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ABSTRACT 

Industrial systems often require the acquisition of real-world analog signals for several 

applications.  Various physical phenomena such as displacement, pressure, temperature, light 

intensity, etc. are measured by sensors, which is a type of transducer, and then converted into a 

corresponding electrical signal. The electrical signal obtained from the sensor, usually a few tens 

mV in magnitude, is subsequently conditioned by means of amplification, filtering, range 

matching, isolation etc., so that the signal can be rendered for further processing and data 

extraction. 

 
This thesis presents the design and implementation of a general purpose op amp used to 

condition a reflective object sensor’s output. The op amp is used in a non-inverting 

configuration, as a current-to-voltage converter to transform a phototransistor current into a 

usable voltage. The op amp has been implemented using CMOS architecture and fabricated in a 

0.5-µm CMOS process available through MOSIS.  

 
The thesis begins with an overview of the various circuits involving op amps used in signal 

conditioning circuits. Owing to the vast number of applications for sensor signal conditioning 

circuits, a brief discussion of an industrial sensor circuit is also illustrated. This is followed by 

the complete design of the op amp and its implementation in the data acquisition circuit. The op 

amp is then characterized using simulation results. Finally, the test setup and the measurement 

results are presented. The thesis concludes with an overview of some possible future work on the 

sensor-op amp data acquisition circuit.  
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CHAPTER I Introduction 
 

1.1 Motivation  
 
A sensor is a device that receives a signal or stimulus and responds with an electrical signal. 

Sensors are often used to measure various physical properties such as temperature, force, 

position, pressure, light intensity, etc. These signals act as stimulus to the sensor, and the sensor 

output is conditioned and processed to provide the corresponding measurement of the physical 

property. The full-scale outputs of most sensors are relatively small voltages, currents, or 

resistance changes, and therefore their outputs must be properly conditioned before further 

analog or digital processing can occur. Another important reason for the need for signal 

conditioning blocks in any data acquisition or measurement system is the non-linearity of the 

sensor outputs with respect to the applied stimulus. Some of the most fundamental signal-

conditioning functions include amplification, level translation, linearization, filtering, impedance 

transformation and range matching. 

 
Industrial processes often employ sensors in process control systems as a means to measure 

physical quantities. Conditioning the signal obtained from the sensor is of utmost importance for 

achieving maximum information out of the signal. In spite of the variety of sensors and their 

outputs, the ever-so versatile operational amplifiers (op amps) successfully serve as an efficient 

signal conditioning circuit in most analog/mixed-signal systems. Op amp characteristics such as 

high input impedance, low input bias current, minimal common-mode gain, high gain-

bandwidth, low operating power, low output impedance, and the flexibility offered by this device 

make it highly conducive for using it as a signal conditioning element. Also, higher levels of 

integration now allow ICs to incorporate more complex circuits on a single chip. Integrating an 

op amp with high performance ADCs is relatively easy thereby facilitating the need to have 

outputs in a digitized format for processing/storage by a computer or a processing unit. The 

flexibility of op amps thus helps in minimizing the external conditioning circuit inventory. With 

this motivation, an op amp is the ultimate choice to function as a signal conditioning block for 

fine-tuning the output of a reflective object sensor and subsequently interfacing it with an ADC 

to obtain a digitized output for valuable data extraction and interpretation. 
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1.2 Scope of the Thesis 
    
The purpose of this work is to design and implement an operational amplifier that functions as a 

signal conditioning circuit for a reflective object sensor’s output signal. Specifically, the op amp 

is designed to be a general purpose signal conditioning block in any measurement or process 

control system. The op amp configuration and performance in the circuit will be governed by the 

electrical character of the sensor and its output. Thus, for instance, high impedance sensors such 

as reflective object sensors, using the op amp as a current-to-voltage converter will prove to be a 

better signal processing circuit whereas implementing an instrumentation amplifier will be useful 

for resistive bridge sensors. However, in both cases, assuming that the op amp parameters like 

gain, slew rate, bandwidth, and offset voltage requirement is the same, then the op amp design 

remains invariably the same but just the manner in which it is configured will be different for 

different sensors. Table 1.1 lists the requirements set for the design of this op amp. 

 

1.3 Organization of the Thesis 

Chapter 2 commences with a brief overview of the fundamentals of operational amplifiers. It is 

further supplemented by some circuits denoting the use of op amps in various configurations 

depending upon the electrical characteristics of the sensor and its output. 

 
Chapter 3 outlines the complete schematic of the designed op amp in detail. The operation of the 

complete op amp is discussed along with the different circuits used for its characterization. The 

characterization is documented by means of simulation and the results are shown. 

 

 

 

 

 

 

 
 

Table 1.1 Op amp Specifications 

 

Parameter Specification 
Gain Bandwidth > 1 MHz 
Capacitive Load  50 pF 

Minimum Input Common Mode Voltage  0 V 
CMRR > 60 dB  
PSRR  > 60 dB 

Slew Rate > 1 V/µs 
Open Loop Voltage Gain (AOL)  > 80 dB 
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Chapter 4 presents the measured results of the op amp as well as those of the complete system. 

The test setup for each measurement is also described in this section. 

 
Chapter 5 discusses the system application of the data processing system. The sensor is 

interfaced with the op amp, configured as an I-to-V converter. The output of the op amp is an 

amplified signal of the low sensor output signal. This op amp signal is hence useful for further 

digital processing through the use of ADCs. 

 
Chapter 6 concludes the thesis highlighting the results and also describing some future work that 

can be done for improving the system. 
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CHAPTER II Sensor Signal Conditioning 
       
This chapter begins with an overview of the fundamentals of the operational amplifier and its 

performance parameters. It is followed by a detailed discussion of the application of op amps in 

different sensor signal conditioning circuits. The purpose of this discussion is to highlight the 

flexibility and versatility of op amps as universal analog signal conditioning blocks. The chapter 

is concluded by a brief overview of an industrial sensor employed for the purpose of 

position/distance measurement. 

2.1 Operational Amplifiers – Fundamentals 

Ideal operational amplifiers are functional blocks that are characterized by infinite voltage gain, 

infinite input resistance, zero output resistance, infinite bandwidth and zero input bias current 

[1]. However, in real world applications, practical op amps can only approach these 

characteristics. Circuits built using an op amp operate in a stable closed loop configuration by 

utilizing the advantages of negative feedback efficiently. Fig. 2.1 illustrates a functional block 

diagram of a basic operational amplifier. The input stage, a differential pair, provides the 

required gain to the input signal and feeds the output signal to the subsequent gain stage of the op 

amp. The output of the differential stage can be single-ended or differential. The second stage is 

usually an inverting stage and can offer high gain as well as differential-to-single ended 

conversion (if necessary). Occasionally, some op amps also have a buffer/output stage that is 

used to drive resistive loads and high capacitive loads. If included, this stage determines the 

output swing of the ultimate output signal produced by the op amp. The biasing circuitry 

provides a stable, quiescent operating point for the entire circuit. Although negative feedback 

ensures stable operation of the op amp, compensation is used to ensure frequency stability, and 

improve the op amp characteristics as desired.  

 

Several parameters help us characterize the op amp. Open-loop gain, small-signal bandwidth, 

settling time, slew rate, PSRR, and CMRR are some of the parameters that give us a measure of 

the performance of the op amp. The ability of the op amp to provide an accurate closed-loop gain 

is governed by the open-loop gain (AOL).  
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Figure 2.1 Basic operational amplifier 

 

Slew Rate is the maximum rate of change of output voltage. PSRR indicates the ability of an op 

amp to withstand the variation in power supply voltage. The frequency response of a circuit is 

characterized by the small-signal bandwidth, phase margin, settling time, and the large signal 

bandwidth. All these parameters including several others are discussed in the following chapters 

in detail. 
 

2.2 Signal Conditioning Applications 
 
Different applications often require the need to measure different physical entities from the real 

world. Examples include distance, position, light intensity, and temperature. Every class of 

sensor has different electrical characteristics than the other. Also, the form of output may also 

vary, i.e. some may have a current output while some may generate voltage. However, one 

aspect shared by all sensors is the weak output signal generated by them. Sensor outputs usually 

range from few hundreds of µV/µA to tens of mV/mA. Such weak signals need to be 

conditioned before which they can be utilized to generate useful data. The versatility and 

flexibility of op amps make them a valuable component of signal conditioning circuits for such 

weak output signals obtained from sensors.  
 

As stated earlier, the electrical nature of the sensor output differs from one sensor to the other. In 

most cases, the principle of operation of the sensor determines the nature of sensor output. The 

nature of the sensor output determines the op amp requirement. Thus, depending on the sensor 
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output, an op amp can be designed in different configurations to achieve the maximum 

information out of the sensor output. The following examples are an attempt to understand this 

very fact. 

2.2.1 Semiconductor Temperature Sensors 

Modern semiconductor temperature sensors offer high accuracy and high linearity over an 

operating range of about -55°C to +150°C. Typically, semiconductor temperature sensors make 

use of the relationship between a bipolar junction transistor’s (BJT) base-emitter voltage to its 

collector current [2], 

                                             (2.1) 
 
Where k is the Boltzmann’s constant, T is the absolute temperature, q is the charge of an 

electron, and IS is a current related to the geometry and temperature of the transistors. (This 

equation assumes a voltage of at least a few hundred mV on the collector and ignores Early 

effect.) The dependence of the base-emitter voltage on IS, and hence temperature renders the 

direct application of this equation useless [2]. However, if we take ‘N’ transistors identical to the 

first as seen in Figure 2.2, and allow equal currents flowing in one BJT, as well as the N similar 

BJTs, then the difference between the respective base-emitter voltages (or ΔVBE) is proportional 

to absolute temperature and is independent of IS [2]. 

                                                                (2.2) 

 
Figure 2.2 Basic Relationships for BJT-based semiconductor temperature sensors 
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                                            (2.3) 

As evident from the equation above, ΔVBE is dependent only on the transistor emitter area ratio N 

and the absolute temperature T. The only variable here being T as N is fixed for a given design. 

The equation above is implemented as shown in the Figure 2.3 and is popularly known as the 

“Brokaw Cell”, after its inventor [2]. 

 
As seen in the circuit across resistor R2,   

                         (2.4) 

and the emitter current through Q2 is ΔVBE/R2. The op amp’s servo loop and the two resistors ‘R’ 

force an identical current to flow through Q1.  

 
The corresponding voltage developed across R1 is VPTAT, a voltage proportional to absolute 

temperature (PTAT). This is given by, 

                                                  (2.5) 

 
Figure 2.3 Brokaw Cell [2] 

7



As seen from the circuit [2], VBANDGAP which appears at the base of Q1 is the sum of VBE(Q1) and 

VPTAT. The voltage VBE(Q1) is complementary to absolute temperature (CTAT), and summing it 

with a properly proportioned VPTAT across R1 gives a bandgap voltage approximately constant 

with respect to temperature.  If designed appropriately – proper choice of  ratio and N – such 

that VBANDGAP is equal to the silicon bandgap voltage of 1.205 V, then the voltage is independent 

of temperature. Note that this circuit is useful as a basic silicon-based temperature sensor taking 

direct or scaled use of the VPTAT voltage. 

2.2.2 High Impedance Charge Output Sensors 
 
Piezoelectricity is the ability of some materials to generate an electric field in response to applied 

mechanical strain. Sensors operating on this piezoelectric effect are called piezoelectric sensors. 

These are high impedance transducers and require an amplifier that converts a transfer of charge 

into a voltage change. Thus, depending on the nature of the output of the piezoelectric sensor, an 

op amp is configured as a charge sensitive amplifier as shown in Figure 2.4. 
 

As seen from the circuit diagram, the op amp is, simply stated, an inverting integrator. 

Connecting the op amp as an integrator helps perform a time integration of the electric current, 

thus measuring a total electric charge. It acts as an amplifier whose equivalent input impedance 

is a capacitive reactance that is very high at low frequencies. Thus, the current integrator 

basically obtains a voltage proportional to the charge and provides a low output impedance.  

 

 
 

Figure 2.4 Charge Amplifier [2] 
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There are two types of charge transducers: capacitive and charge-emitting [2]. In a capacitive 

transducer, the voltage across the capacitor (VC) is held constant. The change in capacitance, ΔC, 

produces a change in charge, given by [2] 

                                                              ΔQ = ΔC•VC                                         (2.6) 

This charge is transferred to the op amp as a voltage, given by 

                                                            (2.7) 

Charge-emitting transducers produce an output charge, ΔQ, and their output capacitance remains 

constant. This charge would normally produce an open-circuit output voltage ΔQ/C [2]. 

However, due to virtual ground effect of the op amp, the charge transferred to capacitor C2 

produces an output voltage given by [2] 

             (2.8) 

The upper cut-off frequency is dominated by the feedback RC network while the lower cut-off 

frequency is dominated by the input RC network. 

                           (2.9) 

                         (2.10) 

2.2.3 Resistive Bridge Sensors 

Resistive elements are some of the most common sensors. They are inexpensive and relatively 

easy to interface with signal-conditioning circuits. Resistive elements can be made sensitive to 

temperature, strain, and light. Thus, physical phenomena such as fluid or mass flow, dew-point 

humidity, etc. can be measured using resistive elements. The most common and easiest method 

for measuring small resistance changes accurately is by the use of a resistance bridge. A basic 

Wheatstone bridge is a prime example of a resistance bridge [2]. 

 
A basic bridge amplifier, as shown in Figure 2.5, may be used to amplify the output of a single-

element varying resistive bridge. This circuit is relatively simple wherein the output from two 

nodes of the balanced bridge is fed differentially to the op amp. Under balanced condition, 

assuming matched resistors, the common-mode signal should be rejected by the op amp resulting 

in zero output at the op amp [2].  
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Figure 2.5 a single op amp Bridge Amplifier [2] 

 

However, resistor matching is difficult to achieve resulting in poor common mode rejection 

(CMR). Also, loading due to RF and the op amp bias current also results in poor accuracy. 

Dependance of gain upon the bridge resistances and RF results in non-linear output [2]. 

 
A much better approach is to use an instrumentation amplifier for the required gain, as shown in 

Figure 2.6 [2]. The gain of the op amp is set with a single resistor, RG. Since, the amplifier 

provides dual, high-impedance loading to the bridge nodes, it does not unbalance or load the 

bridge. This circuit not only provides better accuracy but also helps the common mode rejection.  
 

Using Kirchoff’s current law around the resistive bridge, the output voltage for the bridge can be 

found. This output voltage of the resistive bridge when fed to the input of the op amp is 

amplified by the gain of the op amp to yield the output signal, 
 

                                                     (2.11) 

 

The bridge, as seen from the figure, is voltage driven by the voltage VB [2]. This voltage can 

optionally be used for an ADC reference voltage, in which case it also is an additional output, 

VREF [2]. 
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Figure 2.5 Instrumentation amplifier used for Bridge network [2] 

 

 2.3 Industrial Sensor Illustration 

This section gives an example of an industrial sensor being employed in the industry currently 

for the purpose of distance measurement. Different modules operate simultaneously along the 

assembly line in order to build a final product. Consider a production plant involved in the 

manufacturing of the Pull-Ups® Training pants. The product manufacturing involves the base 

outer cover poly running along the conveyor from the start of the machine line. Different 

modules like the Super-Absorbent Material (SAM), fluff forming module, waist elastic 

applicator module, along with several others, then perform operations on the poly to ensure 

smooth build-up of the product, layer-by-layer. The final product is then packaged at the end of 

the line and delivered in boxes. However, in order to ensure flawless manufacturing of the 

product, the raw materials flowing along the conveyor have to be monitored continuously so as 

to adhere to the standards of the product. This monitoring involves the use of distance 

measurement sensors, infrared sensors, gray checkers, and opacity sensors.  

 
A distance measurement sensor is illustrated in the Figure 2.6 [3] below. A short electrical pulse 

drives a semiconductor laser diode to emit a pulse of light. The emitted light is collimated 

through a lens, which produces a very narrow laser beam. The laser beam bounces off the target, 

scattering some of its light through the sensor’s receiving lens to a photodiode, which creates an 

electrical pulse [3]. The time interval between the transmitted and received electrical pulses is 

used to calculate the distance to the target, using the speed of light as a constant [3].  
11



 

 
Figure 2.6 Time-of-Flight Sensor (Distance Measurement) [3] 

 

This measurement technique is used to control the rate for unwinding the outer cover poly of the 

spindle. Assuming that the sensor is situated somewhere along the rim of the disc, longer the 

time required by the laser beam to reflect back from the circumference of the cloth poly implies a 

smaller diameter of the cloth unwind and hence lower the rate of rotation of the spindle. As seen 

from the example above, industrial applications often employ sensors to measure different 

physical phenomena for process control. Also, as shown in the previous sections of this chapter, 

an op amp is a highly versatile and flexible component which can be utilized for the 

implementation of such data acquisition systems easily. Thus, the following chapter discusses the 

design of such an op map which is used for processing the signal obtained from a reflective 

object sensor. 
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CHAPTER III  Op Amp Design 
 
This chapter discusses the design and implementation of the general purpose op amp in full 

detail. The chapter begins with an analysis of the complete op amp schematic which is followed 

by the derivation and explanation of the various performance parameters of the op amp. The last 

section of the chapter consists of the simulation results and presents the layout and 

implementation of the design. 

3.1 Op Amp Architecture  

The ultimate goal of any system is for it to produce the desired end results which are termed as 

specifications or design requirements. For an op amp design, the procedure is an iterative process 

which involves selection of an appropriate architecture followed by correct device sizing. The 

design is then tested rigorously via simulation to ensure that it is achieving its goal of meeting 

the required specifications. The design requirements listed in Table 1.1 are considered in detail to 

devise the architecture.  

3.1.1 Input Stage 
 
The input stage of any op amp is usually dictated by noise, input common-mode range and gain. 

The purpose of this op amp is to serve as a signal conditioning component in process control 

systems or data acquisition systems. Thus, the architecture was attempted to be as simple as 

possible so as to meet the specifications for the design. Topologies such as single-ended stage, 

simple differential stage, differential-cascode and folded-cascode are commonly used as input 

stages.  
 
Bearing in mind the principal function of the op amp being to sense the weak sensor signal, it is 

logical for the CMOS differential input pair to be ground sensing. Since the PMOS device is a 

true-ground device, the op amp should have a PMOS input pair to ensure a minimum input 

common range voltage of 0 V. Although various input stages comprising of differential cascode 

and folded cascode offer advantages such as high output impedance, high gain and good ICMR, 

wide output swing, respectively, repetitive iterations of the op amp schematic with a simple 

single-ended output for the input stage helped us achieve all the specifications that were laid out 

before the start of the design.  
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Thus, after meeting all the requirements of the design and keeping simplicity in focus, a single-

ended PMOS differential input pair was selected as the input stage of the op amp. 

3.1.2 Output Stage 
 
The important criteria for designing an output stage are good current driving capability, low 

power dissipation, high gain delivering ability, and good stability. The output stage used in this 

op amp employs a single output NMOS transistor driven by two PMOS transistors in the output 

leg of the op amp. It is a class-A type of output stage. Pole splitting [4] has been used as the 

compensation technique for asserting the dominant pole of the system. Since the introduction of 

additional capacitance on the output transistor introduces a virtual zero due to Miller capacitance, 

an NMOS-modeled resistor is also connected in the feedback path of the output transistor. The 

op amp is designed to drive a load of 50 pF.  

3.1.3 Current Mirror 
 
The current mirror used in this op amp is a wide-swing cascode circuit known as the Sooch 

current mirror (named after its inventor). Refer Figure 3.1 for the Sooch current mirror. The 

major advantages of using this current mirror is the elimination of the possibility of mismatch 

between the two branch currents and thus, reduce power consumption. This is achieved by 

maintaining the desired difference between the gate voltages of P7 and P8 of one overdrive 

voltage, Vov. In order to achieve this, it is required to bias M1 at the active region and 

subsequently requiring gate voltages of P7 and P8 to be Vt + Vov and Vt + 2Vov respectively [5]. As 

shown in Figure 3.1, since P12 is diode connected, it operates in the saturation region. Since the 

gate-source voltage of P12 is equal to the gate-drain voltage of P11, a channel exists at the drain of 

P11 when it exists at the source of P12. In other words, P12 forces P11 to operate in the triode 

region [5].  

 

To obtain the drain-source voltage of P11 to be Vov, we need to design the aspect-ratio of the 

transistors appropriately. Since P12 operates in the active region, 

                                     (3.1) 
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Figure 3.1 Sooch current mirror [5] 

Since P11 operates in the triode region, 

                  (3.2) 

The goal is to set [5] 

                                                      (3.3) 

when 

                                                (3.4) 

From eqn. (3.3) and (3.4),  

                                (3.5) 

Substituting eqn. (3.2) – (3.5) into eqn. (3.1) gives, 

                  (3.6) 

which is further simplified to [5], 

                                              (3.7) 
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3.2  Complete Schematic 
 
The complete schematic of the designed op amp is shown in figure 3.2. The input stage of the op 

amp consists of PMOS differential input pair transistors P1 and P2 loaded by current mirror N2 

and N3. A cascode tail current source consisting of PMOS transistors P5 and P6 is utilized for the 

differential input pair. The external current bias of 30 µA is used to set the current in the 

reference branch of the Sooch current mirror. The op amp has a class-A output stage consisting 

of a simple common-source amplifier with a cascode current source load. The output transistor 

N1 is biased by the output of the input stage. Frequency compensation is implemented using 

Miller capacitor C1 and its corresponding zero-nulling active resistor N6. This tracking 

compensation is biased by NMOS transistors N4 and N5. The performance parameters of the op 

amp are analyzed in this section. 

3.2.1  Open-loop Gain 
 
An expression for the mid-band gain of the op amp can be derived by considering the gain of the 

individual stages such as the input and output stages. The mid-band gain seen by the inputs to the 

input stage is symmetrical and can be expressed as, 

                               (3.8) 

Due to the matching of P1 and P2, 

                                             (3.9) 

The output impedance of the output stage is given as,  

                                  (3.10) 

The voltage gain of the output stage is thus given by,  

         (3.11) 

Thus, the overall mid-band gain offered by the op amp is equal in magnitude for both differential 

inputs and the overall gain is given by, 

    (3.12) 

Using appropriate values for gm and ro, the open loop-gain of the op amp is calculated in 

Appendix, A.1. 
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Figure 3.2 Complete schematic of the op amp 
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3.2.2  Frequency Compensation 
 
As seen in figure 3.2, the op amp has bandwidth-limiting pole at the drain of N1/P4. Frequency 

compensation is provided using a pole-splitting Miller capacitor and its corresponding zero-

nulling MOS active resistor. The value of the compensation capacitor is found using the 

requirement for frequency stability, as in [6] 

                                        (3.13) 

where and are the transconductances of the output drivers,  is the output node 

capacitance and CL is the load capacitance. The value of the zero-nulling resistor needs to be 

maintained across any variation in process, temperature, and supply voltage (PTS) in order to 

ensure that the pole-zero doublet does not adversely impact the settling time of the op amp [7, 8]. 

The tracking compensation implemented here [7] enables effective biasing of the active resistor 

across any variation in PTS. The value of the active resistor is made to track the gm of N1. This is 

achieved through careful device sizing and careful device matching of N1, N2, and N4 with N6. 

The pole-zero cancellation is a function of device sizes and the relative values of the bias 

currents and capacitors that can be controlled by careful matching. Hence, the value of the active 

resistor is independent of variations in process, temperature, and supply voltage.  

3.2.3  Input Common Mode Range 
 
The PMOS differential input pairs provide the feasibility to extend the lower ICMR to VSS. This 

is of prime importance in this application considering that the op amp is designed to sense the 

very low output signals of sensors. Connecting the substrates of the input devices to VDD also 

improves the ICMR by increasing the threshold devices due to body effect. The minimum value 

of the input common mode range is given by, 

 

 
                (3.14) 

From (3.14), it is evident that threshold voltage impacts the lower limit of ICMR. Note that 

VICMR,min approaches VSS. 
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The maximum limit of ICMR is determined by the VSG of the input pair and the tail current 

source bias. It can be expressed as, 

 
 (3.15) 

For a 5-V VDD, VICMR,max should exceed mid-supply. 

3.2.4  Noise 

The input stage dominates the noise of the op amp. PMOS devices offer lower flicker noise 

which is advantageous in our op amp design. Also, the noise component of the load devices is 

scaled by the ratio of their transconductance to that of the input pair devices. So, the 

transconductance of the input differential pair needs to be larger than that of the load pair in 

order to ensure low input-referred noise. There exists a trade-off between noise and the output 

swing of the stage. Generally, the overdrive voltage of the current loads is minimized to realize a 

wide output swing, but for a fixed current bias this increases the transconductance (due to 

increased W) and thereby results in a larger input-referred noise.  

 
A quick estimate on the equivalent input noise of the op amp can be performed by considering 

the noise of the input stage. The noise generated by subsequent stages is reduced by the gain of 

the differential-input stage when referred to the input. Those noise stages can therefore be 

neglected for hand analysis. Referring to Figure 3.2, considerable noise is contributed by the 

input devices of P1 and P2 and the current loads of N2 and N3, while the tail current source noise 

is neglected in the differential-mode analysis. The total thermal and flicker noises of the devices 

is referred to the input to obtain the equivalent input noise as [7, 9],  

(3.16) 

where k is the Boltzmann constant, T is the absolute temperature, and are the 

transconductances of the transistors P1 and N2 respectively, KN and KP are the process-dependant 

flicker noise coefficients of NMOS and PMOS devices respectively and W, L is the width and 

length of P1 and N2.  
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3.2.5  Slew Rate 
 
The Slew Rate of the op amp can be represented as [7], 

                                                  (3.17) 

where Itail is the total current supplied to the input differential pair and CC is the compensation 

capacitor.  

3.3  Simulation Results 
 
Simulations were performed using Spectre in order to verify and characterize the performance of 

the op amp. The circuits used for each characterization are identical to those used in testing and 

are discussed in-depth in Chapter 4. The results presented here are from simulations of the 

extracted layout, with a 50 pF load, using the BSIM3v3 typical corner models for this 0.5-µm 

process and with a supply voltage of 5 V. 

 
Figure 3.3 presents the ICMR variation plot across the input voltage. The op amp is in unity-gain 

non-inverting configuration and VDD/VSS is ± 2.5 V. It can be seen that the op amp is ground 

sensing and the upper ICMR value decreases with increasing input voltage. Figure 3.4 shows the 

open-loop gain and the phase plot for the frequency compensated op amp. As seen from the 

figure, the AOL is 88 dB with a UGBW of 3 MHz and a phase margin of 86°. The response to 

small-signal transient inputs is presented in Figure 3.5 and Figure 3.6. The simulated rise time 

and fall time are 165 ns and 139 ns respectively. Figure 3.7 and Figure 3.8 show the large-signal 

response of the op amp. 

 
Op amp characterizations such as offset voltage, PSRR, and CMRR can also be done using 

BSIM3 models for this 0.5-µm process. However, the simulation results obtained will be highly 

optimistic values rather than being realistic. Monte Carlo simulations with a ±3σ variation in the 

threshold and process parameters should be performed to get those results. However, due to the 

unavailability of such models for this process, these simulations have not been shown here. 
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Figure 3.3 Simulation result for ICMR 

 

 
Figure 3.4 Simulation result for open-loop gain and phase 
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Figure 3.5 Simulation result for small-signal rise time 

 
 

 
 

Figure 3.6 Simulation result for small-signal fall time 
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Figure 3.7 Simulation result for positive-going large-signal slewing 

 

 
 

Figure 3.8 Simulation result for negative-going large-signal slewing 

23



3.4  Layout and Implementation 
 
The performance of the op amp could be altered due to the presence of parasitics in the circuit 

layout. Therefore careful layout techniques are required in order to minimize the effect of 

parasitics such as capacitances, resistances, parasitic transistors, latch-up etc. Guard rings with 

numerous substrate/well contacts around the transistors were used to reduce the substrate/well 

resistance. Doing this prevents the parasitic transistors from turning ON and thus reduces the 

susceptibility to latch up. Also, the generous use of substrate/well contacts minimizes the 

substrate noise by providing a low impedance path for the substrate noise to ground. Further, the 

random thermal noise due to gate resistance is also reduced by using multi-fingered gates in the 

transistors. 
 

The highly symmetrical input stage and the current mirrors require good matching between the 

transistors. This is achieved by the use of common centroid layout technique to match these 

transistors. Figure 3.9 presents the layout of the op amp. Note that the input differential pair P1–

P2 is matched in common centroid. In the output stage, the transistors N2, N3, and N5 and the 

output transistor N1 are matched together. Also, the current mirror transistors of P9, P7, P3, and P5 

are matched. 

 
The design was implemented in a commercial 0.5-μm CMOS process. The op amp had 6 

dedicated pins for VIN+, VIN-, VOUT, IBIAS and power supply pins. Figure 3.9 shows the layout of 

the general-purpose op amp. Figure 3.10 presents the die photograph of the fabricated chip. The 

op amp occupies an area of 0.04 mm2. 

 

 

 

 

 

 

24



 
Figure 3.9 Layout of the general-purpose op amp 

 

 
 

Figure 3.10 Die photo of the general-purpose op amp 
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CHAPTER IV      Op Amp Measurement Results 
 

This chapter presents the measurement techniques and test results obtained for the signal 

conditioning operational amplifier. The following section illustrates the test setup and discusses 

the measurement results. 
 

4.1  Test Setup 
 

The test circuits necessary for characterizing the op amp were built on a printed circuit board, 

shown in the Appendix, Figure A.1, and used to test the op amp. Complementary supply voltages 

of ±2.5 V, from an Agilent E3631A, were used to simplify testing by referencing the signals to a 

mid-supply voltage of ground. Power supply bypassing capacitors were placed close to the 

supply pins of the op amp to dampen any ac ripple and power supply noise. To filter out the 

power supply noise over a wide bandwidth, an array of capacitors comprising of a tantalum 1 μF 

and ceramic 0.1 μF were used. The op amp was biased by a 30 μA current sink which was 

provided by an external current source. An effective load capacitance of about 50 pF was 

connected to the op amp’s output for all test configurations. An oscilloscope probe with a load of 

15 pF, 10x attenuation, and 1 MΩ impedance was used for all measurements (included in the 50 

pF load estimate). A sample of 5 chips was used for testing and the measurements results 

obtained show consistent trend in the changes across the temperature range. 
 

4.1.1  Input common-mode range 

 
The ICMR is measured by configuring the op amp as a non-inverting unity-gain buffer as shown 

in Figure 4.1. A linear input ranging from VSS to VDD is applied to the op amp and the output 

voltage is monitored. The range of input voltages for which the slope of the output voltage is 

unity represents an optimistic estimate of the ICMR. The lower range of ICMR extends to 

ground consistently for all 5 chips.  
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Figure 4.1 Measurement setup for ICMR 

 
 

4.1.2  Open-loop gain 

 
The open loop gain of the op amp is defined as  

                                           (4.1) 

where VOUT is the op amp’s output voltage, which is assumed to be zero when no input is applied 

and vε is the feedback error voltage, which is the input differential voltage applied to the 

amplifier [10]. Due to the very high differential gain of the op amp, measuring the gain using an 

open-loop configuration is very difficult, so the op amp is kept in a closed-loop configuration. 

 

 
 

Figure 4.2 Measured ICMR for 5 chips 
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Figure 4.3 presents the setup used for the open-loop gain measurement where the op amp is 

configured as a unity-gain inverting amplifier. The signal is applied to the negative input 

terminal through the RC network while the positive input is grounded, thereby maintaining a 

fixed common-mode voltage of ground, and therefore the finite open-loop gain can be 

differentiated from the finite CMRR [10]. A large feedback resistor is chosen to prevent dc 

loading of the op amp’s output. The probing of the error voltage vε at the negative input terminal 

of the op amp introduces capacitance at the node which, along with the large input resistance, 

would form a low-frequency pole and thereby cause instability. Capacitor C1 fixes the location of 

the input pole and capacitor CF adds a zero to improve the stability of the system. 

 
An SR770 network analyzer, which provides high resolution voltage measurements, was used for 

the AC voltage measurements. The network analyzer has an internal sine-wave synthesizer 

which is perfectly synchronized with the timing window of its FFT analyzer. Using this 

sinewave as the op amp’s input prevents any spectral leakage during the FFT analysis of the op 

amp’s output and thereby gives an accurate measurement. A nominal input of 200 mV was 

applied for the measurements. The SR770 has a frequency limit of 100 kHz, so the op amp’s 

open-loop gain was characterized for this range and unity gain bandwidth (UGBW) is derived by 

extrapolating the plot with a – 20 dB/decade slope to cross the 0 dB line. Figure 4.4 shows the 

measured open-loop gain of the op amp. The measured low frequency AOL is 84 dB (close to the 

simulated value of 86 dB). The measured UGBW being 3.5 MHz is also close to the simulated 

value of 3 MHz. 

 
Figure 4.3 Open-loop gain measurement circuit 
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Figure 4.4 Measured open-loop gain (AOL) for 5 chips 

 

4.1.3  Small-signal analysis 

 
The op amp’s response to small-signal and large-signal transient inputs is essential in 

determining the rise time, fall time and slew rate of the op amp. To perform transient analysis, 

the op amp is configured as a unity-gain non-inverting buffer as shown in Figure 4.1. For small-

signal analysis, a square wave of 100 mVpp is input to the op amp and the rise, fall times along 

with the respective overshoots are measured. The small-signal BW, which is the UGBW, is 

derived from the rise time using the second-order system approximation of [11], 
 

                                           (4.2) 

 

The average rise time for the op amp over all 5 chips was 172 ns. The fall time recorded for the 

same was 147 ns. Thus, the UGBW obtained by using the rise time in equation 4.2 is 2.03 MHz, 

reasonably close to the 3 MHz UGBW obtained by extrapolating the open-loop gain 

characteristics of the op amp. Figure 4.5 and 4.6 shows the small-signal rise time and fall time 

respectively. 
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Figure 4.5 Measurement results for small-signal rise time for 5 chips 

 
 

 
 

Figure 4.6 Measurement results for small-signal fall time for 5 chips 
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4.1.4  Large-signal analysis (Slew rate) 

 
Slew Rate (SR) is measured using large-signal analysis by applying a 1 Vpp input at 1 kHz to the 

op amp, which is configured as a unity-gain non-inverting buffer. Figure 4.7 and Figure 4.8 

present the positive and negative slewing signals of the large-signal analysis. The measured 

positive-edge slewing and negative-edge slewing was found to be 1.04 V/µs and 6.01 V/µs, 

respectively. These values match reasonably well with the simulated 3.53 V/µs slew rate. 
 

4.1.5  Input-referred noise 
 

The input-referred noise of an op amp can be measured using the schematic as in Figure 4.7. The 

output noise of the op amp is amplified by a low-noise preamplifier (Perkin Elmer 5183) and the 

output noise spectral density is measured using the HP3985A network analyzer. The preamplifier 

provides a gain of 60 dB, a usable bandwidth limit of 1 MHz, and a typical input referred noise 

of 2 nV/√Hz at 1 KHz. Hence the op amp is the dominant noise source in this setup. Noise 

measurements were performed for a frequency range of 10 Hz to 1 MHz, with an average of 50 

data points per decade for frequencies above 10 KHz. The network analyzer was configured and 

the data was processed using software based on Lab View. In order to verify the accuracy of the 

measurement setup, the noise voltage for 1 KΩ resistor was measured. The measured noise floor 

was 4 nV/√Hz which is the expected thermal noise voltage for the resistor. 

 
The measured input referred noise of the op amp is shown in Figure 4.10. The noise 

characteristic is consistent across the 5 chips. The input referred noise at 100 KHz is about 300 

nV/√Hz. 

 

 
 

Figure 4.7 Setup for noise measurement 
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Figure 4.8 Measured positive-edge slewing for 5 chips 

 
 

 
 

Figure 4.9 Measured negative-edge slewing for 5 chips 
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4.1.6  PSRR 
 
PSRR is represented as the ratio of change in power supply voltage to the change in the op amp’s 

output, caused by the power supply change. This change in the output can be attributed to the 

bias point variation with the power supply changes, causing a change in the offset voltage. Thus 

PSRR can be measured as [1] 

                                        (4.3) 

The schematic in Figure 4.11 presents the measurement method to characterize the DC PSRR. 

The op amp is powered with complementary power supplies and is configured in unity-gain 

mode with the common-mode voltage set at mid-supply voltage of ground. To determine the 

PSRR, the supply voltages are varied and the VOS that is the output of the op amp is measured at 

each point and PSRR is computed using equation (4.3). The average PSRR for the op amp based 

on measurements from all 5 chips was 68 dB. 

 

 

 

 

 
Figure 4.10 Measured input referred noise 
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Figure 4.11 PSRR Measurement setup  
 

 

 

 
 

Figure 4.12 Measured PSRR for 5 chips  
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4.1.7  CMRR 
 
CMRR is defined as the ratio of the voltage gain for a differential-mode input signal to the 

voltage gain for a common-mode input signal, and can be stated as [1]  

                            (4.4) 

Therefore, measuring the dc CMRR involves determining the change in the offset voltage due to 

any change in the applied common-mode voltage. But, power supply voltage variation may 

affect the output as well as the offset voltage. In order to ensure that the measured change in the 

offset voltage is only due to a change in common-mode input voltage, the output voltage of the 

op amp is maintained at a fixed voltage for the complete test sequence. Figure 4.12 illustrates the 

test circuit used in the measurement [10]. The driver maintains the op amp’s output voltage at 

ground, irrespective of the value of the power supply or the common-mode input voltage. The 

common-mode voltage, VCM is varied across the op amp’s ICMR range and the change in offset 

voltage is captured. Figure 4.13 presents the CMRR across the common-mode voltage variations. 

The average CMRR across 5 chips was measured to be 58 dB at room temperature. 

 

 

Figure 4.13 CMRR Measurement circuit 
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Figure 4.14 Measured CMRR for 5 chips  
 

4.2  Summary 
 
The table below summarizes the performance of the op amp. As seen from the table, the op amp 

has been able to meet almost all the specifications for the design. Overall, with such results, the 

op amp should perform well for the targeted application. 

 
Parameter Specification Simulated Measured 

Open-loop gain (AOL) > 80 dB 88 dB 86 dB 

Gain Bandwidth (GBW) > 1 MHz 3 MHz 2.8 MHz 

Minimum input common mode voltage 0 V 0 V 0 V 

PSRR > 60 dB * 68 dB 

CMRR > 60 dB * 58 dB 

Slew Rate > 1 V/µs 2.2 V/µs 1.04 V/µs 
 

Table 4.1 Summary of measured results  
 

* Due to the unavailability of appropriate models for AMI 0.5 µm technology, Monte-Carlo 
analysis was not performed to obtain the realistic simulated values of these parameters. 
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CHAPTER V      System Application 
 
This chapter discusses the application of the op amp within an instrumentation system. The op 

amp is interfaced with a reflective object sensor and used as a current-to-voltage converter. The 

primary application of the system level circuit is width measurement of thin layers of cloth or 

material in general. The phenomenon of reflectivity is used to achieve this. The op amp in this 

circuit amplifies the output signal of the sensor and matches its range with the input span of an 

off-the-shelf commercial ADC.  

 
5.1  Width Measurement 
 
A reflective object sensor consists of a light emitting source, usually an LED which is 

electrically and optically isolated from the phototransistor. It should be noted, however, that both 

the LED and the phototransistor are in the same package. There are small windows on the top 

surface of the reflective object sensor’s IC package which allow the light emitted by the LED to 

pass through it. When the sensor is powered ON and the diode is forward biased, it emits light 

out of the package. This light can be reflected back into the package to bias the phototransistor 

with the aid of a reflective surface positioned over the sensor. The amount of current conducted 

by the transistor varies according to the proximity of the reflective surface to the sensor and the 

reflectivity of the material used. For the same distance of the material from the sensor, a single 

layer of reflective surface will reflect more light back to the phototransistor than two layers of 

the same material stacked together. This is because the addition of an extra layer of material 

causes the reflective surface to become more opaque relative to the single layer of material. This 

results in lower reflection of incident light by the reflective surface. Lower reflected light will 

consequently force the phototransistor to draw less current. This variation in current can be 

utilized to correlate or characterize the width or thickness of the reflective surface. 

5.2  System level Circuit Setup 
 
Figure 5.1 illustrates the setup of the reflective object sensor interfaced with a signal 

conditioning op amp. The op amp is configured as a non-inverting I-to-V converter which 

samples the current output of the sensor and generates a voltage. 
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Figure 5.1 System level circuit consisting of reflective object sensor and op amp 

The biasing of the sensor is crucial for this application and is biased based on the datasheet 

information [12]. The values of the biasing resistors and the load resistor have been calculated 

for a forward current of 20 mA through the diode and 0.4 VCE for the phototransistor for a load 

of approximately 1 kΩ. A dual power supply of ±3.5 V has been used for the sensor. The op amp 

is used in a non-inverting configuration providing a closed-loop gain of 3 V/V. A high value of 

feedback resistor is used to minimize the loading effects on the op amp.   

 
Table 5.1 details the operation of the circuit for different reflective surfaces. The test procedure 

followed for obtaining these results will now be described. Using the test board shown in 

Appendix A.2, different reflective surfaces like a white sheet of paper, two white sheets of paper, 

aluminum foil, etc. were passed over the sensor at a distance of 1 mm from its top surface. The 

corresponding sensor output voltages and op amp output voltages were noted. 
 

As evident from Table 5.1, ΔVsensor (mV) is the difference in the sensor output voltage when 

there is no reflective surface (phototransistor OFF) and in the presence of a reflective surface 

(phototransistor ON). The sensor output voltage is amplified (with a gain of 3) by the op amp.  
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Reflecting  
material 

Vsensor  
(V) 

ΔVsensor  
(mV) 

Vop amp  
(V) 

ΔVopamp 
(mV) 

No Reflection 0.800 - 2.424 - 
One white sheet 0.405 39.500 1.266 115.820 

Two white sheets 0.529 27.100 1.582 84.200 
Yellow paper 0.559 24.070 1.624 80.000 

Aluminum foil 0.501 29.860 1.239 118.540 
Black paper 0.798 0.220 2.419 0.540 

 
Table 5.1 System level circuit measurement results (width measurement)  

 
The gain provided by the op amp proves highly useful to read small difference voltages provided 

by the sensor between different reflective materials.. The first two rows depicting the difference 

in output voltage for one and two white sheets illustrates that this method can be used for the 

intended application of width measurement. 

5.3  System noise floor 
 

Noise is an important parameter that is useful in characterizing any circuit. For this system level 

circuit, the worst case signal-to-noise ratio can be determined when the sensor is OFF. Figure 5.2 

shows the input-referred noise equivalent circuit [1] for the system level circuit of Figure 5.1. In 

this analysis, an equivalent noise source en for the op amp is connected to the non-inverting 

terminal and simultaneously considering the op amp to be noiseless. The resistors will contribute 

thermal noise to the circuit given by [1], 

                                      (5.1) 

where k is the Boltzmann constant, T is the absolute temperature, and R is the value of the 

resistor. All the noise sources shown for the resistors represent this thermal noise source for the 

resistors. In order to calculate the total noise floor of the circuit, each voltage source will be 

multiplied by a gain factor depending upon its location within the op amp circuit. The total input-

referred noise for the circuit will be given as [1], 

(5.2) 
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Figure 5.2 Input-referred noise equivalent model of the system level circuit 

 

Using eqn. 5.1 at a temperature of 300 K, and the measured value of the op amp noise at 100 

kHz of 300 nV/√Hz, eqn. 5.2 provides the noise floor of the system to be 362.3 nV/√Hz and the 

total input referred noise eni is 120.76 nV/√Hz. 
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CHAPTER VI      Conclusions 

 
This thesis presents the design and analysis of a general purpose op amp suitable as an analog 

signal conditioning block. The op amp was characterized for different parameters and also 

integrated on a system level to verify its performance for its intended application.  

 
From the measured results, it is illustrated that the op amp provides high gain, has ground 

sensing ICMR, and high PSRR. It has also met its desired requirement to act as an analog signal 

conditioning amplifier for a reflective object sensor. The relatively simple design and 

satisfactory performance make the op amp suitable to be used as a general purpose op amp. 

 

6.1  Future Work 

 
The future work on this thesis can be aimed at understanding certain aspects of the circuit and 

also enhancing the characterization of the op amp for different parameters. The following steps 

outline the possible enhancements to this work.  

 
Certain aspects of the circuit such as CMRR and noise can be investigated further to better 

understand the circuit. Also, there is room for the overall improvement on certain other 

parameters of the op amp could result in overall better performance of the system level circuit. A 

shunt feedback capacitor could be added to the op amp’s feedback network to reduce the 

system’s noise bandwidth. 

 
The op amp along with the sensor can be connected to an ADC to digitize the output values of 

obtained from the op amp. Digitizing these values will not only be helpful for further processing 

and analysis of the information gathered, but will also facilitate easy storage of the information. 

This enhanced data acquisition system could act as a standalone system for any process control 

system in which measurement of thickness or width would be essential. 
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A.1  Calculation of Open-Loop Gain 
 
The overall gain of the op amp was derived in Section 3.2.1 and is given by equation (3.12) 

which is, 

     (A.1) 

The approximate value of the AOL can be estimated from this equation. The transconductance is 

given by, 

                                             (A.2) 

 

 
The output resistance of each device can be found using, 

                                                   (A.3) 

Thus the output impedance of the first stage becomes, 

            (A.4) 

The output impedance of the output stage becomes, 

                              (A.5) 

And now the approximate AOL can be found as, 

  

 89.7 dB                                             (A.6) 
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A.2  Test Board 
 

 
 

Figure A.2 Picture of Test Board 
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