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Abstract

Single image depth estimation is an ill-posed problem. That is, it is not mathematically

possible to uniquely estimate the 3rd dimension (or depth) from a single 2D image. Hence,

additional constraints need to be incorporated in order to regulate the solution space. As

a result, in the first part of this dissertation, the idea of constraining the model for more

accurate depth estimation by taking advantage of the similarity between the RGB image

and the corresponding depth map at the geometric edges of the 3D scene is explored.

Although deep learning based methods are very successful in computer vision and handle

noise very well, they suffer from poor generalization when the test and train distributions

are not close. While, the geometric methods do not have the generalization problem since

they benefit from temporal information in an unsupervised manner. They are sensitive to

noise, though. At the same time, explicitly modeling of a dynamic scenes as well as flexible

objects in traditional computer vision methods is a big challenge.

Considering the advantages and disadvantages of each approach, a hybrid method, which

benefits from both, is proposed here by extending traditional geometric models’ abilities

to handle flexible and dynamic objects in the scene. This is made possible by relaxing

geometric computer vision rules from one motion model for some areas of the scene into

one for every pixel in the scene. This enables the model to detect even small, flexible,

floating debris in a dynamic scene. However, it makes the optimization under-constrained.

To change the optimization from under-constrained to over-constrained while maintaining
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the model’s flexibility, ”moving object detection loss” and ”synchrony loss” are designed.

The algorithm is trained in an unsupervised fashion.

The primary results are in no way comparable to the current state of the art. Because

the training process is so slow, it is difficult to compare it to the current state of the art.

Also, the algorithm lacks stability. In addition, the optical flow model is extremely noisy

and naive. At the end, some solutions are suggested to address these issues.
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Chapter 1

Introduction

Depth estimation is an important step in understanding the geometry of a 3D scene. In

addition, many downstream applications, such as 3D modeling, navigation in robotics,

autonomous driving, 3D video stabilization [192], augmented reality (AR) and special

video effects [299], and converting videos for virtual reality (VR) viewing [125], etc., rely

on accurate depth estimation. Based on sensor design and methodologies related to the

structure of sensors, depth estimation can be categorized as

• Active sensor/method: A sensor/method is called active if it sends a signal to the

environment itself and gathers the information from the reflection of the environment.

• Passive sensor/method: The sensor or method is called passive if it uses the signal

already available in the environments.

Active sensors/methodologies rely on sending stimulus to the environment to estimate the

depth of the scene using that stimulus. They include Radar, LIDAR, RGBD cameras, and

Ultrasound devices [74]. However, each of them has its own issues. For example, RGB-

D cameras suffer from limited range of measurements, estimation of depth using LIDAR

and Radar are sparse, and Ultrasound devices are inherently imprecise. In addition to the

aforementioned issues, these are energy-consuming devices and they are large, which is an

issue when one is thinking about small robots like micro aerial vehicles. Differently, RGB
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cameras are less costly and light. Having this in mind, it would be valuable to search for

depth estimation algorithms that depend on color images just like human beings, primates,

and birds (of pray) which all benefit from advanced vision systems that help navigate

through obstacles easily. This is called monocular depth estimation (MDE) which is the

focus of this dissertation.

1.1 Problem definition

Let I ∈ R3×h×w be a single 3-channel color image. Assume the spatial dimensions of the

image is w × h. Assume D ∈ R1×h×w is the depth map of the image I . Then monocular

depth estimation (MDE) is casted as finding a non-linear mapping Ψ such that

Ψ : R3×h×w −→ R1×h×w

D = ψ(I)
(1.1)

This has been illustrated in Fig. 1.1. On the other hand, one might be interested to design

an algorithm that extract depth map as a result the structure, i.e. depth map of the scene

from a train of images. In this case the definition would extend into

Ψ : RN×3×h×w −→ RM×1×h×w, M ≤ N

Dm = ψ({It|t = 1, 2, 3, · · · , N}), m ∈ {1, 2, 3, · · · , N}
(1.2)

m is usually the central image in the sequence of 1, 2, · · · , N . This has been illustrated

in Fig. 1.2. While the depth map estimation using MDE methods is less costly in

computations and is not sensitive to degeneracy issue as well as calibration difficulties of

stereo rigs, it is an ill-posed problem. The reason is simple. A 2D image can be generated

from countless different distinct 3D scenes. Therefore, a MDE algorithm must benefit from

different cues which are called monocular cues.
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1.2 Monocular cues

Monocular cues are visual cues to understand depth of scene that can be perceived with

only one eye. People who are visually impaired in one eye are still able to understand the

3D structure of the scene, although with less accuracy. So they rely on monocular cues for

navigation. These cues include motion parallax, interposition or occlusion, and perspective.

These cues are available in works of art (see Figs 1.6 and 1.5). The artists exploit these cues

so that viewers feel like they are looking at a three-dimensional environment.

Motion parallax: When one is in a moving car, he/she feels like distant objects move

more slowly and closer objects move faster when looking through the side window. This is

because our brain is able to interpret this difference in lateral speed as depth.

Size and height: One important monocular cue is size and height of known objects. For

example a small car is interpreted as further away while a larger sedan car is perceived

closer to the viewer. This might be utilized in estimation of motion in depth direction to

avoid collision with objects [342, 343].

Perspective: Linear perspective is the tendency of far away lines to seemingly converge. It

is an important monocular cue for depth perception. The places where these lines converge

are called vanishing points. The location of objects in the scene compared to those lines

can be perceived. The seemingly converging tracks of train is an example. There are

several types of linear perspective, including 1-point perspective, 2-point perspective, 3-

point perspective, etc. Mathematically speaking though, all of them can be expressed with

one formula. See Fig. 1.3 and 1.5.

Atmospheric or aerial perspective: Another type of monocular cue is texture gradient.

The textures appear in the scene with more details when they are closer and distant objects

are fuzzy, pale. This happens because of atmospheric interruptions, like dust, and provides
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clues about the distance of objects in the scene. See Figs 1.4 and 1.6.

Interposition, or occlusion: Interposition, or occlusion is a monocular cue. Our brain

estimates the depth of an object relative to another one if the first one covers the other one

partially. Although we do it so naturally, it is a challenge for single image MDE [92] or

even in dynamic scene [247].

1.3 Motivations

One might question the benefit of designing monocular depth estimation algorithms while

stereo vision can avoid many challenges indigenous to MDE like scale ambiguity or

problems like dynamic scene as well as difficulties in exploiting monocular cues. To answer

this question, it should be noted that the stereo vision is limited to approximately 10 meters

similar to D435 RGBD camera. This limitation springs from the sensitivity of the problem

to the distance between stereo rigs. Farther than this distance, human vision mainly relies

on monocular cues. So the first benefit is that the MDE has longer range than the stereo

vision. On the other hand, having an efficient monocular depth estimation algorithm can

benefit many single camera devices available almost everywhere. The third benefit of

monocular video depth estimation is that such algorithms pave the way for an efficient

exploitation of temporal information in stereo video depth estimation. Other benefits of

using MDE in designing algorithms could be less computational cost and avoiding the

degeneracy issues as well as calibration difficulties of stereo rigs.

At the end of this section It is worse mentioning that the monocular cues are usually defined

by physics of the problem. Many single image MDEs just try to exploit the universality of

CNNs with the hope that it would catch the monocular cues. However, it make sense that

if one explicitly addresses the monocular cues with appropriate modules, he/she will get

better results. It is not an easy task though.
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1.4 Challenges and approaches

Broadly speaking, there are two different (passive) approaches available to estimate the

depth of a scene. Traditional computer vision methods that rely on assumptions on camera

models which result in pure geometric approaches, and deep learning based algorithms

which consider a universal function, usually based on Deep Neural Networks (DNNs),

and train it on an already recorded datasets, i.e. train dataset. These methods rely on

similarity of distribution of data in the already recorded train datasets and the unknown

test datasets. Deep learning based methods have remarkably enhanced the effectiveness

of many computer vision problems including MDE. Also, the methods are usually rely on

monocular cues and done in single image fashion.

However, single image depth estimation, as described before, is an ill-posed problem. On

the other words, going from three-dimensional world to 2D images is a one-way function

which is irreversible directly. During this process the information of the scene related to

the third dimension is lost.

1.4.1 Single image MDE, challenges and methodologies

The minimal sensory setup for depth estimation is to use a single monocular image.

However, recovering the scene’s depth from a single image is an ill-posed problem that

requires additional priors embedded in the model through learning-based methods to

disambiguate different 3D interpretations. Existing deep learning methods can usually

estimate accurate 2D depth maps. However, they lack local details and are often highly

distorted when the maps are projected into 3D. This is due to the usage of down-sampling

in the pretrained fully convolutional encoders, mostly designed for classification purpose.

While feature resolution and granularity may not be important in performing tasks like

image classification, they are crucial for dense prediction, where the architecture of the

model should ideally be able to deliver features at or close to the resolution of the input

image. Various techniques have been proposed to mitigate the above-mentioned issues.
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One way is using dilated convolutions [350] to rapidly increase the receptive field without

down-sampling. Another way is using skip connections from multiple stages of the encoder

to the decoder [254]. By the same token, the problem has been addressed in [315] by

connecting multi-resolution representations in parallel throughout the network. While all

these techniques can solve the issue to some extent, they are subject to the problem of

washed out information in deeper convolutional networks [124]. To mitigate the effect

of these convolutions, some researchers have suggested to replace the building blocks

entirely or in some places in networks by attention-based blocks [171, 194] or transformers

[344, 246] which are themselves, based on attention mechanisms.

Even given that one can find a way to produce a high resolution depth map with many

details by using skip connections, they might still run into an additional problem. One can

explain this using the example shown in Fig. 1.7 that compares an RGB image and the

corresponding depth map. The cabinet on the left and the table surface are almost texture-

less in the RGB image and have gradient only at geometric edge locations in the depth map.

On the other hand, the wall with the brick texture mainly shows a gradient-less area in the

depth map but a lot of gradient in the RGB image. Looking at the high-pass filtered RGB

image and the depth map suggests that most of the information needed to extract a depth

map from a scene is near the geometric edges, i.e., edges in the RGB image which come

from the geometric structure of the 3D scene. However, to extract the geometric edges,

One needs to first remove the edges in the RGB image which mainly come from texture

and color changes and replace the texture-less area of the RGB image with the deduced

geometric structure in the depth map.

For this reason one might wish to give the convolutional neural network the ability

to deduce the local geometric structure of the RGB image using guidance from the

corresponding depth map. However, the depth map is not available at evaluation time.

Instead, they can explore the idea of constraining the model by taking advantage of the

similarity of the RGB features and the corresponding depth map features at geometric edges

of the 3D scene for more accurate depth estimation. Hence a light-weight attention module
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was proposed that uses the cross-correlation between the encoder and the decoder [224].

The functionality of this module can be interpreted as a guiding tool for an efficient feature

extraction in the encoder and it can be used to merge the same size feature maps from the

encoder to the decoder efficiently in any encoder-decoder structure with minimum added

weight and computation burden to the base encoder-decoder network to address any task at

hand.

The proposed module along with the encoder-decoder network was trained in an end-to-end

fashion on both the indoor NYUDV2 dataset [225] and the outdoor KITTI dataset [86] and

achieves superior and competitive performance in comparison with state-of-the-art [224].

As described above, one of the most efficient ways to deal with single image depth

estimation being ill-posed is using Deep Neural Networks (DNNs) and pre-train it with

labels. The trained network can be used to estimate the depth in new environment provided

that the distribution of the test data is close to the train data. These category of methods are

dense and fairly light considering the algebraic nature of these DNN universal functions.

1.4.2 Challenges and approaches: accuracy-generalization trade-off

Although deep learning based method are very successful in understanding the whole scene

in a dense fashion and being fairly light considering the algebraic nature of this type of

depth estimation, they suffer from 1) accuracy 2) poor generalization when the test and

train distributions are not close. They are not able to accurately predict the scene with all

of its details and when the test dataset distribution is far from the train dataset they might

even fail. In addition, they rely on monocular cues which can be exploited for adversarial

attack in security or safety systems [338].

On the other hand, traditional geometric methods, tend not to be sensitive to the above-

mentioned issue since they essentially do not rely on any prior knowledge i.e. distribution
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of any training data. Instead, they benefit from temporal information of sequences of

images/videos or synchronous camera rigs to extract the depth in an unsupervised manner.

At the same time, explicitly modeling of a dynamic scenes as well as flexible objects in

monocular depth estimation using traditional computer vision methods is a big challenge.

The reason is lying on the inherent way of estimation: scene might changes in a flexible

and dynamic way between two consecutive frames. It should be noted that deep learning

based methods can handle them to some extend since they usually estimate the depth using

single image, not completely though. The trade-off for single image depth estimation is

loss of accuracy.

Considering weakness and strength of each of these two approaches, a hybrid methods

which benefits from both good generalization of geometric methods by extending tradi-

tional geometric models ability to handle flexible and dynamic objects in the scene and

interleaved it with deep learning networks to create a self-supervised training pipeline is

the promising direction.

1.5 Measures to evaluate the performance of MDE

Assume Di is the estimated depth map at the pixel i. Assume D∗
i is the ground-truth values

of the depth map at the same spatial position. Assume that N indicates the total count of

pixels which both the ground truth values for depth map and the estimated depth are valid.

The evaluation metrics which are accepted and usually used by researchers in this field are

• Absolute relative difference (Abs Rel):

AbsRel :=
1

N

∑
N

|D∗
i −Di|
Di

(1.3)
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• Squared relative difference (Sq Rel):

SqRel :=
1

N

∑
N

|D∗
i −Di|2

Di

(1.4)

• The linear root mean square error (RMS):

RMS :=

√
1

N

∑
N

|D∗
i −Di|2 (1.5)

• The logarithm root mean square error (RMS log):

RMS log :=

√
1

N

∑
N

| logD∗
i − logDi|2 (1.6)

• Accuracy based on a threshold: is the percentage of the predicted pixels out of the

total pixels which the relative error is less than a threshold.

max

(
Di

D∗
i

,
D∗

i

Di

)
< δ. (1.7)

The values of the threshold, δ, usually set to 1.25, 1.252, 1.253.

In addition to the above-mentioned measures, Eigen et al. [67] introduced a scale-invariant

error to express the relative error between points in the scene, independent from their

absolute values. It is defined as

E(D,D∗) :=
1

2N

N∑
i=1

(logDi − logD∗
i + α(D,D∗))2 (1.8)

where

α(D,D∗) =
1

N

N∑
i=1

(logD∗
i − logDi) (1.9)

is the α that minimizes E.
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1.6 Datasets

Just like any other regression problem, datasets are critically important in developing and

evaluating any depth estimation algorithm. There exist several well-known datasets. These

datasets are summarized in Table 1.1.
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Figure 1.1: Casting single image monocular depth estimation as an estimation problem. A
depth map is estimated using the corresponding RGB image.

Figure 1.2: Casting monocular depth estimation from a sequnce of images as the
estimation of depth map from the corresponding RGB image.
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Figure 1.3: Comparison between 1-point, 2-points and 3 points linear perspective [328].
The vanishing point play an important role in MDE which will be discussed later.

Figure 1.4: The aerial or atmospheric perspective; Left image: photographed in a nearly
contre-jour condition (French for ”against daylight”). Right image, the aerial perspective
as a result of Rayleigh scattering. This is why when one look at mountains in Tennessee
they see the far part of mountains in blue color [327].
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Figure 1.5: Masolino da Panicale’s St. Peter Healing a Cripple and the Raising of Tabitha
(C.1423), this is considerede the first artwork known to utilize a consistent vanishing point
[328].
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Figure 1.6: Artists have been aware of atmospheric perspective. They tried to benefit from
these monocular clue. In this picture, Dai Jin, ”Landscape in the Style of Yan Wengui”,
Early Ming Dynasty (1368-1644); a Chinese landscape painting using ”atmospheric
perspective” to show recession in space [327].
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Figure 1.7: Comparison of edges and gradients in an RGB image and the corresponding
depth map. Top-left: RGB image. Top-right: the corresponding depth map of the RGB
image. Bottom-left: Laplacian of the RGB image. Bottom-right: Laplacian of the depth
map. Figure from [224]. he cabinet on the left and the table surface are almost texture-less
in the RGB image and need to have gradient in depth image while the wall with the brick
texture mainly shows a gradient-less area in the depth map. Looking at the filtered RGB
image and the filtered depth map suggests that most of the information needed to extract
a depth map of a scene is near the geometric edges, i.e. edges which come from the 3D
geometric structure of the scene. In addition to extracting geometric edges, one needs to
get ride of the edges in the RGB image which mainly come from texture and colors and
replace the texture-less area of the RGB image with deduced geometric structure in the
depth map. This is a strong incentive to exploit the similarity of depth structure and the
RGB image structure through some kind of attention mechanism to extract a better depth
map.
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Table 1.1: Summary of the available datasets which can be used in MDE. Table from [63].

Year Dataset Scenario Sensors Resolution Type Images Annotation

2008 Make 3D [263] Outdoor Laser Scanner 2272× 1704 Real 534 Dense
2012 NYUDV2 [275] Indoor Kinect v1 640× 480 Real 1449 Dense
2012 RGBD SLAM [281] Indoor Kinect v1 640× 480 Real 48K Dense
2013 KITTI [85] Driving LiDAR 1238× 374 Real 44K Sparse
2015 SUN RGBD [277] Indoor - - Real 10335 Dense
2016 DIW [41] Outdoor - - Real 495K Single Pair
2016 CityScapes [51] Driving Stereo Camera 2048× 1024 Real 5000 Disparity

2016 CoRBS [325] Indoor Kinect v2
1920× 1080 RGB,
512× 424 Depth Real - Dense

2016 Virtual KITTI [78] Outdoor - 1242× 375 Synthetic 21260 Dense
2017 2D-3D-S [12] Indoor Matterport Camera 1080× 1080 Real 71909 Dense
2017 ETH 3D [271] In/Outdoor Laser Scanner 940× 490 Real - Dense
2017 Matterport 3D [37] Indoor Matterport Camera 1280× 1024 Real 194400 Dense

2017 ScanNet [55] Indoor Structure Sensor
1296× 968 RGB,
640× 480 Depth Real 2.5M Dense

2017 SceneNet RGBD [211] Indoor - 320× 240 Synthetic 5M Dense
2017 SUNCG [278] Indoor - 640× 480 Synthetic 45000 Dense
2018 Mega Depth [185] In/Outdoor - - Real 130K Dense/Ordinal
2018 Unreal [207] Outdoor - 256× 160 Synthetic 107K Dense
2018 Safe UAV [208] Outdoor - 640× 480 Synthetic 8137 Dense
2018 3D 60 [363] Indoor - - Synthetic 35995 Dense

2018 NUSTMS [332] Outdoor Radar
576× 160 Infrared,
144× 40 Depth Real 3600 Dense

2019 DIML / CVL [47] In/Outdoor
Kinect v2,

Zed Stereo Camera
1920× 1080
1280× 720

Real 1M Dense

2019 Driving Stereo [345] Driving LiDAR 1762× 800 Real 182K Sparse
2019 DIODE [301] In/Outdoor Laser Scanner 1024× 768 Real 25458 Dense
2019 Mid Air [73] Outdoor - 1024× 1024 Synthetic 119K Dense
2020 Forest Environment [228] Forest Depth Camera 640× 480 Real 134K Dense
2020 Shanghaitech Kujiale [134] Indoor - 1024× 512 Synthetic 3500 Dense
2020 Virtual KITTI 2 [30] Outdoor - 1242× 375 Synthetic 21260 Dense
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Chapter 2

Taxonomy of Algorithms in Depth Map

Estimation

Depth map estimation can be bi-product of a bigger algorithm or the main goal of an

algorithm or one of the main goals. In this chapter, different algorithms in which depth

map estimation is involved are classified. While the algorithms can be classified based

on several miscellaneous traits including, for example, the type of optimization terms or

regression models vs. classification models or based on chronological order, one might

decide to categorize the methodologies roughly into the following categories based on

general mathematical/physical tools have been utilized for depth estimation. While doing

so, it is also possible to describe the above-mentioned trait as well as single-view or multi-

view MDE.

In addition, the methods will be described based on how they are trained whenever a

learning based methods is under consideration. So these learning based algorithm classified

into three categories, that is, Supervised, Semi-supervised, Self-supervised.

17



2.1 Monocular cues methods and optimization

In this paradigm, at least one of the goals is estimation of the depth map from a single 2D

RGB image in inference mode (test or evaluation time) which is in fact the minimal sensory

setup for the depth map estimation. During training, if there is any training, there might be

more than one objectives optimized along with each other in one or more inter connected

optimization loops. It is worth mentioning that the single image depth estimation usually

called MDE as well which can be distinguished by context from monocular video depth

estimation. In addition, monocular cues can help us to estimate better depth even if there is

access to a video or sequence of images.

However, recovering the scene’s depth from a single image is an ill-posed problem which

means it is not mathematically possible to retrieve the depth map from a single RGB image

uniquely. The reason is simple: going from 3D to 2D, one looses information which makes

the reverse process impossible. So solving the problem requires additional priors, often

referred to as monocular depth cues, like perspective, occlusion, object size, texture, etc.,

which briefly were talked about in the introduction. Although these cues might be exploited

through methods based on learning with prior knowledge to disambiguate the solution, the

first research in MDE was not a learning based method [118]. See Fig. 2.1.

It is known that the intrinsic images related to physical characteristics of a scene like depth,

shadows, surface shape, provide critical information to depth estimation [18]. Exploiting

the aforementioned fact, Kong and Black [152] cast the MDE problem as an intrinsic image

estimation problem. They fuse the method in [144] with another procedure that to solve

the MDE problem. See Fig. 2.2.
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2.2 Learning-based depth estimation algorithms using en-

gineered features

Torralba et. al. [293] designed the first learning-based algorithm. Their algorithm estimates

absolute values of depth from monocular color images benefiting from the known size of

objects in the scene and learning a structures’ features from wavelet transform.

Jung et. al. [138] proposed a learning based MDE algorithm utilizing a Bayesian object

classification. Object in the scene are classified as ground, cubic and plane and sky. Then

the relative depth of each pixel is estimated using these four classes and models.

Saxena et al. [262] proposed a learning algorithm, which is fully supervised, to address

the MDE. They segment RGB images into small patches. They utilize two different depth

features, absolute features and relative features. Then they utilize a Markov Random Field

(MRF) to model the depth of each patch in relation to its surrounding patches. Raza et

al. [251] utilized a combination of engineered features and random forest regression and

MRF to address MDE. Similarly, Liu et al. [189] designed an algorithm based on MRF that

exploites semantic information to infere depth from a single image. The models are solved

by utilization of the L-BFGS algorithm.

Ladicky et al. [161] show that simultaneous implementation of semantic labeling and

depth estimation improve accuracy of both tasks. More precisely, they demonstrated that

conditioning the first task on the depth values of the pixels help improving the performance

of the classifier and vice versa.

Liu et al. [196] casted the MDE problem as a hybrid discrete-continuous CRF optimization

that exploits the relation of super-pixels in different sections of a RGB image.

Karsch et al. [144] suggest utilization of a data-driven and non-parametric method to

19



adrress MDE. It is done based on the comparison of the image in hand with a dataset

using GIST. Then, they utilize MRF to smooth the depths spatially.

Up to here the methods utilize engineered features as the main means to do MDE. However,

deep learning has shown effectiveness of automatic dense feature extraction.

2.3 Utilization of deep-learning in MDE

Here works which utilize deep learning as the main mechanism to estimate depth in

MDE problems are reviewed. The other methods discussed so far, like optimization or

probabilistic and statistics and geometric computer vision methods, might be used to help

improving the overall performance or even make MDE possible.

Application of deep learning in image classification was indeed a break-through in

computer vision. As a result of such improvements, researchers in other areas of computer

vision started to utilize deep learning networks in MDE problem as well. Here, the MDE

problem based on deep learning algorithms are reviewed. As mentioned in the introduction

of this chapter, the methods in this section are classified into three categories based on the

way the training procedure depends on the depth’s labels. See Fig. 2.3.

2.3.1 MDE, supervised learning

The general flow diagram of MDE problem using supervised learning is depicted in Fig. 2.4

part (a). In this setting, the CNN accepts one RGB image as input. During training phase,

the corresponding ground truth depth map is compared with the output of the network. The

error between the ground truth depth and estimated depth, i.e. the output of the network

in the signal which is used by optimization algorithm to learn the parameters of the CNN

network.
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General supervised methods

The supervised deep learning based algorithm generally assume MDE problem is a

regression. As far as we are aware, Eigen et al. [67] cast the MDE problem as a deep

learning, supervised problem for the first time. In order to embed local and global scene

information, they decided to utilize two CNNs. See Fig. 2.3 part (a). Moreover, they

introduce a scale-invariant measure for the first time in addition to the available scale-reliant

measures in evaluating the performance of their algorithm as well as in their optimization

cost function. Their algorithm was a break through at the time which dramatically enhanced

MDE reults on the KITTI [85] and the NYU [275] datasets.

It is possible to simultniously exploit continuous CRF and deep learning CNNs to performe

a MDE. For example, Liu et al. [191] proposed a deep continuous conditional random fields

to address the MDE.

The algorithms in [67], [191] rely on fully connected layers for depth prediction. Although,

the layers have provide us with full receptive field, it has a too many parameters that results

in a very slow inference procedure [67].

Laina et al. [162] proposed a deep learning residual network which is fully convolutional

to address MDE problem. Their network comprises of two main module, one encoder and

one decoder. See figure 2.3 part (b). The encoder is ResNet-50 [114] encoder without its

final pooling and fully connected layers. In decoder, they design a novel up-sampling based

on deep learning convolutional layers. In addition, they define the reverse of the Huber loss

that perform well for depth map estimation based on the distribution of depth maps. They

train their network in an end - to - end fashion. Their architecture does not depend on any

post-processing algorithm like CRF and fully connected layers.

The proven effectiveness of CNNs resulted in utilization of CNN based pretrained encoders

such as DenseNet-169 [124], ResNet-101/152 [114] or SENet-154 [122] to enhance MDE
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performance. For example, Alhashim et. al. [9] proposed a densely connected encoder-

decoder model based on DenseNet-169. Different from [162], they design a simple decoder

structure which comprise of a bilinear up-sampling and convolution layers. With this

deeper architecture, detailed augmentation and specific training strategies, the designed

network creates more accurate estimations on the NYUDV2 [275] and KITTI [85] datasets.

Mancini et al. [206] exploit optical flow to enhance depth estimation from single images.

To create a high quality depth map estimation based on automatic features from deep

learning encoder, Lee et al. [168] suggest a layer which is called local planar guidance

layer. They embed it in each decoding level. The output of the layers has equal size of the

depth map. At the end, they are fused to build the depth map estimation.

Yin et al. [347] devise a constraint in the 3D space based on geometry to address the MDE

problem. In fact, they suggest a geometric loss term. The designed loss function comprises

of two terms. First a virtual normal term that compares the virtual normal vectors of the

ground truth 3D reconstruction with the estimated 3D res-construction. Second they utilize

weighted cross entropy as a mean of absolute depth supervisions. To sum up, the total cost

function makes the MDE network estimates accurate and high quality 3D point cloud and

depth map.

Hu et al. [123] introduce a module, an encoder-decoder architecture, benefits from a multi-

scale feature fusion architecture and a refinement one. The multi-scale feature fusion

architecture up-samples features maps from stages with different spatial sizes and then

concatenate it channel by channel. Features from the multi-scale feature fusion architecture

module and features from the decoder are combined with each other and then fused features

are passed to the refinement module to estimate the final results. The main innovation

of their work is a multi-term loss function, which incorporates depth errors, gradients

errors and surface normal vectors errors. This work inspired Chen et al. [42] to introduce

a Structure-Aware Residual Pyramid Network. The network utilizes scene structures in

several scales to estimate depth map better. This module comprises three sub-modules, an
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encoder module which outputs feature maps with several scales, an adaptive dense feature

fusion module to fuse features maps and a residual pyramid decoder.

Fu et. al. [76] suggest instead of estimating continuous depth values, estimates the

intervals. However pure classification does not consider ordered nature of depth values.

So they suggested an ordinal regression instead of pure classification model to estimate

the depth map. To this aim, they quantize the continuous depth values into a sequence of

intervals. In fact, they transform the MDE problem into an ordinal regression problem.

Since the estimated depth with larger values of ground-truth depth have larger uncertainty,

the uniform quantization may lead into an overly tight loss for the larger depths. To address

this issue, a space-increasing quantization method is introduced to quantize the depths.

After discretizing depths, the ordinal regression loss is used to train the network.

However, considering constant intervals for all images and/or at all spatial points in the

image is not the most efficient way of using computational resources in MDE. This is the

incentive for Bhat et al. [21] to suggest to divide the range into adaptive bins, which the

bins widths change in different images. This makes it possible that the network learns

to adaptively focus on different depth values. Their contribution is Mini-ViT module

comprising of four transformer layers [302]. It is utilizing a variant of Vision Transformer

[64]. Different from Fu et al. [76] that uses the bin center which has the most probability as

depth estimation, the depth estimation in [21] is the linear combination of bin centers which

is weighted by the probabilities. Hence, this method results in a smoother estimation. See

Fig. 2.5 and 2.6.

Recently, omni-directional cameras are becoming increasingly attractive to researchers.

The creation of depth map using a single 360◦ image [363], [313] has been explored

by researchers. Different from normal cameras, the omni-directional cameras have got

a dramatically larger field of view which makes it possible to capture the 360◦ surrounding

scene. The first attempt to extract the depths using an omni-directional RGB image is

OmniDepth introduced by [363]. They contribute to the field by creating a dataset comprise
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of 360◦ RGB and their counterparts depth map. Since capturing such ground truth depth

map is difficult, they created the dataset out of available 3D datasets. They innovate a two-

input model which combines cubemap projection and equirectangular to infer the 360◦

depth map from monocular 360◦ RGBs.

Other than CNNs, Recurrent Neural Networks are also utilized to address the MDE

problem. RNNs are able to capture the temporal behavior in sequential data in time since

they model a difference equation, i.e. they are a dynamic model. See Fig. 2.7. As an

extension of the regular RNNs, the long short term memory is able to learn long term

reliance in time between different sections of the input data. See Fig. 2.8.

Kumar et al. [53] proposed an encoder decoder architecture based on a convolutional

LSTM (ConvLSTM) module. They try to extract the depth map in a sequnce of video

frames exploiting the spatio-temporal information. The encoder comprises of a several

ConvLSTM stages. The decoder consists of interleaved deconvolutional and convolutional

layers. ConvLSTM layers, each have internal states which are related to the length of video.

Zhang et al. [354] try to benefit from both temporal and spatial information to address

MDE problem. They utilize both GAN and ConvLSTM. Moreover, a temporal consistency

loss is created to keep the consistency between different frames in the sequnce of frames.

Both the spatial and temporal loss are used to train the model in an end-to-end fashion.

Similar utilization of RNN, more exactly ConvLSTM, in video MDE problem is introduced

by [320].

Monocular depth estimation through classification

The depth values in different pixels in one RGB image, might have statistical distribution

which are different. As a result, the problem of depth estimation can be cast as a

classification task by segmenting the scene [33], [175], [181], [44], [365].
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Li et al. [175] suggest a three stage depth estimation methodology. First, they define

the MDE as a dense labeling task which makes the work different from the traditional

regression MDE. Second, they combine different side outputs from dilated convolutional

neural network to benefit from the depth features in a multi scale fashion, which gives their

algorithm scale perception. Third, they use a weighted sum inference which transforms the

quantized depth probabilities to continuous depth values. Consequently, they enhance the

robustness of the overall algorithm and decrease the quantization error.

Following the mentioned works of [33], [175], [181], Zou et al. [365] address the MDE

problem as a classification, too. However, they consider probability distribution in training

phase. The innovation of their work is a mean-variance loss function which comprises of

a variance part and a mean part. The mean loss penalizes the error of the means of the

ground-truth depth map and the estimated depth map distribution. The variance loss is

creates a sharper estimated depth map distribution. The mean-variance loss as well as the

softmax loss provide the supervision in training.

Moreover, not only MDE can be fromulated as a solely regression or solely classification

problem, but also it can be formulated as combination of both paradigms together[186],

[279].

Multi-task learning methods

The MDE problem and the other problems in computer vision like surface normal

estimation, semantic segmentation are able to improve performance of each other if they

are done simultaneously [66], [319]–[1]. For example are similarities between the depth

maps and the semantic maps [259]. Even designing a network suitable for more than one

task can be beneficiary to each tasks, although they are not done in a simultaneous fashion.

One of the first examples is Eigen and Fergus [66] who proposed a network architecture to

address surface normal estimation, MDE, and semantic segmentation problem using one

architecture. The network can learn to do each of the three tasks if one changes the loss

function and the output layer.
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Wang et al. [319] and Jafari et al. [130] proposed an architechture to address simultanious

estimation of the semantic labels as well as the depth maps.

The afore mentioned algorithms [66], [319], [130] need dense ground truth for semantic

segmentation labels and depth maps values. This makes them difficult since gathering those

information is not an easy task to do. So Gurram et al. [103] address this issue by exploiting

information from two heterogeneous datasets in the task of training a CNN which estimates

the depth map. The overall learning comprises of two stages. First, a training procedure

is used for pixel level semantic and depth classification. In the second step, the regression

layers refines the results.

Qi et al. [245] proposed a Geometric Neural Network, GeoNet, simultaneously learns

surface normal vectors and depth maps in a monocular fashion. GeoNet comprises of a

network to estimates normal vectors from depth maps and another network to do reverse.

Iterative usage of these two networks converges to both depth map and the surface normal

vectors.

Hesieh et al. [121] suggest an architecture based on YOLOv3 [252] which does object

detection as well as MDE.

Abdulwahab et al. [1] proposed a paradigm for both 3D pose estimation and depth map

estimation utilizing a CNN as a regressor and a GAN block. The GAN module does feature

matching which makes it possible to construct the depth map. The regression module uses

the depth map to estimates the poses in 3D.

Real-time supervised monocular depth estimation

The above-mentioned methods are computationally expensive. However, there are several

real-time applications that researcher do a trade-off between the quallity of the depth map

and the speeed of inference [280], [329]. Depth Net Nano [318] is another example of these

category of networks.
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Learning algorithms which are supervised need ground truth depth maps in training phase.

Although they are high quality methods, gathering the ground truth is difficult due to cost of

depth sensors like RGBD cameras and LIDARs as well as calibration and synchoronization

difficulties. As a result, learning algorithms which are self-supervised are becoming a trend

in research [83]-[361].

2.3.2 MDE, self-supervised learning

Self-supervised learning algorithms use two or more sequences of RGB images as input and

cast the problem as an image reconstruction problem. Under this situation, the depth maps

are biproduct of the reconstruction process. The flow diagram of unsupervised learning

algorithms is depicted in Fig. 2.4 part (b). These methods do not need ground-truth.

However, the accuracy rate is lower than their supervised cousins methods.

General unsupervised algorithms

Garg et al. [83] proposed the first self-supervised learning algorithm in MDE. First, a pair

of close RGB images which have known ego-motion The image reconstruction loss is the

supervision signal to train the weights of depth network, which estimates the depth out

of the corresponding RGB image. Moreover, the point registration between the two RGB

images is another supervision signal in this algorithm. Similarly, Godard et al. [91] design

a self-supervised algorithm that uses a left-right consistency loss that exploit aliened stereo

RGB image pairs and epipolar geometry constraints.

Both [83] and [91] need calibrated stereo RGB images to train their networks. So

Mahjourian et al. [205] relax this limitation enforcing the consistency between camera

motion and the depth map of one of the images. Similar works are done to design self-

supervised MDE in [294], [203], [356], [71].

Guizilini et al. [98] exploit semantic information to learn depth estimation. The method

is based on an self-supervised paradigm [96]. It comprises of two models, one which
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estimates the depth, another does semantic segmentation. At training time, the depth

estimation model learns its parameters while the other model is frozen.

Also, Johnston et. al. [136] proposed a discrete disparity volume and similar self-

supervision methos to estimate more clear depth map along with pixel wise depth

uncertainties.

Multi-task learning based methods

Zhou et al. [361] address the problem of learning the camera motion and the depth maps

from monocular videos. The method uses a depth network [210] and a pose network. They

use reconstruction error as the supervision source. Scale ambiguity is a problem here.

Inspired by [361], Prasad et al. [243] exploit epipolar geometry as the constrains to learn

both depth and ego-motion. Different from [210] they used epipolar geometry to weight

the pixels and guide the training.

Klodt et al. [150] change [361] in three ways. First, a structural similar loss helps to

robustify the brightness constancy loss. Second, an explicit model of confidence makes

sure correct prediction of each pixel brightness distribution. Third, a SfM algorithm [222]

is used to supervise the depth network training.

Vijayanarasimhan et al. [306] proposed “SfM-Net,” a geometry-aware algorithm to jointly

estimate depth, camera motion and dynamic object segmentation. The network uses

photometric error as source of supervision.

Dai et al. [56] design the same algorithm as in [306] for monocular video. The motion

model is 6 degrees of freedom in this work instead of 2D/3D optical/scene flow.

Learning based SLAM algorithms usually assume that the scale of CNN-based MDE

and relative pose can be consistently learned between all input frames. This assumption

adversely affects the performance in situations where the change of size of translation
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of camera is large. In order to address this issue, Bian et al. [22] suggest a geometry

consistency loss.

Also, Zhao et al. [358] separately estimates a scale for the learning of the pose and the

depth.

Zou et al. [366] design a self-supervised algorithm to both learn optical flow and depth from

monocular video. They design a cross-task consistency loss in addition to the photometric

and spatial smoothness loss as the sourse of supervision.

Yin and Shi [348] design an algorithm that learns the depth map, and the camera pose as

well as the optical flow at the same time. First, they utilize statc scene methods. Then they

suggest a non-rigid motion refinement module to deal with the dynamic objects. Also they

proposed an adaptive geometric consistency loss which addresses the texture-less areas as

well as the occlusions.

Ranjan et al. [248] suggest an algorithm that estimates the camera motion and the depth

map as well as the optical flow and the motion segmentation. They utilize a Competitive

Collaboration (CC) learning method.

Learning methods using adversarial paradigm

Not only view-synthesis or photometric reconstruction error, but also Generative Adversar-

ial Networks (GANs) paradim can help to do unsupervised MDE [8], [212], [239]–[10].

GANs have two part a generator and a discriminator (Fig. 2.3 (d)). The two parts can be

used to create unsupervised learning algorithm. The discriminator distinguishes between

the real images and the synthesized ones, though.

Aleotti et al. [8] utilizes GAN to address unsupervised MDE for the first time. The

generator is designed to estimate a depth map from the RGB image and generate a warped

synthesized image. The discriminator then discriminates between the input real image and

warped image and. The generator is obligated to estimates depth maps because of wrapping
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process. Similarly, Mehta et al. [212] proposed a MDE using GAN paradigm using stereo

synthesis. Wang et al. [307] combines GAN with direct visual odometry. In this way, he

was able to design an unsupervised dense MDE algorithm. Almalioglu et al. [10] suggest

an unsupervised MDE algorithm based on GAN and recurrent paradigm.

Real-time unsupervised monocular depth estimation

Although all the state-of-the-art algorithms produce promising results in unsupervised

paradigm, they are very heavy and complex which makes it impossible to use them in many

robotics applications where lower power and speed are important. To address these issues

Poggi et al. [240] utilizes a small encoder and multiple small decoders in a pyramidal. He

is able to achieve almost real-time performance on a i7-6700K CPU. Liu et al. [195] design

MiniNet based on DepthNet. It is a small network trained in an unsupervised manner on a

monocular video. The algorithm reaches real-time speed on a Nvidia 1080Ti GPU.

2.3.3 MDE, learning in semi-supervised paradigm

Self-supervised algorithms do not rely on the ground-truth. However, the performance is

bottle-necked by SfM reconstruction performance. It motivates semi-supervised methods

[47], [160], [353], [11], [99], [287], [132]. These methods exploit limited number of

ground-truth and the rest of training data without ground-truth. In this way, they are able

to enhance the performance of the MDE. See Fig. 2.4 (c). At the beginning, the model is

supervised with the available limited number of ground-truth. Then the trained network is

exploited to infer the depth maps of the rest of the training data-set. At the end, the inferred

depth maps as sudo labels as well as the limited number of ground truth are used to train

the model just like the first step.
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General semi-supervised methods

Kuznietsov et al. [160] proposed semi-supervised MDE for the first time. He essentially

combines self-supervised and supervised cost functions. The supervision comes from the

reconstruction of stereo images as well as sparse depth pairs. Amiri et al. [11] develop a

semi-supervised MDE algorithm based on [91]. They include sparse ground-truth, LiDAR,

depth as additional signal while unsupervised signal is stereo frames. Guizilini et al. [99]

is another semi-supervised algorithm in MDE. Differently, Ji et al. [132] suggest a GAN

based semi-supervised algorithm.

Joint Semi-supervised tasks

Ramirez et al. [353] suggest a semi-supervised algorithm which jointly estimates depth

and semantic segmentation. Their model consist of a semantic decoder head, a depth

decoder head, and an encoder which is shared. The training of semantic segmentation

head is supervised. However the MDE sub-model trained in an unsupervised manner via

re-projection cost function. Similarly Yue et al. [352] suggest a semi-supervised algorithm

to estimate depth map benefiting from semantic segmentation. Again the depth training

algorithm is unsupervised part.

Tian et al. [287] suggest a semi-supervised MDE based on a depth model and a confidence

model. The confidence model uses the output of the depth model and feed it along with

the corresponding RGB image into the confidence sub model. The confidence sub-model

estimates a confidence map that can be used to train the depth sub-model.

Student-teacher learning paradigm is what Cho et al. [357] exploited in their semi-

supervised algorithm. They utilize a deep stereo matching model [233]. The model is

trained in a supervised manner. and used to train a small student model. They assert that

the small model performs better in this way in comparison with the trained teacher model.
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Semi-supervised algorithms can be utilized not only when a small set of the ground truth

depth is available but also when a semantic maps or sparse depth maps are available. It

usually delivers better results than the supervised algorithms.

2.3.4 MDE, domain adaptation

With the advent of advance computer graphics, synthetic data-sets became available. The

readily available synthetic datasets can be used to train depth models in a supervised

manner. However, the distribution of data in real scene and the synthetic datasets are

different. The models which are trained on these synthetic scene do not generalize well

to the real world scenes. This is called domain gap. To reduce the adverse effect of domain

gap in MDE, researcher suggests domain adaptation algorithms. See Fig. 2.4 (d).

Domain adaptation via fine-tuning

The first idea came to researchers mind was training on synthetic datasets and then fine-

tune on a small set in target domain with ground truth lasbels. DispNet [210] is the first one

that utilizes this approach. However, it is possible to fine-tune the model which is trained

on the synthetic dataset on another supervisory signal like stereo depth estimation. Guo et

al. [101] is first reaseracher who does that. Their accuracy is better than [67], [91], [361],

and [160]. This approach is effective provided that there are enough data to fine-tune the

model [289].

Domain adaptation via data transformation

Although the domain gap can be solved using fine-tuning technique, it is not the only way

to make the domain gap smaller. Another way is using some transformation to make the

data in the two domian become more similar to each other. Atapour-Abarghouei et al. [13]

design a MDE paradigm based on GAN to make the distribution of the synthetic and the

real dataset become similar. Similarly Zheng et al. [360] design an algorithm based on
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GAN to translate the synthetic dataset into real world images. Their model is trainable in

an end to end manner.

However, [13], [360] do not take into account the geometry of the scene. So Zhao et al.

[357] incorporate the epipolar geometry to develop a geometry aware domain adaptation

based on style transform. These algorithms based on the transformation of the data

are robust to differences between different domains. However just like most of robust

approaches it comes with a side effect which is lower accuracy [289]. Also, variations in

illumination or saturation of the images might degrade the performance of the transformed

images. Thus the overall MDE accuracy [135].

2.4 Geometric computer vision methods

Geometric computer vision methods defines the relation between observations in the

images and the 3D scene and utilizing camera models and machine learning approaches

to estimate the 3D model for the scene under observation. Finding the 3D model is called

mapping and finding the the orientation and position of the camera in relation to the scene

is called localization or ego-motion estimation. The methods are divided into two set of

algorithms.

• Structure from Motion, SfM

• Simultaneous Localization and Mapping, SLAM

They both estimate the mapping or structure of the scene as well as the position of the

camera with respect to it. The difference is that the SLAM algorithms are designed in an

online fashion. These algorithms are fed by the input images as a sequence of the images

and most of the times they need to be real-time as well. However the SfM algorithms do

not need to be online or real-time necessarily [297]. In addition, a complete Visual SLAM

usually relies on different type of sensors’ data like camera and inertial measurement units

(IMU) and miscellaneous sub modules like visual odometry or visual inertial odometry,
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bundle adjustment optimization, loop closure and re-localization and dense mapping. So a

light SfM might be one internal part of a SLAM algorithm.

2.4.1 SfM

Assume that there is a set of images of a scene from different point of view. First, a

set of usually engineered features like SURF, SIFT, Harris, AKAZE, are produced from

each gray-scale image. Next, the features which are representing the same 3D points are

registered to each other. At this step, often a robust method to outliers, like RANSAC, is

applied. In this way, the points are tracked and using computer vision geometry the 3D

point cloud is produced. At the end this point cloud is converted into a depth map. Prakash

et al. [242] is an example of the utilization of SfM for sparse MDE.

Ha et al. [104] design a SfM using small motion, i.e. SfSM, that is based on plan sweep

paradigm for MDE. Feature extractor here is the Harris corner detector and the Kanade-

Lukas-Tomashi algorithm to match them. At the end, the plane sweeping method is used

to produce the structure of the scene. This method is very slow. So Javidnia et al. [131]

suggest to use the ORB features instead. This change make the algorithm faster. However,

the ORB features are sensitive to the amount of texture in different part of the scene. In

low texture area it creates low accuracy results.

2.4.2 Visual SLAM

SLAM consists of two interleaved problem, one is finding the structure of the scene, called

mapping, and the other is finding the position of the camera with respect to the scene,

called localization. The sensor that is used the most in the SLAM algorithms are cameras.

These SLAMs algorithms are Visual SLAM. Visual SLAM categorized into stereo camera,

monocular camera, RGB-D camera and event camera, etc. based on the camera setting.
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Monocular camera

Monocular Visual SLAM has scale ambiguity [107] and it needs to be initialized. The

algorithm is afflicted by drift issue as well.

Stereo camera

Stereo camera setting which means using two or more camera at the same time which

their physical positions are fixed with respect to each other. This method solves the scale

ambiguity at the cost of difficult calibration and high calculation costs.

RGB-D camera

Depth cameras are called RGB-D. They are able to estimate the depth for each pixel using

active methods. More precisely, they emit structured-light pattern and then build the map

using IR stereo cameras. At the end they synchronize the depth map and the color image.

All of these are done internally on the device hardware. Some have IMU inside as the extra

sensor. The others are time of flight cameras (TOF). TOF cameras calculate the time that

the emitted laser beam needs to travel the distance of the real world point to the camera.

Event camera

There are a category of cameras, called event cameras, which record variations in each

pixel brightness asynchronously instead of recording frames at fixed frame rates. Event

cameras are different in dynamic range (60 dB to 140 dB), different resolution, and they

consume low power. Also they do not get motion blur. These traits makes them a good

candidate in fast moving scenes.

Classification based on features

The SLAMs algorithms can be categorized into direct methods and feature based method.

Direct methods use the intensity in the images directly. CNNs are direct method in this

sense. Direct methods are able to estimate a semi dense or dense struture for the scene. On
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the other hand, one might extract sparse engineered features, like SURF, SIFT, AKAZE,

etc. and matches them in different images. Then use the registered points along with the

computer vision to estimate the depth of the registered points in 3D. This is called indirect

method. Indirect methods usually estimate sparse 3D clouds.

Visual SLAM which are sparse

• MonoSLAM(monocular): Extended Kalman Filter (EKF) is an online estimator.

This makes them a good choice for SLAM algorithms. mono-SLAM [57] is the

first SLAM algorithm which is based on monocular camera setting and works in

real-time. The algorithm uses EKF.

• The first SLAM which separate the mapping and the tracking loop is Parallel tracking

and mapping (PTAM). The paradigm is a monocular camera setting that does Bundle

Adjustment for better accuracy and consistency. It also exploit the key frames

concept for robustness. Later on they added relocalization to the algorithm.

• ORB-SLAM is a monocular camera setting which implemented using three threats.

1-Tracking, 2-Local Mapping 3-Loop Closure. They extend it to ORBSLAMv2 for

RGBD and stereo rigs. CubemapSLAM the monocular fish-eye cameras setting of

ORB-SLAM. It also uses IMU for scale estimation.

• ENFT-SfM is another monocular camera setting SLAM. Its distinctive trait is its

ability to track points between one or more videos. It was extended to ENFT-SLAM

to be able to handle large scale data.

• OpenVSLAM has the ability to accept mono, stereo, RGBD camera settings. It is an

indirect method. The distictive feature of OpenVSLAM is its ability to use arbitrary

camera models one may use.

• TagSLAM is a SLAM algorithm that is implemented using AprilTag fiducial

markers. Te algorithm is the sub-module for the GTSAM factor graph optimizer.
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Semidense visual SLAM

• LSD-SLAM is a monocular camera setting based on a novel direct tracking

paradigm. It utilizes Lie Algebra and it is a direct method. Later on the algorithm

was developed to omni-directional and stereo camera settings.

• SVO is a monocular camera setting SLAM algorithm which is a Semi-direct Visual

Odoemtry. The algorithm utilizes sparse model-based image alignment to achieve

speed. Later on, they imrove it so that it can use several cameras or catadioptric or

fisheye cameras. CNN-SVO the SVO algorithm which is equiped with a CNN for

single image MDE.

• Direct sparse odometry (DSO) is another monocular camera setting. The algorithm

is a sparse direct visual odoemtry without detection and description of feature point.

Dense visual SLAM

• Direct tracking and mapping (DTAM) is a direct method in monocular SLAM

category. It reconstructs impressive dense 3D model in real-time. The algorithm

minimizes a spatially regularized energy function which is global. The optimization

is non-convex and works directly with intensity of images for the first time. As a

result it is called direct method.

• MLM SLAM is a monocular camera setting SLAM that estimates dense 3D model

in an online fashion. The algorithm does not need any GPU. The novelty of

this algorithm is its multi-resolution MDE paradigm as well as spatial smoothing

procedure.
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Figure 2.1: first figure from right: definition of the incident (i), emittance (e) and phase
angle (g). Second and third figures:pictures of a nose with superimposed characteristic
solutions and contours. Shape determined from the shading (not-intensity contours). Figure
from [118].

(a) From left to right: RGB, abledo, shading, boundaries

(b) Example contour detection

Figure 2.2: Contours of surfaces estimated using shading and albedo. Figure from [152]
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Figure 2.3: Classification of different architecture in MDE. (a) Multi-scale MDE methods
[67], [66], (b) Encoder-Decoder architecture [162], [123], [204], [45], [42] (c) Combination
of both CNN and CRF [33], [176], [116], (d) GANs [8], [212]. Figure from [63].

Figure 2.4: The general structure of deep learning models in MDE. In (a) general
supervised learning algorithm is depicted. In (b) general unsupervised learning algorithm
is depcted. In (c) general semi-supervised learning algorithm is depcted. In (d) Domain
adaptation methods are depicted. Figure from [63].
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Figure 2.5: Adabins architecture [21]. Figure from [21].

Figure 2.6: The mini-ViT block [21]. Figure from [21].

Figure 2.7: An unrolled recurrent neural network. Figure from [50].
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Figure 2.8: The repeating module in an LSTM contains four interacting layers. Figure
from [50].

Figure 2.9: The Milestones of Monocular Depth Estimation. Figure from [63].
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Chapter 3

Single Image Monocular Depth

Estimation Using Adaptive Geometric

Attention

3.1 Motivations for adaptive geometric attention in single

image MDE

The minimal sensory setup for depth estimation is to use a single monocular image.

However it is an ill-posed problem. That is, it is not mathematically possible to uniquely

estimate the 3rd dimension (or depth) from a single 2D image. Hence, additional

constraints need to be incorporated in order to regulate the solution space. Here the idea

of constraining the model by taking advantage of the similarity between the RGB image

and the corresponding depth map at the geometric edges of the 3D scene for more accurate

depth estimation is explored.

Human is able to utilize attention to understand the local similarity between an RGB image

and its corresponding depth map easily or even one can be deduced from the other. Human

is able to do that since most of the information needed to extract the depth map of an
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RGB image is near the geometric edges, i.e. edges which comes from the 3D structure of

the scene. Here it has been proposed to give a convolutional neural network the ability to

deduce the local geometric structure of the 3D scene in an RGB image using guidance from

the corresponding depth map. However, the depth map is not available at the evaluation

time. Instead, a general light-weight adaptive geometric attention module that uses the

cross-correlation between the encoder and the decoder as a measure of this similarity has

been proposed [224]. More precisely, the cosine similarity between the local embedded

features in the encoder and the decoder at each spatial point is exploited.

The proposed module along with the encoder-decoder network is trained in an end-to-

end fashion and achieves superior and competitive performance in comparison with other

state-of-the-art methods [224]. In addition, adding the module to the base encoder-

decoder model adds only an additional 0.03% (or 0.0003) of the total parameters of the

network. Therefore, this module can be added to any base encoder-decoder network

without changing its structure to address any task at hand.

The idea has been explained using the example shown in Fig. 3.2 that compares an RGB

image and the corresponding depth map. The cabinet on the left and the table surface are

almost texture-less in the RGB image and have gradient only at geometric edge locations in

the depth map. On the other hand, the wall with the brick texture mainly shows a gradient-

less area in the depth map but a lot of gradient in the RGB image. Looking at the high-

pass filtered RGB image and the depth map suggests that most of the information needed

to extract a depth map from a scene is near the geometric edges, i.e., edges in the RGB

image which come from the geometric structure of the 3D scene. However, to extract the

geometric edges, one needs to first remove the edges in the RGB image which mainly come

from texture and color changes and replace the texture-less area of the RGB image with the

deduced geometric structure in the depth map.
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3.2 Related works

The ability of CNNs to work as a regressor has made them a good candidate for depth

estimation. However, compared to estimation of the exact depth of a single point, it is

easier to estimate its depth range [33, 76] and formulate the depth estimation as a pixel-

wise classification task instead.thework benefits from both methods.

3.2.1 Depth estimation with (geometric) constraints

Deep learning methods have been proven to be effective in depth map estimation. However,

they lack local details in 2D and they are often highly distorted when the maps are projected

into 3D. In this case, One can also improve depth estimation using some kind of (geometric)

constraint. While [123] tried to solve these issues by fusing multi-scale features, [347]

exploited the virtual normals of virtual surfaces to estimate the depth map in 3D scene

robustly. By the same token, [179] proposed a two-streamed CNN that predicts both depth

and depth gradients and then fusing the outputs together into a detailed depth map. Another

example of two-streamed CNN is GeoNet [245], which jointly predicts depth and surface

normal maps from a single image. Similar to [66, 347, 245] which exploit geometric

constraints, [168] assumed local planar for every local patch to guide depth prediction

more effectively.

Intuitively, neighboring pixels with similar appearances should have similar depth

estimation and major depth changes usually lie in the vertical direction in outdoor scenes.

This constraint was utilized in [80] for single image depth estimation.

3.2.2 Super-resolution depth map estimation

Another category of works which are closely related to this work are guided depth super-

resolution or GDSR. These category of algorithms reconstruct a high-resolution depth map

out of a low-resolution depth map using the corresponding high-resolution RGB image.

An example of this category of algorithms is [359]. The author suggests a discrete cosine
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transform network which does three tasks. First of all, the network rebuilds the multi-

channel high-resolution depth features to be used in solving the channel-wise optimization

from image domain. Second, this feature extraction is done using a semi-coupled feature

extraction module. Last, they creates an edge attention mechanism to emphasis the the

contours for up sampling in a guided fashion.

3.2.3 Depth estimation in relation to segmentation

Depth estimation and semantic segmentation symbiosis represents one of the closest

relationship in deep learning tasks. Some works have tried to exploit one to help improve

the performance of the other or both at the same time [180, 316, 98, 66, 133, 115, 156, 316].

However, the performance is not the only incentive for this symbiosis. For example,

[149] exploits semantic guidance to solve the dynamic object problem in monocular depth

estimation.

Improving depth estimation using semantic segmentation can be interpreted as attend-

ing to the objects and their borders instead of all pixels just like in [312, 133]. While

pixel-wise visual attention maps have shown their effectiveness [145, 312] suggested an

object-level attention model for autonomous driving.

3.2.4 Depth estimation based on attention and transformers

Attention mechanisms have been used in depth estimation works previously. Most of the

works are based on [322, 136] which in turn borrowed the idea from natural language

processing (NLP) [302]. The suggested dot products and matrix multiplications usually

try to find correlation between different spatial parts of tensor features [283, 136, 302,

346, 44]. The problem with these operations is they are computationally expensive where

optimization is made more difficult due to lots of multiplication operations involved.

Similar to [190, 335, 33], the authors in [336] employed a continuous CRF to fuse multi-

scale information derived from a CNN. Different from the past works, they imposed

structural constraints on an estimated attention map to estimate depth. Attention fusion was
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also used in [106]. In [2] the authors, inspired by neural machine translation, introduced

a CNN scheme which exploits forward and backward attention mechanisms. [136] used

a self-attention context module to explore the inference of similar disparity values at non-

contiguous regions of the image. Exactly the same mechanism was also adopted in [209].

Very similar to the above-mensioned works is [351]. They benefits from vision transformer

in the encoder and fully connected CRFs as decoder. The fully connected CRF is essentially

a graph model which is possible since they divide the whole spatial size into different

Windows to reduce the computational complexity.

While attention and geometric constraint are beneficial for depth estimation, com-

bination of both can be exploited to improve depth estimation [127, 314]. [100] tried

to use attention mechanism to improve monocular depth estimation as well. Different

fromthework, their spatial attention mechanism is separated from their global context

module while ours combines the two stages in one light-weight and local module with

different operations, i.e., sensitivity-enhanced geometric similarity in embedded Euclidean

space.

Attention can be easily exploited in loss function since the ground truth depth is

available when training the network. Having this in mind, [133] has tried to benefit from

an attention-driven Loss that adjusts the backpropagation flow accordingly.

3.3 Proposed method

The structure of my model and the optimization as well as an in-depth discussion about the

proposed module are discussed in this section. As discussed in Sec. 3.2, depth estimation

can be defined as a regression problem or a classification problem. The model along with

its cost functions are chosen from [347] as the base model which uses both classification

and regression at the same time. Then the proposed attention module is integrated into the

base model for performance improvement. The addition of the module imposes a minimal

change to the base model in the sense of computational cost and only adding few additional

parameters to the network model.
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Like any other regression and/or classification problems, there are two aspects of

the method which contribute to the quality of the estimation, namely, the model and its

structure, and the cost function and the optimization method. In the following, the both

aspects are elaborated.

3.3.1 Model

It is desired to guide the encoder to shape the RGB features using the depth map for

better depth estimation at each spatial point. However, at prediction time the depth map

is not available. Instead, the local cross-correlation of the embedded encoder and decoder

features are used as the local similarity measure at each spatial point. The eventual criteria

for this guidance is the sensitivity enhanced absolute value of the cosine similarity between

the local embedded features at every spatial point of the encoder and the decoder. By

enhancing the sensitivity, it has been tried to make any non-zero correlation between the

encoder and the decoder features at each spatial point more effective. The similarity

measure is absolute and normalized version of dot product (dot product is the conventional

attention technique) which means more constraints are imposed on the network to regulate

the solution space better.

The model and cost functions are adopted from [347] asthebase model. Then the

proposed adaptive geometric attention (AGA) module has been added into the base model

as well as adding an ℓ2 term to the cost function, as shown in Fig. 3.4. The overall structure

of the model is depicted in Fig. 3.3.

The model mainly consists of two parts, an encoder which extracts features from the

input RGB image at different spatial resolutions, and a decoder which reconstructs the

depth map from the features extracted by the encoder. In addition, the encoder and the

decoder are connected to each other using an Astrous Spatial Pyramid Pooling (ASPP)

module [40] to increase the receptive field of the entire model. All upsampling operations in

the model are based on the bilinear resizing method. The whole encoder-decoder structure

in the base model [347], itself had been borrowed from [181]. The decoder in [181, 347]
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comprises of several adaptive merging blocks (AMB) to fuse features from different levels

of the encoder and the decoder, and dilated residual blocks (DRB) modules to increase

the receptive field of the encoder and transform the encoder features. AMB blocks, in

[181, 347], merge the encoder’s features into the decoder’s features adaptively which can

be considered a channel-wise attention mechanism. The operations in the AMB are nothing

but concatenation of both the encoder and the decoder features, followed by the squeeze

and excitation operations using the squeeze and excitation networks (SE Networks) [122].

Instead of the AMB block, the improved AGA module as shown in Figs. 3.3 and 3.4

has been added into its most general form. The AGA block benefits from both spatial

and channel-wise attention integrated into one module. The first row of operations in

Fig. 3.4 is in fact from the AMB module. The novel part of the module is the spatial

attention operations which are mixed with the channel-wise operation in an additive and

multiplicative fashion. For the spatial attention, the module uses the local cross-correlation

of the encoder and the decoder features at each spatial points to shape the encoder features

spatially.

At first,theAGA module uses 1×1 convolutions as a bottleneck to go from hyper space

(feature space) to embedded Euclidean space for both the encoder and the decoder features.

Then the module uses cross-correlation of the embedded features from the encoder and

the decoder. More precisely, the module uses absolute value of cosine similarity of the

embedded features of the encoder and the decoder at each spatial point as a measure of

structural similarity between the depth map features and the RGB features. Since this

similarity measure is absolute and normalized, the module can put more constraints on the

solution space. As a result, it can shape the RGB features in a better way, both spatially

and channel-wise, using the decoder as the representation of the depth features for better

depth estimation. See Fig. 3.12 for visual effect of the spatial attention. The operations in

the second row and the third row of Fig. 3.4 which calculate the spatial attention (attention

maps SA1 and SA2) are equivalent to

SAi = |cossim (El,i, Eh,i)| , i = 1, 2 (3.1)
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where El,i and Eh,i denote the embedded features of low level features, i.e., Fl or the

encoder features, and high level features, i.e., Fh or the decoder features, respectively. The

operations in Fig. 3.4 are depicted in this way to facilitate the comprehension of their

extension to the non-local AGA module in Fig. 3.8 which will be discussed in Sec. 3.4.5.

Not only the channel-wise attention and the spatial attention are different in the above-

mentioned implementation details, but also the purposes of the two are different. The

channel-wise attention provides the encoder feature with one scalar multiplicative weight

for the entire of each single channel of size H×W . So for the entire encoder’sH×W ×C

feature it provides a vector of size 1×C. The vector is scaled before added to the decoder’s

feature. Spatial attention, instead, is an H ×W attention map that each feature vector at

each spatial point of the encoder feature will be multiplied by the corresponding spatial

value of the attention map. See Fig. 3.5. The AGA module uses the sensitivity-enhanced

absolute value of the above-mentioned cosine similarity. The absolute value enforces the

correlation between two feature vectors at each spatial point of the encoder and the decoder

features independent of the direction. That is, it compares the presence of any spatial cross-

correlation between the depth map features and the RGB features. If there is a correlation

between the depth map features and the RGB features, then they carry information about

each other regardless of the sign of the correlation. The AGA module in the most general

form has been depicted in Fig. 3.4. To go from hyperspace, C, to the embedded space, C0,

at each spatial point, a 1× 1 convolution with bottle-necking C0 < C has been utilized. In

this way, the model is able to avoid permutations of the information in different channels

since the 2D convolution operation is fully connected in channel direction of the input and

summation is permutation indifferent. This bottleneck will give us the structure of the

features in that spatial point in the embedded space. This operation is local. Being local

and bottle-necked, it is light. The output of this operation is an H ×W spatial attention

map. As shown in Fig. 3.4, the AGA module’s output is an H ×W × C tensor of features

Fout = [f1(SA1) + f2(SA2)× CA]× Fl + Fh. (3.2)
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where S, C and A stand for spatial, channel-wise and attention, respectively. Fl and

Fh are low-level and high-level features from the encoder and the previous stage of the

decoder, respectively. The first spatial attention map, SA1, is additive while the second

one, SA2, is multiplied by the channel-wise attention weights. Element-wise summation

and multiplication of tensors of sizes H × W × 1 and 1 × 1 × C and H × W × C are

possible since these operations broadcast the operand tensors. f1(·) and f2(·) are introduced

to enhance the sensitivity to any non-zero correlation between the high-level features and

low-level features in each spatial point. They are chosen either of

• f(SA) = SA

• f(SA) = SA exp (SA)

The first one means spatial attention without enhancing sensitivity. The second one means

spatial attention with enhanced sensitivity. See Fig. 3.6 for comparison between them. It

was experienced that enhancing the sensitivity around 1 helps. One explanation is that the

gradients in a normalized output are suppressed. To completely turn off the sensitivity to the

additive spatial attention and multiplicative spatial attention, f1(SA) = 0 and f2(SA) = 1

are utilized. Our AGA module merges the attended low-level features from each level of

the encoder to the corresponding decoder’s high-level features. The AGA module will learn

the merging parameters, during optimization, to merge the information for all elements of

the H ×W × C encoder tensors weights, i.e., [f1(SA1) + f2(SA2)× CA].

3.3.2 Loss functions

A 3-term cost function is utilized. The virtual normal loss and the weighted cross-entropy

loss were already used in the base model [347]. A third term ℓ2 has been added, based on

the L2 norm of the error. Virtual Normal Loss (VNL). The surface normal is an important

local feature for 3D reconstruction and depth estimation. However, calculating surface

normals in a small area is prone to noise. To remove the effect of noise, [347] suggests to

calculate the normals of virtual surfaces built by triangles which their constructing points
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have been chosen far from each other in 3D scene at random. If ni
pred and ni

gt are the

predicted normal and ground truth normal at the point i respectively, then the computed

Virtual Normal loss is:

ℓV N =
1

N

(
N∑
i=1

∥∥ni
pred − ni

gt

∥∥
1

)
(3.3)

where N is total number of valid sampled triangles. See [347] for details. Similar results

can be achieved if one uses the virtual slope in 3D scene instead of virtual normals. See

ablation study in [347]. ℓV N helps with relative pixel-wise depth values of the predicted

depth map and its structure in regression fashion.

Pixel-wise Absolute Depth Supervision. In addition to VNL, there are two terms which

enforce pixel-wise absolute depth supervision. Similar to [76, 347], quantized real-valued

depth is utilized. So the depth prediction has been formulated as a classification problem

instead of regression by employing the cross entropy loss. More precisely, the weighted

cross-entropy loss (WCEL) from [33, 347] borrowed, with the weight being the information

gain. See [33] for details. Combination of these two above-mentioned terms were already

utilized in the based model [347]. In addition to these two terms, the L2 norm of the

difference between the ground truth and the predicted depth map is used, to decrease the

root mean square error (RMSE) of the predicted depth map. The WCEL and the VNL and

L2 are combined together to gain an overall supervision in the training phase. So the total

loss is

ℓ = ℓWCEL + λℓV N + γℓ2 (3.4)

where the weights λ and γ define the contribution of each term. λ has been set to 6 and

γ has been set to 25 based on extensive empirical studies. The overall training pipeline is

illustrated in Fig. 3.7.

3.4 Experiments and results

The experiments are performed on the NYUDV2 dataset [225] and the KITTI dataset [86]

to evaluate the performance of the proposed algorithm in comparison with state-of-the-art
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methods. The ablation studies are also performed to better understand the contribution of

the different settings of the attention module.

3.4.1 Datasets

NYUDV2. The NYUDV2 dataset consists of 464 different indoor scenes, which are

divided into 249 scenes for training and 215 for testing. Similar to [76], the training

scenes are used after synchronization using the tool provided by [225] to train the model

for the main results and ablation study on NYUDV2. This dataset is referred to as the large

NYUDV2. Moreover, a subset of the Raw NYUDV2 dataset has been used which is split

to 249/215 train/test split scenes for the ablation study. This dataset is referred to by the

small NYUDV2.

KITTI. The KITTI dataset contains over 93K outdoor images and depth maps with an

approximate resolution of 1240×374. All images are captured on driving cars by stereo

cameras and a Lidar. The test is done on 697 images from 29 scenes split by Eigen et al.

[67]. All the images from the scenes in which one of them is in the test scenes are removed

and the remaining RGB images and the corresponding ground truth are used in training the

model.

3.4.2 Implementation details

Similar to [347], the ResNeXt-101(32 × 4d) [334] encoder pre-trained on ImageNet [58] is

used as the encoder in the model. The base model is exactly as described in [347] but all

the AMB modules are replaced with the AGA modules. See Fig. 3.3. In the main results

(Sec. 3.4.4), the AGA module as described in Sec. 3.3.1 with the additional ℓ2 loss term are

used. All 1× 1 bottle-necks in the AGA modules are 1
16

times of their input channel size.

In all of the experiments the base learning rate is 0.003 used along with a learning rate

scheduling going from 1 to 0 linearly for all training procedures on the large NYUDV2

and KITTI and the same learning rate scheduling with power 0.9, is chosen on the small

NYUDV2. Stochastic gradient descent is applied as the optimization method with a batch
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size of 16 on the large NYUDV2 and the KITTII and a batch size of 8 on the small

NYUDV2. The weight decay and momentum are set to 0.0005 and 0.9 respectively. The

model is trained for 99300 iterations on large NYUDV2 and KITTI and 5000 iterations on

small NYUDV2.

The data augmentation are conducted on the training samples using the following

methods. On small and large NYUDV2 the RGB image and the corresponding depth

map are randomly resized with ratio [1, 0.92, 0.86, 0.8, 0.75, 0.7, 0.67], randomly flipped

horizontally, and finally randomly cropped to 384 × 384. A similar process is applied for

KITTI but resizing with the ratio [1, 1.1, 1.2, 1.3, 1.4, 1.5] and cropping with 384 × 512.

Note that the depth map should be scaled to the corresponding resizing ratio [67].

It is worth mentioning that the overall model is similar to what has been used in [347]

except the AGA module in magenta in Fig. 3.3. The base model in [347] has exactly

90436054 parameters and only 28672 parameters are added, as a result of adding the AGA

module to it, which is around 0.03% (or 0.0003) of the total parameters of the base model.

In addition, all added operations are light since they are local.

3.4.3 Evaluation metrics

Similar to [162] the performance of the depth predictions are evaluated quantitatively based

on mean absolute relative error (AbsRel), mean log 10 error (log10 ), root mean squared

error (RMS), root mean squared log of error (RMSlog) and the accuracy under threshold

(σi < 1.25i , i = 1, 2, 3). See section 1.5 for detailed formula of each measure.

3.4.4 Comparison with state-of-the-art

A comparison of the results with state-of-the-art methods is shown in table 3.2 for large

NYUDV2 and in Table 3.3 for the KITTI dataset. As shown in Table 3.2, the suggested

method achieves best or comparable results in all the measures except one among all state-

of-the-art methods. Examples of the trained model’s outputs, largest attention map, ground

truth depth map and RGB images are depicted in Fig. 3.12. The attention map shows
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stronger response around geometric boundary of the 3D scene as expected by the method.

This attention is the strongest at the occlusion boundaries which is an important subset

of geometric boundaries. The clear separation of the objects with emphasized geometric

boundaries around them suggests that the AGA module is performing as expected by

reducing the effect of texture edges and focusing on geometric ones.

The performance on the KITTI datset in comparison with state-of-the-art shows that the

methodology is effective on KITTI dataset as well. As it is shown in Table 3.3 the

model outperforms the base model [347] in all measures and shows comparable results

in comparison with the state-of-the-art in all other measures.

3.4.5 Ablation study

In this section, two sets of experiments are conducted.

Effectiveness of the proposed AGA module over the base model [347] and added ℓ2

loss term

The effect of different internal settings for the suggested general AGA module depicted in

Fig. 3.4 as well as the added ℓ2 term in the total cost function are examined here. The

settings which are referred to by first column of Table 3.4 in this section are the settings for

general coefficients of low-level features, i.e., [f1(SA1) + f2(SA2)× CA], in Eq. (3.2).

The first row in Table 3.4 is the base model[347] with its cost functions, i.e., VNL and

WCEL. Other than the base model and its cost functions in [347] ℓ2 has been added to the

total cost functions. So the different settings with and without ℓ2 to study the effect of the

term are provided here. As Table 3.4 suggests, the structure with first spatial attention with

sensitivity enhanced added to the channel attention works the best for the NYUDV2 dataset.

However, it is possible that on other data distributions setting S5 might be an option because

it was noticed that setting S5 has less spikes during training in the experiments which is a

desirable trait. The root mean square measure (rms) in Table 3.4 is lower for the settings
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with the added term ℓ2 in the total cost function, i.e., S7 (lowest) and S4 (second lowest).

This shows the effectiveness of ℓ2 term in the total cost function. Note that S6 and S7 are

the same in their AGA setting but the later has the added ℓ2 term in the total cost function.

Effectiveness of the proposed methodology over the conventional attention

Second, the novelty of the AGA module’s implementation is shown, (i.e. sensitivity

enhanced absolute value of cosine similarity of the features in embedded space) as a

measure of similarity between the encoder’s and the decoder’s features at each spatial point

in comparison with the traditional attention mechanisms. The second set of experiments

aims at showing the effectiveness of the above-mentioned cross-correlation measure

between the low-level features (the encoder features) as representation of the RGB image

and the high-level features (the decoder features) as the representation of the depth map

by comparing it to the conventional attention techniques, i.e., dot product and matrix

multiplication (non-local operations). Three settings, DS7, NS7 and S7 are compared

here. The S7 setting has been described in Table 3.4 which is the same for Tables 3.2

and 3.3 as well. The DS7 setting is the same as S7 but using dot product as coefficients

for spatial attention mechanism instead of formula (3.1) and (3.2). NS7 is the extension

of S7 to non-local operations. It compares each spatial points with all points in all other

spatial points. The details of implementation of non-local AGA module has been depicted

in Fig. 3.8. It is important to note that all three models have exactly the same number

of parameters. The only difference is whether the formula (3.1) and (3.2) are used or the

attention is local or non-local.

As Table 3.5 suggests, the local AGA module works the best in comparison with the

conventional attention mechanisms. The reason that non-local AGA is showing inferior

performance in comparison with the suggested (local) AGA module is the introduction

of lots of multiplication in forward pass in non-local AGA module in comparison with

the local counterparts in the overall model. Those multiplications create complications in

gradients, as a result the optimization process become less efficient. In addition, absolute
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value of cosine similarity is normalized and sign indifferent and measures similarity as far

as there is a cross-correlation between the two source of information while dot product

does not consider these two. In other words, the absolute value of cosine similarity is

absolute and normalized version of dot product which means imposing more constraint on

the network to regulate the solution space better. Also the sensitivity is enhanced at any

non-zero correlation. The matrix multiplication create the non-local version of operations

which are computationally costly and not much effective as well.

3.5 Discussion and conclusion

The main idea of [224] was taking advantage of the similarity of the RGB image and the

depth map in the area of the 3D scene close to geometric edges. In other words, it is desired

to guide the encoder to shape better RGB features using the depth map for better depth

estimation at each spatial point. The eventual criteria for this guidance is the sensitivity

enhanced absolute value of cosine similarity between the local embedded features at every

spatial point of the encoder and the decoder. It is allowed to be done since the features

in the decoder are close to the end of the model and closer to the cost function in training

phase.

The benefits of using absolute value of local cosine similarity in embedded space

in comparison with the conventional attention techniques, i.e., dot product, is that it is

absolute and normalized so it puts stronger constraints on the network to regulate solution

space better. It is also local so it does not create difficulty in optimization with matrix

multiplications in non-local versions. It is important to note that for designing the suggested

AGA module which uses the guidance of the depth map features to shape the RGB features,

one might be able to assign more time and hardware resources to find more effective

complex operations instead of f1(SA1) + f2(SA2) × CA in Fig. 3.4 and (3.2). However,

fine tuning the structure and parameters of such a module would be difficult. Hence, it

was decided to use the divide-and-conquer strategy, where the guidance is divided into
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additive and multiplicative spatial attention weights, f1(SA1) and f2(SA2), and channel-

wise attention weights CA.

At the end it is worse mentioning that this research was subsection of a larger research

which was aiming at autonomous navigation of indoor flying robots. For navigation,

absolute relative error is the most important measure along with accuracy of prediction

σi, i = 1, 2, 3.

There are some other directions that has been explored.

3.5.1 Using principal component analysis (PCA)

Principal component analysis is a strong tool for model reduction. As a result the following

steps were tried:

• reshape depth images to vectors

• calculate the eigen values and eigen vectors of the depth images in NYUDv2 datset.

• keep the most important eigen vectors

• extract the coefficient of those eigen vectors from corresponding RGB images using

deep-learning.

• filter the outputs using deep learning at the output size

The best AbsRel error was around 12%. Comparing the results in Tab 3.2, which was

around 9.7%, with the result of this methods shows the idea is not working. The reason is

that the dataset is not large enough to train the network in this way.

3.5.2 Utilization of spatial regularization effect in dense depth estima-

tion

In traditional automatic feature extraction methods in CNNs, one usually reduces spacial

size by factor of 2 and increase the number of feature layers by factor of 2 which will result
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in reduction of total features by factor of 2 (1
2
× 1

2
× 2 = 1

2
). This practice is done in

classification algorithms mainly where one feature vector is extracted for the entire image

to describe the whole scene. However, this would push most weights to be in smaller

spacial sizes which in turn results in less generalization power for dense feature extraction

tasks like depth estimation.

On the other hand, in dense feature extraction for depth estimation, it is necessary to achieve

non-local perception of the scene at each spatial point. The convolutions’ main benefit is

sharing the weights between different spatial points in the feature tensor to achieve better

generalization power. While fully connected layers are too flexible and that is the reason

why they generalize poorly in comparison whith CNNs. So the question becomes why one

does not use more spatial size for better generalization. In the following, we describe some

preliminary works we conducted along this direction. The section 3.5.2 talks about this

research idea. This idea is applicable in all tasks which a dense feature extraction, like

depth estimation, is involved. Extending DRB to build an encoder-decoder structure

Let’s take a look at the internal structure of the DRB block in Fig. 3.3. See Fig. 3.9.

The structure of the DRB block has been extended to Fig. 3.10 to be used in an encoder-

decoder structure depicted in Fig. 3.11. The AGA modules have been adapted to this

new structure so that it can get attention from unequal features in channel direction. Cost-

functions have been borrowed from [224]. The results of training this network on KITTI

dataset is available in Table 3.1. It is worth mentioning that the network has been trained

just on NYUDv2 while model in [224] was trained on ImageNet first and the NYUDv2.

So it is not fair to the algorithm in this section to be compared with the algorithm in [224].

The extra ImageNet help the model to learn more robust features at least in their encoder.

In addition, using some methods like ResNet and ResNext one can reduce the number

of parameters that will help with generalization. The last point is that doing a pruning

algorithm makes sense as the network has lots of parameters.
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Figure 3.1: Comon practice for available attention mechanisms and transformers which are
based on attention mechanisms which is a space-time non-local block [322]. The feature
maps are shown as the shape of their tensors, e.g., T ×H ×W × 1024 for 1024 channels
(proper reshaping is performed when noted). ”

⊗
” denotes matrix multiplication, and ”

⊕
”

denotes element-wise sum. The softmax operation is performed on each row. The blue
boxes denote 1 × 1 × 1 convolutions. This figure shows the embedded Gaussian version,
with a bottleneck of 512 channels. The vanilla Gaussian version can be done by removing
θ and ϕ , and the dot-product version can be done by replacing softmax with scaling by
1/N . The figure is from [322].
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Figure 3.2: Comparison of edges and gradients in an RGB image and the corresponding
depth map. Top-left: RGB image. Top-right: the corresponding depth map of the RGB
image. Bottom-left: Laplacian of the RGB image. Bottom-right: Laplacian of the depth
map. Figure from [224].
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Figure 3.3: An overall structure of the model. Figure from [224].

Table 3.1: Results on KITTI dataset as compared with state-of-the-art methods. The
best result in each column (measure) is depicted in bold text. The second best is
underlined.the new model (EDRB) based on Extended DRB and modified AGA module
shows comparable performance with other state state-of-the-art methods. See section 1.5
for detailed formula of each measure.

Method
Err(lower is better) Acc(higher is better)

AbsRel RMSE RMSElog σ1 σ2 σ3

Su [283] 0.117 4.251 0.174 0.894 0.971 0.984
Fang [70] 0.098 4.075 0.174 0.889 0.963 0.985

Wang [314] 0.096 4.327 0.171 0.893 0.963 0.983
EDRB 0.073 3.327 0.117 0.940 0.990 0.998
Fu [76] 0.072 2.727 0.120 0.932 0.984 0.994

Liu [197] 0.070 2.912 0.121 0.942 0.986 0.992
Lee [168] 0.059 2.756 0.096 0.956 0.993 0.998

base [347] 0.072 3.258 0.117 0.938 0.990 0.998
ours 0.070 3.223 0.113 0.944 0.991 0.998
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Figure 3.4: The internal structure of AGA module in its most general settings. S, C and
A stand for spatial, channel-wise and attention, respectively. Fl and Fh are low-level and
high-level features from the encoder and the previous stage of the decoder, respectively.
The attention maps SA1 and SA2 are discussed in Sec. 3.3.1 and are equivalent to (3.1).
Figure from [224].
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Figure 3.5: Illustration of the differences between the spatial attention and the channel-
wise attention discussed in Sec. 3.3.1. Figure from [224].

Figure 3.6: Comparing x exp (x), in red color, and x, in blue color. Figure from [224].
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Figure 3.7: The overall training pipeline. Total loss consists of three terms ℓWCEL, ℓV N

and ℓ2. ℓWCEL and ℓ2 compare the absolute predicted depth map, Dpred, and the ground
truth depth map, Dgt. ℓV N compares the virtual normals using the predicted point cloud,
Ppred, and the ground truth point cloud Pgt. γ and λ are scaling constants tuned to give an
appropriate effect to each term in the total cost function. ℓWCEL, ℓV N are from the base
model [347]. Figure from [224].
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Figure 3.9: Internal structure of the DRB block in [224]
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Figure 3.11: Suggested encoder-decoder structure based on Extended-DRB and AGA
modules. The AGA modules has been adapted to this new structure so that it can get
attention from inequal features in channel direction. Upsampling has been done using
bilinear upsampling just like [224].
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Table 3.2: Results on large NYUDV2 as compared to other state-of-the-art methods. The
best result in each column (measure) is depicted in bold text. The second best is underlined.
Table from [224]. See section 1.5 for detailed formula of each measure.

Method
Err(lower is better) Acc(higher is better)

AbsRel log10 RMS σ1 σ2 σ3

Ladicky [161] - - - 0.542 0.829 0.941
Liu [196] 0.327 0.126 1.08 - - -

Zhuo [362] 0.305 0.122 1.04 0.525 0.838 0.962
Liu [190] 0.230 0.095 0.824 0.614 0.883 0.971
Li [176] 0.223 0.091 0.759 0.640 0.900 0.974

Wang [319] 0.220 0.094 0.745 0.605 0.890 0.970
Eigen [67] 0.215 - 0.907 0.611 0.887 0.971
Eigen [66] 0.158 - 0.641 0.769 0.950 0.988

Chakrab [36] 0.149 - 0.620 0.806 0.958 0.987
Li [179] 0.143 0.063 0.635 0.788 0.958 0.991
Su [283] 0.137 0.058 0.498 0.826 0.967 0.995
Qi [245] 0.128 0.057 0.569 0.834 0.960 0.990

Wang[316] 0.128 - 0.497 0.845 0.966 0.990
Wang [317] 0.128 - 0.493 0.844 0.964 0.991
Laina [162] 0.127 0.055 0.573 0.811 0.953 0.988

Xu [335] 0.121 0.052 0.586 0.811 0.954 0.987
Lee [167] 0.119 0.050 0.430 0.870 0.974 0.993

Wang [314] 0.115 0.049 0.519 0.871 0.975 0.993
Fu [76] 0.115 0.051 0.509 0.828 0.965 0.992

Hu [123] 0.115 0.050 0.530 0.866 0.975 0.993
Liu [197] 0.113 0.049 0.523 0.872 0.975 0.993
Lee [168] 0.110 0.047 0.392 0.885 0.978 0.994

Huynh [127] 0.108 - 0.412 0.882 0.980 0.996
Fang [70] 0.101 - 0.412 0.868 0.958 0.986

Yang [344] 0.106 0.045 0.365 0.900 0.983 0.996
base [347] 0.108 0.048 0.416 0.875 0.976 0.994

ours 0.097 0.042 0.444 0.897 0.982 0.996
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Table 3.3: Results on KITTI dataset as compared with state-of-the-art methods. The best
result in each column (measure) is depicted in bold text. The second best is underlined.
the model consistently beats the base model [347] in all measures and shows comparable
performance with other state state-of-the-art methods. Table from [224]. See section 1.5
for detailed formula of each measure.

Method
Err(lower is better) Acc(higher is better)

AbsRel RMS RMSlog σ1 σ2 σ3

Su [283] 0.117 4.251 0.174 0.894 0.971 0.984
Fang [70] 0.098 4.075 0.174 0.889 0.963 0.985

Wang [314] 0.096 4.327 0.171 0.893 0.963 0.983
Fu [76] 0.072 2.727 0.120 0.932 0.984 0.994

Liu [197] 0.070 2.912 0.121 0.942 0.986 0.992
Lee [168] 0.059 2.756 0.096 0.956 0.993 0.998

base [347] 0.072 3.258 0.117 0.938 0.990 0.998
ours 0.070 3.223 0.113 0.944 0.991 0.998
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Figure 3.12: Qualitative results. From left to right: RGB image, attention map, predicted
depth map, ground truth depth map. As the attention map depicts, the attention is higher at
the geometric boundary of the 3D scene. This attention is strongest at occlusion boundaries
which is an important subset of geometric boundaries.
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Table 3.4: Ablation study for different settings in the suggested general AGA module
in Fig. 3.4 compared to the base model [347]. The settings which are referred to by
first column of this table are the settings for general coefficients of low-level features,
i.e. [f1(SA1) + f2(SA2)× CA], in Eq. (3.2). The results are the last iteration of each
experiment which are filtered using a moving average with length 15. In this table the
first row represents CA is the base model [347]. S2 = SA2 × CA. S3 = SA2. S4 =
SA2×CA as well as added ℓ2 in total cost-function. S5 = SA1×exp(SA1)+SA2×CA.
S6 = SA1 × exp(SA1) + CA. S7 = SA1 × exp(SA1) + CA as well as added ℓ2 in total
cost-function. S, C and A stand for spatial, channel-wise and attention respectively. All
settings have been trained with ℓ = ℓWCEL + λℓV N , but the ones with added ℓ2 trained
using ℓ = ℓWCEL+λℓV N +γℓ2. The best value in each column is bold type and the second
best is underlined. See section 1.5 for detailed formula of each measure. Table from [224].

Set.
Error (lower is better) Acc (higher is better)

AbsRel log10 RMS σ1 σ2 σ3

[347] 0.1408 0.0590 0.5951 0.8217 0.9635 0.9907
S2 0.1385 0.0581 0.5856 0.8269 0.9644 0.9915
S3 0.1388 0.0586 0.5980 0.8232 0.9641 0.9912
S4 0.1381 0.0578 0.5702 0.8277 0.9643 0.9919
S5 0.1361 0.0577 0.5832 0.8283 0.9658 0.9916
S6 0.1345 0.0574 0.5904 0.8302 0.9670 0.9921
S7 0.1364 0.0568 0.5567 0.8319 0.9671 0.9929

Table 3.5: Comparison between the AGA module and the conventional attention
techniques, dot product and costly matrix multiplication. The S7 is just like the setting
of main results of table 3.2, 3.3 and table 3.5. In this table the first row, DS7, is the same
setting in S7 but using dot product as spactial attention mechanism instead of the similarity
measure. NS7 is extension of S7 to non-local operation and compare each local feature
vector with all other points in other spatial points. Table from [224]. See section 1.5 for
detailed formula of each measure.

Set.
Error (lower is better) Acc (higher is better)

AbsRel log10 RMS σ1 σ2 σ3

DS7 0.102 0.045 0.452 0.881 0.974 0.994
NS7 0.101 0.045 0.450 0.882 0.976 0.994

S7 0.097 0.042 0.444 0.897 0.982 0.996
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Chapter 4

MDE in Dynamic Scene, Literature

Survey

Although results in SfM and visual SLAM are impressive, most algorithms assume the

scene is static. However, the real world scene consists of dynamic objects. This discrepancy

results in erroneous estimations [284]. So it is necessary to do estimation of both mapping

and localization in a robust way. There are lots of applications for such a scheme like

robot navigation [217], [24], autonomous driving systems in automobiles [213], [274], or

emergency response missions [49], [249]. Not only reconstruction of the scene but also

to some extend capability of the algorithm in detection, the shape of the dynamic objects

and tracking them accurately play an important role in autonomous cars and navigation of

robots.

With this aim in mind, [311] and [310] utilized a Bayesian approach on the outputs of

tracking which are themselves outputs of a laser scanner. They aim at tracking moving

objects and the system is called simultaneous localization, mapping, and moving object

tracking or SLMMOT. Multibody structure from motion algorithm or MBSfM is the natural

generalization of the SfM algorithm to rigid multi-motion models was studied in the

computer vision community [25], [52]. Since mobile and wearable devices are available
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everywhere, the MBSfM in dynamic scene is beneficial in many downstream applications,

such as human-robot interaction [95], obstacle avoidance [120], people-following drones

[260], cooperative robotics [88], path planning [38], collaborative mapping [364], driver-

less cars [213], augmented reality such as cell phones [148], devices which are wearable

[35], and assistance for visually impaired individuals in navigation [7], [261].

4.1 Classification of existing approaches

Depth estimation, 3D reconstruction, SLAM and SfM in dynamic scene can be addressed

in two different ways. It can be solved as a robustness problem or it can be explicitly

modeled which would be an extended version of the standard multi-view geometry model.

The first methodology is completely possible under the condition that there are not many

moving objects in the scene or the scene is not congested or there is not a large moving

object in front of camera. Other than that the robust solution might fail. These robust

algorithms are possible if one is able to segment the scene into static as foreground and

dynamic objects as background and then ignore the back ground or the dynamic objects.

However, the structure of the scene at the moving objects would not be accurate even if the

localization is robust.

The extension to the static scene multi-view geometry method should segment the scene

into different clusters and associate them with different objects in the scene. Then, objects

can be reconstructed and their path can be tracked. However, combining all different

motion models is a challenge due to the inherent scale ambiguity in MDE problem.

Existing methods can be categorized into

A. Casting the problem as purely a robustness problem and ignore the dynamic behavior.

B. Casting the problem as a segmentation of the objects in the scene based on their

dynamics (their rotation and their translation) and then Tracking them in 3D

C. Casting the problem as simultaneous motion segmentation and reconstruction
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See Fig. 4.1 for general structure of Visual Slam/SfM in dynamic environment.

4.2 Robust MDE

This category of algorithms comprise of two parts. First, motion segmentation, second,

ego-motion estimation and 3D mapping. The first part divides the scene into the dynamic

segments (the background in this case) and the static segment (which is the foreground in

this case). Then it utilizes just the static segments for the estimation of the scene. The

results of this sub algorithm can be used in algorithms in module B for further processing.

See Fig. 4.2.

4.2.1 Motion segmentation

Motion segmentation [59], [146] and [159] is an algorithm that distinguishes dynamic parts

of the scene. Standard SLAM/SfM does that by utilizing robust statistical methods like

Random Sample Consensus (RANSAC) [72]. The algorithm does not consider the points

in the scene which results in high error in geometric model. [112] utilizes the Sampson

distance to find the points to exclude.

However, this approach is possible if the scene is not congested by dynamic objects or

there is no big moving object in front of the camera. In this case other methods should be

utilized. For example external sensors like IMUs can fix the issue [137], [174]. It is done

since fusing the IMU signal is lead to improve the localization as well as the segmentation

of the scene in accuracy.

Methods which initialize the scene into the foreground and the background

These methods benefits from some knowledge about the scene to segment the scene into

the dynamic sections and the static section.
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Most algorithms in foreground initialization exploit a technique which is called tracking

by detection [27], [169]. Somkiat Wangsiripitak and David Murray [324] use a polyhedral

model which its edge points are tracked utilizing Harris’s RaPid tracker [108]. Another

similar approach was done in [323]. Chhaya et al. [46] models the cars which are against

the camera making use of an object class model which is flexible. Then their model is

trained utilizing the Principal Component Analysis (PCA). They segment the scene using

the trained model.

Background initialization can be found in background subtraction techniques [16], [237].

Geometric constraints

These methods utilize geometric constraints, i.e. epipolar geometry,[110] to divide the

scene into the static and the dynamic segments. These algorithms are possible because

the points which belongs to dynamic objects do not conform to the multi-view epipolar

geometry. See Figure 4.3.

However, these methods fail when there is a degeneracy in the dynamic points i.e. when

they moves along the epipolar line in the 3D scene. Kundu et al. [159] address this issue

by constraining the error using Flow Vector Bound (FVB) and then detect the static scene

using a recursive Bayes filter.

Static-dynamic segmentation can be done using PnP as well. Migliore et al. [215] does

that utilizing triangulation. They consider the intersections using a probabilistic filtering

algorithm i.e. Uncertain Projective Geometry [117].

In addition, reconstruction of the RGB images from consecutive frames itself can be

exploited as a geometric measure to classify the points into static or dynamic as well as

detecting occlusion [364], [284].
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Optical flow

Optical flow defines the way the points which belongs to the objects, the surfaces, and the

edges in a scene move. This is caused by the motion between the observer relative to the

scene [28]. It can also be defined as the distribution of apparent velocities of movement of

brightness pattern between two consecutive frames [119]. Generally speaking, these flow

express the motion of the objects in a scene. As a result, it can be exploited for motion

segmentation task.

Klappstein [146] design a metric computed using the optical flow. Then a moving object

likelihood designed based on the metric. The designed metric expresses how much the

optical flow is failed to comply with. Then, the segmentation of the moving objects is done

utilizing the graph-cut algorithm on the motion metric.

Alcantarilla et al. [7] exploit the scene flow to segment the scene. This is done utilizing the

residual motion likelihoods to discriminate the static from the dynamic part of the scene.

Derome et al. [59], [60] first estimate a construction residual using a stereo camera in time.

Then the motion segmentation is done by finding anomaly in the residual field.

Kopf et al. [153] present an algorithm to predict the depth maps in a consistent and dense

fashion and ego-motion from a monocular video. They integrate a learning-based depth

prior, in the form of a CNN trained to predict the depth map in a single-image manner,

with geometric optimization, to estimate a smooth camera trajectory as well as detailed

and stable depth reconstruction. The algorithm combines two complementary techniques:

(1) flexible deformation-splines for low-frequency large-scale alignment and (2) geometry-

aware depth filtering for high-frequency alignment of fine depth details.

Constraining ego-motion

The visual SLAM and SfM algorithms estimate the ego-motion using the 5-point method

[226] or the 8-point [199] method. The aforementioned algorithms do not have any
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assumptions on the type of motion. However, sometimes there exist some physical

limitations based on the mechanical setting of the camera motion. Parameterization of

the camera motion based on these constraints makes the overall estimation more precise

[265, 264, 258].

Deep learning for motion segmentation

Deep Neural Networks became popular in computer vision after their success in the

ImageNet object recognition competition [154]. They offer an automatic learning method

to represent features automatically. The reason behind their success id that they can gain

high-level understanding of the scene by learning high-level features from low level; feature

automatically [102], [166]. The DNNs have significantly revolutionized many research

areas [105].

It has been well-known that the motion segmentation is achievable using optical flow even

if one uses feature-based methods. Dosovitskiy et al. [65] proposed supervised optical flow

learning based on CNNs (FlowNetS, FlowNetC). Later on the model was made better by

combining the two previous architecture [129] (FlowNet 2.0).

One of the best works in the area of optical flow estimation is RAFT [285]. RAFT exploits

both DNNs and RNNs. It has 3 components: First an encoder that extracts dense features

from the two RGB images and a context encoder that extracts dense features from only first

RGB image. Second a layer which calculates the correlations between the two extracted

dense features from RGB images 1 and 2 and outputs a 4D W ×H ×W ×H correlation

volume. The correlation volume calculates the inner product of every two pairs of the

feature. Then using a RNN to fine-tune the optical flow values of the context encoder in

a recurrent fashion by using the 4D correlation volume. See Fig. 4.4. Mayer et al. [210]

extend the optical flow to scene flow using stereo pairs. This scene flow can be further

processed using DNNs to extract the motion features [90]. These features are useful in

other tasks like action recognition [89], [276]. It is not clear whether the algorithm is

efficient in motion segmentation though.
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A network is built by Lin and Wang [188] to partition dynamic objects in a photo space

explicitly. To learn spatio-temporal characteristics, they utilize an algorithm which is called

reconstruction independent component analysis autoencoders [163], [164]. However, since

the spatio-temporal features are unable to understand the 3D geometry of the moving parts

of the scene, the features which are geometric are also utilized to cluster the moving objects

in the image space. For the purpose of final motion segmentation, recursive neural networks

(RNNs) are fed with geometrical and spatiotemporal data.

Recent research by Valipour et al. [300] suggests using the recurrent fully convolutional

network, which is abbreviated as RFCN, to segregate the foreground, i.e. the moving

objhects in the image space, in the sequences of frames while incorporating temporal data.

A gated recurrent unit is utilized to model temporal information ahead of the deconvolution

layers. To learn spatial features, a fully convolutional network [198] is used which provides

the dense estimation.

Fragkiadaki et al. [75] segment dynamic parts of the scene utilizing a ”objectness score”

given the optical flow and the color image, which is a distinct method. To preprocess the

optical flow and the color images and for creating the motion proposal, two parallel CNNs

that are identical to AlexNet [154] are built.

4.2.2 Localization and three-dimensional reconstruction

The predictions of the ego-motion and the three-dimensional geometric structure of the

scene from several frames are referred to as localization and 3D reconstruction. This is

accomplished by utilizing features which are matched in conventional visual SLAM. Let

p be the total number of points, and assume {x1j, x2j}pj=1 ∈ P2 are the features which

are matched between the two consecutive frames 1 and 2. By applying epipolar geometry

[110] to the feature correspondences, visual SLAM calculates the camera position, which
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includes a 3D vector t ∈ R3, which indicates the three dimensional relocation, and R ∈

SO(3), which indicates a rotation matrix in 3D, as well as the point cloud in 3D {Xj}pj=1 ∈

P3. In robust visual SLAM, only static features are used to compute the R, t and the 3D

point cloud. The computation is done without using any dynamic features because they

are all considered outliers. Instead of constructing feature correspondences, deep learning

approaches can handle the image sequences directly. The approaches in the estimation of

the rotation and translation and 3D point clouds, which are based on feature extraction or

based on deep learning, are covered in this section.

Feature-based approaches

Salient features are retrieved in feature-based visual SLAM to address the picture cor-

respondence issue. There are numerous feature extraction approaches that have been

developed by the computer vision researchers. Recent researches [270], [330] usually

employ robust feature detection algorithms like SIFT[200] or its lightweight equivalents

SURF[19]. The first research in SfM [292], such as the well-known ”Visual Odometry”

[227] used the Harris corner detector [109]. For real-time applications, however, a quicker

method like Features from Accelerated Segment Test (FAST)[255] is used because SIFT

and SURF are considered to be computationally expensive[187], [148].

Feature-matching techniques are used to compare extracted features in order to find

correspondences. The baseline/parallax, or separation between the optical centers of two

cameras, can be used to categorize the approaches. Short baselines can be matched using

optical flow-based methods like the Kanade-Lucas-Tomashi (KLT) tracker [201]. On the

other hand, highly discriminative feature descriptors which are stringly discriminative are

required to find correspondences in long baselines. It is done by computing the dissimilarity

between those descriptors (like BRISK [173], SIFT [200], BRIEF [31], SURF [19], etc.).

Nevertheless, there is no way to ensure precise correspondences when utilizing these

feature-matching algorithms in cases that outliers are prevalent. Implementing estimators
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which are robust to outliers, such as PROSAC [48], PROSAC[48], RANSAC [72], etc., is

helpful in handling spurious correspondences and rejecting outliers.

The R, t between 2 or 3 frames can be reconstructed if the image correspondences are

known. However, the reconstructed scene does not have the correct scale in MDE. The

8-point[199] or 5-point algorithm[226] can compute the posture from two views when the

epipolar constraint is enforced, whereas the tri-focal tensor [291] is proposed to deal with

three consecutive frames. By enforcing the perspective-n-point constraints in case that

the three dimensional point-clouds of the scene are already estimated, motion model with

regard to the 3D structure can be produced (like P3P algorithm [82]).

By enforcing triangulation to intersect two projection ray lines, it is simple to reconstruct

the three -dimensional structure of the scene once the camera posture has been obtained.

The midpoint approach [20] or least square paradigm [113] is suggested to estimate the

intersection since the rays don’t always intersect as a result of incorrect correspondences.

Bundle adjustment [331] is then utilized to optimize the R, t and the three-dimensional

point-clouds via reprojection errors minimization in order to prevent the drifting issue.

Levenberg-Marquardt (LM) optimization, a variation of the Gauss-Newton method, is the

widely used technique to jointly optimize the scene’s structure and camera motion.

There are a few different ways to put feature-based visual SLAM into practice. Mouragnon

et al. [218], [219] suggest using local bundle adjustment to improve the last few frames

rather than improving the R, t and the three dimensional pointclouds of the surroundings

across all images (LBA). ”PTAM,” developed by Klein and Murray [147], demonstrates

how the ”tracking” and the ”mapping” can proceed real-time when the estimation is carried

out by various threads. Additionally, the algorithm utilize the concept of selecting the ”key

frames”; hence, LBA may be applied on the ”key frames”.

However, Lim et al. [187] employed a ”metric topological mapping” and a ”binary
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descriptors” to enable large scale mapping to function in a real-time fashion which does

not need any parallel processing. Statistical model selection [290], ORB features [256],

the loop closures that utilizes the ”bag of words”, the ”place recognition” [54], [79], graph

optimization [157], and local bundle adjustment [219] are some of the recent state-of-the-

art techniques that merge hardware and algorithmic innovation in the last ten years (like

ORB-SLAM [221]). Readers interested in a more thorough analysis of common feature-

based methods can refer to [77] or [349].

Application of deep learning in pose and depth map and 3D structure predictions

Recently miscellanies works which utilize deep-learning has been very successful in

different prediction problems like NLP and computer vision. As a result of this success,

researchers cast R, t prediction as a deep-learning paradigm as well. There are few end-to-

end deep-learning systems for three dimensional prediction of the structure of the scene,

despite the fact that there are several end-to-end designs forR, t computations [214], [321].

Although the predicted depth map can be utilized to recreate the 3D world via fusion of

points, as is done in [162], most current works just do depth map estimation [306], [361].

In the literature, there are two widely used techniques for training pose and structure

estimation: the self-supervised learning paradigm and the supervised learning paradigm.

1) Supervised learning: By reducing errors in estimating the camera position in

comparison to the posture labels of the camera, one can trains a CNNs in a supervised

fashion. Since CNNs were, formerly, utilized for classification purposes, pose estimation

was initially defined as the problem of classifying the values on the quantized space of

the camera’s postures in the 3D space. It’s likely that Konda and Memisevic [361] were

the first to suggest utilizing this concept to estimate visual odometry. They used a stereo

camera to forecast the R, t.
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Konda et al. [151] utilize synchronous autoencoders to learn the motion and depth from

stereo pairs. In order to predict the orientations and the velocities in a classification

paradigm using softmax, the depths and motions features are processed by a CNN.

DeTone et al.[61] suggested ”HomographyNet” which learns two-frame homography via

parameterization of the homography in a 4-point fashion rather than estimating general

motion comparable to basic matrix. A classification paradigm, which is trained using cross-

entropy loss, and a regression paradigm, using a Euclidean loss, were the two networks

they proposed. Since the estimation here is naturally continuous, they demonstrated that

the regression paradigm is better than the classification paradigm in accuracy.

All contemporary methods for R, t estimation utilize regression-based CNN because it was

shown that regression is capable of accurately solving the problem. Mohanty et al.[216]

used a pretrained AlexNet network [154]. To regress the R, t using a fully connected layer,

the two frames are input to two concurrent AlexNets, and the outputs are then concatenated.

They concluded from their research that the derived AlexNet features are not universal for

the issue of VO. As a result, the odometry delivers acceptable results only if the distribution

of the test and train are similar.

Odometry estimation cannot be done using the pretrained encoders used to detect objects

in the scene in a classification paradigm, thus researchers utilize the networks which are

designed to estimate optical flow to generalize the learnt parameters in various contexts.

”Flowdometry,” a network created by Muller and Savakis [220] is one of them. It consists

of two successive CNNs, the first of which predicts optical flow and the second of which

calculates camera motion. Both networks use the FlowNetS [65] architecture, however the

second network substitutes a fully connected layer to accommodate inter-frame odometry

calculation.

An end-to-end CNN was created by Melekhov et al.[214] to calculate ego-motion between

two viewpoints. To process the input frames at the same time to preserve the spatial
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information in the feature tensors, they utilize two CNNs in parallel which share their

weights before adding a spatial pyramid pooling layer. At the end they add two FC layers

to forecasts camera translation and rotation.

RCNN, a hybrid of CNN and RNN, is how Wang et al. [321] develop ”DeepVO”. It

is a network which is able to learn sequential motion models in a dynamic scene from a

video and is trained in an end-to-end fashion. Formerly, the scene was simply represented

geometrically by CNNs. On the other hand, RNNs are designed to learn temporal

information, like speech or language [166]. They are capable of doing so since they keep

the record of every element of the temporal information. It comes to light that combining

CNN and RNN yields noticeably improved results in VO and deliverers competitive results

when compared to state-of-the-art approaches (See [87]). A deep learning system would

not be able to deal with repetitive objects in front of camera, which may reduce posture

estimate accuracy.

Another challenge in estimating depth map are semi-transparent surfaces and surfaces

which reflect the light. While the light field methods are able to deal with these cases

very well, the depth estimation methods show very poor performance in the scenes which

contain surfaces with these traits. The reason behind this is the fact that most depth

estimation algorithms assume one true value for a pixel although there might be several

different semi transparent surfaces which contribute to that pixel. Exploring this issue,

the main idea in [172] is estimating a posterior depth distribution instead of a single

depth value. Based on this idea several algorithms based on deep-learning explored and

developed in [172] to address the issue.

MDE can be defined as a omni-directional problem as well. [184] addresses the omni-

directional MDE. More specifically, they try to solve the challenge of utilizing deep-

learning algorithms in omni-directional MDE problem which accepts RGB images which

contain dramatic spherical distortion. To this aim, their algorithm extract perspective 2D
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pathches out of the omni-directional RGB image which has less spherical distortions. Then

they cast the problem as a multi-view depth estimation problem using CNN. However, to

reduce the inconsistency between these patches, they introduce a geometry-aware feature

fusion mechanism. This mechanism fuses 2D features from images and the 3D geometric

features to decrease the inconsistency between patches. Next, they utilize the self-attention

transformer module to aggregate the information from different patches. This step also

helps the previous fusion step to makes the consistency between the patches better. At the

end, they makes the estimated depth better in an iterative fashion using the more accurate

geometric features.

2) Unsupervised learning: A CNN in MDE may be trained in a self-supervised fashion

in case where the ground truth is not available or it is expensive to attain. This is done

by reducing the photometric error in a manner akin to LSD-SLAM[69]. The technique

was created by Zhou et al.[361] using this principle that one can synthesize a target frame

using a source frame and the R, t between the two frames. Then comparing between the

synthesized target frame and the real target frame one is able to train a network in MDE.

Vijayanarasimhan et al. [306] created a three-dimensional scene-flow, instead, utilizing the

camera motion prediction, the dynamic object segmentation, and the depth map estimation.

The algorithm uses a convolutional-deconvolutional network.

Luo et al. [202] enforce geometric constraints on the video’s pixel values using a traditional

SfM reconstruction. They use a learning-based prior, or a CNN trained for single-image

depth estimation, as opposed to the ad-hoc priors used in classical reconstruction. When

put to the test, they fine-tune this network to satisfy the geometric constraints of a specific

input video while preserving its capacity to generate depth features in less constricted areas

of the video. They claim that even hand-held recorded movies with a significant amount of

dynamic motion may be handled by the system.

Another unsupervised depth estimation is the algorithm suggested in [126]. The network is

called RM-Depth and designed to jointly learn an un-constraint object motion, ego-motion
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and depth map. Depth map is estimated using Recurrent Modulation Unit which fuse the

encoder and the decoder in an iterative and adaptive fashion. They also utilize residual

up-sampling to learn edge-aware filters. Most importantly, they recover a 3D motion field

consist of moving objects in the scene. They do not use any segmentation labels. However,

they still use one rotation and translation for the whole scene.

Self-supervised depth estimation can be interleaved in a self-distillation algorithm to get

supervisory signals. To this aim, [236] designs a self-distillation and self-supervised

monocular depth estimation network to learn depth estimation. First, the author trains

their network in a self-supervised fashion on super-resolution RGB images based on

reconstruction loss. Then they use scale invariant logarithmic loss and the pseudo labels

from the trained network in the last step to retrain the network. To solve the problem of

scale consistency between different frames the author utilizes a technique [337] to compute

the scale factor. The scale consistency module works by estimating the ratio between the

real camera height and its estimated value.

[97] exploits multi-frame paradigm instead of single-frame paradigm to improve depth

estimation. In this way they are able to benefit from geometric connection between

consecutive RGB frames in a video through feature matching on top of the learning

appearance based approach. They utilize feature matching in a self-supervised manner

to estimates monocular depth. They suggest a transformer-based structure to generate their

cost volume. Specifically, they design a depth-discretized epipolar sampling module to

select among the matching candidates. Then they refine the depth predictions through self-

attention and cross-attention modules. In this way, they make the matching probability

more efficient than the standard similarity metrics which tend to get stuck in local

minima. Finally, the result of the above-mentioned operations deliver depth estimation

using a decoder. The model is trained in an end-to-end fashion using photo-metric loss.

Application of multi-view depth estimation and transformers is not limited to only depth

estimation. For example [32] estimates depth in a multi-view fashion for novel view

synthesis problem.
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[17] addresses two issues in multi-view geometry. First, the high memory consumption of

multi-view cost-volume, which in turn result in slow inference as well, second, difficulties

in multi-view matching due to moving objects in the scene, reflective surfaces and texture-

less ones. So they propose to fuse single-view MDE into multi-view geometry, to benefit

from the efficiency, robustness and accuracy of multi-view MDE. To this aim, they

estimates a single-view depth a pixel-wise Gaussian probability distribution for each frame.

Then they sample the distributions to create adaptive candidate samples. This adaptive

method results in more efficiency and accuracy. They also use a matching score paradigm

to make sure that the predicted mutli-view and single-view depths are consistent.

Depth-from-focus is another technique which can be used to estimate depth. When focus of

a camera changes, it creates a stack of images with focus at different depth. This can create

a supervision signal to train a network provided that the stack of images are available.

In [341], a CNN is suggested to estimates the best focused values for each pixel in the

focal stack under consideration. Then the depth can be estimated using the estimations in

previous step.

4.3 Motion segmentation and tracking of dynamic objects

in 3D

Motion segmentation in dynamic scene and 3D tracking classify objects according to their

motion and follow their 3D trajectories. The flowchart of these methods is shown in Fig.

4.5. As depicted in the Fig. 4.5, all the features extracted from the frame as well as

optionally dynamic features are utilized to segment the scene into different moving objects

in approaches which are feature-based. The methods based on deep-learning, however,

has the capability to deal with the visual frames automatically. The 3D tracking module

is then fed with the segmented dynamic objects to produce the object trajectories. It is

optional to use camera rotation and translation as well as the three-dimensional point-cloud

acquired from A.2 in Fig. 4.5 to aid in the tracking procedure. The trajectories of objects
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are coherent with the background (i.e. static) environment because of the utilization of the

three-dimensional point-cloud. These algorithms are covered in this section. See Fig. 4.5.

4.3.1 Segmentation of scene based on dynamic objects

Segmentation of a scene into moving objects, referred to as monocular motion segmen-

tation, multibody motion segmentation, or eorumotion segmentation [143], [257], [286],

[258], groups matched features in the scene into areas in the scene which belongs to

the same moving objects. Because of the problem’s chicken-and-egg nature, it is very

challenging. The features must first be clustered into motion models. However, all moving

objects must have motion models for the features to be clustered. Presence of outliers, noise

or missing matched features as a result of occlusion, noise, motion blur, or tracked features

which are lost all contribute to the issue. Dealing with degeneracy in motion models, which

occurs if one object travels in the camera motion plane, or in the camera motion direction,

and at the same speed as the camera, is another issue. Dependent movement (for example,

when a pair of objects travels together in 3D, or articulated motion) is another one as well.

The methods which are in use to solve segmentation of the scene based on dynamic objects

are covered in this section.

Statistical model selection

One motion model can be used to describe how a static scene’s features change from

one image to the next. In contrast, the feature which are dynamic come from multiple

motion models, each of which is connected to a distinct moving body. Essential matrix,

Fundamental matrix, projectivity/homography, affine fundamental matrix or affinity are

the possible mathematical way of expressing the motion models. The goal is to fit all the

features in the scene into them most effectively.

Two simple statistical techniques to fit the data to the above-mentioned models are using

RANSAC [72] and the Monte-Carlo sampling iteration [267]. These methods create a set
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which will be used as inlier and dismiss the remaining data to fit a model to them. The

outliers are then sampled once more in order to fit a new model that represents majority of

the samples. This process is repeated until a threshold is met, i.e. the error is low enough.

Also, one can start over with this motion segmentation technique to obtain a large number

of candidate models. Refer to Fig. 4.6 (b).

An information criterion is used to choose the scenario that is the best representative of

the samples. The literature contains a number of these information criteria. One of them is

maximizing the likelihood function while minimizing the flexibility of the model is chosen

based of Akaike’s information criterion (AIC) [4]. According to a certain metric, like

Sampson distance approximation or reprojection error [112], the likelihood function is

typically approximated to optimize the possibility of the observed correspondences. The

model with the lowest AIC is then chosen by AIC.

Despite being widely used, this method lacks consistent estimates asymptotically and is

susceptible to over-fitting. The reason is it does not consider the amount of observations.

Schwarz [272] suggests the Bayes Information Criterion, a refinement algorithm based on

the Bayesian theorem (BIC). By simulating the prior based on its complexity, BIC increases

the posterior probability of viewing the samples. In contrast, Rissanen [253] created

minimum description length (MDL) by reducing the data’s coding length by utilizing a

minimum-bit representation. By considering the quantity of observations and the size of

the model, Kanatani [142], [141] introduced the Geometric Information Criterion (G-AIC,

also known as GIC) in response to the limitations of earlier efforts. Geometrically robust

information criterion (GRIC), developed by Torr [290], is another extension based on BIC,

adding resilience to outliers and the ability to handle multi dimensions.

Schindler et al. [269] expanded the methodology to include multiple frames using essential

matrix E, whereas earlier methods, like [266], only function as a two-frame technique.

Schindler et al. [268] develop generalization of this method to other motion models and
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camera models. Ozden et al. [231] consider practical factors. They dealt with how to break

a cluster into two or how to blend one motion model with the static scene.

In another effort, the problem of model selection is presented by Thakoor et al. [286]

as a combinatorial optimization. AIC is used as the cost function, in this technique.

Using the branch and bound approach the problem is broken into smaller sub-problems.

The segmentation are produced via local sampling of correspondences, and to account for

outliers the null hypothesis is included.

Sabzevari and Scaramuzza [257] used the projective trajectory matrix framework’s fac-

torization to apply a statistical model selection technique. Reprojection error is utilized to

weed out unreliable proposals while motion models are created using epipolar geometry.

By repeatedly doing so, they improve their predictions. Differently, [258] expand the

problem in such a way that the problem’s computations can be done using the two-point

approach [229] and the one-point algorithm [264], [265].

Sub-space clustering methods

The Sub-space clustering is a general technique for clustering low-dimensional sub-spaces

that Kanatani [141] introduced which its application is not limited to motion segmentation.

Its development is founded based on the insight that some set of low-dimensional sub-

spaces can represent high-dimensional data samples. The segmentation of the dynamic

scene under the subspace clustering framework is essentially locating each of these sub-

spaces and associate them with moving objects (see Fig. 4.6 (a)). Nevertheless, as these

sub-spaces and segments are not known, it is necessary to estimate the sub-spaces and

cluster the samples to distinct sub-spaces simultaneously. Gear [84] and Costeira-Kanade

[52] address this issue utilizing the discovery that the space of the rigid moving objects is

a linear sub-space and it is possible to recover each linear sub-space by enforcing the rank
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requirement. A wide variety of approaches are done in this category [305, 339, 93, 303,

68, 250, 340, 193, 39] among which [304, 84, 355] are online clustering techniques.

Dynamic object segmentation using deep-learning

The motion segmentation problem may be solved with assuming predetermined number of

rigid motion models utilizing DNNs. Producing dense object masks and its related cost

functions may be done using optical flow or three dimenstional point-clouds. Byravan

and Fox propose ”SE3-Net” that can segment preset number of models expressed in SE(3)

transformations from a three-dimensional point-clouds in their paper [29]. The network is

a convolutional-deconvolutional encoder-decoder network. Two parallel networks, one of

which is a CNN that produces the masks for motion models and the other one is built using

FCs that produces SEs. For more details refer to [29].

According to Vijayanarasimhan et al. [306], optical flow can be used to segment dynamic

objects using DNN. They created the ”SfM-Net”. It is a geometry-aware network with

the ability to predict ego-motion, structure and motion segmentation of the scene. Two

stream convolutional-deconvolutional sub-networks that serve as the structure and motion

networks make up the model. The motion model calculates static and dynamic motion

models, the structure network learns to anticipate depth. The point-clouds from depth

predictions is then warped based on the motion models and then reprojected back into

the photo space to create optical flow. While fully supervised-learning is also possible,

this method allows the network to be trained in self-supervised manner by minimizing

photometric error.

Casser et al. [34] propose an approach which is able to model moving objects. The main

idea is to introduce geometric structure in the learning process, by modeling the scene and

the individual objects; camera ego-motion and object motions are learned from monocular

videos as input. Furthermore an online refinement method is introduced to adapt learning
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on the fly to unknown domains.

Appearance-based detectors achieve remarkable performance on common scenes, ben-

efiting from high-capacity models and massive annotated data, but tend to fail for

scenarios that lack training data. Geometric motion segmentation algorithms, however,

generalize to novel scenes, but have yet to achieve comparable performance to appearance-

based ones, due to noisy motion estimations and degenerate motion configurations. To

combine the best of both worlds, Yang et al. [343] propose a modular network, whose

architecture is motivated by a geometric analysis of what independent object motions can

be recovered from an egomotion field. It takes two consecutive frames as input and predicts

segmentation masks for the background and multiple rigidly moving objects, which are

then parameterized by 3D rigid transformations.

Optimization for motion segmentation

Ranftl et al. [247] offer an algorithm for dense depth estimation from a single monocular

camera that is moving through a dynamic scene. The approach produces a dense depth map

from two consecutive frames. Moving objects are reconstructed along with the surrounding

environment. They provide a motion segmentation algorithm that segments the optical flow

field into a set of motion models, each with its own epipolar geometry. Then they show

that the scene can be reconstructed based on these motion models by optimizing a convex

program. The optimization jointly reasons about the scales of different objects based on an

ordering constraint in the scene as well as a smoothness constraint and assembles the scene

in a common coordinate frame, determined up to a global scale.

4.3.2 Dynamic objects’ 3D tracking

It is difficult to track the moving objects in three dimensions even if one knows their

position and the depth of each point in the three dimension scene. The difficulty emanate

from the triangulation method, which is the commonly practiced method to determine
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the mapping ([113]), can not be utilized to track the objects since the beams which

are projected back to the three-dimensional world from the matched points in the frames

do not intersect. The three-dimensional points X should be calculated by finding these

intersections of the beams of x1 and x2 via their corresponding camera poses, P1 and P2,

given x1 and x2, the matched points in frames 1 and 2. See Fig. 4.3. To address this

issue, alternative methods are needed. The methods that are currently used to recover the

three-dimensional world trajectories of the dynamic objects are covered in this section.

Trajectory Triangulation

Since the above-mentioned beams do not intersect in the case of moving objects, basic

triangulation [113] is not effective to map the dynamic scene. However, when it is known

that one object is physically constrained to fulfill a specific mathematical form, Avidan

and Shashua [14], [15] invented the technique ”trajectory triangulation” which reconstruct

the three-dimensional world points that belong to a dynamic object and the scene. They

assume that the point is traveling along an unidentified line in the three-dimensional world.

Then finding the parametric line that meets the correspondence from several viewpoints is

thus added to the reconstruction task. At least 5 frames are necessary to find the solution

uniquely. Shashua et al. [273] considered that the item is travelling along a conic section

as opposed to along a straight line.

While Kaminski and Teicher [139], [140], formulate the ”trajectory triangulation” using

a family of polynomial curves to convert the non-linear trajectories problem to a linear one,

Park et al. [234] modeled it as a linear combination of trajectory basis vectors to manage

missing data, making it possible to predict the recovery of 3D points with confidence using

least squares. They established a criteria, called ”reconstructability”, that enabled a precise

reconstruction of the three-dimensional scene [235].
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Particle filter

Tracking of dynamic objects in three-dimensional world in monocular setting is known

as the Bearing-only-Tracking (BOT) problem since it cannot be detected that there is

a distance from the target to the observer (observability issue). For this problem, a

solution which is based on filtering is desirable because it can model the uncertainty of

the observer’s and the target’s position and velocity [3, 165]. Particle filters were used by

Kundu et al. to predict the speed and position of the moving objects [158].

4.4 Simultaneous reconstruction and motion segmenta-

tion

Factorization allows for simultaneous multibody motion segmentation and reconstruction

of the 3D structure of dynamic objects. The motion models of the segmented features as

well as their 3D structures are produced via dynamic object segmentation and reconstruc-

tion given the feature correspondences. The procedure for this joint motion segmentation

and reconstruction task is shown in Fig. 4.7. In general, the output from applications

A and B may be merged to achieve a comparable outcome to this approach, even though

factorization can create both segmented objects and their 3D structures.

4.4.1 Factorization

Undoubtedly one of the most well-known SfM strategies is factorization. It can con-

currently handle the segmentation and reconstruction problems and has a beautiful

mathematical formulation. Based on the rank theory, it was initially developed by Tomasi

and Kanade in [288]. In general, there are two different branch of MDE in dynamic scene

stem from Factorization.
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Multibody structure from motion (MBSfM)

Multibody Structure from Motion (MBSfM) extends conventional Structure from Motion

(SfM) for a rigid camera motion into n rigid bodies of motion. To tackle the MBSfM

problem under the affine camera model, Costeira and Kanade [52] developed the ”shape

interaction matrix”, a mathematical construct of object shapes that is independent of object

motion and the coordinate system which has been selected. It was discovered that this

”shape interaction matrix” preserves the original subspace structure. Assume W̄ = UΣV T

is the rank-r SVD decomposition of measurement matrix such that U ∈ R2f×r , Σ ∈ Rr×r

, and V ∈ Rp×r. Then the ”shape interaction matrix” Q is defined as

Q = V V T ∈ Rp×p (4.1)

Equation (4.1) has the intriguing characteristic that the entry is 0 if feature trajectories a

and b belong to separate objects. Kanatani has mathematically shown this characteristic

[141]. On the basis of this discovery, motion segmentation and reconstruction may be

accomplished by sorting and thresholding the entries of Q.

Costeira and Kanade [52] cluster the whole structure by maximizing the sum-of-squares

entries of a block diagonal matrix under the restriction that each block indicates a moving

objects. Ichimura [128] used a discriminant criteria [230] to divide the sorted rows of Q

into miscellaneous motion models that maximize separation between sub-spaces. Gear

[84] demonstrated that instead of clustering the subspace using SVD, echelon canonical

form gives direct information on the grouping of points to the sub-spaces.

The projective depths are recovered by Sturm and Trigss [282] via the calculation of

epipoles and fundamental matrices. The factorization based on a perspective camera was

expanded by Hartley and Schaffalitzky [111] to include missing and ambiguous data.

To approximate missing data with a low-rank matrix, they created an iterative power

factorization approach.
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Li et al. ([183]) alternate among motion segments using subspace separation and projective

depth estimation to achieve convergence. Minimizing the reprojection errors is followed

by iterative refining to estimate the projective depth. Instead, Murakami et al. [223]

attempted to eliminate the need for depth estimation by proposing depth-estimation-free

circumstances. If two conditions are satisfied, initial values does not need to be computed.

Nonrigid structure from motion (NRSfM)

Bregler et al. were first ones to employ a scaled orthography camera model in citebre-

gler2000recovering to present the Nonrigid Structure from Motion (NRSfM) approach,

which is based on Tomasi-Kanade factorization. A nonrigid object was represented as a k

key frame basis set {Bi}ki = 1 with eachBi denoting a 3×pmatrix representing p feature

points. This basis set’s linear combination creates a particular configuration to the extend

that B =
∑k i = 1li.Bi , where B,Bi ∈ R3×p and li ∈ R. They normalize the feature

points just like [288] and removing the translation vector. As a result the measurement

matrix becomes

W̃ = NB =


l11R

′
1 · · · l1kR

′
1

... . . . ...

lf1R
′
f lfkR

′
f

 =


B1

...

Bk

 , (4.2)

Here, R′ stands for the first two rows of the rotation matrix R (the last row of R can

be inferred by computing the cross-product of the first and second rows of R due to the

orthogonal projection of the orthographic camera model). The SVD can be employed to

factorize W̃ by selecting the first 3k singular vectors and singular values. By rearranging

N ’s elements and factorizing it with SVD, the estimated rotation matrix R′f and the shape

basis weights li can be extracted from the data set. In order to create a matrix G that maps

R′f and Bk into an unique solution [26], orthonomality constraints are lastly applied.
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Basis constraints are introduced by Xiao et al. [333] as an alternative to orthonomality

constraints so that the nonrigid factorization problem can be resolved in a closed-form

solution. The motion matrix is projected onto the manifold of matrix constraints by

Paladini et al. [232] instead of directly enforcing the metric constraints; as a result, the

factorization can be carried out iteratively using least squares. On the other hand, Akhter

et al. [5] suggest a dual approach by outlining a method based on trajectory space that

eliminates the requirement to compute basis vectors. The body motions are compactly

described using the Discrete Cosine Transform (DCT).

A recent proposal by Kumar et al. [155] to combine MBSfM and NRSfM into a multibody

nonrigid deformations system was made. The feature trajectories were treated as the union

of various linear or affine subspaces. It makes it possible to use the alternating direction

approach of multipliers to jointly optimize nonrigid reconstruction and nonrigid motion

segmentation (ADMM).

For more details about dynamic scene MDE one can refer to [260].

4.4.2 Deep-learning based nonrigid structure from motion

Li et al. [177] present a method for jointly training the estimation of depth, egomotion, and

a dense 3D translation field of objects relative to the scene, with monocular photometric

consistency being the sole source of supervision. They show that this apparently heavily

underdetermined problem can be regularized by imposing the following prior knowledge

about 3D translation fields: they are sparse, since most of the scene is static, and they tend

to be piecewise constant for rigid moving objects.
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Closely related to MDE in dynamic scene with nonrigid motions in the scene using deep

learning is [244]. In this paper the Authors introduce D-NeRF, a method that extends neural

radiance fields to a dynamic domain, allowing to reconstruct and render novel images of

objects under rigid and non-rigid motions from a single camera moving around the scene.
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Figure 4.1: Block diagram which depicts the general pipeline in visual localization and 3D
reconstruction in dynamic scene. Figure from [260].
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Figure 4.2: Block diagram of general algorithms in the section robust visual SLAM/SfM.
Figure from [260].

Figure 4.3: (a) In a static scenes, epipolar constraint xT2 Fx1 = 0 constrains the image
point from x1 to x2. (b) In a a dynamic scene the epipolar constraint is violated. Figure
from [260].
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Figure 4.4: Overall structure of the RAFT [285]. Figure from [285].

Figure 4.5: Block diagram of a general motion segmentation, and 3D tracking. Figure
from [260].
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Figure 4.6: An example of dynamic object segmentation using (a) sub-space clustering
and (b) statistical model selection. Figure from [260].

Figure 4.7: Block diagram of a general joint motion segmentation and reconstruction.
Figure from [260].
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Figure 4.8: Minimum error suggested by [92] instead of average error can potentially
detect occlusion. However it needs three views of the scene.
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Chapter 5

Explicitly Modeling Flexible Objects and

Dynamic Scene in MDE

Broadly speaking, there are two effective (passive) approaches available to estimate the

depth map of a scene. Traditional computer vision methods that rely on assumptions

on camera models which result in pure geometric approaches, and deep learning based

algorithms which consider a universal function, usually based on Deep Neural Networks

(DNNs), and train it on an already recorded datasets, i.e. train dataset. The later methods

rely on similarities of the distributions of the data in the already recorded train datasets and

the unknown test datasets.

Deep learning based methods have remarkably improved the performance in many

computer vision tasks including depth estimation. Although fine tuning the estimated depth

maps using a sequence of frames, like bundle adjustment [296], is a well-known approach

to improve accuracy, the methods are usually rely on monocular cues and done in single

image fashion in inference time. In addition, single image depth estimation results can be

used to initialize approaches that fine tune the depth using temporal information in the train

of video frames.
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5.1 Rational and challenges

Despite easiness of single image MDE vs other methods in depth map estimation, like

stereo vision, there are inherent challenges exist in MDE

• Single image MDE is an Ill-posed problem

• Single image MDE is scale-ambiguous

• Estimation is difficult in low-featured area of the image

Single image MDE based on deep learning in general and especially the algorithm

disscussed in chapter 3 address these issues. First, the single image MDE Ill-posedness

is addressed in deep learning based MDE since the prior knowledge helps the network

to retrieve the lost information, i.e. the 3D dimension or the depth map, which is lost at

the time of capturing the image. This prior knowledge helps with scale ambiguity of the

paradigm in supervised case. In fact, the model learns the scale. In the method I designed

in chapter 3, I discussed a novel approach to improve accuracy of single image MDE based

on geometric attention. The algorithm especially addresses the issue with feature-less area

of the image. It does that since it uses attention to help the network learns better features

in encoder using the depth features. See Fig. 1.7 and 3.2.

However, gathering ground truth depth and synchronizing it is an expensive procedure.

So the algorithm needs prior knowledge or another source of supervisory signal. These

have been the incentive for researcher to think about unsupervised/self-supervised MDE

algorithm. The temporal information which exist in a train of images captured in a video

can be exploited as the source of supervision using epipolar geometry (5.3) and PnP (5.6).

Designing an algorithm that exploit the temporal information instead of ground-truth depth

as the source of supervisory signal in MDE in dynamic scene is what is addressed in this

chapter.
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In addition to the above-mentioned challenges in the MDE problem, there are specifically

other issues need to be addressed in an unsupervised MDE paradigm

• Dynamic scene

• Flexible objects

Consider a scenario in which during the time that a frame is captured until the next frame

is captured the objects in the scene move independently from each other. This is called

a dynamic scene and computer vision methods which model only the static scene are not

enough to accurately model a dynamic scene. The other challenge is modelling flexible

objects. As it is discussed in section 5.3 and section 5.4 the geometric pinhole camera

model is designed to represent a single object which is rigid. At the same time, many

moving objects like animals, humans, and even a bag blown into the air are flexible objects.

As a result, it is necessary to explicitly utilize a flexible model in a dynamic scene to

accurately model the scene. See Fig. 5.1 and Fig. 5.2.

Despite the recent advances in visual SLAM, Structure from Motion, and unsupervised

MDE algorithms in dynamic environments, each proposed approach comes with advan-

tages and disadvantages. Many of the aforementioned methods are well-developed methods

by computer vision and robotics communities. They are sharing two traits. First, all

of them require direct or indirect feature correspondence as input. See Figures 4.1, 4.2,

4.5, 4.7. Secondly most of them, specifically multi-view multi-body geometry constraints

were developed before the deep learning algorithms show their effectiveness in extracting

abstract non-local, automatic features/information from RGB images.

Appearance-based (direct, deep-learning based) methods achieve remarkable performance

on common scenes, benefiting from high-capacity models. Although, deep learning based

method are very successful in understanding the whole scene in a dense fashion and being

fairly light considering the algebraic nature of this type of depth estimation, they suffer

from 1) accuracy 2) poor generalization when the test and train distributions are not close.
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They are not able to accurately predict the scene with all of its details when the test dataset

distribution is far from the train dataset. In fact, they might even fail. In addition, they

rely on monocular cues which can be exploited for adversarial attack in security or safety

systems [338].

On the other hand, traditional geometric methods based on optimization, tend not to be

sensitive to the above-mentioned issue since they essentially do not rely on any prior

knowledge, i.e. distribution of any training data. Instead, they benefit from temporal

information of sequences of images/videos or synchronous camera rigs to extract the depth

in an unsupervised manner.

At the same time, explicitly modeling of a dynamic scenes as well as flexible objects in

monocular depth estimation using traditional computer vision methods is a big challenge.

The reason is lying on the inherent fashion of estimation: scene might changes in a flexible

and dynamic way between two consecutive frames. It should be noted that deep learning

based methods can handle them to some extend since they usually estimate the depth using

single image, not always though. The down side for single image depth estimation is loss

of accuracy though.

In addition, single image depth estimation is an ill-posed problem. That is, it is not

mathematically possible to uniquely estimate the 3rd dimension (or depth) from a single

2D image. On the other words, going from 3D world to 2D images is a one-way function

which is irreversible directly. During this process the information of the scene related to

the 3rd dimension is lost. Deep learning based method solve this using pre-trained model

on pre-recorded train datasets.

Considering weakness and strength of each of these two approaches, a hybrid methods

which benefits from both good generalization of geometric methods by extending tradi-

tional geometric models ability to handle flexible and dynamic objects in the scene and
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interleaved it with deep learning networks to create a self-supervised training pipeline is

the aim of this chapter.

It is not as easy as one might think though. The reason behind that is when you are working

with sparse correspondence for an image of typical size 480× 640 even if they use the best

feature based extraction methods like AKAZE [6], they get around 1000 reliable points

while the dense correspondence have 480 × 640 = 307200 almost 300 times more data to

be processed. As a result adapting the sophisticated traditional computer vision algorithm

to the hybrid system so that it would be able to process the data in real-time is a necessity

[247].

On top of that, one might question the benefit of designing monocular depth estimation

algorithms while stereo vision can avoid many challenges indigenous to MDE like scale

ambiguity or problems like dynamic scene as well as difficulties in exploiting monocular

cues. To answer this question, it should be noted that the stereo vision is limited to

approximately 10 meters similar to D435 (an RGBD camera). This limitation springs from

the sensitivity of the problem to the distance between stereo rigs. Farther than this distance,

human vision mainly relies on monocular cues. So the first benefits is that the MDE has

longer range than the stereo vision. On the other hand, having an efficient monocular

algorithm can benefit many single camera devices available almost everywhere. The third

benefit of monocular video depth estimation is that such algorithms pave the way for an

efficient exploitation of temporal information in stereo video depth estimation. The motion

model from one camera to the other camera in the stereo rig is a constant motion model

while addressing each time stamp motion models of the scene to another timestamp ones

require an algorithm similar to the topic of this chapter. Other benefits of using MDE

could be less computational resources needed and avoiding the baseline issue as well as

calibration difficulties of stereo rigs.

Contributions: To sum up, three innovations are suggested by this paper
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Extending the geometric constrain to model full flexible scene: The first innovation

of this paper is extending the geometric constrain to model the whole scene so that the

model explicitly describe motion models at pixel level. As a result the model is able to

model any flexible object without any assumption on the number of moving object in the

scene.

Moving object detection loss: The second innovation is designing a motion model

detection cost function which automatically detect moving object in the scene while

considering flexibility of each object. In addition, this approach does not consider any

assumption on the number of motion models or estimate it. Also, the method does not need

to estimate the relative scale between the moving objects.

Synchrony theorem and Synchrony loss: The third innovation relates the different

components of the pixel level motion models spatially to each other so that the model

is able to explicitly model flexible objects at the same time be constrained enough. See Fig.

5.3 and Fig. 5.13. This is enforced by the Synchrony cost function. The cost function is

supported by the Synchrony theorem. An outline of the proof is provided in this chapter.

5.2 Related works

There are 3 unsupervised approaches which designed to deal with dynamic scene.

5.2.1 Robust static methods

These methods ignore the dynamic nature of the scene. To compensate for this lack of

exactness in modelling the scene, they use robust methods like RANSAC to decrease the

effect of outliers and/or utilize deep learning networks to benefit from the robustness of the

deep learning approaches [366, 153, 17, 99, 97, 177, 236, 126].
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5.2.2 Explicitly modeling dynamic scene utilizing motion models esti-

mation

This category of approaches first find the motion models in images. The motion models

could be expressed as Essential matrices, E, or Fundamental matrices, F . This procedure

is called motion segmentation. There are assumptions over number of moving object on the

scene, though. In fact, the number must be estimated. Then depth for each motion model is

estimated. Finding the relative value of the scales is a challenge in these approaches since

scale is ambiguous [247, 34, 309, 298, 343, 290].

5.2.3 Factorization

These category of approaches estimates both the depth map and the motion models at the

same time without any assumption on the number of motion models or any need to estimate

this number. In fact they have solid mathematical background which provides the user with

a closed form like multi-body multi-view structure from motion (MBSfM) [52]. Bregler

et al. [26] extend the MBSfM to non-rigid motion estimation (NRSfM). However, the

first work is considering affine model for camera instead of perspective camera model.

In an affine camera model camera center is at infinity and it has zero perspective. The

fundamental matrix in an affine camera model has 4 degree of freedom instead of 7 degree

of freedom in pinhole camera model. Also, the NRSfM considers cartographic camera

model. In case of a full pinhole camera model, optimization is required.

5.3 Relaxing static scene paradigm into dynamic scene

and flexible object paradigm

Considering the weaknesses and the strengths of each of the approaches discussed in

this chapter so far, a hybrid methods which benefits from both good generalization of

geometric methods and robustness of deep learning is proposed here. The traditional
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geometric models in computer vision handle mainly static scene. So it is suggested to

relax it explicitly so that it is able to handle flexible and dynamic objects in the scene and

interleaved it with deep learning networks to create a self-supervised training pipeline. See

Fig. 5.4.

A preliminary result of relaxing static scene assumption in traditional computer vision

methods to address flexible scene has been shown in Fig. 5.3. Two examples, (a) and

(b), of the flexible model for two-frame structure from motion optimized on Sintel dataset.

The input to this optimization are the two consecutive RGB frames depicted in Fig. 5.1 and

Fig. 5.2, a target frame and the key frame. The target frame is the gray-scale depicted in

top-left image in Fig. 5.3. Other than these two images the ground truth optical flow has

been used in this specific optimization as well. However, in the algorithm (Fig. 5.4), the

optical flow are extracted from the two RGB target and key frames using a CNN. See Fig.

5.4. In this algorithm, one motion model is considered for every pixel in the scene instead

of only one for the entire scene. The algorithm utilizes two novel constraints, the ”moving

object detection loss” (See Fig. 5.12) and the ”synchrony loss” (See Fig. 5.13.) to constrain

the relaxed flexible scene model. In this way, it is able to change the optimization from an

under constrained optimization to an over constrained optimization. kx, ky and kz in Fig.

5.3 are the three component of n and tx, ty and tz are the three component of t instead of

only one n and t for the entire scene.

The overall training algorithm of MDE with explicit modeling of fully flexible objects

and dynamic scene in an unsupervised manner is depicted in Fig. 5.4. The inputs to

the algorithm are the two consecutive RGB target and key frames, It and Ik. The depth

network, the n and t network in pink box, and the optical-flow network are all CNN

networks to estimate n and t and the optical-flow from the It, Ik frames and the depth

map from the Ik frame. The estimated depth is of size H ×W , the n and t are each of size

3×H×W and the optical-flow outputs are the change of location of pixels in x, y directions

in RGB It, Ik images (δx, δy) are of size H ×W each. The cost function is in blue box
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in Fig. 5.4. The main idea in the paper is to relax the motion models to pixel level. The

”moving object detection loss” and the ”Synchrony loss” are providing the optimization

with appropriate constraints so that the optimization become an over constrained instead of

being an under constrained. The innovations of this paper are depicted in color in Fig. 5.4.

The algorithm can easily be extended to three frames or even longer sequences of RGB

frames. The details are discussed in 5.4. Without further due, lets dive into the details.

5.4 Fully flexible dynamic scene algorithm

5.4.1 Preliminaries

Geometric static-scene and two-views computer vision methods are mainly based on

pinhole camera model and the two criteria, perspective-n-point (PnP) and epipolar

geometry. Assume

• pt is a homogeneous point (pt = [ut, vt, 1]
T ) in frame It and pk is the corresponding

homogeneous point in frame Ik

• R ∈ SO(3) is the rotation matrix in 3D, Lie group, and t ∈ R3 is translation between

the two frames It and Ik.

• Dk is the depth map of image k

• K is the intrinsic parameters of the camera which defines pinhole camera.

• θ = ∥n∥ and n̂ = n/∥n∥ where ∥ · ∥ represent norm 2.

The pinhole camera model is the linear transformation in 3D that takes each point in 3D

world to the camera plane

P2D = K P3D. (5.1)
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Here

K =


αx s x0

0 αy y0

0 0 1

 (5.2)

where αx and αy are the focal length of the camera in terms of pixel dimensions in x and y

direction respectively and (x0, y0) is the principal point in pixel dimension. The parameter

s is skew parameter and most of the times is zero.

The Epipolar geometry states that

pTt K
−TEK−1pk = 0, E = [t]×R. (5.3)

Here, [t]× is matrix representation of vector cross product

[t]× =


0 −tz ty

tz 0 −tx
−ty tx 0

 , t =

tx

ty

tz

 , (5.4)

and

[t]×v = t× v ∀v ∈ R3, . (5.5)

The PnP equation states

c pt = KR
[
K−1Dkpk − t

]
, c > 0. (5.6)

So it relate pk and its corresponding point upto a positive scaling factor c.

The relation between R ∈ SO(3) and n ∈ R3 is simple

R = exp([n]×). (5.7)
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However, calculating matrix exponential is expensive. Instead it is a common practice to

use Rodrigues’ rotation formula. See Fig. 5.5 and Fig. 5.6.

One can project the triangle AA′A′′ into plane P from Fig. 5.5. Since the rotation happens

around the vector n̂ then ∥OH∥ = ∥OH ′∥. So the vector OB which is the bisector of the

angle HOH ′ is perpendicular to HH ′. Then the angle H ′HH” is equal to θ/2. So

∥OH∥ = ∥n̂× v∥ = ∥n̂× (n̂× v)∥ (5.8)

∥HH ′′∥ = 2∥OH∥ sin(θ/2) cos(θ/2) = ∥n̂× v∥ sin(θ) (5.9)

∥H ′′H ′∥ = 2∥OH∥ sin(θ/2) sin(θ/2) = ∥n̂× (n̂× v)∥ (1− cos(θ)) (5.10)

vrot = v + sin(θ) n̂× v + (1− cos(θ)) n̂× (n̂× v) (5.11)

vrot = v cos(θ) + (n̂× v) sin(θ) + n̂ (n̂ · v)(1− cos(θ)) (5.12)

n̂ =


n̂1

n̂2

n̂3

 , n̂2
1 + n̂2

2 + n̂2
3 = 1, n̂× v =


0 −n̂3 n̂2

n̂3 0 −n̂1

−n̂2 n̂1 0

 v = [n̂]× v (5.13)

So

R = I + sin(θ) [n̂]× + (1− cos(θ)) [n̂]2× (5.14)

and

R−RT = 2sin(θ)[n̂]×, T r(R)− 1 = 2cos(θ) (5.15)

Direct multiplication shows that

[n̂]3× = −[n̂]×. (5.16)

So

exp([n]×) = exp(θ[n̂]×) =
∞∑
k=0

(θ[n̂]×)
k

k!
(5.17)

= I + sin(θ) [n̂]× + (1− cos(θ)) [n̂]2× = R (5.18)
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5.4.2 Cost function design

Cost function consists of

• Dense PnP loss

• Sparse PnP loss

• Dense epipolar loss

• Sparse epipolar loss

• Sparse optical flow loss

• Dense optical flow loss

• Moving object detection loss

• Synchrony loss

• Average size of t

among which the ”moving object detection loss” and the ”synchrony loss” are two of the

innovations of this paper. The gradients are calculated based on weighted sum of the above-

mentioned terms in the stochastic gradient descent optimization. The details are discussed

in the experimental results section.

Dense PnP loss:

The dense PnP loss is designed to reduce the PnP error. This helps with the tuning of n and

t network as well as the depth network and relate them to optical flow error. For this term

assume

Ω = {(i, j)|i, j ∈ Z, 0 ≤ i ≤ W, 0 ≤ j ≤ H} (5.19)

pk =


i

j

1

 , pt =


i+ δx(i, j)

j + δy(i, j)

1

 , (i, j) ∈ Ω (5.20)
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n =


n1(i, j)

n2(i, j)

n3(i, j)

 , t =


t1(i, j)

t2(i, j)

t3(i, j)

 , D(i, j) , (i, j) ∈ Ω (5.21)

Then one can use (5.6) and build the dense PnP loss.

p̂t = KR
[
K−1Dkpk − t

]
(5.22)

However, the (5.6) relate pt and pk up to a positive scaling factor. So cosine similarity,

cossim(·, ·), is utilized to build the error

ℓ (error) = ℓ (cossim(pt, p̂t)− 1) (5.23)

The L1 measure is used as ℓ.

Sparse PnP loss:

The sparse matched points are a good source to supervise training of the model in a

self-supervised paradigm. ”AKAZE” feature extractor is utilized to find matched points

between the two frames It, Ik. See Fig. 5.8. However, there are two issues exist here. First,

batching mechanism of pytorch requires equal size of each single sample data used in one

batch. Whilst the number of extracted matched points in different image pairs are random.

It was solved by concatenating all the matched information from AKAZE feature matching

algorithm and handling the error in python and pytorch. The second problem was more

important. The matched points coming from AKAZE feature matching algorithm are not

at integer grids (5.19).

pk =


xk

yk

1

 , pt =


xt

yt

1

 (5.24)

while n, t and the D are still defined at the integer grid (5.19) and (5.21). So interpolating

the values to floating points are required here. Assume that the values of a feature map f
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at integer grid Ω (5.19) are available. Assume one is interested to find the value of f at

arbitrary floating location (x, y). See Fig. 5.9.

The weighted sum of the four integer values around the floating point (x, y) is used as

the interpolated value of the feature map f at the floating point (x, y). The inverse of the

distances between the floating point and the four integer grid points around it are utilized

as weights:

f(x, y) =

∑4
i=1

1
di
fi∑4

i=1
1
di

(5.25)

Note that the formula return the corresponding values at the integer grids correctly when

the floating point (x, y) is at one of the integer grids.

Dense Epipolar loss:

The dense epipolar loss is designed to reduce the epipolar error. This helps with the tuning

of n and t network and relate them to the optical flow error. Again, the integer grid Ω

(5.19), pt, pk (5.20) and n, t, D (5.21) are the same as in the dense PnP loss. The error

comes from epipolar geometry (5.3). Fig. 5.11 depict the actual implementation of the

error.

ℓ(error) = ℓ(pTt K
−TEK−1pk), E = [t]×R. (5.26)

The L1 measure is used as ℓ.

Sparse Epipolar loss:

The sparse epipolar term is identical in details to the dense epipolar loss but it is sparse

and the pk, pt are at floating point locations instead of at integer grid Ω (5.19). They are

just like (5.24). As a result, interpolating it to find the values of f(x, y) from the values at

integer grid Ω is needed. See Fig. 5.9.
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Sparse Optical Flow loss:

Since the sparse matched points pk and pt from AKAZE feature matching algorithm are

available, it is easy to benefit from that to create a supervision over optical flow network.

The pk and pt are at floating points (5.24) and the interpolation over pk and OF is needed.

See Fig. 5.10. Also L1 measure is used as ℓ. See Fig. 5.10.

ℓ(error) = ℓ(pt − pk −OF ) , OF = [δx, δy, 0]T (5.27)

Dense Optical Flow loss:

A dense source to supervise the optical flow network is required. Assume the sequence of

the frames is a three parameters function f

f : (x, y, t) −→ R (5.28)

f(x, y, t) = I (5.29)

where (x, y) is an arbitrary floating point on the image and t is timestamp of the image and

I is the image intensities at the floating point (x, y).

(x, y) ∈ R2, 0 ≤ x ≤ W , 0 ≤ y ≤ H , t ∈ R (5.30)

Assume ∆t is the time that takes the sequence of the frames to go from the frame Ik to the

frame It. Assume the intensity of frames at two corresponding points during this time does

not changes (which is a source of inaccuracy). Then one can expand f at the time k (frame

k is represented by Ik) and around a point (i, j) at the integer grid Ω (5.19) using Taylor

series expansion

f(i+ δx, j + δy, k + δt) = f(i, j, k) +
∂f

∂x
δx+

∂f

∂y
δy +

∂f

∂t
δt+H.O.T (5.31)
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[
∂I

∂x

]
i,j,k

δx(i, j) +

[
∂I

∂y

]
i,j,k

δy(i, j) + It(i, j)− Ik(i, j) ≈ 0 (5.32)

The optical flow network provides us with the δx and δy. The argument here is exactly the

main optical flow heat equation in literature.

Moving object detection loss:

Assume one forces the gradients of each feature map components of the n, t go to zero.

This means that all the feature maps in the entire spatial points, i.e. the integer grid Ω

(5.19) represent only one number which, in fact, change the optimization into a static scene

detection model. Now assume one lets some of the largest values in the gradients do not go

to zero. Then the model can separates the parts of the images that want to move different

than the static scene and different from each others. To this aim, the components of the

n and the t are sorted in absolute value of their spatial gradients (quantiles) so that the

extreme values do not forced to go to zero. These large exempt gradients are, in fact, the

borders of moving objects. See Fig. 5.12. It also can remove noise. In this way, the n and

t CNN is forced to detect moving objects in the scene. The L1 measure is used as the ℓ so

the optimization is robust. As a result, it lets the object behave flexible based on the weight

of the term.

qρ := quantile(∥∇f∥, ρ) (5.33)

Here f is a feature map of size H ×W . Then

mask := {(x, y) : ∥∇f∥ < qρ} −→ ℓ(mask × ∥∇f∥) (5.34)

In practice, the partial derivatives in x and y direction are utilized separately in optimization

in the components of the n and the t for stability reasons. See Fig. 5.12.
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Synchronizing feature maps in the n, t network:

Feature maps of the components of the n and the t are not entirely independent from each

others since they are representing the same (moving) object in the 3D space. The theorem

5.1 addresses this constraint.

Theorem 5.1. Let f and g be two feature maps of sizeH×W are chosen from components

of the n, t.

f, g ∈ {n1, n2, n3, t1, t2, t3}. (5.35)

Then the gradient vector of the f and the g are parallel with each other at each spatial

point.

See Fig. 5.13. In this figure, there is a flexible disk in the center of the scene. The level set

of the object on the feature map f and the feature map g are the borders of the differential

width stripes and so they define the level sets of the two feature maps which are parallel to

each other. So

∇f ×∇g = 0⃗ , ∀ f, g ∈ {n1, n2, n3, t1, t2, t3}. (5.36)

Here × represent vector cross product. In practice, the synchrony between them are

implemented in another way.

∇f ×∇g = 0 −→ fx gy − fy gx = 0 (5.37)

This means
fx
fy

=
gx
gy
, ∀ f, g ∈ {n1, n2, n3, t1, t2, t3}. (5.38)

As a result
n1x

n1y

=
n2x

n2y

=
n3x

n3y

=
t1x
n1y

=
t2x
n2y

=
t3x
n3y

(5.39)

It means if one defines

V := [n1, n2, n3, t1, t2, t3]
T (5.40)
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then Vx and Vy are parallel. So the cos similarity of these two vector must be ±1.

|cossim(Vx, Vy)| − 1 (5.41)

As a result, the loss term can be defined as

ℓ(n, t) = ℓ(|cossim(Vx, Vy)| − 1) (5.42)

The L1 measure is used as the ℓ.

Average length of t:

The difference between the average of the length of the ts over all the integer grid Ω (5.19)

and 0.01 is punished using L1 norm.

5.4.3 Models of the depth, the optical flow and the n,t networks

Models which are used in the depth CNN and the optical flow and the n, t networks are

depicted in Fig. 5.14. In case of the optical flow and the n, t networks, they are fed with

the concatenated frames Ik and the It. Look at Fig. 5.14. This model benefits from the

regularization effect of the spatial size for a better generalization. See chapter 3 for more

details.

5.5 Experiments and results

The numerical experiments are conducted on the KITTI dataset [86] to evaluate the

effectiveness of the proposed algorithm in comparison with the state-of-the-art methods.

Also, the ablation studies are performed to better understand the contribution of the

different settings of the designed cost function and the model.
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5.5.1 Datasets

KITTI. The KITTI dataset contains over 93K outdoor images and the corresponding depth

maps with an approximate resolution of 1240×374. All images are captured on driving cars

by stereo cameras and a Lidar. The trained models are tested on 697 images from 29 scenes

split by Eigen et al. [67]. All the images from the scenes in which one of them is in the

test scenes are removed and the remaining RGB images and corresponding ground truth

are used to train the models.

5.5.2 Implementation details

The overall training algorithm is depicted in Fig. 5.4. The depth network has the structure

which is shown in Fig. 5.14 with some modifications. The number of channels in the first

row of modules are 256, C = 256, and the rest of the modules has 512 channels, C = 512.

In the encoder the Ns are equal to 4, N = 4 and in the decoder the Ns are equal to 1,

N = 1. The other details are exactly similar to what was used in chapter 3. The optical

flow network and the n, t network in Fig. 5.14 are exactly similar to the depth network

except they are fed with concatenated the Ik and the It frames.

Other than the loss terms was described in 5.4.2, two other terms are used during

optimization process. The first one punishes the depth map values out of [dmin, dmax].

Here dmin is the minimum depth value and the dmax is the maximum depth value of the

dataset used. The second one punishes the depth maps scale so that they do not grow large

since there is no other mechanism to control the absolute value of the scale of the predicted

depth map in the optimization. The L1 measure is used for these terms. The weights of

these terms are shown in table 5.1.

The data augmentation is conducted on the training samples using the following methods.

The RGB images and the corresponding depth maps are randomly resized with ratio [1,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8], randomly flipped horizontally, and finally randomly
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cropped to 385 × 513. Note that the depth map should be scaled to the corresponding

resizing ratio [67] in case of the supervised training which does not matter here.

In all of the experiments the base learning rate 1e-5 is used along with a learning rate

scheduling going from 1 to 0 linearly for all training procedures on the KITTI dataset. The

momentum for batch normalization is 0.01 and the batch size is 2. The weight decay and

momentum in the SGD optimization are set to 0.0005 and 0.9 respectively. The model is

trained for 555300 iterations on the KITTI dataset.

5.5.3 Evaluation metrics

Similar to [126] the performance is evaluated quantitatively based on mean absolute relative

error (AbsRel), squared relative difference (SqRel), root mean squared error (RMS), root

mean squared log of error (RMSlog) and the accuracy under threshold (σi < 1.25i , i =

1, 2, 3). See section 1.5 for detailed formula of each measure.

5.5.4 Comparison with state-of-the-art

A comparison of our results with the state-of-the-art methods is shown in table 5.2 for the

KITTI dataset. As shown in Table 5.2, our suggested method does not achieves comparable

results in comparison with the state-of-the-art methods in the current setting. The reasons

is discussed in section 5.6.

5.5.5 Ablation study

In this section, the effectiveness of the two cost function terms, the ”moving object

detection loss” and the ”synchrony loss” are tested. All the implementation details are just

like 5.5.2 except the total number of iterations is limited to 100 iterations. The comparison

of the base model without the two terms and the complete algorithm based on Fig. 5.4 are

shown in table 5.3. As the table shows the suggested loss terms are effective. See table 5.3.
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5.6 Discussion and conclusion

The main benefit of this method is its ability to explicitly model flexible object and the

entire dynamic scene without any assumptions on the number of moving objects. This

emanates from relaxing geometric computer vision PnP and epipolar geometry from one

motion model for the entire scene into one for every pixel in the scene. To change the

optimization from under-constrained to over-constrained while keeping the flexibility of

the model, the ”moving object detection loss” and the ”synchrony loss” were designed.

The algorithm is trained in an unsupervised fashion. However, the whole algorithm comes

with a big disadvantage. It is computationally expensive.

The training procedure is very slow that makes it difficult to compare with the state of the

art. Also, it is not very stable which emanates from opencv’s feature extraction. It needs

to be scrutinized to find the main reason behind this instability, like testing the modules

separately to make sure each is doing what is intended. Also, RAFT model [285] used as

optical flow which was more difficult to train since the RAFT model is computationally

more expansive than the original model from Fig. 5.14 and it is a very low flexible model.

The model which is based on Fig. 5.14 is way more flexible and easier to train.

The backbone of most of the methods is based on two view-geometry. However three

view geometry can deal with the occlusion better [92]. See Fig. 4.8. There are some tools

to deal with three view geometry like three focal tensor. Last but not least, using Bayesian

inference method [23], which is robust to noise as well as its ability to estimate the number

of motion models makes it a good candidate as the filtering tool as well. Also changing the

algorithm to a dynamic scene bundle adjustment setting is a natural extension on top the

current algorithm. These are the future directions to extend this work.
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Table 5.1: The weights of each loss term designed in the section 5.4.2.

The loss term The corresponding weight
The sparse PnP loss 1.0
The dense PnP loss 1.0

The sparse epipolar loss 0.01
The dense epipolar loss 0.01

The Sparse optical flow loss 0.1
The dense optical flow loss 0.1

The moving object detection loss 1.0
The synchrony loss 1.0

The average size of the t 0.1
The depth scale loss 1e-4

The out of range depth loss 1.0
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Table 5.2: Results on KITTI dataset as compared with state-of-the-art methods. The best
result in each column (measure) is depicted in bold text. The second best is underlined.
See section 1.5 for detailed formula of each measure.

Method Error(lower is better) Accuracy(higher is better)
AbsRel SqRel RMS RMSlog σ1 σ2 σ3

Zhou et al. [361] 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yin et al. [348] 0.164 1.303 6.090 0.247 0.765 0.919 0.968

Mahjourian et al. [205] 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Yin et al. [326] 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Wang et al. [308] 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Li et al. [182] 0.150 1.127 5.564 0.229 0.823 0.936 0.974

Zou et al. [366] 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Pilzer et al. [238] 0.142 1.231 5.785 0.239 0.795 0.924 0.968

Luo et al. [62] 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Casser et al. [34] 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Ranjan et al. [248] 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Bian et al. [22] 0.137 1.089 5.439 0.217 0.830 0.942 0.975
Chen et al. [43] 0.135 1.070 5.230 0.210 0.841 0.948 0.980

Li et al. [178] 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Gordon et al. [94] 0.128 0.959 5.230 0.212 0.845 0.947 0.976

Tosi et al. [295] 0.126 0.835 4.937 0.199 0.844 0.953 0.982
Godard et al. [92] 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Guizilini et al. [96] 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Guizilini et al. [96] (velocity sup.) 0.111 0.829 4.788 0.199 0.864 0.954 0.980

Johnston et al. [136] 0.111 0.941 4.817 0.189 0.885 0.961 0.981
Poggi et al. Boot+Self [241] 0.111 0.826 4.667 0.184 0.880 0.961 0.983
Poggi et al. Snap+Log [241] 0.117 0.900 4.838 0.192 0.873 0.958 0.981

Lee et al. [170] 0.112 0.777 4.772 0.191 0.872 0.959 0.982
Gao et al. [81] 0.112 0.866 4.693 0.189 0.881 0.961 0.981

Hui et al. [126] 0.108 0.710 4.513 0.183 0.884 0.964 0.983
Ours 0.495 0.532 10.551 0.524 0.324 0.612 0.809
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Figure 5.1: A dynamic scene. Comparison between frame 12 and 16 of the ally 1 of the
Sintel dataset. The camera is moving which is why the background of the scene (the static
part of the scene) seems moving. The woman in the scene is the flexible moving object
with respect to the scene. One motion model which describes the camera motion (the back
ground or the static scene) is not enogh to model the scene.
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Figure 5.2: A dynamic scene. Comparison between frame 36 and 38 of the ally 2 of the
Sintel dataset. The camera is moving which is why the background of the scene (the static
part of the scene) seems moving. The woman in the scene is the flexible moving object
with respect to the scene. One motion model which describes the camera motion (the back
ground or the static scene) is not enough to model the scene.
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(a)

(b)

Figure 5.3: Two examples, (a) and (b), of the flexible model for two frames structure
from motion optimized on Sintel dataset. The input to this optimization is two consecutive
RGB frames, a target frame and the key frame. The target frame is the gray-scale shown
in top left gray-scale image. Other than these two images the ground truth opticalflow
has been used as well. In the final plan, the opticalflow are extracted from the two RGB
target and key frames using a CNN. In this method, I consider one motion model for
every pixel in the scene instead of only one for the entire scene. The optimization utilizes
two novel constrains, the ”moving object detection loss” and the ”synchrony loss” on the
relaxed flexible scene model to be able to change the optimization from under constrained
optimization to over constrained optimization. kx, ky and kz are the three component of n
and tx, ty and tz are the three component of t. The details are discussed in 5.4.
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Figure 5.4: The overall training algorithm of MDE with explicit modeling of fully flexible
objects and dynamic scene in an unsupervised manner. The inputs to the algorithm are
the two consecutive RGB target and key frames, It and Ik. The depth network, the n and
t network in pink box, and the optical-flow network are all CNN networks to estimate n
and t and the optical-flow from the It, Ik frames and the depth map from the Ik frame.
The estimated depth is of size H ×W , the n and t are each of size 3 × H ×W and the
optical-flow outputs are the change of location of pixels in x, y directions in RGB It, Ik
images (δx, δy) are of size H×W each. The cost function is in blue box. The main idea in
the paper is to relax the motion models to pixel level. The moving object detection loss and
the Synchrony loss are providing the optimization with appropriate constraints so that the
optimization become over constrained instead of being under constrained. The innovations
of this paper are depicted in pink. The algorithm can easily be extended to three frames or
even longer sequences of RGB frames.
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Figure 5.5: Rotation of a vector v around a unit vector n̂ in 3D
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Figure 5.6: Projection into plane P from Fig. 5.5. Since the rotation happens around the
vector n then ∥OH∥ = ∥OH ′∥. So the vectorOB which is the bisector of the angleHOH ′

is perpendicular to HH ′. Then the angle H ′HH” is equal to θ/2. Here ∥n∥ = θ
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K−1 ×D × pk

n

Rotation

t

K p̂t

Figure 5.7: The block diagram of implementation of (5.6). The error is cossim(pt, p̂t)− 1
where pt comes from either the ground truth in AKAZE or from pk + [δx, δy, 0]T in the
dense case.

Figure 5.8: AKAZE features matched between two consecutive frames from NYUDV2.
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(i+ 1, j)
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d1 d2

d3
d4

f1 f2
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Figure 5.9: The output of the CNNs are available in integer grids Ω. However, AKAZE
feature matching algorithm matched the points on the two frames It, Ik at arbitrary floating
points (x, y).
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Figure 5.10: Sparse optical flow error
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Figure 5.11: Dense epipolar implementation based on (5.3).

Figure 5.12: Result of enforcing motion model detection loss on a hypothetical dynamic
scene. There are three sections in the scene. The blue part is the static part of the scene.
A kid and a ball are the moving objects in the scene in pink and green respectively. Mask
here is the black part of the scene which separates different areas from each others. The
mask contains the extreme gradients values.
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Figure 5.13: Two feature maps f, g from the set {n1, n2, n3, t1, t2, t3}. The corresponding
scene is a dynamic scene which contains a flexible object. The round central shades
represent the moving object. It is a flexible object since it has different shades as a result of
having different values in the feature map. The background value represent the ego motion
in static scene. The level sets between these two feature maps are the same if there is a
change in the motion model in the scene in that area. This can be expressed as (5.36) and
(5.39).

Table 5.3: The effectiveness of the two cost function terms, the ”moving object detection
loss” and the ”synchrony loss” are tested. All the implementation details are just like 5.5.2
except the total number of iterations is limited to 100 iterations. The comparison of the
base model without the two terms and the complete algorithm based on Fig. 5.4 are shown
here. As the table shows the suggested loss terms are effective.

Method Error(lower is better) Accuracy(higher is better)
AbsRel SqRel RMS RMSlog σ1 σ2 σ3

Base model 0.630 0.656 12.013 0.620 0.235 0.457 0.674
Base + Synchrony 0.595 0.569 11.642 0.592 0.237 0.472 0.710
Base + Motion det 0.594 0.570 11.468 0.592 0.242 0.477 0.709
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Figure 5.14: Models which are used in the depth CNN and the optical flow and n, t
networks. In case of the optical flow and the n, t networks, they are fed with the
concatenated frames Ik and the It. This model benefits from the regularization effect of
the spatial size for a better generalization. See chapter 3 for more details.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

This study was conducted using two different paradigms. Single-image MDE, which was a

supervised learning-based method, and the other was a multi-frame MDE in dynamic scene

which contains flexible objects which was an unsupervised learning-based algorithm.

6.1.1 Single image MDE

The aim behind [224] was to exploit the similarities between the RGB picture and the

corresponding depth map in the vicinity of geometric edges in the 3D environment. In other

words, it is desirable to direct the encoder to generate better RGB features using the depth

map in order to enhance the depth estimation quality at each spatial point. Nonetheless, the

depth map is unavailable during the test phase. So the ultimate criterion for this guidance

is the sensitivity-enhanced absolute value of cosine similarity between the local embedded

features at each spatial point of the encoder and the decoder. It is permitted because

the decoder’s features are close to the the cost function during the training phase. The

advantage of applying absolute value of local cosine similarity in embedded space over

standard attention techniques, such as dot product, is that it is absolute and normalized,

hence imposing tighter constraints on the network to better govern solution space. It is also
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local, thus it does not complicate the optimization like the non-local versions.

It is important to note that for designing the suggested AGA module which uses the

guidance of the depth map features to shape the RGB features, one might be able to assign

more time and hardware resources to find more effective complex operations instead of

f1(SA1) + f2(SA2) × CA in Fig. 3.4 and (3.2). However, fine tuning the structure and

parameters of such a module would be difficult. Hence, it was decided to use the divide-

and-conquer strategy, where the guidance is divided into additive and multiplicative spatial

attention weights, f1(SA1) and f2(SA2), and channel-wise attention weights CA.

The suggested AGA module is light as all the computations are done locally and it adds

only 0.03% (3e-4) of the total parameters of the base model to the model. So it can be

added to any dense feature extraction module which has an encoder-decoder structure.

6.1.2 MDE in dynamic scene which contains flexible objects

MDE techniques in dynamic scenes rely heavily on either robustness or the estimation of

a certain number of rigid motion models in the scene. The number of motion models is

deemed fixed or must also be estimated. Moreover, these methods are not particularly

designed to model dynamic scenes with flexible objects.

The primary objective of this paper was to explicitly model flexible objects and the full

dynamic scene without making any assumptions about the number of moving objects in the

scene. This is made achievable by relaxing geometric computer vision PnP and epipolar

geometry restrictions from a single motion model for a portion of the scene to a single

motion model for every pixel in the scene. This allows the model to detect even tiny,

flexible, free-floating trash in a dynamic scene.

However, it makes the optimization under-constrained. To change the optimization from
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under-constrained to over-constrained while maintaining the model’s flexibility, ”moving

object detection loss” and ”synchrony loss” are designed. Both loss terms impose

restrictions on the components of the 3D rotation and translation vectors at each pixel and

its 3× 3 adjacent pixels. The algorithm is trained in an unsupervised fashion.

An ablation study is done to compare the extension of the computer vision paradigm

from rigid to flexible bodies with and without the two loss terms. They demonstrate the

usefulness of the ”moving object detection loss” in detecting flexible moving objects within

the scene, as well as the capabilities of the ”synchrony loss” in syncing all six components

of the 3D rotation and translation vectors, as they form the same scene.

The main results, nonetheless, are in no way comparable to the current state of the art. Due

to the sluggish nature of the training procedure, it is difficult to compare it to the present

state of the art. Additionally, the algorithm is unstable. Moreover, the optical flow model

is incredibly noisy and naı̈ve. To accelerate the process, internal second order optimization

within the cost function must be added to the available stochastic gradient descent. In

addition, the loss terms must be studied so that the main cause of this instability can be

identified, such as by evaluating each module separately to confirm that it is operating

as planned. As with the optical flow model, this algorithm requires a network with a high

capacity. It is necessary to develop a novel optical flow network that meets the requirements

of this algorithm.

In addition to the aforementioned drawbacks, the entire method has a significant disadvan-

tage in comparison to the single image supervised MDE. Due to the lack of ground-truth

data required to train the model, training the method is computationally expensive.
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6.2 Future works

After completing the procedure in chapter 5, there are a few potential next paths that come

to mind.

• Adapting the method to handle the interposition/occlusion: The majority of methods

are founded on two-view geometry. However three view geometry can deal with

the occlusion better [92]. See Fig. 4.8. In addition, there exist methods for

modeling three-view geometry, such as the three focus tensor. To handle the

interposition/occlusion challenge explicitly, the first step is to combine the two

elements.

• Extending the algorithm to bundle adjustment in a dynamic scene containig flexible

objects.

• Extending the algorithm to stereo bundle adjustment in a dynamic scene containing

flexible objects to benefit from both temporal and stereo information.

• Adding loop closure

Last but not least, the Bayesian inference technique [23], which is noise-resistant and able

to estimate the number of motion models, is a strong contender for the post-processing tool.
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Ch Martin, Matthias Merten, and Andreas Bley. Shopbot: Progress in developing an

interactive mobile shopping assistant for everyday use. In 2008 IEEE International

Conference on Systems, Man and Cybernetics, pages 3471–3478. IEEE, 2008. 72

[96] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos, and Adrien Gaidon.

3d packing for self-supervised monocular depth estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2485–

2494, 2020. 27, 124

[97] Vitor Guizilini, Rares, Ambrus, , Dian Chen, Sergey Zakharov, and Adrien Gaidon.

Multi-frame self-supervised depth with transformers. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 160–

170, 2022. 84, 107

[98] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien Gaidon. Semantically-

guided representation learning for self-supervised monocular depth. arXiv preprint

arXiv:2002.12319, 2020. 27, 45

[99] Vitor Guizilini, Jie Li, Rares Ambrus, Sudeep Pillai, and Adrien Gaidon. Robust

semi-supervised monocular depth estimation with reprojected distances. In

Conference on robot learning, pages 503–512. PMLR, 2020. 30, 31, 107

150



[100] Xiaoyan Guo and Wen Zheng. Improving monocular depth estimation by leveraging

structural awareness and complementary datasets. ECCV, Lecture Notes in Computer

Science, 2020. 46

[101] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and Xiaogang Wang. Learning

monocular depth by distilling cross-domain stereo networks. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 484–500, 2018. 32

[102] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S

Lew. Deep learning for visual understanding: A review. Neurocomputing, 187:27–

48, 2016. 76

[103] Akhil Gurram, Onay Urfalioglu, Ibrahim Halfaoui, Fahd Bouzaraa, and Antonio M
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