143 research outputs found

    Multi-modal RGB–Depth–Thermal Human Body Segmentation

    Get PDF

    Occlusion-Aware Multi-View Reconstruction of Articulated Objects for Manipulation

    Get PDF
    The goal of this research is to develop algorithms using multiple views to automatically recover complete 3D models of articulated objects in unstructured environments and thereby enable a robotic system to facilitate further manipulation of those objects. First, an algorithm called Procrustes-Lo-RANSAC (PLR) is presented. Structure-from-motion techniques are used to capture 3D point cloud models of an articulated object in two different configurations. Procrustes analysis, combined with a locally optimized RANSAC sampling strategy, facilitates a straightforward geometric approach to recovering the joint axes, as well as classifying them automatically as either revolute or prismatic. The algorithm does not require prior knowledge of the object, nor does it make any assumptions about the planarity of the object or scene. Second, with such a resulting articulated model, a robotic system is then able to manipulate the object either along its joint axes at a specified grasp point in order to exercise its degrees of freedom or move its end effector to a particular position even if the point is not visible in the current view. This is one of the main advantages of the occlusion-aware approach, because the models capture all sides of the object meaning that the robot has knowledge of parts of the object that are not visible in the current view. Experiments with a PUMA 500 robotic arm demonstrate the effectiveness of the approach on a variety of real-world objects containing both revolute and prismatic joints. Third, we improve the proposed approach by using a RGBD sensor (Microsoft Kinect) that yield a depth value for each pixel immediately by the sensor itself rather than requiring correspondence to establish depth. KinectFusion algorithm is applied to produce a single high-quality, geometrically accurate 3D model from which rigid links of the object are segmented and aligned, allowing the joint axes to be estimated using the geometric approach. The improved algorithm does not require artificial markers attached to objects, yields much denser 3D models and reduces the computation time

    Deeply Learned Priors for Geometric Reconstruction

    Get PDF
    This thesis comprises of a body of work that investigates the use of deeply learned priors for dense geometric reconstruction of scenes. A typical image captured by a 2D camera sensor is a lossy two-dimensional (2D) projection of our three-dimensional (3D) world. Geometric reconstruction approaches usually recreate the lost structural information by taking in multiple images observing a scene from different views and solving a problem known as Structure from Motion (SfM) or Simultaneous Localization and Mapping (SLAM). Remarkably, by establishing correspondences across images and use of geometric models, these methods (under reasonable conditions) can reconstruct a scene's 3D structure as well as precisely localise the observed views relative to the scene. The success of dense every-pixel multi-view reconstruction is however limited by matching ambiguities that commonly arise due to uniform texture, occlusion, and appearance distortion, among several other factors. The standard approach to deal with matching ambiguities is to handcraft priors based on assumptions like piecewise smoothness or planarity in the 3D map, in order to "fill in" map regions supported by little or ambiguous matching evidence. In this thesis we propose learned priors that in comparison more closely model the true structure of the scene and are based on geometric information predicted from the images. The motivation stems from recent advancements in deep learning algorithms and availability of massive datasets, that have allowed Convolutional Neural Networks (CNNs) to predict geometric properties of a scene such as point-wise surface normals and depths, from just a single image, more reliably than what was possible using previous machine learning-based or hand-crafted methods. In particular, we first explore how single image-based surface normals from a CNN trained on massive amount of indoor data can benefit the accuracy of dense reconstruction given input images from a moving monocular camera. Here we propose a novel surface normal based inverse depth regularizer and compare its performance against the inverse depth smoothness prior that is typically used to regularize regions in the reconstruction that are textureless. We also propose the first real-time CNN-based framework for live dense monocular reconstruction using our learned normal prior. Next, we look at how we can use deep learning to learn features in order to improve the pixel matching process itself, which is at the heart of multi-view geometric reconstruction. We propose a self-supervised feature learning scheme using RGB-D data from a 3D sensor (that does not require any manual labelling) and a multi-scale CNN architecture for feature extraction that is fast and eficient to run inside our proposed real-time monocular reconstruction framework. We extensively analyze the combined benefits of using learned normals and deep features that are good-for-matching in the context of dense reconstruction, both quantitatively and qualitatively on large real world datasets. Lastly, we explore how learned depths, also predicted on a per-pixel basis from a single image using a CNN, can be used to inpaint sparse 3D maps obtained from monocular SLAM or a 3D sensor. We propose a novel model that uses predicted depths and confidences from CNNs as priors to inpaint maps with arbitrary scale and sparsity. We obtain more reliable reconstructions than those of traditional depth inpainting methods such as the cross-bilateral filter that in comparison offer few learnable parameters. Here we advocate the idea of "just-in-time reconstruction" where a higher level of scene understanding reliably inpaints the corresponding portion of a sparse map on-demand and in real-time.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    Single View 3D Reconstruction using Deep Learning

    Get PDF
    One of the major challenges in the field of Computer Vision has been the reconstruction of a 3D object or scene from a single 2D image. While there are many notable examples, traditional methods for single view reconstruction often fail to generalise due to the presence of many brittle hand-crafted engineering solutions, limiting their applicability to real world problems. Recently, deep learning has taken over the field of Computer Vision and ”learning to reconstruct” has become the dominant technique for addressing the limitations of traditional methods when performing single view 3D reconstruction. Deep learning allows our reconstruction methods to learn generalisable image features and monocular cues that would otherwise be difficult to engineer through ad-hoc hand-crafted approaches. However, it can often be difficult to efficiently integrate the various 3D shape representations within the deep learning framework. In particular, 3D volumetric representations can be adapted to work with Convolutional Neural Networks, but they are computationally expensive and memory inefficient when using local convolutional layers. Also, the successful learning of generalisable feature representations for 3D reconstruction requires large amounts of diverse training data. In practice, this is challenging for 3D training data, as it entails a costly and time consuming manual data collection and annotation process. Researchers have attempted to address these issues by utilising self-supervised learning and generative modelling techniques, however these approaches often produce suboptimal results when compared with models trained on larger datasets. This thesis addresses several key challenges incurred when using deep learning for ”learning to reconstruct” 3D shapes from single view images. We observe that it is possible to learn a compressed representation for multiple categories of the 3D ShapeNet dataset, improving the computational and memory efficiency when working with 3D volumetric representations. To address the challenge of data acquisition, we leverage deep generative models to ”hallucinate” hidden or latent novel viewpoints for a given input image. Combining these images with depths estimated by a self-supervised depth estimator and the known camera properties, allowed us to reconstruct textured 3D point clouds without any ground truth 3D training data. Furthermore, we show that is is possible to improve upon the previous self-supervised monocular depth estimator by adding a self-attention and a discrete volumetric representation, significantly improving accuracy on the KITTI 2015 dataset and enabling the estimation of uncertainty depth predictions.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202

    3D hand tracking.

    Get PDF
    The hand is often considered as one of the most natural and intuitive interaction modalities for human-to-human interaction. In human-computer interaction (HCI), proper 3D hand tracking is the first step in developing a more intuitive HCI system which can be used in applications such as gesture recognition, virtual object manipulation and gaming. However, accurate 3D hand tracking, remains a challenging problem due to the hand’s deformation, appearance similarity, high inter-finger occlusion and complex articulated motion. Further, 3D hand tracking is also interesting from a theoretical point of view as it deals with three major areas of computer vision- segmentation (of hand), detection (of hand parts), and tracking (of hand). This thesis proposes a region-based skin color detection technique, a model-based and an appearance-based 3D hand tracking techniques to bring the human-computer interaction applications one step closer. All techniques are briefly described below. Skin color provides a powerful cue for complex computer vision applications. Although skin color detection has been an active research area for decades, the mainstream technology is based on individual pixels. This thesis presents a new region-based technique for skin color detection which outperforms the current state-of-the-art pixel-based skin color detection technique on the popular Compaq dataset (Jones & Rehg 2002). The proposed technique achieves 91.17% true positive rate with 13.12% false negative rate on the Compaq dataset tested over approximately 14,000 web images. Hand tracking is not a trivial task as it requires tracking of 27 degreesof- freedom of hand. Hand deformation, self occlusion, appearance similarity and irregular motion are major problems that make 3D hand tracking a very challenging task. This thesis proposes a model-based 3D hand tracking technique, which is improved by using proposed depth-foreground-background ii feature, palm deformation module and context cue. However, the major problem of model-based techniques is, they are computationally expensive. This can be overcome by discriminative techniques as described below. Discriminative techniques (for example random forest) are good for hand part detection, however they fail due to sensor noise and high interfinger occlusion. Additionally, these techniques have difficulties in modelling kinematic or temporal constraints. Although model-based descriptive (for example Markov Random Field) or generative (for example Hidden Markov Model) techniques utilize kinematic and temporal constraints well, they are computationally expensive and hardly recover from tracking failure. This thesis presents a unified framework for 3D hand tracking, using the best of both methodologies, which out performs the current state-of-the-art 3D hand tracking techniques. The proposed 3D hand tracking techniques in this thesis can be used to extract accurate hand movement features and enable complex human machine interaction such as gaming and virtual object manipulation

    Images and depth for high resolution, low-latency sensing and security applications

    Get PDF
    The thesis focuses on using images and depths for high resolution, low latency sensing, and then using these sensing techniques to build security applications. First, we introduce the usefulness of high quality depth sensing, and the difficulty to acquire such depth stream via pure hardware approach. Then, we propose our sensor fusion approach, which combines depth camera and color camera. Chapter 2 puts forward a low cost approach to use a high spatial resolution color stream to help aggressively increase the spatial resolution of the depth stream. Continuing this direction, Chapter 3 proposes to use optical ow to forward warp the depth stream according to a high frequency, low latency CMOS color stream. The warping can create a high frequency, low latency depth stream. In both Chapter 2 and Chapter 3, we show that the improved depth sensing can benefit lots of applications. In Chapter 4, we propose a SafetyNet, which can reliably detecting and rejecting adversarial examples. With the revolutionary SafetyNet architecture and the advanced depth sensing, we can reliably prove to users whether a picture of a scene is real or not. In sum, the thesis focuses on improving sensing technologies and building vision and security applications around the sensing technologies

    Depth Estimation Using 2D RGB Images

    Get PDF
    Single image depth estimation is an ill-posed problem. That is, it is not mathematically possible to uniquely estimate the 3rd dimension (or depth) from a single 2D image. Hence, additional constraints need to be incorporated in order to regulate the solution space. As a result, in the first part of this dissertation, the idea of constraining the model for more accurate depth estimation by taking advantage of the similarity between the RGB image and the corresponding depth map at the geometric edges of the 3D scene is explored. Although deep learning based methods are very successful in computer vision and handle noise very well, they suffer from poor generalization when the test and train distributions are not close. While, the geometric methods do not have the generalization problem since they benefit from temporal information in an unsupervised manner. They are sensitive to noise, though. At the same time, explicitly modeling of a dynamic scenes as well as flexible objects in traditional computer vision methods is a big challenge. Considering the advantages and disadvantages of each approach, a hybrid method, which benefits from both, is proposed here by extending traditional geometric models’ abilities to handle flexible and dynamic objects in the scene. This is made possible by relaxing geometric computer vision rules from one motion model for some areas of the scene into one for every pixel in the scene. This enables the model to detect even small, flexible, floating debris in a dynamic scene. However, it makes the optimization under-constrained. To change the optimization from under-constrained to over-constrained while maintaining the model’s flexibility, ”moving object detection loss” and ”synchrony loss” are designed. The algorithm is trained in an unsupervised fashion. The primary results are in no way comparable to the current state of the art. Because the training process is so slow, it is difficult to compare it to the current state of the art. Also, the algorithm lacks stability. In addition, the optical flow model is extremely noisy and naive. At the end, some solutions are suggested to address these issues

    3D Human Pose and Shape Estimation Based on Parametric Model and Deep Learning

    Get PDF
    3D human body reconstruction from monocular images has wide applications in our life, such as movie, animation, Virtual/Augmented Reality, medical research and so on. Due to the high freedom of human body in real scene and the ambiguity of inferring 3D objects from 2D images, it is a challenging task to accurately recover 3D human body models from images. In this thesis, we explore the methods for estimating 3D human body models from images based on parametric model and deep learning.In the first part, the coarse 3D human body models are estimated automatically from multi-view images based on a parametric human body model called SMPL model. Two routes are exploited for estimating the pose and shape parameters of the SMPL model to obtain the 3D models: (1) Optimization based methods; and (2) Deep learning based methods. For the optimization based methods, we propose the novel energy functions based on some prior information including the 2D joint points and silhouettes. Through minimizing the energy functions, the SMPL model is fitted to the prior information, and then, the coarse 3D human body is obtained. In addition to the traditional optimization based methods, a deep learning based method is also proposed in the following work to regress the pose and shape parameters of the SMPL model. A novel architecture is proposed to put the optimization into a training loop of convolutional neural network (CNN) to form a self-supervision structure based on the multi-view images. The proposed methods are evaluated on both synthetic and real datasets to demonstrate that they can obtain better estimation of the pose and shape of 3D human body than previous approaches.In the second part, the problem is shifted to the detailed 3D human body reconstruction from multi-view images. Instead of using the SMPL model, implicit function is utilized to represent 3D models because implicit representation can generate continuous surface and has better flexibility for arbitrary topology. Firstly, a multi-scale features based method is proposed to learn the implicit representation for 3D models through multi-stage hourglass networks from multi-view images. Furthermore, a coarse-to-fine method is proposed to refine the 3D models from multi-view images through learning the voxel super-resolution. In this method, the coarse 3D models are estimated firstly by the learned implicit function based on multi-scale features from multi-view images. Afterwards, by voxelizing the coarse 3D models to low resolution voxel grids, voxel super-resolution is learned through a multi-stage 3D CNN for feature extraction from low resolution voxel grids and fully connected neural network for predicting the implicit function. Voxel super-resolution is able to remove the false reconstruction and preserve the surface details. The proposed methods are evaluated on both real and synthetic datasets in which our method can estimate 3D model with higher accuracy and better surface quality than some previous methods

    Coded aperture imaging

    Get PDF
    This thesis studies the coded aperture camera, a device consisting of a conventional camera with a modified aperture mask, that enables the recovery of both depth map and all-in-focus image from a single 2D input image. Key contributions of this work are the modeling of the statistics of natural images and the design of efficient blur identification methods in a Bayesian framework. Two cases are distinguished: 1) when the aperture can be decomposed in a small set of identical holes, and 2) when the aperture has a more general configuration. In the first case, the formulation of the problem incorporates priors about the statistical variation of the texture to avoid ambiguities in the solution. This allows to bypass the recovery of the sharp image and concentrate only on estimating depth. In the second case, the depth reconstruction is addressed via convolutions with a bank of linear filters. Key advantages over competing methods are the higher numerical stability and the ability to deal with large blur. The all-in-focus image can then be recovered by using a deconvolution step with the estimated depth map. Furthermore, for the purpose of depth estimation alone, the proposed algorithm does not require information about the mask in use. The comparison with existing algorithms in the literature shows that the proposed methods achieve state-of-the-art performance. This solution is also extended for the first time to images affected by both defocus and motion blur and, finally, to video sequences with moving and deformable objects
    • 

    corecore