766 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Geographical area network-structural health monitoring utility computing model

    Get PDF
    In view of intensified disasters and fatalities caused by natural phenomena and geographical expansion, there is a pressing need for a more effective environment logging for a better management and urban planning. This paper proposes a novel utility computing model (UCM) for structural health monitoring (SHM) that would enable dynamic planning of monitoring systems in an efficient and cost-effective manner in form of a SHM geo-informatics system. The proposed UCM consists of networked SHM systems that send geometrical SHM variables to SHM-UCM gateways. Every gateway is routing the data to SHM-UCM servers running a geo-spatial patch health assessment and prediction algorithm. The inputs of the prediction algorithm are geometrical variables, environmental variables, and payloads. The proposed SHM-UCM is unique in terms of its capability to manage heterogeneous SHM resources. This has been tested in a case study on Qatar University (QU) in Doha Qatar, where it looked at where SHM nodes are distributed along with occupancy density in each building. This information was taken from QU routers and zone calculation models and were then compared to ideal SHM system data. Results show the effectiveness of the proposed model in logging and dynamically planning SHM.This publication was made possible by NPRP grant # 8-1781-2-725 from the Qatar National Research Fund (a member of Qatar Foundation). The publication of this article was funded by the Qatar National Library

    A Toolchain Architecture for Condition Monitoring Using the Eclipse Arrowhead Framework

    Get PDF
    Condition Monitoring is one of the most critical applications of the Internet of Things (IoT) within the context of Industry 4.0. Current deployments typically present interoperability and management issues, requiring human intervention along the engineering process of the systems; in addition, the fragmentation of the IoT landscape, and the adoption of poor architectural solutions often make it difficult to integrate third-party devices in a seamless way. In this paper, we tackle these issues by proposing a tool-driven architecture that supports heterogeneous sensor management through well-established interoperability solutions for the IoT domain, i.e. the Eclipse Arrowhead framework and the recent Web of Things (WoT) standard released by the W3C working group. We deploy the architecture in a real Structural Health Monitoring (SHM) scenario, which validates each developed tool and demonstrates the increased automation derived from their combined usage

    Decentralized identification and multimetric monitoring of civil infrastructure using smart sensors

    Get PDF
    Wireless Smart Sensor Networks (WSSNs) facilitates a new paradigm to structural identification and monitoring for civil infrastructure. Conventionally, wired sensors and central data acquisition systems have been used to characterize the state of the structure, which is quite challenging due to difficulties in cabling, long setup time, and high equipment and maintenance costs. WSSNs offer a unique opportunity to overcome such difficulties. Recent advances in sensor technology have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing are common practice, WSSNs require decentralized algorithms due to the limitation associated with wireless communication; to date such algorithms are limited. This research develops new decentralized algorithms for structural identification and monitoring of civil infrastructure. To increase performance, flexibility, and versatility of the WSSN, the following issues are considered specifically: (1) decentralized modal analysis, (2) efficient decentralized system identification in the WSSN, and (3) multimetric sensing. Numerical simulation and laboratory testing are conducted to verify the efficacy of the proposed approaches. The performance of the decentralized approaches and their software implementations are validated through full-scale applications at the Irwin Indoor Practice Field in the University of Illinois at Urbana-Champaign and the Jindo Bridge, a 484 meter-long cable-stayed bridge located in South Korea. This research provides a strong foundation on which to further develop long-term monitoring employing a dense array of smart sensors. The software developed in this research is opensource and is available at: http://shm.cs.uiuc.edu/.NSF Grant No. CMS-060043NSF Grant No. CMMI-0724172NSF Grant No. CMMI-0928886NSF Grant No. CNS-1035573Ope

    Inter-sensor propagation delay estimation using sources of opportunity

    Full text link
    Propagation delays are intensively used for Structural Health Monitoring or Sensor Network Localization. In this paper, we study the performances of acoustic propagation delay estimation between two sensors, using sources of opportunity only. Such sources are defined as being uncontrolled by the user (activation time, location, spectral content in time and space), thus preventing the direct estimation with classical active approaches, such as TDOA, RSSI and AOA. Observation models are extended from the literature to account for the spectral characteristics of the sources in this passive context and we show how time-filtered sources of opportunity impact the retrieval of the propagation delay between two sensors. A geometrical analogy is then proposed that leads to a lower bound on the variance of the propagation delay estimation that accounts for both the temporal and the spatial properties of the sources field

    Cyber-Physical Codesign of Distributed Structural Health Monitoring with Wireless Sensor Networks

    Get PDF
    Our Deteriorating Civil Infrastructure Faces the Critical Challenge of Long-Term Structural Health Monitoring for Damage Detection and Localization. in Contrast to Existing Research that Often Separates the Designs of Wireless Sensor Networks and Structural Engineering Algorithms, This Paper Proposes a Cyber-Physical Co-Design Approach to Structural Health Monitoring based on Wireless Sensor Networks. Our Approach Closely Integrates (1) Flexibility-Based Damage Localization Methods that Allow a Tradeoff between the Number of Sensors and the Resolution of Damage Localization, and (2) an Energy-Efficient, Multi-Level Computing Architecture Specifically Designed to Leverage the Multi-Resolution Feature of the Flexibility-Based Approach. the Proposed Approach Has Been Implemented on the Intel Imote2 Platform. Experiments on a Physical Beam and Simulations of a Truss Structure Demonstrate the System\u27s Efficacy in Damage Localization and Energy Efficiency. © 2010 ACM

    Case Study - Spiking Neural Network Hardware System for Structural Health Monitoring

    Get PDF
    This case study provides feasibility analysis of adapting Spiking Neural Networks (SNN) based Structural Health Monitoring (SHM) system to explore low-cost solution for inspection of structural health of damaged buildings which survived after natural disaster that is, earthquakes or similar activities. Various techniques are used to detect the structural health status of a building for performance benchmarking, including different feature extraction methods and classification techniques (e.g., SNN, K-means and artificial neural network etc.). The SNN is utilized to process the sensory data generated from full-scale seven-story reinforced concrete building to verify the classification performances. Results show that the proposed SNN hardware has high classification accuracy, reliability, longevity and low hardware area overhead

    A real-time early warning seismic event detection algorithm using smart geo-spatial bi-axial inclinometer nodes for Industry 4.0 applications

    Get PDF
    Earthquakes are one of the major natural calamities as well as a prime subject of interest for seismologists, state agencies, and ground motion instrumentation scientists. The real-time data analysis of multi-sensor instrumentation is a valuable knowledge repository for real-time early warning and trustworthy seismic events detection. In this work, an early warning in the first 1 micro-second and seismic wave detection in the first 1.7 milliseconds after event initialization is proposed using a seismic wave event detection algorithm (SWEDA). The SWEDA with nine low-computation-cost operations is being proposed for smart geospatial bi-axial inclinometer nodes (SGBINs) also utilized in structural health monitoring systems. SWEDA detects four types of seismic waves, i.e., primary (P) or compression, secondary (S) or shear, Love (L), and Rayleigh (R) waves using time and frequency domain parameters mapped on a 2D mapping interpretation scheme. The SWEDA proved automated heterogeneous surface adaptability, multi-clustered sensing, ubiquitous monitoring with dynamic Savitzky-Golay filtering and detection using nine optimized sequential and structured event characterization techniques. Furthermore, situation-conscious (context-aware) and automated computation of short-time average over long-time average (STA/LTA) triggering parameters by peak-detection and run-time scaling arrays with manual computation support were achieved. - 2019 by the authors.Funding: This publication was made possible by the NPRP grant # 8-1781-2-725 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu
    corecore