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Abstract

Image classification is an active topic of computer vision research. This topic
deals with the learning of patterns in order to allow efficient classification of visual
information. However, most research efforts have focused on 2D image classification.
In recent years, advances of 3D imaging enabled the development of applications and
provided new research directions.

In this thesis, we present methodologies and techniques for image classification
using 3D image data. We conducted our research focusing on the attributes and
limitations of depth information regarding possible uses. This research led us to the
development of depth feature extraction methodologies that contribute to the rep-
resentation of images thus enhancing the recognition efficiency. We proposed a new
classification algorithm that adapts to the need of image representations by imple-
menting a scale-based decision that exploits discriminant parts of representations.
Learning from the design of image representation methods, we introduced our own
which describes each image by its depicting content providing more discriminative im-
age representation. We also propose a dictionary learning method that exploits the
relation of training features by assessing the similarity of features originating from
similar context regions. Finally, we present our research on deep learning algorithms
combined with data and techniques used in 3D imaging. Our novel methods provide
state-of-the-art results, thus contributing to the research of 3D image classification.
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Chapter 1

Introduction

Image classification is among the most popular research areas in computer vision. Im-

age classification is the process where images are successfully categorized into classes

according to their depicted contents. This topic is related to a variety of sub-topics

which are differentiated regarding the content of the examined images. When the ex-

amined images depict objects then the task of identifying these objects, is known as

object recognition. Further, when the image classification task deals with the identifi-

cation of sceneries, it is termed scene understanding. Whatever the content of images,

image classification approaches are very challenging because they are associated with

large sets of realistic image data.

In recent years there has been great interest in image classification, because many

current and evolving applications are based on the understanding of image content.

The first implementations of image classification were applied in the field of robotics.

Robotic vision, used on robots and autonomous vehicles, consists of multiple tasks

of computer vision which are responsible for navigation, object recognition, human

interaction, and others. Object recognition and scene understanding, allow robots

to understand and interact with objects and their surrounding environment. Similar

applications will eventually find their way to consumer uses such as computer systems

and smartphones. The ability of these devices to recognize objects will provide new

possibilities to many areas such as computer-human interaction, security, human as-

sistance, or even providing new methods for advertising. Currently, such systems are
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used for image retrieval, an application applied to many known web search engines.

Most proposed methods concern the categorization of 2D images, i.e, color or

grayscale images depicting image texture. However, 3D image acquisition sensors

have recently become commercially available as game console controllers and digital

cameras. These sensors acquire 3D images depicting the information of depth. Depth

information consists of range values representing the distance between the depicted

content and acquisition sensor forming a depth image. The resulting depth image,

also known as depth map, can capture shapes, silhouettes and surface textures from

the depicted content. In this thesis, we study the attributes of depth information and

research its effectiveness on modern image classification problems.

1.1 Current challenges in 3D image classification

3D image classification is a novel research topic exploiting depth information and its

attributes in order to reach conclusions about the examined image. However, the

integration of depth information in image classification systems comes with many

challenges.

In the past, research on 3D imaging was limited by the lack of 3D image acquisition

sensors. Those available were either too expensive and development for dedicated

applications or bulky with calibration and synchronization issues. These reasons

adversely affected research efforts and, as a result, the nature and uses of depth were

not fully studied and exploited. The lack of reference methods was reversed only

recently with the introduction of modern 3D acquisition sensors. At the beginning

of our research only some methods had been published, including a 3D dataset [7]

and the introduction of several feature extraction methods [8, 9]. However, these 3D

image classification systems have inherent similarities with 2D methodologies [10,11],

that can not be applied to all 3D image data, as described in Section 2.1.3. As a

result, these methods do not approach the task of 3D image classification effectively.

In this thesis, we report our research on 3D image data and its application for

3D image classification. We investigate the attributes and limitations of depth infor-
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mation. Our goal is also to highlight the use of depth, not only as an image feature

method but as an information that could unveil other image characteristics. The

full exploitation of depth can lead to improved performance, thus contributing to 3D

image classification efficiency. Furthermore, research areas such as object recognition

and scene understanding can benefit from the integration of depth in image classifica-

tion. In addition, proposed techniques for 3D image classification can be implemented

in other areas such as 3D video classification. Methods that use depth for contextual

image information will also be able to efficiently detect and describe objects/sceneries

found in videos.

Improvements achieved though 3D research will bring widespread benefits to ev-

eryday systems used by the general public. 3D image classification will not only

have an impact on robotics and autonomous vehicles but also in other applications.

These applications may include real-world navigation, assistive devices for people with

disabilities, future human-computer interaction and even advertising through object

recognition.

1.2 Contributions

Our research includes a general examination of depth information which advances

throughout our novel methodologies. Our proposed methodologies constitutes, grad-

ually improve our knowledge in 3D image classification. We propose general improve-

ments in every process of an image classification system, starting from data acquisition

all the way to classification. We also implement novel deep learning methodologies

that will contribute to future improvements in the field. All improvements are opti-

mized exploiting attributes but also considering the limitations of depth information.

Our first great consideration was about benchmarks that correspond to realistic

data, ensuring that our future methodologies can be applied to realistic scenarios. To

this end, we introduce our novel Brunel Texture and Depth Image database

(BTDI), a dataset collected by a stereoscopic digital camera. This database focus

on realistic data, easy expandability, ease of use while setting a solid benchmark for
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multiple problems including image/object categorization, image segmentation and

stereo correspondence.

We used the aforementioned dataset to benchmark our novel 3D image classifi-

cation method that combined the individual representations of texture and depth.

For the purpose of depth description, we introduce a novel depth feature extrac-

tion methodology that separates or combines different scales of depth values. This

method allows the extraction of object shapes from depth maps, which are used

for shape feature description. These shape features provide an image representation

from depth features. The representation of depth is concatenated with the represen-

tation of texture, creating a common image representation. This method achieves

top-performing results with small complexity and low computational costs compared

to other competing methodologies. This work motivated us to further develop image

representations and research their relations with classification algorithms.

Feature extraction methods can benefit by the use of encoding methods that pro-

vide more discriminant feature representations. However, feature encoding is gradu-

ally affected from dictionaries, i.e., matrices describing image features, used by the

encoding methodologies. Current dictionary learning methodologies do not take into

account the context from which each of their training features is collected. So, the

relationship between features forming a dictionary is usually described only from

their distance similarity in the feature space. We proposed a dictionary learning

constrain formulating the context relationships of dictionary training features.

This novel similarity measure considers as similar features only those coming from

similar context. Our proposed method outperforms other competing dictionary train-

ing methodologies and achieves top-performing results in one 3D dataset.

Image representation is a key element in the overall performance of image classifi-

cation systems. Most image classification systems use the representation in [2] which

describes an image using spatial information. However, this representation method is

fixed and does not take into consideration the content of each image. In this thesis,

we propose a novel method that constructs a content-adaptive pyramid repre-

sentation creating scales from regions of contents. The combination from encoded

23



features by content scales result in more efficient and discriminative image represen-

tations. Our novel representation outperforms the state-of-the-art methodologies in

two 3D image datasets.

The process of classification is very important for image classification systems

because the algorithm provides a decision defining the identity of each image. The

performance of every classification algorithm is directly related to image representa-

tions which consist the data used for training and testing. To this end, we propose a

novel classification which is more suitable for modern pyramid representations. Our

suggested method studies the discriminative capabilities of each scale vector consisting

a pyramid representation. We introduce a novel scale-based classification which

favors individual scale representations. The scale decisions are processed by a major-

ity voting, thus resulting to an improved classification decision. This methodology

achieves state-of-the-art performance in two 3D datasets.

In the final part of this work, we deal with the development of deep learning

algorithms for 3D image classification. This part of our thesis, studies the

classification capabilities of Convolutional Neural Networks (CNNs) when they are

used with 3D image data. In our experiments, we study the performance of CNN

depth features when used individually or in combination with texture information.

We also introduce a novel method of formulating known image representations as

channels of input data to further enhance classification rates. The proposed method-

ology achieves improved results compared to CNN models that do not exploit the

information provided from representations.

1.3 Thesis Outline

The following outline of this thesis describes in detail the course of our research as

well as the resulting novel methodologies that contribute to the topic of 3D image

classification.

In Chapter 2, we present a literature review of current image classification

methodologies. We describe current challenges in image classification and the design
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of efficient 2D and 3D methodologies. The chapter is divided regarding the individual

processes comprising an image classification system including a separate section about

deep learning.

Chapter 3, presents the process of 3D data acquisition where we describe the

compilation of our 3D imaging dataset. This chapter refers to most modern 3D

datasets and focus on those used for image classification/object recognition. We also

describe the design, acquisition process and other experimental tasks that can be

examined using our dataset.

Our research on shape feature extraction over depth maps is presented in

Chapter 4. This chapter introduce a feature extraction methodology using shape

information extracted from depth maps to describe an image. We also introduce a

3D image classification system which performs a combination of the aforementioned

features with those coming from texture using their individual sparse representations.

In our search for additional image discrimination, we propose a context-based

dictionary training methodology, described in Chapter 5. Most dictionary learn-

ing methods are relating their training features with a distance similarity measure

that does not take into account the context from which each feature was extracted.

In this chapter, we formulate a context similarity measure that constrains the dictio-

nary learning methodologies.

In Chapter 6 we propose content-adaptive image representations. Our pro-

posed method captures content of images using image characteristics such as color,

grayscale intensities and depth. The proposed multi-level representation, combined

the encoded features of each image with regard to each image content.

In Chapter 7, we present a scale-based classification algorithm. The relation

between image representation and a classification algorithm can affect the classifi-

cation performance. Our proped classification methodology adapts to the needs of

modern pyramid representations acquiring and combining the decisions of individual

scales.

Chapter 8 presents our research on deep learning algorithms and their combi-

nation with 3D image data and techniques. We use depth information to enhance the
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performance of the Convolutional Neural Networks (CNN) model. We also propose

a novel formulation of image representation methodologies in order to enrich CNN

input data with spatial or content information.

Conclusions and contributions are summarized in Chapter 9. The chapter also

includes future extensions of the presented methods for further improvements on 3D

image classification.

26



Chapter 2

Literature review of 2D and 3D image

classification

As described in Chapter 1, the research topic of image classification is contributing

to many applications. More recently, novel 3D image acquisition sensors were made

publicly and commercially available. This fact justifies the need for 3D applications,

such as image classification.

In this chapter, we describe the design of 2D and 3D image classification systems,

their relations and advances over recent years. Image classification is a highly regarded

and competitive research topic with newer methodologies presented each year. The

task of image classification systems is to successfully recognize the depicted content

and describe the image with the appropriate class label. This approach is also related

to the research topic of object recognition. In fact, these topics can be considered

the same when using images that do not need an object detection phase first. This

means that when categorizing images depicting objects with little or no background

clutter there is no separation between topics.

The design of modern image classification methodologies can be easily described

by its comprising sub-tasks. These include feature extraction, dictionary learning,

feature encoding, image representation and classification. These processes can be seen

in Fig 2-1, depicting the flowchart of training/testing image classification systems.

The first task of feature extraction addresses the challenge of capturing content
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Figure 2-1: The comprising sub-tasks of image classification systems during training
and testing phases.

information from raw image data. Feature descriptors, are vectors or matrices that

describe small regions inside an image. These regions commonly describe values of

rectangular pixel neighbourhoods. The type of image information captured by fea-

tures regularly describes intensities of color or texture in a discriminant manner. The

discrimination between features is a valuable asset for feature extraction methods

aiming on the creation of similar features describing similar content. Feature extrac-

tion can also be considered as a first level image representation. But the significant

number of extracted features from each examined image, makes the management and

classification of individual features an inefficient process especially for large datasets.

Due to this fact, image classification research focuses on an efficient way of com-

bining image features. This would create a discriminative representation of an image,

favoring current classification algorithms. To this end, researchers developed a series

of processes including dictionary learning, feature encoding, and image representation

techniques.

Dictionary or codebook is the designation of a matrix computed in order to present

patterns of image features. Dictionaries aim in a detailed description of all features

that could be extracted from images found in a dataset. The computations of dictio-

naries help the discriminant representation of examined features. This is achieved by

describing each examined feature as a combination of individual codewords consisting

a dictionary.

The combinations are computed using feature encoding methodologies. The en-

coded vectors no longer represent feature information but the relation of features in
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respect to the learned dictionary. This provides a more discriminant representation

of features, favoring classification rates. Unfortunately, feature encoding can not be

used directly for classification for similar reasons mentioned for feature vectors.

So, the forth task of image classification concludes with the use of image represen-

tations. These methods describe the way in which features or their encodings should

be combined and described in a common representation vector. In their most basic

form, image representations are used to capture the frequencies of features occur-

rences inside an image. In other applications of the same principle, feature encodings

are combined in a histogram to create discriminant feature representation vectors

suitable for classification. These methods treat features as an unordered set of data

or describe features by capturing the spatial layout inside an image.

Finally, we conclude with the classification phase which is responsible for the

decision regarding the identity of each image. The class label provided by the classi-

fication algorithm should correctly correspond to the label that describes the content

of an examined image. A desired attribute of a classification algorithm is its ability

to provide correct decisions in difficult classification problems such as large image

datasets.

More recent methods redefine the conventional model of image categorization

by introducing deep learning algorithms. Deep learning rejects the use of research-

defined image features and representations. The reason is that their efficiency is

limited by their architectures which cannot fully comprehend the nature of data.

Instead, deep learning introduces algorithms able to compute self-taught features,

image representations and even provide decisions. Current research [4, 5, 12] yields

state-of-the art results in many 2D image classification systems.

The classic approach of image classification was developed for 2D images [2, 10,

11,13–30], i.e, images with no information about depth. Most 3D image classification

methodologies [7–9] are designed based on other known 2D systems [11,16]. However,

the existence of depth information, creates different challenges than the ones found

in 2D systems. For instance, there is room for research in feature extraction meth-

ods over depth maps, where different attributes of images can be found. Different
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types of features require different approaches in dictionary training and feature en-

coding that could be favored by the ability of depth to capture image content. Depth

information may also lead to advanced image representations, that either combine

texture and depth feature representations or use depth in order to combine features.

All types of data and representations may require different classification approaches

thus leading to better classification rates. Depth information could also contribute to

the research of novel deep learning algorithms by enhancing input features, creating

better representations and change the architecture of current models.

In the ensuing sections, we describe the current work of 3D image classifications

[7–9] and the elements that are sharing with other known 2D methods [1, 2, 11, 16].

In Section 2.1, we present the advances of feature extraction for texture and depth.

In Section 2.2, modern dictionary methods are analyzed. Then all feature encod-

ing methods used in 3D image classification are described in Section 2.3. Current

methods of image representation are described in Section 2.4 Section 2.5 presents

the significance of classification algorithm in image classification systems. Finally,

deep learning algorithms and their application to image classification are presented

in Section 2.6.

2.1 Feature extraction methods in two and three di-

mensional imaging data

The first process of image classification methodologies is feature extraction, where

several significant regions of an image are represented by corresponding vectors or

matrices known as descriptors. By using these features, we hope to describe effi-

ciently an image and its contents. To achieve this purpose, image features are using a

variety of image information. The first attempts of feature design used color intensity

and grayscale intensities in order to describe an image. However, most successful

approaches use image gradients for detecting and creating image features.

An important trait of all feature extraction methods is their discrimination ca-
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pabilities. Feature methodologies must not compute similar descriptors for unsimilar

regions, thus guaranteeing the efficient description of image content. Other attributes

of image features cover different aspects of use, such as dimensionality reduction. This

means that an image and its contents, can be sufficiently represented by a few high-

dimensional vectors thus reducing data space and computational cost. The feature

vector form is important for linear operations such as transformations and combina-

tions also making them suitable for use in modern classification algorithms.

Great improvements of recent years make the research topic of feature extraction

very active and important. The discrimination capabilities of features, despite current

efforts, are still far from perfect. Even modern methods, compute similar feature

vectors representing different image regions and contents. It is understandable that

in complex situations, i.e, large datasets with great magnitude of image data, feature

extraction discrimination faults can occur. Improvements of feature design can be

studied regarding feature dimensionality and computational cost, which are also an

important factor for real-life applications.

2.1.1 Features on 2D data

Texture based feature extraction

The research of feature extraction, until recently, regarded only 2D images [1,31,32].

2D implementations were most common due to the unavailability of 3D informa-

tion, i.e, depth information of images. Current state-of-the-art feature extraction

methods [1, 31, 32] use image gradient as data in order to describe image regions.

In general, image gradients are very robust to scale and rotation changes and also

capture efficiently image information. All feature extraction methods, use some kind

of representation histogram of image gradients providing the desirable vector form

and discriminative capabilities. The main differences between those methods is the

computation of histogram representation and feature vector dimensionality. However,

in this thesis we do not provide a comparison between feature methodologies because

the purpose of our research does not include the comparison of individual features
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and their characteristics. But we studied the general specifications of image features,

in order to propose our own depth image features.

The most used image feature [2,10,11,13–30] is the Scale Invariant Feature Trans-

form (SIFT) that was presented in [1]. SIFT feature provides invariance to rotation

and scaling and is also partially invariant to image distortions and illumination con-

ditions. This feature computes region representations using image gradients. In order

to find interesting image regions, known as keypoints, it uses scale-space extrema of

differences-of-Gaussians (DoG) within a difference-of-Gaussians pyramid. This pro-

cess finds part of images that are not affected by the use of difference-of-Gaussians

pyramid providing scale invariant keypoints. However, most applications in 2D image

classification [2,10,11,13–30] disregard the keypoint detector. Instead, SIFT descrip-

tors are computed over a dense grid representing the whole image into individual

features. The computation of SIFT descriptors for each point of interest, i.e, key-

point or grid patch, is achieved using a local histogram of image gradients. Usually, a

SIFT feature describes a four by four neighborhood of image pixels containing the gra-

dient magnitudes and directions. Image gradients are quantized in eight directions,

thus creating respectively eight gradient weighted histogram bins. This leads to a

final representation feature of 4 × 4 × 8 = 128 dimensional vector. An illustration

of the computation of a SIFT descriptor is shown in Fig 2-2.

Figure 2-2: The creation of a SIFT descriptor as presented in [1].

In our work, we use the SIFT feature for texture description throughout our

experiments due to its wide acceptance from researchers in image classification. The
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examination of this well established feature, contributed to the design of our novel

features over depth information. Our novel depth features are presented in Chapter 4.

Shape based feature extraction

Shapes can provide very discriminative features, because objects can be distinct due

to their unique silhouettes. The use of shape is considered, in most cases, unreliable

for some applications including image classification. The problem is found in classes

describing unsimilar objects with similar shapes. For example, an image depicting

an orange will provide a similar shape feature with an image depicting a ball. Also,

shapes can not be accurately extracted without the need of user annotation, which is

very time consuming for most image datasets. However, shape features are used in

applications such as shape classification [33,34].

A known methodology for shape representation is the Radon transform [35]. This

transform is a special case of image projection operations. Radon transform computes

the integral of a function along straight lines, thus describing shapes in a projection.

It is very popular in image tomography (for reconstruction) but also found application

in areas such as image segmentation, invariant image analysis [36], Arabic character

recognition [37], filtering and restoring images [38, 39]. The advantages of Radon

features are their low-dimensionality and invariance to shape deformations.

Shape context feature (ShC) [33] was firstly introduced in object recognition

methodologies. The ShC computes histogram-based features describing shapes by

creating a representation among individual shape points. Using the contours of an

object, the ShC method extracts a number of reference points which correspond to

image features. For each examined feature point, a descriptor is created using a log-

polar histogram of limited range divided in multiple bins. The histogram describes

the orientation of other points, found inside its range, in relation to the examined

point. The description also includes the distance between each point regarding the

examined one by using an intensity measure. The closest the distance between ex-

amined points, the greater the intensity value. As a result, each of the examined

points is described by a feature histogram providing the relationship between points
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of contour. The nature of this feature makes it invariant to rotation and scale by

normalizing all distances with the mean distance. Furthermore, ShC provides some

robustness to deformations and image noise.

In a more recent work, researchers in [34] introduced a feature based on the afore-

mentioned Shape context descriptor. The presented Shape-context with inner dis-

tance feature (ShCid) uses a different distance measure creating a more discrimina-

tive representation among shapes. The authors proposed the use of the inner distance

metric, which denotes the distance between two points of the same contour within the

shape boundary. This means that the description of each examined point is relevant

only to points that are close with respect to shape formation. This feature has all

the advantages of the ShC feature improving its discrimination capabilities.

2.1.2 Features on 3D data

Feature extraction over depth image data was not an active research topic until recent

advances in 3D acquisition technology. In previous years, range images, i.e, 3D images,

were very hard to acquire due to the complexity of sensors. Furthermore, the need for

such implementations was limited to specific applications such as robotics. However,

new sensors are easier to operate and commercially available.

Following these advances, the research topic of 3D image classification, i.e, image

classification using both texture and depth, is now an active research. As described

earlier the first step of image classification is feature extraction. Some works [7–9]

cover this topic for 3D image categorization. The challenges of feature extraction on

depth information are mostly associated to the nature of depth maps, and all of the

following methods [7–9] provide unique solutions.

Texture and shape features of [7]

The work in [7] introduces a 3D image dataset consisted of texture and depth images

from the same objects. That paper also includes implementations showcasing the

dataset in various 3D imaging problems, with object recognition being one of those
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applications. As described earlier, image classification and object recognition are

similar problems. When object detection techniques are not involved, then the two

topics theoretically represent the same problem. So, authors proposed a multiple

feature approach in order to achieve better classification rates.

Texture information was obtained using three types of features. SIFT features

on a dense grid of eight by eight blocks, an implementation typically found in 2D

image classification methods. Also, texton histograms [40] were extracted, in order to

capture the texture of each object. Texton feature extraction has two parts including

feature dictionary learning and feature creation. In dictionary learning, a training set

of images pass through predefined gaussian filter providing textons which are then

clustered by k-means algorithm. The texton feature is then created by convoluting

with the filter and labeling. So, each filter corresponds with the texton closest in the

feature-space. The final feature is created by a histogram describing the frequency of

textons found in majority. A texton feature is a process of feature extraction, dictio-

nary learning and feature representation. From the above, one could conclude that

texton features can also be seen as a regional representation. For their experiments

authors in [7] used the pre-built texton dictionary that was created using LabelMe

dataset [41]. Their final feature used for texture was the three color histograms using

the mean and standard deviation of each color channel.

The information of depth was captured using shape features combined with 3D

bounding boxes. For shape features, the spin image features [42] were used, a feature

usually found in 3D model classification. In order to capture those features authors

in [7] use points of 3D image, also known as 3D point clouds. They randomly select a

set of 3D points from which spin features are computed. Spin features use 3D points

that describe objects by its shape properties. This is done by “spinning” the object

around the axis of an examined point thus collecting the contributions of neighboring

points, a process somewhat similar to SIFT descriptors. The extracted spin features

are used to compute Efficient Match Kernels (EMK) representation [16] using random

Fourier sets. Authors enrich the extracted feature by using a 3D bounding cube of

3×3×3 grid which captures that spatial information of features.
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Finally, a simple solution is proposed for the combination of depth and texture

features. The individual features create different image representations, one for each

feature. The individual representation from texture and depth are combined to a

common representation vector. It was experimentally shown that the combination of

depth and texture representations provided the best classification results.

Depth kernel features of [10]

In [10], authors consider that similarity of features computed from histogram rep-

resented methods, such as [1, 31, 32], negatively affect the classification rates due to

quantization errors of the binning process. This problem is addressed by using kernel

functions in order to capture similarities between features. The advantages of their

method are presented in a 2D image classification framework.

Motivated by that work, the method in [8] proposed several descriptors based

on depth information that also use the kernel descriptors method. The introduced

features represent size, shape and edges of depth maps.

Size of objects is described by measuring the distance between all points consisting

a 3D point cloud describing an object. Then, a Gaussian kernel is created to describe

these distances in relationship to a precomputed size feature dictionary. For shapes,

authors in [8] consider two 3D point cloud shape features, such as kernel PCA features

and spin kernel descriptors. For the first descriptor, kernel matrices are evaluated

computing eigenvalues shown to capture efficiently shapes of objects. The spin kernels

are computed using the aforementioned spin features [42], combined with the Kernel

descriptors method [10]. Finally, authors proposed two edge-based descriptors over

depth maps, a match kernel computed by gradients of depth maps, and a kernel from

local binary descriptors.

For the final experimental setup, authors combined the image representations

from texture features [10] and those introduced depth. The combination was sim-

ilarly done to the aforementioned method of [7], by concatenating different feature

image representations. Once again, it was experimentally shown that the combina-

tion of feature and depth provided superior results in comparison with the individual
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representations.

Hierarchical Matching Pursuit in three dimensional image data

The 2D method of Hierarchical Matching Pursuit (HMP) [11] is an unsupervised fea-

ture learning which occurs in two layers. The first layer, describes features extracted

from small image regions (typically 16 × 16 pixels). Each image, is separated in

small image patches (typically 5 × 5 neighborhoods) containing pixel values. A first

level dictionary is computed with K-Singular Value Decomposition (K-SVD) using

the aforementioned patches. Each pixel in these image regions is represented by its

sparse codes which are calculated using the Orthogonal Matching Pursuit (OMP) al-

gorithm. Finally, each sparse code is combined by a spatially predefined max pooling

process that concludes to the first level features/representations.

The second layer uses the extracted first layer features, sampling them into second

class image features (which typically consisted of 4 × 4 first level features). The final

image representation is created by OMP sparse coding, max pooling and spatial

pyramid process applied on the second layer features.

In [11], this process is applied by only using the grayscale pixel values. However,

authors in [9] used color and depth pixel values to compute the aforementioned fea-

tures and their representations. These two image features provide individual image

representations. Their combination is experimentally shown to improve the classifi-

cation rates in the examined dataset.

2.1.3 Disadvantages of current 3D feature methodologies

All the aforementioned feature extraction methodologies [7–9] were designed for depth

map information. In their experimental evaluation these methods use the RGB-D

dataset [7] where all depth maps were acquired using a RGB-D camera. This camera

has the advantage of capturing detailed range values for every pixel, thus creating

detailed depth maps which allow the generation of 3D point clouds.

However, not all depth maps are produced using such sensors with high fidelity.
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For instance, stereoscopic cameras can provide depth maps more robust to outdoor

conditions in exchange to less detailed depth maps. Also, the creation of detailed 3D

point clouds is more difficult using this acquisition sensor. This fact was not taken

under consideration in the design of the aforementioned feature methods. As a result,

some of these feature extraction methods are not applicable or efficient in all types

of depth information.

The features constructed by 3D point clouds such as the spin images [7], and the

shape and size feature of [8] are not applicable when multiple views are not available.

The extraction of 3D point clouds need multiple views taken under a variety of angles.

All views must be processed in order to find corresponding object parts forming the

3D cloud. So features extracted from 3D clouds are useful, but very difficult to

implement on every 3D data.

Image gradients can provide texture information with great success thus contribut-

ing to a variety of feature extraction methods as presented in Chapter 2.1.1. Depth

gradients used in [8] were inspired by a similar methodology in [10]. The depth gra-

dients were computed over a RGB-D acquired depth map that depicts variations of

depth in great detail. However, as described above, not all depth maps are of high

detail. So, computing gradients,i.e, finding variations, is not so important, and does

not provide information that could improve classification.

In the ensuing Chapter 4, we present our work in depth feature extraction methods

based on shape, eliminating some disadvantages of the aforementioned methodologies.

2.2 Discriminative dictionary training methodologies

Dictionary learning (or codebook training) is the process of image classification sys-

tems where a matrix is computed using many sample image features. A dictionary is

learned using a sample of random features extracted from all or a subset of images

found in a dataset. All training features are processed by an algorithm which de-

scribes them in a smaller group of feature vectors called codewords. The collection of

these codewords is called a dictionary (or codebook). The purpose of a dictionary is
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to describe all possible features extracted from all images comprising a dataset using

a subsampling process. The performance of image classification systems is favored

by the computation of dictionaries. The use of dictionaries from encoding meth-

ods provides discriminative feature representations. More information about feature

encoding methodologies is presented in the ensuing Section 2.3.

Dictionaries are used by the majority of 2D [2, 10, 11, 13–30] and 3D [7–9, 43, 44]

image classification and object recognition systems. The popularity of dictionaries is

based on their ability to create more discriminative feature representations. Dictio-

naries, when combined with an encoding method, create a feature representation for

each extracted feature known as feature encoding vector. In most cases the dimen-

sionality of the resulting vector is higher but more sparse. In this way, representing

an image feature by encoded vectors leads to improved discrimination. When all

encoded features are combined by an image representation method, as described in

Section 2.4, the result leads to better classification results.

There are many methods for dictionary construction. The first method is based on

the k-means algorithm, a very popular dictionary method among image classification

methodologies [2, 7–11, 13–30, 43, 44]. Nevertheless, more recent works are oriented

towards more elegant mathematical solutions for dictionary learning. So, method-

ologies such as K-Singular value decomposition (K-SVD) [45], Non-Negative Matrix

Factorization (NMF) [46] and Graph-regularized Non-Negative Matrix Factorization

(GNMF) [47,48] were also considered for dictionary construction.

2.2.1 k-means

k-means algorithm is a classification algorithm which is able to create clusters of

vectors, an ability also known as vector quantization (VQ). In general, this algorithm

computes 𝑘 number of clusters and groups each input data to the closest cluster center.

Cluster centers are relocated computing the mean vector of all input data grouped by

that cluster. This algorithm is used for many machine learning methodologies, but

is also established for computing dictionaries in image classification. As mentioned

earlier, a dictionary is computed from a random set of training feature vectors, here
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denoted as 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁 ] ∈ R𝐷×𝑁 , where 𝑁 is the number of features and 𝐷

representing their dimensionality. These image features were extracted from all or

a subset of the available images. k-means use the available feature vectors in order

to compute the centroid vectors, i.e, cluster centers, describing the mean vector of

a particular cluster. After an iterative process all examined features are grouped by

cluster centroids. Each centroid is considered as a codeword consisting a dictionary.

The computation of codewords is shown in the following equation:

min
𝑈

𝑁∑︁
𝑛=1

min
𝑞=1,...𝑄

‖𝑥𝑛 − 𝑢𝑞‖2 (2.1)

where 𝑈 = [𝑢𝑑𝑘] ∈ R𝐷×𝑄 with 𝑄 the number of codewords, i.e, the number of

centroids comprising the dictionary. Centroids consisting a dictionary are based on

computations of distances between feature vectors in the feature space, thus achieving

small computational cost. This method also creates dictionaries producing discrim-

inative feature encodings, leading to improved classification rates. In some cases,

further constraints such as those proposed in [13, 17] can be applied creating even

more discriminative dictionaries.

k-means may be sufficient for many image classification methodologies, although

the limit of dictionary efficiency is quickly reached with small margin for further

improvement even with the application of constraints. This fact has resulted in further

advances in dictionary learning research.

2.2.2 K-Singular value decomposition

The K-Singular Value Decomposition (K-SVD) [45] is a dictionary learning method

similar to k-means algorithm. The algorithm tries to find the most optimal dictionary

from the examined dictionary training features.

In k-means algorithm, each of the training feature vectors corresponds to its closest

centroid. However, K-SVD method allows training features to be represented as a

linear combination of the codewords found in the dictionary. The aforementioned

optimization problem of k-means becomes:
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min
𝑈,𝑍
{‖𝑋 − 𝑈𝑍‖2𝐹} subject to ∀𝑛, ‖𝑧𝑛‖0 ≤ 𝑇0 (2.2)

where 𝑈 = [𝑢𝑑𝑘] ∈ R𝐷×𝐾 is the dictionary and 𝑍 = [𝑧𝑛𝑘]𝑇 ∈ R𝑁×𝐾 is the repre-

sentation matrix. 𝑁 is the number of features in dictionary training set 𝑋. 𝑇0 is the

sparsity term which defines the nonzero entries of 𝑧𝑛 which can be more than one but

less than the number 𝑇0. This term guarantees the sparsity which this method applies

to the dictionary. This penalty term can be expanded reformulating the problem as:

‖𝑋 −𝑈𝑍‖2𝐹 = ‖𝑋 −
𝐾∑︁
𝑗=1

𝑢𝑗𝑧
𝑗
𝑇‖

2
𝐹 = ‖(𝑋 −

∑︁
𝑗 ̸=𝑘

𝑢𝑗𝑧
𝑗
𝑇 )− 𝑢𝑘𝑧

𝑘
𝑇‖2𝐹 = ‖𝐸𝑘 − 𝑢𝑘𝑧

𝑘
𝑇‖2𝐹 (2.3)

𝐸𝑘 stands for the error for all 𝑁 examples when the 𝑘𝑡ℎ example is removed. The

multiplication of UZ is decomposed to K rank -1 matrices that can be solved using

Singular Value Decomposition (SVD). The error 𝐸𝑞 would also minimize using SVD,

however eq 2.3 does not enforce sparsity.

By using 𝜔𝑘 we describe the indices pointing to 𝑧𝑛 examples that use the atom 𝑢𝑘.

𝜔𝑘 = {𝑛‖1 ≤ 𝑛 ≤ 𝐾, 𝑧𝑘𝑇 (𝑛) ̸= 0} (2.4)

Ω𝑘 is a 𝑁 × |𝜔𝑘| matrix where (𝜔(𝑖), 𝑖)𝑡ℎ entries are ones, and zeros elsewhere.

This matrix can sufficiently describe sparsity and can be applied to eq 2.3.

‖𝐸𝑘Ω𝑘 − 𝑢𝑘𝑧
𝑘
𝑇Ω𝑘‖2𝐹 = ‖𝐸𝑅

𝑘 − 𝑢𝑘𝑧
𝑘
𝑅‖2𝐹 (2.5)

The dictionary and error 𝐸𝑅
𝑘 can be successfully decomposed by SVD in respect

to sparsity. As a result, the optimal sparse dictionary is created by the sparse repre-

sentation of the examined training feature vectors.

The algorithm uses an iterative process in which initially the coefficient matrix

of each training feature vector is computed keeping the dictionary fixed. The second

step uses the coefficient matrices to update the dictionary. Columns of the dictionary

are individually updated, minimizing the error, as in k-means algorithm. This can
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be achieved by K-Singular Value Decompositions, factorizing dictionary columns to

coefficient vectors, which also provide the name of this dictionary learning method.

As in k-means, the output of this method is a matrix representing all examined

training features, although K-SVD can achieve better feature encoding, thus yielding

better image classification results. The codewords no longer present a “mean” from a

group of features, but a linear combination creating more discriminative codewords

comprising the dictionary. Another benefit of this algorithm comes from the compu-

tation process of dictionaries. The simultaneous update of dictionary and coefficient

matrices leads to rapid convergence to the optimal sparse dictionary. However, limi-

tations are found in the computation of the dictionary which favors sparsity, making

this method non-optimal for all feature types.

2.2.3 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) [49] is a matrix factorization algorithm.

NMF can compute two non-negative matrices which are the linear combination of a

non-negative input matrix . For dictionary training feature set 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁 ] ∈

R𝐷×𝑁 , where 𝑁 is the number of 𝐷-dimensional feature vectors, two non-negative

matrices are computed. The resultant non-negative matrices 𝑈 and 𝑍, denoting the

dictionary and representations respectively, provide a fine approximation 𝑋

𝑋 ≈ 𝑈𝑍𝑇 (2.6)

where 𝑈 = [𝑢𝑑𝑘] ∈ R𝐷×𝐾 and 𝑍 = [𝑧𝑛𝑘] ∈ R𝑁×𝐾 , with 𝐾 being the number of

codewords.

Compared to other matrix factorization techniques such as Vectors Quantiza-

tion (VQ), Principal Component Analysis (PCA) and Singular Value Decomposition

(SVD), NMF is the only method that permits additive combinations of its factor-

ized matrices. All other methods also permit subtractive combinations. As a result,

all the above matrix factorization techniques provide different approximation results

from the same data. NMF achieves great results in applications such as face recogni-
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tion [50] and document clustering [51] outperforming other competing methods such

as SVD factorization.

The performance of NMF opposed to other factorization methods made it a suit-

able candidate for dictionary learning in image classification. NMF is trained through

an iterative process presented in [52], which tries to minimize a cost function. The

cost function is the square of Euclidean distance between the matrices presenting the

initial data. In [52], it is proven that NMF will reach the local minima of the cost

functions thus providing better dictionaries.

Despite the NMF’s advantages over other dictionary learning methodologies, this

algorithm will only work with non-negative features. This means that not all available

features are compatible. However, most modern image features are consisted of non-

negative values.

2.2.4 Graph-regularized Non-Negative Matrix Factorization

As described earlier, the NMF methodologies provide top performance in many topics

and also became popular for dictionary learning. Nontheless, this method has limita-

tions which have become a point of interest for researchers. In [47], authors proposed

the creation of a constraint that describes the relationship between dictionary training

feature data. The proposed method is called Graph-regularized Non-Negative Matrix

Factorization (GNMF).

The conventional NMF fits the training data in the Euclidean space thus failing

to discriminate them in the feature space. Though in case of two features are close

in the feature space then their representations should also be close. In GNMF, the

relationship between feature data is presented by a Laplacian graph 𝐿 which consists

of the pairwise distances between all examined features in matrix 𝑊 and a diagonal

matrix 𝐷. The distance matrix 𝑊 is sparse using only a number 𝑘 closest features,

and the construction of 𝐷 is defined as 𝑑𝑖𝑖 =
∑︀𝑁

𝑗=1𝑤𝑖𝑗. The final Laplacian matrix

can be described as:

𝐿 = 𝑊 −𝐷 (2.7)
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The computed Laplacian regulation graph can be applied on an update rule as a

weighting matrix. The update rule tries to minimize the representations of features

which are related to the computed weight matrix.

𝑂 = min
𝑈,𝑍
‖𝑋 − 𝑈𝑍𝑇‖+ 𝜆𝑇𝑟(𝑍𝑇𝐿𝑍) (2.8)

By minimizing the representations 𝑍 the dictionary is trained by keeping the

representations fixed and optimizing the dictionary 𝑈 . The regularization parameter

in eq 2.8 can be further expanded:

𝑇𝑟(𝑍𝑇𝐿𝑍) = 𝑇𝑟(𝑍𝑇𝐷𝑍)− 𝑇𝑟(𝑍𝑇𝑊𝑍) (2.9)

By using this constraint, GNMF has more discriminative power that the conven-

tional NMF. The training feature data can be favored by describing the relationships

between features from different classes. Thus, the discriminant capabilities of GNMF

can improve feature encoding resulting in improved classification results.

However, the greatest advantage of this method is its ability to describe rela-

tionships between dictionary training features. The formulation of the regularization

graph is not limited to relationships in the feature space, but it can also represent

class label information [48] and other structures.

In Chapter 5, we present our work based on this dictionary learning method. We

have developed the formulation of a constraint, describing similarities of context from

which the training features were extracted.

2.2.5 Disadvantages of current dictionary methodologies

A major parameter regarding the performance of an image classification system is the

combination between image feature type, dictionary learning and feature encoding

methodologies.

As described earlier, k-means algorithm is one of the most used dictionary learn-

ing algorithms in 2D and 3D image classification. However, this does not rely on

classification efficiency provided by the computed dictionary. The nature of k-means
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algorithm makes it more compatible with a variety of feature types and encoding

methods. As a result, k-means is not the optimal solution but a good compromise

between performance, computational cost and an exhaustive optimization process.

Multiple examples of this problem are shown in the experimental section of Chap-

ter 5. We present a comparison between k-mean, K-SVD, NMF, GNMF and our

proposed dictionary training method applied to multiple features and different fea-

ture encodings.

2.3 Algorithms used for feature encoding

Feature encoding is the intermediate process between feature extraction and image

representation. This process is found in most image classification systems [2, 7–11,

13–30]. The purpose of this process is to represent each extracted image feature in

relation to a precomputed dictionary.

The dictionary, theoretically, is a general description of all possible features found

inside a database, as described in Section 2.2. Its purpose is to represent each feature

as a combination of codewords found in the dictionary. The encoded vector contains a

number of coefficients corresponding to each codeword creating an multidimensional

vector for each image feature. The encoded feature vectors usually have bigger di-

mensionality than the original feature vector. Nonetheless, the performance does not

deteriorate due to the increased computational cost of a larger vector. This relies

on the fact that the description provided by an encoding feature vector is far more

discriminative than the feature itself. Therefore, the overall performance of image

classification systems is significantly improved.

After the feature encoding process, all encoded feature vectors of an image are

combined by an image representation technique which provides the data for classifi-

cation. Feature encoding is in fact a special case of image representation methods.

More details for image representations are presented in the ensuing Section 2.4. The

research topic of feature encoding is very active constantly improving the recognition

rates in various datasets. In this section, we describe the most used feature encoding
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methods in 3D image classification systems [17].

2.3.1 Vector quantization

As we described in Section 2.2.1, k-means is a vector quantization method that is able

to compute dictionaries. However, the dictionary training problem can be reformu-

lated for feature encoding. Vector quantization (VQ) [2] is applied to feature encoding

by keeping dictionary 𝑈 fixed and solving for the encoding 𝑍. This is achieved by

reformulating the optimization problem into a matrix factorization problem.

min
𝑈,𝑉

𝑁∑︁
𝑛=1

‖𝑥𝑛 − 𝑈𝑧𝑛‖2 subject to 𝐶𝑎𝑟𝑑(𝑧𝑛) = 1, |𝑧𝑛| = 1, 𝑧𝑛 ≥ 0,∀𝑛 (2.10)

where 𝑈 = [𝑢𝑑𝑘] ∈ R𝐷×𝐾 and 𝑍 = [𝑧𝑛𝑘]𝑇 ∈ R𝑁×𝐾 , 𝐾 being the number of

codewords. The cardinality constraint 𝐶𝑎𝑟𝑑(𝑧𝑛) = 1 means that one element of 𝑧𝑛 is

nonzero and defines all elements as nonnegative. So, each of the examined features,

is represented as a linear combination of the dictionary providing an encoded feature.

These encoded features contain one non-zero element indicating the codeword which

corresponds to the quantization class of a feature vector. The non-zero element can

be also found when searching for the closest codeword corresponding to the examined

feature in the feature space. The vector quantization codes are easy to compute

but generally produce great reconstruction errors when compared to other feature

encoding methodologies.

2.3.2 Sparse coding

Authors in [17], proposed an improvement on feature encoding based on vector quan-

tization codes. This is achieved by introducing a constraint, which relaxes the coeffi-

cient regularization which is computed using the 𝑙1 norm [53]. The coefficients of the

examined feature are presented by several non zero elements forming a sparse code.
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min
𝑈,𝑉

𝑁∑︁
𝑛=1

‖𝑥𝑛 − 𝑈𝑧𝑛‖2 + 𝜆|𝑧𝑛| subject to ‖𝑧𝑛‖ ≤ 1, ∀𝑘 = 1, 2, ..., 𝐾 (2.11)

Sparse coding can be computed using the feature-sign search algorithm [49] con-

straining the optimization problem. In [17], sparse feature encoded vectors are com-

bined using the spatial pyramid matching image representation (SPM) [2]. For each

scale vector consisting the spatial pyramid, a max pooling function was applied.

Authors have experimentally shown that only positive coefficients are beneficial to

image representation. This method can be also used for dictionary training using a

constrained k-means.

This encoding method achieves smaller reconstruction errors than vector quantiza-

tion, thus achieving better representations. Also, sparsity is able to capture the salient

patterns of local features from each image. The method achieved top-performing re-

sults for many image classification datasets.

2.3.3 Disadvantages of feature encoding

Encoded vectors have higher dimensionality than the original feature, because they

describe the relation between an image feature and each codeword consisting a dic-

tionary. Nevertheless, regardless their higher dimensionality, encoded feature vectors

provide more efficient representations than the image features which they describe.

The performance of these methods have a direct relation to the type of dictionary

learning techniques used for its construction. As described in Section 2.2.5, the use of

k-means is applied as a solution to this problem. However, the optimization for the

best performing combination is achieved through intense research, as shown in Chap-

ter 5. Feature encoding is often a computational intense process due to its complex

formulation. This fact makes certain methods unsuitable for real-time applications,

but more modern methods such as [13] are aiming towards computational efficiency.
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2.4 The most used image representation methodolo-

gies

As described in previous sections, each image is presented by a number of individual

features. But the direct use of features as training/testing data for classification will

provide insignificant results. This is caused by the discriminatory issues as well as the

magnitude of features. Each image commonly produces a large number of features

that cannot be directly applied to conventional classification algorithms, especially

for large datasets. Image features also have discrimination problems, i.e, features

which will describe unsimilar image content with similar features. This is also the

case even when using more discriminative feature encodings.

Therefore, researchers resorted to combinations between features, or their encod-

ings, in order to provide one representation for each image thus making the clas-

sification more efficient. The representation of features can be achieved by several

methods [2,16,54]. The output image representation vectors are then used as data for

classification algorithms. These methods are similarity functions representing data

extracted from an image, often called as kernel functions.

As described in Section 2.3, the encoding process is a special case of feature repre-

sentation which helps the discrimination of image representations. Further improve-

ments [13,16,17], proposed the encoding process of features before their combination

by a representation methodology. As a result, each image representation is consisted

of feature encoding vectors providing even more discriminative image representations.

The conception of these methods is very challenging, however image representation

techniques [2,16,54] yield great improvements for image classification and are widely-

used in many 2D or 3D systems [2, 7–11, 13–30]. The progress of these methods is

described in the ensuing sections.
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2.4.1 Bag-of-words(BoW)

The Bag-of-words (BoW) [54], or Bag-of-features (BoF), was one of the most popular

representations for image classification and object recognition. BoW model represents

the features of an examined image as a representation histogram. The number of bins

consisting the histogram is equal to the number of codewords found in the dictionary.

In its most basic form, the histogram describes the occurrence frequency of feature

vectors being similar to a particular codeword, i.e, closest in the feature space. This

model is very simple and computationally efficient but not very discriminative.

A more advanced approach of the BoW model, constructs a histogram of encoded

feature coefficients using a pooling method. This method collects all the encoded

vectors of an examined image and computes the mean value of each coefficient, a

method known as average pooling. Eq 2.12 describes the average pooling function

computing an image representation 𝑠 from feature encodings 𝑧𝑛, 𝑛 = [1, ..., 𝑁 ] where

𝑁 is the number of extracted features.

s = 𝑚𝑒𝑎𝑛[|z1|, |z2|, . . . , |z𝑁 |] (2.12)

A similar method creates image representations of max values of encoded vectors

resulting to a histogram of max values, a method known as max pooling.

s = max[|z1|, |z2|, . . . , |z𝑁 |] (2.13)

The advanced model of BoW, outperforms the more simplistic approach. But,

because of dictionary learning and feature encoding processes, it requires greater

computational resources. However, the greatest limitation of BoW model is the rep-

resentation of features in an orderless form.

2.4.2 Spatial pyramid matching(SPM)

The spatial layout of image features was completely disregarded by the BoW model,

which treats features with no particular order. However, spatial layout can be very
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useful when describing objects or image content. The ideal image representation

should capture the content of each examined image and represent objects, scenes

and its comprising parts. However, this is a rather difficult process because the

content can be found in various regions of an image. We propose a solution to this

problem in Chapter 6. So, other methods were proposed exploiting the available

spatial information.

A first implementation of spatial information in image representation was intro-

duced in [55]. This method creates a pyramid of multiple resolution histogram over

unordered feature sets extracted from an image. In each resolution, a coarse grid is

placed over the feature space creating a weighted match process for image features.

Features that belong to individual sets, are considered to match when found in the

same grid cell.

Figure 2-3: The spatial pyramid presented in [2].

In [2], the approach of incorporating spatial information into representation goes

one step further. Using the proposed multi-resolution histogram approach of [55],

this method represents each image into individual representation histograms, unlike

the matches used in [55]. In detail, this method proposes a pyramid construction

of multiple levels that subdivide the image in multiple rectangular regions. The re-

gions are denoted as scales or spatial bins and create a BoW representation histogram

describing each particular region. The scale representation histograms are concate-

nated in a final image representation vector. The method can also be considered as

a special case of BoW collecting content information in a predefined spatial manner.

This method is called Spatial Pyramid Matching (SPM) and is the most popular im-
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age representation for image classification, achieving state-of-the-art results in many

datasets . The architecture of pyramids is described by 𝑙 × 𝑙 scales in 𝐿 different

pyramid levels where 𝑙 = 1, 2, . . . , 𝐿.

𝜅(p) =
𝐿∑︁
𝑙=1

𝑙2∑︁
𝑟=1

𝜅(s𝑙𝑟) (2.14)

s𝑙𝑟 here denotes the scale representation vector ,i.e, the pyramid scale, on the 𝑙-th

pyramid level and 𝑟-th rectangular region. At level 𝑙 = 0 all features are represented

from a single histogram, as a result SPM produces the same representation vector as

the BoW model.

The SPM method was further improved by the methods presented in [13, 17].

These methods implement feature encoding and pooling processes creating more dis-

criminative scale histograms thus leading to improved classification results. These

methods are currently highly regarded and are often referenced in image classifica-

tion methods.

2.4.3 Efficient Match kernels(EMK)

The work in [16] presents an image representation sharing similarities with feature

encoding methodologies. Authors claim that BoW model is too simplistic and can

not really represent the similarities between local features. Therefore, they propose

a representation that captures similarities of features inside the feature space.

This is achieved by projecting feature data from each examined image to a dic-

tionary learned using the K-SVD method. The low dimensionality projection coeffi-

cients, i.e, the encoded feature vectors z𝑛 are calculated as:

z𝑛 = (𝑈𝑇𝑈)−1(𝑈𝑇x𝑛) (2.15)

The encoded feature vectors provide the following local kernel:

𝑘(𝑥, 𝑦) = [𝑈z𝑥]𝑇 [𝑈z𝑦] = k𝑈(𝑥)𝑇𝐾−1
𝑈𝑈k𝑈(𝑦) (2.16)
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where {k𝑈}𝑖 = 𝑘(x𝑛,u𝑖) is a 𝑊 ×1 vector and {𝑘𝑈𝑈}𝑖𝑗 = 𝑘(u𝑖,u𝑗) a 𝑑×𝑑 matrix.

For 𝐾−1
𝑈𝑈 = 𝐺𝑇𝐺 forming a local feature map:

𝜑(x𝑛) = 𝐺k𝑈(x𝑛) (2.17)

the final full feature map is 𝜑(𝑋) = 1
|𝑋|𝐺[

∑︀
x𝑛∈𝑋 k𝑈(x𝑛)]. Implementing the pro-

posed encoding on the SPM representation of eq 2.14, every scale vector is presented:

s𝑙𝑟 = [|𝜑(x1
𝑙𝑟)|, |𝜑(x2

𝑙𝑟)|, . . . , |𝜑(x𝑁𝑙𝑟
𝑙𝑟 )|] (2.18)

So, the resulting representation vector can be perceived as a combination of feature

encoding and image representation methods. This representation method results to

a histogram comprised by encoded vectors, like the advanced model of BoW method.

This method achieves top-performing results when combined with a SPM pyramid

image representation.

2.4.4 Disadvantages of image representation methods

Image representation methods have been successfully applied to many image classifi-

cation systems. However, these methods also have disadvantages and limitations that

have not been sufficiently studied.

All image representations result to a long vector that is complementing the use and

performance of classification algorithms. Even more complex representations such as

pyramid representations are concatenating their individual scales, i.e, regional rep-

resentations, to produce a vector suitable for classification. Although, there is no

guarantee about the discriminatory representational value of each individual scale

vector. So scales with small discriminatory capabilities that adversely affect catego-

rization are still used in the representation of an image. Another fact is that scales

are collected in a predefined spatial manner thus capturing the spatial layout of an

image. This method can provide great results when all examined images depict an

object or the main content in the center of the image with little or no background clut-

ter. This makes pyramid representations somewhat restrained when used in realistic
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data, because the content of images is not always found under the aforementioned

conditions.

In Chapter 7, we studied the success of current image representations, providing

solutions to some of the aforementioned problems.

2.5 Classification algorithms of image classification

systems

Classification is the final stage of an image classification system providing the decision

for the identity of each examined image. The task for every classification algorithm is

to make a correct decision for unknown input data. In the case of image classification,

image features or image representations consist the data used for classification.

Classification algorithms are categorized by three types of learning, regarding the

training process. The first category, is the unsupervised learning in which classifica-

tion algorithms have no knowledge about the labels of data, i.e, the class from which

each image is derived. In most cases, these algorithms are computationally efficient

but do not provide great classification rates for large collection of data. The second

category is the semi-supervised learning where only few labeled data are available

from a large set of unlabeled data. This method achieves better classification rates

than unsupervised methods benefiting from the extra data label information. The

last type is supervised learning where every data is labeled in each class. The labels

of data are available for use only during the training phase of the system. So, the

classification algorithm is able to create class-specific attributes. Testing data labels

are unknown to the classification algorithm, and are only used for validation purposes.

In general, this kind of learning is the most successful for classifying large datasets of

labeled data with the trade of higher computational demands.

In image classification, the majority of systems use supervised learning for their

classification stage providing decisions for every image. Image datasets are usually

very large, containing multiple images organized in several classes.

53



The classification is separated in two phases. The first phase is the training,

where a number of images is exclusively used for this process. The training data are

consisted of the representation vectors describing training images, and their respective

class labels. The training set must be strictly randomly selected in order to ensure

that data are not deliberately selected to present better performance. The training set

will allow the classifier to learn patterns of image representation data. The training

method of each classification algorithm differs in execution. But in most cases the

methodology includes an iterative process that allows the algorithm to learn and

minimize the training error.

The testing process uses the rest of the images that were not selected by the train-

ing process. This creates a testing set from image features or image representations

and their identities, that are not known to the classification algorithm. The class la-

bels of each testing image is not used by the classification algorithm during testing but

they will be later used for validation. Since the training set was randomly collected,

the testing set is also a random collection of image data. The process of testing,

use the unknown data provided by the test set in order to evaluate the performance

of the classification system. So for each test sample the classification algorithm will

provide a decision label, i.e, a class label assigned to the unknown sample. If the

decision provided by the classification algorithm describes the same label as the true

label of the testing sample then the sample is correctly classified. By measuring the

successful decisions of the classification algorithm with respect to the number of the

testing samples we are able to calculate a success rate.

The efficiency of an image classification system is measured by the success rate

achieved in multiple datasets. The success rate is based on two parameters, the

data used for classifications and the classification algorithm itself. The most used

data for image classification are the final image representations, presented in detail

in Section 2.4. For classification, the Support Vectors Machine (SVM) algorithm is

used in most image classification methodologies. This algorithm and its advantages

are described in the ensuing section.
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2.5.1 Support vector machines

Support Vectors Machines (SVM) [56], is the most used classification algorithm in

image classification [2, 7–11, 13–30, 43, 44]. In its most simple example, the SVM

algorithm is trained to find a hyperplane separating the data forming two classes.

The hyperplane is placed among the data thus representing the separation between

each class. This is done by finding the intermediate distances between data found

by the boundary samples of each class. The SVM algorithm decides the label of an

unknown sample by finding in which side of the hyperplane that sample is found.

Linear classification is possible using the SVM when the separation of data is

linearly possible. Although, in most cases data is not easy to separate because the

classification problem is more complex. An advantage of the SVM algorithm is that

it can handle both linear and non-linear classifications. The non-linearity on classifi-

cation is achieved by using of the kernel trick which projects the original data to a

higher-dimensional data space. The implementation of the kernel trick is easy and

can provide separable data in higher-dimensional spaces.

For multiple classes the training process is little more complex since a number of

hyperplanes must be computed. The first categorization strategy is the one-against-

all [57] which uses the data samples of one class and tries to separate them from

all other samples. This method constructs 𝑗 number of hyperplanes for 𝑗 number of

classes. The decision function of one-against-all strategy is presented by the following

equation.

𝑓 𝑗(p) = (
𝑀∑︁
𝑖=1

𝑎𝑗𝑖p𝑖)
𝑇p+ 𝑏𝑗 = w𝑇

𝑗 p+ 𝑏𝑗 (2.19)

which separate the 𝑗th class from the rest. In eq. (2.19) w is the normal vector

to the separating hyperplane, 𝑎 the Lagrange multiplier, and 𝑏 the y-intercept of the

border line created by the support vectors. If Λ is the number of classes and 𝑀 the

number of available training images, the SVM learns Λ linear functions using the

representation vectors p𝑖 as training data, {(p𝑖, 𝑦𝑖)}𝑀𝑖=1, 𝑦𝑖 ∈ Υ = {1, ...,Λ}. Each

linear function 𝑓 𝑗(·) is defined by {w⊤
𝑗 p|𝑗 ∈ Υ}.
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The second strategy is called one-against-one [58] in which the hyperplanes are

computed between class pairs. So, for each class, multiple hyperplanes are computed

separating it from all other classes. These methods provide similar to identical results

with the only difference being the computation process of each method.

The above specifications of the SVM algorithm show that it can solve complex

classification problems. These attributes are highly regarded by researchers of image

classification which use this algorithm as their default classification methods.

2.5.2 Disadvantages of classification algorithms

The SVM algorithm is used for classification in most image classification systems.

It does not present any serious disadvantages, except the computational cost of the

algorithm when used in large datasets.

However, researchers “force” image representations to be presented in vector form

in order to benefit from the efficiency of this algorithm. This setup limits the design

of representations and adversely affect classification performance. Especially image

representations comprised by individual vectors, can lose their discriminatory capa-

bilities when concatenated in a vector form. A research about the effects of image

representations on classification, and a solution to the aforementioned problem is

presented in Chapter 7.

2.6 Deep learning research on image categorization

problems

Deep learning is topic of machine learning describing multilayer architecture algo-

rithms that learn representations of input data. Conventional machine learning ap-

proaches rely on hand-crafted features that represent input data in order to achieve

a recognition task. However, the construction and use of these research-defined fea-

tures is limited by their shallow architecture which cannot comprehend and efficiently

describe the nature of input data. Deep learning algorithms overcome this problem
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by applying multiple layer, i.e, a deep architecture, on feature extraction and data

representation. Deep architecture allows the creation and representation of features

with respect to the nature of input data.

The implementations of deep learning algorithms have been successfully applied

to text recognition [59], object detection [4, 6], object recognition [5, 60], face recog-

nition [61], scene parsing/labeling [62]. Deep learning algorithms benefit from their

architecture, learning features more efficiently thus achieving state-of-the-art results

in all aforementioned research topics. We continue this section by presenting two of

the most commonly implemented deep learning algorithms.

2.6.1 Deep Belief Networks

Deep belief networks (DBNs) [63] is a generative graphical model separated in a layer

of visible units and multiple layers of hidden units which are stochastic. The layers

present directed or undirected connections between variables of the previous layer.

Layer architecture consists of stacked Restricted Boltzmann Machines (RBMs), which

learn high-level feature representations in an unsupervised manner.

Figure 2-4: The iterative pre-training model construction of a Deep Belief Network
as presented in [3].

The most important contributions in the development of DBNs was presented

in the work of [63], where a layer wise greedy training was proposed thus achieving

better performance and reduced computational cost. More recently [64] proposed a
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Convolutional RBM (CRBM) where layer connections are available among all im-

age locations. By creating multiple layers of CRBMs, followed by a max pooling

process, this architecture can learn hierarchical representations of images achieving

top-performing results. However, DBNs have the disadvantage of all unsupervised

training algorithms where the lack of training labels affect the classification perfor-

mance.

2.6.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a variant of feed forward neural networks

where each neuron corresponds to overlapping regions that mimic receptive fields.

The first implementation of CNN was introduced in 1980 by Fukushima in [65]. A

very influential model for the development of CNN was presented in [59]. The LeNet-

5 CNN, is a fully connected multilayer network that extracts features from input

data using convolutional and subsampling layers. This model can effectively classify

numbers with successful applications on recognizing checking numbers. However, this

model was prone to overfitting and could not be applied to solve more complex prob-

lems. In [12], authors proposed an improvement of LeNet-5 that introduces a more

deep architecture (7 layers) consisted of 60 million different parameters. The train-

ing and testing of this CNN was made possible by implementing software optimized

for graphical processing units (GPUs). A dropout process that prevents overfitting

was introduced making this model very successful in image categorization, achieving

state-of-the-art results in very large image datasets.

The architecture of CNNs can be separated in two sections that include a feature

section and a decision section. As feature section we denote those layers that either

use the input data or the output data of other feature layers in order to create image

features. Features that come from the last feature layer are passed to the decision

section. This section consists of layers degrading features in a final representation

creating decision labels for each input data.

The individual types of layers consisting a CNN are the convolutional layers, the

pooling layers, the ReLu layers and the Loss layers. These layers can be found in
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different order, with different parameters and can be found in the feature or decision

section of a CNN. This leads to the creation of specific architectures that encounter

different machine learning problems.

The convolutional layers are the main type of layers consisting a CNN. This

type of layer use either the input of raw data (first layer) or the output of previous

layers. The data is collected using an overlapping process that creates feature maps

used in a discrete convolution with the convolution kernels of this layer. So, for input

data 𝑥, the 𝑘𝑡ℎ feature 𝑦𝑘 of a given layer can be computed as follows.

𝑦𝑘𝑖𝑗 = tanh((𝑊 𝑘 * 𝑥)𝑖𝑗 + 𝑏𝑘) (2.20)

where 𝑊 𝑘 is a linear filter containing weights, known as the convolutional kernel

and 𝑏𝑘 is that layer’s bias parameter and 𝑖, 𝑗 are indexes corresponding to columns and

rows. Eq. 2.20, shows the feature extraction over a single input channel. However,

these equations are applicable in multidimensional data such as color images and

combinations between color and other information as shown in Chapter 8.

Pooling layers are used to perform subsampling process on input data, usually

the output of convolutional layers. The pooling process extracts one value from a

patch of input pixels partitioning input features in non overlapping neighborhoods.

The described value is either the average or max value of all the examined pixels

inside each neighborhood. This layer reduces the dimensionality of hidden units and

provides invariance to local translations, especially in the case of max pooling. Pooling

is an important process for complex problems, including object detection and image

classification.

The rectifier liner unit or ReLu layer uses an activation function usually 𝑓(𝑥) =

max(0, 𝑥) which increases the non-linearity of a network without affecting the overall

process. The CNN models using ReLu layers, usually between the convolutional

and pooling layers, have less computational requirements in their training phase.

Other functions that can be described by a ReLu layer include the hyperbolic tangent

𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥), its absolute value 𝑓(𝑥) = |𝑡𝑎𝑛ℎ(𝑥)| and the sigmoid fucntion 𝑓(𝑥) =
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(1 + 𝑒(−𝑥))−1.

Finally, the Loss layer is the final layer consisting a CNN model which is the

one responsible for making decisions. These layers represent several loss functions

that perform different tasks. The most commonly found is the softmax loss function

that can estimate the probability of each class. Sigmoid cross-entropy predicts the

independent probabilities corresponding to each class with values ranging from zero

to one. And last is the Euclidean loss function where predictions are presented from

values ranging from [−∞,+∞].

2.6.3 Disadvantages of deep learning techniques

Despite their advantages, the use of deep learning algorithms comes with a great

computational cost. The proposed multilayer architecture requires a great magnitude

of training data and exhaustive training. The exacting iterative training process is

caused by the back-propagation phase (or up-down process of DBNs) in order to

minimize the training error. Researchers have resorted to multi-processing techniques

in order to resolve this issue. But even with modern techniques, using graphical

processing units (GPUs) performing faster computations than processors, the training

phase can take days up to several weeks.
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Chapter 3

3D data acquisition for dataset

composition

In this chapter, we present the process of designing and compiling our novel 3D image

dataset. We compiled this dataset in order to create a solid benchmark for our ongoing

research on 3D image classification.

The common way of scientifically evaluating an image classification method re-

quires an experimental procedure, where the success of a method is measured by

classification rates on several datasets. Modern theories in learning and evaluation

suggest that datasets cannot reach the variety of images and objects found in the real

world. As a result, some proposed methods may perform well in fixed datasets but

may not be applicable in real world scenarios. So, researchers seek datasets repre-

senting real-world data in order to evaluate and present the validity of their methods.

Image classification and object categorization for 2D images is a well established

problem and an area of active research. This research is supported by a large multi-

tude of image databases that are publicly available. These datasets are consisted of

a large number of images divided in several classes. While several datasets [2, 66–71]

are available for testing 2D image classification algorithms, 3D databases have been

less widely used. That is because 3D image sensors were either not publicly available

or required complex construction and operation.

Modern 3D acquisition sensors became publicly and commercially available in
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recent years. The most popular acquisition sensors are range cameras, including 3D

scanners and stereoscopic cameras. Both sensors have the ability to capture depth

images, i.e., images showing distance values per pixel. Depth information, depending

on sensor and application, can be provided as a depth map or a 3D point cloud. In

image classification, both these formats can be useful providing shapes, surfaces, and

other information about the scene or depicted objects.

The structure of databases used for image classification or object categorization

must have a variety of specifications. A good example, should include numerous

images with a wide variety of classes. Images should be of sufficient quality and

include depth information in the form of a precomputed depth map. They also

should not require any further preprocessing before usage.

Early multi-view databases [72,73] were largely unsuitable for image classification

because they were compiled for different research purposes. An early effort on 3D

object categorization was presented in [74]. That work was also accompanied by a

small dataset, considered unsuitable by modern standards. Novel 3D datasets used for

object categorization [7,75] consisted of objects. They are captured using a turntable

setup where multiple views of the depicted object are collected.

There are also datasets compiled for other problems of 3D imaging. These datasets

propose individual architectures and setups according to their intended use. Other

datasets were designed regarding segmentation and pose estimation problem [7,76–79]

under controlled conditions, where multiple objects are found in a scene. There are

also datasets created for scene annotation and object detection [7, 80–87] which are

collected from modern 3D scanners under less controlled conditions. Other datasets

are used in recognition and mapping of surrounding environment (SLAM) as well as

camera pose estimations [88–94]. Finally, there are datasets using human activity as

data for various applications. Some of these applications include tracking objects and

human activity [95–99], person identification [100], human gestures [101,102] and face

detection/recognition [103, 104]. Of course, all the above datasets and topics are a

fraction of the possible applications that can be researched by the emerging topic of

3D imaging.
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At the beginning of our research, we noticed the lack of datasets suitable for

image classification. To this end, any proposed method could only be tested by

one dataset [7]. That fact motivated us in the designing and collecting of a novel

dataset, with respect to the aforementioned attributes regarding image classification

datasets. Our novel database differs from other modern approaches, introducing a

novel compilation framework and acquisition process. To our knowledge, the proposed

acquisition format and organization, was never used in any other modern 3D dataset.

We used a digital stereoscopic camera, that is not greatly affected from illumination

changes under natural conditions. Unlike other modern datasets [7, 75], that sensor

type gave us the advantage of capturing both indoor and outdoor images. As a result,

we provide a more realistic benchmark for every image classification applications.

In the ensuing Section 3.1, we present the related work of other datasets that

can be used for 3D image classification and 3D object categorization applications.

Section 3.3, presents our novel dataset describing the design, the acquisition process

as well as the uses of our proposed dataset from other research topics. Finally in

Section 3.4, we draw conclusions and share our future plans regarding the development

of our novel database.

3.1 Related work

An early work in 3D object categorization [74] introduced the 3D object categories

dataset. That dataset consists of images representing 8 objects including bikes, shoes,

cars, irons, computer mice, cellphones, staplers and toasters. Each class, contains 10

different objects captured in multiple views. Due to the use of a common digital cam-

era, authors had to develop an acquisition process including 8 viewing angles, 3 heights

and 3 scales resulting to approximately 7000 images. Interestingly, the database was

compiled using indoor and outdoor images forming a dataset with modern design.

Some images found in that dataset are shown in Fig 3-1.

However, the proposed framework in [74] was unable to recover full 3D object

geometry and depth values. This was caused by the use of a single camera and the
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Figure 3-1: Example images from the 3D object categories database.

predefined capturing process. In 2007, when [74] was published, the most sufficient

way to capture depth was by using two individual cameras on stereoscopic setup.

However, this method presented 3D objects by using mutual homographic transfor-

mations. Nevertheless, the setup capturing the 3D geometry plus the small size of

that dataset makes it not suitable for benchmarking modern 3D methods.

The first large scale 3D image dataset suitable for categorization was the RGB-D

dataset [7]. That dataset was designed for testing multiple problems of 3D imaging

including object recognition, object detection, video annotation and segmentation

algorithms.

The database consists of 300 everyday objects divided in 51 classes with images

taken from multiple angles. This was possible by placing the objects on a turntable

turning at a slow constant speed. All images were captured indoors and under con-

trolled illumination setup. Image data were also collected at three different height

of 30, 45 and 60 degrees angle to the horizon created by the turntable. The number

of images is approximately 250 frames per object, also organized in video sequences.
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Image acquisition was done using a RGB-D camera capable of capturing both texture

and depth information simultaneously. Using the aforementioned setup the dataset

consists of 250000 frames depicting texture and depth information. The texture im-

ages contain background, showing the white turntable. But they are also available in

a cropped form, removing the background and highlighting the object. Each object

has additional depth information in the form of depth maps and 3D point clouds.

Example images from the dataset are shown in Fig 3-2.

Figure 3-2: Sample images from the RGB-D dataset

As described in Chapter 1, the categorization of objects makes that dataset also

suitable for testing image classification methodologies since these topics are related.

Overall, the large number of images makes that database a quite demanding bench-

mark. That dataset provides medium resolution images combined with qualitative

depth information, an attribute needed for a modern benchmark. Nevertheless, the

specific acquisition setup and sensor does not cover outdoor scenarios and uses.

More recently theBigBIRD [75], i.e, (Big) Berkeley Instance Recognition Dataset

dataset was introduced, proving the growing need for 3D datasets. That dataset was

created in order to address shortcomings of other 3D image datasets, such as low

image quality and less detailed depth maps.
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That database (in its current version) consists of 125 household objects which

are not registered in classes but organized as different instances. For each object,

600 RGB-D style images are acquired using a glass turntable with white background

providing texture and depth information. Those images are depicting the object from

five different height angles ranging from zero to 90 degrees and every three degrees

horizontally concluding to 120 views. All images were acquired using a combination

of high-resolution digital cameras and RGB-D sensors. The equipment was placed on

a rig with five different bases corresponding to the five different height angles. All

texture images are of high resolution with accurate calibration, also provided with

object segmentation. Depth information is provided by a depth map and full-object

3D meshes. Example images from the dataset are shown in Fig 3-3.

Figure 3-3: Sample images from the BigBIRD dataset

Despite its detail and quality, this dataset is far from suited for benchmarking

image categorization methods. The main issue is that objects are not organized into

classes, and the variety of objects leave no room for such organization. Also, as men-

tioned earlier, the acquisition framework used in that database makes it unsuitable

for benchmarking methods for outdoor scenarios and uses.
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3.2 Review of 3D acquisition sensors

As described above, the design of our proposed database focuses on describing re-

alistic acquisition conditions, thus creating a challenging benchmark for 3D imaging

problems. To this end, we capture objects in realistic conditions of lighting, back-

ground and shading. Our goal was the extraction of depth information from objects,

thus capturing object properties such as shapes, surfaces, etc.

Figure 3-4: A collection of modern 3D sensors.

Depth can be acquired by range imaging sensors, cameras able to create images

depicting distance values in each pixel. The selections of available sensors when

compiling our dataset was limited to structured-light 3D scanners (Microsoft Kinect,

Asus Xtion) and digital stereoscopic cameras. A collection of these sensors can be

seen in Fig 3-4. Structured-light 3D scanners are also referred to as RGBD cameras.

Other selections such as LIDARs, Time-of-flight cameras (ToF) and other types of

3D scanners were disregarded due to cost and difficultly of use.

The Microsoft Kinect sensor is a RGB-D camera, i.e, a structured-light 3D

scanner combined with a RGB sensor. It was firstly introduced as a motion sensor

for the Microsoft Xbox gaming console. This sensor has the ability to capture depth

information by using an infrared laser projector that constructs a specific light pat-

tern. When combined with a CMOS sensor and a dedicated firmware, Kinect can

translate deformations on the laser pattern into depth information. An example of
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this process can be seen in Fig 3-5.

Figure 3-5: The process of making a depth map from infrared light patterns of Mi-
crosoft Kinect sensor.

This sensor was initially used for detecting motions of users in order to control

some functions of the gaming console. Researchers and computer vision enthusiasts

became interested in the abilities of Kinect and "hacked" the sensor by using custom

software. The growing uses of Kinect caught the attention of Microsoft which provided

drivers and a software development kit. The sensor is able to provide RGB images,

i.e, texture images, and image streams using an 8-bit VGA with 640×480 resolution

and is even capable of collecting 1280×1024 on lower frame rates. The structured-

light sensor provides detailed depth maps with low deformations ranging from 1.2

to 3.5 meter approximately. The combination of texture and depth images is often

referred to as RGBD or RGB+D images. The aforementioned specifications made

Kinect very popular among researchers in 3D object recognition, resulting in the first

database presented in [7].

This sensor comes with several limitations that should be taken under consid-

eration. In order to capture an image comprised by texture and depth, the sensor

requires a computer connection and capturing software thus affecting portability. It

also requires an independent power supply because the computer connection can only

provide data transfer. Finally, the infrared ranging sensor can be easily corrupted

by natural lighting. As a result, the use of this sensor constitutes a bad choice for

outdoor applications.

Stereoscopic cameras are acquisition devices built with two individual lenses
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emulating the binocular vision of humans. Binocular vision is the ability of creatures

to perceive depth using a pair of eyes. Each eye receives an image slightly shifted

from the other. The brain can perceive depth by measuring the disparity between

images from each eye.

Depth information of stereo digital cameras is extracted using stereo triangula-

tion. The calculation of depth pixel values is done by finding the horizontal disparity

of corresponding regions between images. This problem can be solved by stereo cor-

respondence algorithms that provide a depth map for the depicted image scenery.

The most common setup of previous years required two individual digital cameras

mounted in pairs, in order to capture stereoscopic images. These setups were bulky,

required perfect alignment and in most cases synchronization between cameras. In

recent years, the advances on 3D camera design developed two main camera types.

The first camera type consists of two lenses corresponding to one image sensor. The

second camera design includes a pair of independent lenses corresponding to individ-

ual acquisition sensors. Essentially the first type is less complex but provides lower

resolution images and difficult image stereo processing, since two views share a com-

mon image sensor. The second type of stereoscopic cameras has the advantage of

eliminating alignment, synchronization and low resolution issues since two indepen-

dent image sensors are controlled by the same camera. Both types of stereoscopic

cameras are found commercially as portable handheld devices and provide ease of

operation.

3.3 Brunel Texture and Depth Image database (BTDI)

In recent years, the use of 3D image acquisition sensors became more popular among

researchers. Research of new 3D imaging methodologies required more 3D image

datasets. At the beginning of our research, we realized the lack of datasets capable of

testing 3D image categorization methodologies. The need for challenging benchmarks

in which we could present our 3D image classification methods became apparent.

Most publicly available datasets were either created for different implementations
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or outdated by modern standards [72,73]. It became apparent that in order to cover

the needs of our research we had to compile our own dataset. This research provided

a better understanding about the nature of 3D acquisition sensors and acquisition

techniques. We wanted to compile a database with no limitations in lighting, image

quality and resolution leading to less challenging benchmarks. Therefore, we intro-

duced a novel 3D image dataset called Brunel Texture and Depth Imaging dataset

(BTDI) [43] consisting of stereoscopic images.

3.3.1 Designing a dataset

Dataset composition starts by carefully planning the acquisition requirements and

intended uses. In order to complete the design of our novel dataset, we took under

consideration the format of other known 2D and 3D databases.

Known 2D image classification datasets [2,66–71] usually include images collected

from web image searches. Images consisting these datasets contain one object per im-

age, usually found in the center of each image with little background clutter. These

datasets have an easier composition process often using data available online. How-

ever, the magnitude of collected images create problems in data organization. The

aforementioned image specifications, i.e, little background clutter and objects de-

picted in the center, may lead to less efficient methods for real life applications. This

is also the case in modern 3D databases [7, 75] where images and depth maps are, in

their majority, acquired under controlled environments. We consisted a dataset from

images captured under controlled conditions and realistic imaging scenarios. BTDI

dataset is a good mixture of controlled and uncontrolled photographic environments

targeting at a wider range of applications and more challenging benchmarks.

All of the aforementioned datasets present objects which are separated in multiple

classes. The contents of these image sets are in their majority common objects,

such as household objects. The identification of images containing common objects

have a direct application on robotics and other applications. We wanted the same

indented uses and benefits of this design for our proposed dataset. So, we captured

common objects in natural environment and under controlled indoor conditions. The

70



main indoor image theme is common household objects, like clothing and cutlery.

Outdoor images mainly represent buildings, trees and plants, some of them under

difficult illumination conditions. Some objects corresponding to the same class are

depicted both indoors and outdoors, thus creating a challenging intra-class format.

For instance, one of the categories, clocks in particular, represents both indoor and

outdoor images, depicting table clocks as well as building clocks. The collection of

all classes can be seen in Fig 3-6.

Figure 3-6: Example images from the BTDI database.

An important attribute for all dataset designs, is a proper number of classes and

images. In some cases [70, 75], the number of classes was not fixed but is constantly

expanding. The collection of 3D image data is a very complex process requiring

human validation in order to preserve the good quality of a dataset. This validation

process reduces the initial number of acquired images, because some of them are not

of sufficient quality both in texture and depth. But the number of images per class

is a very crucial issue in the design of a database. So, the more images per class the

better a database becomes. The first edition of our database consists of 98 stereo

image pairs organized in 13 classes, a challenging benchmark used throughout our

experiments. However, we are still improving and expanding our novel dataset with

new classes and more images per class. More information about the future expansion

and the second editions of this dataset are presented in Section 3.4.
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3.3.2 The database acquisition process

For the acquisition process of our database we used the Fujifilm FinePix Real 3D W3

stereoscopic digital camera. This camera has individual lenses corresponding to two

ten megapixels 1.2/3-inch CCD image sensors. The device also provides 3× optical

zoom and a 3D macro function for closer shots. In normal 3D mode, the minimum

distance between the lens and the depicted object can be approximately one meter. In

3D macro mode the minimum distance for real stereoscopic images is approximately

38 centimeters. This device can achieve high-resolution images up to 3648×2736.

Nonetheless, all images in our dataset have a resolution of 1920×1080 pixels. All

images were formated in .JPEG containing the RGB image and .MPO files containing

the pair of RGB images captured from both lenses. For the stereoscopic settings we

used the auto parallax setting of the camera, a function that automatically controls

the disparity between the image pair. Depth information for each image consisting

our dataset, can be extracted by using any stereo correspondence algorithm. To

our knowledge, this was the first attempt using a stereoscopic digital camera for the

collection of 3D images comprising a modern image database.

Figure 3-7: The process of taking indoor pictures of objects using a mini studio setup.

All collected images are captured under indoor and outdoor conditions. A great
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advantage of stereoscopic camera is that they do not require special illumination con-

ditions and they are not affected by natural light. However, the main limitation for

both indoor and outdoor setups was shades created from scenery or depicted objects.

Shades create a correspondence region according to most stereo correspondence algo-

rithms. So, shades can be falsely assigned with depth values that corrupt the overall

depth map.

For our indoor setup, shown in Fig 3-7, some images were captured using a white

sheet and artificial lighting forming a mini studio. The white sheet provides a good

background without clutters and directed artificial lighting provides less shades from

the depicted object. However, some objects were captured indoors with background

clutter and under room illumination conditions.

Figure 3-8: The process of taking outdoor pictures of objects.

Outdoor images are more realistic, because they were captured under natural illu-

mination conditions. Most images were captured during sunlight but there are some

taken at dusk when natural light was limited. All outdoor images have background

clutter from the surrounding environment. Finally, shades of natural scenes were

avoided when possible. An example of our outdoor setup can be seen in Fig 3-8.
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The overall collection process was not very difficult, and did not require any

advanced photographic skills. This means that our database is easily expandable and

does not require any special skills to collect more images and classes.

3.3.3 3D imaging uses for our proposed dataset

We compiled this dataset in order to test our 3D image classification methods. Nev-

ertheless, it became apparent that collected data could also be used to benchmark

other types of imaging problems as well.

The task of image classification is to correctly categorize unknown test images

with respect to a number of known reference categories. With new 3D sensors now

becoming publicly and commercially available, there is a need for extensive research

of 3D image classification techniques. The challenges of this emerging topic include

the study of depth information and its contributions to improve recognition results.

This dataset includes depth information captured by 3D sensors representing

shapes, surfaces or other visual features of objects and scenery. The combination of

depth and texture information can improve existing methods or create novel methods

for feature extraction, dictionary learning, image representations and classification.

Segmentation is the process that successfully partitions an image into individual

regions. These regions are usually exploited from other methods for further image

analysis. Therefore, such regions must have a meaning according their intended use.

Most commonly segmented regions may include objects, scenery or multiple parts of

them. Separation into regions is commonly based on color, texture and intensity pixel

values.

Still, this dataset can also provide depth information that can be used interdepen-

dently or combined with other image information. Interesting applications that could

benefit from the use of depth are 3D object/ scenery segmentation and automated 3D

object/region annotation on segments considered interesting for further processing.

As described above, stereo correspondence is the process where a pair of stereo-

scopic images produces a depth map. The correspondence algorithm creates a process

of finding corresponding regions in both images. Then, the horizontal disparity be-
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tween the corresponding regions is measured, and the result of this process provides

a depth map. The corresponding regions are usually found by correlation between

pair regions or corresponding image features in both images.

But the problem of stereo correspondence is far from solved. As we described in

earlier sections, shades create depth map corruption which are very hard to elimi-

nate. This dataset can provide a good benchmark for testing stereo correspondence

methods, mostly because our dataset is consisted of natural images.

3.4 Conslusions

In this chapter we presented our novel dataset, a collection of 98 stereoscopic images

organized in a 13 class. This dataset is compiled from high resolution images depicting

common everyday objects under a variety of illumination conditions. Therefore, it

can provide a great benchmark for a variety of 3D imaging problems like image/object

classification, stereo correspondence and segmentation. Advantages of our database

are:

� The acquisition method, which is robust to illumination conditions.

� Our novel database depicts realistic scenes and objects under natural environ-

ment with good image and depth map quality.

� Easily expandable database format and ease of use due to stereo image format.

One disadvantage of our dataset’s framework is the problem of shades in natural

images. Shades in sceneries may be considered as difficult to encounter, but in our

opinion, the improvement of future correspondence methods will provide a solution

to these issues.

Future improvements for this dataset, include a large expansion both in number

of classes and image magnitude. At the moment, there are 12 new classes and a

significant increase of 430 additional images depicting different objects. This increase
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will make the second edition of our novel database even more challenging. Further-

more, we plan a public distribution for our database making it more popular among

researchers.
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Chapter 4

Depth feature extraction and

combination with texture features

Although 2D image classification methods [2, 10, 11, 13–30] have reached some ma-

turity, smaller progress has been made in the field of classification of images that

consist of both texture and depth [7–9]. Such images offer additional information and

can be captured with commercial 3D cameras. Considering the growing number of

3D sensors in our everyday life, the efficient exploitation of depth information is an

emerging challenge in image classification.

In methodologies [7–9], authors introduce features extracting information from

depth exploiting depth information from 3D images. They all use multiple features

extracted from texture and depth. Individual image representations, corresponding to

each feature, are combined in order to enhance 3D image classification performance.

However, these methods have problems on wider applications regarding less detailed

depth maps. In [8], authors create features from depth gradients, a technique com-

patible only with depth maps captured from 3D scanners. Furthermore, they use 3D

point cloud-based features, depth information that can only be extracted using 3D

scanners. Other significant attributes of depth, such as shape and content informa-

tion are also disregarded. Finally, the combination of multiple feature representations

presented in [7–9], is a computational intense procedure from using high-dimensional

vectors in their image representation.

77



In this chapter, we present a novel depth feature extraction method used for 3D

image classification, a work presented in [43]. This part of our research studies the

effects of depth information as feature describing image content.

We also introduce a novel image classification method that exploits depth infor-

mation, if such information is available. The proposed method uses conventional SPM

and sparse coding to represent texture images. For depth representation, we chose

the description of object shapes, a method suitable for all types of depth information.

Specifically, shapes extracted from depth maps include discriminative information

which can be harvested using our proposed slicing methods. We introduce four dif-

ferent slicing methods which partition the examined depth map and enhance the

efficiency of each shape feature. Shape features are represented using sparse encoding

and the BoF image representation method, providing very efficient recognition even

when used independently. The combination of texture and depth using our proposed

methodology yields improved results for 3D image classification. The flowchart of our

proposed methodology can be seen in Fig 4-1.

The rest of the chapter is organized as follows: In Section 4.1, we describe the

recent work in 3D feature extraction. The processing of the depth map, the slicing

methods and the shape features used are described in Section 4.2. In Section 4.3,

the encoding of each feature and data fusion is presented. Experimental results are

presented in Section 4.4 and Section 4.5. Conclusions are drawn in Section 4.6.

4.1 Related work

The first stage of describing an image is achieved by the extraction of image fea-

tures. Image features, are vectors representing significant parts of an image. An

important specification of image features is their capability to represent identical or

similar image content. So, image features have to be discriminative and not allow

different image content to be described by similar vectors. Other important feature

specifications include invariance to rotation and scale changes, as well as robustness

to illumination and image noises. Using keypoint detectors image regions robust to
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Figure 4-1: Block diagram of the proposed method.

the above conditions can be found. However, the majority of image classification

systems computes texture features over dense grids in order to collect more content

information from each examined image.

The most famous among feature extraction methods are the Scale-invariant feature

transform (SIFT) [1], Histogram of Oriented Gradients (HOG) [32] and Speeded

Up Robust Features (SURF) [31]. All the above features are computed by image

gradients capturing directional changes of color intensities. Their main differences

can be found in their individual representation methodologies for texture gradients.

The aforementioned texture feature extraction methods are used in identical or similar

applications, with each one having advantages over the others. Nonetheless, most 2D

image classification methods use the SIFT feature as their preferred feature extraction

method [2,10,11,13–30].

The representational value of depth information had not been studied until re-
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cently [7–9, 43]. As described in Chapter 3, acquisition of depth information was

challenging thus limiting the demand for 3D image applications. Depth informa-

tion has a different nature from texture, making traditional approaches of feature

extraction not applicable, as seen in Chapter 2.1. As a result, the research for depth

feature extraction became necessary in regard to newer 3D applications. The meth-

ods in [7–9] presented features extracted from depth information. Their research led

to the creation of discriminative features respecting depth information as well as to

the combination with texture features for optimized recognition results.

In [7], authors compile a dataset consisted from RGBD images, i.e, images that in-

clude both texture and depth information. Showcasing their dataset’s potential uses,

among other methods, they created an object recognition setup capable of classifying

objects to their individual classes. This object recognition system can be considered

as an image classification problem since the objects are found in the center of the

image and do not need a detection process first.

In order to describe each object, authors proposed multiple image representations

derived from texture and depth. For texture information, that method used SIFT

features [1] over a dense grid combined with color histograms and texton histograms

[40] features. For depth, they used a shape retrieval feature known as spin images [42]

applied on 3D bounding cubes each composed from a 3×3×3 grid. All features are

encoded using the Efficient Match Kernels (EMK) method [16] and represented by

an Spatial Pyramid Matching (SPM) [2] architecture.

As a result, each image has two representation vectors one for texture and one for

depth. The representations are classified separately using a Support Vector Machine

(SVM) algorithm comparing the recognition results from texture and depth represen-

tations. However, better results were achieved from using the combination of image

representations in a common vector used for the classification process. More details

about this method can be found in Chapter 2.1.2.

A recent work in [8], introduced a variety of descriptors extracted from depth

information. Features are computed using the 2D feature extraction method of Kernel

descriptors [10]. In that method image patches are described by a kernel function
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instead of a representation histogram used in other feature extraction methods [1,

32]. Authors apply that methodology on depth information, such as depth maps

and 3D point clouds. As a result, authors introduced size and shape descriptors

from 3D point clouds and edge descriptors from depth maps. The depth map edge

features include gradient and local binary pattern kernels. Information regarding

these feature extraction methods can be found in Chapter 2.1.2. All images are

represented using a pyramid of Efficient Match Kernels [16] for each feature type, thus

creating multiple representations describing the same image. In their experimental

results, authors create an object recognition system that can be also considered as an

image classification problem. The experiments present the recognition performance of

each feature type and show that the combination of all feature representations yields

the best recognition results.

More recent improvements on depth features and feature combination can be

found in [9]. Feature extraction and representation method is based on [11], where

a similar method for 2D image classification is presented. Hierarchical Matching

Pursuit (HMP) [11] learns image features in an unsupervised manner by collecting

and represents image regions in multiple-layers.

The method introduces a two-layer feature extraction each corresponding to its

individual image representation. The first layer generates features representing small

neighborhoods of image pixels. Raw pixel information, i.e, color or grayscale inten-

sities, comprise the pixel neighborhood creating a first-level feature patch. These

features are encoded using the Orthogonal Matching Pursuit (OMP) algorithm and

via a spatial pyramid combined with max pooling they result in the first-level image

representation. The second layer, generates a representation by sub-sampling features

extracted from the first layer. The second layer feature patches are also encoded and

represented using a spatial pyramid with max pooling providing the second-level im-

age representation. Finally, both level representations are then combined in a common

representation vector suitable for classification.

In [9], instead of using only grayscale intensity values, authors use color and depth

information to represent all examined images. Once again, experiments in [9] present
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(a) (b) (c)

Figure 4-2: Demonstrating the extraction of depth maps. (a) the original image, (b)
the extracted depth map, (c) a different view-point of the same depth map.

interdependently texture and depth recognition rates. However, the best performance

comes from the combination of both representations.

As seen above, all methods try to create suitable feature extraction methods in or-

der to efficiently represent depth information. They also proposed the combination of

texture and depth information yielding better recognition rates for the RGBD dataset.

However, as presented in Chapter 2.1.3, these methods present curtain disadvantages

regarding the representation of depth information. Our research focused on novel

features with simplified computation that respect the nature of depth information.

4.2 Depth map preprocessing and feature extraction

The most widely-used feature in image classification is the SIFT feature. It was

introduced in [1] and it is generally considered to be the most efficient feature for a

variety of applications. The SIFT feature provides uniqueness, rotation invariance,

scale invariance, and robustness to deformations. It is typically used in conjunction

with a keypoint detector that enables the extraction of SIFT information from selected

key locations in an image.

Despite their successful application to texture, SIFT features and gradient-based

features cannot contribute to the representation of depth information. In most case,

depth maps do not exhibit large variations suitable for describing depicted image con-

tent. For this reason, we did not consider designing a feature extraction methodology

based on depth map gradients. In this work we use SIFT features only to represent
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texture but not depth maps.

Depth maps depict depth information of an image. A depth map can be obtained

from a variety of sensors such as stereo cameras or 3D scanners. By using depth,

an image can be partitioned to regions or objects describing objects and scenery.

Therefore, suitable depth features can be extracted using shape analysis. The shape

features that we use in our proposed methodology include Radon transform [35],

Shape context (ShC) [33], and Shape context with inner distance (ShCid) [34].

Radon transform [35] is a known method used in tomographic reconstruction.

It can successfully represent the projection data from tomographic scans, and can

be implemented in combination with our proposed slicing process over depth maps

(Section 4.2.2).

ShC [33] feature is used for shape retrieval and object recognition. Each object

is separated in points of interest which provide a feature histogram created from

uniform log-polar bins. This feature is very discriminative and provides invariance to

translation, scale and small shape deformations.

Finally, the ShCid [34] was based on the ShC also describing the distance between

interest points. The distance between interest points of ShCid is computed by finding

the shortest path connecting two points using only the area inside the shape silhouette.

This makes the ShCid more discriminative in shape representation in some cases. All

the above features, can represent shapes using shape regions either as contour or finite

contour points with great fidelity. Detailed information about these shape-extraction

feature methods is presented in Chapter 2.1.1.

4.2.1 Feature normalization

Feature normalization is a simple procedure that contributes to the efficiency of the

classification system. Shape-context features, are based on a log-polar histogram

represented using decimal numbers. However, it is proven by common practice that

mathematic complications and classification algorithms perform better with homoge-

nized data in the range 0 to 1. In this work we use a simple procedure that normalizes

every shape context feature 𝑓 = [𝑓1, 𝑓2, ..., 𝑓𝑛] as follows:

83



𝑓 ′ = 𝑓/

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝑓 2
𝑖 (4.1)

where 𝑓 ′ is the normalized feature and 𝑛 is the size of the shape-context feature.

This normalization procedure will be experimentally seen to boost the classification

performance of shape context feature and also to reduce the complexity of sparse

coding and codebook generation.

(a) (b)

Figure 4-3: The two main slicing methods. (a) Tomographic depth slicing: the slice
is extracted from one depth layer only, in (b) Progressive depth slicing : the slice is
the combination from all depth layers up to current depth layer.

4.2.2 Slicing methods for depth maps

The depth map of an image represents the range of depth levels in the image. In

order to facilitate the extraction of depth features, we partition each depth map into

areas of different depths. Henceforth, this process shall be referred to as depth slicing.

Each depth slice is the set of areas on the depth map that correspond to a specific

range of depth values.

A depth slice is a binary map that indicates which areas on the depth map are

within the prescribed depth range. These slices are likely to capture the shape de-

tails of the object or scene depicted in the image, with more detailed regions being

extracted when the width of the depth intervals is small. This is true even for classes

that are not necessarily characterized by a uniform common shape. We tried four

different slicing methods. These are explained below.
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Tomographic depth slicing

For every depth value, a slice of space can be extracted. A slice may contain objects,

background of a scene or just a parts of them. This method using slices of depth to

represent a scene as seen in Fig 4-3(a), a method that resembles tomographic imaging.

Similar to the intensity slicing descried in [105], we define the following.

Let 𝐷 be a depth map with 𝐿 depth levels ranging in [0, 𝐿 − 1] provided by the

sensor or the disparity estimation algorithm. A slice 𝑆 is defined as:

𝑆𝑙(𝑥, 𝑦) =

⎧⎨⎩ 1 if 𝐷(𝑥, 𝑦) = 𝑙𝑛

0 otherwise
(4.2)

where 𝑙 is the depth level index.

Progressive depth slicing

This slicing method combines several depth levels on a single map. Essentially, each

slice includes all previous slices. In this way, regions or objects that are found at

various depth levels can be captured in a single slice (as seen in Fig 4-3(b)). Therefore,

a slice S is defined as:

𝑆𝑙(𝑥, 𝑦) =

⎧⎨⎩ 1 if 𝐷(𝑥, 𝑦) ≤ 𝑙𝑛

0 otherwise
(4.3)

Object-oriented tomographic depth slicing

Simple slices of depth, as defined in eq. (2), will most certainly contain segregated

regions. Using the connected components algorithm [106], each depth slice can be

partitioned in labeled regions. Independent regions extracted from a slice can be

separately analyzed and features can be produced from regions shape.

Object-oriented progressive depth slicing

Using the same methodology as the above method, regions are now extracted on a

progressive depth map, such as that expressed in eq. (3). The independent regions
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extracted by using the connected components algorithm [106] consist of the union of

all previous depths, adding new details on each one.

4.3 Sparse feature encoding and data fusion

Let 𝐼 be an image comprising texture and depth. Let also 𝑇 denote the set of texture

feature vectors in the 𝐹1-dimensional space, where 𝑇 = [𝑡1, 𝑡2, ..., 𝑡𝑁 ] ∈ RNxF1 . Simi-

larly 𝐷 is the set of depth feature vectors in the 𝐹2-dimensional space extracted from

the depth map, where 𝐷 = [𝑑1, 𝑑2, ..., 𝑑𝑀 ] ∈ RMxF2. Using the K-means algorithm, a

texture codebook 𝑉𝑡 = [𝑉𝑡1 , 𝑉𝑡2 , ..., 𝑉𝑡ℎ ] and a depth codebook 𝑉𝑑 = [𝑉𝑑1 , 𝑉𝑑2 , ..., 𝑉𝑑𝑘 ]

are trained, where ℎ and 𝑘 are the number of cluster centers in the two codebooks

respectively.

Using the above codebooks, each texture or depth feature vector can be approxi-

mated by a linear combination of the reference features in the codebook. Specifically,

sparse vectors (codes) 𝐶𝑡 = [𝐶𝑡1 , 𝐶𝑡2 , ..., 𝐶𝑡𝑁 ] and 𝐶𝑑 = [𝐶𝑑1 , 𝐶𝑑2 , ..., 𝐶𝑑𝑀 ], for texture

and depth respectively, are computed for texture by minimizing the 𝑙1 norm [53]:

𝐶𝑡 = min
𝐶𝑡

𝑁∑︁
𝑛=1

‖𝑡𝑛 − 𝐶𝑡𝑛𝑉𝑡‖2 + |𝐶𝑡𝑛| (4.4)

and similarly for depth:

𝐶𝑑 = min
𝐶𝑑

𝑀∑︁
𝑚=1

‖𝑑𝑚 − 𝐶𝑑𝑚𝑉𝑑‖2 + |𝐶𝑑𝑚| (4.5)

where || · || denotes the 𝑙2 norm and | · | the 𝑙1 norm.

From that point on, each sparse code is treated separately. The encoded depth

features are shown in Fig 4-4 for three different depth features. As seen, the vectors

calculated when the Radon feature is used are not sparse, meaning that Radon trans-

form in its present form is not suitable for the application considered. The shape

context features, however, yield extremely sparse coded representations, a fact that

highlights their appropriateness for sparse coding.

The resulting texture sparse codes 𝐶𝑡 are processed by a linear Spatial Pyramid
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Figure 4-4: Depth shape feature 𝑙1 encoding. Left column: extracted depth features.
Right column: sparse codes.

Matching (SsSPM) kernel set as 𝑃 found in [17]. The associated max-pooling function

is defined as follows:

𝑝𝑗 = 𝑚𝑎𝑥{|𝐶𝑡1𝑗 |, |𝐶𝑡2𝑗 |, ..., |𝐶𝑡𝑄𝑗
|} (4.6)

where 𝑝𝑗 represents the 𝑗𝑡ℎ element of 𝑃 , 𝑄 is the number of regional descriptors

and the | · | is the absolute value of sparse vectors. The final representation is formed

by combining the 𝑝𝑗 vectors above into a spatial pyramid [17].

The depth sparse codes, denoted as 𝐶𝑑, are subjected to a max pooling process.

Similar to the max-pooling operation expressed with eq. (6) for the texture feature,

the sparse codes calculated using eq. (5) are also jointly processed. In the case of

depth, however, sparse codes are not taken on local regions but instead they are

combined all together as follows:

𝐵 = 𝑚𝑎𝑥{|𝐶𝑑1|, |𝐶𝑑2|, ..., |𝐶𝑑𝑊 |} (4.7)
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Figure 4-5: Max pooling using depth sparse codes.

where 𝑊 is the number and | · | is the absolute value of sparse codes. The max

pooling operation is graphically shown in Fig 4-5.

4.3.1 Data fusion

The outcome of the preceding analysis are two separate sparse representations, one

for texture and another for depth. A fusion method should merge the representations

in a simple way by taking into account the dimensionality of the resulting fused

representation [7–9,107].

The most straightforward method is the concatenation of the two vectors. In this

way the final feature representing the image is:

𝑈 = [𝑃,𝐵] (4.8)
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4.4 Experimental Results

4.4.1 Experimental setup

For the experimental evaluation of our method we use the framework introduced

in [17] and subsequently used in several other works on classification. The aforemen-

tioned framework was adapted for use with our database and the descriptors extracted

from depth maps. Experiments were designed in order to assess shape descriptors and

slicing methods. Our experiments where conducted on the BTDI database.

Codebook training took place by randomly picking 500 shape descriptors that

yielded 256 centroids (codewords) after 50 K-means iterations. The final feature

vectors were formed, as described in the previous section, by means of sparse coding

and max pooling. Finally, each depth representation was used in a multi-class linear

support vector machine (SVM) for classification purposes. For SVM training, only

one image per class was used (13 images in total), while the rest of the images were

used for testing. This took place for five different training-testing configurations and

the associated results were averaged.

4.4.2 Slicing parameters

Our first experiment aimed to evaluate the efficiency of our depth slicing approaches

and gain a better understanding of the impact of depth maps in our method. For this

reason, we tried the same depth map feature with each of our slicing methods in order

to access their efficiency. The measure that we used for slicing method evaluation is

the resulting classification percentage.

Table 4.1: Depth map classification without feature normalization.

Descriptor Type Slicing methods
1 2 3 4

Radon transform 12.90% 10.80% 8.83% 10.32%
Shape context 14.76 % 12.37 % 22.56 % 13.55 %

Shape context with inner distance 13.58% 13.54% 12.6% 18.81%
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Slicing methods

Table 4.1 provides evidence about the way with which the slicing methods affect

classification performance. As seen, Radon transform performs better in conjunction

with tomographic depth slicing. As mentioned above, this method provides distinct

regions that are not always connected and represent an image at increasing depth

values. However, other slicing methods appear to perform better if other features are

used. Therefore, the conclusion that follows is that slicing methods should be coupled

with the appropriate feature in order to yield optimal performance.

Table 4.2: Experiments on depth map slicing rate.

Slicing depth step experiments on depth map classification
Feature Slicing method Slicing step step 1 dictionary step 3 dictionary
ShC-BoF Progr. depth slicing 1 16.99 15.35
ShC-BoF Progr. depth slicing 3 15.01 17.09

Experiments on sampling rate

A further parameter that affects performance is the number of slices in which the

depth map is partitioned. The experimental process was set up with progressive depth

slicing and depth feature normalization, to reduce computational complexity. The

experiment was calculated with a codebook which was trained using features extracted

from a large number of depth slices, i.e., each slice represented a narrow depth interval.

The second experiment tested classification performance using a dictionary trained

with a smaller number of slices. Results for both cases are reported in Table 4.2. As

seen, performance is better when the depth slicing strategy for extracting features

from test images is the same as that used for codebook generation.

4.4.3 Descriptor efficiency

Shape descriptors extracted from depth maps should have the ability to classify images

even when texture information is not used. For this reason, we assessed the distinc-
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tiveness of each descriptor extracted from a depth map. These tests were conducted

without feature normalization, in order to facilitate assessment of the independent

application of features.

The first tested feature was the Radon transform with all the slicing methods.

Results are reported in Table 4.1. Each reported result is the mean classification

percentage for the entire database. It is seen that this feature is generally unable to

represent efficiently shapes within depth maps. This was somewhat expected, because

Radon transform usually performs better when describing clearly defined silhouettes

and shapes.

Shape contexts (ShC) are more discriminative features. As seen in Table 4.1, the

shape context feature outperforms Radon transform for classification based only on

depth maps. Furthermore, shape-context features are preferable in terms of compu-

tational cost because they result in shorter feature vectors. The size of the descriptor

is proportional to the number of bins and the range of the log-polar histogram, but

based on experimentation we conluded that the best combination comes from 12 bins

and range up to 5 pixels, resulting in a 60 dimensional vector. A big drawback of the

ShC feature is that it permits the computation of features on every point of a shape

contour, yielding a potentially unmanageable number of features. To overcome this

problem, we randomly selected 100 features from the contour of each region. Another

solution to this problem could be a contour point evaluation before the extraction of

keypoints. Despite the above difficulties, ShC performs quite well as a depth map

classification feature.

Shape context with inner distance (ShCid) was also tested. Although ShCid were

introduced [34] out of a need to deal with shape context drawbacks, image classifica-

tion based on depth maps did not improve. In general, ShCid is less efficient than the

simplest ShC and it seems that, despite the additional complexity, no performance

gains are generally achieved. However, when combined with texture, the ShCid with

object-oriented progressive depth slicing is experimentally shown to attain competi-

tive performance.
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Table 4.3: Depth map classification with feature normalization.

Descriptor type Slicing methods
1 2 3 4

Shape context 16.84% 15.30 24.58 18.84%
Shape context with inner distance 17.34% 16.99% 20.85% 19.52%

4.4.4 Feature normalization

Feature normalization, discussed in Section 4.2.1, is trivial procedure that has a signif-

icant impact on performance. As shown in Table 4.3, due to the less complex and more

efficient codebook training, when normalized features are used performance improves

in comparison to that reported in Table 4.1. The use of normalized features results

in more accurate sparse coding and facilitates the subsequent SVM-based classifica-

tion. The above provide evidence feature normalization is beneficial for recognition

performance.

4.4.5 The combination of texture and depth

In order to assess the performance of our system for image classification, we combined

our depth-based classification approach with the well established SPM method [2],

which is one of the most efficient texture-based image classification methods. The

objective in our case was to use depth information in order to improve the performance

of systems that rely only on texture. A practical consideration is that both SPM and

our method result to vectors of high dimensionality, a fact that may be preventing

efficient classification. With our method, the increase in size is less than 5% of the

original size of SPM vector.

Experimental results using our method, combining texture and depth, one re-

ported in Table 4.4 for several combinations between depth features and slicing

methods. Results are also reported for texture-only systems in order to allow the

assessment of the advantages gained from the use of depth information. As seen, the

depth slicing approach affects classification results. The best result with shape con-

text feature without inner distance enhancement is achieved in combination with the
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object oriented tomographic depth slicing method. This result narrowly outperforms

the texture-based SPM and highlight the advantages of using depth information for

image classification. However, when using the shape context features with inner dis-

tance, system performance improves further and becomes clearly superior to that of

the texture-only systems.

Table 4.4: Image classification using feature combination.

Texture description Depth description Slicing method Output
SIFT-BoF - - 30.94%
SIFT-SPM - - 39.23%
SIFT-SPM ShC-BoF 1 39.02%
SIFT-SPM ShC-BoF 2 32.56%
SIFT-SPM ShC-BoF 3 39.82%
SIFT-SPM ShC-BoF 4 38.93%
SIFT-SPM ShC_InDist-BoF 1 39.66%
SIFT-SPM ShC_InDist-BoF 2 40.88%
SIFT-SPM ShC_InDist-BoF 3 40.67%
SIFT-SPM ShC_InDist-BoF 4 42.49%

4.5 Comparison of 3D image classification method-

ologies

In this chapter we present a comparison between our novel methodology the compet-

ing 3D method in [8].

4.5.1 Experimental setup

The experimental framework regarding the following experiments was proposed in

[108] and is similar to the one used in [8]. In our experiments, each examined method

is assessed using the dictionary training methodology proposed in each respective

work ( [8,16,17,43]). However, all examined methods compute a codebook comprised

of 1000 codewords, for each examined feature extraction method. In all experiments,

we use a three-level pyramid with 14 pyramid scales (1 scale, 4 scales, 9 scales) in
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total. For the classification stage, we use the training/testing protocol of Section 4.4.1

which, unlike the framework proposed in [8], uses more testing than training images.

We randomly choose two images per class for training and use all the remaining

images for testing.

4.5.2 Comparison between methodologies

As seen in Table 4.5, our proposed methodology is compared with the competing

method in [8] in two 3D imaging datasets [7, 43]. The results on BTDI and RGBD

dataset show that our method outperforms most methods proposed in [8] except the

combination of all features. However, our methods exhibit advantages against the

proposed features of [8] in respect to computational complexity.

In [10], authors admit that the computation of kernel descriptors are generally

expensive. Their most computationally intense shape kernel features need about

four seconds per image computed by using MATLAB. Furthermore, gradients kernel

features take 1.5 seconds using identical settings with SIFT features which only need

0.4 seconds. Moreover, all image representations computed from each feature are

combined together forming a long image representation method. The dimension of

the final representation vector proposed in [8] is the length of the encoding vector

multiplied by the number of pyramid scale vectors multiplied by the number of used

features. So for BTDI, the method in [8] uses 1000×14×5 = 70000 dimensional image

representation vector. The RGBD dataset, uses 1000 × 14 × 7 = 98000 dimensional

image representation vector.

Our proposed feature extraction methodologies using the tomographic and pro-

gressive slicing takes 0.19 seconds, using identical settings and dataset with those used

to compute the features in [10]. Feature extraction using our novel object-oriented slic-

ing takes 0.22 seconds to compute using MATLAB. Furthermore, our novel method-

ology uses 1000 × 14 dimensional vectors for texture and 1000-dimensional vectors

for depth resulting in a 15000-dimensional vector. Our proposed method uses smaller

representation vectors providing competitive results.
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Table 4.5: Results of BTDI and RGBD dataset (± standard deviation).

Features BTDI RGBD

SIFT + ShC (sl.method 1) 48.67±6.17 [43] 35.59±2.84 [43]
SIFT + ShC(sl.method 2) 46.64±5.39 [43] 38.03±3.09 [43]
SIFT + ShC (sl.method 3) 50.68±3.83 [43] 34.19±2.86 [43]
SIFT + ShC (sl.method 4) 51.72±4.30 [43] 37.00±3.15 [43]
SIFT + ShCid (sl.method 1) 52.49±4.41 [43] 34.45±2.75 [43]
SIFT + ShCid (sl.method 2) 47.93±4.98 [43] 33.02±2.82 [43]
SIFT + ShCid (sl.method 3) 57.17±5.30 [43] 33.98±2.81 [43]
SIFT + ShCid (sl.method 4) 51.92±6.41 [43] 33.96±2.99 [43]
RGB Gradient KDES 57.01±5.15 [8] 34.69±2.86 [8]
RGB LBP KDES 54.88±4.88 [8] 32.44±2.60 [8]
RGB Normalized Color descr. KDES 47.04±4.97 [8] 28.11±2.89 [8]
Depth Gradient KDES 43.88±4.91 [8] 25.64±2.81 [8]
Depth LBP KDES 41.72±6.01 [8] 23.67±2.64 [8]
Point cloud Size KDES - 29.94±2.88 [8]
Point cloud Normal KDES - 27.18±2.29 [8]
Feature combination 62.26±5.07 [8] 47.80±2.77 [8]

4.6 Conclusion

In this chapter, we presented our method which introduces novel feature extraction

techniques from depth maps. In order to showcase our feature extraction method we

also introduced a 3D image classification system combining texture and depth image

features. Depth features create individual image representations combined with con-

ventional texture representations. The resultant method was tested on two 3D image

database that contain images captured under a variety of conditions. The proposed

experimental framework creates challenging conditions, providing solid conclusions

from every examined method. Our proposed methodology achieved excellent results

compared to other competing methodologies. Advantages of our method are:

� The novel feature extraction method that can be easily implemented on multiple

types of depth maps.

� Simple, modular 3D image classification architecture for easy implementation

and future development.
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� Low computational cost, in comparison with other competing methods.

� Overall, good performance in classification rates in comparison with more com-

plex methodologies.

Future improvements for this method include an optimized depth representation.

We plan to represent depth using the SPM image representation technique which cap-

tures the spatial information of the extracted depth features. Furthermore, a better

representation can be achieved using our novel representation presented in Chapter 6.

We consider optimizing vector dimensionality and scale number for each representa-

tion pyramid thus affecting recognition performance. Moreover, depth feature design

can be improved by using deep learning methodologies which are capable to provide

better depth description.

This novel method was the beginning of our research on depth feature design

and fusion of feature representations for better 3D image classification performance.

This work has further motivated us to study relations between representation and

classification, leading to two novel methodologies on classification and depth-driven

image representations.
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Chapter 5

Dictionary training using

relationships derived from depth

Recent methods for 3D classification [7–10,43,44] utilize depth information in order to

achieve more accurate recognition. These methods are limited in the extraction and

description of physical depth information. As a result, information such as context

relationship and content representation described from depth are not exploited.

Dictionary training methods play a significant part on the description of extracted

features using feature encoded methodologies. Dictionaries, when used with encoding

methods, describe each feature as a combination of codewords consisting the dictio-

nary thus solving the discriminatory problem of feature similarity. More information

about the contribution of dictionaries in image classification systems can be seen in

Chapter 2.2.

A popular dictionary construction method for 3D image classification is the k-

means algorithm [7, 8, 43]. However, most recent approaches in image classification

are using more complicated dictionary learning techniques such as K-Singular Value

Decomposition (SVD) [9,45] and Non-negative Matrix Factorization (NMF) [49,109,

110] leading to better classification performance.

In [47], a graph regularized NMF is presented which regulates approximation by

taking into account the relationship between dictionary training features in the fea-

ture space. The relationship of features is determined by means of their similarity,
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which can be measured using their pairwise distances in the feature space. The dis-

advantage of this approach is that by randomly using selected features for dictionary

training, without regard to the context from which these features were extracted,

leads to less discriminative feature encoding and less efficient classification. As image

context, we mean regions separating an image with respect to its content, and with no

regard to features extracted from the region. The importance of image context was

also presented in [111], where a comparative evaluation of context-based techniques

for semantic image analysis was presented. Furthermore, context-based techniques

have shown significant improvements in image classification [112] and complex image

queries [113].

In Fig. 5-1, the above disadvantage is exemplified using two images from different

classes. The selected feature in the right image is similar, i.e., has small distance in

the feature space, with four other image features from the left image. However, not all

similar features come from the same context. This means that features that exhibit

similarity in the feature space may not correspond to similar or relevant regions in

their respective images. If those features are included in a training set, dictionary

training may be adversely affected due to the fact that features from different regions

are mixed in order to form a codeword.

Figure 5-1: The pairs of features with the shortest distances in the feature space are
presented by multi-color shapes. Some pairs exhibit short distances but no context
similarity and, therefore, can be misleading for dictionary learning.

In this chapter, we present a novel dictionary training that integrates the relation

of image context as described from depth information to improve dictionary learn-

ing. We propose a method that uses depth information in order to achieve more

efficient dictionary training based on graph-regularized non-negative matrix factor-
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ization (GNMF) [47]. In order to train dictionaries, we reformulate the similarity

constraint of [47] using feature graphs that are constructed based on contexts. In this

way, only the closest training features coming from the same context are considered to

be related. This is made possible by partitioning each image into regions (contexts)

by assinging a context label to each extracted feature. Then, we use these context

labels to create a context relationship matrix that shows the relationship between

features from the same context. This approach can be directly applied to 3D images,

where contexts can be defined based on depth information.

The rest of the paper is organized as follows. Related work is presented in Sec-

tion 5.1. Section 5.2, describes the purpose of context partitioning. In Section 5.3,

the proposed methodology is formulated. The experimental methodology and results

are shown in Section 5.4. Finally, conclusions are drawn in Section 5.5.

5.1 Review of NMF and GNMF

Non-negative Matrix Factorization (NMF) [110] is used in many applications. It anal-

yses a given non-negative dictionary feature matrix 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁 ] ∈ R𝑃×𝑁 ,

where 𝑁 is the number of 𝑃 -dimensional feature vectors, into two non-negative ma-

trices. The product of the resultant two non-negative matrices 𝑈 and 𝑍 is a fine

approximation of the training data matrix 𝑋, i.e,

𝑋 ≈ 𝑈𝑍𝑇 (5.1)

where 𝑈 = [𝑢𝑝𝑞] ∈ R𝑃×𝑄 and 𝑍 = [𝑧𝑛𝑞] ∈ R𝑁×𝑄. 𝑄 is the number of codewords

and 𝑝, 𝑛 are row indexes for those matrices. In NMF, matrix 𝑈 is used as dictionary

and 𝑍 as the encoded feature vectors.

In Graph regularized NMF (GNMF) [47], a graph is used in order to improve the

efficiency of the NMF representation. The nearest neighbor graph is presented by

a Laplacian graph adding a regularization constraint from the pairwise distances of

features inside the dictionary training set.
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𝐿 = 𝑊 −𝐷 (5.2)

where 𝑊 is a 𝑁 × 𝑁 distance matrix and 𝐷 a diagonal matrix with elements

𝑑𝑖𝑖 =
∑︀𝑁

𝑙=1𝑤𝑖𝑙. The geometric constraint using the Laplacian graph 𝐿 is defined as:

𝑇𝑟(𝑍𝑇𝐿𝑍) = 𝑇𝑟(𝑍𝑇𝐷𝑍)− 𝑇𝑟(𝑍𝑇𝑊𝑍) (5.3)

where 𝑇𝑟(·) denotes the trace of a matrix. By applying the constraint of eq. (5.3)

into eq. (5.1), the GNMF approximation is formulated based on the following objective

minimization function:

𝑂 = min
𝑈,𝑍
‖𝑋 − 𝑈𝑍𝑇‖+ 𝜆𝑇𝑟(𝑍𝑇𝐿𝑍) (5.4)

It should be noted that when 𝜆 = 0 then GNMF degenerates to conventional

NMF.

5.2 Assigning context labels to features

As described in the introductory part, similar features do not always come from

the same or similar parts of images. As a result, in a set of randomly collected

features, similar features may describe different content due to feature discrimination

problems. When two or more such features are used in a dictionary training set,

the computed codewords lead to non discriminative image representation resulting in

poor classification results.

In [47], attempts to calculate dictionaries that ensure discriminant encoded fea-

tures are based strictly on the similarity measure of distance. However, this leads to

falsely similar features as presented in Fig. 5-1.

In the proposed method, we determine the relationship between training features

by context before dictionary training. This will lead to a relationship matrix that

provide context similarity in combination with the distance matrix proposed by the

conventional GNMF method. To this end, we partition images into regions.
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This process assigns a context label to each extracted feature from every image in

a predefined manner. Since image features are extracted via dense grids, we divide the

image into blocks that correspond to feature patches. The block value is computed

as the mean value of image characteristics, i.e, depth, color and their combinations,

inside that block.

Region creation for each image can be achieved using scene understanding method-

ologies [50,114–117] based on partitioning techniques. These can partition each image

depending on information such as depth for 3D images. In our method we use the

blocks as vertices of an undirected graph, which is partitioned in 𝐾 regions by solving

the ℓ-GP problem [118]. As a result, each feature is assigned with a context label 𝑐

showing the region from which it was extracted. An example of region labeling based

on depth is shown in Fig. 5-2, where context labels are assigned according to the

image characteristic values of the respective contexts. It must be noted that in order

to guarantee the integrity of context labels, we first normalize all image information

and assign the context labels after a value-based context sorting. So the context re-

gion with the greatest value is always denoted with the first context label, achieving

a current label assignment for each examined image.

5.3 Context-Adaptive Graph regularized Nonnega-

tive Matrix Factorization(CA-GNMF)

5.3.1 Context mapping

In [47], the similarity among 𝑁 dictionary training features is captured in the distance

matrix 𝑊 , which is used for the construction of 𝐷 and 𝐿 in eq. (5.2). Matrix 𝑊 is

a 𝑁 ×𝑁 matrix that includes pairwise distances between all features in 𝑋. Finally,

for each feature 𝑥𝑛 only 𝜅 closest distances are kept creating a 𝜅-nearest neighbor

distance matrix. It must be noted that these features were randomly collected from

different images in order to create a dictionary training feature set.

Contexts within images can be represented as regions, with the simplest example
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being a two-region representation of foreground and background, i.e, 𝐾 = 2. In 3D

images, different depth levels can be used in order to define more regions. Due to the

partitioning of images into 𝐾 regions (contexts), the context from which each feature

originates is known. Representation using more than two regions, i.e, 𝐾 > 2, offers

additional information about image content. For a set of 𝑁 randomly selected image

features 𝑋 for dictionary training, we define the set of the respective context labels,

denoted as 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑁}, where each context label 𝑐𝑖 is a value between 1 and

𝐾.

Figure 5-2: Partitioning of image blocks with graph partitioning. Each row shows an
example, with feature similarities shown using lines in the last column.

The proposed training method regards features as similar only when they originate

from similar context, as shown in Fig. 5-2. Therefore, feature vector similarity is

assessed not only through a conventional distance metric but also by taking into

account the context from which features are extracted. If features originate from

different contexts, i.e., they have different context label, they are assumed to have

zero similarity.

In order to formulate such relations among all training features, we create a context

relationship map 𝑀 . Map 𝑀 is a 𝑁 × 𝑁 matrix that indicates context similarity

between extracted features. The (𝑖, 𝑗)𝑡ℎ element 𝑚𝑖𝑗 of 𝑀 indicates whether the

context labels 𝑐𝑖, 𝑐𝑗 of the 𝑖𝑡ℎ and 𝑗𝑡ℎ features in the training set are the same:

𝑚𝑖𝑗 =

⎧⎨⎩ 1, if 𝑐𝑖 = 𝑐𝑗

0, otherwise
(5.5)

The context relationship map 𝑀 is taken into account in combination with dis-

tance matrix𝑊 in order to create context-weight matrix 𝐵. Therefore, 𝐵 is a distance
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matrix with elements 𝑏𝑖𝑗 that are the pairwise distances of training feature pairs mul-

tiplied by their respective context relationship element 𝑚𝑖𝑗, i.e., 𝑏𝑖𝑗 = 𝑤𝑖𝑗 · 𝑚𝑖 for

𝑖 = 1 . . . 𝑁, 𝑗 = 1 . . . 𝑁 .

Figure 5-3: Construction of context-weight matrix 𝐵. Features from the same context
(shown with the same color) are grouped together. Features from different contexts
are not grouped even if they exhibit short distances in the feature space.

5.3.2 Implementation of context constraint on GNMF

Matrix 𝐵 defines a graph with nodes that represent training features vectors. Connec-

tions between feature pairs with small similarity are disregarded. As in [47], we keep

only the 𝜅-nearest neighbors of matrix 𝐵 for each of its comprising feature vectors. In

this way, the new content similarity graph is converted into a nearest neighbor graph.

The context-weight matrix 𝐵 can contribute to more discriminative dictionaries and

image representations, as well as improved classification rates. This can be achieved

by means of introducing Laplacian matrix 𝐿𝐵, derived from 𝐵, which will serve as a

constraint applied in the conventional NMF formulation. Laplacian matrix is defined

as:

𝐿𝐵 = 𝐵 −𝐷𝐵 (5.6)

where 𝐷𝐵 is a diagonal matrix with elements 𝑑𝐵𝑗𝑗
=

∑︀𝑁
𝑙=1𝑤𝑗𝑙. By using 𝐿𝐵 in

eq. (5.3), the new regularizing term becomes:

𝑇𝑟(𝑍𝑇𝐿𝐵𝑍) = 𝑇𝑟(𝑍𝑇𝐷𝐵𝑍)− 𝑇𝑟(𝑍𝑇𝐵𝑍) (5.7)

which can now be used in eq. (5.4) yielding a new objective function:

𝑂 = min
𝑈,𝑍
‖𝑋 − 𝑈𝑍𝑇‖+ 𝜆𝑇𝑟(𝑍𝑇𝐿𝐵𝑍) (5.8)
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Using eq. (5.8) our proposed method for dictionary training takes into account

not only the distance between feature vectors but also considers the context from

which these features have been extracted. Therefore, features that would otherwise

be considered similar and would be used together, are now seen as different and they

contribute differently to dictionary construction. My proposed method minimizes 𝑂

in eq. (5.8) through an iterative process based on the following update rules [47]:

𝑢𝑖𝑞 ← 𝑢𝑖𝑞
(𝑋𝑈)𝑖𝑞

(𝑈𝑍𝑇𝑍)𝑖𝑞
(5.9)

𝑧𝑗𝑞 ← 𝑧𝑗𝑞
(𝑋𝑇𝑈 + 𝜆𝐵𝑍)𝑗𝑞

(𝑍𝑈𝑇𝑈 + 𝜆𝐷𝐵𝑍)𝑗𝑞
(5.10)

where 𝑝 = 1, . . . , 𝑃 , 𝑞 = 1, . . . , 𝑄 and 𝑖 = 1, . . . , 𝑁 . The proposed method con-

structs dictionaries that improve the discriminatory capacity of the resultant image

representation. Henceforth, we call the resultant method Context-Adaptive Graph

regularized Non-negative Matrix Factorization (CA-GNMF). As will be seen in the

experimental assessment section, CA-GNMF yields great improvements in classifica-

tion rates on two 3D image classification datasets.

5.3.3 Classification algorithms

The discriminative power of an image classification system also depends on classi-

fication algorithm. Methodologies in [8, 16, 17, 43] use the Support Vector Machine

(SVM) [56]. This combination is claimed to be among the most suitable because

SVM is very efficient in dealing with long SPM representation vectors. A more recent

classification method [119] delivers improvements by classifying each representation

scale separately and reaching a final decision based on all partial decisions. In the

ensuing experimental assessment we use the classification approach in [119], presented

in Chapter 7, in combination with our dictionary training method.
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5.4 Experimental results

5.4.1 Experimental framework

In our experimental assessment, we used the datasets and framework presented in

[119]. Unlike [7,8], this framework uses more testing than training objects. In partic-

ular, two images per class were used for training while the rest were used for testing.

Training images were randomly selected and used in every experiment. The pyramid

architecture used for image classification was the same in all examined methods and

the representation vectors comprised of 14 scale vectors, as proposed in [8].

All competing dictionaries comprised 1000 codeword vectors, as proposed in [8].

All compared methods were based on the same randomly selected image features for

dictionary training. For the construction of distance matrix 𝑊 and context-weight

matrix 𝐵, in GNMF and CA-GNMF methods respectively, we use the five closest

features per training feature. All experiments use the same dictionary training feature

set.

5.4.2 Context-adaptive partitioning strategy

We conduct an experiment in order to determine which image attributes (or their

combinations) yield the best context labeling and, as a result, lead to more discrimi-

native dictionaries and better classification for both datasets. To this end, the same

dictionary training feature set is used with five update iterations across all experi-

ments. Multiple values are used for parameter𝐾, which denotes the number of regions

each image is partitioned. When 𝐾 = 2, the resultant contexts essentially indicate

the separation between foreground and background. However, when the number of

regions increases, we observe that the separation also gains a spatial layout, as seen in

Fig 5-2. From Table 5.1, we conclude that overall performance improves when more

that two regions are used, i.e, 𝐾 > 2.

Furthermore, as seen in Table 5.1, the proposed CA-GNMF performs best when

the context-aware constraint in eq. (5.8) is created from regions formed by the com-
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Table 5.1: Experiments on context partitioning image data. Comparison between all
image data and their combinations in order to achieve a more discriminative dictio-
nary.

K Depth Color Combination
2 87.37±2.69 87.37±2.16 87.83±2.20
3 87.53±2.70 87.88±2.14 87.83±2.76
4 87.63±2.82 87.37±2.51 87.93±2.61
5 87.73±2.52 88.18±2.26 88.13±2.35
6 88.05±2.85 87.73±2.88 87.78±2.18
7 87.83±2.52 87.88±2.76 87.98±2.76
8 88.23±3.00 87.63±2.52 87.83±2.75

Best K = 6 K = 5 K = 5
89.94±2.91 89.19±2.72 88.13±2.35

bination of color and depth attributes. However, the optimized results for each ex-

periment show that depth is the best image characteristic for describing context

similarity. Exploiting the findings of these experiments, we use depth information for

the extraction of context regions throughout our experimental assessment.

5.4.3 Comparison of encoding methods and dictionary train-

ing methodologies

In order to assess the benefits of the proposed methodology against competing dictio-

nary learning techniques, we conduct a series of experiments. Table 5.2 demonstrates

the combination of different dictionary training methods with feature encoding meth-

ods. The examined feature encoding methods are the Linear Spatial Pyramid (Sc-

SPM) [17] and the Pyramid Efficient Match Kernels (EMKSPM) [16]. The competing

dictionary training methods are k-means [119], K-SVD [45], NMF [110], GNMF [47]

and the proposed CA-GNMF. All dictionaries were calculated from SIFT image fea-

tures [1] using the framework presented in Section 5.4.1.

Table 5.2 shows that the ScSPM encoding method combined with every tested dic-

tionary method outperforms the EMKSPM. For this reason, we use ScSPM through-
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Table 5.2: Comparison between our proposed CA-GNMF method with other com-
peting dictionary training methodologies using the RGB-D database.

Dictionary meth. ScSPM EMKSPM
K-means 86.26±2.15 62.63±2.44
K-SVD 86.31±2.83 63.08±2.37
NMF 87.67±2.26 66.16±2.26
GNMF 88.28±2.13 66.11±2.20
CA-GNMF 89.94±2.91 66.47±3.16

out our experimental procedure. In addition, this experiment showed the capabilities

of our method when describing SIFT features compared to competing methodologies.

However, in order to draw solid conclusions about the effectiveness of our method-

ology, we conducted experiments using several features. These are presented in the

ensuing section.

5.4.4 Comparisons of dictionary training methodologies im-

plemented on multiple image features

We also conducted a comparison of our CA-GNMF against the aforementioned com-

peting dictionary methods for a number of features. For our comparison, we used

the SIFT feature and the kernel descriptors presented in [8]. In order to use the fea-

tures of [8] we had to replace negative values of feature elements with zero elements,

thus creating a sparse version of those feature vectors. Despite that, the 3D point

cloud features of [8] do not provide stable results when non-negativity is enforced and

for this reason those features are not used in the following comparison. Classifica-

tion performance using the RGB-D dataset is presented in Table 5.3. Our proposed

methodology outperforms regular NMF and GNMF regardless of the feature used.

However, for some features our method is less efficient than the k-means and K-SVD.

As seen in Table 5.3, not all features are complemented by the proposed dictionary

learning method. This is a downside of the enforced non-negativity on the examined

features. However, our proposed method still manages the second best classification
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performance when used with those features. This shows the discriminatory capabil-

ities of our proposed dictionary method, even when used with non-optimal features,

and the necessity of introducing new features for 3D image categorization.

Table 5.3: Comparing the proposed CA-GNMF methodology to k-means for a number
of features. Results on two 3D datasets are shown.

Feature K-means K-SVD NMF GNMF CA-GNMF
SIFT 86.26±2.15 86.31±2.83 87.67±2.26 88.28±2.13 89.94±2.91
RGB Gradient KDES 90.40±2.14 91.41±2.05 90.76±1.72 90.86±1.72 91.47±1.89
RGB LBP KDES 89.90±2.64 91.87±088 92.32±1.91 92.27±1.30 92.42±2.21
RGB Normalized Color
descr. KDES

93.99±1.84 92.98±1.68 92.58±1.39 92.37±2.17 92.63±0.94

Depth Gradient KDES 84.75±3.15 88.84±1.97 87.07±2.48 87.07±1.33 87.79±1.28
Depth LBP KDES 76.52±2.78 84.80±1.65 81.87±1.99 82.82±2.30 84.04±0.79

5.5 Conclusion

We introduced a novel dictionary training method for classification of 3D images. In

order to design efficient dictionaries, we assess the similarity of features originating

from similar content. Each image was partitioned into regions (contexts) based on

image characteristics such as depth. This procedure provides the context from which

each feature was extracted. Feature context labels were subsequently used in dic-

tionary training. The proposed methodology was experimentally shown to achieve

excellent results. Summarizing the contributions of this work:

� Depth information is applied to describe the contextual relations between ex-

tracted features.

� Dictionary learning with context supervision eliminates feature discrimination

problems inside a dictionary training set.

� Our proposed dictionary method yields top-performing results when combined

with suitable image features.

Our future plans include the use of this dictionary training method on an optimized

framework. Our proposed framework will include experiments with suitable features,
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optimal dictionary size and more 3D imaging datasets. All the above will provide

solid conclusions about the effectiveness of our proposed dictionary method. Further-

more, the method can be used in combination with our other proposed methodologies

presented in Chapters 4,7 and 6. The combination of all our presented methodolo-

gies in this thesis are expected to yield even better classification results in database

benchmarks, but also in real-life applications.
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Chapter 6

Using depth information for the

creation of image pyramid

representation

The most common image representation method among 2D image classification method-

ologies is the Spatial Pyramid Matching kernel (SPM) [2]. Spatial pyramid is a multi-

level hierarchical representation based on the bag of features model (BoF) [66]. This

hierarchical representation is based on the partitioning of an image in rectangular

regions, termed scales. The final image representation captures discriminatory image

information by combining the representation histograms associated with each scale

into a long concatenated vector. A visualization of such pyramid is shown in the

upper part of Fig 6-1.

Representation vectors derived from spatial pyramid are usually classified by

means of a support vector machine (SVM). The ability of the SVM to handle ef-

fectively high dimensional vectors makes it suitable for combination with pyramid

image representation. For this reason, this combination is the most widely used in

two and 3D image classification, achieving good classification rates.

Although 2D systems have to rely on texture and color intensities, 3D images

have depth features that can additionally contribute to the classification task. In this

chapter, we present a novel 3D image pyramid representation for 3D images [108].
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Figure 6-1: Differences between the regular spatial pyramid and the proposed content-
adaptive pyramid representation. Both pyramids represent the same image, with the
proposed representation being constructed using regions.

Our work focuses on an adaptive pyramid architecture that can efficiently represent

the content of each image. Unlike the SPM representation [2], the proposed method

builds a pyramid representation that forms a hierarchy of non-rectangular regions.

Similar to scene understanding methodologies [50, 114–117], we partition the image

in small blocks and we perform graph partitioning on those blocks using content

attributes like color and depth. In this way, we define arbitrarily-shaped spatial scales

on the pyramid representation according to the image content. Using this process,

the proposed method forms a representation that is more intrinsically associated with

image content. This is shown in the lower part of Fig 6-1.

The contributions of the present chapter are:

� A pyramid image representation constructed by using non-rectangular spatial

regions that adapt to the image content.

� An investigation that experimentally shows that depth is the most suitable

characteristic to guide the construction of the proposed pyramid representation.
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� The combination of our pyramid representation with the classification method

in [119], which results in a system that achieves state-of-the-art results in two

3D image classification datasets.

The rest of the chapter is organized as follows. In Section 6.1, we review the

current 3D image classification methods. Section 6.2 describes the extraction of region

indexes based on graph partitioning. In Section 6.3, we demonstrate the construction

of our novel content-adaptive pyramid image representation. In Section 6.4, a new

3D image classification framework is presented, followed by a detailed experimental

assessment. Conclusions are drawn in Section 6.5.

6.1 Review of current 3D image classification method-

ologies

A spatial pyramid is a multi-level hierarchy of rectangular regions. Each pyramid level

consists of rectangular regions called scales or spatial bins [2]. The number of levels

(and scales) is constant for every image. The most widely used architecture is a three-

level pyramid [2, 10, 11, 13–30, 43]. In this construction, the first level has one scale,

the second has four scales, and the last level has 16 scales. Features from each scale

are encoded using a codebook and are used for calculating a separate representation

histogram for each scale. The concatenation of those scale representation vectors

forms the final image representation vector.

3D image classification methodologies follow [7–9,43] the processes and techniques

used in 2D image classification using the conventional SPM. Since most 3D categoriza-

tion methodologies are comprised from multiple image features, SPM is used for the

representation of each texture and depth feature. The most used architecture [7–9] is

a three-level pyramid totaling 14 scales. The first level consists of one scale, the sec-

ond has four and the last levels consists of nine scales. All 3D methodologies [7–9,43]

proposed the concatenation of each individual feature representation. This results to

a long representation vector used as data for the classification algorithms.
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The spatial pyramid method yields state-of-the-art results for 2D and 3D image

classification. Its main disadvantage, however, lies in the fact that it does not take

into account the spatial arrangement of content within an image. Implicitly, the

SPM-based methodologies assume that the content of interest is located in the image

center and there is little background clutter.

Solutions to this problem have been studied by methods in [22–30]. These meth-

ods use a detection or localization process in order to find the main object within an

image. Some methods [24–30] focus on the object, by disregarding or underestimat-

ing encoded feature vectors extracted from the background. Other methods [22, 23]

create class-specific feature encoding weighting creating more discriminative image

representations. Although, they all result on using an SPM-based representation

which somewhat treats the aforementioned spatial arrangement of each image.

In order to deal with the disadvantages of the spatial pyramid, arising from its

rigid construction, we construct a new pyramid representation for 3D images, which

adapts to the image content by forming arbitrarily-shaped hierarchical regions.

Figure 6-2: Representation of the block of characteristics

6.2 Graph Partitioning And Region Indexing

6.2.1 Image characteristics revealing image content

In SPM, each image is represented using encoded vectors, which correspond to features

extracted over dense grids (also called as spatial cells [2]). Instead, scene understand-

ing methods [114–117, 120], regionalize images according to local content by using

algorithms such as those in [121,122].

The proposed method uses a dense grid of rectangular blocks, studies the relation
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(a) Original image (b) Color blocks (c) Depth blocks

(d) Intensity

blocks

Figure 6-3: (a) The original image from which blocks of characteristics are extracted.
(b), (c), (d) characteristic blocks based on color, depth information, and intensity
respectively.

between them and captures discriminative information. To achieve content aggrega-

tion, our method extracts simple characteristics from each block. Similar to the work

in [117,123], characteristic blocks are constructed based on color, intensity, and depth

information (Fig 6-2).

A characteristic block is represented by the mean value of information from the

pixels inside that block. The color characteristic blocks are represented by the mean

RGB values of the pixels in each block. An intensity block is represented as the mean

intensity of the pixels within the block. Further, depth blocks are represented by the

mean depth value extracted from depth maps. The set of these blocks are denoted

as 𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑁}, where 𝑁 is the number of blocks in the image (or the depth

map). An example of such partitioning can be seen in Fig 6-2. In our analysis, color

blocks are denoted as 𝐵𝑐, intensity blocks as 𝐵𝑔 and depth blocks as 𝐵𝑑. An example

of these characteristics can be seen in Fig 6-3.

Extracted blocks are grouped into spatial regions that are subsequently used for

pyramid representation. In order to form connective regions, characteristic blocks are

regarded as the vertices of an undirected graph. For the creation of graph vertices,

each characteristic 𝐵𝑐, 𝐵𝑔 or 𝐵𝑑 can be used individually. Characteristics can also be

combined in order to achieve better partitioning. The partitioning procedure is very

crucial, mostly because it affects significantly the discriminative capacity of our image

representation. An experimental assessment of characteristics and their combinations

for the optimum representation will be presented in Section 6.4.2.
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Figure 6-4: A depth map is transformed into depth characteristic blocks. Graph
partiotioning of the previous characteristics lead to the creation of regions.

6.2.2 Graph of image content

As described above, the blocks are used in order to form a pyramid of regions, i.e.,

regions at different levels. We apply a simple classification algorithm that groups

blocks into regions at different levels. Henceforth, these regions will be referred to as

scales.

In order to form regions, we perform block clustering using graph-based partition-

ing, following the ℓ-bounded graph partitioning problem (ℓ-GP) presented in [118].

The ℓ-GP problem explains the partitioning of a graph with vertices 𝑉 = [𝑣1, 𝑣2, ..., 𝑣𝑄],

where 𝑄 is the total number of vertices, into 𝐾 regions. The purpose of this method

is to find the 𝑘-th subset of 𝑉 by minimizing the cost 𝐶(𝑉𝑘) with no more that ℓ

vertices in a subset. The minimum value of ℓ is defined as ℓ = [𝑄/𝐾]. Each indi-

vidual subset 𝑉𝑘 corresponding to the 𝑘-th region is presented as a subset of 𝑉 with

𝑉𝑘 = [𝑣𝑘1 , 𝑣
𝑘
2 , ..., 𝑣

𝑘
𝑄𝑘

]. The union of all 𝐾 regions must be the original 𝑉 . In order to

determine the subsets the cost 𝐶 of 𝑉𝑘 must be minimized, which is defined as:

𝐶(𝑉𝑘) =
∑︁
𝑖 ̸=𝑗

∑︁
𝑢∈𝑉𝑖,ū∈𝑉𝑗

𝑐(𝑢, ū). (6.1)

where 𝑢 is an index indicating the 𝑢-th entry of 𝑉𝑘. The cost 𝑐(𝑢, ū) = 0 for every

edge and since the graph is undirected 𝑐(𝑢, ū) = 𝑐(ū, 𝑢), ∀𝑢, ū ∈ 𝑉 .
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6.3 Content-Adaptive Pyramid Matching (CAPM)

6.3.1 Spectral clustering and region indexes

In order to construct the proposed content-adaptive pyramid, we label every block

and form regions by grouping blocks in each pyramid level. The correspondence of

each block to each individual scale is indicated through region labels, termed region

indexes.

In conventional SPM, each pyramid has 𝐿 levels. Each level 𝑙 is partitioned into

𝑙2, 𝑙 = 1, . . . , 𝐿, rectangularly shaped spatial scales. In our pyramid construction in

order to form regions, we use the general formulation of the ℓ-GP problem, based on

eq. (6.1), and we apply it on characteristic blocks. In this way, the graph vertices 𝑉

contain the values of blocks 𝐵. The preferred number of block regions is 𝐾𝑙 = 𝑙2, i.e.,

the number of scales for each level is equal to the number of regions formed in each

level. Scales are no longer rectangular but object-shaped and are determined using

the preceding graph partitioning.

For an image yielding 𝑁 feature vectors, we construct an 𝑁 × 𝑁 adjacency ma-

trix 𝐴 that consists of the pairwise distance between the values of each characteristic

block of an image. We then compute at each level 𝑙, a 𝐾𝑙 ×𝐾𝑙 diagonal matrix 𝐷,

the diagonal of which contains the 𝐾𝑙 largest eigenvalues of 𝐴. We also compute

matrix 𝐸 = [e1, e2, . . . , e𝑁 ], the columns of which are the eigenvectors of 𝐴 that

correspond to the 𝐾𝑙 largest eigenvalues. By using 𝐸 we compute region indexes 𝑟,

𝑟 = [𝑟11, 𝑟
2
1, . . . , 𝑟

𝑁
𝐿 ], of the 𝑛-th characteristic block in the 𝑙-th pyramid level. The as-

signment of region indexes is done by partitioning 𝐸 into 𝐾𝑙 sets Ξ𝑙 = [𝜉𝑙1, 𝜉
𝑙
2, . . . , 𝜉

𝑙
𝐾𝑙

]:

min
Ξ𝑙

𝐾𝑙∑︁
𝑦=1

∑︁
e𝑛∈Ξ𝑙

𝑦

‖e𝑛 − 𝜇𝑦‖2 (6.2)

where 𝜇𝑦 are the centroids of the 𝐾𝑙 eigenvector clusters determined using of

k-means algorithm. The final step is to assign each region index 𝑟𝑛𝑙 to their corre-

sponding sets when ∀e𝑛 ∈ Ξ𝑙
𝑦 : 𝑟𝑛𝑙 = 𝑦. Fig. 6-4 shows an example of region forming

created from a depth map.
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This partitioning method assigns labels to formed regions using an ordering pro-

cedure. The ordering of region labels takes place either in descending or ascending

order without affecting the efficiency of the method.

6.3.2 Generating the content pyramid representation

As described above, a conventional spatial pyramid (SPM) is constructed based on

rectangular spatial scales. In our proposed representation, however, scales are in the

form of arbitrarily-shaped regions that adapt to image content. Henceforth, these

will referred to as adaptive scales.

For an image represented by vector p, which is the concatenation of scale rep-

resentation vectors s, our general implementation and simplification of the general

SPM pyramid kernel 𝜅(p) is:

𝜅(p) =
𝐿∑︁
𝑙=1

𝑙2∑︁
𝑟=1

𝜅(s𝑙𝑟) (6.3)

where s𝑙𝑟 is the representation vector at the 𝑙-th pyramid level and 𝑟-th scale. The

scale vector s𝑙𝑟 is the representation histogram of encoded extracted descriptors z:

s𝑙𝑟 = [|z1𝑙𝑟|, |z2𝑙𝑟|, . . . , |z
𝑁𝑙𝑟
𝑙𝑟 |] (6.4)

where 𝑁𝑙𝑟 denotes the number of encoded feature vectors within region 𝑟 and

[.] represents a histogram of the encoded vectors. In eq. (6.4), the region scale in-

dexes 𝑟 are determined by the preceding graph partitioning. If 𝑟 is not used as a

region indicator then the representation degenerates to normal SPM. This results in

a representation dependent to the content of each image. Henceforth, we call this

representation content-adaptive pyramid and the resultant method content-adaptive

pyramid matching (CAPM).
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6.3.3 Implementation on Linear Spatial Pyramid

The deployment of the proposed CAPM image representation in place of the SPM

representation in [17] (ScSPM), requires that feature vector x𝑛, from a set of feature

vectors 𝑋, is encoded in the form of a sparse vector z𝑛. The sparse feature vectors

are computed by minimizing the 𝑙1 norm using the feature-sign search algorithm [49].

The above feature encoding process is based on:

min
z𝑛

‖x𝑛 − z𝑛𝐵‖22 + 𝜆|z𝑛|1 (6.5)

where𝐵 is a 𝑑×𝑊 precomputed codebook, with 𝑑 the dimensionality of the feature

vector and𝑊 the total number of codewords, calculated using random feature vectors

from each class. We use the pyramid kernel in eq. (6.3) and we apply the following

changes on the scale vectors of eq. (6.4) by adding a max-pooling function [17].

s𝑙𝑟 = max[|z1𝑙𝑟|, |z2𝑙𝑟|, . . . , |z
𝑁𝑙𝑟
𝑙𝑟 |] (6.6)

6.3.4 Implementation on Pyramid Efficient Match Kernels

Efficient match kernels [8] describe the encoding of high dimensional feature vectors

x𝑛 through a projection to a low dimensional space. Firstly, the low dimensionality

projection coefficients, i.e, the encoded feature vectors z𝑛 are calculated as:

z𝑛 = (𝐵𝑇𝐵)−1(𝐵𝑇x𝑛) (6.7)

The encoded feature vectors provide the following local kernel:

𝑘(𝑥, 𝑦) = [𝐵z𝑥]𝑇 [𝐵z𝑦] = k𝐵(𝑥)𝑇𝐾−1
𝐵𝐵k𝐵(𝑦) (6.8)

where {k𝐵}𝑖 = 𝑘(x𝑛,b𝑖) is a 𝑊 ×1 vector and {𝑘𝐵𝐵}𝑖𝑗 = 𝑘(b𝑖,b𝑗) a 𝑑×𝑑 matrix.

For 𝐾−1
𝐵𝐵 = 𝐺𝑇𝐺 forming a local feature map:

𝜑(x𝑛) = 𝐺k𝐵(x𝑛) (6.9)
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the final full feature map is 𝜑(𝑋) = 1
|𝑋|𝐺[

∑︀
x𝑛∈𝑋 k𝐵(x𝑛)] Implementing the pro-

posed pyramid representation on the above encoding, every scale vector is presented:

s𝑙𝑟 = [|𝜑(x1
𝑙𝑟)|, |𝜑(x2

𝑙𝑟)|, . . . , |𝜑(x𝑁𝑙𝑟
𝑙𝑟 )|] (6.10)

6.3.5 Classification

Pyramid methods presented so far in the literature are based on the concatenation of

feature vectors extracted from each pyramid scale. This normally produces a long fea-

ture vector. The most widely used classification algorithm for such vectors is Support

Vector Machines (SVM) [56]. This is due to the SVM’s ability to efficiently classify

multidimensional vectors such as those generated by pyramid image representation

methods.

The SVM, when paired with conventional SPM, operates on multidimensional

feature vectors without specific regard to the pyramid scales that comprise these

vectors. This can have an adverse impact on the overall classification performance if

discriminatory information is concentrated in a small number of scales. In order to

overcome this problem, we used the proposed Scale Based Support Vector Machine

(SBSVM) algorithm [119], described in Chapter 7, in which each scale vector was

classified separately and contributed independently to the final decision.

The main difference between the scale-based and the conventional application of

SVM lies in the fact that each image is no longer classified by a single decision taken

based on a long concatenated representation vector but, instead, individual decisions

based on each scale are combined. Specifically, each scale is processed by a linear SVM

that was previously trained based on the individual scales from a random subset of

images. The independent decisions reached using the scale-trained SVM are used in

a voting process, in which the decision label that is in the majority is considered the

image label.

The combination of the proposed representation with the SBSVM will be ex-

perimentally shown to achieve improved performance over the combination with the

conventional application of SVM.
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6.4 Experimental Evaluation

6.4.1 Experimental setup

Since our image representation is to be used with 3D images, we compare the proposed

representation with the SPM [2] in the context of 3D image classification. Specifically,

we use our representation in combination with Pyramid Efficient Match Kernels Over

Kernel Descriptors [8] and Texture and Depth Sparse Representation Fusion [43],

which are 3D classification methodologies that used SPM image representation. These

methods were presented in detail in Section 6.1.

For the experimental evaluation of our method we adopt a framework similar to

the one used in [8]. In our experiments, each examined method is assessed using

the dictionary training methodology proposed in its respective work ( [8, 16, 17, 43]).

Dictionary training for all examined methods is used with a codebook comprising

1000 codewords. These codewords are computed from 20 feature vectors that are

randomly chosen from each image from across each database.

In all our experiments we use a three-level pyramid with 14 pyramid scales in

total. Specifically, the first level has one scale, the second level has four scales and

the final pyramid level has nine scales.

In the classification stage, we use the training/testing protocol of Chapter4.4.1

which, unlike the framework proposed in [8], uses more testing than training images.

We keep the same training setup for both SVM and SBSVM algorithms, i.e., in all

experiments, we randomly choose two images per class for training and use all the re-

maining images for testing. Further, we randomly choose 10 different training/testing

sets for the classification training/testing process. We repeat the above for 10 differ-

ent trained dictionaries. As a result, we conduct 100 random experiments in total,

which increases confidence in the validity of our results and conclusions.
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Table 6.1: Classification efficiency for several characteristics (± standard deviation).

Feature Pyramid Guiding characteristic BTDI database RGB-D database
SIFT ScCAPM Color 96.29±2.70 94.82±1.46
SIFT ScCAPM Depth 98.07±1.46 95.58±1.49
SIFT ScCAPM Color + Depth 97.54±1.56 94.34±1.61
SIFT ScCAPM Grayscale 97.21±2.15 95.47±1.12
SIFT ScCAPM Grayscale + Depth 96.74±1.95 94.61±1.62
SIFT ScCAPM Grayscale + Depth (normalized) 96.31±2.00 95.10±1.42
SIFT EMK CAPM Color 79.61±4.59 69.29±2.64
SIFT EMK CAPM Depth 75.92±3.84 70.01±3.01
SIFT EMK CAPM Color + Depth 79.83±4.02 66.06±2.86
SIFT EMK CAPM Grayscale 81.29±4.15 69.08±2.98
SIFT EMK CAPM Grayscale + Depth 80.06±4.35 67.42±2.71
SIFT EMK CAPM Grayscale + Depth (normalized) 80.31±4.14 67.42±3.07

6.4.2 Suitability of characteristics to guide the representation.

As described in Section 6.2.2, characteristic blocks are used to capture the content

of an image and guide the construction of the proposed CAPM representation. In

order to determine the most suitable characteristic, we test several characteristics for

guiding the region formation of the proposed pyramid representation. To this end,

we use our proposed CAPM and the classification algorithm in [119] with the systems

in [16, 17]. In order to reach reliable conclusions, we conduct experiments on BTDI

and RGB-D 3D datasets. The characteristics that we test are listed in Table 6.1 and

include color, texture, depth and their combinations. As seen in Table 6.1, depth

is in most cases the best-performing characteristic to guide the construction of the

pyramid.

Since depth performed best in most experiments, it will be subsequently used as

the characteristic that guides the pyramid construction in all our experiments. As will

be seen in the ensuing section, depth-adaptive pyramid representations yield superior

results on the examined datasets.

6.4.3 Evaluation of CAPM representation

In order to assess the efficiency of our proposed pyramid representation, we compare

it against the standard SPM. Our first experiment assesses the performance of our
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Table 6.2: Results of BTDI dataset (± standard deviation). Depth was used for the
construction of the content-adaptive pyramid.

SVM SBSVM
Features SPM CAPM SPM CAPM

SIFT + ShC (sl.method 1) 48.67±6.17 [43] 38.17±5.93 86.06±3.11 91.42±1.78
SIFT + ShC(sl.method 2) 46.64±5.39 [43] 40.11±6.61 85.71±2.96 91.80±1.21
SIFT + ShC (sl.method 3) 50.68±3.83 [43] 41.95±6.42 85.74±3.41 91.01±1.84
SIFT + ShC (sl.method 4) 51.72±4.30 [43] 40.57±6.94 85.85±3.26 91.44±1.57
SIFT + ShCid (sl.method 1) 52.49±4.41 [43] 40.87±5.40 86.29±3.12 [119] 91.45±1.50
SIFT + ShCid (sl.method 2) 47.93±4.98 [43] 38.33±5.43 86.37±3.05 [119] 91.00±2.33
SIFT + ShCid (sl.method 3) 57.17±5.30 [43] 41.60±6.23 86.24±3.37 [119] 91.00±1.99
SIFT + ShCid (sl.method 4) 51.92±6.41 [43] 42.03±8.40 85.92±3.14 [119] 91.39±1.82
RGB Gradient KDES 57.01±5.15 [8] 43.56±4.38 91.79±2.93 [119] 95.15±2.47
RGB LBP KDES 54.88±4.88 [8] 44.15±5.03 93.61±2.92 [119] 97.71±1.69
RGB Norm. Color descr. KDES 47.04±4.97 [8] 37.97±5.06 93.25±2.58 [119] 96.53±2.09
Depth Gradient KDES 43.88±4.91 [8] 30.21±4.49 61.15±4.59 [119] 72.76±4.64
Depth LBP KDES 41.72±6.01 [8] 29.49±4.62 73.08±4.33 [119] 91.37±3.02
Point cloud Size KDES - - - -
Point cloud Normal KDES - - - -
Feature combination 62.26±5.07 [8] 52.06±4.79 97.54±1.81 [119] 99.24±0.93

CAPM representation in conjunction with SVM classification. When our CAPM

representation is used in place of the SPM representation, the grouping of the encoded

features takes place in a content-adaptive rather than a predefined spatial manner. As

seen in Table 6.2 and Table 6.3, every feature used with CAPM/SVM performs poorly

against the conventional SPM/SVM combination. This is because the CAPM scales

adapt to the content and, therefore, discriminative information tends to concentrate

on a smaller number of scale vectors. In this way, the concatenation of CAPM scale

vectors in a long representation vector and has an adverse impact on performance.

To address the aforementioned problem we use the SBSVM classification algo-

rithm in [119]. The SBSVM exploits the discriminatory capabilities of the proposed

CAPM representation by means of its scale-based decision making. As seen in Ta-

bles 6.2 and 6.3, the CAPM representation when combined with SBSVM classification

outperforms the conventional SPM representation, which demonstrates the advantage

of our representation over SPM.

The results in Tables 6.2 and 6.3 show that the application of our methodol-

ogy in the texture representation of [43] results in increased performance on both

datasets. Also, the CAPM representation using the features in [8] improves the over-
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Table 6.3: Results of RGB-D dataset (± standard deviation). Depth was used for
the construction of the content-adaptive pyramid.

SVM SBSVM
Features SPM CAPM SPM CAPM

SIFT + ShC (sl.method 1) 35.59±2.84 [43] 36.53±5.90 86.11±1.85 88.23±1.73
SIFT + ShC(sl.method 2) 38.03±3.09 [43] 36.61±5.56 86.17±1.85 88.79±1.38
SIFT + ShC (sl.method 3) 34.19±2.86 [43] 36.48±5.22 85.92±2.17 88.59±1.44
SIFT + ShC (sl.method 4) 37.00±3.15 [43] 35.45±4.62 85.96±1.98 87.96±1.82
SIFT + ShCid (sl.method 1) 34.45±2.75 [43] 37.12±4.71 85.78±2.14 [119] 88.04±1.53
SIFT + ShCid (sl.method 2) 33.02±2.82 [43] 35.35±5.78 86.11±1.85 [119] 88.64±1.62
SIFT + ShCid (sl.method 3) 33.98±2.81 [43] 35.83±4.94 85.33±2.13 [119] 87.79±1.57
SIFT + ShCid (sl.method 4) 33.96±2.99 [43] 34.58±5.38 86.06±1.91 [119] 88.85±1.59
RGB Gradient KDES 34.69±2.86 [8] 32.43±1.96 88.35±2.02 [119] 92.48±1.47
RGB LBP KDES 32.44±2.60 [8] 29.25±2.90 92.77±1.86 [119] 96.49±1.36
RGB Norm. Color descr. KDES 28.11±2.89 [8] 26.84±2.64 91.70±1.54 [119] 93.86±1.53
Depth Gradient KDES 25.64±2.81 [8] 22.80±2.29 78.79±2.55 [119] 87.10±1.98
Depth LBP KDES 23.67±2.64 [8] 19.44±2.56 85.91±2.03 [119] 92.85±1.59
Point cloud Size KDES 29.94±2.88 [8] 29.18±2.77 78.96±2.05 [119] 80.08±2.31
Point cloud Normal KDES 27.18±2.29 [8] 22.55±4.49 79.76±2.32 [119] 83.39±2.42
Feature combination 47.80±2.77 [8] 45.56±3.13 98.62±0.80 [119] 99.18±0.60

all performance compared to the SPM representation using the same features. The

best performance, however, is achieved by the combination of CAPM representations

based on multiple features in a joint feature vector, which provides state-of-the-art

classification results on both datasets. Overall, the pairing of our proposed CAPM

representation with SBSVM classification outperforms the conventional SPM/SVM

and SPM/SBVM image classification approach.

Clearly, the application of CAPM constitutes a content-adaptive extension of the

methods that are included in our comparison. The adaptation capacity of our pro-

posed representation, forms coherent regions and separates content of interest from

less relevant background content. In this way, the CAPM scales also separate regions

of interest within particular classes.

6.4.4 Multi-view vs. Single viewpoint

In order to assess the categorization capabilities of multi-view methods when only

one view is available we use the multi-view method in [8] as reference. That method

was compared with the method in [119] in a scenario in which only one viewpoint was
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Table 6.4: Multi-view vs. single-viewpoint methodologies on the RGB-D database.
(± standard deviation).

SPM / SVM CAPM / SBSVM
Features Pyramid Multiview Single-view Pyramid Single-view

RGB Gradient KDES EMK SPM [8] - 40.58±5.45 EMK CAPM 99.71±0.70
RGB LBP KDES EMK SPM [8] - 39.47±5.32 EMK CAPM 99.98±0.20
RGB Norm. Color descr. KDES EMK SPM [8] - 38.94±6.16 EMK CAPM 99.96±0.27
Depth Gradient KDES EMK SPM [8] 69.0±2.3 28.36±4.93 EMK CAPM 98.63±1.61
Depth LBP KDES EMK SPM [8] 66.3±1.3 26.28±4.38 EMK CAPM 99.92±0.38
Point cloud Size KDES EMK SPM [8] 60.0±3.3 37.94±5.42 EMK CAPM 94.00±2.58
Point cloud Normal KDES EMK SPM [8] - 35.06±5.15 EMK CAPM 98.55±1.79
Feature combination EMK SPM [8] 86.5±2.1 59.02±5.54 EMK CAPM 100.00±0.00

available. Dictionary learning in [8] took place by using random features, extracted

from multiple views. In the present work, we randomly chose one view for every

object in every class from the RGB-D dataset, creating a single-viewpoint subset

containing 300 RGB+D images. Additionally in [8], tests were conducted using one

randomly chosen viewpoint image for testing while all remaining viewpoint images

from the remaining objects in each class were used for training. In this way, the multi-

view method essentially operates in a single-viewpoint framework. We applied this

experimental procedure to the method in [8] and we also implemented our proposed

CAPM representation in the same method using SBSVM.

The results from all experiments are shown in Table 6.4 along with their standard

deviation. As seen, when only one viewpoint is available, the performance of the

multi-view method in [8] drops significantly. As can be seen in the last column

of Table 6.4, when using our proposed CAPM representation, the single-viewpoint

method outperforms the multi-view method by a significant margin.

This experiment shows that multi-view methods are very relaint on the availability

of several views and therefore, are not robust to a reduction in the number of available

viewpoints. Our proposed representation, despite being used on a single-viewpoint

framework, outperforms multi-view method approaches.
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6.5 Conclusions

In this chapter, we introduced a novel image representation that is suitable for 3D

image classification. Unlike most current approaches, our representation was not

constructed by means of a fixed pyramid but, instead, relies on image content and

uses content-adaptive scales rather than fixed rectangular scales. In addition to the

new representation, we experimentally showed that depth information benefits the

formation of regions within the pyramid structure. When coupled with suitable clas-

sification, our proposed methodology achieved state-of-the-art results on all examined

3D image datasets. The main contributions of this work are:

� This introduction of a novel pyramid representation that contributes to better

recognition rates.

� Our novel pyramid design can provide better representation by taking into con-

sideration the content of each image.

� Depth information is experimentally shown to be the most efficient content

index for an image.

The experiments presented in this chapter are based on the experimental frame-

work used from other methods (Section 6.4.1). These experimental settings provide an

easy comparison between our proposed method and the SPM used in 3D methodolo-

gies [7–9,43]. However, these methods were optimized and presented in their proposed

framework, including important parameters, such as pyramid architecture and scale

vector dimensionality. We believe that the recognition rates achieved by our method

can be improved by optimizing the representation using our proposed framework.

Some indications about the efficiency of our proposed representation methodology

can be seen in Chapter 8.3.5. The flexible architecture provided from our novel rep-

resentation outperforms SPM when used with a deep convolutional neural network.

Furthermore, an interesting future work could include the implementation of our

method in real-time processes with realistic data. This will allow us to draw conclu-

sions about the robustness of our novel method in realistic applications.
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Chapter 7

Classification of 2D and 3D Images

Using Pyramid Scale Decision Voting

One of the most popular image representations for image classification is by means

of Spatial Pyramid Matching (SPM) [2]. A spatial pyramid is a multi-level hierarchy

of rectangular regions (called scales) that describe each image locally by using the

Bag-of-features model (BoF) [66]. Each region is represented by a histogram formed

by the encoded vectors of features extracted from that region. The concatenation of

those scale vectors forms a long vector that represents the image.

The majority of 2D image classification methods [2, 10, 11, 13–30] and 3D meth-

ods [7–10, 43, 44] use the SPM as their representation vector. The most suitable

classification algorithm for the SPM representation, which is also used in all afore-

mentioned methodologies, is the Support Vector Machine (SVM) [56]. As described in

Chapter 2.5, the SVM algorithm can effectively categorize data represented by high-

dimensional vectors. That is also the case for 2D and 3D image categorization where

images are described using representation vectors. However, SVM fails to correctly

classify a large percentage of images, which implies that training may not be efficient.

It also exhibits increasingly better performance for increasing amounts of training

data while, in some cases, when limited training data is available, performance is sig-

nificantly lower. Therefore, an interesting challenge is to try to improve classification

performance by using a suitable training procedure in cases where available training
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data does not lead to good classification performance or in case limited training data

is available.

In this chapter, we present a novel method using individual representation scales

for 2D and 3D image classification presented in [119]. This part of our research,

studies the discrimination capabilities of individual scales coming from pyramid rep-

resentation. We propose that individual pyramid scale vectors train an SVM in order

to take into account the fact that some scale vectors of low discrimination power may

have a negative effect on classification performance. Although our method performs

best in the context of 3D image classification systems, it is also applicable to 2D

image classification, which benefits from requiring fewer training samples to achieve

similar performance.

The rest of the chapter is organized as follows. We present our scale-based classi-

fication method in Section 7.1. Experimental evaluation with detailed description of

the experimental results for two and 3D datasets is presented in Section 7.2. Conclu-

sions are drawn in Section 7.3

Table 7.1: Results on ten random classes of Caltech101 dataset. The second column
shows the percentage of pyramid scales that can independently lead to correct recog-
nition of each class. The third column shows the classification rate achieved when
the decision taken is based on the majority voting over all scales of an image from
that class.

Percentage Classification
Class of scales rate

Platypus 12.10% 0.00%
Menorah 13.79% 1.30%
Gramophone 11.85% 2.44%
Rooster 13.43% 30.77%
Buddha 13.52% 32.00%
Camera 18.81% 72.50%
Stapler 29.66% 74.29%
Inline skate 22.22% 80.95%
Airplanes 51.71% 99.37%
Faces easy 47.32% 100.00%
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7.1 Scale based classification

The efficiency of image classification depends on image representation as well as clas-

sification algorithms. Recent research, shows that pyramid image representations

yields the best performance with the most popular being the spatial pyramid match-

ing (SPM) [2]. That method represents an image as a long vector that includes infor-

mation from all pyramid scales. However, the independent discriminatory capability

of each individual pyramid scale has not been studied.

In order to demonstrate the need for scale-based decisions, we conduct an exper-

iment using the Caltech 101 dataset. The method used is the ScSPM [17] with SIFT

feature extraction [1] and SPM architecture [2]. The second column of Table 7.1,

shows the percentage of scales that can independently correctly describe the images

in each class. The third column reports classification performance achieved by our

method.

As seen, even in classes that are easy to classify, the percentage of SPM scales that

could independently represent the class accurately is less than 50%. This percentage

decreases even more for classes that are more difficult to recognize. In practice,

this means that much of the information included in conventional pyramid image

representations may not be discriminatory and may hinder rather than contribute to

correct classification.

We also observe that smaller training sets will proportionally provide a smaller

number of less discriminant scales, leading to a well trained SVM. Advantages of

proportionally smaller training sets are also evident on larger datasets with SPM

vectors [10,13,14,16,17,21,124], where the number SVM training images are propor-

tionally much smaller to the total number of images. So large training set are more

prone to corruption that may lead to misclassification for all classification methods.

7.1.1 Conventional Support Vector Machine

In two and 3D methodologies [8, 13, 16, 17, 43], the classification of images, based on

their pyramid representation p, takes place using binary SVM decision functions of
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the form:

𝑓 𝑗(p) = (
𝑀∑︁
𝑖=1

𝑎𝑗𝑖p𝑖)
𝑇p+ 𝑏𝑗 = w𝑇

𝑗 p+ 𝑏𝑗 (7.1)

which separate the 𝑗th class from the rest. In eq. (7.1) w is the normal vector

to the separating hyperplane, 𝑎 the Lagrange multiplier, and 𝑏 the y-intercept of the

border line created by the support vectors.

If Λ is the number of classes and 𝑀 the number of available training images,

the SVM learns Λ linear functions using the representation vectors p𝑖 as training

data, {(p𝑖, 𝑦𝑖)}𝑀𝑖=1, 𝑦𝑖 ∈ Υ = {1, ...,Λ} . Each linear function 𝑓 𝑗(·) is defined by

{w⊤
𝑗 p|𝑗 ∈ Υ}. For a test vector p, its class label 𝑦 is determined by

𝑦 = max
𝑗∈ϒ

w⊤
𝑗 p (7.2)

Figure 7-1: Classification using the novel SBSVM method. The SPM representation
is decomposed in its pyramid scales. The scale vectors are input to the scale-trained
SVM which provides a decision for each scale. The final classification label is the one
that received the majority of votes.

7.1.2 Scale-based Support Vector Machine

In order to take into account the different discriminatory capabilities of different

pyramid scales, we deployed scale-by-scale classification, in which each scale vector

is classified separately and contributes to the final decision. The testing procedure

can be seen in Fig. 7-1. Using this approach, each image is no longer represented

using a single vector but, instead, the representation comprises a number of shorter
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independent pyramid scale vectors. Training takes place using a random subset of the

available images and we train a SVM using the independent pyramid scale vectors

extracted from the training images. This will be experimentally shown to give an

advantage over the conventional application of SVM in terms of classification perfor-

mance.

We call this novel classification algorithm Scale Based Support Vector Machine

(SBSVM). The class label of an image, is no longer determined by its long SPM

vector p but by its constituent individual scale vectors s𝑙, 𝑙 = 1, 2, . . . , 𝐿, where 𝐿 is

the number of scales in the chosen pyramid representation architecture. In this way,

instead of using the SVM decision functions of eq. (7.1), we use decision functions

calculated using 𝑀 × 𝐿 scale vectors as training data. For 𝑀 × 𝐿 training scale

vectors {(s𝑘, 𝑦𝑘)}𝑀×𝐿
𝑘=1 , 𝑦𝑘 ∈ Υ = {1, ...,Λ}, the SVM learns Λ linear functions each

one defined by {w⊤
𝑗 s|𝑗 ∈ Υ}. Subsequently each scale s is classified independently:

𝑓 𝑗(s) = (
𝑀×𝐿∑︁
𝑘=1

𝑎𝑗𝑘s𝑘)𝑇 s+ 𝑏𝑗 = w𝑇
𝑗 s+ 𝑏𝑗 (7.3)

Each test image is represented by using the set of scale vectors the labels of

which are predicted independently by the SVM. The final classification decision for

the test image, is reached by a voting procedure based on the collection of the scale

classification labels. The label that appears in the majority is the final classification

label assigned to the test image. As will be seen in the ensuing section, the SBSVM

improves classification performance.

7.2 Experimental Evaluation

7.2.1 Experimental setup

We compared our algorithm to a number of competing methodologies. In order to

reach conclusive results, we repeat the dictionary training process ten times for the

tested methodologies and randomly choose ten different training/testing sets for SVM

training/testing.
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For 2D classification, we use Linear Spatial Pyramid (ScSPM) [17] and Locality-

constrained Linear Coding (LLC) [13]. We used the Caltech101 database from which

we excluded the background class. For dictionary training we choose, as in [17], the

size of all codebooks to be 1024 codeword vectors computed from randomly chosen

feature vectors from across each database. We use a three-level pyramid with 21

pyramid scales, proposed in [17], kept stable through our experiments.

For 3D image classification we used methods such as Texture and Depth Sparse

Representation Fusion [43] and Pyramid Efficient Match Kernels Over Kernel Descrip-

tors [8]. We follow in part the framework presented in [8]. For dictionary training

we choose the size of all codebooks to be 1000 codeword vectors from 20 random

samples per image across all experiments. We use an identical dictionary training

process for all the examined methods [8,17,43]. As for pyramid architecture, we use a

three-level pyramid with 14 pyramid scales, as proposed in [8]. In the aforementioned

3D experiments, we randomly choose two images per class for training and use all

the remaining images for testing. For BTDI dataset, the training set is roughly one

fourth of the available data and in the RGB-D database we use about one third of

the images for training.

7.2.2 Evaluation of SBSVM classification

On 2D datasets

We completed a series of experiments on the 2D Caltech 101 database. Our experi-

ments follow the setup outlined earlier and are based on small training datasets. Re-

sults are reported in Table 7.2 and show the improvements that our method achieves

under those conditions. As seen, the performance of SBSVM is better or equal than

that of the conventional application of SVM, where larger training sets are assumed.

Further, we used training sets of up to 30 images per class. In those experiments

the proposed method performs roughly as well as the SVM classification based on

long representation vectors. The main reason for that is the large training dataset

caring more scale vectors of low representational value which affect the classification.
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For instance, a set of 30 images per class provides 30 training vectors per class for

the conventional application of SVM while the same set provides to the SBSVM 630

training vectors per class.

Although, the SBSVM does not achieve state-of-the-art performance for this

dataset when large training sets are used it still achieves impressive results with

limited training sets.

Table 7.2: Results of Caltech101 dataset (± standard deviation).

Number of training images
Method / Classification 2 5 10 15 30
ScSPM / SVM [17] 38.93±1.01 55.24±0.85 62.96±0.40 67.38±0.70 73.79±1.26
ScSPM / SBSVM 60.27±1.43 67.60±1.07 63.12±2.27 63.32±1.81 70.08±1.23
LLC / SVM [13] 33.83±1.00 48.34±0.75 59.21±0.88 63.98±0.57 71.39±0.56
LLC / SBSVM 61.71±0.54 67.32±1.68 64.52±1.47 65.21±2.19 66.35±2.70

On 3D datasets

In order to evaluate our method for 3D classification, we compared our novel SBSVM

method to the conventional SVM approach, in conjunction with a number of feature

extraction and representation options that are used in 3D methodologies. To this end,

we used the methodology in [43], where depth information is used along with the scale

vectors (coming from texture) for the training and classification using SBSVM.

We applied the experimental procedure detailed in Section 7.2.1 for SBSVM and

SVM classification. The results for all 3D image classification methodologies are

shown in Table 7.3. We observe that our SBSVM classification algorithm yields a

major improvement over the regular SVM in every method. The reason for the im-

provement is the suitability of the SBSVM classification even when only few training

images are available.

Both the individual and combined features in [8] benefit from SBSVM classifi-

cation. Further, the combined features (last row of Table. 7.3) yield superior per-

formance by using a mix of scale vectors corresponding to different features. This

yields major improvements over the conventional SVM approach for the classification

of SPM vectors.
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Table 7.3: Experimental results on two three- dimensional datasets (± standard devi-
ation). As seen, when limited training samples are available, SBSVM is significantly
better than the conventional SVM approach.

BTDI dataset RGB-D dataset
Features Pyramid SVM SBSVM SVM SBSVM

SIFT + ShCid (sl.method 1) ScSPM+BoF [43] 52.49±4.41 86.29±3.12 34.45±2.75 85.78±2.14
SIFT + ShCid (sl.method 2) ScSPM+BoF [43] 47.93±4.98 86.37±3.05 33.02±2.82 86.11±1.85
SIFT + ShCid (sl.method 3) ScSPM+BoF [43] 57.17±5.30 86.24±3.37 33.98±2.81 85.33±2.13
SIFT + ShCid (sl.method 4) ScSPM+BoF [43] 51.92±6.41 85.92±3.14 33.96±2.99 86.06±1.91
RGB Gradient KDES EMK SPM [8] 57.01±5.15 91.79±2.93 34.69±2.86 88.35±2.02
RGB LBP KDES EMK SPM [8] 54.88±4.88 93.61±2.92 32.44±2.60 92.77±1.86
RGB Normalized Color descr. KDES EMK SPM [8] 47.04±4.97 93.25±2.58 28.11±2.89 91.70±1.54
Depth Gradient KDES EMK SPM [8] 43.88±4.91 61.15±4.59 25.64±2.81 78.79±2.55
Depth LBP KDES EMK SPM [8] 41.72±6.01 73.08±4.33 23.67±2.64 85.91±2.03
Point cloud Size KDES EMK SPM [8] - - 29.94±2.88 78.96±2.05
Point cloud Normal KDES EMK SPM [8] - - 27.18±2.29 79.76±2.32
Feature combination EMK SPM [8] 62.26±5.07 97.54±1.81 47.80±2.77 98.62±0.80

7.3 Conclusion

In this chapter, we introduced a novel classification method for pyramid image rep-

resentations. We experimentally showed that the scales used in a conventional SPM

unequally contribute to the correct classification of an image. Our method takes this

fact into account in two and 3D image classification and achieves excellent results,

outperforming the conventional SVM-based classification that uses concatenated SPM

vectors. Finally, our SBSVM method achieves state-of-the-art results in 3D image

classification. The main contributions of this work are:

� Our research showed that often scales do not provide sufficient representation

of image content, thus not contributing favorably to classification rates.

� When using individual per scale classifications we achieve a solution for scale

discrimination issues. However, big training sets do not seem to benefit from

this approach.

For future improvements on classification, we plan a further improvement for this

method by using multiple SVMs. Each SVM classifier will correspond to individual

scales rather than one for all scales. This could solve issues, such as reduced perfor-

mance when using big training data sets, where the magnitude of non discriminative
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scales is overwhelming for one classifier. This application can be optimized with mod-

ern parallel and multi-processing techniques. We also consider the combination of our

classification technique with features extracted by deep learning algorithms.
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Chapter 8

Deep Learning methodologies for 3D

image data

3D image classification methodologies use depth in order to enhance classification

efficiency. Advances have been made in feature extraction depth maps [7–9, 43] and

their combination with texture features. These methods are closely related to 2D

image classification in their overall system design. The design of image classification

systems consists of processes including feature extraction, dictionary learning, feature

encoding, image representation and classification. These methods are based on archi-

tectures that that have been seen to perform well. However, core processes in image

classification systems, such as feature extraction and image representations, are not

optimized in a way with regard to the nature of used image data.

More recently, deep learning was proposed as an alternative design and system

optimization methodology. Deep learning is a machine learning technology where the

proposed system captures learning representations, i.e, features and vector represen-

tations, of input data. This particular attribute of deep learning algorithms is used to

deal with the aforementioned optimization problem. The most popular deep learning

algorithms are the Deep Convolutional Neural Networks (CNNs) [12] and the Deep

Belief Networks (DBNs) [64]. These machine learning algorithms were recently im-

plemented in a plethora of computer vision problems [4,6,12,59,61,62,64], including

image classification [5, 60], yielding state-of-the-art results. All the aforementioned
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categorization systems are implemented on 2D image data.

This chapter presents our research on deep learning methodologies and implemen-

tations on 3D image classification. We present our novel research implementing 3D

image data on deep learning algorithms. We study the effects of input data on a

CNN model using color, depth and their combination in order to enhance the overall

recognition rates. We also propose a novel method that formulates image representa-

tion methods [2,108] as input channels. Our goal is to enhance CNN input data with

spatial and content-adaptive information provided by these representations. Finally,

we present experiments regarding the performance of CNN architectures.

The rest of this chapter is organized as follows. In Section 8.1, we present related

work of CNN implementation for 2D and 3D image data. Our research and proposed

methodologies are presented in Section 8.2. The experimental setup and results are

shown in Section 8.3. Finally, conclusions and future work are discussed in Section 8.4.

8.1 Related work

The CNN algorithm was firstly proposed by Fukushima in [65], which introduced

a naturally inspired model for pattern recognition. However, that early model is

computational intensive and prone to overfitting.

The most influential work of modern deep neural network techniques was in-

troduced by Lecun in [59]. The proposed model improved the previous model of

Fukushima, proposing backpropagation in CNN. That proposed CNN architecture

was proposed for document recognition. The model, known as LeNet-5, introduced a

multi-level network architecture that includes convolutional and pooling layers. That

model was implemented for recognizing numbers, but was not capable of solving more

complex problems due to overfitting.

The work in [12], introduced improvements over LeNet-5 architecture including

rectifier linear unit layers (ReLu) and a “dropout” regularization. The ReLu layers

improved non-linearity and computational efficiency without corrupting the computed

features. Moreover, the proposed “dropout” function solved the overfitting problem.
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The proposed model in [12] consisted of 7 layers and 60 million different parameters.

The computational cost for training and validation made authors turn to an optimized

Graphical Processing Unit (GPU) algorithm which achieved state-of-the-art results

on ImageNet dataset [70]. Methodologies proposed in [12] were implemented by all

modern convolutional neural networks.

More recent methodologies are based on novel architectures, that enhance the

performance of conventional CNNs. The proposed CNN methods focus on the pre-

processing of input data and custom CNN layers in order to provide solutions to CNN

disadvantages.

Figure 8-1: The architecture of region-based CNN model in [4].

The work in [4] proposed a region-trained CNN for object detection and catego-

rization. The proposed model extracts approximately 2000 bottom-up regions from

each examined image. All regions are resized in a specific resolution and then passed

as inputs to a CNN model. Region representations are then classified using mul-

tiple class-specific linear SVMs instead of the conventional CNN “decision” layers.

As presented in Chapter , decision layers are denoted those CNN layers degrading

extracted features and representations to a vector form thus describing each exam-

ined image. That method yields state-of-the-art results in VOC 2012 [125] and the

200-class ILSVRC2013 detection dataset [60].

In [5], authors proposed a custom CNN layer inspired from the pyramid image

representation method of [2]. That image representation method, known as spatial

pyramid matching (SPM), is a hierarchical representation of predefined rectangular

image regions termed scales. SPM can represent images of various sizes, a general

problem for CNN architectures that requires that all images are of predefined reso-
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Figure 8-2: The Spatial Pyramid Pooling layer (SPP) as presented in [5].

lution. That method extracted image features using a series of convolutional layers

with no regard to image resolution. Their proposed Spatial Pyramid Pooling (SPP)

layer combines all image features like the SPM method before the “decision” layers.

That method yields state-of-the-art results for the VOC 2007 [69] and Caltech101 [68]

image datasets.

An CNN implementation for 3D image data was proposed in [6]. That method

proposes an object detection system using CNN-extracted features from texture and

depth. The most important contributions of that work is the examination of CNN

features represented by a three-channel depth representation. The proposed features

represent horizontal disparity, the height above ground and angle in relation to gravity.

All proposed features result to representations classified by a SVM model. It is

experimentally shown that the aforementioned features are more discriminative than

single channel depth information that describes horizontal disparity. That method

yields state-of-the-art results in object detection using the NYU depth dataset V2 [82].

Classification for 3D images can benefit from the development of CNN algorithms.

The aforementioned methods have similarities with our proposed methodologies [108,

119] for 3D image categorization.
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Figure 8-3: The CNN model in [6], performing feature extraction from depth infor-
mation .

8.2 Convolutional neural networks for 3D image data

CNNs are becoming more popular for applications such as image/object categoriza-

tion [5,60] and scene understanding [62]. These implementations have been presented

primarily for 2D image data. 3D image data, i.e, images represented by texture

and depth, were used in many image classification and object recognition applica-

tions [7–9, 43]. Advancements in these areas are mainly in the processes of feature

extraction and image representations.

Feature extraction is the process of representing images using vectors with char-

acteristics from the contents of each examined image. Research in depth feature

extraction methods rely in different approaches due to the nature of depth informa-

tion. Methods in [7–9] proposed feature extraction algorithms related to other known

2D methodologies [10, 11]. As a result, the extracted features are not fully suitable

for depth information in less detailed depth maps. In [43], a shape features extraction

method on depth maps is proposed in order to address the disadvantages of previous

methods.

Advances in image representations for use in image categorization systems are

limited, due to the design complexity of such methods. The most commonly used

image representations in 2D and 3D image classification are methods in [2,16]. These

methods captured spatial information and represent each examined image with no

regard to the depicted content. More recently the method in [108] uses depth to

represent content information, thus creating a content-adaptive image representation.
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All aforementioned features and image representation methodologies are inspired

from researcher’s concepts about each imaging problem. Those methods are eventu-

ally optimized using specific benchmarks. Method efficiency is the outcome of innova-

tive design and exhaustive experimental trials. However, according to deep learning

theory, methods are subject to design limitations, as a result, proposed methodologies

may not be suited to the nature of 3D image images.

Contrary to the conventional approaches, CNN is a complete self-adaptive catego-

rization model that adapts to input data. Input data are degraded by multiple convo-

lutional layers that lead to a final decision. Each convolutional layer is forming its own

features, consisting of convolutions of input data multiplied with a layer kernel. In

addition, other processes such as pooling are used to create more efficient representa-

tions used as input to other convolutional layers. CNN training is an iterative process

including a backpropagation phase rectifying individual layer kernels, resulting to re-

duced training errors and better recognition rates. Except of the initial image data

and CNN architecture, nothing else is user defined. As a result, features are not sub-

ject to the aforementioned limitations of research-defined features. Overcoming this

problem, CNNs yield state-of-the-art results in many applications [4–6,12,59–62,64].

8.2.1 CNN-based features extracted from 3D image data

As described earlier, a 3D image is the combination of texture and depth image infor-

mation depicting the same content. In most image categorization methods, texture

is described by features using image gradients, i.e., the variations of intensities in-

side that image. However, texture can also be represented from three channels (red,

green, and blue) describing each color intensities. The conventional CNN feature ex-

traction uses all three color channels after subtracting the mean value of each channel

computed from images inside the dataset.

For 3D image categorization, depth disparity values can be used in similar fashion,

i.e., as a channel from which the mean depth has been subtracted. This setup will

provide a CNN model trained using depth information. To this end, we will be able

to reach a conclusion about the discriminatory capabilities of depth features.
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The findings of current 3D image categorization [7–9,43,108] experimentally showed

that the best-performing systems achieve their results using combinations of texture

and depth. In Section 8.3.4, we present a series of experiments on 3D image data.

We use texture, depth and their combinations in order to reach conclusions about the

discriminatory capabilities of 3D image features. Moreover, we will be able to assess

feature extraction capabilities of CNN on multi-channel input data.

8.2.2 Image representations enhancing CNN features

In general, the CNN algorithm does not support conventional image representations,

i.e., vectors that represent an image as histogram of its comprising feature encodings.

The advantage of image representation lies in the fact that each image is described

with respect to predefined spatial information [2, 16] or individual content-adaptive

information [108].

Little work has been done regarding the application of spatial or content informa-

tion in a CNN model [5]. This is mostly because the aforementioned methods were

designed to represent images with no regard to their initial size. Input CNN data

currently require fixed resolution images that create the same number of convolutions

for every image. The problem is found in the final convolutional layers, i.e., the de-

cision layers, where CNN features are degraded to vector form. These layers require

a “strict” architecture in order to provide the final decision.

The authors in [5] try to overcome the problem of fixed-sized input images by

introducing a spatial pyramid pooling strategy. The spatial pooling layer is a pool-

ing layer inspired from the work in [2] which is implemented before the first decision

layer. Essentially, that pooling layer implements a spatial pyramid combining CNN

features. As a result, that architecture allows an interdependent number of convolu-

tion features to be combined from the pooling layer and provides a more discriminative

representation that captures spatial information.

In this chapter, we propose a different implementation of image representations

used in CNN models. CNNs have the attribute of learning patterns from input

data very efficiently. So, we implement image representations as input channels to a

141



CNN model. These channels will provide enhanced information to input data, thus

achieving improved categorization performance.

Spatial Pyramid Matching (SPM) [2] image representation regionalizes an image in

predefined rectangular regions termed scales. Each scale is a representation histogram

of encoded image features found inside that region. The final representation is the

concatenation of representation histograms from all scales. A similar implementation

is presented in [108] but, instead of rectangular regions, we used content-adaptive re-

gions, achieving more discriminative representations. More information about image

representation methods can be found in Chapter 2.4.2 and 6.

Our implementation uses the aforementioned representations implementing a spa-

tial or content partitioning on pixels consisting the examined image. For spatial

partitioning, we use the SPM representation [2] which creates a grid of 𝑙 × 𝑙 rectan-

gular regions where 𝑙 = 1, 2, ...𝐿 and 𝐿 denoting the pyramid level. When 𝑙 = 1 the

representation presents all pixels comprising an image, which is equal to the BoW

model [54] and the common CNN implementation. The CAMP representation [108]

uses individual regions describing parts of objects and scenery derived from content

partitioning. Content region extraction is achieved by using spectral clustering on

image information such as color and depth. For our experiments, we used the k-

means algorithm to cluster pixels values and achieve similar content regions. We

partition an image to 𝑙 content regions using depth information for content indexing,

as proposed in [108]. Scale labels, for both representations, are further normalized

with values ranging from zero to one. As a result, we are able to describe spatial or

content-adaptive information as a data channel which can be combined with other

input data. Experiments of our proposed methodologies are shown in Section 8.3.5.
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8.3 Experimental results

8.3.1 Dataset

Some of the most used datasets to evaluate the performance of proposed CNN ar-

chitectures are the ImageNet [70], CIFAR 10 [71], CIFAR 100 [71] and the Caltech

101 [68] dataset. ImageNet is a massive collection of 2D image data, categorized as a

WordNet hierarchy of 21841 synsets with an average of 650 images per class, totalling

14,197,122 images. CIFAR 10 is a collection of 60000 32×32 resolution images which

are organized in 10 classes. An alternative version of the aforementioned dataset is

CIFAR 100, that consists of 100 classes containing 600 images per class. The CIFAR

100 can also be used as a dataset of 20 superclasses and 100 subclasses. Finally,

the Caltech101 is a known dataset consisted of 102 classes, used for the evaluation

of many 2D image classification methodologies. The common feature between all

the aforementioned datasets is their data magnitude, a necessary attribute for CNN

training.

For our experimental setup, we used the RGB-D dataset [7]. This 3D imaging

dataset is compiled by 300 household objects depicted in multiple views in two axes,

i.e., multiple angles horizontally and in different height angles. The resulting 51

class dataset contains approximately 41877 object frames. The advantage provided

from this dataset is the magnitude of available images for training and validating the

proposed CNN models.

8.3.2 CNN architecture

For each CNN model we used a predefined architecture proposed by [126] optimized

for the CIFAR 10 dataset [71]. This dataset is comprised by 60000 32 × 32 resolution

color images ordered in 10 classes. The proposed CNN model has three convolution

levels for feature extraction and other two forming decision layers. The first feature

extraction layer creates 32 kernels of 5× 5× 3 pixels including all three color channels.

The layer has 32 outputs of 32 × 32, that are degraded by a 3 × 3 max pooling layer
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concluding to 32 outputs of 16 × 16. The second layer has 32 kernels of 5 × 5 ×

32 convoluting the output of previous layer resulting to 32 outputs of 16 × 16. The

max pooling layer of 3 × 3 provides the final 32 output of 8 × 8. The final feature

layer uses 64 kernels of 5 × 5 × 32 outputting 64 of 8 × 8 features also degraded by

a 3 × 3 max pooling layer concluding to 64, 4 × 4 outputs. The first decision layer

is a convolution layer that creates 64 kernels of 4 × 4 × 64, producing 64 outputs of

1 × 1. The final convolution layer takes the aforementioned features and creates 10

kernels of 1 × 1 that output a class identity vector.

We chose this architecture because it is easily implemented on 3D data and re-

quires relatively less computational power than other CNN architectures. Of course,

each dataset requires its dedicated architecture in order to provide optimal results.

However, the solution of a dedicated architecture is time consuming and unfortunately

not presented in this thesis. Our initial research regarding CNN model architectures

is presented in the ensuing Section 8.3.6.

Our experiments require changes in the aforementioned CNN model architecture.

The default first feature extraction convolution layer uses kernels of 5 × 5 × 3 that

present the three levels of color. To this end, we change kernel dimensionality in a

way suiting each proposed experiment, as for instance, CNN model that uses depth

maps as input data requires kernels of 5 × 5 × 1 because depth is a single channel

image information. The input layer of each experiment will be presented in individual

experiment sections. Finally, the final decision layer is changed from 10 to 51, 1 × 1

kernels that represent the number of classes in the final class identity vector.

8.3.3 Experimental framework

RGB-D dataset was presented in two experimental frameworks [7, 119]. The ex-

perimental setup in [119], RGB-D dataset was used in a single-view configuration.

Training images were far less than testing images, thus creating a challenging vali-

dation setup. Authors reject the multi-view framework of [7] using one random view

per object, degrading the initial dataset to just 300 images each depicting one object.

Two images per class were used for training the classification algorithm and the rest
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were used for validation. However, the use of this particular training/testing frame-

work cannot be applied to a CNN model, because deep learning algorithms require

large training sets.

In [7] authors proposed a multi-view experimental framework for the RGB-D

dataset. That framework uses one object and its comprising views per class for

validation while using the remaining objects for training the classification algorithm.

The results of several methods using this framework are presented in Table 8.1.

Table 8.1: Results of the RGB-D Object Dataset using the multiple view framework.

Methods RGB Depth RGB-D
SIFT + Texton + Color Histogram +
Spin Images + 3D Bounding Boxes

[7] 74.5 64.7 83.8

Sparse Distance Learning [127] 78.6 70.2 85.4
RGB-D Kernel Descriptors [8] 80.7 80.3 86.5
Hierarchical Matcing Pursuit [9] 82.4 81.2 87.5

We also use that framework because it provides the necessary number of training

and testing images. In order to provide solid conclusions, we keep the number of

training iteration to 300 for each examined CNN model. We use this framework

throughout our experiments and compare our results with the state-of-the-art multi-

view results.

8.3.4 Research on CNN features

The default CNN model of CIFAR-10 uses texture images, i.e, images with three

color channels. Input images are normalized by subtracting the mean color values

calculated by images comprising the dataset.

It is proven by common practice that data ranging from 0 to 1 perform better

in various mathematic complications and classification algorithms. We applied this

empirical method to all individual texture and depth input channels, and we then

conducted experiments with or without mean normalization. Table 8.2, shows that

the proposed mean normalization has an adverse effect on CNN performance in com-
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parison with experiments that did not use this normalization.

Table 8.2: Results showing the training/validation error of the RGBD dataset when
using diffent input data (less is better).

Input data Training err. Validation err.
Mean Color 53.09% 73.26%
Color 41.84% 65.26%
Mean Depth 77.81% 90.09%
Depth 63.69% 77.24%
Color + Depth comb. Mean 39.78% 59.51%
Color + Depth idv. Mean 45.57% 65.29%
Color + Depth 38.44% 60.93%

We also used the available depth maps corresponding to each image as input data,

in order to assess the discriminative capabilities of depth CNN-computed features.

The use of depth as a CNN input required the change of the first convolutional layer,

where we use 32 kernels of 5 × 5 × 1. The rest of the CNN model is kept as described

in the previous Section 8.3.2. This setup allowed us to perform experiments with or

without mean depth normalization. As shown in Table 8.2, the conventional mean

normalization is not favoring the recognition results. We also observe the difference

in performance between depth and texture, where texture is outperforming depth in

every experiment.

However, as shown in [7–9, 43, 108, 119], the contributions of depth is shown in

combination with texture. To this end, we changed the first feature extraction con-

volutional layer to 32 kernels of of 5 × 5 × 4, where four is the number of three

channels plus the depth information. For this setup, we conducted three experi-

ments including a conventional mean normalization in all data with no separation,

a mean normalization applied individually to texture and depth before combination

in a common input data matrix. We also conducted an experiment with no mean

subtraction. The results in Table 8.2, show that the combination of texture and depth

provides improves performance compared to CNN models using individual features.

The experiment where all input channels are used subtracted by their mean value, is
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performing equally well with those not using mean normalization.

In conclusion, when image input data, such as texture and depth are used sepa-

rately then optimal performance is achieved with no mean normalization. However,

when combining depth and texture, the CNN model yields top-performing results.

As for the use of mean normalization in data combination, no solid conclusion can be

drawn. The combination of input data generally requires further research. We con-

sider that more iterations will eventually provide the differences between the afore-

mentioned models.

8.3.5 Image representations as CNN data

As described in Section 8.2.2, we implement known image representation methods

[2, 108], as separate channels, in order to enhance the performance of CNN models.

Our proposed method creates extra channels including spatial or content-adaptive

representation in order to enhance feature extraction capabilities of CNN models. Our

proposed method is much simpler than the creation of a custom pooling layer, which

requires changes in the CNN architecture. We cannot claim that our method is more

efficient than the one in [5], because there is no comparison under a common exper-

imental framework, i.e, datasets or CNN model architectures. However, Table 8.3

presents a series of experiments regarding the efficiency of our novel methodology

compared to CNN models not using our method. We can also compare the represen-

tation capabilities of each image representation methods [2, 108].

For the SPM representation, we use 32 × 32 resolution of images to create a

spatial grid of 𝑙× 𝑙 scales, 𝑙 = 1, 2, ...𝐿 where 𝐿 denotes the number of levels. Labels

are assigned to each scale, which are normalized in the range of zero to one. Pixels

corresponding to the first scale (top left) are represented with zero value and with

one those found in the 𝑙× 𝑙 scale(bottom right). The rest of the pixels are presented

by intermediate values between zero and one that are computed with regard to their

initial scale label and the overall number of scales 𝑙 × 𝑙.

A similar procedure is followed in the construction of channels corresponding to

the CAPM representation, which captures image content information. As described
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Table 8.3: Results showing the training/validation error of the RGBD dataset when
enhancing input data with formulated image representation methods (less is better).

Training error Validation error
Im. repres. L1 L2 50 iter. 300 iter. 50 iter. 300 iter.
none - - - 41.84% - 65.26%
SPM 1 - 52.61% 40.62% 70.82% 62.42%

4 - 53.55% 40.68% 73.38% 62.92%
9 - 54.91% 42.78% 73.23% 64.25%
16 - 54.94% 42.8% 73.23% 64.35%
1 4 51.83% 41.82% 71.29% 63.88%
4 9 50.51% 41.19% 69.59% 62.53%
4 16 49.82% 40.35% 69.14% 62.47%

CAPM 2 - 53.00% 42.52% 68.89% 60.54%
3 - 50.36% 39.77% 73.52% 65.25%
4 - 56.62% 45.35% 73.33% 61.39%
6 - 55.39% 42.76% 69.49% 61.64%
8 - 49.28% 36.79% 66.49% 60.35%
10 - 60.15% 46.67% 75.42% 63.84%
1 4 58.51% 49.03% 67.92% 60.02%
2 4 54.18% 42.15% 66.05% 59.18%
2 6 56.11% 44.49% 70.77% 63.39%
2 8 51.35% 40.17% 69.44% 61.20%
4 8 48.26% 38.17% 60.50% 53.04%
6 8 51.19% 40.68% 71.43% 65.22%

in Chapter 6, the most suitable content indexing information is depth. In order

to simulate the computation of content regions used by the CAPM representation,

we use k-means over depth pixels values. k-means algorithm is able to efficiently

regionalize the content of an image into 𝑘 number of content regions. The content

labels provided for each pixel are normalized in the range of zero to one, similar to

the process presented for the SPM representation.

In our experiments, we show the impact of image representations on CNN models

by enhancing texture image information, i.e, three color channels. As described in

Section 8.3.4, the best performing single feature normalization is with no mean sub-

traction. So, we use this setup in the following experiments. In order to represent one

pyramid representation level, we use the first feature extraction convolutional layer of

148



32 kernels of 5 × 5 × 4, including the color channels and the representation channel.

The representation of two pyramid levels is achieved using a convolutional layer of 32

kernels of 5 × 5 × 5, where color and two representation channels are defined. This

layer architecture is used for all experiments of both examined representations.

Table 8.3, shows the classification error achieved from each proposed model, with

the smallest percentage showing the best results. As shown in Table 8.3, the use of

image representation such as CNN input data has a positive effect upon recognition

rates. The use of a single level pyramid representation shows that all experiments

using representation channels, outperform the model trained only with color channels.

In a comparison between image representations, the results show that CAPM models

yield better recognition than SPM models thus achieving smaller validation error.

This is also the case when using two-level pyramid representations, i.e, dual channel

representation input data. CAPM representation channels representing four regions

in the first layer and eight in the second yield 12.12% less performance error than the

color-only CNN model and 10.84% than the best-performing SPM architecture.

8.3.6 Experiments on CNN architectures

Throughout our experiments we used the CNN model proposed in [126] which is op-

timized for the categorization of CIFAR 10 dataset. That architecture was designed

in order to efficiently categorize the 32×32 resolution images consisting CIFAR10

dataset. That is a suboptimal setup for the RGBD dataset, which consists of mul-

tiple resolution images. By resizing each image to 32×32 we were able to use this

architecture. However, when resizing an image a part of depicted information is lost.

As a result, image resizing is adversely affecting the overall recognition performance.

In this section, we perform small changes on the default CNN model of [126]

studying their effects on performance. We also implement a similar input method

such the one proposed in [4], where images are partitioned in multiple image patches

describing smaller regions inside an image. This process may provide a solution to

the aforementioned image resizing problem.

As shown in Table 8.4, when resizing an input image to a bigger one, changing
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Table 8.4: Results showing the training/validation error of the RGBD dataset when
applying changes on the used CNN model (less is better).

Image size Layer 1 arch. Input data Training err. Validation err.
32 × 32 default Mean Color 62.42% 76.58%
32 × 32 default Color 55.67% 72.04%

32 × 32 im. Patches default Color 43.04% 76.77%
64 × 64 default Mean Color 83.16% 91.07%
64 × 64 default Color 84.26% 93.07%
64 × 64 10×10×32 Color 68.43% 83.34%
64 × 64 5×5×64 Color 81.31% 90.16%
64 × 64 10×10×64 Color 66.72% 80.45%

CNN model architecture then the performance is adversely affected. When resizing

an image without changing the input layer, then only a small part of the examined

image will contribute to feature extraction. Even when the input layer is resized

with more smaller kernels, i.e, increasing the convolutions from 32 to 64 kernels and

keeping patch size to 5×5, recognition performance is not improved. Because of

the smaller patch size extracted feature contain the same information. As shown in

the experiment, where we resize each kernel size, CNN architectures prefer increased

convolution patch size.

Finally, we conduct an experiment inspired by the method in [4] where instead of

resizing an image, individual image patches are used. To this end, we segment each

image in multiple patches of 32×32. The experimental results show this configuration

to favor feature learning, i.e, low training error. However, increased feature learning

does not translate to lower validation errors as well. The method in [4] used multiple

class-specific SVMs for classification. In the proposed experiment the classification

is performed by the CNN model. So, the results of this method should be further

studied when using different classification methods, such as the one proposed in [119].

We have experimentally shown that using this architecture for our examined

dataset may not be the optimal solution. However, in future work, we plan to propose

a dedicated architecture for this dataset. This will lead to improved feature extrac-

tion and representation and possibly to improved object recognition rates. We also
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consider conducting experiments, using individual image patches as described above.

8.4 Conclusion

In this chapter, we presented a research regarding the use of 3D image data on

CNNs. We used the model of [126] in order to examine the efficiency of CNN models

when texture, depth and their combination are used as input data. We proposed

the integration of known image representations as input data channels to enhance

the CNN performance. Finally, we experimentally showed the effects of classification

performance achieved by changes in model architecture. Our research contributed to

the following:

� We experimentally show that the combination of depth and texture as CNN-

extracted features can achieve improved recognition performance.

� We introduce a novel implementation of formulating image representations as

input channels leading to improved results.

This chapter is a prelude to our research in deep learning algorithms and their

implementation on 3D data. Our future plans include an extended research on ded-

icated CNN model architectures. These models will either use depth and texture as

combined input data or a model of individual CNN models contributing to a common

decision. Regardless the proposed model, deep learning algorithms on 3D imaging

data are a promising research topic and field of applications.
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Chapter 9

Conclusions

In this thesis we presented the development of our novel 3D image classification

methodologies. We conducted a complete research focusing on depth information,

presenting its advantages, limitations and contributions to image classification. Each

of the proposed methods highlighted the disadvantages of competing methods, and

proposed novel techniques that either rectify or redefine the examined problem. As a

result we achieved improved efficiency and state-of-the-art results in many processes

of 3D image classification. In this chapter, we conclude this thesis by summarizing

our work, presenting our contributions and future plans.

9.1 Thesis summary

Literature review of Chapter 2 describes the structure of modern image classifica-

tion systems. We described all processes comprising such systems, including feature

extraction, dictionary learning, feature encoding, image representation and classifi-

cation algorithms. We also included a review on deep learning methodologies and

analyzed the convolutional neural networks (CNN) model.

In Chapter 3, we introduced a novel collection of stereoscopic images which we

organized in a 3D dataset. This chapter describes the design, acquisition process,

and 3D imaging problems where our novel dataset can be used to improve current

research.
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Our proposed methodology in Chapter 4 includes a feature extraction method,

extracting discriminatory information over depth maps.In order to assess our proposed

feature extraction method, we also proposed an image classification system able to

combine depth and texture information. We presented the individual steps of shape

feature extraction, and the process of combining texture and depth representations

yielding top-performing results in two 3D image datasets.

In Chapter 5, we proposed a novel dictionary learning algorithm that is constrained

by context similarities between dictionary training features. Our method formulates

relations between dictionary training features coming from similar context yielding

top-performing results when combined with compatible image features.

Our work on image representations was presented in Chapter 6. The proposed

method describes an efficient way of creating discriminative image representation in

respect to depicted image content. The resulting image representation outperforms

the competing SPM methodology [2], competing methodologies in multiple imple-

mentations on known 3D image categorization systems [7–9, 43] for two 3D imaging

datasets achieving state-of-the-art results.

Chapter 7 presents our novel classification algorithm which uses individual scales

of modern pyramid representation to enhance the classification performance. The

design of our proposed algorithm provides a per-scale decision combined with majority

voting. Our novel methodology yields state-of-the-art performance in two 3D image

datasets.

Finally, in Chapter 8 we presented our research regarding the implementation of

deep convolutional neural networks on 3D image data. Our proposed methodologies

uses depth and its combination with texture as input data for CNN models and

propose a novel formulation of known image representations with great results.

9.2 Contributions

In this section, we present the contributions of our proposed methodologies arranged

as individual processes of 3D image classification systems. We also include the con-
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tributions of our research on deep learning algorithms.

9.2.1 3D data collection

For our research purposes, we compiled a collection of stereoscopic images de-

noted as Brunel Texture and Depth Image database (BTDI). The stereoscopic ac-

quisition method used for the collection of our dataset, is the most widely used type

of portable 3D image camera in commercial use. Stereoscopic images solve issues of

depth acquisition presented under various illumination conditions.

Stereoscopic images have the disadvantage of providing less detailed depth infor-

mation than those acquired from other 3D cameras types. However, less detailed

depth maps must be taken into consideration when designing robust and discrimina-

tive 3D image methodologies. The aforementioned attributes ensure a challenging

benchmark which can be used for a variety of 3D imaging problems other than

image classification, such as segmentation and stereo correspondence.

Due to public availability of stereoscopic cameras, data acquisition is simpler and

can be achieved by less experienced researchers. However, the magnitude of our

current dataset version is smaller than other competing 3D datasets. We currently

plan an expansion for our proposed database by adding 430 images organized in 12

new classes. Also, the popularity of our dataset is still very low, but we plan to have

this resolved by public availability.

9.2.2 Depth feature extraction

The special properties of depth emerged new challenges in feature extraction, because

common feature extraction methods similar to texture method cannot be applied.

Other known methods [7,10,11] do not fully utilize properties of depth, as described

in Chapter 2.1.3.

Our novel shape feature extraction methods over depth maps are presented

in Chapter 4. Our methods propose a “slicing” process where image regions are

captured in multiple depth levels. We proposed four depth map slicing methods that
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describe individual or combined regions. The extracted regions describe shapes of

depicted objects described by suitable shape features. The extracted depth features

are constructed with respect to depth properties, and are compatible with depth

maps captured by most 3D sensors. Our novel descriptors are experimentally shown

to achieve top-performing results in Chapter 4.

Depth features, as standalone descriptors are not performing as well as features

extracted from texture. Of course texture information is more “enriched” than depth

map information. However, research for depth features has not quite reached its

maximum potential. Therefore, we continue our research in the development of such

methods.

9.2.3 Dictionary learning

Dictionary learning plays an important role in the discrimination of image repre-

sentation and by extension to the overall recognition performance. This process is

often neglected, settling for dictionary learning methods that do not provide optimal

representations.

In Chapter 5, we introduce a novel dictionary learning method constrained

by context similarities. Dictionary methods are either computed (k-means, K-

SVD) or constrained (GNMF) by similarities, i.e, distances, between dictionary train-

ing features. However, the discriminative representation of features sometimes fail

thus producing same representations for unsimilar context. To solve this issue, we

formulate each feature’s context, i.e, image regions from which each feature was ex-

tracted. The proposed context similarity constraint is applied to GNMF dictionary

training thus achieving top-performing results.

Common practice shows that nonnegative features are more discriminative than

those including negative values. Because our proposed method in based on NMF, fea-

tures with negative values cannot be processed. Even when we enforce non-negativity

on this features, recognition performance drops due to feature design. In general, dic-

tionary learning methods are chosen to complement the performance of preferred

features. So, we have to apply this strategy to present the full potential of our pro-
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posed dictionary learning method.

9.2.4 Image representation

In Chapter 4, a depth feature extraction process is described where the sparse fea-

ture encodings are combined by a dedicated depth image representation. For depth

image representation we used a BoW model of encoded features, combined with a

max pooling function thus creating a discriminative representation. The final im-

age representation is formed by the concatenation between texture and depth

representations. Our novel method achieves enhanced classification results over

conventional texture representations, proving the representational value of depth.

The experimental results of Chapter 4 show the top-performing capabilities of our

proposed methodologies in comparison with other known methods. However, depth

representation could be improved by using more efficient image representation meth-

ods, such as SPM or our novel CAPM method.

The aforementioned representation method inspired our further research for de-

signing efficient image representations used in 3D image classification. We con-

ducted experiments, shown in Chapter 7, which demonstrate that individual scale

vectors comprising pyramid representations, such as SPM, are more representative

than others. These discriminant scale vectors favor recognition and contribute to im-

proved categorization results. But when concatenated with less representative scales

from the same image, classification performance is adversely affected. The findings

of our research led us to the development of our novel scale-based classification algo-

rithm [119].

This research also revealed margins for improvement on image representations

design. Image representations, like SPM, describe image content with multiple regions

with respect to spatial information. However, rectangular regions do not take the

depicted image content into account. As a result, this representation is not so efficient.

We proposed a novel pyramid image representation creating regions based

on image content. Each pyramid level of our novel pyramid representation, par-

titions the image into a number of regions. These regions are no longer rectangular
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but are arbitrarily shaped according to image content. So, our scale vectors represent

depicted objects/scenery and their consisting parts. Our method provides state-of-

the-art results in two 3D image datasets. During the experimental process, we also

prove that depth is the best image information to describe depicted content

inside an image. Further improvement for this method includes the combination of

spatial and content information, and the use of deep learning algorithms.

9.2.5 Classification

Our research in designing image representation in Section 9.2.4, showed that repre-

sentational value of individual pyramid scales is lost when concatenated in the final

representation vector. In order to solve this problem, we introduced a novel scale-

based classification algorithm.

We train and test an SVMmodel using individual scales provided from each image,

thus showing their representation efficiency. The final class label assigned by our

algorithm, is computed from a majority voting on per-scale decisions of each image.

By doing so, non-discriminant scales are no longer adversely affecting classification.

The proposed methodology provides major improvements, yielding state-of-the-art

results in one 2D image classification dataset for small training sets and two 3D

imaging datasets. Our proposed model can be expanded with the use of multiple per-

scale SVM models. This architecture should produce improved recognition results

and solve the problem of reduced performance in bigger datasets.

9.2.6 Deep learning

Our research on the implementation of 3D image data to deep learning algorithms

was presented in Chapter 8.

We used a predefined CNN model for 2D image classification and modified its

architecture to perform our experiments. The implementation of depth and its

combination with texture as CNN input data showed impressive results. Prov-

ing, once again, that combination of both image information is beneficial for image
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categorization. An improvement on recognition was possible by implementing our

novel data formulation of image representations which was used to enhance

CNN input data. This shows that CNN models, and deep learning algorithms in gen-

eral, can be improved by the implementation of representations either as input data

or as dedicated layers. We also made experiments proposing small CNN architecture

changes, and their influence on overall performance. This chapter presented a study

on CNN models. However, research must continue by considering dedicated CNN

architectures for 3D image classification.

9.3 Future work

Concluding this thesis, we present our future plan regarding our research in 3D image

categorization.

We proposed many methodologies regarding the individual processes of 3D image

classification. In most cases, we presented our methods individually using the frame-

work proposed from other methodologies in order to make a comprehensible compar-

ison. However, competing methods were optimized for these particular frameworks,

which may not favor our novel methods. For future methods, we should propose our

framework, and combine each presented methodology to an optimized system.

In previous sections, we mentioned some “weak points” of our current method-

ologies. Our future plans include the development of improved discriminative depth

features and image representations. We believe that by studying features created by

CNN models, we could propose improved features for 3D image classification. Also,

our scale-based classification algorithm can be improved using multiple dedicated per-

scale SVM models. We also plan to incorporate this algorithm in the classification of

CNN-crafted image features and representations.

However, our first priority is the continuation of our research in deep learning

algorithms for 3D image classification. The design of a dedicated CNN model will

contribute to 3D imaging research, either by achieving state-of-the-art results or by

improving our proposed methods.
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There is still more work to be done, and we will continue improving this research

topic. We hope that methods and techniques presented in this thesis, will contribute

to research and inspire researchers get involved in the topic of 3D imaging.
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