isolation between the two ports is very high (S 21<-35

dB).

Fig. 4.28. Measured S-parameters of the central element.

Regarding the coupling, the results for the near neighboring elements are presented in

Fig. 4.29. As expected from the simulations, the coupling is not lower than 25 dB, thus the

radiation patterns will be affected. The coupling with the farther elements is very low, as

well as the coupling between the closest neighbors of different polarizations (Fig. 4.30),

satisfying the requirement of -30 dB isolation.

In Fig. 4.31 the measured radiation patterns are compared with the simulated results.

The simulated individual element is also plotted for comparison. In the same figures the

cross-polarization is shown and compared with the simulations. The requirement for cross-



76

Fig. 4.29. Measured coupling of the near elements to the central antenna.

Fig. 4.30. Example of coupling between the central element and its far neighbors (S 13,1), and

coupling between the two polarizations.
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polarization below -30 dB is fulfilled. However, the ripple in the radiation patterns follows

the simulations. The resulting radiation patterns of both feeding ports are symmetrical,

thereby only the results for one port are presented here. Table 4.4 shows in detail the

maximum directivity and realized gain for both feeding ports.

Port 1 Port 2

Frequency (GHz) 2.4 2.5 2.6 2.4 2.5 2.6

Simulated results

Directivity (dBi) 13.1 13 12.8 13 13 13

Realized Gain (dBi) 11 11.6 11 10.8 11.6 11.2

Taper-E (dB) -5.5 -6 -9.2 -8.2 -7.9 -6.7

Taper-H (dB) -8.5 -7.7 -6.2 -5.4 -6.4 -7.7

Experimental results

Directivity (dBi) 13.6 13.4 13.9

Realized Gain (dBi) 11.1 11.5 11.9

Taper-E (dB) -6 -6.6 -10 -6.3 -6.8 -6.2

Taper-H (dB) -8.1 -8.6 -6.5 -9.3 -9 -7.3

Table 4.4. ARRAY SIMULATED AND MEASURED RESULTS

4.5 Conclusions

In this chapter, the concept of Fabry-Pérot leaky wave antennas made by metasurfaces,

has been used to implement a planar array. The array was developed as a candidate for the

feed array of a large reflector used for a SAR system for Earth observation in the L-band.

Following the strict specifications of the application such as low return loss, low cross

polarization with limitation in the spacing between the elements, several approaches to the

design of the feed array have been presented. For the excitation of the leaky-waves in the

resonant cavity, two antennas were proposed: a differentially fed patch antenna [97]–[99],

and a magneto-electric dipole antenna [109], both being dual-polarization antennas. The
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Fig. 4.31. Radiation patterns of the presented array: simulations and measurements of co-pol. and

cross-pol., compared with the simulated individual element.
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first consists on four patches that are directly fed by a microwave circuit that provides

180o phase difference to the couplers by pairs. Then the energy is coupled to the patch

that radiates inside the resonant cavity. For the second antenna, its upper part consists

of two square-shaped electric dipoles, while the vertical walls act like magnetic dipoles.

This antenna does not need a feed circuit and has a high isolation between ports and low

cross-polarization. Both antennas were designed to cover the band 1.215 GHz to 1.3 GHz.

The two excitation antennas were then combined with two types of metasurfaces. The

first MTS was a metallic grid printed on top of a very thin FR4 layer. This MTS was

designed following the equivalence with a dielectric slab [36], [37] as in previous chapters,

that in this case was chosen to have permittivity ϵr = 5. This value was chosen according

to the required directivity that would result to the specified taper level at 27o. Therefore,

the dimensions and periodicity of the grid were designed to fulfill said equivalence. The

second MTS, consisted of a complementary pattern printed on both sides of an FR4 layer.

The design of the complementary MTS was done by studying the reflection coefficient

of the unit cell to control the directivity achieved, and at the same time by taking under

consideration the positive phase gradient required to avoid single frequency resonance [42].

This second MTS provides more bandwidth.

Both MTS were simulated and evaluated with the two excitation antennas as individual

elements, and then in a 3x3 planar array configuration to study the embedded radiation

patterns. The maximum inter-element distance allowed by the application is 1.25λ. This

limitation leads to deformed radiation patterns due to strong coupling between the ele-

ments. Additionally, the MTS should be reflective enough to achieve directivity around 16

dBi, in order to fulfill the taper specification (-10 to -12 dB) of the application. However,

the more reflective the MTS is, the stronger the coupling becomes and the radiation patterns

are more affected. To reduce the coupling we should reduce the reflectivity of the MTS,

but then the requirement for the taper would not be fulfilled.

The fabricated prototype consisting on the grid MTS and the differentially fed patch

antenna, validated the performance observed in the simulated array model. The inter-

element spacing is not enough to achieve the pencil beam radiation patterns otherwise

obtained in this type of antennas. The S 11 was measured to be low, however it did not
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reach the value of -20 dB as specified. Nonetheless, the cross polarization was maintained

in the required levels. The grid MTS was chosen to be fabricated due to the low losses it

exhibits, since the complementary MTS not only presented higher losses, but it did not

fulfill the specifications of the application either.
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Part II

Design of groove gap waveguide

innovative antennas
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Chapter 5

Gap waveguide technology

Gap waveguide technology was initially developed based on the principles of soft

& hard surfaces [110]. These surfaces have the ability to manipulate the propagation

of electromagnetic waves. For instance, in the case of corrugated horn antennas [111],

[112], the transversely located corrugations represent a soft surface (i.e. soft horn antenna)

[113], depending on their height. When longitudinal corrugations are created and filled

with a dielectric material, a hard electromagnetic surface can be made [114]. On one

hand, soft surfaces have the ability to prohibit the propagation of waves independently

of their polarization [110]. On the other hand, a hard surface has the ability to enhance

the propagation of waves [115], again without dependence on the polarization of the EM

waves. The research on these electromagnetic materials, eventually resulted to the gap

waveguide technology [116].

The basic concept behind the gap waveguide, is the manipulation of the propagation

in the desired directions by generating a stop band for parallel plate modes. The aim is

to create boundary conditions by using periodic textured structures in order to guide the

propagation in the desired directions.

Let us consider two parallel fully metallic plates (perfect conductors-PEC). Between

the two plates, there will be always modes propagating, despite the distance between

them, due to the fact that Maxwell’s equation always have a solution for these boundary

conditions. Now if one of the two plates is replaced by a perfect magnetic conductor
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(PMC), and the distance is no greater than λ/4 on the operating frequency [117], no

electromagnetic wave can propagate between the two plates [118]. However, if a region of

PEC is introduced interrupting the PMC plate (see Fig. 5.1) maintaining the restriction

for the height, the electromagnetic waves will propagate along the PEC area, and will be

strictly confined there. In addition, as the propagation is mainly in the air, low losses are

ensured.

Fig. 5.1. The fundamental concept of gap waveguide technology. No modes can propagate between

a PEC and a PMC for d < λ/4 (left). When the we introduce a PEC zone in the PMC,

propagation is supported (right).

Perfect magnetic conductors do not exist in nature. However, high impedance periodic

textured surfaces can be used to replicate the equivalent boundary conditions [65], [119].

In the literature, the most common implementation of a high impedance PMC surface,

is with a bed of nails [120] made of periodic metallic pins that in a way resemble 2D

corrugations, or in other words the cross section of a corrugated surface. The pins can be

circular or rectangular without an effect on the stopband that they create, as demonstrated

in [121]. Other configurations use mushroom-like patches [65], pin-vias structures [122],

springs [123], printed zigzag wires [124], conical pins [125], [126], while most recently,

holes on both plates have been demonstrated to be as well a possible candidate for a

high impedance surface [127]–[129]. All these alternatives to the bed of nails, create the

required parallel-plate stopband that confines the propagating waves in a certain region of

the structure.

To guide the electromagnetic waves in the desired direction in the aforementioned

configuration (Fig. 5.1), different structures can be used, defining the different versions

of gap waveguide. Initially, the ridge gap waveguide [116], [130], [131] was designed, as

a result of the research on hard electromagnetic surfaces. Other implementations of gap

waveguide are the groove (with a vertical and horizontal polarization version) [132], [133],



85

the microstrip-ridge [134]–[136] and the inverted microstrip [137]. By using these guiding

structures, surrounded with a high impedance surface, the necessary boundary conditions

are created in order to have propagation only along the guiding structure, without leakage

to other directions. Consequently, with this configuration, a waveguide with virtual lateral

walls can be created.

It should be mentioned that studies have been conducted to extend the bed of nails

using dielectric materials [138] in order to lead the way to the incorporation of active

components in gap waveguide technology. Nonetheless, the dielectric pins would introduce

undesired losses and cannot be used for higher frequency bands.

Fig. 5.2. Different versions of gap waveguide technology.

Regarding the operating modes that propagate in each version of gap waveguide, there

are some differences [118]. In the case of the ridge and microstrip geometries, a quasi-TEM

mode is supported (Fig. 5.2). As mentioned previously, the high impedance surface can be

considered as virtual lateral walls. Consequently, in the case of the groove gap waveguide,

the geometry resembles a rectangular waveguide, thus TE/TM modes are supported that

depend on the cross section dimensions of the groove surrounded by the textured surface.

In most cases, the TE10 mode is preferred (Fig. 5.2). This mode has a dispersive nature,

which can be used to implement leaky-wave antennas for beam-scanning applications. In

the following chapters, the dispersive behavior of antennas made in this technology will be

discussed.

The advantages of this technology, are a consequence of the boundary conditions that
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are created by the described geometry. There are several characteristics that make gap

waveguide technology a strong candidate for applications in millimeter-wave bands [139],

that continuously attract the researchers nowadays. Compared to the standard rectangular

waveguide, in gap waveguide there is no need for direct metal contact between the upper

and lower plates and so it can be fabricated in two parts. Nevertheless, leakage of energy is

avoided by the high impedance surface boundary conditions. Therefore, the manufacturing

is made easier and is cost-effective as well as less time consuming. Furthermore, gap

waveguide provides a certain flexibility during the design process and it also allows the

design of different fully metallic parts with the same technology, e.g. phase shifters and

coupling networks [140]. This technology can be used to avoid dielectric losses and

coupling between components in high frequency bands.

In [141] a study of the losses of each type of gap waveguide was conducted. The

authors after an experimental procedure reported that the groove version, has losses of the

same magnitude level as the standard rectangular waveguide. More specifically, the groove

version was reported to have losses practically the same as the rectangular waveguide

(0.03-0.04 dB/cm) [141]. In the case of the ridge, its width is smaller than the width of the

rectangular waveguide, leading to higher conductor losses due to higher current density

on the ridge. As for the other two versions of microstrip gap waveguide, they show more

losses, however they perform better in this aspect than regular microstrip lines in high

frequencies (e.g. 60 GHz). On one hand, the guiding strips in gap waveguide can have

a larger width thus reducing the conductor losses. On the other hand, compared to the

regular microstrip, the propagation happens mostly in the air, and so the dielectric losses

are significantly reduced.

Each version presents advantages and disadvantages, depending on the application. In

the following chapters, the groove gap waveguide will be used for the proposed designs.

Initially presented in [132], this type of gap waveguide shows many similarities to the

rectangular waveguide, in terms of propagating modes as already discussed. In Fig. 5.3 the

electric field distribution is shown, for a TE10 propagating mode. The design procedure of

the groove gap waveguide, starts with the design of the bed of nails. Although an infinite

array of periodic unit cells is considered to study the band-gap, it has been shown that
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three rows of pins are enough to avoid the propagation in other directions. Later on this

thesis, it will be shown that even two rows are sufficient [142].

In [143] the authors studied the propagation inside the groove and they highlighted the

differences with the rectangular waveguide. In the same paper it was demonstrated that

they two waveguides have different cut-off frequency. In particular it was shown that the

gap waveguide has higher cut-off frequency for a wider groove, which can be translated as

effectively smaller propagating aperture than the rectangular waveguide. Moreover, as the

width of the groove decreases, the cut-off frequency becomes lower than the rectangular

waveguide, meaning that the effective aperture of the groove is larger than the standard

waveguide. Lastly, the groove waveguide shows a more dispersive character, which will be

discussed later in this thesis.

Fig. 5.3. Electric field distribution in the groove gap waveguide (snapshot at the bottom, magnitude

at the top) at 10 GHz. Three rows of pins are used to prohibit the propagation outside the

groove. It can be seen that the effective width of the groove is larger than the physical

width.

With the increasing interest in millimeter-wave frequency bands applications, this tech-

nology has caught the attention of many researchers, and many examples of designs can be

found in literature. From filters [144]–[147] to feeding networks [148]–[154] and couplers

[155]–[157], the different versions of gap waveguide have found many implementations.

Antennas have also been developed using the ridge [158], [159], microstrip [160], [161],

and groove gap waveguide [162].

In the following chapters, the groove version of the gap waveguide technology, will

be used to implement antennas. We have chosen this version of gap waveguide technol-

ogy because it presents minimum losses, which is an important asset when it comes to
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millimeter-wave frequency bands.

The high impedance surface that will be designed to confine the propagation in one

region (in the groove), will be made of pins or holes on a metallic plate. The dispersion and

characteristics of these pin and holes lattice will be discussed, as well as the band-gap that

they create as a function of their parameters. In addition, the groove gap waveguide will be

compared to the rectangular waveguide and their similar electromagnetic performance will

be demonstrated [163]. This will be done through initial studies based on the rectangular

waveguide which then will be replaced by the design of the groove gap waveguide.

5.1 Leaky-wave antenna in groove gap waveguide tech-

nology

Leaky-wave antennas are travelling wave antennas, and more specifically fast-travelling

wave antennas. According to the IEEE definition a leaky-wave antenna is an antenna

that couples per unit length energy by small amounts continuously or discretely, from a

travelling wave structure to free-space.3

The concept of leaky-waves was initially introduced by Marcuvitz in [164], and Hansen

[165] was the first to propose the use of leaky-wave structures, such as a slotted waveguide,

as antennas circa 1940. After its appearance, the analysis of the leaky-wave antenna

has been presented by many researchers employing different methods[166]–[172]. For

instance, referred to as travelling wave slot antennas, the fields in the slot of a leaky-wave

waveguide, were studied in [166], [167] as a two dimensional problem in the same way

that a standard rectangular waveguide is also a two dimensional problem. In 1958 Oliner

and Goldstone [173] employed a microwave network approach to describe leaky-wave

antennas in great detail.

Let us assume a continuous longitudinal slot in a lossless metallic waveguide (Fig. 5.4).

As the electromagnetic waves travel in the guiding structure, along the slot, the strength of

3"IEEE Standard for Definitions of Terms for Antennas," in IEEE Std 145-2013 (Revision of IEEE Std

145-1993) , vol., no., pp.1-50, 6 March 2014, doi: 10.1109/IEEESTD.2014.6758443.
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Fig. 5.4. Slotted waveguide. The direction of the propagation constant is shown inside and outside

of the waveguide. The direction of the main lobe is represented by the angle ϕ with

respect to the broadside direction.

the waves is gradually attenuated due to radiation. The leaky-wave has a phase velocity vph

that is greater than the speed of light c, thus indicating the fast-wave characteristic. It has a

complex propagation constant γ = α + jβ, where the real part α describes the attenuation

of energy due to the slot, and the imaginary part β controls the angle of maximum radiation

[173]. Following the relation of the wavenumbers in a rectangular waveguide, the wave

can be described as:

k2
o = k2

x + k2
y + k2

z (5.1)

where ko is the wavenumber of free space. The wavenumbers kx,ky depend on the waveguide

dimensions, and if we consider the propagation along the z axis, then [174]:

kz = − jγz = βz − jαz (5.2)

If we consider that the antenna radiates in the x direction, and more specifically for x>0,

the following expression describes the variation of the leaky-waves in this direction:

e(αx− jβx)x (5.3)

with the wavenumber along the transverse direction being kx = βx + jαx, while ky > 0 is



90

real. The angle of radiation for each frequency can be calculated as [162], [173]:

ϕrad = arcsin(
λ

λg
) = arcsin(

βz

ko
) (5.4)

when ϕrad is considered with reference to the broadside direction of the antenna. From

(5.4), the dependency of the angle of radiation on frequency is apparent, thus providing

this antenna with scanning properties.

The above analysis can be extended in the case of a waveguide made in groove gap

waveguide technology. In the case of the conventional waveguide, a longitudinal slot was

the responsible for the leakage of energy. In a gap waveguide, the boundary conditions of

the lateral walls are created by a high impedance surface, which for the presented analysis

will be metallic pins. As seen in Fig. 5.3, three rows of electromagnetic band-gap pins

(EBG pins), are enough to ensure that the field is mainly located in the groove. Now if on

one side, the three rows of EBG pins, are replaced by one row of pins (i.e. leaky-pins) the

waves will no longer be confined in the groove. Thus the leaky-wave antenna in groove

gap waveguide technology is created (Fig. 5.5), as initially presented in [162] in 2016.

In order to further enhance the leakage of energy, the leaky-pins should have a smaller

height than the EBG pins, in order to support a TM mode that propagates at the lowest

frequencies of the antenna. The detailed dimensions of the pins and the antenna will be

discussed in the following chapters.

The propagation inside the groove can be described by the propagation constant γ,

in the same way as for the conventional waveguide. The direction of the main lobe with

respect to the broadside, is ϕrad calculated from Eq. 5.4. In Fig. 5.5 the direction of the

radiated leaky-waves can be observed.

Following the classical formula for the guided wavelength inside the rectangular

waveguide, and introducing the term we f f which represents the effective width of the

groove, then the distance between two equiphase planes is:

λg =
λ0√︂

1 − ( λ0
2we f f

)2
(5.5)
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Fig. 5.5. Comparison of the groove gap waveguide (top), and the leaky-wave antenna (bottom)

made with the same technology, here at 10 GHz.

Consequently, the phase constant can be expressed as:

β = k0

√︄
1 − (

λ0

2we f f
)2 (5.6)

The effective width of the groove depends on frequency. A detailed study of the

propagation inside the groove was conducted by the authors of [143], where it was

proposed that the groove has a width we f f = w + xo, with w being the physical width of the

groove, and xo the difference between the effective and physical width (see Fig. 5.3). In

the same work it was suggested that the difference term xo is expressed as:

xo = −
1
βpp

tan−1( jZin) (5.7)

where βpp is the parallel plate propagation phase constant, and Zin is the input impedance

that the rows of pins create in the transverse direction. The above relation for xo shows

the reason why the effective width of the groove we f f varies with frequency. In addition,

depending on the sign of xo, the width we f f can be larger or smaller than the actual physical

width of the waveguide w. By looking at the electric field distribution in the gap waveguide

(Fig. 5.3), we get a physical visualization of the effective width of the groove, which in

this case seems to be larger than the physical width as the energy expands to almost the

second row of pins.

The amount of energy lost to radiation, is represented by the attenuation constant α.

The leakage of energy happens between the pins and in the air gap between the upper plate

and the top of the leaky-pins. The value of α must be cautiously chosen in order to achieve
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high radiation and aperture efficiency. If the attenuation is very strong, and the energy

leaks to free space very quickly, the effective aperture efficiency will be reduced, and poor

directivity levels will be obtained. However, if the attenuation is small, the radiated power

will not reach the desired 90% [162] and reflections will be produced at the end of the

waveguide. Consequently, the value of α must be such to achieve good radiation properties.

Many formulas have been reported in literature [143], [162], [167], [173], [175], [176]

to describe the attenuation due to radiation leakage. In the original paper of the groove

gap leaky-wave antenna [162], the authors reported that the normalized S 21 parameter

(|S 21|/(1 − |S 11|
2) ) can be approximated by α ≈ (λ0/(

√︂
1 − ( λ0

2we f f
)2))4.

The width of the groove, is directly related with the attenuation of the propagating

waves, as well as the distance (periodicity) between the pins. Since the value of we f f

depends on frequency, the attenuation will be subjected to changes with the frequency

variation. In addition, the waves get attenuated by radiation that occurs in the gap between

the pins, and due to the fact that the projection of this gap is smaller with frequency

(ϕrad is closer to broadside for higher frequencies), then the attenuation is decreasing

for higher frequencies. In order to tailor the attenuation along the length of the antenna,

the authors of [162], suggested the gradual change of the groove´s width, taking under

consideration the frequency behavior of the groove gap waveguide. In Fig. 5.6, the field

distribution is compared for two variations of the groove´s width. Fig. 5.7 shows how the

attenuation is frequency dependent. For the same groove width, the propagating wave is

severely attenuated at 9.5 GHz, whereas at 11.5 GHz there is much lower attenuation. The

difference in the angle of radiation ϕrad is also visible. As discussed previously, for higher

frequencies, the direction of radiation is closer to broadside.

The detailed design of leaky-wave antennas in groove gap waveguide technology, will

be analysed in the following chapters. The electromagnetic band-gap will be obtained with

square metallic pins in Chapter 6, and holes in Chapter 7. The hole unit cell will be again

used in 8 to design an array of horn antennas.
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Fig. 5.6. Electric field distribution at 10 GHz, of a leaky-wave antenna in gap waveguide technology.

The width of the groove waveguide controls the attenuation. The distribution at the top,

corresponds to a case where the width remains constant for all the length of the antenna. At

the bottom, the width is gradually changed. The colour bar applies for both distributions.

Fig. 5.7. Attenuation of the e-field at 9.5 GHz (top) and 11.5 GHz (bottom), for the same groove

width.
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Chapter 6

Array of stacked leaky-wave antennas

in groove gap waveguide technology

6.1 Introduction

Gap waveguide technology offers a lot of potential when it comes to millimeter-wave

bands that has become a rather popular field of research over the past few years. On one

hand, in implementations using this technology, there is no demand for direct electrical

contact between the different metallic parts of the waveguide structures. Because of the

band-gap created by the use of high impedance surfaces, losses due to multiple connections

are avoided, and the fabrication requirements are relaxed. In fact, the manufacturing can

be made by plates that are then assembled together simply with screws, thus proving the

reduced complexity that this technology offers in terms of the fabricated prototypes. In

addition, low dielectric losses are ensured [141], which is an important advantage for

applications in high frequencies (above 30 GHz).

As mentioned, the first leaky-wave antenna in groove gap waveguide technology was

presented by the authors of [162] in 2016. The antenna was formed when one lateral side of

the groove was made with one row of pins that allowed and enhanced the radiation leakage,

while the other side of the groove was defined by three rows of EBG pins. Various examples

of leaky-wave antennas using the groove gap waveguide can be found in literature [160],
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[162], [176]–[179]. All these antennas focus the radiation mainly in the H-plane, producing

fan-beam radiation patterns, thus obtaining moderate directivity levels. Consequently, to

enhance the directivity of this type of antennas, a pencil beam radiation pattern must be

formed.

In this chapter, the leaky-wave antenna of [162] is revisited and extended in a stacked

vertical array, aiming to obtain high directivity levels by producing a narrow beam in both

planes. A vertical array of leaky-wave antennas in groove gap waveguide, was proposed

in [180], [181]. The latter, was composed of four antennas and included a Butler matrix

all in the same technology. However, the feeding of the four elements of the array, was

done directly at each one of the four levels, by waveguide port transitions. This increases

the complexity in terms of fabrication and feeding in a real case scenario, and it may also

introduce increased losses due to flaws in the connections of the waveguide transitions.

The proposed leaky-wave array, is composed of four vertically stacked elements.

Contrary to the aforementioned examples of vertical arrays, a novel feeding network is

used made by rectangular slot apertures. The direct feeding with a waveguide transition

is done only at the bottom element, and then the energy is uniformly coupled to all the

stacked elements. In addition, the phase is corrected separately at each level, by phase

shifters made in gap waveguide technology. Hence, all the elements radiate in-phase, and

maximum directivity levels are achieved. This novel feeding and phase correction network,

has reduced complexity compared to [180], [181]. The distance between the elements,

as well as the number of antennas to be stacked were studied as well, in order to achieve

maximum directivity avoiding grating lobes for the targeting frequency of 28 GHz.

6.2 Array design

The proposed array was designed following a four-step procedure. As mentioned

before, the basic element of the array is the leaky-wave antenna in groove gap waveguide

technology, as it was presented in [162]. Hence, the first step was to re-design said antenna

and study the crucial parameters that affect its response, in order to adapt its design to the

implementation of a stacked array.



97

The next step, was to place n of the antennas designed in the first step, on top of each

other, and study the directivity levels achieved as a function of the number of radiating

elements, and of the inter-element distance.

After deciding the number of antennas that would form the array, it became apparent

that a feeding network was required, which would provide uniform amplitude and phase to

all the radiating elements. As a result, a vertical coupler was developed, followed by phase

shifters all made in gap waveguide technology. The aim was to couple the energy that was

fed to the array by a single waveguide port at the bottom element, and afterwards correct

the phase at each element in order to achieve maximum directivity levels.

6.2.1 Design of a leaky-wave antenna in groove gap waveguide

The leaky-wave antenna in groove gap waveguide technology, was first presented in

[162]. The two side limits of the groove are defined by rows of square metallic pins. On

one side, three rows of electromagnetic band-gap (EBG) pins ensure that the propagation is

well confined in the groove waveguide (Fig. 6.1). On the other lateral side, a single row of

lower pins leaks the energy into the free space and thus the leaky-wave antenna is created.

A metallic plate is placed on top of the groove waveguide, at a distance smaller than λ/4

above the EBG pins, where λ corresponds to the central frequency of the design. On both

top and bottom metallic plates, and on the radiating side of the groove, corrugations are

placed.

To create the electromagnetic band-gap in the frequencies of interest, the dimensions

of the EBG pin unit cell (inset of Fig. 6.2) must be studied. The parameters that should be

taken under consideration are : the height of the pin hpin, the air gap between the metallic

plate and the pin hgap that should be smaller than λ/4, the width of the pin w, and the

period of the unit cell period. These parameters control the electromagnetic behavior of

the pins, and must be modified according to the frequency requirements of the design. For

instance, if the pin is higher (hpin bigger), the band-gap is located lower in frequency, but

for a narrower pin (smaller w) the band gap moves up in frequency. In Fig. 6.2 and for

the following dimensions: height hpin= 2.8 mm, width w= 1.31 mm, periodicity period=
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3.19 mm and air gap hgap= 0.94 mm, the obtained EBG is marked by the gap between

the first and the second mode, and expands from 21 GHz to 36 GHz, covering the central

frequency of 28 GHz.

Fig. 6.1. 3D model of the groove gap waveguide leaky-wave antenna used as the basic element of

the array. The model follows the antenna design proposed in [162].

Once the dimensions of the pins on the non radiating side of the groove have been

chosen and the band-gap that they provide ensures that the energy is well confined, the

dimensions of the pins on the other side must be defined in order to allow the radiation

from that side. With a single row of the EBG pins (same dimensions and periodicity), some

leakage would be achieved through the gaps between the pins. However, for an enhanced

leakage of electromagnetic energy, the height of the leaky − pins should be lower than

the EBG pins. The reduction of the height of the pins leads to higher radiation levels due

to the proximity of the first mode of propagation. Therefore, the height of the leaky-pins

is hleaky = 2.44 mm and so the air gap between the pin and the metallic plate is larger

hgap,leaky = 1.3 mm, whereas on the other side the EBG pins are higher and the air gap is

hgap= 0.94 mm. Fig. 6.2 shows that there is one propagating mode in frequencies where

on the other side of the groove the EBG pins do not allow propagation.

As shown in [162], the width of the groove controls the attenuation coefficient α. The

value of α is critical for the leaky-wave antenna since it describes the amounts of energy

that leaks to free space, and must be carefully chosen to ensure maximum efficiency of the

antenna. The aim is to obtain radiation of 90% of the incoming power. If the attenuation

coefficient is too large, the energy will be radiated quickly, and the effective aperture of the
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Fig. 6.2. Dispersion diagram of the pin unit cell (shown in the inset) with the following dimensions:

hpin = 2.81 mm, hgap = 0.94 mm, w = 1.31 mm and period = 3.19 mm for the band-gap

(EBG) pins. The leaky-pins have the same dimensions except for their height that is

hleaky = 2.44 mm and the air gap hgap,leaky = 1.3 mm. An electromagnetic band-gap is

located between the first and the second mode from 21 GHz to 36 GHz.

antenna will be significantly smaller than its actual physical size, thus the directivity levels

will not be optimum. On the other hand, a significantly decreased attenuation coefficient α,

will result to less than 90% of the incoming energy radiated, and reflections at the end of

the waveguide.

In [162] it was reported that for an antenna with physical length of 39 cm and a central

frequency of 10 GHz, the ideal attenuation coefficient is 26 dB/m. For the implementation

of the presented design, the same electrical length, approximately 13λ, as in [162] was

chosen. In order to control the radiation via the attenuation coefficient, the width of the

groove is gradually changed throughout the length of the antenna. The entrance of the

groove has similar width to a standard WR34 waveguide, 8.2 mm. Then the width is

progressively changed and the ending of the antenna has a groove 6.6 mm wide. This

change of width results to 28 dB/m attenuation.

The energy leakage is shown in Fig. 6.3, where the electric field distribution is presented

when the groove of the leaky-wave antenna is gradually changed. The phase front shows

that the energy is leaking from the antenna to free space under a certain angle ϕrad (see Eq.

5.4) which is the direction of the main beam in the radiation pattern. Furthermore, it is
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Fig. 6.3. Electric field distribution of the leaky-wave antenna at 28 GHz, magnitude (top) and

snapshot (bottom). The colour bar applies for both distributions.

evident that the value of α is sufficient for the radiation of the majority of the incoming

power, and at the same time the energy is radiated slowly enough to ensure that the effective

aperture is not significantly small. The S 21 parameter of the antenna (Fig. 6.4), shows that

90% of the incoming power is radiated at the central frequency. The S 11 indicates that the

antenna is well matched for the frequency range of interest 27.4-28.6 GHz.

Fig. 6.4. Simulated S-parameter of the leaky-wave antenna in groove gap waveguide technology.

The directivity for the leaky-wave antenna varies between 19.3 dBi and 19.6 dBi, from

27.4 GHz to 28.6 GHz, and the radiation pattern is shown in Fig. 6.5 for the two principal

planes. The direction of the main beam is ϕrad = 44o from broadside. The dispersive nature

of the radiation pattern of this type of leaky-wave antennas, makes it a good candidate in

applications where beam-scanning is required.

At the top and bottom plates of the antenna, and more specifically on the radiating
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Fig. 6.5. Directivity of the leaky-wave antenna at 28 GHz (a)E-plane (b)H-plane.

side, rectangular corrugations were placed. These corrugations were used to prevent the

diffraction of the field on the edges of the metallic plates. Furthermore, they prevent the

radiation on the non radiating side of the antenna (back radiation). Their dimensions are

1.3 mm width, 4.5 mm periodicity, length 13λ at 28 GHz, and height 3.4 mm.

6.2.2 Stacked elements

The next step in the design process of the array, was to place vertically-or stack, n of

the leaky-wave antennas presented in section 6.2.1. For a single leaky-wave antenna, it

was shown that the directivity varies from 19.3 dBi to 19.6 dBi from 27.4 GHz to 28.6

GHz. Now let us suppose that we place two identical leaky-wave antennas on top of

each other, and we directly feed each one with same amplitude and phase, by standard

WR34 waveguide port transitions, while they are all terminated with a matched load. The

directivity increases up to 22-22.2 dBi for the same frequency range (Fig. 6.7). For a total

of four stacked radiating elements, the directivity reaches 25.14 dBi. More elements could

be stacked to implement the array, however, we have decided to use four antennas, in order

not to complicate the fabrication, as this work is a proof of concept.

An important parameter in the design of an array of antennas, is the inter-element

distance. In the proposed design, the inter-element distance is defined as indicated in the

inset of Fig. 6.6 as the sum of the thickness of the broad wall that separates the antennas,

and the height of the waveguide itself. However the height of the waveguide that is defined
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Fig. 6.6. 3D model of the array in perspective view. The inset shows the rectangular apertures that

form the coupling network, placed in a progressive manner. The feeding port is indicated

as number 1. With purple are the pins that are used to modify the width of the groove and

so to correct the phase of each element before the radiating part of the presented array.

Fig. 6.7. Comparison of the directivity achieved with a single leaky-wave antenna, and an array of

two or four stacked antennas, all fed directly by waveguide ports.
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as the height of the pin and the air gap, is fixed and cannot change, the distance between

the elements of the array is exclusively controlled by the thickness of the broad wall that

separates the antennas. In order to avoid grating lobes, this distance should be smaller

than λ0 at the central frequency. The aforementioned directivity levels for two or four

stacked antennas, correspond to an inter-element spacing of 0.7λ0 at 28 GHz (7.9 mm).

In Fig. 6.8, the directivity in the case of two stacked antennas is presented, as a function

of the inter-element distance. Note that for larger spacing d between the elements, the

directivity increases, with d always less than λ0. Nevertheless, as it will be discussed later,

the thickness of the broad wall that separates the antennas, affects the coupling between

the different elements of the array, as Oliner initially states in [182], and so a trade-off

must take place in order to achieve the best possible performance.

Fig. 6.8. Comparison of directivity of two stacked elements, as a function of the inter-element

distance.

6.2.3 Coupling and phase correction network

In the previous two sections, the leaky-wave antenna that is the basic element of the

array was presented and its design was discussed, and then n of these antennas were stacked

in order to study the directivity levels achieved as a function of the number of elements

used, and the inter-element distance. We concluded that for the purposes of this thesis,

four stacked elements would be used to implement the array, with an inter-element spacing

of 0.7λ0 at 28 GHz. To obtain these results, all the stacked elements were fed directly with
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waveguide ports, in order to have uniform amplitude and phase, achieving this way the

maximum directivity levels possible. However, in a true-case scenario, this would not be

possible. Thus, the need of a coupling network was apparent, that would ensure uniform

amplitude and phase.

The study of the coupling among the stacked elements, was initially done with four

standard hollow waveguides, each one with a rectangular slot in the broad wall between

them. As a first approach, the rectangular slots were identical in terms of dimensions, and

were aligned with each other. The initial dimensions used were: length λg, width λg/2, and

distance from the beginning of the waveguide λg/4, with λg being the guided wavelength

at 28 GHz (13.66 mm). Then the slots were placed in a progressive manner as seen in

the inset of Fig. 6.6, so as to achieve a progressive coupling between the elements. A

parametric study of the dimensions of the slots, resulted in the values shown in Table 6.1.

The coupling that was obtained with this vertical coupling configuration, is presented in

Fig. 6.9. At the central frequency, the incoming power at the bottom antenna (as indicated

in Fig. 6.9) is divided in an approximately uniform way.

Coupling of antennas Distance from the edge Width Length

1st and 2nd 5.1 mm 8.3 mm 15.3 mm

2nd and 3rd 32.9 mm 8.3 mm 15.3 mm

3rd and 4th 49 mm 8.3 mm 14.2 mm

Dimensions of the rectangular slots that form the feeding network. The distance of each

slot to the beginning of the waveguide, is referred to as distance from the edge.

Table 6.1. DIMENSIONS OF THE COUPLING SLOTS

Once we ensured the equal division of the incoming power to the four stacked elements,

the phase in the output of the vertical coupler configuration must be studied. If the incoming

wave in the radiating part of the antenna results in out of phase radiation at each element,

then the radiation efficiency will be decreased. Hence, it is important that the phase is

corrected after the coupler, but before the radiating part. In Fig. 6.10(a), the phase after the

coupler in the four waveguides is presented. It is evident that a phase shifter is required to

achieve in-phase radiation.
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Fig. 6.9. On the left: coupling achieved with the designed feeding network, expressed in S-

parameters. Waveguide ports were placed at the end of the phase shifters at each of the 4

elements of the array for the simulation. The S 21 parameter corresponds to the coupling

of the 1st (bottom) element, and respectively the S 41, S 61, S 81 show the coupled energy

for the 2nd , 3rd and 4th element. The configuration of the feeding network and the phase

shifters (purple pins) is presented on the right.

(a) (b)

Fig. 6.10. (a) Phase at the exit of the coupling network, before placing the phase shifters. (b)

Corrected phase with the phase shifters placed right after the coupling network. The

inset shows an example of a phase shifter in gap waveguide technology.
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In gap waveguide technology, a phase shift in the wave propagating in the groove,

can be achieved by slightly changing the width of the waveguide by moving the pins on

both sides of the groove. A different width change, means different phase shift. Thus,

first we calculated the required phase shift ∆ϕ at each element, having as reference the

phase of the second from the bottom element. Then we started changing the width of each

element, until the phase was corrected. The values of the phase shift and the corresponding

width change, can be seen in Table 6.2. In Fig. 6.10(b) the result of the corrected phase is

presented. The phase is practically equal in all the four elements. In the inset, the phase

shifter configuration in gap waveguide technology is shown. The inset of Fig. 6.9 shows

the configuration of the vertical coupler and the phase shifters. In this part of the array,

three rows of EBG pins are used on both lateral sides of the groove, and thus they ensure

that the energy is well confined in the gap waveguide.

To demonstrate how the change of the groove waveguide can manipulate the propagat-

ing wave, the electric field distribution is presented in Fig. 6.11. The difference between

the normal groove waveguide and the phase shift arrangement, is evident. However, the

change of width, when drastic, can result to high reflections. Fig. 6.12 shows an example

of a phase shifter where the groove is changing drastically producing strong reflections

that are apparent. This was taken under consideration when designing each phase shifter,

by ensuring transmission coefficients close to unity.

Antennas ∆ϕ Width

1st 137.17o 5.8 mm

2nd 0 8.3 mm

3rd −56.56o 6.8 mm

4th 31o 6.4 mm

Required phase shift for each antenna, and corresponding changed width of the groove.

The phase difference is calculated having as reference the phase of the 2nd antenna. The

length of the phase shifter is 5.5 mm in all cases.

Table 6.2. PHASE SHIFTERS

To verify the overall effectiveness and importance of the phase correction at each
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Fig. 6.11. Electric field distribution for: a phase shifter in gap waveguide technology (top), and

a conventional groove gap waveguide with constant width (bottom). The colour bar

applies for both E-fields.

Fig. 6.12. Comparison between a gradual change (top) of groove and a drastic change (bottom) in

a phase shifter.
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Fig. 6.13. Directivity of a 4-element array when direct feed is applied (blue), the feeding network

is used to couple the energy and direct feed is only at the bottom antenna (red), and the

feeding network is used but with phase shifters placed before the radiating part of each

one of the 4 elements.

element separately, we compare in Fig. 6.13 the radiation pattern and the directivity

achieved with the four stacked elements, when : a) there is direct feed at each element, b)

with the vertical coupling network but without the phase shifters, and c) with the coupling

network and the phase shifters. The maximum directivity is achieved for uniform amplitude

and phase provided by ideal direct feed with waveguide ports, 25.14 dBi. Now when the

vertical coupler is used to feed each antenna in the array, the directivity is 23.5 dBi, the

radiation pattern is deformed and the maximum is not located at θ = 90o which is the

broadside direction. However, when the phase shifters are placed right after the coupler,

the directivity increases up to 24.3 dBi. The pencil beam radiation pattern is now pointing

at the broadside direction, validating that all the elements radiate in-phase with each other.

Consequently, the use of a phase correction is necessary for optimal performance of the

array.

While the total length of the array is 27.7 cm, each element has a radiating part that

occupies 14.6 cm, the feeding network occupies 7.4 cm and the phase shifters are 5.5 cm

long.
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6.3 Results

6.3.1 Simulated antenna array

The 3D model and the full-wave simulations, were done using CST Microwave Studio.

Once all the separate parts of the proposed design were designed and assembled, the array

was simulated as seen in Fig. 6.6. A standard waveguide port transition was used at the

bottom antenna, and its reflection coefficient is shown in Fig. 6.14. Very good matching of

the array was obtained in the frequencies of interest, and more specifically at 28 GHz the

S 11 parameter is around -16 dB.

Fig. 6.14. S 11 parameter of the simulated leaky-wave array.

In previous sections the performance of the leaky-wave antenna that is used to form

the array, was presented. The directivity levels it achieved vary between 19 and 19.6 dBi.

When four of these antennas are stacked vertically, and the coupler and phase shifters

are placed, the directivity reaches a maximum of 24.5 dBi at 28 GHz (see Fig. 6.15),

indicating an increase of +5 dBi. The simulated realized gain is 24.4 dBi at the central

frequency. The directivity levels of the single leaky-wave antenna and the array in the H-

plane, are compared in the inset of Fig. 6.15. Note how despite the increase of directivity,

the dispersive nature of this kind of antennas is evident by the change of angle in the

direction of radiation ϕ. The maximum occurs at ϕ = 46o.

This array achieves to focus the energy in both the E and H planes by creating a pencil

beam radiation pattern. In Fig. 6.16 the E-plane of the array is compared to the single
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Fig. 6.15. Simulated directivity for a range of frequencies, the H-plane of the array (solid line),

compared in the inset with a single antenna of this type (dashed line).

Fig. 6.16. The E-plane of the array at the central frequency 28 GHz (solid line) and the single

leaky-wave antenna (dashed line).
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leaky-wave antenna. The maximum is located at the broadside direction, indicating that all

the elements radiate in-phase. The focalized energy in both planes is evident in the 3D

radiation patterns shown in Fig. 6.17, where we can see how the fan beam of the single

leaky-wave antenna, is transformed into a pencil beam in the case of the array.

(a) (b)

Fig. 6.17. 3D radiation patterns of (a) the designed array, (b) the single leaky-wave antenna, both

at the central frequency 28 GHz.

The distribution of the amplitude of the electric field is shown in Fig. 6.18. The different

numbers indicate the individual elements that are stacked vertically. Note how the phase

shifting arrangement of the pins manipulates the wave at each element. At the second

element (denoted as 2) there is no phase shift, as this was the reference element for the

calculation of the phase difference. At the bottom element (denoted as 1), where the phase

difference was the highest (see Table 6.2), the manipulation of the electromagnetic wave is

clearly evidenced.

As mentioned before, for the whole length of the coupler and phase shifters, three rows

of EBG pins confine the energy inside the groove waveguide. Then, one side of the groove

is reduced to one row of pins, with lower height, and the energy leaks from the antenna to

the free space. In Fig. 6.18, the attenuation of the wave reaching the end of the radiating

part is also observed. Approximately -20 dB reach the end of each element, in terms of
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Fig. 6.18. Distribution of the amplitude of the E-field at each one of the stacked radiating elements

of the array. The bottom element is referred to as "1" and the top element is "4".

their transmission coefficients.

6.3.2 Experimental results

To validate the proposed design and the simulations´results, a prototype was manufac-

tured and measured. In this section the experimental results will be presented, and some

manufacturing issues will be addressed.

In Fig. 6.19(a) the four radiating elements of the array are presented. The top and

bottom metallic plates have the necessary corrugations, that as explained before, prevent

back radiation and diffraction from the edges of the plates. The three rectangular slots can

be also seen, located at the broad walls between the elements and in a progressive manner

with respect to one another. With a closer look, the phase shifters are also evident. The

total length of each element is 27.7 cm, with a feeding network of 7.4 cm, phase shifters

5.5 cm, while the radiating part of each element, occupies 14.6 cm of the total length.

To ensure the alignment of the four elements, only four screws were located at the

front, back and middle of the array. The required air gap is established with thick borders

at both ends of the individual elements. For the same purpose, pillars were used in the

middle of each element on the non radiating side. The bottom element, was fed using a
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(a) (b)

Fig. 6.19. The manufactured prototype. In (a) each level of the array is presented, and in (b) all the

elements are assembled together. The two inset show the front and ending (open) of the

array.

Fig. 6.20. Comparison of the S 11 parameter of the simulated and the measured leaky-wave array.
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(a)

(b)

Fig. 6.21. (a) Measured realized gain of the fabricated prototype for a range of frequencies. The

realized gain reaches 23.7 dBi of magnitude at 28 GHz. (b) Normalized measured

radiation pattern (dashed line) and simulated (solid line) representing the E-plane at 28

GHz. The maximum is at θ = 90o, showing that all the elements radiate in-phase.
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flange to connect a standard WR34 transition. In Fig. 6.19(b) all the different parts of the

array are assembled together. The front and back of the array are shown in the insets.

At this point we would like to address two important fabrication issues that had to

be taken under consideration. The first is that to simplify the manufacturing process, the

EBG rows of pins were reduced to two instead of three. After simulations, we concluded

that two rows are enough to confine the energy and ensure that no leakage takes place.

The other critical issue, is the termination of each radiating element. During the initial

simulations of the array, waveguide ports were used and the energy that reaches the end of

each element is absorbed. In a real case scenario, this would mean that all the elements

would be connected to matched loads at the end of the groove waveguide, which is not

practical. In this direction, we decided to terminate in open all the groove waveguides, and

the antenna was redesigned slightly for further attenuation of the wave that is not radiated,

by changing gradually the width of the groove to force radiation. As seen in Fig. 6.18 after

the phase shifters, starts the radiating part of each element, where part of the waves escape

to free space under an angle, and the rest is attenuated before the end of each element.

Consequently, only -44 dB reach the ending of a single element, and thus the reflection

from the open end are avoided.

Fig. 6.20 shows the measured S 11 parameter of the prototype, compared to the simulated

result. Good matching is obtained for the prototype at the frequencies of interest, as the

S 11 remains below -15 dB. The measured realized gain can be seen in Fig. 6.21(a). At the

central frequency the realized gain is 23.7 dBi, which indicates a reduction of only 0.7 dB

compared to the simulated gain. The variation of the realized gain is between 21.6 dBi and

23.68 dBi for the frequencies of interest. The directivity at 28 GHz is 26.1 dBi, calculated

from the half power beam width [90]. In Fig. 6.21(b) the normalized radiation pattern at 28

GHz is presented for the E-plane (dashed line) in comparison to the simulated normalized

pattern (solid line). For both the simulated and the measured results, the maximum is

located at broadside (θ = 90o), verifying the in-phase radiation of the elements of the

array. A couple of low side lobes appear in the measured radiation pattern, nevertheless the

agreement of the measured and the simulated results are in very good agreement overall.

In terms of radiation efficiency, the prototype reaches 93.2% at the central frequency of 28
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GHz compared to 96.7% that is the simulated efficiency.

6.4 Conclusions

The design of a leaky-wave antenna array in gap waveguide technology has been

presented. The basic element of the array is the groove gap waveguide leaky-wave antenna

[162]. By placing vertically four of these antennas one on top of the other, there is an

enhancement of +5 dB in the directivity. Compared to the single leaky-wave antenna

element as well as other gap waveguide based leaky-wave antennas [176]–[179], [183],

the advantage of directivity enhancement is combined with a pencil beam radiation pattern

that is a novel aspect in the antennas designed with this technology.

The total physical aperture of each of the stacked elements, is divided in three parts.

First, a feeding network is responsible for the equal coupling of energy to all the antennas.

The direct feeding is done only at the bottom (first) antenna, and then the energy is coupled

through rectangular shaped apertures. These apertures where placed on the common wall

separating the elements, in a progressive way.

The second part of each element, is the phase shifter. After coupling the energy to

all the antennas, the phase is corrected separately at each element. Maintaining the full-

metallic character of the design, the phase shifters were implemented by changing the

width of the groove waveguide with the pins. In this manner, a tailored correction of phase

can be achieved. Consequently, the radiation of all the elements is in-phase, and maximum

directivity is obtained.

The third part of each element, is the radiating part. While for all the length of the

coupling and phase correction network, three lines of pins ensure that the radiation is

confined in the waveguide, in the last part, one row of pins allows partial leakage of

the energy to free space. Let us mention here that due to manufacturing simplification,

the three rows of EBG pins were substituted by two rows, without introducing radiation

leakage.

The designed antenna array has been examined experimentally with a fabricated
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prototype. The experimental results confirmed the simulations. At the central frequency of

28 GHz, the measured realized gain is 23.68 dBi. As mentioned previously, the presented

array focuses the radiation at both the E and H planes, thus creating a pencil beam.

In addition, the measured radiation patterns of the E plane, showed that the maximum

radiation occurs at the broadside direction (θ = 0), proving that the phase shifters have the

desired performance correcting the phase at each element.

Due to the use of gap waveguide technology, the fabrication cost is reduced and the

mechanical requirements are more relaxed, since no direct electrical contact is required

between the different layers of the 3D structure. Each of the array elements was fabricated

in a single piece. The viability of a fully metallic structure that has low losses, and also

it achieves directivity enhancement simply by stacking the radiating elements, has been

demonstrated. This design can be directly scaled in a subjectively frequency band without

deterioration of the array performance. Furthermore, the number of radiating elements can

be increased following the proposed methodology, which can be also used to implement

arrays of other leaky-wave antenna designs such as [176].
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Chapter 7

Non-dispersive groove gap waveguide

prism antenna

7.1 Introduction

As discussed in Chapters 5&6, the leaky-wave antenna made in gap waveguide tech-

nology [162] is dispersive. This means that the direction of the main lobe changes with

frequency (see radiation patterns of Fig. 6.21). Referred to as beam squinting effect in

literature, this property can be an advantage or disadvantage depending on the application.

For instance, in the case of beam scanning applications, these antennas can be promis-

ing candidates [180], [181], [183], [184]. However, in cases where a single direction is

considered, the beam squinting results to gain losses, which is an important disadvantage

in applications where high gain in a constant direction is needed for a certain frequency

range, such as point to point satellite or wireless communications.

In literature, several solutions have been proposed to combat the dispersion. For

instance, in [185]–[189] metamaterials were used to correct the direction of radiation.

In [178] a new approach was presented, where the leaky-wave antenna in groove gap

waveguide was combined with a metamaterial prism. The prism was made of squared

metallic pins that created a dispersion complementary to the one of the leaky-wave antenna,

thus producing a constant angle of radiation. The same idea was also reported in [179],
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[190], [191], and in [192] it was implemented in substrate integrated waveguide technology.

In this chapter, the concept of the metamaterial prism [178], [179], [190]–[192] is

re-investigated but with a different configuration of the prism and the leaky-wave antenna.

Unlike [178], the metamaterial prism is designed by using the hole unit-cell [127]–[129]

instead of pins. The main advantages of the holes, are their easier fabrication (drilling holes

is simple) and their robustness in high frequencies where the pin-made structures result in

fragile components. High precision can be achieved with this unit cell without excessive

manufacturing cost. The leaky-wave antenna, is as well designed in gap waveguide

technology with the electromagnetic band-gap created by glide symmetric holes covering

the frequency range of interest 25-30 GHz. By using the groove [132] version of gap

waveguide [118], low losses are ensured [141].

7.2 Prism effect

In his book Opticks, Sir Isaac Newton first studied optical prisms in great detail. In

1666 he conducted the first experiment bending light with the use of a prism. After a

series of experiments, he proved that prisms possess the ability to separate light into

its constituent colours due to their frequency dependent refractive indices which cause

their dispersive behavior. He also proved that prisms work in a reversed manner as well,

meaning that they can also focus different frequencies (or colours in the visible spectrum)

in a single direction (Fig. 7.1).

The dispersive nature of prism-like structures, applies within all the electromagnetic

spectrum. The concept of the frequency dependent refractive index, creates interesting

possibilities for the manipulation of the direction of radiation, even in millimeter wave

applications. By gaining control over the refractive index of the materials used, or by

designing metamaterials that allow tailoring of the refractive index, it is possible to modify

as desired the dispersive nature of antennas, and more specifically for the purposes of this

thesis, leaky-wave antennas.

When a longitudinal slot is placed on the narrow wall of a standard rectangular waveg-

uide, the electromagnetic waves will escape from inside the waveguide and energy "leak-
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Fig. 7.1. An optic prism can focus different frequencies in a single direction.

age" is produced [173]. Thus a leaky-wave antenna is created.

As seen in the previous chapter, if the longitudinal slot leaks the radiation in the y axis,

then the direction of radiation can be calculated as:

ϕL( f ) = sin−1(
βy

k0
) (7.1)

From Eq. 7.1 it is evident that for different frequencies, the radiation will point in

different directions, or different angles ϕL, as both the propagation constants βy in the

waveguide and k0 in free space are frequency dependent.

Now let’s consider that the leaky-wave antenna has an equivalent refractive index nL.

A metamaterial prism, has as well an equivalent refractive index nP. Therefore, when the

aforementioned leaky-wave antenna is radiating in free space through a prism, the resulting

angle of radiation will depend on the interaction of the two structures in terms of their

refractive indices:

ϕ0( f ) = sin−1(
nL( f )
nP( f )

) (7.2)
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Consequently, if the refractive index of the prism nP produces a dispersion that com-

pensates the dispersion of the leaky-wave antenna, a constant radiation angle ϕ0 can be

obtained in a given frequency range. For this to occur, the two refractive indices must have

complementary behavior with respect to the frequency, as it will be demonstrated later in

this chapter.

7.2.1 The unit cell

The textured surface of the prism is made of drilled holes placed in a periodic way in a

parallel plate structure. It is critical for the design to study the dispersion characteristics

of the hole unit cell. This first step will allow us to design the prism with the required

dispersive behavior that will compensate the dispersion of the leaky-wave antenna.

The resulting equivalent refractive index of the prism, can be calculated from the

dispersion of the unit cell (Fig. 7.2). The behavior of the unit cell depends on its geometry.

Consequently, the parameters that affect the refractive index of the unit cell (seen in the

inset of Fig. 7.2), are its radius r, the height or depth of the hole h, the air gap between the

two metallic plates hgap, and the periodicity under which the holes are placed in the prism

per. Therefore, in order to gain control over the produced dispersion, the effect of these

parameters on the refractive index was initially studied.

Considering the first propagating mode k1 and the free space propagation constant k0,

the refractive index of the holes is expressed as:

nP( f ) =
k1

k0
(7.3)

Another consideration for the calculation of the refractive index, must be the direction

towards which we calculate the dispersion. As seen in Fig. 7.2, if we consider the zone

Γ-X in the Brillouin diagram of the hole, the resulting dispersion is different from the case

where the M-Γ direction is considered. In Fig. 7.3 the difference in the refractive index

is presented when it is calculated considering (a) Γ-X and (b) M-Γ directions. For the

purposes of the present design, the direction Γ-X was initially used.
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Fig. 7.2. The dispersion diagram of the unit cell, as it is calculated in CST. The inset shows the

unit cell-hole.

Fig. 7.3. The direction where we consider the propagation, affects the result of the equivalent

refractive index ne f f . For the presented design, the Γ-X direction was considered.
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A selection of the results of the parametric study can be seen in Fig. 7.4. The periodicity

per of the holes defines the frequency range where the dispersion occurs. In addition, the

air gap hgap as well as the radius r, also affect the refractive index. However, the height of

the hole h has a minimum value after which it has no further influence on the refractive

index.

(a) (b)
Fig. 7.4. Parametric study of the equivalent refractive index of the holes. The initial values of the

parameters are : h = 4mm, hgap = 1mm, per = 4mm, r = 1.75mm.

7.2.2 Combination with a leaky-wave antenna

The next step in the design process is to calculate the dispersion of the radiating element

that will be combined with the metamaterial prism. As mentioned the prism will be used

to compensate for the dispersion of leaky-wave antennas. Fig. 7.5 shows the two structures

that will be combined to create a low dispersive antenna.

When gap-waveguide technology is used to implement a leaky-wave antenna (Chapter

6), the non radiating side of the rectangular waveguide, is replaced by a high impedance

structure that avoids radiation. In the present design, glide symmetric holes are used

instead of pins [127]–[129], [193], [194]. Simple holes could not be used since they

do not guarantee the stop band in all the directions. The glide symmetry configuration

[195] creates an electromagnetic band-gap [118], [196], therefore the energy only escapes

through the longitudinal slot.
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Fig. 7.5. Dispersion of the leaky-wave antenna (left) and the prism effect (right). While the

radiation of each frequency occurs under a different angle in the case of the leaky-wave

antenna, the prism obtains a constant angle of radiation independent of frequency.

Fig. 7.6. The electromagnetic band-gap created by the hole unit cell in glide symmetry. No mode

is propagating between 25-63 GHz. The inset shows the unit cell with glide symmetry.
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To implement the non-radiating side with glide symmetry, the corresponding unit cell

(inset of Fig. 7.6) was designed in order to achieve the band-gap that will prohibit the

propagation of electromagnetic waves [197]. The band-gap is shown in Fig. 7.6, where no

mode is propagating from 25 to 63 GHz. The dimensions of the glide symmetric holes

control the band-gap and in this case are: period perglide = 5 mm, radius rglide = 1.75 mm,

air gap hgap,glide = 0.01 mm, depth hglide = 2 mm. The cross-section of the gap waveguide

with glide symmetric holes of the above dimensions, is shown in Fig. 7.7. It can be seen

that the waves mainly propagate in the groove waveguide, and the smalls amounts of

energy leaking through the gap between the lateral upper and lower plates, are severely

attenuated before reaching the outer (third) row of holes.

Fig. 7.7. Cross section of the groove gap waveguide with glide symmetric holes. The E-field is

mainly confined in the groove, and there is insignificant amounts of energy leaking from

the gap between the plates, at 28 GHz.

Fig. 7.8. Equivalent refractive index of a slotted standard WR34 rectangular waveguide for the

middle and bottom location of the slot. The insets show the two different cases.

Since the energy escapes only through the longitudinal slot, the dispersion of the

antenna depends on the geometry of the slot. While periodic slots on the lateral or top

wall [173], [198], [199], or a continuous slot on the top broad wall of the waveguide [200],
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[201], would also create a leaky-wave antenna, for this design the longitudinal lateral wall

slot was selected to illuminate the prism aperture. In addition, the location, middle or

bottom, of the slot with respect to the lateral wall of the waveguide, affects the dispersion

and consequently the radiation angle (see Eq. 7.2). In Fig. 7.8, the equivalent refractive

index of the slotted standard rectangular waveguide is compared for the middle located

slot case, and the bottom one (as seen in the inset), for a common size (1 mm). For the

present design the slot will be located in the bottom of the lateral wall. After the initial

study of the location of the slot, the rectangular waveguide is replaced its gap waveguide

version with glide symmetrical holes. This step should take place before studying the

dispersion and equivalent refractive index of the radiating element. As reported in [143]

the gap waveguide implement with pins, tends to a more dispersive behavior compared to

the standard waveguide. The authors of [143] proved that the gap waveguide in dispersion

terms would be equal to a standard waveguide whose width is increasing as a function of

frequency.

The size of the longitudinal slot controls the equivalent refractive index of the antenna.

In this design, the size or width of the radiating slot, is identical to the air gap hgap between

the top and bottom metallic plates of the prism structure. As a consequence, this parameter

affects both the response of the prism as well as the dispersion of the leaky-wave antenna

(see Fig. 7.9). To calculate the equivalent refractive index of the antenna nL we can

either use the propagation constant inside the gap waveguide βy that can be calculated by

simulations, or we can use approximate analytical expressions [173].

7.2.3 Angle of radiation

In the previous sections the dispersion of both the leaky-wave antenna and the metama-

terial prism was studied, and the equivalent refractive index in each case, was calculated.

Furthermore, it was also shown that the two structures have complementary dispersion char-

acteristics, as seen in Fig. 7.9. This result gives us itself an intuition of the compensation

of the change in the final radiation angle.

By using Eq. 7.2 we can calculate the final angle ϕ0 where the radiation will be



128

Fig. 7.9. The equivalent refractive indices of the unit cell np,e f f and of the leaky-wave antenna

nL,e f f , represented as a function of the radius r of the hole unit cell, and the size of the

slot of the leaky-wave antenna, which is equal to the air gap in the unit cell hgap.

directed. Since ϕ0 depends on the refractive indices of the two combined structures, their

geometrical characteristics will control the final radiation direction. In Fig. 7.10, the

direction of radiation is presented as the parameters of the unit cell and the size of the slot

change. The aim is to have the same radiation angle for each frequency in the band of

interest, thus avoiding the beam squinting effect.

7.3 Antenna design

The gap waveguide that was used to implement the leaky-wave antenna, has a height of

4.318 mm, and width of 8.636 mm, following the dimensions of the standard rectangular

WR34 waveguide. The slot that leaks the energy to the prism, has a size of hgap = 2.35 mm.

This is a crucial parameter for the design. On one hand we have already seen in Sections

7.2.2 & 7.2.3, how it affects the equivalent refractive index and the final radiation angle.

On the other hand, since the slot is responsible for the leakage of energy, it also controls

the attenuation coefficient α of the groove gap waveguide.

The attenuation should be such, in order to radiate the majority of the energy before

reaching the end of the waveguide [162]. As discussed in Chapter 6, for large values



129

(a) (b)

(c) (d)
Fig. 7.10. The resulting angle of radiation as a function of the parameters of the hole unit cell

for: (a) changing air gap, (b) changing height of hole, (c) changing the period, and (d)

changing the radius of the hole. For these variations, the initial values of the unit cell

were: h = 4 mm, per = 4 mm, r = 1.75 mm, hgap = 1 mm, w = 1 mm.
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of α the radiation happens very fast and the effective aperture of the antenna is small

in comparison to its actual physical size. To obtain a high gain antenna, the attenuation

coefficient must be tailored for the requirements of the design.

Furthermore, as mentioned before, the size of the slot is identical to the air gap between

the two metallic plates in the prism and its unit cell. Since this parameter hgap is chosen

based on the performance of the leaky-wave antenna (attenuation and dispersion), the rest

of the parameters of the unit cell of the prism, should be selected based on the final angle

of radiation. After a parametric study, the final dimensions of the unit cell are: period

per = 4.38 mm, radius r = 2 mm, and depth h = 4 mm. The aforementioned values, result

to a final radiation angle ϕ0 = 50.5o. After careful observation of the calculated results we

decided to allow ±1 degree of change in the direction of maximum radiation.

The total length of the antenna is L = 10λ, with λ at 30 GHz (100 mm). The phase

front should be parallel to the radiating side of the prism. Consequently, the prism was cut

under an angle of 50.5 degrees. The radiating side of the prism has a length equal to Lsinϕ.

The other lateral side of the gap waveguide, is made of glide symmetric holes placed

on two parallel metallic plates, with dimensions as mentioned in Section 7.2.2.

A flare transition was placed on the radiating side, in order to have a smooth impedance

transition from the prism to free space to avoid strong reflections that would influence

the radiation patterns. To design the flare, its S 11 parameter was studied, by placing a

waveguide port at the point where the prism would radiate into the flare, and where the

distance between the top and bottom parts of the flare is equal to hgap the air gap of the

prism (see inset Fig. 7.11). The final reflection coefficient of the designed transition can be

seen in Fig. 7.11.

Another consideration we had to make, was the alignment of the holes with respect

to the three sides of the prism. There are three possible alignments, that are shown in

Fig. 7.12. In the first one, the holes are placed in such way to be aligned with the radiation

angle ϕ and also the phase front (i.e.the radiating side of the prism). The second possible

configuration, is with the holes aligned with the radiation angle but this time also with

the waveguide. The third possible alignment is with the radiating side of the prism and

the waveguide but not with the radiation angle. Based on the fundamental hypothesis of
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this design, that the holes should compensate for the dispersion of the antenna, and also

by calculating the angle of radiation, it is apparent that the last alignment of the holes is

not profitable as it does not correct the angle of radiation. After the comparison of the

results of the other two alignments (A,B in Fig. 7.12), the first one was selected due to

the angle stability it exhibits. This is due to the fact that the refractive index of the holes,

was calculated considering the first region of the Brillouin diagram that corresponds to

a specific direction (see Fig. 7.2 & 7.3); while for other directions the result would be

different.

Fig. 7.11. The S 11 of the flare (shown in the inset), which was designed to avoid reflections in the

transition from the prism to free space.

Fig. 7.12. Representation of the three cases of alignment of the holes with respect to the geometry

of the prism antenna: A) the holes are aligned with the radiation angle ϕ and the radiating

side of the prism, B) holes aligned with the radiation angle and the waveguide, and C)

alignment with the radiating side of the prism and with the waveguide.
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7.4 Results

7.4.1 Simulated antenna

In this section the results of the full-wave simulations will be presented and discussed.

To obtain the simulated results, CST Microwave studio was used for both the full structure

and the unit cells.

In Fig. 7.13, the S-parameters of the two ports of the gap waveguide are presented and

correspond to the design A as seen in Fig. 7.12. Good levels of return loss are observed

for the band of interest. The low S 21 shows that the energy is radiated before reaching the

end of the antenna. Thus this waveguide port can be replaced by an open end later on the

fabricated model. Prior to this step, the S 11 parameter of the antenna was simulated with

an open ended gap waveguide, and no difference was observed in the return loss.

Fig. 7.13. S 11 and S 21 parameters of the prism antenna.

The resulting radiation patterns are shown in Fig. 7.14. The realized gain as seen in

Table 7.1, varies between 14 dBi and 15.5 dBi. The maximum directivity is 15.4 dBi at 28

GHz.

The radiation angles for different frequencies as seen in Fig. 7.14 are presented in

detail in Table 7.1. The same leaky-wave antenna without the prism, has an overall angle

variation of ±4.65 degrees, while the maximum variation reaches 9.3o. When the antenna is

combined with the proposed prism, there is an overall variation of ±1.1o, and the maximum

variation is only 2.2o. As for the side lobes that are present in the radiation pattern of all
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the frequencies, this type of antennas tends to higher side lobes when the radiation happens

far from the broadside direction. Moreover, a comparison of the radiation direction of

each of the three cases of alignment (Fig. 7.12) is shown in Table 7.2. For the case where

the holes are aligned with the radiation angle (design B) the maximum angle variation is

similar to that of the antenna without the prism.

Fig. 7.14. The H-plane realized gain of the simulated antenna. In the inset the normalized patterns

show the angular stability of the direction of radiation.

The electric field distribution on the proposed antenna is presented in Fig. 7.15 at

four different frequencies. It is evident that the energy is radiated from the slot of the

leaky-wave antenna, and approximately no energy reaches the end of the gap waveguide.

In addition, from the E-field distribution, we can observe how the phase front progresses

through the prism, and that the radiation occurs only on the radiating side of the prism.

Furthermore, no strong reflections are observed, thus making the use of the flare transition

successful.

In terms of radiation efficiency for the simulated antenna, it is over 95% from 25 GHz

to 29 GHz. In similar works [178] the reported efficiency was 98%, while in [179] it

reached 90%.

7.4.2 Experimental results

To validate the simulated results, a prototype was manufactured, and is shown in

Fig. 7.18. Due to the use of gap waveguide technology, the main body of the antenna
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Radiation Angle ϕ (deg)

Freq (GHz) 25 26 27 28 29 30 Max variation Overall variation

Without prism 41.5 42.8 44.7 46.4 48.3 50.8 9.3o 46.15 ± 4.65

With prism-simulations 53.4 53.5 51.6 51.8 51.9 54 2.2o 52.89 ± 1.1

With prism- measurements 54 54 54 55 55 57 3o 55.5 ± 1.5

Realized Gain (dBi)

Without prism 12 13.1 14.2 14.2 13.6 14.4

With prism-simulations 14 14.23 14.6 15.5 15 14

With prism- measurements 15 16.9 16 17.8 16.6 12

Table 7.1. VARIATION OF RADIATION ANGLE AND REALIZED

GAIN

Fig. 7.15. E-field distribution at four different frequencies. The constant angle of radiation is

evident. The colour bar applies in all cases.
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Radiation Angle ϕ (deg)

Freq (GHz) 25 26 27 28 29 30 Max variation Overall variation

Design A 53.4 53.5 51.6 51.8 51.9 54 2.2o 52.89 ± 1.1

Design B 54.8 54.6 46.2 49.6 50.9 56 9.8o 51.1 ± 4.9

Design C 52.5 51.5 53.1 51.4 58.8 53.8 3o 52.3 ± 1.5

Table 7.2. RADIATION ANGLE FOR THE DIFFERENT

ALIGNMENTS OF THE HOLES IN THE PRISM.

(prism and leaky-wave waveguide), was fabricated in two pieces. Then these two top and

bottom metallic plates were assembled together by two flanges that were used to connect

the standard WR34 waveguide transition.

Fig. 7.16. S 11 and S 21 parameters of the prism antenna.

Fig. 7.17. The realized gain of the fabricated prototype. In the inset the normalized patterns show

the angular stability of the direction of radiation.

The measured S 11 of the antenna shows matching levels below -10 dB from 25 GHz



136

to 30 GHz, and is very similar to the simulated result (Fig. 7.16). The S 21 showed that

significantly low amounts of energy reach the ending of the gap waveguide, as expected

from the simulations.

The measured radiation patterns are presented in Fig. 7.17, and the exact values of

the realized gain are described in Table 7.1. The normalized patterns (inset Fig. 7.17),

demonstrate the small variation in the direction of radiation. However, irregularities in the

shape of the radiation patterns in some frequencies appear. This can be due to reflections in

the waveguide flange; note that it is located closely to the radiating side of the prism (see

Fig.7.18). Also, at 30 GHz, we observe that the realized gain is significantly reduced. This

may be a consequence of manufacturing inaccuracies in the air gap hgap between the two

plates, that results to a stop band in the holey structure for this frequency. Nevertheless,

the maximum radiation in all the frequencies points at the same direction, since the overall

variation is ±1.5o, compared to the ±1.1o of the simulated antenna. Excluding the result at

30 GHz, the realized gain varies between 15 dBi and 17.8 dBi. As for the side lobe levels,

they could be reduced in future applications by using the tapering aperture illumination

method as it was described in [179], but adapted to the hole unit cell presented here.

7.5 Conclusions

In this chapter, the design of a non dispersive leaky-wave antenna in groove gap

waveguide technology, was presented. Two structures are combined in the presented

design: a leaky-wave antenna and a metasurface prism. Both are implemented in groove

gap waveguide technology with the use of the simple hole unit-cell. Similar works have

been reported [178], [190], however they used the pin unit-cell whose main drawback is

found in high frequencies where the pins are very fragile and expensive.

The presented design covers the band 25-30 GHz. The antenna is formed when on one

lateral side the wall of the standard rectangular WR34 waveguide is replaced by two metal-

lic plates with glide symmetric holes on both. This higher symmetry structure, prohibits

the leakage of radiation between the plates in any direction, due to the electromagnetic

band gap created by the glide symmetric unit cell. Hence, no direct contact is required
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(a)

(b)

Fig. 7.18. (a)The two plates of the leaky-wave antenna with the prism. The glide symmetric holes

that prevent the radiation can be seen, as well as the dispersive holes of the prism. (b) All

the pieces of the proposed antenna assembled together. A flare transition was designed

for the radiating side of the prism, to avoid reflections.
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and the manufacturing can be simply made in two pieces. The other lateral side, has a

longitudinal slot that allows the leakage of radiation from the waveguide [173], thus the

leaky-wave antenna element is created. As a consequence, the size of the slot controls the

radiation.

The nature of the leaky-wave antenna is dispersive, meaning that the direction of

maximum radiation is changing depending on the frequency that propagates in the gap

waveguide. In order to manipulate the radiation direction to create a non-dispersive antenna,

a metasurface prism was added to the design. The prism is made of holes with a refractive

index that also changes with frequency in a complementary way to the leaky-wave antenna.

The resulting radiation angle of the simulated model showed only ±1.1o of variation around

a central angle, in comparison to ±4.65o of the antenna without the prism.

To validate the simulated results, a prototype was fabricated. Without the need of

physical contact due to the gap waveguide, the fabrication of the whole structure was made

in two plates (top and bottom), which is one of the advantages of this design. All the

components are metallic, making this type of antenna a good candidate for high frequencies,

where dielectric parts would have severe losses. In addition the hole unit-cell apart from

having easier and less expensive fabrication than the pins, shows robustness even in high

frequency bands.

The experimental results, are in very good agreement with the simulated antenna. The

measured radiation patterns, showed very small change in the direction of maximum radia-

tion, achieving an overall ±1.5o of variation which is only 0.4o away from the simulated

results. Moreover, low cross polarization levels were measured.

For future applications revisiting the proposed design, the side lobes level could

be decreased if the radiation direction is closer to broadside. In addition, improved

illumination of the prism aperture could be achieved by controlling the attenuation constant

along the slotted gap waveguide. However, the presented antenna is a proof of concept of

the viability of the holey metasurfaces for the implementation of a dispersion controlled

antenna.
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Chapter 8

Array of low profile horn antennas in

groove gap waveguide technology

8.1 Introduction

In this chapter we present the design and implementation of a cost-effective array of

low profile horn antennas made exclusively in gap waveguide technology [116], [117],

[121], [130], [131], [135] and more specifically its groove version [132], [133], [141],

[143], as already discussed in previous chapters.

The idea of this design is based on a low profile horn antenna array that was presented

in [202]. In said design, the feeding was done in inverted microstrip gap waveguide. In

order to minimize the losses, we have decided to implement the feeding network in groove

gap waveguide. Additionally, since we are aiming to a cost-effective design, the classical

bed of nails [120], is replaced by holes in glide symmetry [127]–[129] that create the

electromagnetic band gap (EBG) that avoids the radiation to free space. As seen in the low

dispersive leaky-wave antenna (Chapter 7), due to the use of the holey EBG structure, the

manufacturing cost can be significantly reduced. Nevertheless, there are some limitations

introduced to the design, since the holes are too large and make impossible the use of a

classical corporate feeding network [151]–[154], [203], [204]. Thus, the feeding of the

horn antennas is done through a network of groove waveguides with resonant slots. The
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number of the radiating elements of the array can be arbitrarily selected. In the presented

design, we chose to implement a 6x6 array, however the methodology of the design can be

used for larger or smaller arrays.

The central frequency of the design that will be presented, is 38 GHz. Due to the fact

that the array is entirely made of aluminium, and has neither dielectric nor very small parts,

it can be easily scaled to any frequency, maintaining its performance.

This chapter is organized as follows: first the design of the low profile horn antenna

that is the basic and key element of the array, will be presented and discussed. Then a

linear array of horn antennas fed by a slotted waveguide will be designed, and afterwards

the linear array will be extended to a planar 6x6 array.

8.2 Low profile horn antenna design

The proposed design consists on a feeding network that divides uniformly the incoming

energy to a planar array of low profile horn antennas. This type of aperture antenna was

chosen as a simple solution to achieve increased directivity levels of a slotted waveguide.

A standard pyramidal horn antenna [90] consists on four flaring sides that end in a

larger aperture. This geometry can be seen in Fig. 8.1 (b). Typically the flaring is done

in both E and H planes of the horn. The flare of a horn antenna is important as it acts as

a gradual transition in order to achieve impedance matching from the feeding aperture

(usually fed by waveguide) to free space.

The length and angle of the flare are critical to define the performance of a horn antenna.

The electromagnetic waves travel within the horn in the form of spherical wavefronts,

with the phase center being in the apex of the structure. Due to the different distance of

the center and the edges to the apex of the horn, the phase increases from the edges of

the antenna aperture to the center, thus a phase difference is produced. This phase error

can reduce significantly the performance of the antenna. If the flare angle is too large,

and the horn "opens" too fast (i.e., small length of flare), the phase error will be higher,

and the beamwidth will increase. For a narrower beamwidth, a larger length of the flare
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must be used to keep the phase error constant. Consequently, the flare length should not

be too small, and the flare angle should not be very large, as observed for instance in

commercially available horns.

Fig. 8.1. 3D representation of the two horn antennas studied for this array design: (a) shows the

standard pyramidal horn antenna that was taken as reference for comparison, (b) shows

the dual-mode horn antenna and its geometry parameters.

Aiming to design a planar array of low profile horns as in [202], the dual-mode horn

antenna was studied. The geometry of the dual-mode horn is shown in Fig. 8.1 (a). This

antenna achieves the excitation of two modes, the T E30 and the dominant T E10 mode. The

excitation of the two modes is done by creating a step in the H plane of the horn antenna,

and only the E plane sides are flared. This step is defined by the distance from the feeding

slot of the horn to the side, denoted as "a" in Fig. 8.1, and it controls the excitation of the

second mode in the horn.

The dual-mode excitation results to significant difference in the efficiency of the two

horn antennas when compared. In Fig. 8.2, the amplitude distribution of the field in the

aperture of the two horns is shown. The uniformity of the distribution in the case of the

dual-mode horn can be evidenced, in comparison to the distribution of the standard horn

antenna. The uniform distribution, is due to the simultaneous combination of the T E10 and

T E30 modes that have opposite phase. Fig. 8.3 shows the phase in the aperture of the two
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Fig. 8.2. Amplitude distribution of the field in the aperture of the dual-mode horn (left) and the

standard horn (right).

Fig. 8.3. Phase distribution of the field in the dual-mode horn (left) and the pyramidal horn (right).
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horn antennas. As mentioned before, in the case of the standard horn antenna, the phase is

increasing from the edge to the center of the horn, and a phase difference is produced that

reduces the efficiency of the antenna. However, the phase of the fields in the aperture of

the dual-mode horn, shows more uniform distribution, and thus the phase error is reduced.

Fig. 8.4. Directivity achieved with the dual-mode horn antenna (purple line) and the reference

standard pyramidal horn (blue line) for both E and H planes.

The above, lead to differences in the radiation patterns of the two antennas, seen in

Fig. 8.4. The dual-mode horn achieves 15.4 dBi of directivity, while the pyramidal horn

antenna reaches only 13.2 dBi. The aperture efficiency is 93% for the designed dual-horn

antenna, and only 56% for the standard pyramidal horn. Thus the presented dual-mode

horn is a better candidate for the implementation of the array under research.

The aforementioned results, correspond to the following optimized antenna dimensions

for the dual-horn antenna: a = 4.3 mm, b = 1.9 mm, and d = 13.57 mm, with length of

the horn h1 = 7.79 mm which is approximately λ0 at 38 GHz. For the pyramidal antenna,

the size d is the same as in the dual-mode horn, and the length as well. The size d of the

designed dual-mode horn antenna, is related with the inter-element distance of the array.

In fact, the dimensions of the low profile horns, are defined by the transverse slots that

directly feed the horns, and that must be separated λg. Therefore this is the inter-element

distance, and the horn antennas are designed to have an aperture d = λg.
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8.3 Linear array of low profile horn antennas

Aiming to use the low-profile horn antenna that was designed in the previous section,

in a planar array, the first step is to study the case of a linear array of horn antennas [205].

This first step in the implementation of the planar array is critical, since we are aiming to

achieve uniform amplitude and phase in all the radiating elements, and the linear array is a

convenient structure for the studying of the feed system.

The linear array used in this step of the design process, consists of 6 dual-mode

antennas, that are fed by a standard waveguide with transverse slots etched on its upper

broad wall [182], [206]. The transverse slots are typically thin (< 0.1λ) with a starting

length of λ/2, and they must interrupt the surface currents in order to radiate.

Let us note here a key point in the design. The spacing between the transverse slots

used to directly feed the horns, is one guided wavelength which was intentionally chosen

to be equal to 1.7λ0, and that is also the size of the aperture of the horn antennas. In order

to force that value of guided wavelength, the transverse dimension or width of the standard

WR-28 that was taken as reference, was modified to 4.88 mm. Nevertheless, the height of

the WR-28 waveguide was maintained 3.56 mm.

(a) (b)

Fig. 8.5. Coupling achieved with a single inclined slot, in form of S-parameters(a). The inset

shows the simulated structure, and the arrow indicates the port of direct feeding (port

1).The phase of the ports on the upper waveguide in (b) shows that there is a difference of

180 degrees between the two ports.
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(a) (b)

(c) (d)

Fig. 8.6. S-parameters of the configuration shown in Fig. 8.5(a), for different values of the inclined

slot for: (a) the width, (b) the length, (c) the distance from the beginning of the waveguide

and (d) the rotation of the slot.



146

To feed the waveguide that radiates through the transverse slots into the horn antennas,

we used a waveguide with inclined longitudinal slot [207]–[209] etched on its upper broad-

wall. This waveguide is directly fed by a waveguide port in the simulation environment. To

observe how the inclined slot couples the energy to the radiating waveguide, first we used

a structure without radiating slots, and with waveguide ports at both ends of the radiating

waveguide, as seen in the inset of Fig. 8.5(a), with the arrow indicating the feeding point.

In the same figure, the S-parameters of the structure show how the energy is divided in two

equal parts. The phase shown in Fig. 8.5(b) of the two ports in the radiating waveguide,

was observed with 180 degrees of difference. This is due to the direction of inclination of

the slot [206]. For reversed direction of inclination, the polarity of the induced E-field in

the coupling slot changes, and as a result the phase of the two ports in Fig. 8.5(b) would be

inter-changed.

The above results correspond to the following parameters of the inclined coupling slot:

width 1 mm, length 3.25 mm, distance from the beginning of the waveguide 6.4 mm, and

inclination 40o. The inclination and the dimensions of the coupling slot are critical for its

electromagnetic behavior, and will be discussed in Section 8.4.2. The results for different

values of the slot are presented in Fig. 8.6.

Once the coupling through the inclined slot was verified, the next step was the imple-

mentation of a linear array. This array consisted on a waveguide with direct feed by a

waveguide port, with an inclined slot on its upper broad wall. Through this slot the energy

is coupled to another waveguide as shown in the inset of Fig. 8.5(a), that has transverse

slots etched on the upper broad wall, with distance λg as already mentioned. A total of 6

transverse slots were placed to feed 6 dual-mode horn antennas.

The 3D radiation pattern of this configuration is shown in Fig. 8.7 with directivity

reaching 22.6 dBi. The S 11 parameter of the array can be seen in Fig. 8.8. By using field

probes in the slots that feed the horn antennas, we verified the uniform amplitude and

phase distribution in all the elements, as seen in Fig. 8.9. To obtain these results, the width

of the inclined slot at the bottom waveguide was slightly modified to 0.95 mm, keeping

the same length and degrees of inclination. Furthermore, the dimensions of the transverse

slots that feed the horn antennas are: width 1.7 mm, length 4.5 mm.
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Fig. 8.7. 3D radiation pattern of the linear array of horn antennas.

Fig. 8.8. S 11 of the linear array of horn antennas.
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Fig. 8.9. Amplitude and phase of the radiating slots that feed the horn antennas. To get this value,

field probes were used during the simulation (red arrows), at the corresponding slots.

8.4 Planar array

In the previous steps of the design, we have studied the dual-mode horn antenna, and

then we expanded it in a linear array using the standard WR-28 with transverse slots and

width modified in order to achieve a guided wavelength of 1.7λ0.

In the next step we develop a directive planar antenna array in gap waveguide tech-

nology, which simplifies the fabrication process since no metal contact is required. In

addition, with this technology, very low losses can be obtained.

8.4.1 Groove gap waveguide technology version

As mentioned before, for this array the groove waveguide will be implemented with

glide symmetrical holes [127]–[129] instead of the classical bed of nails [120]. As in

Chapter 7, the holes are located at the top and bottom of a two parallel plate structure. The

holey version of the groove waveguide, is more cost-effective and has easier manufacturing
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process. However, as it will be shown, the holes need to have large radius in order to

create the required electromagnetic band-gap, thus prohibiting the use of corporate feeding

networks as in [149], [210].

Fig. 8.10. Dispersion diagram of the glide symmetric hole unit cell, with dimensions: radius

r = 2.7 mm, periodicity p = 8.5 mm, depth d = 3 mm. The band gap covers the central

frequency of the design 38 GHz.

For the implementation in groove gap waveguide technology, first the study of the unit

cell takes place. The radius r, the periodicity p, and the depth d of the hole are the critical

parameters that define the electromagnetic behavior of the unit cell. The air gap between

the two metallic plates which is also important, was set to hgap = 0.01 mm for this design4.

For the following dimensions, an electromagnetic band-gap that covers 38 GHz, is

created: r = 2.7 mm, p = 8.5 mm, d = 3 mm (Fig. 8.10). Let us note here that the hole unit

cell was simulated in an infinite array, using glide symmetry in both x and y directions.

8.4.2 The feeding network

The planar array is composed of n linear sub-arrays as the one shown in Section 8.3. For

the purpose of this design, we implemented a 6x6 planar array. Nevertheless, this design

offers the possibility for a subjectively chosen number of elements in both E and H planes.

The feeding of the each T-branch or linear sub-array, is done with waveguides implemented
4In practise there will be no gap; however this value represents possible gap between the parts of the

prototype due to fabrication errors
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in groove gap waveguide technology as seen in Fig. 8.11 (denoted as radiating waveguides).

A feeding waveguide is placed in the middle of the structure (see Fig. 8.11), and couples the

energy to the radiating waveguides, through inclined slots [211]. This resonant structure

of feeding is based on the standing waves inside the waveguide, and was initially used to

implement the linear array of horns, as explained in Section 8.3. However, at this step the

standard waveguide is abandoned and both the feeding and the radiating waveguides, are

surrounded by holes in glide symmetry, to obtain the required electromagnetic band-gap as

described in Section 8.4.1.

Fig. 8.11. 2D representation of the groove gap waveguide that is directly fed by a waveguide tran-

sition (right), and the inclined coupled slots that feed each of the radiating waveguides

(left).

Aiming to achieve uniform amplitude and phase in all the coupling slots, first we

studied the case of two waveguides fed centrally with two inclined coupling slots (as seen

in Fig. 8.13). For practical reasons, we used ports at the ending of the two waveguides, in

order to see the energy coupled through the feeding slot.

For the conducting walls of a waveguide, we know that the linear conduction current

density on the surface is expressed as: Js=n x H, with n being the normal to the surface

unit vector, and H is the magnetic field for the particular mode that is propagating. When a

discontinuity is created on the conducting surface, and interrupts Js, radiation can occur if

the structure is open [206]. In [182], Oliner presented a study of the different geometries

of the radiating slots, in terms of their electromagnetic characteristics. Transverse slots,
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longitudinal inclined or with an offset, or even side wall slots have been studied in literature,

however for the presented design inclined longitudinal slots will be used.

In general, for a longitudinal slot that is centrally placed, no radiation can be pro-

duced, since it does not interrupt significantly the conduction current (shown in Fig. 8.12).

However, when the longitudinal slot has some degrees of inclination [182], [207], then

it interrupts the longitudinal conduction current Jsy in this case, and thus radiation is

produced. Consequently, the inclination of the slots strongly affects the coupled energy

[208], [209]. From a circuit equivalent point of view, the impedance of the slot depends on

the inclination angle [212]–[214]. Additionally, the direction of inclination changes the

polarity of the electric field induced in the slot.

With the case of a single waveguide fed centrally by an inclined slot, already reported in

Fig. 8.5, this T-branch is extended to two fed waveguides as seen in Fig. 8.13. In the same

figure, the amplitude in form of S-parameters is presented along with the return loss of the

feeding waveguide port. Note how the amplitude is practically identical for all the ports.

The phase of this configuration can be seen in Fig. 8.13 as well as the structure in the inset.

At the central frequency, phase difference of approximately 180o was observed between

the two ports of each waveguide, which is due to the opposite direction of propagation.

As mentioned, the direction of inclination has an effect on the polarity of the electric field.

This can be evidenced by changing the inclination direction of one of the two coupling

slots. Fig. 8.14 shows a comparison of the phase of the waves as they reach the end of each

respective waveguide. Indeed a difference of 90o in the inclination of the two coupling

slots, results to a change in the phase of the coupled wave, as perceived by the waveguide

ports. However, the amplitude of the coupled energy does not change, and for both cases

is as shown in Fig. 8.13. For the purposes of this design, all the coupled slots were chosen

to have the same direction of inclination.

Other parameters that affect the electromagnetic behavior of the slots, are the length,

the width, the distance from the beginning (or ending) of the waveguide, as well as the

thickness of the broad wall where the slot is etched. In order to radiate, the slots should

reach a resonant length [206], [208]. The width of the slot, plays an important role in the

bandwidth obtained, as for wider slots, the bandwidth is increased [215]. Furthermore,
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the thickness of the broad wall, and consequently the thickness or vertical width of the

slot, influences the coupled energy, and it also limits the bandwidth [216], [217]. The

position of the slots, that can be easily defined by their distance from the beginning of the

waveguide, is important as it should be following the standing-wave peaks, as a resonant

type feed system based on standing waves will be used. This distance should be initially

set to λg1/2, where λg1 = 1.7λ0 in this case, and then it should be optimized.

For the results presented so far in Fig. 8.13 but also in Fig. 8.14, the coupling slot is

1.3 mm wide, and 3.25 mm long, and is placed with an angle of 40o with respect to the

longitudinal axis of the feeding waveguide. The distance of the slot to the feeding point of

the waveguide is 5.4 mm.

Fig. 8.12. Representation of the surface currents Js in a closed end waveguide.

This design is flexible in terms of the size of the planar array wished to be designed.

The feeding structure that has just been described, can be extended to any subjective

number of radiating waveguides (and corresponding coupling slots). Let us mention here,

that as the number of coupling slots increases and more radiating waveguides are placed,

the parameters of the coupling slots must be slightly modified in order to maximize

the performance of the feeding network. The number of coupling slots, also affects the

bandwidth of the array [215]–[217].

For the proposed array, six coupling slots were required to feed the six radiating

waveguides. In Fig. 8.15, the phase and amplitude of the coupled energy with the inclined
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Fig. 8.13. S-parameters of the two waveguides fed by two inclined slots. Low return loss is

observed as well as uniform coupling in both waveguides. The phase of the ports

revealed a difference of 180 degrees in the corresponding ports of the same waveguide.

Ports 2,4 correspond to one waveguide, and ports 3,5 are placed on the second waveguide.

Port 1 is the feeding point of the structure.
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(a) (b)

Fig. 8.14. The phase of the coupled energy for: slots with opposite direction of inclination (a),

and with the same direction of inclination (b). The phase was calculated with ports at

the ends of each waveguide. Port 2,3 correspond to the first waveguide, and ports 4,5

correspond to the second one.

slots, is shown. It can be observed that at the central frequency, all the slots couple the

same amplitude of electric field, and with the same phase for all the six slots. These results

were obtained for slots with width 1.55 mm and length 4.7 mm, and 35o inclination. The

distance between the first coupling slot and the beginning of the feeding waveguide is 7.9

mm. As for their periodicity, it is the same as for the radiating waveguides, and is equal

to 1.7λ0. Later in the design, to optimize the performance of the feeding network, the

periodicity was modified by +0.15 mm. Thus, the coupling slots, the radiating waveguides,

and the horn antennas have a final periodicity of 13.57 mm. The aperture of the horn

antennas is also modified according to this value. The amplitude and phase with which the

horns are fed can be seen in Fig. 8.16 for the radiating slots with dimensions: width 1.8

mm, length 4.5 mm, and periodicity 13.57 mm.
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(a) (b)

Fig. 8.15. Amplitude (a) and phase (b) of the coupling inclined slots that are used to feed each of

the six radiating waveguides. At 38 GHz, the energy is distributed with equal amplitude

and phase through all the inclined coupling slots.

(a) (b)

Fig. 8.16. Amplitude (a) and phase (b) of the radiating slots that feed the horn antennas. At 38

GHz, both the amplitude and the phase of the six elements are equal.
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8.5 Results

8.5.1 Simulated array

The proposed array was modeled and simulated using CST Microwave Studio. The

different parts that constitute the array are presented in Fig. 8.20.

In Fig. 8.17, the matching of the array is presented as the S 11 parameter of the feeding

waveguide where the waveguide transition is connected. Satisfying levels of matching are

observed at the central frequency, together with the narrow band behavior.

Fig. 8.17. S 11 parameter of the proposed array.

Fig. 8.18. Simulated radiation pattern of the proposed simulated array, for both E and H planes.

The simulated radiation pattern is shown in Fig. 8.18 for the E and H planes. The

maximum is located at the broadside direction (θ = 0), hence all the 6x6 elements radiate
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Fig. 8.19. 3D radiation pattern of the simulated array.

in-phase. The array reaches 30.7 dBi of directivity at the central frequency 38 GHz which

indicates that the aperture efficiency is 89%. The 3D radiation pattern is shown in Fig. 8.19,

together with the antenna. The cross polarization is approximately -38 dB.

8.5.2 Experimental results

To validate the simulated results and show the effectiveness of the proposed array, a

prototype was manufactured and is shown in Fig. 8.21. The total size of the prototype is

12 cm x 8.9 cm, and it was fabricated exclusively in aluminium by milling. The fabrication

as well as the assembling of the prototype was rather simplified, as it was fabricated in

three pieces fully metallic that can be seen in Fig. 8.22.

The three parts were assembled together using four screws at the four corners of the

structure, while two more screws were added for the mounting in the anechoic chamber.

Two pins of alignment were used, one on each side (Fig. 8.22).

As mentioned, the width of the WR-28 was modified to achieve the guided wavelength

1.7λ0. However, the feeding would be done with the standard WR-28 waveguide transition,

thus a flange was designed with tapered width in order to achieve good impedance matching

and avoid reflections. The flange transition has an initial width of 7.11 mm and ending

width 4.8 mm, while the height of the waveguide is constant, 3.56 mm. The obtained S 11
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Fig. 8.20. The 3D model of the fabricated array, as it appears in CST. The parts of the array are

enumerated, and the top and bottom view are shown. The direct feeding is done where

the arrow indicates. Image number 3-top is the array of horn antennas, which is the top

layer of the structure.
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(a) (b)

Fig. 8.21. (a) Top view of the fabricated prototype, with a coin for size comparison. (b) The

fabricated prototype in the laboratory, mounted on a plate for measurements in the

anechoic chamber.

(a) (b)

Fig. 8.22. The fabricated prototype disassembled into its constituent layers. (a) Top view, (b)

bottom view of each layer.
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of the flange can be seen in Fig. 8.23.

The S 11 of the fabricated prototype is shown in Fig. 8.24 and reaches -18 dB at the

central frequency. The measured radiation patterns are shown in Fig. 8.25 normalized. For

both E and H planes, there is an excellent agreement between the simulated and measured

radiation patterns, indicating that the directivity obtained by the prototype, is in the same

levels as the simulation. The array achieves a pencil beam not only in the E and H planes,

but in the diagonal as well (Fig. 8.26). The measured realized gain is 29.3 dBi, which is

below the simulated one (30.4 dBi). This could be due to the presence of Ohmic losses

that were not included in the simulated model, or even due to insufficient contact between

the WR-28 feed and the waveguide transition.

Fig. 8.23. Reflection coefficient of the flange transition.

Fig. 8.24. Comparison between the simulated and measured S 11 parameter of the array.
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Fig. 8.25. Comparison of the normalized radiation pattern of the fabricated array and the simulated

one, for E and H plane.

Fig. 8.26. Normalized radiation pattern of the fabricated prototype for the E, H and diagonal

planes.
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8.6 Conclusions

The design of an array of low profile horn antennas in groove gap waveguide tech-

nology has been presented. The array consists of a 6x6 configuration of dual-mode horn

antennas. These horn antennas, achieve a uniform field distribution compared to the

standard pyramidal horn antennas, thus exhibiting higher aperture efficiency. This is due to

the simultaneous excitation of the T E10 and T E30 modes.

The feeding network is entirely made in groove gap waveguide technology, where

the band-gap was achieved using glide symmetrical holes. Because of the size of the

holes, the use of a corporate feeding network is not possible in this case. The horns are

fed by transverse slots in a waveguide, forming linear arrays of an arbitrary number of

elements. This constitutes one row of the array. Then each row is fed centrally with

inclined longitudinal slots. The coupling through the inclined slots has been studied, and

equal division of the incoming energy has been achieved.

The simulated results showed 30.7 dBi of maximum directivity and 30.4 dBi realized

gain at 38 GHz, having 89% aperture efficiency. To validate the simulated results, a

prototype was manufactured. The experimental results showed excellent agreement with

the simulated ones. The measured realized gain reaches 29.3 dBi at 38 GHz. The difference

of 1.4 dBi in the realized gain, can be attributed to Ohmic loses that were not included in

the simulations, or even not tightly enough connection of the feeding transition.

The example design was a 6x6 array; however the number of elements of each row and

also the number of rows can easily change in order to design an array of NxM elements.

The idea behind this design was to implement an array where the losses are minimized

as much as possible. This array with a feed network implemented in groove gap waveguide

technology, fulfills the low losses requirement, as this version of gap waveguide has the

lowest losses.
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Part III

Conclusions and Future Work
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Conclusions

Design of Fabry-Pérot leaky-wave antennas

The first part of this thesis was focused on the design of Fabry-Pérot leaky-wave

antennas. More specifically, in the first chapter a dual-band leaky-wave antenna has been

presented. The proposed antenna, was designed using a novel methodology that allows

dual-band performance with a single layer and single sided metasurface. In addition, it

was shown that this methodology allows separate directivity control at each band.

The key aspect of the design methodology is that there can be an equivalence between

a dielectric slab and an inductive or capacitive metasurface. For these two equivalent

surfaces, there is a cavity height respectively lower and higher than the dielectric slab case.

Therefore, by designing an MTS with impedance varying between inductive and capacitive

behavior, a dual-band performance can be achieved. Equations for the impedance and the

height have been presented for both equivalents. The unit cell can obtain these theoretical

values by properly adjusting the parameters that define its geometry.

Furthermore, a metasurface designed to allow different permittivity equivalence at the

two bands, has been presented. By choosing a higher permittivity at the higher band, the

directivity is increased and the aperture efficiency is improved. The proposed methodology

for the design of metasurface based leaky-wave antennas, allows flexibility in the design in

terms of choice of the dual-band, and directivity achieved at each band. However, there is

a limit for the separation between the two frequencies, which depends on the permittivity

equivalence, and therefore a trade-off must take place between separation of bands and

maximum directivity achieved.
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A fabricated prototype of the case of same equivalent permittivities corresponding to

both bands, has been also presented and the experimental results validated the simulations

of the proposed design.

The same design methodology was used in the second chapter, where a dual-band

planar thinned array with grating lobe suppression has been presented. The basic element

of the 3x3 array, consists of a stacked patch and a metasurface that is located at a certain

height h to create a resonant cavity.

The dual-band metasurface was designed following the methodology presented in

Chapter 1.4. Since the MTS has the ability to enhance the directivity of a simple radiation

source, in this case when it is combined with a thinned planar array, it attenuates the grating

lobes that would occur due to large spacing. Furthermore, since the array has two bands of

operation, the electrical distance between the stacked patches is different at f1 < f2, with

d1 < d2. Therefore, the grating lobes will be closer to the broadside direction (θ = 0). This

means that at f2 higher directivity is required than at f1.

In this direction, the metasurface was designed so that it exhibits an equivalence with

different dielectric permittivities at the two frequencies of operation, which means that

different directivities are obtained at each frequency. At f1 = 10.5 GHz and f2 = 13 GHz,

the designed MTS is equivalent to a dielectric slab of ϵr1 = 6 and ϵr2 = 10 respectively.

The simulated embedded pattern of the array showed that indeed the directivity at f2 is

enhanced by 2 dB reaching 16.8 dBi, whilst at f1 14.6 dBi are obtained. The attenuation of

the grating lobes is 12.6 dB at f1 and 10.6 dB at f2.

The concept of the MTS-based leaky-wave antennas, was again explored in the third

chapter; however unlike the previous two designs that were presented, in this design the

targeting frequencies were significantly lower being in the L-band. More specifically, an

array was developed as a candidate for the feed array of a large reflector used for a SAR

system for Earth observation in the L-band.

Following the strict specifications of the application such as low return loss, low cross

polarization with limitation in the spacing between the elements, several approaches to the

design of the feed array have been presented. For the excitation of the leaky-waves in the

resonant cavity, two antennas were proposed: a differentially fed patch antenna [97]–[99],
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and a magneto-electric dipole antenna [109], both being dual-polarization antennas. The

first consists of a patch antenna fed by four small coupling patches that are directly fed

by an external microwave circuit that provides 180o phase difference to the couplers by

pairs. Then the energy is coupled to the patch that radiates inside the resonant cavity. For

the second antenna, its upper part consists of two square-shaped electric dipoles, while

the vertical walls act like magnetic dipoles. This antenna does not need an external feed

circuit to provide low cross-polarization. Both antennas were designed to cover the band

1.215 GHz to 1.3 GHz.

The two excitation antennas were then combined with two types of metasurfaces. The

first MTS was a metallic grid printed on top of a very thin FR4 layer. This MTS was

designed following the equivalence with a dielectric slab [36], [37] as in previous chapters,

that in this case was chosen to have permittivity ϵr = 5. This value was chosen according

to the required directivity that would result to the specified taper level at 27o. Therefore,

the dimensions and periodicity of the grid were designed to fulfill said equivalence. The

second MTS, consisted of a complementary pattern printed on both sides of an FR4 layer.

The design of the complementary MTS was done by studying the reflection coefficient

of the unit cell to control the directivity achieved, and at the same time by taking under

consideration the positive phase gradient required to avoid single frequency resonance [42].

This second MTS provides more bandwidth.

Both MTSs were simulated and evaluated with the two excitation antennas as individual

elements, and then in a 3x3 planar array configuration to study the embedded radiation

patterns. The maximum inter-element distance allowed by the application is 1.25λ. This

limitation leads to deformed radiation patterns due to strong coupling between the elements.

Additionally, the MTS should be reflective enough to achieve directivity around 16 dBi,

in order to fulfill the taper specification (-10 to -12 dB) of the application. However, the

more reflective the MTS is, the stronger the coupling becomes and the radiation patterns

are more affected. To reduce the coupling we should reduce the reflectivity of the MTS,

but then the requirement for the taper would not be fulfilled.

The fabricated prototype consisting on the grid MTS and the differentially fed patch

antenna, validated the performance observed in the simulated array model. The inter-
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element spacing is not enough to achieve the pencil beam radiation patterns otherwise

obtained in this type of antennas. The S 11 was measured to be low, however it did not

reach the value of -20 dB as specified. Nonetheless, the cross polarization was maintained

in the required levels. The grid MTS was chosen to be fabricated due to the low losses it

exhibits, since the complementary MTS not only presented higher insertion losses, but it

did not fulfill the specifications of the application neither.

Design of groove gap waveguide innovative antennas

The second part of this thesis was focused on the design of antennas in groove gap

waveguide technology, that is a very good candidate for mm-wave band applications.

The first design with this technology was that of a vertical leaky-wave antenna array.

The basic element of the array is the groove gap waveguide leaky-wave antenna [162]. By

placing vertically four of these antennas one on top of the other, there is an enhancement

of +5 dB in the directivity. Compared to the single leaky-wave antenna element as well

as other gap waveguide based leaky-wave antennas [176]–[179], [183], the advantage of

directivity enhancement is combined with a pencil beam radiation pattern that is a novel

aspect in the leaky-wave antennas designed with this technology.

The total physical aperture of each of the stacked elements, is divided in three parts.

First, a feeding network is responsible for the equal coupling of energy to all the antennas.

The direct feeding is done only at the bottom (first) antenna, and then the energy is coupled

through rectangular shaped apertures. These apertures were placed on the common wall

separating the elements, in a progressive way.

The second part of each element, is the phase shifter. After coupling the energy to

all the antennas, the phase is corrected separately at each element. Maintaining the full-

metallic character of the design, the phase shifters were implemented by changing the

width of the groove waveguide with the pins. In this manner, a tailored correction of phase

can be achieved. Consequently, the radiation of all the elements is in-phase, and maximum

directivity is obtained.
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The third part of each element, is the radiating part. While for all the length of the

coupling and phase correction network, three lines of pins ensure that the radiation is

confined in the waveguide, in the last part, one row of pins allows partial leakage of

the energy to free space. Let us mention here that due to manufacturing simplification,

the three rows of EBG pins were substituted by two rows, without introducing radiation

leakage.

The designed antenna array has been examined experimentally with a fabricated

prototype. The experimental results confirmed the simulations. At the central frequency of

28 GHz, the measured realized gain is 23.68 dBi. As mentioned previously, the presented

array focuses the radiation at both the E and H planes, thus creating a pencil beam.

In addition, the measured radiation patterns of the E plane, showed that the maximum

radiation occurs at the broadside direction (θ = 0), proving that the phase shifters have the

desired performance correcting the phase at each element.

Due to the use of gap waveguide technology, the fabrication cost is reduced and the

mechanical requirements are more relaxed, since no direct electrical contact is required

between the different layers of the 3D structure. Each of the array elements was fabricated

in a single piece. The viability of a fully metallic structure that has low losses, and also

it achieves directivity enhancement simply by stacking the radiating elements, has been

demonstrated.

In the second chapter of this part, the design of a non dispersive leaky-wave antenna

in groove gap waveguide technology, was presented. Two structures are combined in the

presented design: a leaky-wave antenna and a metasurface prism. Both are implemented

in gap waveguide technology with the use of the hole unit-cell. Similar works have been

reported [178], [190], however they used the pin unit-cell whose main drawback is found

in high frequencies where the pins are very fragile and expensive.

The presented design covers the 25-30 GHz band. The antenna is formed when on one

lateral side the wall of the standard rectangular WR34 waveguide is replaced by two metal-

lic plates with glide symmetric holes on both. This higher symmetry structure, prohibits

the leakage of radiation between the plates in any direction, due to the electromagnetic

band gap created by the glide symmetric unit cell. Hence, no direct contact is required
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and the manufacturing can be simply made in two pieces. The other lateral side, has a

longitudinal slot that allows the leakage of radiation from the waveguide [173], thus the

leaky-wave antenna element is created. As a consequence, the size of the slot controls the

radiation.

The nature of the leaky-wave antenna is dispersive, meaning that the direction of

maximum radiation is changing depending on the frequency that propagates in the gap

waveguide. In order to manipulate the radiation direction to create a non-dispersive antenna,

a metasurface prism was added to the design. The prism is made of holes with a refractive

index that also changes with frequency in a complementary way to the leaky-wave antenna.

The resulting radiation angle of the simulated model showed only ±1.1o of variation around

a central angle, in comparison to ±4.65o of the antenna without the prism.

To validate the simulated results, a prototype was fabricated. Without the need of

physical contact due to the gap waveguide, the fabrication of the whole structure was made

in two plates (top and bottom), which is one of the advantages of this design. All the

components are metallic, making this type of antenna a good candidate for high frequencies,

where dielectric parts would have severe losses. In addition, the hole unit-cell apart from

having easier and less expensive fabrication than the pins, shows robustness even in high

frequency bands.

The experimental results, were in very good agreement with the simulated antenna. The

measured radiation patterns, showed very small change in the direction of maximum radia-

tion, achieving an overall ±1.5o of variation which is only 0.4o away from the simulated

results. Moreover, low cross polarization levels were measured.

The version of the holey-EBG groove gap waveguide, was again used in the third

chapter of this part, to implement an array of low profile horn antennas. The array consists

of a 6x6 configuration of dual-mode horn antennas. These horn antennas, achieve a uniform

field distribution compared to the standard pyramidal horn antennas, thus exhibiting higher

aperture efficiency. This is due to the simultaneous excitation of the T E10 and T E30 modes.

The feeding network is entirely made in groove gap waveguide technology, where

the band-gap was achieved using glide symmetrical holes. Because of the size of the

holes, the use of a corporate feeding network is not possible in this case. The horns are
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fed by transverse slots in a waveguide, forming linear arrays of an arbitrary number of

elements. This constitutes one row of the array. Then each row is fed centrally with

inclined longitudinal slots. The coupling through the inclined slots has been studied, and

equal division of the incoming energy has been achieved.

The simulated results showed 30.7 dBi of maximum directivity and 30.4 dBi realized

gain at 38 GHz, having 89% aperture efficiency. To validate the simulated results, a

prototype was manufactured. The experimental results showed excellent agreement with

the simulated ones. The measured realized gain reaches 29.3 dBi at 38 GHz. The difference

of 1.4 dBi in the realized gain, can be attributed to ohmic loses that were not included in

the simulations, or even not tightly enough connection of the feeding transition.

The example design was a 6x6 array; however the number of elements of each row

and also the number of rows can be easily changed in order to design an array of NxM

elements.

The idea behind this design was to implement an array where the losses are minimized

as much as possible. This array with a feed network implemented in groove gap waveguide

technology, fulfills the low losses requirement, as this version of gap waveguide has the

lowest losses.
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Future Work

This section presents future work guidelines regarding the designs and design method-

ologies that have been developed during this thesis.

With respect to the Fabry-Pérot leaky-wave antennas that were presented, the method-

ology that was developed could be implemented using other geometries of the MTS unit

cell instead of the double square ring. Moreover, the leaky-wave thinned array could be

measured experimentally and also it could be studied in order to use it for beam scanning

applications. It could be also interesting to use the same methodology to design MTSs

for circular polarization. Regarding the L-band MTS-based leaky-wave array that was

presented, it could be used in applications that allow for larger inter-element distance.

With respect to the groove gap waveguide designs that were presented, all these

antennas could be directly scaled in frequency, since they only consist on metallic parts.

Furthermore, in the case of the stacked leaky-wave array, more elements could be used.

The same concept of stacked array could be implemented with the non dispersive antennas

in the same technology as the one presented in this thesis. For this particular antenna,

future work could consists on better control over the tapering of the aperture to reduce the

side lobes. Lastly, when revisiting the low profile horn antennas array that was presented,

the bandwidth could be improved, since the design that was presented has very narrow

band. This was due to the fact that it is a resonant structure, and more specifically the

kind of the feeding slots was the responsible for the narrow band. Therefore, in future

re-investigations of this design, using feed networks based on slotted waveguides with

travelling waves could be studied. In addition, a polarizer could be also added in this

design.
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