482 research outputs found

    A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: Triangular grids

    Full text link
    A novel wetting and drying treatment for second-order Runge-Kutta discontinuous Galerkin (RKDG2) methods solving the non-linear shallow water equations is proposed. It is developed for general conforming two-dimensional triangular meshes and utilizes a slope limiting strategy to accurately model inundation. The method features a non-destructive limiter, which concurrently meets the requirements for linear stability and wetting and drying. It further combines existing approaches for positivity preservation and well-balancing with an innovative velocity-based limiting of the momentum. This limiting controls spurious velocities in the vicinity of the wet/dry interface. It leads to a computationally stable and robust scheme -- even on unstructured grids -- and allows for large time steps in combination with explicit time integrators. The scheme comprises only one free parameter, to which it is not sensitive in terms of stability. A number of numerical test cases, ranging from analytical tests to near-realistic laboratory benchmarks, demonstrate the performance of the method for inundation applications. In particular, super-linear convergence, mass-conservation, well-balancedness, and stability are verified

    Mathematical and numerical modelling of dispersive water waves

    Get PDF
    Fecha de lectura de Tesis: 4 diciembre 2018.En esta tesis doctoral se expone en primer lugar una visión general del modelado de ondas dispersivas para la simulación de procesos tsunami-génicos. Se deduce un nuevo sistema bicapa con propiedades de dispersión mejoradas y un nuevo sistema hiperbólico. Además se estudian sus respectivas propiedades dispersivas, estructura espectral y ciertas soluciones analíticas. Así mismo, se ha diseñado un nuevo modelo de viscosidad sencillo para la simulación de los fenómenos físicos relacionados con la ruptura de olas en costa. Se establecen los resultados teóricos requeridos para el diseño de esquemas numéricos de tipo volúmenes finitos y Galerkin discontinuo de alto orden bien equilibrados para sistemas hiperbólicos no conservativos en una y dos dimensiones. Más adelante, los esquemas numéricos propuestos para los sistemas de presión no hidrostática introducidos se describen. Se pueden destacar diferentes enfoques y estrategias. Por un lado, se diseñan esquemas de volúmenes finitos implícitos de tipo proyección-corrección en mallas decaladas y no decaladas. Por otro lado, se propone un esquema numérico de tipo Galerkin discontinuo explícito para el nuevo sistema de EDPs hiperbólico propuesto. Para permitir simulaciones en tiempo real, una implementación eficiente en GPU de los métodos es llevado a cabo y algunas directrices sobre su implementación son dados. Los esquemas numéricos antes mencionados se han aplicado a test de referencia académicos y a situaciones físicas más desafiantes como la simulación de tsunamis reales, y la comparación con datos de campo. Finalmente, un último capítulo es dedicado a medir la influencia al considerar efectos dispersivos en la simulación de transporte y arrastre de sedimentos. Para ello, se deduce un nuevo sistema de dos capas de aguas someras, se diseña un esquema numérico y se muestran algunos test académicos y de validación, que ofrecen resultados prometedores

    A Derivative Recovery Spectral Volume model for the analysis of constituents transport in one-dimensional flows

    Get PDF
    The treatment of advective fluxes in high-order finite volume models is well established, but this is not the case for diffusive fluxes, due to the conflict between the discontinuous representation of the solution and the continuous structure of analytic solutions. In this paper, a derivative reconstruction approach is proposed in the context of spectral volume methods, for the approximation of diffusive fluxes, aiming at the reconciliation of this conflict. Two different reconstructions are used for advective and diffusive fluxes: the advective reconstruction makes use of the information contained in a spectral cell, and allows the formation of discontinuities at the spectral cells boundaries; the diffusive reconstruction makes use of the information contained in contiguous spectral cells, imposing the continuity of the reconstruction at the spectral cells boundaries. The method is demonstrated by a number of numerical experiments, including the solution of shallow-water equations, complemented with the advective-diffusive transport equation of a conservative substance, showing the promising abilities of the numerical scheme proposed

    A large time-step and well-balanced Lagrange-Projection type scheme for the shallow-water equations

    Get PDF
    This work focuses on the numerical approximation of the Shallow Water Equations (SWE) using a Lagrange-Projection type approach. We propose to extend to this context recent implicit-explicit schemes developed in the framework of compressibleflows, with or without stiff source terms. These methods enable the use of time steps that are no longer constrained by the sound velocity thanks to an implicit treatment of the acoustic waves, and maintain accuracy in the subsonic regime thanks to an explicit treatment of the material waves. In the present setting, a particular attention will be also given to the discretization of the non-conservative terms in SWE and more specifically to the well-known well-balanced property. We prove that the proposed numerical strategy enjoys important non linear stability properties and we illustrate its behaviour past several relevant test cases

    A "well-balanced" finite volume scheme for blood flow simulation

    Get PDF
    We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simple finite volume scheme. We focus on conservation properties of this scheme which were not previously considered. To emphasize the necessity of this scheme, we present how a too simple numerical scheme may induce spurious flows when the basic static shape of the radius changes. On contrary, the proposed scheme is "well-balanced": it preserves equilibria of Q = 0. Then examples of analytical or linearized solutions with and without viscous damping are presented to validate the calculations. The influence of abrupt change of basic radius is emphasized in the case of an aneurism.Comment: 36 page

    Well-balanced fifth-order finite difference Hermite WENO scheme for the shallow water equations

    Full text link
    In this paper, we propose a well-balanced fifth-order finite difference Hermite WENO (HWENO) scheme for the shallow water equations with non-flat bottom topography in pre-balanced form. For achieving the well-balance property, we adopt the similar idea of WENO-XS scheme [Xing and Shu, J. Comput. Phys., 208 (2005), 206-227.] to balance the flux gradients and the source terms. The fluxes in the original equation are reconstructed by the nonlinear HWENO reconstructions while other fluxes in the derivative equations are approximated by the high-degree polynomials directly. And an HWENO limiter is applied for the derivatives of equilibrium variables in time discretization step to control spurious oscillations which maintains the well-balance property. Instead of using a five-point stencil in the same fifth-order WENO-XS scheme, the proposed HWENO scheme only needs a compact three-point stencil in the reconstruction. Various benchmark examples in one and two dimensions are presented to show the HWENO scheme is fifth-order accuracy, preserves steady-state solution, has better resolution, is more accurate and efficient, and is essentially non-oscillatory.Comment: 24 pages, 11 figure
    corecore