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Abstract: This case study provides feasibility analysis of adapting Spiking Neural Networks (SNN) 12 
based Structural Health Monitoring (SHM) system to explore low-cost solution for inspection of 13 
structural health of damaged buildings which survived after natural disaster i.e., earthquakes or 14 

similar activities. Various techniques are used to detect the structural health status of a building for 15 
performance benchmarking, including different feature extraction methods and classification 16 
techniques (e.g. SNN, K-means and artificial neural network etc.). The SNN is utilized to process 17 
the sensory data generated from full-scale seven-story reinforced concrete building to verify the 18 
classification performances. Results show that the proposed SNN hardware has high classification 19 

accuracy, reliability, longevity, and low hardware area overhead. 20 
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 23 

1. Introduction 24 

Earthquake is an oscillatory movement caused by abrupt release of strain energy stored in in the 25 

rocks within the crust of earth surface. Natural disasters are always vulnerable which leads to 26 
extreme damages in nearby population in terms of fatality, communication and infrastructure loss. 27 
Flood, earthquake, cyclones etc. are among most common occurring natural disasters across world. 28 
The impact of these disasters differs in geological and geographic location of an area. These disasters 29 
come with no advance warning but an effective, well prepared and maintained infrastructure will 30 

decrease potential impact of future disasters. The structural health of buildings and other 31 
infrastructures suffers degradation due to environmental catastrophes caused by ageing, hazards and 32 
natural disasters [1]. In any area, public infrastructures like school, hospital, fire station, 33 
administrative buildings, bridges, treatment plants are more prone to be highly affected by these 34 
disasters. Therefore, regular structural health monitoring is required to ensure heath and endurance 35 

from these mega structures. In an event of disaster, it is particularly important i). to detect and 36 
quantify the severity of damage caused by environmental disasters at an early stage, ii). to assess the 37 
current structural health and reliability of buildings to ensure its safe use, and iii) to estimate 38 
repairing cost for damage to minimize economic losses [2]. Traditional monitoring methods rely on 39 
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an inspection and assessment of the buildings and requires experienced inspectors. Many structures 40 

are not convenient for on-site monitoring due to the terrain obstacles i.e., lack of access to such 41 
buildings and which sometimes makes it too late due to the retrospective nature of inspections [3]. 42 
An automated process such as installation of a Structural Health Monitoring (SHM) system on 43 
vulnerable structures, e.g. buildings, bridges and even special launch vehicles, to periodically detect 44 

and notify structural damages [4]. An advance SHM systems should include current health profile of 45 
the structure, the functions of damage detection, structural life prediction etc. [5]. The lifespan of 46 
typical structure lasts for decades whereas sensory instruments and microprocessors used by SHM 47 
systems comes with limited lifespan, e.g. in an ideal operating environment the three-axis 48 
accelerometer of IIS3DHHC from the STMicroelectronics has ten-year production life which further 49 

shrinks in harsh outdoor environments. Therefore, after installation and regular use for several years 50 
SHM systems may fatigue and fail. Due to technical and economic difficulties for secondary 51 

deployment, the longevity and reliability of SHM systems are key challenges that must be considered.  52 

Considering these issues, SHM Systems should offer three characteristics. Firstly, the system 53 
should be adaptive, robust, and capable to learn quickly. Secondly, the data analysis of the SHM 54 
system should be fast, efficient and accurate. Finally, the longevity and reliability of the systems 55 
hardware should be enhanced as the SHM system may be deployed in harsh conditions. The SHM 56 
system must has protection capabilities to resist the hazardous effect of external environment. Recent 57 

research suggested that we can build human brain like fault-tolerant energy-efficient system with 58 
learning capability to enhance the robustness, productivity and endurance of the electronic hardware 59 
systems [6,7]. Spiking neural network (SNN) are referred as the 3rd generation of artificial neural 60 
network (ANN). Contrary to conventional ANNs, SNNs are more realistic mathematical 61 
representation of the human brain that mimics biological spike-based event-driven processes to 62 

communicate between neurons. SNNs are computationally complex and powerful than conventional 63 
ANNs [8]. On an embedded processor, this digital systems like spike-driven communication 64 
capability makes SNNs i.e., astrocyte-neural network model more energy-efficient and reliable than 65 
deep neural network [9]. Therefore, this paper proposes an SHM system that based on SNN hardware 66 

to address the challenges of longevity and reliability of the monitoring system. The acceleration data 67 

collected from a full-scale seven-story reinforced concrete building are analyzed and severity of 68 

damage in the building are subsequently classified. The proposed system can monitor and detect 69 

the structure health damage levels under different environmental conditions, and provides a 70 

high detection accuracy and relatively low hardware overhead for implementation. 71 

The following section (section 2) explores related works and briefly reviews current SHM 72 
solutions and methodologies used to assess the structural health of buildings and structures.  Section 73 
3 defines the proposed SHM system, discusses feature analysis and classification methods for the 74 

sensor data. Section 4 provides the experimental results to demonstrate the feasibility and accuracy 75 
of the proposed system through actual building sensor data. Finally, section 5 concludes the paper 76 

and gives the directions for future work.  77 

2. Related works 78 

SHM systems need to provide a framework for the damage classification using a continuous 79 
record of structural health monitoring data. This classification framework requires categorization of 80 
many datasets relating to different states of structural health [10]. Damage identification in SHM 81 
involves four main steps: signal acquisition, signal processing, feature extraction and classification. 82 
The acquired data are then analyzed by signal processing techniques to extract, identify and classify 83 

key features which are used for assessing the health condition of the structure. Feature extraction and 84 
classification techniques are very critical for assessment of the structural health condition in an 85 
automated system. Feature extraction method focuses on extracting features which may indicate 86 
damage state ‘hidden’ in recorded sensor data, e.g. the orthogonal decomposition method is used for 87 
feature extraction and analysis [11]. Feature extraction relies on empirical data. As the structure is 88 
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affected by the environmental conditions, sensor data includes noises which affects damage level 89 

assessment [12]. Therefore, feature extraction is a foremost and critical step for the SHM system.  90 

Another challenge of SHM systems is the damage classification method. Previous research work 91 
proposed various damage classification methods for different structures. Conventional classification 92 

methods include clustering algorithms [13] i.e., k-means (KM) which is widely used in SHM. 93 
However, KM is sensitive to the extracted data features and the initial choice of cluster centres [14] 94 
that may lead to erroneous classifications [13]. ANNs has shown to be a promising technique for 95 
SHM classification [9]. It includes a set of computational models inspired by the interconnected 96 

neurological structure of the human brain for learning and solving problems such as pattern 97 
recognitions. Taking into account the different classification rules of different structures and the use 98 
of different types of sensors [15] (e.g. sensors for measuring mechanical properties [16,17] and sensors 99 
for measuring environmental properties [18–20]), neural networks have the ability to extract features 100 
from the data automatically [21], which can meet the requirements of applications. However, existing 101 

systems are not suitable for detecting and analysing the structural characteristics in real applications 102 
such as SHM, as the system cannot meet practical needs in terms of hardware cost and power 103 

consumption. 104 

Unlike traditional ANN, Spiking Neural Networks (SNNs) have a smaller hardware overhead 105 
and are more reliable and power efficient. It has been reported that SNN hardware such as 106 
neuromorphic systems consume two orders of magnitude less energy than ANNs [22]. In brain-107 
inspired intelligence research, SNNs demonstrate a low power consumption and high performance 108 
for the deployment of artificial intelligence technology. In addition, if considering the glial cell such 109 

as astrocyte, spiking neural astrocyte networks have shown the self-repairing capability by using a 110 
novel learning rule [23]. Therefore, this work proposed an SHM solution based on SNN hardware 111 
system with self-repairing capability that will improves the electronic system reliability and life-span 112 
in harsh environments. To the best of the authors' knowledge, conventional ANN and Probabilistic 113 
Neural Networks (PNN) are widely used for structural damage detection [24–26], but no structural 114 

health monitoring application of SNN has been reported in the literature. Therefore, by combining 115 
the energy-efficient SNN classification algorithm and the highly compact neural network hardware, 116 
the performance and lifetime of the SHM system can be improved. Results in section 4 will 117 
demonstrate the proposed work makes SHM a viable option with low energy consumption, anti-118 

noise capability, and an efficient data processing capability. 119 

3. SHM system based on SNN 120 

This section explores architectural components of proposed SNN based SHM system including 121 
data acquisition (sensors) and decision-making mechanism (damage level classification). 122 

Furthermore, benchmarks of K-means and ANN algorithms are also briefly introduced in this section. 123 

3.1. System architecture 124 

SHM is a multi-layered hardware system that comprises up of multiple sensors for data 125 
acquisition, communication and processing architecture to assess health of structural integrity. Figure 126 
1 shows the structure of the proposed SHM system. System is equipped with Wired or wireless 127 
sensors such as accelerometers to collect the data from under observation structure. Through the 128 

analysis of the raw data, appropriate features can be selected and extracted from the time domain or 129 
frequency domain. After feature extraction, the data is fed into the SNN hardware system for the 130 
structure damage level assessment. The SNN encodes the pre-processed data into input spiking 131 
signals. This work proposed two SNN models to explore an efficient and cost-effective solution for 132 

SHM system. A fully connected SNN network based on Leaky Integrate and Fire (LIF) neurons with 133 
SpikeProp as learning algorithm for feature classification. Second model is based on Neucube 134 
framework [27] using the Spike Timing Dependent Plasticity (STDP) rule for the unsupervised 135 
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training and deSNN [28] algorithm for supervised learning. Both models can classify the level of 136 

structure damage to identify structural health status. 137 

SNNs use time as an input dimension and records valuable information in a spatial domain. The 138 
information received by the spiking neuron is a pulsed time series, so the analogue sensory data 139 

needs to be encoded into spatial dimension for input to the spiking neural network. spiking neuron 140 
membrane changes upon arrival of input spike and each postsynaptic neuron fires an action potential 141 
or spike at the time when the membrane potential exceeds the firing threshold [29]. The event-driven 142 
neurons in an SNN are only active when they receive or emit spikes, which can contribute to energy 143 

efficiency over time. 144 

Hardware systems that implement neuronal and synaptic computations through spike-driven 145 
communication may enable energy-efficient machine intelligence [30]. Compared with the traditional 146 
neuron model, the spiking neuron model has lower power consumption and is also suitable for 147 

parallel computing. Therefore, using a spiking neural hardware system can speed up the 148 

computation power. 149 

 150 

Figure 1. An SNN-based SHM system 151 

3.2. Feature extraction 152 

Considering different sensors used in the structure, the selection of damage-sensitive features is 153 
generally based on multiple tests, so as to determine which features can indicate the health state of 154 
the structure accurately and are robust to the influence of the structural conditions and environments. 155 
These features can be extracted from the time domain (e.g. mean, variance, peak to peak amplitude, 156 

Zero crossing rate, energy, maximum amplitude, etc.), and frequency domain such as Fourier 157 
transform. Mean, variance and zero crossing rate are defined as: 158 
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where a is the input sensor data, N is the number of the samples. After feature extraction, supervised 159 

or unsupervised learning methods can be used for data analysis and structure health status 160 
classification. 161 

3.3. Structure damage classification 162 

Temporal coding schemes such as Address event representation (AER), Bens spike algorithm 163 

(BSA) and step forward (SF) are used to represent information as an input to SNNs. Figure 2 shows 164 
different encoding results for the same temporal input data. The spike trains will carry key 165 
information of the original signals. Different spike encoding algorithms have distinct characteristics 166 
when representing input data. BSA, shown in Figure 2 (c), is suitable for high frequency signals, so 167 
there are few spikes encode from the low frequency signals, while AER and SF are better to represent 168 

the signal intensity. 169 
Different spiking neuron models can be used to model spike generations at different description 170 

levels of biology [9], such as leaky integrate-and-fire (LIF), Izhikevich and Hodgkin–Huxley. The LIF 171 

neuron is one of the simplified models, which can be modelled as: 172 

𝜏m

𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
= −(𝑉𝑚𝑒𝑚 − 𝑉𝑒𝑞) + 𝑅𝐼𝑒𝑥𝑡  (4) 

where 𝑉𝑚𝑒𝑚 is the membrane potential of the neuron,𝐼𝑒𝑥𝑡  is the external driving current, 𝜏m is the 173 
membrane time constant, R is the input resistance, and 𝑉𝑒𝑞 is the equilibrium potential of the leakage 174 

conductance. 175 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. Spike trains generated by three different coding schemes. (a) Data stream of a channel; (b) 176 
Encoding with AER; (c) Encoding with BSA; (d) Encoding with SF. Note that spikes in (b), (d) are 177 
positive or negative, but there are only positive spikes in (c). 178 

Figure 3 shows the state of the neuron updated by the membrane potential under the synaptic 179 
stimuli. When the membrane potential of the neuron crosses the threshold, the neuron then generates 180 
an output spike, which acts as an input stimulus for subsequent layer neurons. 181 
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 182 

Figure 3. SNN neuron and computation model 183 

SNN can be trained using unsupervised and supervised approaches. An unsupervised SNN 184 

using the Spike Timing Dependent Plasticity (STDP) learning rule was demonstrated with a 185 
competitive accuracy [31]. The weight update in STDP learning rule [32] can be described as: 186 

∆𝑤 = {
𝛼+𝑒−∆𝑡/𝜏+      ∆𝑡 ≥ 0

𝛼−𝑒∆𝑡/𝜏−      ∆𝑡 < 0
 (5) 

where ∆𝑤 is the weight change rate, 𝜏+ and 𝜏− are STDP time constants, 𝛼+(> 0) and 𝛼−(< 0) 187 

are constant coefficients, and ∆𝑡 is the time difference between a post-neuron and a pre-neuron 188 
spike. When ∆𝑡 ≥ 0, the synaptic plasticity is a long-term potentiation (LTP) process; otherwise it’s a 189 
long-term depression process. Two different SNN structures are adopted in this study, where one is 190 

a fully connected SNN, and the other one is a model based on NeuCube [27]. 191 

For performance comparisons, commonly used classification algorithms of K-means and ANNs 192 
are also used in this work for benchmarking. A supervised learning algorithm of ANN is used in this 193 
work, where the network weights are adjusted in every iteration by comparing difference between 194 

actual output and the targeted output. A multi-layer feedforward architecture with input layer for 195 
sensory input, hidden layer for learning and an output layer to generate spiking output. The number 196 
of input neurons equals to the number of sensors whereas output layer neurons represent number of 197 
structure level classifiers. For K-means, the unsupervised K-means algorithm for SHM can be 198 
described with the following steps where k is the number of desired clusters: (a). Given features’ 199 

matrix as input, find the k centroids (random or select); (b). Calculate the distances between features’ 200 
vectors and centroids; (c). Group the features’ vectors based on their intra-cluster distance; and (d). 201 

Iterate the algorithm and update the centroids for a better clustering result. 202 

4. Experiments 203 

This section explains experimental setup to generate damage level report for SHM system. 204 

Furthermore, this case study analyses and compares results of three classification methods, K-means, 205 

ANN and SNN to identify best performing SHM system. 206 

4.1. Dataset 207 

This case study used a full-scale seven-story reinforced concrete building dataset for 208 

experimentation [1]. The building is installed with 45 accelerometers operating at sampling rate of 209 
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240Hz. A sequence of dynamic tests was applied to the building in several months, including ambient 210 

vibration tests, free vibration tests, and forced vibration tests using the UCSD-NEES shake table. A 211 
0.03g root-mean-square (RMS) acceleration white noise base excitation and an ambient vibration tests 212 
were performed on the structure before and between earthquake shake-table tests. For 45 channels, 213 
signal to noise ratios (SNR) are -36.97db~22.81db. The building was damaged progressively through 214 

several historical earthquake ground motions, and damage states of the building can be described as 215 
shown in Table 1. In 1st to 3rd earthquakes, the roof drift ratio, defined as the ratio between the 216 
maximum lateral displacement at the roof level of the building and the height of the roof relative to 217 
the base of the building, was measured as 0.28, 0.75 and 0.83%, respectively. The maximum tensile 218 
strain in the longitudinal reinforcing steel was measured close to the base of the wall as 0.61, 1.73 and 219 

1.78%, respectively [1]. 220 

Table 1. Dynamic tests used in this study 221 

Damage state Description 

State-0 8 min white noise base excitation process & 3 min ambient vibration 

State-1 After the 1st earthquake excitation, with 8 min white noise base excitation 

process & 3 min ambient vibration 

State-2 After the 2nd earthquake excitation, with 8 min white noise base excitation 

process & 3 min ambient vibration 

State-3 After the 3rd earthquake excitation, with 8 min white noise base excitation 

process & 3 min ambient vibration 

4.2. Feature extraction 222 

The raw data collected from 45 channels in the building at different health states are shown in 223 
Figure 4. Raw accelerometer data of different structure states show different features, such as 224 
maximum amplitude and mean value etc. By considering the building physical movements in 225 

different states [33], the deformation degree of buildings can result in large differences in the mean 226 
and fluctuation range of accelerometer data. Based on these analysis, zero-crossing rate, mean and 227 

variance are used for feature extractions. 228 
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 229 

Figure 4. Row data from 45-channel accelerometers 230 

After the data has been pre-processed, three methods (including zero-crossing rate, variance and 231 
mean value) are used to extract data in order to select the damage-sensitive features. The features are 232 
presented in Figure 5. The zero-crossing rate, which is the rate of sign-changes along a signal, is weak 233 
to separate the different damage states (indicated by colors). Among them, calculating mean value of 234 

sensor data has the potential to differentiate the four damage states. 235 

 236 
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Figure 5. Results of the features extracted from raw data 237 

4.3. SHM classification results 238 

For different classification methods, 70%~80% samples (including mean samples and raw 239 

data) are used for training, and the rest for validation and testing. 240 

4.3.1. K-means 241 

A 50 step-length sliding window with 100 sample points is used to get more mean samples, 242 

which are used as input for the k-means algorithm. K-means parameters are shown in table 2. 243 

Table 2. Parameters in k-means 244 

Parameters setting 
Cluster number Distance Initial centroid positions Replicates 

4 L1 distance Random 8 

It can be seen from Figure 6 (a) that using the mean value of the data as an input of the k-means 245 
algorithm can classify the health status of the building. The dots represent historical records and the 246 
circles represent new data inputs. The classification accuracy of structural health status is 100%. In 247 

Figure 6 (b), the raw data are used directly as the input of the k-means algorithm. In the case of 248 
overlapped data, including State-0, State-1 and State-3, the k-means algorithm cannot separate these 249 
data. There are 45 channels in total and only two of them are used for the demonstration in Figure 6. 250 

 

(a) 

 

(b) 

Figure 6. SHM classification using K-means. (a) Clustering of mean samples; (b) Clustering of raw data. 251 

By incorporating hardware design process [34] to implement K-means, the input data dimension 252 
area will be about 3.46 mm2 and 1.23 mm2 for parallel mode and multiplexed architecture 253 

respectively. 254 

4.3.2. ANN 255 

The ANN with 45 input neurons, 20 hidden neurons and 4 output neurons can get similar 256 
accuracy with different input samples (mean samples and raw data). Table 3 shows that ANN slightly 257 
confuse between State-0 and State-1 when trained on raw data samples. The hardware area of the 258 
neuron is estimated about 1.347 mm2 based on a 45nm CMOS technology [35]. It can also be calculated 259 

from [36] that the total hardware area of ANN is >0.798 mm2. 260 

Table 3. Classification matching matrix with different input samples 261 
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(a) Mean samples 262 

True label 

Predict label 
State-0 State-1 State-2 State-3 

State-0 100% 0.0% 0.0% 0.0% 

State-1 0.0% 100% 0.0% 0.0% 

State-2 0.0% 0.0% 100% 0.0% 

State-3 0.0% 0.0% 0.0% 100% 

(b) Raw data 263 

True label 

Predict label 
State-0 State-1 State-2 State-3 

State-0 99.7% 0.3% 0.0% 0.0% 

State-1 0.9% 99.1% 0.0% 0.0% 

State-2 0.0% 0.0% 100% 0.0% 

State-3 0.0% 0.0% 0.0% 100% 

4.3.3. NeuCube 264 

In NeuCube, raw data samples are fed into a dynamic SNN. One channel of an input sample 265 

was shown in Figure 2(a). Table 4 shows network parameters used by NeuCube. The model is 266 
established with 45 input neurons, 50 hidden neurons and output neurons (the number of samples). 267 
Due to the dynamic structure, the overall area overhead of NeuCube SNN is about 4.655×10-3mm2 268 
that is calculated according to neuronal and synaptic hardware area estimation proposed in [37,38]. 269 

Results shows that overall classification accuracy of NeuCube SNN is 98.9% (as shown in Figure 7). 270 

Table 4. NeuCube Model Parameter Setting 271 

Parameter Description Value 

STDP Rate Defines the learning rate of the STDP learning 0.01 

Firing threshold 
Defines the threshold membrane potential beyond which the 

neuron fires a spike. 
0.5 

deSNN 

Classifier 

Parameters 

Mod 
The weight is calculated as a modulation factor (the variable 

mod) to the power of the order of the incoming spikes. 
0.55-0.6 

Drift 
Initial connection weights are further modified to reflect the 

following spikes, using a drift parameter. 
0.015 
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 272 

Figure 7. Classification result by using NeuCube (raw data) 273 

 274 

Table 5 shows breakdown of performance accuracy for classification of damage states observed 275 
by NeuCube. Enough samples will contribute to higher probability of making correct decision about 276 
the damage states. As a comparison, mean samples are input into NeuCube with the same parameter 277 

setting above. The accuracy is not as stable as raw data input, as NeuCube is more sensitive to 278 

temporal raw data [39].  279 

Table 5. Accuracy of each class 280 

Damage state Accuracy 

State-0 100% 

State-1 100% 

State-2 100% 

State-3 98.08% 

4.3.4. Customized SNN 281 

A customized fully connected SNN with LIF neurons and SpikeProp as learning algorithm is 282 

developed for the SHM classification based on previous work [40]. The three-layered fully connected 283 
SNN is designed and modelled in MATLAB. Table 6 shows network topology, size and hardware 284 
area of LIF based SNN model. Mean sensory samples are fed through 45 spiking input neurons to 285 
propagate spike towards 10 hidden neurons in order to generate 4 state output at 1 output neuron. 286 

The estimated hardware area of the SNN chip shown in Table 6 is calculated using [37,38]. 287 

Table 6. SNN setting and result (mean samples) 288 

Network Topology Multiplier of synapses Total neurons Total synapses 

SNN [45:10:1] 10 56 460 
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Area of 

neurons 

Area of 

synapses 
Area overhead 

Overall 

Accuracy 

Number of 

iterations 

5.04×10-4 mm2 
1.10×10-3 

mm2 
1.61×10-3 mm2 

99.18% 2500 

99.46% 3000 

Damage states are encoded with time of spike of output neuron (SNN output). Experimentation 289 
results shows the classification accuracy using mean samples input. Results shows in Table 7 that 290 
proposed customized SNN classifies structural damage with 99.18% accuracy for mean dataset. 291 
Moreover, the overall accuracy can be higher to 99.46% by increasing number of iterations, as 292 

compared to 98.9% NeuCube average accuracy for raw sensory input. 293 

Table 7. Accuracy of each class 294 

Damage state SNN output Accuracy 

State-0 16 100% 100% 

State-1 18 95.67% 97% 

State-2 20 100% 100% 

State-3 22 99.8% 99.9% 

Overall accuracy 99.18% 99.46% 

4.3.5. Discussions 295 

A summary of results using K-means, ANN and SNN in SHM applications, is shown in Table 8. 296 
ANN used raw data and feature samples as input, and there is little difference in classification 297 
accuracy. The final decision making can be the same within a certain confidence interval. Thus, if 298 

ANN combines the feature extraction into the learning process, it improves the computing speed, 299 
and also reduces the hardware consumption. The structural damage occurrence detection can be 300 
assessed as health (State-0) and damage (State-1, State-2 & State-3), then the sensitivity (true positive 301 
rate) and specificity (true negative rate) of three typical methods can be obtained with the input of 302 
raw data samples, as shown in Table 9. Compared with other two algorithms, SNN can accurately 303 

determine whether the structure is healthy. Meanwhile, the hardware area consumption of SNN is 304 
much less than ANN, the classification accuracy has a little difference of 0.9%, and the sensitivity and 305 
specificity are higher. In summary, the proposed method based on SNNs apparently achieves a good 306 

trade-off between classification, reliability, and hardware resource consumption. 307 

Table 8. Performance comparison of three methods in SHM application 308 

Method 
Classification accuracy 

Technology Hardware area 
Raw data Feature 

K-means 80% 100% TSMC 90nm 1.23 mm2~3.46 mm2 

ANN 99.8% 100% CMOS 45nm 1.347 mm2 (neurons only) 

SNN 98.9% 99.46% CMOS 90nm 
4.655 ×10-3mm2 (NeuCube) 

1.61 ×10-3mm2 (Customized SNN) 

Table 9. Sensitivity and specificity comparison of three methods  309 
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Method Sensitivity Specificity 

K-means 92.97% 73.87% 
ANN 99.94% 99.15% 

SNN 100% 100% 

5. Conclusions 310 

The structural health state detection in this study involves the feature extraction from 311 
periodically observation measurements of a structure, where these features are analysed to determine 312 

the current health state of the structure. Based on the detected states, appropriate repair and 313 
strengthening of structures can keep the structure operational and longeval. Through the analysis of 314 
ZCR, Mean and Variance of the raw sensor data, it is found by experiments that mean value is more 315 
sensitive to the structure state. Therefore, mean values and raw data were used as inputs, and several 316 
classification methods, including K-means, conventional ANN and SNN, were used to detect the 317 

health state of the structure. Analysis and comparison results show that the SNN algorithm proposed 318 
in this study has advantages including (a). High classification accuracy can be obtained by directly 319 
using the raw data as input without manual feature extraction; (b). The small part of misclassification 320 
(1.92%) only exists in State-3, where the output health states can be clearly distinguished; (c). The 321 
hardware area of SNN is lower compared to ANN or K-means. In summary, the proposed SNN 322 

hardware solution for SHM has a stronger survivability and reliability than conventional approaches. 323 
Further work will further optimize the SNN for SHM systems from two aspects including a). to 324 
develop multi-layer (deep) SNNs to improve the accuracy, and b). to further analyze the sensor data 325 
to enhance the system functionalities, such as reporting the location of damage or life forecast of the 326 

structure. 327 
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