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ABSTRACT

The thesis focuses on using images and depths for high resolution, low latency sensing,

and then using these sensing techniques to build security applications. First, we introduce

the usefulness of high quality depth sensing, and the difficulty to acquire such depth stream

via pure hardware approach. Then, we propose our sensor fusion approach, which combines

depth camera and color camera. Chapter 2 puts forward a low cost approach to use a high

spatial resolution color stream to help aggressively increase the spatial resolution of the depth

stream. Continuing this direction, Chapter 3 proposes to use optical flow to forward warp the

depth stream according to a high frequency, low latency CMOS color stream. The warping

can create a high frequency, low latency depth stream. In both Chapter 2 and Chapter 3,

we show that the improved depth sensing can benefit lots of applications. In Chapter 4, we

propose a SafetyNet, which can reliably detecting and rejecting adversarial examples. With

the revolutionary SafetyNet architecture and the advanced depth sensing, we can reliably

prove to users whether a picture of a scene is real or not. In sum, the thesis focuses on

improving sensing technologies and building vision and security applications around the

sensing technologies.
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CHAPTER 1: INTRODUCTION

In recent decades, tons of various computer vision applications become possible. They in-

clude gesture recognitions, projection mapping, objects tracking, automated robotic systems,

security applications and so on. However, there are still many problems for the current sens-

ing systems. It is relatively cheap to acquire high resolution and low latency color stream,

and the depth stream could significantly improve the comprehensive performance of all com-

puter vision applications. However, the current hardware industry cannot create devices

that can capture high resolution and low latency depth stream. On one hand, the high

resolution color with depth sensing could greatly improve the accuracy of vision systems,

especially artificial intelligence system. On the other hand, the low latency color with depth

sensing could greatly improve the interaction experiences. The sensing improvements could

also help various security applications. Photos with only RGB color information provides

limited information and can easily be faked. Deep neural networks are not fully understood

by researchers. Recent works about adversarial examples of DNN make all neural networks

extremely insecure. Attackers only need to apply an imperceivable universal perturbations

onto the image, and all the sophisticated neural network systems will crash. The problem

becomes worse as these perturbations can be reliably applied in physical world. For example,

by adding imperceivable perturbations to the stop sign, self-driving car can detect that as

a go faster sign. My thesis works on techniques to enable high resolution and low latency

sensing and build security applications of vision systems based on such sensing.

1.1 MOTIVATION

High resolution and low latency sensing with images and depth can greatly improve the

current vision systems, and make them perform better in practical scenarios. Software single

approaches in vision systems have been thoroughly investigated, and there is little chance

to build sensing that have 10× advances. The combined hardware and software approaches

to deal with the sensing problems can potentially greatly push forward the 10× advances.

Sensor fusion is a wise place to start the revolution with limited budgets. RGBD data

streams can greatly increase the easiness of interactions, and increase the security of vision

systems. However, the current depth cameras suffer from low spatial & temporal resolution

and long latency.

With stronger sensors and better data inputs, my thesis then begins to deal with problems

of security. Safety first applies everywhere including vision systems, and as vision systems
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being used in more important areas such as self-driving cars, safety definitely becomes one

of the most important factor for industrializing AI techniques. My work focuses on dealing

with various attacks to AI systems by using sensor fusion and our proposed SafetyNet.

There are various ways to achieve the goal of improved sensing and more secure system.

For example, it might be possible to involve more human efforts to ensure the system security.

In my thesis, automatic technical approaches are proposed to handle these problems, which

greatly reduce the cost and improve the performance. The thesis focuses on both hardware

and software approaches, including sensor fusion and SafetyNet. I will introduce them one

by one in details.

1.2 HIGH SPATIAL RESOLUTION DEPTH SENSING

Recent work in HCI has demonstrated a variety of potential applications for depth sensors

on mobile devices. Jones et al. [1] demonstrated that mobile depth sensors could enable fluid

free-space gesture interactions. Sodhi et al. [2] presented BeThere, a proof-of-concept sys-

tem designed to explore 3D depth input for mobile collaborative interactions in augmented

reality. There are several such sensors in production. However, the relatively high power

consumption of current depth sensors even at relatively low resolutions presents major diffi-

culties in making these applications practical. Besides that, further improving the resolution

of current depth sensors has high cost. The limitation of power consumption and cost also

applies to Lidar system, which begins to be widely used in autonomous vehicles. In contrast,

high resolution RGB images are comparatively cheap.

Therefore, there are two compelling reasons to reconstruct high resolution depth from

low resolution samples. First, it could allow current sensors to be operated at lower power

consumption, and thus make it practical to use them on mobile devices. Second, it could

also provide resolution that current sensor systems cannot. It is cheap in money and in

power to obtain high resolution image frames registered to the depth sensor, so it is natural

to combine upsampling with image or video information.

The thesis describes a method to reconstruct high-resolution depth measurements ac-

curately from sparse scattered samples. We propose to exploit image (resp. video) data

obtained at the same time as the depth samples to produce a spatial model that governs our

smoothing of depth samples. Our method segments an image with the guidance of sparse

depth samples, then uses novel smoothing methods to reconstruct depth within each seg-

ment. For video, we use space-time segments and optic flow methods to move time-stamped

samples in space.

Our reconstruction outperforms state of the art methods, and could help the improvements
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Kinect Depth Near IG[6] Ours

Tracker Status

Figure 1.1: Our reconstruction methods support hand tracking from aggressively subsampled
depth maps. The first row is depth map and the second row is the status of forth hand
tracker [3] [4] (it takes both color image and depth image to generate the status of the hand
tracker). In this example at the same moment with different depths, Kinect depth creates
difficulty for the hand tracker, nearest neighbour based depth upsample and image guided
depth upsampling [5] make the hand tracker fail (because the low quality depth map provides
limited information and is even misleading), while our upsampled depth enables the hand
tracker to function smoothly.

of various applications. The constructed depth could improve object insertion interaction

experiences and results, which requires depth estimation during the insertion process. Hand

tracking is an important application of Kinect which is sensitive to the quality of depth

estimates. Our estimation could generate significantly better hand tracking results with

forth hand tracker [3] [4], refer to Figure 1.1.

1.3 LOW LATENCY DEPTH SENSING

Consumer depth cameras such as Microsoft Kinect have been useful in various HCI appli-

cations. But the frame rate (30Hz) and high latency (at 60-80 milliseconds) of such cameras

can limit their use in interactive applications sensitive to lag and framerate. Low frame

rates can complicate tracking, particularly for fast moving, flexible objects like hands. High

latency during interaction can confuse or even nauseate users, particularly in AR and VR

applications, or when overlaying graphics on physical objects that move unpredictably.

In the absence of commercially available high frame, low latency depth sensors, we ex-

plore solutions involving commodity depth sensors and commonly available color cameras.

We demonstrate a hybrid high frame rate depth (Hybrid HFR Depth) camera solution,
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Figure 1.2: Hybrid HFR Depth is a high frame rate, low latency, configurable depth camera
solution built from a Kinect and acolor camera. Depth output is 500 frames per second
(maximum) and 20 milliseconds latency in (a1-2),and depth is predicted 50ms into the
future in (b1-2). Our high frame rate, low latency depth solution supports applications
sensitive to lag and framerate:(c1-3)illustrates interactive projection mapping, where Arbok
andPikuchu are projected onto the raft using either standard Kinect depth stream (Arbok)
or Hybrid HFR Depth stream (Pikachu) to track the moving hand. (c1)Arbok and Pikachu
are projected on the raft when hand is still. (c2) (c3) Arbok is off the raft and Pikachu is on
the raft when hand is moving because Kinect depth stream has long latency (the sensed hand
position is behind the actual hand position) while Hybrid HFR Depth stream has almost no
latency.

which registers a Kinect v2 to a Point Grey Grasshopper 3 camera, a commercially available

configurable, high frame rate, high resolution and low latency color camera. With the two

cameras aligned, we calculate optical flow over a small region of interest (ROI) of the color

camera. The frame rate and latency of CMOS cameras such as the Point Grey camera is

related to the size of the ROI, with small ROIs obtaining high frame rate (500Hz) and low

latency. We apply the resulting flow field to warp the depth samples in the image plane.

Our experiments demonstrate that the errors in measurement resulting from our approach

are small. Our approach also allows a small amount of prediction to further reduce latency.

We demonstrate three applications of Hybrid HFR Depth. Our applications are chosen to

expose the benefits of high frame rate, and low or negative latency. We show Hybrid HFR

Depth tracking a ping pong ball with dense, accurate samples of depth. We use Hybrid

HFR Depth to track a fingertip, producing an accurate, dense trace useful for rendering and

gesture recognition. Finally, we show that Hybrid HFR Depth is well-suited to interactive

projection mapping applications, refer to Figure 1.2. High latency in a projection mapping

system can cause projected graphics to slide or shift on fast moving objects. Hybrid HFR

Depth’s high frame rate and latency reduction allows projection mapping onto a moving

hand.
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1.4 SECURITY APPLICATIONS

Alice wants to prove to Bob that her photo is real easily (without the intervention of a

team of experts), and Bob would have high confidence in the proof. This proof could operate

at large scales (i.e. anyone could produce a proof while taking a picture), and automatically.

We call this SceneProof.

SceneProof

Manipulated
Scene

Authentic
Scene

SceneProof

Figure 1.3: SceneProof takes a pair of depth and image, and check whether the scene is
authentic or not. It should reject pairs that have been manipulated, such as adversarial
examples. In this figure, the first example takes a pair of matched image and depth, and
our SceneProof should classify it as authentic. In the second example, a rectangle region of
the image and depth is inserted from another source, so our SceneProof should classify it as
not authentic.

There are lots of applications that take images with depths. The security applications

really require a system that can prove the authentic of the input data, and defend various

types of attacks, including adversarial examples, such as face verification. In this thesis,

we designed a system that takes depth images together with color images to prove scene

authentic, and is very hard to fool, refer to Figure 1.3.

How easy for deep learning based systems to be fooled? Recall that adversarial exam-

ples might be used by attackers. Adversarial examples are images with tiny, imperceptible

perturbations that fool a classifier into predicting the wrong labels with high confidence. x

denotes the input to some classifier, which is a natural example and has label l. A variety

of constructions [6, 7, 8, 9] can generate an adversarial example a(x) to make the classifier

label it m 6= l. This is interesting, because ||a(x)− x ||2 is so small that we would expect

a(x) to be labelled l.
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In order to perform the scene proof task, we proposed a new approach SafetyNet. The

model architecture consists of the original classifier, and an inspector which looks at the

internal state of the later layers in the original classifier. If the inspector declares that an

example is adversarial, then the sample is rejected. The inspector in SafetyNet, which needs

to be hard to attack, uses an RBF-SVM on binary or ternary codes (activation patterns)

to find adversarial examples. In experiments, we demonstrate that SafetyNet can robustly

detect type I attacks, and type II attacks on SafetyNet fail.
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CHAPTER 2: HIGH SPATIAL RESOLUTION DEPTH SENSING

Image Frame

Subsampled Depth

Zoomed, Subsampled Depth Per Frame Reconstruction Video Reconstruction

Figure 2.1: We describe a method to reconstruct high resolution depth maps from aggres-
sively subsampled data, using a smoothing method that exploits image segment information
to preserve depth boundaries. Our method is evaluated on four different datasets, and pro-
duces state of art results. This example shows a case where there is one depth sample per
24 × 24 block of image pixels (the tiny inset shows the depth map on the same scale as
the image). Our method can exploit optic flow and space-time segmentation to produce
improved reconstructions for video data.

2.1 OVERVIEW

We describe a method to produce detailed high resolution depth maps from aggressively

subsampled depth measurements. Our method fully uses the relationship between image

segmentation boundaries and depth boundaries. It uses an image combined with a low

resolution depth map. 1) The image is segmented with the guidance of sparse depth samples.

2) Each segment has its depth field reconstructed independently using a novel smoothing

method. 3) For videos, time-stamped samples from near frames are incorporated. The thesis

shows reconstruction results of super resolution from x4 to x100, while previous methods

mainly work on x2 to x16. The method is tested on four different datasets and six video

sequences, covering quite different regimes, and it outperforms recent state of the art methods

quantitatively and qualitatively. We also demonstrate that depth maps produced by our

method can be used by applications such as hand trackers, while depth maps from other

methods have problems.

2.2 RELATED WORK

There is a body of work on depth super-resolution methods, exploiting a variety of different

approaches.

Markov random field methods can be used to infer high resolution depth from low

resolution depth and high resolution intensity images, because the intensity images offer
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Low Resolution Depth Map

Segment CombinePer Segment 
Depth Samples 
............

Per Segment 
Reconstruction 
............

Or Predicted Depth Samples

Figure 2.2: Our method first segments the high resolution image, then reconstructs a high
resolution depth map for each segment independently using smoothing methods; finally,
these reconstructions are composed.
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Image Ground truthSegments 12 by 12 Sample 12 by 12 IG[6] 12 by 12 Ours 24 by 24 Sample 24 by 24 IG[6] 24 by 24 Ours12 by 12 GI[12] 24 by 24 GI[12]

Figure 2.3: Examples of images from each dataset. Our method works better than [5] [10]
on both 12 and 24 times. The results of [5] [10] become bad quickly when the upscale ratio
increases, while our method is more stable with the upscale ratio.

cues to the location of depth discontinuities. Depth map refinement based on MRF was

first explored in [11], extended in [12] with a depth specific data term, and combined with

depth from passive stereo in [13]. Park et al. [14]add a non-local means term to their MRF

formulation to preserve local structure better and to remove outlliers. Aodha et al. [15] treat

depth super-resolution as an MRF labeling problem.

Multiple depth maps can be combined to produce a higher resolution depth map. The

Lidarboost approach of Schuon et al. [16] combines depth maps acquired from slightly

different viewpoints. The Kinect fusion approach of Izadi et al. [17] produces outstanding

results by fusing a sequence of depth maps generated by a tracked Kinect camera into a

single 3D representation in real-time. Gudmundsson et al . [18] presented a method for

stereo and Time of Flight (ToF) depth map fusion in a dynamic programming approach.

Dictionary methods exploit the dependency between sparse representations of inten-

sity and depth signals over appropriate dictionaries. Mahmoudi et al. [19] first learn a depth
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dictionary from noisy samples, then refine and denoise these samples and finally learn an

additional dictionary from the denoised samples to inpaint, denoise, and super-resolve pro-

jected depth maps from 3D models. [20] and [21] independently learn dictionaries of depth

and intensity samples, and model a coupling of the two signal types during the reconstruc-

tion phase. In [22], a joint intensity and depth map model is built to recover the co-structure

of image and depth.

RGBD image depth refinement methods exploit image shading to improve raw Kinect

depth [23, 24]. Such methods estimate the lighting first, and then use shading information

to refine the depth map from Kinect output. Complex spatial albedo maps and complex

surface material properties present some difficulties for these methods.

Some other methods include [25][10][5] investigates the relationship between images and

depth, and no training data is needed. Space does not allow a reasonable review of image

segmentation or of optic flow. We use the method of [26] because it is stable, easy to

implement and runs fast. For video data, we use the video segmentation method of [27],

which produces space-time segments. For optic flow estimation, we use the method of [28],

which is effective and accurate. We expect other methods would apply as well in each case.

Several recent papers have explored regressing depth against a single image (see review in

[29]). The best performance to date has been displayed by a deep network [30].

2.3 METHOD

Assume we have an image and scattered depth samples. Our method builds the image

segmentation tree, using the scattered depth samples to merge the segments in the tree,

then uses smoothing methods to reconstruct depth within each segment independently. For

video, we use space-time segments and optic flow methods to move time-stamped samples

in space, but otherwise proceed as for static images. Pipeline is in Figure 2.2.

2.3.1 Image Segmentation

The segmenter of [26] is a form of agglomerative cluster, and so produces a tree of region

merges (known as a dendrogram in the clustering literature). Each image segmentation is a

choice of the region merges in the segmentation tree. Previous methods use pixel colors and

cross-validation to do this. In our application, we have depth samples, which is useful in

identifying segmentations. So we use depth samples to guide the process of region merging.

For each neighboring region pair, we compute a score measuring the consistency between

the depth pairs on the segmentation boundary, where a higher score means better segmen-
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tation. Write ci for the i’th sample location, df (ci, cj) for the difference in depth at the i’th

and j’th sample points, and δ and µ for parameters. Write γ(ci, cj; δ) for

min(df (ci, cj), δ)

δ
(2.1)

We score the consistency Cs(ci, cj) of each neighboring sample depth pair using

Cs(ci, cj) =

{
µ(e− eγ(ci,cj ;δ)) ci, cj share a segment

eγ(ci,cj ;δ) otherwise
. (2.2)

We use µ = 1 and fixed δ for each dataset. Notice that larger (resp. smaller) µ values would

tend to produce fewer (resp. more) segments. For each image, we first build the segmentation

tree with fixed number of levels and minimum area sizes for each dataset. Then, we start

with the level that contains the largest segments, and recursively for each segment use the

consistency score to decide whether go down to the next level of the segmentation tree. The

algorithm is robust to segmentation results. This is mainly because the depth samples can

fix segmentation problems, especially over-segmentation.

2.3.2 Depth Smoothing

We now have a set of image segments, and a collection of depth samples. For each segment,

we will smooth the samples inside the segment to form a dense depth map. By using only

the samples inside the segment, we can obtain sharp depth boundaries at image segment

boundaries. Once each segment has a depth map, we compute an overall depth map by

copying the depths from each segment to the image plane.

We describe two methods of smoothing. Our simple depth smoothing algorithm is a

form of scattered data interpolation. It helps to understand the smoothing system, is faster

than the advanced smoothing, and could easily be implemented in parallel. Our advanced

depth smoothing algorithm allows some large derivatives of depth. Experimental results

show the advanced method is better at dealing with complex depth images, poor segmen-

tation, and noise in depth samples. Preliminary, experiments demonstrated the advanced

method have an RMSE approximately 5% better than the sample method and all results

reported are for the advanced method.
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Simple Depth Smoothing

Write ci for the location of the i’th sample, zs(ci) for the value at that sample point,

x for a variable point in the image and z(x; a) for the reconstructed depth function, a for

the parameter vector. We start with a set of radial basis functions centered at each sample

point. Write φ(x; ci) = f(||x− ci ||) for the radial basis function centered at ci. Write dmax

as max influence range, we have

f(u) = max(1− u

dmax
, 0)2 (2.3)

We wish to blend depth estimates from nearby samples at a given point x. So it is natural

to work with a set of basis functions that add to one at every point. Define

β(x; ci) =
φ(x; ci)∑
j φ(x; cj)

(2.4)

(assuming that dmax is chosen so that at least one φ has a non-zero value for all x in the

image).

We assume that there is an initial prior model of depth zπ(x). In our experiments, this

is usually a zero offset plane, but when the samples are super sparse, using depth maps

reconstructed from other methods as frontal plane is useful. However, when images are

known to have a particular structure — for example, to be images of rooms as in [31] — it

might be useful to have some more complex model. Our depth interpolation is

z(x; a) =
∑
i

aiβ(x; ci) + zπ(x) (2.5)

where a are determined by solving the linear system

z(cj; a) =
∑
i

aiβ(cj; ci) + zπ(cj). (2.6)

With reasonable choices of dmax, this system has full rank, and so the solution yield an

interpolation. In our implementation, dmax is twice the average spacing between samples.

This means that at any point relatively few φ have non-zero values, meaning that evaluating

the blending weights is fast.
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Advanced Depth Smoothing

There are some difficulties with the simple depth smoothing model. First, it yields an

interpolation, which means that noisy depth measurements can seriously disrupt the recon-

struction. Second, the basis functions do not encode large depth derivative particularly well.

We introduce further basis functions to remedy these problems. At each sample point i we

place a unit vector ui. Then

ψ(x; ci,ui) = φ(x; ci) (u · (x− ci)) (2.7)

is a basis function with value 0 at x = ci. The gradient on position ci is large, and it can

be steered by choice of ui. Our smoothed depth model becomes

z(x; a,b,u) =

(∑
i

aiβ(x; ci)

)
+

(∑
i

biψ(x; ci,ui)

)
+ zπ(x). (2.8)

We must now choose values of a, b and u to produce a reconstruction. We do so by

minimizing an objective function that is a sum of three terms, each capturing a natural

requirement of the problem. First, we expect that depth samples have relatively low noise,

so we expect E1 to be small.

E1(a,b,u) =
∑
j

(z(cj; a,b,u)− zs(cj))2 (2.9)

Second, we expect that there are relatively few sharp depth gradients, so that we expect

E2 to be small.

E2(a,b,u) = ||b ||1 (2.10)

The L1 norm here encourages most of the bi to be zero.

Finally, at each grid sampling’s grid box center xk, the depths predicted by any two

distinct nearby sample points need to be consistent with one another. Write N (xk) for a

neighborhood around xk. We expect that E3(a,b,u) to be small, which is

∑
k

∑
ci,cj∈N (xk)

(
aiφ(xk; ci) + biψ(xk; ci,ui)

−ajφ(xk; cj)− bjψ(xk; cj,uj)

)2

, (2.11)

We choose parameters by optimization, and the weights are chosen by cross-validation.

argmin a,b,uλ1E1 + λ2E2 + λ3E3 (2.12)
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[log10, RMSE], smaller is better.
Dataset Middlebury Dataset NYU Dataset
Ratio 24×24 times (41,55) 16×16 times (69,82) 12×12 times (92,109) 8×8 times (138,163) 24×24 times (18,24) 16×16 times (27,36) 12×12 times (36,47) 8×8 times (54,71)
Near 0.0121 0.0366 0.0082 0.0291 0.0056 0.0240 0.0036 0.0189 0.0134 0.1656 0.0111 0.1444 0.0065 0.0977 0.0061 0.0929

Bicubic 0.0139 0.0313 0.0096 0.0246 0.0070 0.0199 0.0047 0.0156 0.0115 0.1333 0.0099 0.1223 0.0055 0.0755 0.0057 0.0780
[10] n/a 0.0340 n/a 0.0259 n/a 0.0198 n/a 0.0166 n/a 0.1588 n/a 0.1388 n/a 0.1026 n/a 0.1003
[5] n/a 0.0406 n/a 0.0269 n/a 0.0190 n/a 0.0138 n/a 0.2157 n/a 0.1393 n/a 0.0989 n/a 0.0649

Our 0.0055 0.0186 0.0042 0.0155 0.0034 0.0138 0.0027 0.0119 0.0083 0.1119 0.0051 0.0809 0.0039 0.0660 0.0026 0.0496
Dataset Sintel Dataset Gesture Dataset
Ratio 24×24 times (19,43) 16×16 times (28,64) 12×12 times (37,86) 8×8 times (55,128) 24×24 times (17,25) 16×16 times (25,37) 12×12 times (34,49) 8×8 times (50,73)
Near 0.0278 1.7290 0.0181 1.4092 0.0157 1.3917 0.0085 0.9923 0.0165 0.0284 0.0114 0.0239 0.0092 0.0198 0.0059 0.0157

Bicubic 0.0339 1.4607 0.0226 1.1764 0.0196 1.1932 0.0114 0.8240 0.0180 0.0249 0.0128 0.0205 0.0106 0.0171 0.0068 0.0131
[10] n/a 1.4461 n/a 1.1586 n/a 1.0219 n/a 0.7975 n/a 0.0249 n/a 0.0207 n/a 0.0193 n/a 0.0176
[5] n/a 1.5691 n/a 1.1608 n/a 0.9071 n/a 0.6491 n/a 0.0286 n/a 0.0237 n/a 0.0215 n/a 0.0183

Our 0.0135 0.9454 0.0088 0.7971 0.0066 0.6940 0.0047 0.5908 0.0123 0.0204 0.0094 0.0168 0.0079 0.0147 0.0056 0.0118

Table 2.1: Depth error compared to ground truth on four kinds of datasets using nearest
neighbor, bicubic, [10], [5] and our method. In the row Ratio, 12× 12 means 12 times super
resolution in each direction, and (92,109) means there are 92 by 109 boxes in the sample
grid. log10 is the mean absolute error of log10 depth. RMSE is root mean square error of
recovered depth with respect to the ground truth data.

2.3.3 Video Data

Our method also applies to video data with some modifications. We use space time

segments, because we expect depth to be fairly smooth within a space time segment, but

change on its boundaries (for example, an object moving behind an obstacle). We reconstruct

from depth samples that are time-stamped (obtained at a certain time, but have effects at a

time period). First, consider points nearby in space. We expect the depth at these points to

be similar. This justifies using a smoothing where the influence of a sample declines as points

get further away. But temporal smoothing is somewhat different. At each depth sample,

we can compute optic flow, which is used to predicts the location of the sample forward

and backward in time, by moving the depth sample along the flow dirction. For some time

interval, we can trust these flow-based predictions, so we transport depth samples along the

flow direction before interpolation. We allow the sample to have influence for times up to δt

in the future and −δt in the past, and the weighting of a sample declines as the inter-frame

time interval increases. We use

ω(∆t; δt, C) =
min(− log(|∆t|)/δt, C)

C
(2.13)

∆t is the inter-frame time interval, and the function value decreases as |∆t| approaches δt.

Now write ci(ti, T ) for the location of i’th sample point, which was obtained at time ti,

and current time is T . Write ci(ti) for ci(ti, ti). The location can be estimated from the

optical flow vector v by approximate integration as

ci(ti, T ) = ci(ti, T −∆t) +
∆t∑
td=1

v(ci(ti, T − td)). (2.14)
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We can now extend our simple depth interpolation model to obtain

z(x, T ; a) =
∑
i

ai [β(x; ci(ti, T ))ω(T − ti; δt, C)] + zπ(x). (2.15)

In principle, a can be solved by solving a linear system to interpolate the sample points. This

linear system is large, and grows with the size of the video. It’s hard to solve it directly, so

we use a simple and effective approximation. Each depth sample arrives at a frame time, so

we can collect the components of a into groups that apply to particular frames. We solve for

each frame independently, then use the resulting a to reconstruct depth. This approximation

is efficient.

Similarly, we extend our advanced depth interpolation model so that z(x, T ; a,b,u) is

given by ∑
i

[(
aiβ(x; ci(ti, T ))+

biψ(x; ci(ti, T ),ui)

)
ω(T − ti; δt, C)

]
+ zπ(x). (2.16)

Again, we find it sufficient to solve a, b, and u frame by frame, and then reconstruct for the

whole sequence.

2.4 EXPERIMENTAL PROCEDURES

Generally, we obtain high resolution depth maps, subsample them, reconstruct using our

methods, then compare the reconstruction to the original depth maps. For the Sintel dataset,

the high resolution depth maps are ground truth; for others, they are the best available depth

maps. We aim to produce reconstructions that are as close as possible to the high resolution

depth. In the thesis, performance is measured in three ways. First, the recovered depth

accuracy, such as RMSE. Second, the complexity of the algorithm, such as run time and

parallelization. Third, qualitative and quantitative results in applications such as hand

tracking.

2.4.1 Datasets

We apply our method to four different datasets: the Middlebury stereo dataset [32] [33],

the NYU indoor scene dataset [34], the Sintel synthesised dataset [35] and our Gesture Kinect

dataset. These datasets cover a wide range of different types of data (near views; distant

views; simple depth profiles; complex depth profiles). Because these datasets are very large,

we use 30 representative examples in each dataset; details are included in supplementary
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materials. The Middlebury dataset is the most widely used stereo dataset and is also the

dataset most super resolution methods use. This dataset contains high resolution depth with

lots of details and the images contain lots of textures, which are relatively challenging for

segmentation. The NYU dataset is collected from Kinect with extensive post processing, so

the depth is better than the Kinect raw depth. This is a widely used RGBD dataset for data

driven RGBD image analysis. The Sintel dataset is a synthesized dataset and contains lots

of depth details and high quality images. This dataset uses physical simulation to synthesize

complex scenes.

2.4.2 Subsampling Strategies

We adopt a strategy standard in ray-tracing circles by subdividing the image into grids,

then drawing one sample per grid box. Note that we do not smooth depths before sampling,

because we do not envisage that future depth sensors will be able to do so. This means

that conventional reconstruction techniques applied to the sampled depths alone will alias

significantly.

Generally, we describe a particular sampling regime by the size of the box of pixels replaced

by a single sample, so that a 64 × 64 result refers to a case where there are 4096 times as

many pixels to reconstruct as there are samples. We explored two protocols for drawing

samples: Fixed Sampling, where the sample is in the center of the box (Zij for depth at

pixel i,j, depth samples are i = ka, j = kb, a = 1, 2, 3, b = 1, 2, 3, k is the integer ratio).

Results in the thesis are from fixed samples; we have also experimented with Gaussian

Sampling, where the location of the sample is a draw from a normal distribution with

mean the box center and standard deviation 1
6

box edge length. As one would expect, we

find that differences in error statistics are small, slightly favoring Guassian Sampling. Details

in supplementary materials.

2.4.3 Dealing with Noise

The gesture dataset uses raw Kinect depth, so there is noise, mis-alignment and missing

values. We deal with depth missing values by using only known depth values. If the segment

being smoothed contains only unknown values we mark the segment as having a unique

missing value or use the average of the near known neighbors. We control measurement

noise by using the advanced smoothing method, which does not interpolate and tends to

make the surface smooth in most places. Two approaches help us deal with mis-alignment

between the camera and the depth sensor. First, the advanced smoothing method is likely
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Figure 2.4: A comparison between [5], per-frame reconstructions, video reconstructions,
skip 1 depth frame out of every 2 depth frames and skip 2 depth frames out of every 3 depth
frames for examples from six sequences. Note that for drop frames, the frames we show
here have no depth values. Our video reconstruction works best and even our drop 2 frames
works better than [5], especially when the upscale ratio is big.

[bad pixel %, RMSE], smaller is better.
Ratio Method Tsukuba Venus Teddy Cones

Near 3.53 1.189 0.81 0.408 6.71 1.943 5.44 2.470
Bicubic 3.84 0.673 0.88 0.290 4.43 2.268 5.98 2.336

4 [36] 2.56 n/a 0.42 n/a 5.95 n/a 4.76 n/a
× [37] 2.95 0.450 0.65 0.179 4.80 1.389 6.54 1.398
4 [22] 1.73 0.487 0.25 0.129 3.54 1.347 5.16 1.383

[5] 3.03 0.898 0.43 0.201 6.03 0.817 2.98 0.942
Ours 2.06 0.590 0.29 0.185 2.03 0.593 2.56 0.938
Near 3.56 1.135 1.90 0.546 10.9 2.614 10.4 3.260

Bicubic 6.67 0.972 2.03 0.427 10.9 2.758 11.9 3.300
8 [36] 6.95 n/a 1.19 n/a 11.50 n/a 11.00 n/a
× [37] 5.59 0.713 1.24 0.249 11.4 1.743 12.3 1.883
8 [22] 3.53 0.753 0.33 0.156 6.49 1.662 9.22 1.871

[5] 5.96 1.135 1.98 0.338 12.0 1.376 14.2 1.709
Ours 3.52 0.773 0.47 0.258 3.82 0.863 3.65 1.041

Table 2.2: Comparison with state of art methods on Middlebury dataset. Our method is
better than other methods, especially when the image quality is similar to current camera
images (eg Teddy; Cones). Images in supplementary material. Bad pixel % is the percentage
of bad pixels with respect to all pixels of the ground truth data with error threshold 1.
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to get rid of a single point that is very different from other points. Second, we identify the

largest and smallest ten percent of the depth values within a segment. Any of these points

which are also close to the boundary of the segment may represent alignment problems. At

problem points, we replace the depth value with a weighted average of the nearest neighbors

within the segment, using neighbors that are not themselves problem points.

2.5 RESULTS

Our method yields state of the art results compared to strong recent methods (Table 2.1,

Table 2.2, Table 2.3) in both image depth super resolution and video depth super resolution.

Results for images depth super resolution are in Figure 2.3.

[log10, RMSE], smaller is better
Ratio Method Market Alley Ambush Cave Office Gesture

Near 0.0531 4.9773 0.0174 2.0154 0.0204 1.0543 0.0319 3.9762 0.0086 0.0365 0.0196 0.0494
12 Bicubic 0.0734 4.2884 0.0182 1.7009 0.0276 0.8958 0.0508 3.3315 0.0092 0.0313 0.0210 0.0436
× [5] 0.0667 3.7422 0.0215 1.7058 0.0232 0.5401 0.0505 3.4666 0.0131 0.0369 0.0264 0.0356
12 Frame 0.0261 2.5656 0.0131 1.3151 0.0082 0.4580 0.0188 2.4652 0.0081 0.0290 0.0147 0.0335

Drop 1 0.0411 2.6793 0.0256 1.5682 0.0216 0.5901 0.0497 4.5012 0.0062 0.0233 0.0133 0.0323
Drop 2 0.0531 2.8404 0.0310 1.6690 0.0279 0.6516 0.0708 5.7482 0.0066 0.0244 0.0138 0.0329
Video 0.0247 2.4703 0.0101 1.2110 0.0080 0.4511 0.0200 2.4813 0.0055 0.0208 0.0120 0.0318
Near 0.0899 6.3113 0.0301 2.7225 0.0366 1.3846 0.0626 5.4765 0.0153 0.0508 0.0324 0.0659

24 Bicubic 0.1210 5.4869 0.0294 2.3210 0.0486 1.1637 0.0903 4.6378 0.0157 0.0434 0.0343 0.0549
× [5] 0.1426 5.1486 0.0437 2.3575 0.0842 1.1855 0.1306 5.4775 0.0255 0.0592 0.0486 0.0671
24 Frame 0.0433 3.2642 0.0227 1.7317 0.0125 0.5612 0.0303 3.1358 0.0124 0.0377 0.0219 0.0405

Drop 1 0.0524 3.0734 0.0307 1.7939 0.0247 0.6407 0.0582 4.8841 0.0093 0.0303 0.0199 0.0369
Drop 2 0.0660 3.2973 0.0361 1.9139 0.0313 0.7090 0.0793 6.0418 0.0098 0.0318 0.0209 0.0382
Video 0.0370 2.8828 0.0154 1.4826 0.0116 0.5364 0.0297 3.1537 0.0084 0.0281 0.0184 0.0364
Near 0.1396 8.0155 0.0555 3.5887 0.0738 1.9890 0.1197 7.6708 0.0304 0.0781 0.0619 0.0955

48 Bicubic 0.2034 6.8604 0.0547 3.1245 0.0941 1.7141 0.1468 6.6947 0.0293 0.0690 0.0640 0.0846
× [5] 0.2347 6.2689 0.0781 3.1700 0.1195 1.7024 0.1633 6.8265 0.0356 0.0759 0.0795 0.0944
48 Frame 0.0761 4.3003 0.0322 2.2228 0.0216 0.7437 0.0560 4.2849 0.0165 0.0435 0.0358 0.0534

Drop 1 0.0753 3.6223 0.0391 2.0803 0.0334 0.8215 0.0816 5.8359 0.0148 0.0411 0.0292 0.0456
Drop 2 0.0932 4.0598 0.0452 2.1789 0.0405 0.8701 0.1054 7.0715 0.0155 0.0434 0.0309 0.0492
Video 0.0582 3.3440 0.0231 1.7372 0.0181 0.6774 0.0480 4.1890 0.0138 0.0387 0.0276 0.0433
Near 0.1588 8.1772 0.0544 3.9099 0.0681 1.9595 0.1040 7.4999 n/a n/a n/a n/a

64 Bicubic 0.2113 7.2739 0.0488 3.2382 0.0965 1.6106 0.1312 6.3807 n/a n/a n/a n/a
× [5] 0.2206 7.3979 0.0857 3.8713 0.1371 2.1635 0.1791 8.2218 n/a n/a n/a n/a
64 Frame 0.1087 5.1097 0.0418 2.6876 0.0333 0.9675 0.0863 5.6128 n/a n/a n/a n/a

Drop 1 0.1037 4.4940 0.0466 2.3461 0.0427 0.9905 0.1060 6.9270 n/a n/a n/a n/a
Drop 2 0.1183 4.7300 0.0543 2.5789 0.0497 1.0212 0.1274 7.9395 n/a n/a n/a n/a
Video 0.0847 3.9590 0.0320 2.0638 0.0261 0.8438 0.0721 5.2936 n/a n/a n/a n/a

Table 2.3: Comparison between nearest neighor, bicubic, [5], our image super resolution,
our video super resolution, our skip 1 depth frame out of every 2 depth frames and skip
2 depth frames out of every 3 depth frames results. Our image super resolution performs
much better than nearest neighor and [5]; our video super resolution is better still; even our
drop depth frames works reasonably well.

17



2.5.1 Video Super Resolution

Using the space-time structure of video yields better results than performing super res-

olution frame by frame. We evaluated our methods on the Sintel dataset (where there is

high resolution ground truth depth), and on Kinect sequences. In each case, we used cal-

culated optical flow (rather than ground truth, which Sintel provides). Table 2.3 shows our

per frame super resolution is generally better than all other methods, and that our video

super resolution is better than our per frame super resolution. We also works on dropping

depth frames, which means at that frame, there are only RGB image and no depth vlaues.

Figure 2.4 shows one of the video frames in different videos.

Looking at the video from Kinect, one can see smoothed noise in reconstructions, resulting

from the relatively low sampling rate (depths appear to blink or flash). Note that there is

a visible measurement noise in the kinect. Note also that this noise is suppressed, but not

removed, by using video rather than per-frame reconstruction.

2.5.2 Comparisons

Depth 64 by 64 Recon, flat initial Recon, DT initial Recon, flat initial Recon, DT initialDepth 100 by 100

Figure 2.5: At very sparse depth sampling regimes, the depth map inferred by depth transfer
can improve the inferred depth, likely by providing good estimates of low spatial frequency
components lost in the sampling. We exploit this information using depth transfer as zπ in
our reconstruction method. The figure shows an example from 64 × 64 and from 100 × 100
subsampling (“initial” refers to zπ). Note the significant improvements obtained by using
depth transfer in this case.

Kinect fusion recovers improved accuracy depth maps by fusing multiple depth maps

from many different viewpoints [17]. We have no ground truth depths available to do quali-

tative comparisons, so we show an example comparing our results (with downsampled raw

kinect depth as input) with kinect fusion for a view of a keyboard, which contains many fine

structures. Figure 2.6 shows the results and each key on the keyboard occupies about 100

pixels. The input Kinect raw depth is noisy and our results are better than the input raw

depth. Our results are also comparable to kinect fusion when the upscale factor is relatively

small. When the upscale factor is large, many key segments don’t have sample data so our

method cannot recover these depths.
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Image Kinect Depth Kinect Fusion

4 by 4 Ours 8 by 8 Ours 12 by 12 Ours

Figure 2.6: Our depth map is comparable to that obtained by kinect fusion, and rather
better than raw depth, especially when the super resolution ratio is small. More information
is in the movie.

Super sparse sampling presents particular challenges. Figure 2.5 demonstrates our

method can operate in this regime. Notice that using a zπ obtained from depth transfer

methods yields an improved reconstruction in this regime.

2.5.3 Applications

Depth information is very useful. We demonstrate that our depth super resolution method

supports two representative and challenging applications: object insertion and hand tracking

from Kinect.

Object insertion methods estimate a depth map for a legacy photograph using depth

transfer, then allow users to drag new objects over the estimated scene [38]. Errors in the

depth estimate lead to distracting effects in the drag interface. The improvements obtained

by our method are sufficient to improve behavior of this interface (see the example in the

movie).

Hand tracking is an important application of Kinect which is sensitive to the quality of

depth estimates. We evaluated the forth hand tracker [3] [4], (the best currently available

depth based hand tracker) on raw kinect depth maps, depth maps subsampled to 24 ×24

then reconstructed with nearest neighbors, [5] and our method. Using our depth works as
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Kinect Depth Near IG[6] Ours

Tracker Status

Figure 2.7: Our reconstruction methods support hand tracking from aggressively subsampled
depth maps. The first row is depth map and the second row is the status of forth hand
tracker [3] [4] (it takes both color image and depth image to generate the status of the hand
tracker). In this example at the same moment with different depths, Kinect depth creates
difficulty for the hand tracker, nearest neighbour based depth upsample and image guided
depth upsampling [5] make the hand tracker fail (because the low quality depth map provides
limited information and is even misleading), while our upsampled depth enables the hand
tracker to function smoothly.

well as using raw kinect depth, while using nearest neighor and [5] depth creates significant

difficulties for the tracker (as judged qualitatively by average tracker score in supplementary

materials). Figure 2.7 shows visual results; there are more examples in the movie.

2.6 DEPTH FROM NO SAMPLES

Our method works well because the spatial model is effective; depth really does change

quickly at segment boundaries, and slowly elsewhere. This suggests applying the method

when there are no samples. There is a considerable literature on regressing depth against

images (review in [29]). All methods tend to produce very smooth depth maps as a result

of the estimation procedures. The best performing method uses deep network features to

represent the image, and regresses depth against these features [30]. Because the features are

largely invariant to small local shifts of image patches, the regressed depth is smoothed. It is

simple to impose a spatial model that is more sensitive to depth boundaries using our method.

We subsample the depth map produced by the method of [30], use mean median filter to

process depth samples within each image segment for robustness reasons, then upsample

using our method. This introduces stronger depth gradients at segment boundaries, and

20



leads to a useful improvement in reconstruction error. Qualitative and quantitative results

are in supplementary materials.

2.7 DISCUSSION AND LIMITATIONS

Speed: Currently, our advanced method does not run in real time, but the basic method

could. Our platform is Windows 8.1 and Matlab 2012b, with 12 GB memory and Intel Core

i7. For the biggest images (1300*1100) in dataset, the times are as follows. [5] is about 800s,

and [10] is about 30s. For our advanced version, time is about 20s, for our simple version,

time is about 5s. The time for each frame in video is similar to single image. The simple

version is likely to be real time with good parallel implementation.

Optical flow: Our method extends to upsampling optical flow fields rather well (because

flow boundaries tend to appear at image segment boundaries). Detailed results appear in

supplementary material. Currently, we have no evidence that a speedup is available from

this observation.

Fine details: Our method cannot recover fine or complex surface relief, and will be

unhelpful when there is little contrast at object boundaries. Our method tends to work

poorly when there are many image segments without a depth sample. Segmentation errors

will clearly disrupt our method. We believe that, in general, higher image resolution will have

beneficial effects on our results, by producing more detailed segmentations and more accurate

optical flow calculations. Finally, errors in sample depth can have serious consequences for

our method.

We see a variety of interesting future avenues to explore. A depth camera that makes few

depth samples may be able to make those samples more accurately. Finally, our method is

adaptive, and it would be interesting to explore procedures that explicitly manage a budget

of depth samples to produce the best reconstruction. There is good evidence (the results for

skipped frames in Table 2.3) that one could manage this budget over time (as with a power

budget).
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CHAPTER 3: LOW LATENCY DEPTH SENSING

Figure 3.1: Hybrid HFR Depth is a high frame rate, low latency, configurable depth camera
solution built from a Kinect and acolor camera. Depth output is 500 frames per second
(maximum) and 20 milliseconds latency in (a1-2),and depth is predicted 50ms into the
future in (b1-2). Our high frame rate, low latency depth solution supports applications
sensitive to lag and framerate:(c1-3)illustrates interactive projection mapping, where Arbok
andPikuchu are projected onto the raft using either standard Kinect depth stream (Arbok)
or Hybrid HFR Depth stream (Pikachu) to track the moving hand. (c1)Arbok and Pikachu
are projected on the raft when hand is still. (c2) (c3) Arbok is off the raft and Pikachu is on
the raft when hand is moving because Kinect depth stream has long latency (the sensed hand
position is behind the actual hand position) while Hybrid HFR Depth stream has almost no
latency.

3.1 OVERVIEW

The low frame rate and high latency of consumer depth cameras limits their use in inter-

active applications. We propose combining the Kinect depth camera with an ordinary color

camera to synthesize a high frame rate and low latency depth image. We exploit common

CMOS camera region of interest (ROI) functionality to obtain a high frame rate image over

a small ROI. Motion in the ROI is computed by a fast optical flow implementation. The

resulting flow field is used to extrapolate Kinect depth images to achieve high frame rate and

low latency depth, and optionally predict depth to further reduce latency. Our ”Hybrid HFR

Depth” prototype generates useful depth images at maximum 500Hz with minimum 20ms

latency. We demonstrate Hybrid HFR Depth in tracking fast moving objects, handwriting

in the air, and projecting onto moving hands. Based on commonly available cameras and

image processing implementations, Hybrid HFR Depth may be useful to HCI practitioners

seeking to create fast, fluid depth camera-based interactions.
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3.2 RELATED WORK

There are a variety of previous works that seek to increase the frame rate and reduce the

latency of depth cameras. They include a range of approaches including simple prediction

using a dynamical model, modifications of existing depth image computation algorithms

possibly involving exotic hardware, and highly specialized hardware.

3.2.1 Prediction by Dynamical Models

Dynamical models allow a degree of prediction in software, thereby reducing latency. Xia

et al. [39] sought to find a camera and software-based approach to reduce the latency of

touchscreen interaction. Based on collected training data, Xia et al. estimated touch down

locations and triggered device interactions in advance. Knibbe et al. [40] used a Kalman

Filter to predict the motion of a ball in flight. Kitani et al. [41] placed a camera inside a

ball and used image processing to determine its speed of rotation, triggering the camera at

precise moments to capture the scene below. At low frame rates, such dynamical models

must be very accurate to make helpful predictions, limiting the utility of the approach.

3.2.2 Specialized Depth Processing

Other related works improve performance of depth cameras by exploiting low-level prop-

erties of how depth is computed. Such approaches tend to rely on exotic components,

modifications of existing components, and intimate knowledge of how depth is computed on

todays depth cameras. The focus of these works is on improving frame rate; improvements

in latency are not discussed.

Schmidt et al. [42] presented a method to implicitly calibrate multi-tap 3D Time of Flight

sensors, increasing the frame rate by a factor of two. Their prototype is a proof-of-concept

written in Matlab.

Stuhmer et al. demonstrated that a modified Kinect v2 operating at 300Hz can track a

fast moving ping pong ball accurately [43]. They modified the Kinect depth sensor to capture

raw infrared images, and performed model-based tracking against these raw captures. The

method requires models for both object and motion, and so works only for rigid simple

shapes in simple motion. In contrast, our method obtains high frame rate and low latency

depth map for a region of interest under general motion.

Fanello et al. [44] combined an exotic high-frame rate full-frame camera with a Kinect

v1 structured light projector to obtain depth frames at 375Hz. They contribute a machine
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learning approach to optimize the Kinect v1 computation of disparity to keep up with the

high frame rate camera.

3.2.3 Increasing Frame Rate by Specialized Hardware

Specialized hardware may be used to reduce latency and increase frame rate for a particular

application. Papadakis et al. [45] minimized latency in head-tracking immersive simulations

by reducing buffering latency in their display hardware, achieving a 50% reduction in overall

system latency. Lumospheres [46] presented a hardware optimization approach to accurately

project on balls under projectile motion. Okumura et al. [47] introduced a low latency camera

with a series of saccade mirrors for ball tracking technology. Their system is purely vision

based (no depth), so it can only track visually salient objects.

Customized hardware generates impressive results, but the expense of such approaches put

them out of reach of typical HCI practitioners. In contrast, our method uses off-the-shelf,

affordable hardware.

3.2.4 Hybrid Cameras

Lu et al. [48] demonstrated improving the spatial resolution of the depth stream by cal-

ibrate the Kinect with a color camera. They used an edge map and optimization-based

interpolation and optical flow to aggressively upsample depth. Their work demonstrated

that depth is not hard to interpolate accurately; that current optical flow estimates are

accurate enough to support depth interpolations; and registering a depth sensor with color

camera can produce an improved depth stream.

In contrast to previous work, our approach shows that color camera can empower depth

camera in all aspects. Our approach combines off-the-shelf hardware by vision algorithms

to reduce latency and increase frame rate. It is a compromise between exotic and expensive

customized hardware approaches and limited software-based approaches.

3.3 OVERVIEW AND CONTRIBUTIONS

Our Hybrid HFR Depth approach combines an off-the-shelf Xbox Kinect v2 and Point

Grey Grasshopper 3 camera (see Figure 2(a)), and uses computer vision algorithms to create

configurable high frame rate and low latency depth images. Our Grasshopper 3 GS3-U3-

51S5M-C Mono supports configuration of region of interest, frame rate, resolution, shutter
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speed and so on. It features a Sony IMX250 CMOS, 2/3” imager, running at 75Hz at full

2448x2048 resolution, and at 500Hz with a 256256 region of interest (ROI).

Table 3.1 compares Hybrid HFR Depth with the individual sensors used in our system.

As the table shows, Hybrid HFR Depth inherits characteristics of both Point Grey camera

and Kinect v2.

Kinect v2 Point Grey Hybrid HFR
Frame Rate 30Hz 75-500Hz 75-500Hz

Latency 60-93ms 10ms 22ms
Full frame 512424 24482048 410340
Min ROI 2121 126126 2121
Max ROI 170170 10201020 170170

Table 3.1: Specifications of Hybrid HFR Depth and the two sensors used. Hybrid HFR
Depth full frame dimensions are less than that of Kinect due to Kinect having a slightly
wider field of view than Point Grey camera.

A main contribution is to use off-the-shelf cameras to create a practical, affordable and

easily accessible high frame rate, low latency depth image solution. Compared to customized

hardware [46, 47, 45] and software-only approaches [44, 41, 40, 42, 43, 39], it is hybrid in

nature. We evaluate high frame rate depth qualitatively and quantitatively and demonstrate

the usefulness of our Hybrid HFR Depth in three application scenarios.

Figure 3.2: (a) Our Hybrid HFR Depth uses off-the-shelf Point Grey camera and Kinect
v2. (b) Our projection mapping system uses our Hybrid HFR Depth and an off-the-shelf
projector.
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3.4 METHOD

Hybrid HFR Depth combines Kinect v2 and Point Grey RGB camera by vision algorithms.

We first briefly introduce the pipeline and then include details of each part. First, we rigidly

mount the two sensors together and calibrate them (Figure 3.2a). The Point Grey camera

has about 6 times higher pixel count in each dimension than Kinect depth frames, so we down

sample the color frames and align them with the depth frames. Second, we estimate the

delay of each sensor to accurately align the two data streams in time to perform our vision

algorithms. Third, we use GPU implementation of the Brox optical flow [49] to estimate the

flow from Point Grey color images. This flow field is used to warp the Kinect v2 depth data

in XY direction. Because the depth samples not only move in XY direction, but also move

in Z direction (as depth value changes), we use linear extrapolation to predict movement

in the Z direction. We can further reduce the latency due to the Point Grey camera and

image processing. Because we have reliable high frame rate depth stream, we find a simple

acceleration model works well to reduce or eliminate latency or predict future depth frames.

3.4.1 Sensor Calibration

We find that a simple, fast calibration modeling only lens distortion and affine transfor-

mation works well. First, we use OpenCV’s camera calibration routines to estimate the lens

distortion of Kinect IR camera and Point Grey color camera. Then, we use RANSAC to

estimate the affine transformation matching corresponding points in color images and IR

images.

3.4.2 Alignment in Time

Kinect v2 and Point Grey cameras have very different latencies. To align the sensors in

time to perform vision algorithms and understand the latency of the system, we measure the

latency of each sensor. Point Grey camera latency is measured by recording the time between

sending an image request and receiving an image, around 10ms (varies slightly according to

the image size). Kinect’s latency is more difficult to measure. Instead we measure its latency

relative to the Point Grey camera. We swing a scissor in circles like a clock (scissor is the

hour hand of clock), and continuously take images with both Point Grey camera and Kinect.

For each Kinect image, we find the image from Point Grey camera that best matches the

clock (scissor in same rotation angle). Because all images have time stamps, it’s easy to

find that the relative latency is 50ms. Since the Point Grey camera has absolute latency of
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10ms, the actual latency of each Kinect frame is about 60 milliseconds. Kinect generates

depth frames every 33 milliseconds (30Hz), so the actual latency is between 60 and 93ms.

With sensor latencies and time stamps for both data streams, we can accurately align Kinect

depth frame and Point Grey color frame. We align depth frame Dk at time k to color frame

at time t = k − 50ms.

Our Hybrid HFR Depth obtains a minimum 20ms latency, which is the sum of Point Grey

camera latency and image processing time. Our depth stream can be as fast as 500Hz, so

the actual minimum latency, without further prediction, is 20+2 milliseconds.

3.4.3 Region of Interest (ROI)

A common CMOS camera can run very fast (high frame rate and low latency) by reducing

the region of interest (ROI). We exploit this feature by calculating our fast depth stream on a

moving ROI, focusing on the object of interest. This strategy greatly increases effective frame

rate while reducing computation cost. We crop the Kinect depth image to the corresponding

ROI in software, and configure the Point Grey ROI using the camera’s API. Determining

the ROI in an application is generally easy, because we need only low frame rate Kinect

depth to determine the position of fast moving objects of interest. For example, if we want

to focus on the right hand, we can use the Kinect depth to find the center of the right hand

at 30Hz and update the Point Grey ROI continuously to track the center of the hand. If the

full size depth stream is needed, we can copy the calculated ROI depth back to the full size

Kinect depth image. This full frame obtains high framerate and low latency inside the ROI

and usual Kinect performance elsewhere.

3.4.4 Generating High Frame Rate Depth Images

High frame rate depth images are computed by warping the latest Kinect depth image by

dense optical flow of high frame rate Point Grey images. From color images It and It+1 we

obtain the flow field Ft,t+1 and define an image warping function It+1 = warpFt,t+1
(It). A

high frame rate depth image Ht+1 is obtained by warping the latest Kinect depth image Dk

by the flow field: Ht+1 = warpFt,t+1
(Dk). Subsequent frames Ht+i, (i > 1) are not computed

by warping the previous frame Ht+i−1 but by updating the previous flow field so that it

models all motion since the latest depth image. For i > 1:

Ft,t+i = warpFt,t+i−1
(Ft,t+i−1) + Ft+i−1,t+i (3.1)
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Ht+i = warpFt,t+i
(Dk) (3.2)

where Ft+i−1,t+i is the output of optical flow computation on the two latest color frames.

We use OpenCV’s GPU implementation of Brox’s algorithm. However, even with GPU

acceleration, the flow calculation is slow (maximum 150Hz) compared to our Point Grey

camera (maximum 500Hz). We find that the relation between flow calculation time and

image size is not linear: the flow calculation time increases much more slowly than image

size. We can use batch processing to compute flow over multiple pairs of images to speed

up computation at a small cost in latency (refer to Figure 3.4, increasing batch size by one

will increase minimum 2ms latency). For example, with a batch size of n, we concatenate

n Point Grey images, run optical flow on this large image, and then split the result into n

small flow images. This approach allows Hybrid HFR Depth to run as fast as the Point Grey

camera.

The warping process described above operates over the spatial domain of the image but

does not model changes in the depth values themselves (e.g.; an object moves closer or further

away from the camera). To calculate accurate depth values for H we linearly extrapolate

the Z component of Kinect depth images. We find the most recent two Kinect depth images

Dk−1 and Dk and their corresponding color images It1 and It2 . Assuming that change in

depth is constant over a small period, we update the Z component of Ht as:

Zt = warpFt2,t
(Dk + (Dk − warpFt1,t2

(Dk−1))(t− t2)/(t2 − t1)) (3.3)

This relationship is depicted in Figure 3.3.

Figure 3.3: Generating high frame rate depth images. (a) Optical flow is used to estimate
motion in the color images from It1 and It2 , which correspond to Kinect depth images Dk−1

and Dk. High frame rate depth image Ht is generated by warping Dk by the flow It2 to It.
(b) depth values Z are determined by linear extrapolation of the change in depth from Dk−1

to Dk, following the motion in the color image .
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3.4.5 Prediction

Because they are densely sampled in time, the high frame rate depth frames can be

used to predict future frames using a second order model of motion. We estimate accurate

velocity and acceleration with 30 samples, and assume the acceleration is constant during

prediction. With the flow estimation and the acceleration model, we can predict future

flows and future depth frames. We can use this approach to reduce latency, possibly to zero

or even negative values. Aggressive prediction will naturally affect depth image accuracy,

especially around discontinuities in the depth image. Applications that are less sensitive to

inaccuracies around object boundaries in the depth image (e.g., object tracking) may benefit

from significant prediction.

3.5 CONFIGURATION DETAILS

In this section, we consider various implementation details of the Hybrid HFR Depth

approach. These can be configured to suit a given application.

3.5.1 Hybrid HFR Depth specification

There are four quantities that relate to the performance of the proposed technique: ROI,

batch size, frame rate, and latency. ROI can be configured from 40 pixels in each dimension,

enough to capture the whole hand, to 170 pixels in each dimension, enough to capture the

whole upper body. As noted above, our implementation may compute optical flow over

several images. Batch size indicates the number of images included in this computation.

Changing batch size trades off latency and framerate. The relation between optical flow

calculation time and batch size is not linear. For example, when the ROI is 50 pixels in

each dimension and batch size is 1, the frame rate is around 100Hz. If batch size is 8, the

frame rate is around 400Hz. In general, the frame rate varies from around 100Hz to 500Hz,

depending on ROI and batch size, and can be configured to target a given application.

Latency in our system is the sum of Point Grey camera latency and processing latency

(greater with larger batch sizes). When prediction is used, latency can be reduced to zero

or even become negative. We illustrate the relationship between frame rate and latency

without prediction under different ROIs and batch sizes in Figure 3.4.

We give the configurations of three example applications we present later in Table 3.2.

The basic principle is to tune the most critical aspect of configuration for a given application.

In hand writing, for example, frame rate is the most important factor. In tracking, both

29



higher frame rate and lower latency is desirable. In projection mapping, frame rate similar

to projector refresh rate (60Hz) is adequate, while aggressive prediction is needed.

Figure 3.4: Batch processing optical flow calculations impacts overall frame rate and latency:
when batch size increases, both frame rate and latency increase at a rate that depends on
the size of the ROI. We illustrate the empirical relationship between frame rate and latency
for four ROI sizes (P21, e.g., denotes an ROI 21 pixels in each direction). The first point
along each curve indicates a batch size of one (no batching). Each point thereafter indicates
a batch size of one more frame. In general, (1) larger ROI size causes greater latency, (2)
higher frame rates correspond to greater latency (due to batch processing), and (3) latency
increases slowly with batch size, at first.

ROI Size Batch Size Latency Frame Rate
Writing 8585 6 40ms 200
Tracking 7575 4 30ms 200
Mapping 106106 1 22 (-70)ms 70

Table 3.2: Hybrid HFR Depth configurations for the three example applications. With
projection mapping, if no prediction is used, the latency is 22 milliseconds. If prediction is
used, the latency is -70 milliseconds.

3.5.2 Other Configuration Options

Increased Field of View: Fixing the ROI while down sampling the input depth image

sacrifices spatial resolution but significantly increases the effective field of view without
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impacting computation time. For example, resizing the depth image to 25

Increased Accuracy: Optical flow calculations are subpixel in nature, but its accuracy

is related to the resolution of the input images. Higher resolution images yield more accurate

optical flow. In order to increase accuracy, we can use color images with resolution four times

that of the depth image to more accurately estimate optical flow, and then down sample the

flow. This approach will generate higher accuracy high frame rate depth at the cost of lower

frame rate and higher latency.

Figure 3.5: Example sequences of hand movement illustrate the quality of high frame rate
depth images. Hybrid HFR Depth images have higher frame rate, lower latency (hands move
ahead of Kinect depth) and quality similar to the input Kinect depth images.
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3.6 EVALUATION

Figure 3.5 illustrates the quality of the high frame rate depth image on examples of hand

motion. The accompanying video gives further examples and gives a better sense of the

quality of the generated sequences. Depth direction hand motion example is not visually

obvious, so we only include a quantitative example in Table 3.3.

3.6.1 Quantitative Evaluation

To evaluate the quality of the Hybrid HFR Depth images we would like to compare the

generated 300Hz high frame rate depth image to an equivalently 300Hz high frame rate

ground truth depth image. Because we have no such 300Hz high frame rate ground truth

available, we instead use the 30Hz Kinect depth image stream as ground truth, and take every

tenth Kinect depth image as 3Hz input. This essentially slows down the sequence by a factor

of 10. During usage, we speed up both depth streams 10 times to simulate 300Hz ground

truth and 30Hz input to the Hybrid HFR Depth algorithm (see Figure 3.6). In recording

test sequences, we may take some care in producing motions that are approximately slowed

down by a factor of 10.

Dataset

We collected seven sequences of hand motions: three simple hand motions S1-3 (similar

to first row of Figure 3.7), three more complex hand motions C4-6 (similar to second row of

Figure 3.7) and one hand motion only in depth direction D7 (scene is similar to first row of

Figure 3.7 and hand moves in depth direction). In each sequence, the subject moved their

hands in approximately one tenth normal speed. We save only frames that have both Kinect

depth and Point Grey images, so we get a sequence of normal hand moving speed, and

each Point Grey color image has a corresponding depth images. When these sequences are

processed, we feed every Point Grey image and one out of ten ”Ideal Kinect” depth images

into the system, to simulate the different frame rates of two sensors. During evaluation,

”Ideal Kinect” depth images are used as ground truth.

Metrics

To compare the generated depth image against ”Ideal Kinect” ground truth, we calculate

average absolute per pixel difference across the image, ignoring pixels that have no value
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Figure 3.6: Illustration for quantitative evaluation. ”Ideal Kinect” is simulated by captur-
ing slow motion with Kinect (30Hz). ”Regular Kinect” frames are meant to simulate the
standard Kinect stream before the 10x slow simulation and are held for 10 frames. ”Hybrid
HFR Depth” takes as input every tenth Kinect frame. Symbols inside sample point (circle,
rectangle and star) means the depth frames. Red dash line indicates comparisons reported
in the text.

Sequence ”Regular Kinect” Hybrid HFR Hybrid HFR w/ prediction
S1 42.1mm 28.9mm 29.1mm
S2 65.8 35.2 37.4
S3 72.1 43.4 44.2
C4 65.3 45.9 47.2
C5 47.5 40.1 40.2
C6 65.2 50.6 52.0
D7 99.7 78.6 79.4

Table 3.3: Average per pixel error in millimeters between calculated depth image and ground
truth depth image. S1-S3 are simple sequences, C4-C6 are more complex sequences, D7 is
motion in depth direction sequence. ”Regular Kinect” is described in Figure 6. ”Hybrid
HFR” refers to our high frame rate depth image with no prediction (minimum latency
20ms), while ”Hybrid HFR w/ prediction” includes prediction to reduce latency to zero.

(black pixels in our figures).

Results

Pixel noise around discontinuities in depth can be large and can contribute greatly to

our simple error metric. For example, Figure 3.7(f) and (g) illustrate two successive Kinect

frames when the subject is not moving. Figure 3.7(h) depicts the absolute error, which can

be very large at discontinuities in depth. In this example the average absolute per pixel

difference is 15mm. Table 3.3 shows the error for the seven test sequences. In this table,
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”Regular Kinect” refers to simply using the ”Regular Kinect” stream described earlier as

the high frame rate depth image. This serves as a simple baseline measure of performance

if one were to naively upsample the Kinect depth image.

As expected, the ”Hybrid HFR” and ”Hybrid HFR w/ prediction” errors are substantially

reduced from that of naive upsampling. ”Hybrid HFR w/ prediction” refers to the high

frame rate depth image generation with prediction to reduce latency to zero. This results

in a slight increase in error compared to the regular ”Hybrid HFR” which is synchronized

with the Point Grey camera (no prediction).

Figure 3.7: Depth errors are large around depth boundaries, (a-e) is an example, corresponds
to Figure 6. (a) is ground truth depth U7 of the example from ”Ideal Kinect”, (b) is the
corresponding ”Regular Kinect” depth W0, seven frames before the ground truth image,
(c) is Hybrid HFR Depth image V7, (d) shows the per pixel error for ”Regular Kinect”,
compared to ground truth, (e) is the same for Hybrid HFR Depth. We evaluate the Kinect
sensor noise in (f-h). (f) is a Kinect depth frame at time t, (g) is a Kinect depth frame at
time t+1, (h) is the absolute difference between the two depth frames.

3.7 APPLICATIONS

Hybrid HFR Depth benefits a variety of applications that work better with high frame

rate and/or low latency sensing. We show three important and representative tasks to

demonstrate the usefulness of our system. First, we demonstrate that our low latency and

high frame rate depth stream can be used to track fast moving objects. Then, we demon-

strate that the high frame rate depth stream can be used in small gesture control and hand

writing interfaces. Finally, we demonstrate using prediction to reduce latency in interactive

projection mapping.
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3.7.1 Object Tracking

Tracking moving objects is a fundamental task in computer vision. Kinect can be very

useful in object tracking, particularly when the object moves against a known background

depth. However, the low frame rate of Kinect can make tracking fast moving objects accu-

rately more difficult. Our Hybrid HFR Depth can provide robust high frame rate and no

latency object tracking, even for fast moving objects.

To demonstrate Hybrid HFR Depth in an object tracking, we give a simple but informative

example of tracking a bouncing ping pong ball, which moves relatively quickly and changes

direction quickly when it bounces. Tracking the ping pong ball throughout the bouncing

motion is relatively easy with the high frame rate and low latency depth map. We record the

ping pong ball bouncing events with Kinect, Hybrid HFR Depth and Point Grey cameras.

From Figure 3.8, we find that Hybrid HFR Depth produces high quality depth images with

high frame rate and low latency.

Figure 3.8: A ping pong ball is tracked with both Kinect v2 and Hybrid HFR Depth. The
Hybrid HFR Depth image exhibits lower latency than Kinect. The high frame rate depth
image is far ahead of the Kinect image but is slightly behind the Point Grey image (due to
computation time).

3.7.2 Small Gesture Input

The Kinect sensor has been popularly applied to gesture recognition and control interfaces.

Many existing systems either require the users to perform large scale hand gestures or require

the users to be near to the controller. Our system enables the capture of small gestures
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imaged from a long distance (1.5m to 4m). By accurately detecting fast fingertip gesturing

and writing, we can give commands to the remote computer or write on the screen.

High frame rate is particularly important for hand tracking systems, because fingers are

flexible and fast, making them especially hard to track. The best open source hand tracker

(by Oikonomidis et al.; [50]) still suffers from periods of lost tracking due to high computation

cost and low frame rate. Sharp et al. introduced a new pipeline that estimates hand pose

per frame [51]. However, tracking is performed at low frame rate.

We can find the fingertip in each depth frame to obtain a trace of the fingertip. It often

suffices to find the closest point in the region of the hand. A high quality trace can be difficult

to obtain when the frame rate is low (i.e., the fingertip moves a lot between two frames) and

the depth noise is high (i.e.; closest point is not always the fingertip). To combat noise, we

can smooth the fingertip trace using a Kalman filter. However, such smoothing alters the

shape of the trace in undesirable ways. Figure 3.9 shows a number of gestures as recorded

by Hybrid HFR depth, and the regular Kinect image with and without smooth. The traces

show that users can reliably draw simple gestures with small finger motions in the air at a

distance of 1.5m to 4m. With a gesture recognizer such as the ”$1 gesture recognizer” [52],

traces can be converted to corresponding commands for a remote interface. This could allow

for a user to control their Xbox with small finger movement while lying on the sofa, for

example.

Figure 3.9: The user may draw simple shapes in the air to control a remote interface, for
example. (a) shows fingertip trace captured by Hybrid HFR Depth, with Kalman Filter
applied. (b) is the same motion captured by Kinect, with Kalman Filter applied. In this
case the Kalman filter alters the shape of the input gesture because of aliasing. (c) is the
trace of Kinect skeleton hand tip without a Kalman Filter. Clearly high frame rate and
subpixel accuracy improves writing in the air.
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Besides drawing simple shapes, users may write words in about 2 meters away. This is a

challenging task because only high frame rate and accurate depth stream can preserve all

the sharp curves, small circles and other details during fast finger movement. Figure 3.10

demonstrates writing a phrase, using the same three techniques as above. The algorithm for

Hybrid HFR Depth and Kinect depth hand writing are identical. When the finger moves

slowly, the differences between these methods are small. However, when the finger moves

quickly we find that Hybrid HFR Depth tracks the fingertip more reliably, and the resulting

trace looks better.

Figure 3.10: We demonstrate the advantages of hand writing with Hybrid HFR Depth.
(a)(b)(c) are generated from the same motion sequence. The task is challenging because
writing words involves many sharp turns and curves, requiring high frame rate and high
accuracy. (b) illustrates using the regular Kinect depth stream (closest point), and (c)
illustrates the trace of the Kinect skeleton hand tip. (a) illustrates Hybrid HFR Depth
trace, which is of noticeably higher quality due to greater sampling frequency.

3.7.3 Interactive Projection Mapping

Projector-camera systems afford various interaction possibilities, combining both natural

and mixed-reality 3D interaction. Jones et al. [53] introduced a system to augment the area

surrounding a television with projected visualizations to enhance traditional gaming expe-

riences. RoomAlive [54] transformed a room into an immersive, augmented entertainment
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experience through the usage of video projectors. Later, Benko et al. [55] proposed a spatial

augmented reality system that uses dynamic projection mapping to support interaction with

3D virtual objects. However, in current projection mapping systems, accumulated latency

from the depth sensor, image processing, graphics rendering and projection introduces er-

rors in alignment in dynamic scenes. Projected graphics can seem to slip from its expected

position, adversely impacting on the immersive experience. Recently, Knibbe et al. [40] and

Koike et al [46] used software-based prediction to reduce the system latency. However, they

only work with rigid objects in projectile motion. Our Hybrid HFR Depth can be used to

track arbitrary motions and objects.

A custom hardware approach such as that of Koike et al [46] can reduce latency, typi-

cally with some expense and complexity. Using fast touch sensors rather than cameras, Jota

et al. [56] describe a custom hardware-based projection-based drawing system that demon-

strates that users are sensitive to surprisingly small amounts of latency (approximately 1ms)

in direct manipulation settings such as that of interactive projection mapping.

To make projection mapping work reliably for moving objects with non-customized hard-

ware, we can use our high frame rate and no latency Hybrid HFR Depth stream. While

systems such as [40] must predict up to 110ms + 33ms to eliminate constant latency and

latency due to camera frame rate, our system can reduce the time to 70 + 4ms (10ms Point

Grey camera latency, 10ms optical flow calculation latency and 50ms projection mapping

system latency), making prediction easier. Moreover, the higher frame rate can result in

higher quality prediction to further reduce latency.

Calibration

We use RoomAlive toolkit [54] to calibrate our projector-camera setup (see Figure 3.2(b)).

By applying extrinsic and intrinsic camera parameters, a point in depth image space can be

transformed to projector space. A low or zero latency depth image can be used to render

virtual objects into a similarly low-latency projection.

Combating Latency

To obtain the best interactive experience with our projection mapping system, we aim

to completely eliminate latency, so that graphics projected onto moving objects appear to

stay on the object. Operating system, rendering and projector latencies combine to an

approximate total of 50ms. Given the 20ms minimum latency of the Hybrid HFR Depth

approach, we must apply a prediction of approximately 70ms.
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Figure 3.11 shows projection mapping results with Hybrid HFR Depth and Kinect v2.

To numerically evaluate how our system works, we count the number of frames in which

the projected graphics is fully on the hand, fully off the hand, or partially on the hand, as

in [40]. We count these frames manually by analyzing videos of the system in operation, and

compare the performance of the standard Kinect depth stream with Hybrid HFR Depth.

Table 3.4 shows these counts as a percentage of the test sequences for three speeds of motion.

Figure 3.11: We compare dynamic projection mapping results with Kinect v2 and our Hybrid
HFR Depth. We use Kinect v2 depth to project a sad face or a red ball onto the hand, and
use Hybrid HFR Depth to project a happy face or a yellow ball onto the hand. In (a) and
(d), hand is still, in others, hand is moving in the direction of the yellow arrow. In (f), hand
is moving very fast, and yellow ball is off the hand, but still ahead of the red ball. In general,
the Hybrid HFR Depth based methods stick graphics to moving hand better.

Kinect Hybrid HFR Depth
All on Partially off Fully off All on Partially off Fully off

Slow 18.6% 23.2% 58.2% 71.1% 28% 0.9%
Medium 13.7% 20.4% 65.9% 63.3% 35.6% 1.1%

Fast 9.5% 16.7% 73.8% 44.2% 44.8% 11%

Table 3.4: Percentage of test frames for which projected graphics is fully on, partially off, or
fully off the users hand. We manually count the percentage from three 900 frame sequences
of slow, medium and fast motions.
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3.8 LIMITATIONS

Our Hybrid HFR Depth system has a number of limitations. First, the system requires

good, stable lighting. Dim or very strong lighting, or rapidly changing lighting will affect

the quality of the optical flow-based motion estimation and therefore impact Hybrid HFR

Depth quality. The high frame rate of the Point Grey camera limits the effective exposure

time and light gathering capability of the camera; for example, 500Hz capture leaves only

2ms to collect light. In our projection mapping example, rapidly changing graphics might

significantly affect the result quality. In this case it may be possible to use infrared imaging,

though some care must be taken to avoid the narrow-band illumination of the Kinects time-

of-flight imager. Second, optical flow has other limitations that can impact Hybrid HFR

Depth quality. For example, optical flow can fail when there is a lack of texture, repeating

textures, or strong reflections in the scene.

Third, optical flow implementation of OpenCV is still computationally expensive on todays

hardware. Our current Hybrid HFR Depth prototype optionally employs batch processing

of optical flow, potentially creating an undesirable tradeoff between latency, frame rate and

ROI size (see Figure 3.4). Recently, Kroeger et al. [57] demonstrated a fast optical flow

algorithm, which runs at 300-600Hz on a single CPU core with high resolution images. This

may remove the need for batch processing, help to obtain > 1000Hz through multi-core

scheduling, decrease depth latency and enlarge ROI.

Fourth, the specification of the Point Grey camera used in our prototype is another limi-

tation. With Hybrid HFR Depth, we can reach the maximum frame rate of the Point Grey

camera in most ROI size by manipulating batch size. A better color camera might allow a

higher frame rate.

Finally, we still need to predict 70ms in applications like projection mapping. Our predic-

tion model uses a simple acceleration model and is optionally further smoothed by Kalman

filter. Prediction works fine at most times because our inputs have higher frame rate and less

time needs to be predicted. However, during sharp turns and accelerations, predictions are

likely to be inaccurate. We still observe that our predictions will come back to the correct

values faster than Kinect depth. A better learning based prediction algorithm is likely to

further improve the results.

3.9 FUTURE WORK

Hybrid HFR Depth could be improved in a number of ways to make it more powerful and

useful.
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One interesting direction of future work is to further exploit the complementary nature

of the two cameras by creating real time super resolution depth images. This would help

in applications where Kinect struggles to deliver adequate resolution. For example, when

at a distance of 4m, an adult hand may be 15 pixels wide, making it difficult to resolve

individual fingers. Meanwhile, our prototypes color image has about six times more pixels

in each dimension. Combining depth information from Kinect with the color information

from Point Grey camera, we can potentially generate a depth map six times that of Kinect.

While exploiting faster and more exotic cameras may enable higher frame rates, lower

latency and a larger ROI, we also see the value in limiting our implementation to cameras

that use inexpensive, commodity imagers, such as common web cameras. Employing an

inexpensive common camera might broaden the appeal of the Hybrid HFR Depth approach

among practitioners, much as the original Kinect did for interactive applications. CMOS

imagers continue to rapidly advance in technology, with many smartphones able to record

240Hz videos.

Regarding applications, Hybrid HFR Depth might be particularly useful in Augmented

Reality and Virtual Reality systems, where higher frame rate and lower latency are important

factors in rendering stable, accurately aligned graphical augmentation, and in improving user

comfort.

3.10 CONCLUSION

This thesis proposes an approach to combine off-the-shelf hardware to create a high frame

rate, low latency configurable depth stream. Hybrid HFR Depth is more powerful than a

purely software-based approach, and less demanding than a customized hardware approach.

We presented detailed specifications of Hybrid HFR Depth to demonstrate the capability

and flexibility of the system needed to address a variety of applications. Our evaluation of

Hybrid HFR Depth shows that the quality of the generated depth image is good enough to

benefit three demonstrated interactive applications.
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CHAPTER 4: SECURITY APPLICATIONS

SceneProof

Manipulated
Scene

Authentic
Scene

SceneProof

Figure 4.1: SceneProof takes a pair of depth and image, and check whether the scene is
authentic or not. It should reject pairs that have been manipulated, such as adversarial
examples. In this figure, the first example takes a pair of matched image and depth, and
our SceneProof should classify it as authentic. In the second example, a rectangle region of
the image and depth is inserted from another source, so our SceneProof should classify it as
not authentic.

4.1 OVERVIEW

We build a SceneProof system that can reliably detect whether an image is a picture of a

real scene or not. Our system applies to images captured with depth maps (RGBD images)

and checks if a pair of image and depth map is consistent. It relies on the relative difficulty of

producing naturalistic depth maps for images in post processing. We demonstrate that our

system is robust to adversarial examples built from currently known attacking approaches,

such as DeepFool. The system depends on our novel network architecture SafetyNet, which

utilizes a RBF-SVM inspector to classify adversarial examples based on the internal ac-

tivations of the neural networks. Our construction suggests some insights into how deep

networks work. We provide a reasonable analyses that our construction is difficult to defeat,

and show experimentally that our method is hard to defeat using several standard networks

and datasets.
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4.2 TASK SCENEPROOF

VGG19 Classifier
Input Images (RGB or RGBD)

Quantized RBF-SVM 
Detector

Fc7

Figure 4.2: SafetyNet consists of a conventional classifier (in our experiments, either VGG19
or ResNet) with an RBF-SVM that uses discrete codes computed from late stage ReLUs
to detect adversarial examples. We show that (a) SafetyNet detects adversarial examples
reliably, even if they are produced by methods not represented in the detectors’ training
set and (b) it is very difficult to produce examples that are both misclassified and slip past
SafetyNet’s detector.

We would like Alice to be able to prove to Bob that her photo is real easily (without the

intervention of a team of experts), and we’d like Bob to have high confidence in the proof.

This proof needs to operate at large scales (i.e. anyone could produce a proof while taking a

picture), and automatically. Our proof will work as follows: Alice will capture a depth map

at the same time as an image, and will offer the depth map as a proof; a classifier will then

judge whether the depth map and the image match. This proof relies on the fact that it is

quite difficult to edit a depth map and an image together. However, there are methods to

recover depth maps from images, etc., so for the method to be successful, it should be hard

to fool the classifier with a depth map concocted after the image was captured.

Current best methods to identify fake images require careful analysis of vanishing points [58],

illumination angles [59], and shadows [60] (reviews in [58, 61]). Such analyses are difficult

to conduct at large scales or automatically. We construct a proof by capturing an RGBD

image. The proof of realness is achieved by a classifier that checks both image and depth

and determines whether they are consistent.

The main concern is attacks that cause “fake” images to be labeled “real”. Natural attacks

on our system are:
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• produce a depth map for an RGB image using some regression method to obtain an

RGBD image (regression);

• manipulate RGBD image by inserting new objects;

• take an RGBD image labeled “fake” and manipulate it to be labeled “real” (type I

adversarial);

• take an RGBD image labeled “fake” and manipulate it to be labeled “real” in a way

that fools SafetyNet’s adversary inspector (type II adversarial).

There is a wide range of available regression/adversarial attacks, and our system needs to be

robust to various methods which might be used to prepare the regression/adversarial attack.

4.2.1 Difficulties

For the SceneProof task, the system works if (a) the classifier is acceptably accurate (i.e.

it can determine whether the pair is real or not accurately); (b) it can detect a variety of

adversarial manipulations of depth or image or both.

We can train an accurate classifier as long as we have enough data, however, adversarial ex-

amples are harder to defend. We achieve this by designing out novel SafetyNet architecture,

which is able to yield a reasonably reliable scene proof.

Hypothesis 1 adversarial attacks work by producing patterns of activation in late stage

ReLUs that are different from those produced by natural examples.

4.3 ADVERSARIAL EXAMPLES

Write P (X) for the probability distribution of examples. At least in the case of vision,

P (X) has support on some complicated subset of the input space, which is often referred

to as the “manifold” of “real images”. Nguyen et al. show how to construct examples that

appear to be noise, but are confidently classified as objects [62]. This construction yields

a(x) lies outside the support of P (X), so the classifier’s labeling is unreliable because it has

not seen such examples.

Common constructions for adversarial examples include: line search along the gradient [6];

LBFGS on an appropriate cost [63]; DeepFool [8]. Each relies on the gradient of the net-

work, but it is known that using the gradient of another similar network is sufficient [9], so

concealing the gradient does not work as a defense for current networks.
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Recently, there are stronger adversarial attacking methods. Papernot et al. used Jacobian-

based saliency map to attack [64]. Carlini and Wagner launched a targeted C&W attack [65].

Su et al. proposed one pixel attack, which only need to modify one pixel of the image [66].

Liu et al. used model-based ensembling attack [67]. These stronger attacking methods still

depend on gradients. Different from gradient-based adversarial generating approaches, Chen

et al. proposed a Zeroth Order Optimization (ZOO) based attack [68]. Researchers even

generate optical flows to spatially transform adversarial examples to attack [69].

Networks that generalize very well remain susceptible to adversarial examples that are very

similar to real images (eg [63], figure 5). These examples are relatively easily found with

straightforward searches and are close to the initial point of the search. Adversarial examples

that “look like” images to humans, like figure 5 in [63], are likely to lie within the support

of P (X). However, the measure of such examples under P (X) must be small, otherwise the

classifier would generalize poorly. This means that the set of adversarial examples contains

a component that is small in the measure of P (X), but is close to, and easy to find from,

any point in the support of P (X). Experiments suggest some form of universal property of

this set, because examples that are adversarial for one network tend to be adversarial for

another as well [63, 70, 71, 72].

Some network architectures appear to be robust to adversarial examples [73, 74]. Showing

that a classifier is subject to adversarial constructions just requires a construction; but

showing it is not requires theory. There is no current theory that explains how to construct

classifiers that are not subject to adversarial examples. This makes it difficult to know what

defenses can be relied on practically (for example, distillation was proposed as a defense [75],

but was later shown to not work [76]).

There are not many works on defending adversarial exmaples, mainly because it is a

difficulty problem. Recently, Guo et al. [77] showed that simple image processing, such

as down-up sampling and total variation smoothing defense, could defeat a majority of

imperceivable adversarial attacks. However, they have difficulty to defend more obvious

adversarial perturbations [78].

One strategy for building a network that is robust to adversarial examples is to train

networks with enhanced training data (adding adversarial samples [79]). The amount of

training data required must be exponential in some parameter encoding the dimension of

the support of P (X). The value of the parameter is unknown, but it is big enough that an

unreasonable quantity of training data is required by these approaches.
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4.3.1 Adversarial Constructions

We use the following standard and strong constructions of adversarial examples [76], with

various choice of hyper-parameters, to test the robustness of the systems. Each attack

searches for a nearby a(x) which changes the class of the example and does not create visual

artifacts. We use these methods to produce both type I attack (fool the classifier) and type

II attack (fool the classifier and sneak past the detector).

Fast Sign method: Goodfellow et al [6] described this simple method. The applied

perturbation is the direction in image space which yields the highest increase of the linearized

cost under l∞ norm. It uses a hyper-parameter ε to govern the distance between adversarial

and original image.

Iterative methods: Kurakin et al. [7] introduced an iteration version of the fast sign

method, by applying it several times with a smaller step size α and clipping all pixels after

each iteration to ensure that results stay in the ε neighborhood of the original image. We

apply two versions of this method, one where the neighborhood is in L∞ norm and another

where it is in L2 norm.

DeepFool method: Moosavi-Dezfooli et al. [8] introduced the DeepFool adversary,

which is able to choose which class an example is switched to. DeepFool iteratively perturbs

an image xadv0 , linearizes the classifier around xadvn and finds the closest class boundary.

The minimal step according to the lp distance from xadvn to traverse this class boundary is

determined and the resulting point is used as xadvn+1. The algorithm stops once xadvn+1 changes

the class of the actual classifier. We use a powerful L2 version of DeepFool.

Transfer method: Papernot et al. [9] described a way to attack a black-box network.

They generated adversarial samples using another accessible network, which performs the

same task, and used these adversarial samples to attack the black-box network. This strategy

has been notably reliable.

4.4 SAFETYNET ARCHITECTURE: SPOTTING ADVERSARIAL EXAMPLES

In SafetyNet, the model architecture consists of the original classifier, and an inspector

which looks at the internal state of the later layers in the original classifier, as in Figure 4.2.

If the inspector declares that an example is adversarial, then the sample is rejected. In

experiments, we demonstrate that SafetyNet can robustly detect type I attacks, and type II

attacks on SafetyNet fail.
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4.4.1 SafetyNet Model

The inspector needs to be hard to attack. We force an attacker to solve a hard discrete

optimization problem. For a layer of ReLUs at a high level in the classification network, we

quantize each ReLU at some set of thresholds to generate a discrete code (binarized code in

the case of one threshold). Our hypothesis 1 suggests that different code patterns appear

for natural examples and adversarial examples. We use an inspector that compares a code

produced at test time with a collection of examples, meaning that an attacker must make the

network produce a code that is acceptable to the detector (which is hard; section 4.2). The

inspector in SafetyNet uses an RBF-SVM on binary or ternary codes (activation patterns)

to find adversarial examples.

We denote a code by c. The RBF-SVM classifies by

f(c) =
N∑
i

αiyi exp(−||c− ci||2/2σ2) + b (4.1)

In this objective function, when σ is small, the detector produces essentially no gradient

unless the attacking code c is very close to a positive example ci. Our quantization process

makes the detector more robust and the gradients even harder to get. Experiments show

that this form of gradient obfuscation is quite robust, and that confusing the detector is very

difficult without access to the RBF-SVM, and still difficult even when access is possible.

Experiments in section 4.2 and theory in section 4.6 confirms that the optimization problem

is hard.

4.4.2 Classifier Uncertainty for Type II Attacks

Type II attacks are likely more important than type I attacks, because any deployment of

defenses will lead to attacks that attempt to defeat the defenses. However, a type II attack

must not only fool a classifier, but also fool a detection subnetwork whose purpose is to find

odd examples. Adversarial example constructions attempt to push the posterior of the right

class label below that of some wrong class label. Some small perturbations are enough to

fool the detection subnetwork, but these constructions do not look at the gap between the

posteriors.

We hypothesize that larger gaps require larger perturbations, which are easier to detect

with SafetyNet. This suggests the following strategy for boosting SafetyNet accuracy on

type II attacks: compute some statistic representing classifier uncertainty; then reject as

adversarial any example that has too high an uncertainty, or is rejected by SafetyNet. This
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approach produces significant improvements in accuracy, in applications that can tolerate

some rejection of natural images.

Our uncertainty is computed as the ratio of the posterior for the second highest class to

the posterior for the highest class. So, for example, if p(dog|x) = 0.6 and p(cat|x) = 0.15,

then our classification uncertainty is 0.25. Write U(x) for this uncertainty ratio, and H(x)

for the posterior of the highest class conditioned on x. Incorporating classifier uncertainty

is straightforward. An example is rejected if either the classifier uncertainty is too high, or

the detection subnetwork detects an adversarial example.

4.5 SCENEPROOF SYSTEM BASED ON SAFETYNET

4.5.1 Network Architecture

Our SceneProof architecture uses the SafetyNet model. Since we take RGBD images as

input, our original classification network takes four input channels with either VGG19 or

ResNet architectures. The default setting uses VGG19 except otherwise mentioned. Our

adversarial inspector uses RBF-SVM, and for VGG19, we perform the detection on the fc7

(A), fc6 (B), or pool5 (C) layer (20% quantized), for ResNet, we perform the detection on

the quantized PreLogits layer.

4.5.2 SceneProof Dataset

Real test data is easily obtained. We use the raw Kinect captures of LivingRoom and

Bedroom from NYU v2 dataset [34]. However, fake data requires care. “Regression” methods

used in both train and test are:

• random swaps of depth and image planes;

• single image predicted depth using the method of [30];

• rectangle cropped region insertion and random shifted or scaled misaligned depth and

image.

“Regression” methods used only in test are:

• all zero depth values;

• nearest neighbor down-sample and up-sampled images and depths;
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• low quality JPEG compressed images and depths;

• Middlebury stereo RGBD dataset [80] and Sintel RGBD dataset [35](which should be

classified “fake” because they are renderings).

Refer to Figure 4.3 for dataset and attacks.

Figure 4.3: SceneProof classifies an image/depth pair as Real when they correspond, and
Fake otherwise. An attack on SceneProof involves manipulating one of the pair (in this case,
adversarial attacks on the depth map) to change the label. This figure shows examples of
successful type I (fool the classifier) and type II (fool the classifier and the inspector) attacks.

4.5.3 Evaluating SceneProof

We see SceneProof’s most likely application in consumer level certification that a picture

is real. For example, Alice can prove to Bob that she went on vacation at some scenic spot.

For this scenario, users don’t need to know about failed attacks (which are important in

other applications).
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SceneProof classifies natural RGBD pairs accurately, and type I attacks on SceneProof

using a familiar adversary (i.e. one used to train the inspector) fail (tables 4.1 and 4.2).

We show results for four different possible configurations of the SceneProof system, using

different inspectors or combinations. An image passes through the classifier, and is then

subjected to inspection. A summary evaluation must determine (a) whether the system

works for natural images and (b) is the system robust to natural attacks. We assume that

the natural attack is to take a false pair of images and try to make the system accept it. In

this case, the most important summary statistics are:

• tna, the rate at which a true pair of natural images is accepted (classifier classifies it

correctly and the inspector accepts it); larger is better;

• fnr, the rate at which a false pair of natural images is rejected (classifier classifies it

correctly or the classifier classifies it incorrectly and inspector fails it); both large and

small are good;

• far, the rate at which a false pair of images that is attacked by an adversary (intending

to make it true) but is rejected (either classifier classifies it correctly or the classifier

classifies it incorrectly and inspector fails it); larger is better;

Besides these, we also used some other evaluation summary statistics in our experiments.

• Fu, the fraction of attacks detected; larger is better;

• Fd, the fraction of undetected attacks that change a label; smaller is better;

• tnt, the rate at which a true pair of natural images is classified as true (used when no

inspector involved); larger is better;

• fnf, the rate at which a false pair of natural images is classified as false (used when

no inspector involved); larger is better;

• faf, the rate at which a false pair of adversarial images is classified as false (used when

no inspector involved); larger is better;

• taf, the rate at which a true pair of adversarial images is classified as false (used when

no inspector involved); larger is better;

50



Attack
tna fnr far

Familiar 83.8 37.7 84.6
zero D channel 29.6 79.0

down-up sample 68.3 72.8
low quality JPEG 87.2 86.7

Sintel RGBD 68.8 62.5
Middlebury RGBD 59.4 50.0

Table 4.1: Summary statistics for SceneProof, facing a familiar adversary (first row) and a
set of unfamiliar adversaries (following rows). Natural image statistics are not affected by the
adversary, and are not repeated. SceneProof classifies natural RGBD pairs accurately, and
type I attacks on SceneProof using both a familiar (i.e. one used to train the inspector) and
an unfamiliar adversary fail. In this table, results are calculated on the whole SceneProof
dataset test split (section 4.5.2). These are results for ABC detector.

Test example type Classifier Acc A B C ABC ABC, T
Natural RGBD, False 91.8 17.1 15.2 30.1 37.7 50.0
Natural RGBD, True 97.7 11.6 10.1 10.7 16.2 13.5

Type I adversarial RGBD, False 33.1 88.6 89.1 70.4 84.6 80.5
Type I adversarial RGBD, True 15.3 81.0 81.3 88.7 93.7 77.2

Table 4.2: In this table, results are calculated on the whole SceneProof dataset test split
(section 4.5.2). The type I attacks are by a familiar adversary, LBFGS attack. We report
results for three inspectors: A is applied to fc7 of VGG19; B is applied to fc6 of VGG19; C
is applied to pool5 for VGG19. Each inspector column gives the rate at which the inspector
labels examples as adversarial. ABC (A∨B∨C) means the example is reported adversarial if
either inspector says it is adversarial. This configuration is best, because it reliably identifies
adversarial examples better and is not much more inclined to produce false positives than
the others. ABC, T gives the fraction of examples that were detected as adversarial among
these that were labelled True by the classifier (this is required to construct table 4.1). We
break out results by type and ground truth label. For example, for natural RGBD images
that do not represent real scenes (first row), the classifier labels 91.8% correctly; of the 8.2%
incorrectly labelled true, the ABC adversary inspector rejects 50.0% as adversarial examples
(last column).

4.5.4 Experimental Results: Summary

During the evaluations with VGG19, there are three natural layers at which to build

inspectors: A (applied to fc7 of VGG19), B (applied to fc6 of VGG19), and C (applied to

of VGG19) and natural logical combinations of these inspectors. Table 4.2 give summary

statistics for the effectiveness of different inspectors. Our results suggest that ABC (A ∨
B ∨ C) is most effective (it reliably detects adversarial examples at a higher rate, and is
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Test example type Classifier Acc A B C ABC ABC,T
zero D channel 76.1 8.0 7.5 26.9 29.6 83.7

down-up sampled 77.9 51.0 54.7 59.9 68.3 90.6
low quality JPEG 35.8 81.5 80.1 79.2 87.2 85.4
Sintel RGBD [35] 34.3 34.3 50.0 56.3 68.8 61.9

Middlebury RGBD [80] 25.0 46.9 37.5 37.5 59.4 66.7
type I adv, zero D channel 0.1 30.4 66.7 73.5 79.0 79.0

type I adv, down-up sampled 3.8 52.6 64.8 62.6 72.8 73.7
type I adv, low quality JPEG 0.3 77.7 81.7 78.5 86.7 86.8
type I adv, Sintel RGBD [35] 6.3 31.3 56.3 48.4 62.5 66.7

type I adv, Middlebury RGBD [80] 0.0 34.4 28.1 40.6 50.0 50.0

Table 4.3: In this table, results are calculated on the whole SceneProof dataset test split
(section 4.5.2). The type I attacks are by unfamiliar adversaries. All these examples should
be labelled false, OR rejected as adversarial. We report results for four inspectors: A is
applied to fc7 of VGG19; B is applied to fc6 of VGG19; C is applied to pool5 for VGG19.
Each inspector column gives the rate at which the inspector labels examples as adversarial.
ABC means the example is reported adversarial if either inspector says it is adversarial.
This configuration is best, because it reliably identifies adversarial examples better and is
not much more inclined to produce false positives than the others. ABC, T gives the fraction
of examples that were detected as adversarial among these that were labelled True by the
classifier (this is required to construct table 4.1). We break out results by type and ground
truth label.

not much worse than any other inspector for natural examples), so we use ABC setting to

perform most of the experiments with SceneProof.

The summary statistics for SceneProof with familar input data and unfamiliar input data,

together with their corresponding type I attacks are shown in Table 4.1 (We feed in these data

for SceneProof, and use our RBF-SVM detector trained on adversarial examples to detect

these samples). Unfamiliar input data includes: all zero depth values; nearest neighbor

down-sampled and up-sampled images and depths; low quality JPEG compressed images

and depths; Middlebury stereo RGBD dataset [80] (false examples, and so an attack, because

depth is not captured but is computed by stereo); and the Sintel RGBD dataset [35] (false

examples, and so an attack, because images are not captured but rendered). The detailed

breakdown for familiar adversarials can be found in Table 4.2 and for unfamiliar adversarials

can be found in Table 4.3.

The summary statistics for non attack data, type I attacks and type II attacks on Scene-

Proof are shown in Table 4.4. This table contains multiple attacking methods with multiple

settings and some numbers are expensive to acquire, so we use a random subset of 3200

images from the dataset test split. Type I attacks and type II attacks are further divided

into white box attacks and black box attacks. The detailed breakdown for type I attacks
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can be found in Table 4.5 and for type II attacks can be found in Table 4.6.

SceneProof is accurate: From these tables, we find that summary statistics are large

and errors are small; SceneProof mostly correctly classifies familiar natural images if there

is no adversarial attack, and rejects most unfamiliar natural images as well as adversarial

attacks. It is also robust to type II attacks which focuses on attacking both classifier and

inspectors.

4.5.5 Experimental Results: Type I Attacks

White box type I attacks assume that the classifier is known to the attacker; this is the

harder case for the defender. We use LBFGS based attacks, and the attacking methods on

training data and testing data are same. Black box type I attacks assume that the attacker

can access to another network trained on the same dataset, but cannot access the classifier

he wants to attack. Our classification network is trained with SceneProof Dataset training

split.

Type I attacks on SceneProof are detected reliably: Type I attacks on SceneProof

on both familar and unfamiliar input data are reliabley detected without sacrificing much

classifier accuracy, refer to Table 4.1, Table 4.2 and Table 4.3. In Table 4.5, we show detailed

type I attack results for various inspector settings (optionally joint with confidence rejection),

and various white box & black box attacking methods. From the results, we can tell that

VGG19 with ABC inspector joint with confidence rejection defenses type I attacks the best.

4.5.6 Experimental Results: Type II Attacks

A type II attack involves a search for an adversarial example that will be (a) mislabelled

and (b) not detected. A type II attack must both fool the classifier and sneak past the

detector. We distinguish between two conditions. In non-blackbox case, the internals of the

SafetyNet system are accessible to the attacker. Alternatively, the network may be a black

box, with internal states and gradients concealed. In this case, attackers must probe with

inputs and gather outputs, or build another approximate network as in [9].

Let Θ be the parameters of the neural network model, x be the input to the model, y be

the targets associated with x, Σ be the parameters of the inspector. We use J(Θ,x, y) to

represent the cost to train the neural network, and use D(Θ,Σ,x) to represent the cost from

the inspector. When RBF-SVM is used as the inspector, D(Θ,Σ,x) is not differentiable

with respect to x because of the binarization process. We use sigmoid function to smooth

the binarization to make it differentiable. Our gradient descent based type II attacks use
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Configuration No Attack Type I Attack Type II Attack
White Box Black Box White Box Black Box
GradDesc ResNet GD ResNet FS BBA GradDesc ResNet FT ResNet SN BBA

tnt fnf faf faf faf faf faf faf faf faf
No Inspector 97.6 79.9 11.8 37.8 58.0 47.9 n.a 36.2 40.4 38.3

No Inspector - R 96.5 83.0 21.9 42.6 66.7 54.6 n.a 44.3 48.4 46.4
tna fnr far far far far far far far far

Subnet 81.0 26.2 64.7 86.8 98.0 92.4 50.9 92.1 88.7 90.4
ABC 83.2 33.0 74.3 91.0 94.0 92.5 55.5 93.5 90.2 91.9

Subnet - R 85.4 9.7 100 98.3 100 99.1 70.6 100 97.9 98.9
ABC - R 86.1 16.1 100 98.4 100 99.2 78.2 100 98.0 99.0

Table 4.4: Summary statistics comparing SceneProof with no inspector and the Subnet
method. Because this table contains multiple settings of attacks and some of them take long
time to generate, we randomly subsample 3200 images from the whole SceneProof dataset
test split to calculate the results. Notice the difference to Table 4.2, which uses the whole test
split. The classifier always uses VGG-19. Note that tna and fnr depend only on inspector,
but not on attack (so are not repeated); and there is no far for no attack, because that
statistic is meaningless in that case. Note that the ABC SceneProof is significantly resistant
to both white and black box attacks, with good performance on natural data. The joint
classification confidence rejection greatly helps to defend adversarial examples. The detailed
break down for type I attacks can be found in Table 4.5 and for type II attacks can be found
in Table 4.6.

gradients calculated as (λ is the parameter to adjust the relative weight of the two costs)

η = ∇x(J(Θ,x, y) + λD(Θ,Σ,x)) (4.2)

Accessible SceneProof is difficult to attack, because searching is made difficult by the

quantization procedure and by the narrow basis functions in the RBF-SVM, so we smooth

the quantization operation and the RBF-SVM kernel operation. Smoothing is essential to

make the search tractable, but can significantly misapproximate SafetyNet (which is what

makes attacks hard). Our smoothing attack uses a sigmoid function with parameter λ to

simulate the quantization process. We also help the search process by increasing the size of

the RBF parameter σ to form smoother gradients. Then we obtain gradients by Equation 4.2.

Even after smoothing the objective function, attacks based on gradients tend to fail, likely

because it is hard to make an effective tradeoff between easy search and approximation.

Type II attacks on accessible SceneProof fail: Table 4.4 includes summary of type

I and type II, blackbox and non-blackbox attacking results on SceneProof dataset, while

Table 4.6 includes the details for type II attacks with various settings. From the results, we

can tell that joint rejection approach increased the model’s robustness, and that our ABC

inspector is much better at defending white box type II attacks. In sum, we can tell that our

VGG19 with ABC inspector and joint rejection approach is the most robust architecture to
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Type I attacks White Box Black Box
GradDesc ResNet GradDesc ResNet FastSign Black Box Average

VGG19 / nodet
faf 11.8 37.8 58.0 47.9
taf 88.0 24.7 64.1 44.4

VGG19 / Subnet Det
far 64.7 86.8 98.0 92.4
Fu 17.2 6.0 25.4 15.7
Fd 81.2 78.4 67.1 72.7

VGG19 / Det ABC
far 74.3 91.0 94.0 92.5
Fu 8.7 5.6 22.1 13.8
Fd 90.0 82.0 72.2 77.1

VGG19 / nodet - R
faf 21.9 42.6 66.7 54.6
taf 92.1 33.1 66.2 49.6

VGG19 / Subnet Det - R
far 100 98.3 100 99.1
Fu 7.1 3.91 21.5 12.7
Fd 92.9 90.6 71.4 81.0

VGG19 / Det ABC - R
far 100 98.4 100 99.2
Fu 0.39 4.6 16.7 10.6
Fd 99.6 90.0 78.6 84.3

Table 4.5: This table shows a VGG19 network without detector (VGG19 / nodet), with
the detection subnetwork of [81] (VGG19 / Subnet Det), and SafetyNet with ABC detector
(where we have an RBF-SVM on each of fc7, fc6 and pool5, and declare an adversary
when any detector responds). The table is gather by attacking a randomly selected subset
of 3200 images from the whole SceneProof dataset test split (115K samples). This table
shows results for type I whilte box attacks and black box attacks. For white box attacks,
attacker uses a gradient descent based attacking method (L-BFGS) to attack the accessible
VGG19 based SceneProof classifier. When there is no adversarial detector, the SceneProof
classifier’s classification accuracy significantly decreased compared to Table 4.4 non attack
data. When adversarial detectors are included, they rejects most of the attacks and have
high far and Fd, and low Fu. We can tell that SafetyNet ABC detectors are significantly
better than Subnet detector in the type I white box attack setting. For black box attacks,
attacker uses either GradDesc (L-BFGS) or FastSign to attack an accessible ResNet, and then
transfer these adversarial examples to the VGG19 based SceneProof networks. GradDesc
attacks are more stronger than FastSign attacks. When there is no adversarial detector, the
SceneProof classifier’s classification accuracy significantly decreased compared to Table 4.4
non attack data. When adversarial detectors are included, they rejects most of the attacks,
and have high far and Fd, and low Fu. Compared to white box attacks, we can tell that
the adversarial detectors rejects less type I black box attack samples than type I white
box attack samples (lower Fd), but rejects more false label type I black box attack samples
(higher far). What’s more, the joint classification confidence rejection greatly increase the
network’s defend ability against adversarial examples. In sum, SafetyNet ABC detectors
are better than Subnet detector in the type I attacks, and joint classification confidence
rejection helps.

various type II attacks.
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Gradient descent White Box Black Box
type II attacks GradDesc ResNet FT nodet ResNet Subnet Det Black Box Average

VGG19 / nodet
faf n.a 36.2 40.4 38.3
taf n.a 47.2 46.2 46.7

VGG19 / Subnet Det
far 50.9 92.1 88.7 90.4
Fu 21.9 14.1 13.8 13.9
Fd 47.1 77.1 76.2 76.6

VGG19 / Det ABC
far 55.5 93.5 90.2 91.9
Fu 11.8 8.4 9.0 8.7
Fd 57.5 84.1 82.9 83.5

VGG19 / nodet - R
faf n.a 44.3 48.4 46.4
taf n.a 59.0 57.0 58.0

VGG19 / Subnet Det - R
far 70.6 100 97.9 98.9
Fu 15.7 15.7 14.9 15.3
Fd 51.4 80.4 80.4 80.4

VGG19 / Det ABC - R
far 78.2 100 98.0 99.0
Fu 5.4 8.2 8.5 8.3
Fd 64.4 88.0 87.0 87.5

Table 4.6: The table layouts and experiment settings are same as Table 4.5, except that
type II gradient descent white box attacks do not apply on VGG19 / nodet case (because
there is no type II gradient descent attacks when there is no detector). We show both
white box attacks and black box attacks for type II attacks. For type II white box attacks,
attacker uses a gradient descent based attacking method (L-BFGS) to attack the accessible
VGG19 based SceneProof classifier along with a detector. We can also tell that SafetyNet
ABC detectors are significantly better than Subnet detector in the type II white box attack
setting. For type II black box attacks, attacker uses GradDesc (L-BFGS) to attack accessible
networks along with the detectors (if exist), and then transfer these adversarial examples
to the VGG19 based SceneProof networks. ResNet FT nodet finetunes a ResNet network
with adversarial examples labelled false, there is no detector involved and we generate L-
BFGS type I adversarials to ResNet FT to simulate type II adversarials to ResNet; ResNet
Subnet Det uses a ResNet network with the detection subnetwork, and we generate L-
BFGS type II adversarials. ResNet FT nodet and ResNet Subnet Det performs similarly.
When there is no adversarial detector, the SceneProof classifier’s classification accuracy
decreased significantly compared to Table 4.4 non attack data. When adversarial detectors
are included, they rejects most of the attacks and have high far and Fd and low Fu. We can
also tell that the adversarial detectors rejects more type II black box attack samples than
type II white box attack samples, so there is a significant decrease in Fd and far. What’s
more, the joint classification confidence rejection greatly increase the network’s defend ability
against adversarial examples. In sum, detectors are more likely to reject type II black box
attacks, SafetyNet ABC detectors are better than Subnet detector in type II attacks, and
joint classification confidence rejection helps.

4.6 THEORY: BARS AND P-DOMAINS

4.6.1 Definition

We construct one possible explanation for adversarial examples that successfully explains

(a) the phenomenology and (b) why SafetyNet works. We have a network with N layers
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of ReLU’s, and study y
(k)
i (x), the values at the output of the k’th layer of ReLUs. This

is a piecewise linear function of x. Such functions break up the input space into cells, at

whose boundaries the piecewise linear function changes (i.e. is only C0). Now assume that

for some y
(k)
i (x) there exist p-domains (union of cells) D in the input space such that: (a)

there are no or few examples in the p-domain; (b) the measure of D under P (X) is small;

(c) |y(k)
i (x) | is large inside D and small outside D. We will always use the term “p-domain”

to refer to domains with these properties. We think that the total measure of all p-domains

under P (X) is small.

By construction, ReLU networks can represent such p-domains. We construct a p-domain

using a basis function with small support. R(u) denote a ReLU applied to u. We have basic

bar function φ.

φ(x; i, s, ε) =
1

ε

 R((xi − s) + ε)−
2R((xi − s))+
R((xi − s)− ε)


where φ has support when |xi − s | < ε and has peak value 1. For an index set I with

cardinality #I and vectors s, ε, we write bar function b as

b(x; I, s, ε) = R(

(∑
i∈I

φ(x; i, si, εi)−#I + 1

)
)

where b has support when ||xI − sI ||1 < εI . Figure 4.4 illustrates these functions. It is clear

that a CNN can encode bars and weighted sums of bars, and that for at least k ≥ 2 every y
(k)
i

could in principle be a bar function. Appropriate choices of s, ε and I choose the location

and support of the bar and so can produce bars which have low measure under P (X). Now

the functions presented to the softmax layer are a linear combination of the y
(N)
i (x). This

means that with choice of weight and parameters, a bar can appear at this level, and create

a p-domain.

Figure 4.4: Simple example bar functions on the x, y plane, where black is 0 and white is
1. Left: φ(x; 1, 0, 1) (i.e. a bar in x, independent of y); center: φ(x; 2, 0, 1); and right:
b(x; {1, 2} ,0, 1).
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4.6.2 Property

We expect such p-domains to have several important properties.

Adversarial fertility

P-domains can be used to make adversarial examples by choosing a point in a p-domain

close to x. Because there are no or few examples in the p-domain, the loss may not cause the

classifier to control the maximum value attained by y
(k)
i (x) in this p-domain; and the large

range of values inside the p-domain can be used to change the values in layers upstream of

k, by moving the example around the p-domain.

Generalization-neutral

The requirement that p-domains have small measure in P (X) means that both train

and test examples are highly unlikely to lie in p-domains. A system with p-domains could

generalize well without being immune to adversarial examples. Some subset of p-domains

are likely findable by LBFGS. Consider the gradient of y
(N)
i (x) with respect to x in two

cells separated by a boundary, where some ReLU changes state, weight decay encourages a

relatively small change in gradient over these boundaries. If cells neighboring a p-domain

have no or few examples in them, we can expect that the gradient change within cell is small

too and a second order approximation of y
(N)
i (x) could be reliable. We also expect cells

to be small, so search and entering a p-domain are possible and requires crossing multiple

cell boundaries, which means many changes in ReLU activation. This argument suggests

p-domains present odd patterns of ReLU activation, particularly in p-domains where

some of the y
(k)
i (x) are large in the absence of examples.

4.6.3 Explanation

Why p-domains could exist: As Zhang et al. point out, the number of training

examples available to a typical modern network is small compared to the relative capacity of

deep networks [82]. For example, excellent training error is obtainable for randomly chosen

image labels [82]. We expect that y
(N)
i (x) will have a number of cells that is exponential

in the dimension of x, ensuring that the vast majority of cells lack any example. However,

the weight decay term is not sufficient to ensure that y
(N)
i is zero in these cells. Overshoot

by stochastic gradient descent, caused by poor scaling in the loss, is the likely reason that

y
(N)
i (x) has support in these cells. Szegedy et al. demonstrate that, in practice, ReLU layers
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can have large norm as linear operators, despite weight decay (see [63], sec. 4.3), so large

values in p-domains are plausible. This large norm is likely to be the result of overshoot.

Recall that the value of y
(N)
i (x) is determined by the product of numerous weights, so in some

locations in x, the value of y
(N)
i could be large, which is a result of multiple layer norms

interacting poorly.

4.6.4 Influence

An alternative to attacking by search using smoothed RBF gradients is as follows. One

might pass an example through the main classifier, determine what code it had, then seek an

adversarial example that produces that code (and so must fool the RBF-SVM). We sketch

a proof that the optimization problem is extremely difficult. Choose some threshold t > 0.

We use bt(u) for the function that binarizes its argument with t. Assume we have at least

one unit y
(k)
i that encodes a weighted sum of bar functions. We wish to create an adversarial

example a(x∗) that (a) meets criteria for being adversarial and (b) ensures that bt(y
(k)
i (a))

takes a prescribed value (either one or zero). The feasible set for this constraint can be

disconnected (e.g.a sum of the bump functions of Figure 4.4 (right)), and so need not be

convex, implying that the optimization problem is intractable. As a simple example, the

following constraint set is disconnected for ε < 1/2

{x | bt(b(x; 1,0, ε) + b(x; 1,1, ε)) = 1} .

4.7 DISCUSSION

We have described a method to produce a classifier that identifies and rejects adversarial

examples. Our SafetyNet is able to reject adversarial examples that come from attacking

methods not seen in training data. We have shown that it is hard to produce an example

that (a) is mislabeled and (b) is not detected as adversarial by SafetyNet. We have sketched

one possible reason that SafetyNet works, and is hard to attack. Many interesting problems

are opened by our work, and we provides lots of insights into the mechanism that neural

network works.

SaferNet: There might be some better architecture than our SafetyNet, whose objec-

tive function is harder to optimize. The ideal case would be an architecture that forces

the attacker to solve a hard discrete optimization problem which does not naturally admit

smoothing.

Neural network pruning: Our work suggests that networks behave poorly for input
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space regions where no data has been seen. We speculate that this behavior could be

discouraged by a post-training pruning process, which removes neurons, paths or activation

patterns not touched by training data.

Explicit management of overshoot during training: we have explained adversarial

examples using p-domains, which is the result of poor damping of weights during training.

We speculate that constructing adversarial examples during training, by identifying locations

where this damping problem occurs and exploiting structural insights into network behavior,

could control the adversarial sample problem (rather than just using adversarial examples

as training data).
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CHAPTER 5: CONCLUSION

The thesis focuses on using images and depths for high resolution, low latency sensing,

and then using these sensing techniques to build security applications. High quality depth

sensing is the key to various types of applications, and it is very difficult to acquire such

depth stream via pure hardware approach.

The thesis first proposes a sensor fusion approach, which combines depth camera and

color camera. The method produces detailed high resolution depth maps from aggressively

subsampled depth measurements. Our method fully uses the relationship between image

segmentation boundaries and depth boundaries. It uses an image combined with a low

resolution depth map. 1) The image is segmented with the guidance of sparse depth samples.

2) Each segment has its depth field reconstructed independently using a novel smoothing

method. 3) For videos, time-stamped samples from near frames are incorporated. The thesis

shows reconstruction results of super resolution from x4 to x100, while previous methods

mainly work on x2 to x16. The method is tested on four different datasets and six video

sequences, covering quite different regimes, and it outperforms recent state of the art methods

quantitatively and qualitatively. We also demonstrate that depth maps produced by our

method can be used by applications such as hand trackers, while depth maps from other

methods have problems.

After improving the spatial resolution of the depth stream, the thesis proposes an approach

to combine off-the-shelf hardware to create a high frame rate, low latency configurable depth

stream. Hybrid HFR Depth is more powerful than a purely software-based approach, and

less demanding than a customized hardware approach. We presented detailed specifications

of Hybrid HFR Depth to demonstrate the capability and flexibility of the system needed

to address a variety of applications. Our evaluation of Hybrid HFR Depth shows that the

quality of the generated depth image is good enough to benefit three demonstrated interactive

applications.

With the combined depth and image, we build a SceneProof system that can reliably

detect whether an image is a picture of a real scene or not. It applies to images captured

with depth maps (RGBD images) and checks if a pair of image and depth map is consistent.

It relies on the relative difficulty of producing naturalistic depth maps for images in post

processing. We demonstrate that our system is robust to adversarial examples built from

currently known attacking approaches, such as DeepFool. The system depends on our novel

network architecture SafetyNet, which utilizes a RBF-SVM inspector to classify adversarial

examples based on the internal activations of the neural networks. Our construction suggests
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some insights into how deep networks work. We provide a reasonable analyses that our

construction is difficult to defeat, and show experimentally that our method is hard to

defeat using several standard networks and datasets.
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