694 research outputs found

    Current-efficient preamplifier architecture for CMRR sensitive neural recording applications

    Get PDF
    Este trabajo fue parcialmente financiado por CSIC (Comisión Sectorial de Investigación Científica, Uruguay), ANII (Agencia Nacional de Investigación e Innovación, Uruguay) y CAP (Comisión Académica de Posgrado, Uruguay).There are neural recording applications in which the amplitude of common-mode interfering signals is several orders of magnitude higher than the amplitude of the signals of interest. This challenging situation for neural amplifiers occurs, among other applications, in neural recordings of weakly electric fish or nerve activity recordings made with cuff electrodes. This paper reports an integrated neural amplifier architecture targeting invivo recording of local field potentials and unitary signals from the brain stem of a weakly electric fish Gymnotus omarorum. The proposed architecture offers low noise, high common-mode rejection ratio (CMRR), current-efficiency, and a high-pass frequency fixed without MOS pseudoresistors. The main contributions of this work are the overall architecture coupled with an efficient and simple single-stage circuit for the amplifier main transconductor, and the ability of the amplifier to acquire biopotential signals from high-amplitude common-mode interference in an unshielded environment. A fully-integrated neural preamplifier, which performs well in line with the state-of-the-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 μm CMOS process. Results from measurements show that the gain is 49.5 dB, the bandwidth ranges from 13 Hz to 9.8 kHz, the equivalent input noise is 1.88 μVrms, the CMRR is 87 dB and the Noise Efficiency Factor is 2.1. In addition, in-vivo recordings of weakly electric fish neural activity performed by the proposed amplifier are introduced and favorably compared with those of a commercial laboratory instrumentation system

    Design and Implementation of a Signal Conditioning Operational Amplifier for a Reflective Object Sensor

    Get PDF
    Industrial systems often require the acquisition of real-world analog signals for several applications. Various physical phenomena such as displacement, pressure, temperature, light intensity, etc. are measured by sensors, which is a type of transducer, and then converted into a corresponding electrical signal. The electrical signal obtained from the sensor, usually a few tens mV in magnitude, is subsequently conditioned by means of amplification, filtering, range matching, isolation etc., so that the signal can be rendered for further processing and data extraction. This thesis presents the design and implementation of a general purpose op amp used to condition a reflective object sensor’s output. The op amp is used in a non-inverting configuration, as a current-to-voltage converter to transform a phototransistor current into a usable voltage. The op amp has been implemented using CMOS architecture and fabricated in AMI 0.5-µm CMOS process available through MOSIS. The thesis begins with an overview of the various circuits involving op amps used in signal conditioning circuits. Owing to the vast number of applications for sensor signal conditioning circuits, a brief discussion of an industrial sensor circuit is also illustrated. This is followed by the complete design of the op amp and its implementation in the data acquisition circuit. The op amp is then characterized using simulation results. Finally, the test setup and the measurement results are presented. The thesis concludes with an overview of some possible future work on the sensor-op amp data acquisition circuit

    A 0.3V Rail-to-Rail Three-Stage OTA With High DC Gain and Improved Robustness to PVT Variations

    Get PDF
    This paper presents a novel 0.3V rail-to-rail body-driven three-stage operational transconductance amplifier (OTA). The proposed OTA architecture allows achieving high DC gain in spite of the bulk-driven input. This is due to the doubled body transconductance at the first and third stages, and to a high gain, gate-driven second stage. The bias current in each branch of the OTA is accurately set through gate-driven or bulk-driven current mirrors, thus guaranteeing an outstanding stability of main OTA performance parameters to PVT variations. In the first stage, the input signals drive the bulk terminals of both NMOS and PMOS transistors in a complementary fashion, allowing a rail-to-rail input common mode range (ICMR). The second stage is a gate-driven, complementary pseudo-differential stage with an high DC gain and a local CMFB. The third stage implements the differential-to-single-ended conversion through a body-driven complementary pseudo-differential pair and a gate-driven current mirror. Thanks to the adoption of two fully differential stages with common mode feedback (CMFB) loop, the common-mode rejection ratio (CMRR) in typical conditions is greatly improved with respect to other ultra-low-voltage (ULV) bulk-driven OTAs. The OTA has been fabricated in a commercial 130nm CMOS process from STMicroelectronics. Its area is about 0.002 mm2 , and power consumption is less than 35nW at the supply-voltage of 0.3V. With a load capacitance of 35pF, the OTA exhibits a DC gain and a unity-gain frequency of about 85dB and 10kHz, respectively

    Low Power Bio-potential Amplifier (for EEG)

    Get PDF
    The size and dependency on power supply of current biopotential data acquisition systems prohibit continuous monitoring of biopotential signals through battery powered devices. As the interest in continuous monitoring of EEG increases for healthcare and research purposes such as seizure detection, there is an increasing need to bring down the power consumption on the biopotential amplifier (BPA). BPA is one of the most power consuming components in the biopotential data acquisition system. In this FYP, we will develop a method to improve the existing BPA using MIMOS 0.35um process technology through implementation of various low power flicker noise cancelation techniques. Techniques used include low impedance node chopping and non-overlapping demodulation chopping. The scope of this FYP is focusing on design and simulation on Cadence software in circuit level implementation. This work provides insights as well as a starting point in lowering the power consumption of bio-potential data acquisition system. This will help to enable battery power system for continuous monitoring of EEG signals in the future. This final report discusses on both the literature review, background of the projects and methodology as well as the outcome of the work. The report is concluded by suggesting future works that can be carried out in this final year project (FYP)

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    A Power-Efficient Bio-Potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Applications

    Get PDF
    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery

    Performance enhancement in the desing of amplifier and amplifier-less circuits in modern CMOS technologies.

    Get PDF
    In the context of nowadays CMOS technology downscaling and the increasing demand of high performance electronics by industry and consumers, analog design has become a major challenge. On the one hand, beyond others, amplifiers have traditionally been a key cell for many analog systems whose overall performance strongly depends on those of the amplifier. Consequently, still today, achieving high performance amplifiers is essential. On the other hand, due to the increasing difficulty in achieving high performance amplifiers in downscaled modern technologies, a different research line that replaces the amplifier by other more easily achievable cells appears: the so called amplifier-less techniques. This thesis explores and contributes to both philosophies. Specifically, a lowvoltage differential input pair is proposed, with which three multistage amplifiers in the state of art are designed, analysed and tested. Moreover, a structure for the implementation of differential switched capacitor circuits, specially suitable for comparator-based circuits, that features lower distortion and less noise than the classical differential structures is proposed, an, as a proof of concept, implemented in a ΔΣ modulator

    A 122 fps, 1 MHz bandwidth multi-frequency wearable EIT belt featuring novel active electrode architecture for neonatal thorax vital sign monitoring

    Get PDF
    A highly integrated, wearable electrical impedance tomography (EIT) belt for neonatal thorax vital multiple sign monitoring is presented. The belt has sixteen active electrodes. Each has an application specific integrated circuit (ASIC) connected to an electrode. The ASIC contains a fully differential current driver, a high-performance instrumentation amplifier (IA), a digital controller and multiplexors. The wearable EIT belt features a new active electrode architecture that allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It provides intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio. The ASIC was designed in a CMOS 0.35-μm high-voltage technology. The high specification EIT belt has an image frame rate of 122 fps, a wide operating bandwidth of 1 MHz and multi-frequency operation. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1o variation across all possible channels. The image results confirmed the advantage of the new active electrode architecture and the benefit of wideband, multi-frequency EIT operation. The wearable EIT belt can also detect patient position and torso shape information using a MEMS sensor interfaced to each ASIC. The system successfully captured high quality lung respiration EIT images, breathing cycle and heart rate

    Enhanced ICMR amplifier for high CMRR biopotential recordings

    Get PDF
    PostprintThis paper presents an integrated biopotential preamplifier architecture targeting applications that simultaneously require high common-mode rejection ratio (CMRR), low noise, high input common-mode range (ICMR), and current-efficiency (low Noise Efficiency Factor or NEF). A biopotential preamplifier, which performs well in line with the state-of-the-art of the field while providing enhanced ICMR and CMRR performance, was fabricated in a 0.5 μm CMOS process. Results from measurements show that the gain is 47 dB, the bandwidth ranges from 1 Hz to 7.7 kHz, the equivalent input noise is 1.8 μV rms , the CMRR is 100.5 dB, the ICMR is 1.7 V and the NEF is 3.2
    • …
    corecore