619 research outputs found

    Digital Twins: Review and Challenges

    Full text link
    [EN] With the arises of Industry 4.0, numerous concepts have emerged; one of the main concepts is the digital twin (DT). DT is being widely used nowadays, however, as there are several uses in the existing literature; the understanding of the concept and its functioning can be diffuse. The main goal of this paper is to provide a review of the existing literature to clarify the concept, operation, and main characteristics of DT, to introduce the most current operating, communication, and usage trends related to this technology, and to present the performance of the synergy between DT and multi-agent system (MAS) technologies through a computer science approach.This work was partly supported by the Spanish Government (RTI2018-095390-B-C31)Juárez-Juárez, MG.; Botti, V.; Giret Boggino, AS. (2021). Digital Twins: Review and Challenges. Journal of Computing and Information Science in Engineering. 21(3):1-23. https://doi.org/10.1115/1.405024412321

    Interoperability middleware for IIoT gateways based on international standard ontologies and standardized digital representation

    Get PDF
    Recent advances in the areas of microelectronics, information technology, and communication protocols have made the development of smaller devices with greater processing capacity and lower energy consumption. This context contributed to the growing number of physical devices in industrial environments which are interconnected and communicate via the internet, enabling concepts such as Industry 4.0 and the Industrial Internet of Things (IIoT). These nodes have different sensors and actuators that monitor and control environment data. Several companies develop these devices, including diverse communication protocols, data structures, and IoT platforms, which leads to interoperability issues. In IoT scenarios, interoperability is the ability of two systems to communicate and share services. Therefore, communication problems can make it unfeasible to use heterogeneous devices, increasing the project’s financial cost and development time. In an industry, interoperability is related to different aspects, such as physical communication, divergent device communication protocols, and syntactical problems, referring to the distinct data structure. Developing a new standard for solving these matters may bring interoperability-related drawbacks rather than effectively solving these issues. Therefore, to mitigate interoperability problems in industrial applications, this work proposes the development of an interoperability middleware for Edge-enabled IIoT gateways based on international standards. The middleware is responsible for translating communication protocols, updating data from simulations or physical nodes to the assets’ digital representations, and storing data locally or remotely. The middleware adopts the IEEE industrial standard ontologies combined with assets’ standardized digital models. As a case study, a simulation replicates the production of a nutrient solution for agriculture, controlled by IIoT nodes. The use case consists of three devices, each equipped with at least five sensors or actuators, communicating in different communication protocols and exchanging data using diverse structures. The performance of the proposed middleware and its proposed translations algorithms were evaluated, obtaining satisfactory results for mitigating interoperable in industrial applications.Devido a recentes avanços nas áreas de microeletrônica, tecnologia da informação, e protocolos de comunicação tornaram possível o desenvolvimento de dispositivos cada vez menores com maior capacidade de processamento e menor consumo energético. Esse contexto contribuiu para o crescente nú- mero desses dispositivos na industria que estão interligados via internet, viabilizando conceitos como Indústria 4.0 e Internet das Coisas Industrial (IIoT). Esses nós possuem diferentes sensores e atuadores que monitoram e controlam os dados do ambiente. Esses equipamentos são desenvolvidos por diferentes empresas, incluindo protocolos de comunicação, estruturas de dados e plataformas de IoT distintos, acarretando em problemas de interoperabilidade. Em cenários de IoT, interoperabilidade, é a capacidade de sistemas se comunicarem e compartilharem serviços. Portanto, esses problemas podem inviabilizar o uso de dispositivos heterogêneos, aumentando o custo financeiro do projeto e seu tempo de desenvolvimento. Na indústria, interoperabilidade se divide em diferentes aspectos, como comunicação e problemas sintáticos, referentes à estrutura de dados distinta. O desenvolvimento de um padrão industrial pode trazer mais desvantagens relacionadas à interoperabilidade, em vez de resolver esses problemas. Portanto, para mitigar problemas relacionados a intoperabilidade industrial, este trabalho propõe o desenvolvimento de um middleware de interoperável para gateways IIoT baseado em padrões internacionais e ontologias. O middleware é responsável por traduzir diferentes protocolos de comunicação, atualizar os dados dos ativos industriais por meio de suas representações digitais, esses armazenados localmente ou remotamente. O middleware adota os padrões ontológicos industriais da IEEE combinadas com modelos digitais padronizados de ativos industriais. Como estudo de caso, são realizadas simulações para a produção de uma solução nutritiva para agricultura, controlada por nós IIoT. O processo utiliza três dispositivos, cada um equipado com pelo menos cinco sensores ou atuadores, por meio de diferentes protocolos de comunicação e estruturas de dados. O desempenho do middleware proposto e seus algoritmos de tradução foram avaliados e apresentados no final do trabalho, os quais resultados foram satisfatórios para mitigar a interoperabilidade em aplicações industriais

    An integrative framework for cooperative production resources in smart manufacturing

    Get PDF
    Under the push of Industry 4.0 paradigm modern manufacturing companies are dealing with a significant digital transition, with the aim to better address the challenges posed by the growing complexity of globalized businesses (Hermann, Pentek, & Otto, Design principles for industrie 4.0 scenarios, 2016). One basic principle of this paradigm is that products, machines, systems and business are always connected to create an intelligent network along the entire factory\u2019s value chain. According to this vision, manufacturing resources are being transformed from monolithic entities into distributed components, which are loosely coupled and autonomous but nevertheless provided of the networking and connectivity capabilities enabled by the increasingly widespread Industrial Internet of Things technology. Under these conditions, they become capable of working together in a reliable and predictable manner, collaborating among themselves in a highly efficient way. Such a mechanism of synergistic collaboration is crucial for the correct evolution of any organization ranging from a multi-cellular organism to a complex modern manufacturing system (Moghaddam & Nof, 2017). Specifically of the last scenario, which is the field of our study, collaboration enables involved resources to exchange relevant information about the evolution of their context. These information can be in turn elaborated to make some decisions, and trigger some actions. In this way connected resources can modify their structure and configuration in response to specific business or operational variations (Alexopoulos, Makris, Xanthakis, Sipsas, & Chryssolouris, 2016). Such a model of \u201csocial\u201d and context-aware resources can contribute to the realization of a highly flexible, robust and responsive manufacturing system, which is an objective particularly relevant in the modern factories, as its inclusion in the scope of the priority research lines for the H2020 three-year period 2018-2020 can demonstrate (EFFRA, 2016). Interesting examples of these resources are self-organized logistics which can react to unexpected changes occurred in production or machines capable to predict failures on the basis of the contextual information and then trigger adjustments processes autonomously. This vision of collaborative and cooperative resources can be realized with the support of several studies in various fields ranging from information and communication technologies to artificial intelligence. An update state of the art highlights significant recent achievements that have been making these resources more intelligent and closer to the user needs. However, we are still far from an overall implementation of the vision, which is hindered by three major issues. The first one is the limited capability of a large part of the resources distributed within the shop floor to automatically interpret the exchanged information in a meaningful manner (semantic interoperability) (Atzori, Iera, & Morabito, 2010). This issue is mainly due to the high heterogeneity of data model formats adopted by the different resources used within the shop floor (Modoni, Doukas, Terkaj, Sacco, & Mourtzis, 2016). Another open issue is the lack of efficient methods to fully virtualize the physical resources (Rosen, von Wichert, Lo, & Bettenhausen, 2015), since only pairing physical resource with its digital counterpart that abstracts the complexity of the real world, it is possible to augment communication and collaboration capabilities of the physical component. The third issue is a side effect of the ongoing technological ICT evolutions affecting all the manufacturing companies and consists in the continuous growth of the number of threats and vulnerabilities, which can both jeopardize the cybersecurity of the overall manufacturing system (Wells, Camelio, Williams, & White, 2014). For this reason, aspects related with cyber-security should be considered at the early stage of the design of any ICT solution, in order to prevent potential threats and vulnerabilities. All three of the above mentioned open issues have been addressed in this research work with the aim to explore and identify a precise, secure and efficient model of collaboration among the production resources distributed within the shop floor. This document illustrates main outcomes of the research, focusing mainly on the Virtual Integrative Manufacturing Framework for resources Interaction (VICKI), a potential reference architecture for a middleware application enabling semantic-based cooperation among manufacturing resources. Specifically, this framework provides a technological and service-oriented infrastructure offering an event-driven mechanism that dynamically propagates the changing factors to the interested devices. The proposed system supports the coexistence and combination of physical components and their virtual counterparts in a network of interacting collaborative elements in constant connection, thus allowing to bring back the manufacturing system to a cooperative Cyber-physical Production System (CPPS) (Monostori, 2014). Within this network, the information coming from the productive chain can be promptly and seamlessly shared, distributed and understood by any actor operating in such a context. In order to overcome the problem of the limited interoperability among the connected resources, the framework leverages a common data model based on the Semantic Web technologies (SWT) (Berners-Lee, Hendler, & Lassila, 2001). The model provides a shared understanding on the vocabulary adopted by the distributed resources during their knowledge exchange. In this way, this model allows to integrate heterogeneous data streams into a coherent semantically enriched scheme that represents the evolution of the factory objects, their context and their smart reactions to all kind of situations. The semantic model is also machine-interpretable and re-usable. In addition to modeling, the virtualization of the overall manufacturing system is empowered by the adoption of an agent-based modeling, which contributes to hide and abstract the control functions complexity of the cooperating entities, thus providing the foundations to achieve a flexible and reconfigurable system. Finally, in order to mitigate the risk of internal and external attacks against the proposed infrastructure, it is explored the potential of a strategy based on the analysis and assessment of the manufacturing systems cyber-security aspects integrated into the context of the organization\u2019s business model. To test and validate the proposed framework, a demonstration scenarios has been identified, which are thought to represent different significant case studies of the factory\u2019s life cycle. To prove the correctness of the approach, the validation of an instance of the framework is carried out within a real case study. Moreover, as for data intensive systems such as the manufacturing system, the quality of service (QoS) requirements in terms of latency, efficiency, and scalability are stringent, an evaluation of these requirements is needed in a real case study by means of a defined benchmark, thus showing the impact of the data storage, of the connected resources and of their requests

    A Semantic Interoperability Model Based on the IEEE 1451 Family of Standards Applied to the Industry 4.0

    Get PDF
    The Internet of Things (IoT) has been growing recently. It is a concept for connecting billions of smart devices through the Internet in different scenarios. One area being developed inside the IoT in industrial automation, which covers Machine-to-Machine (M2M) and industrial communications with an automatic process, emerging the Industrial Internet of Things (IIoT) concept. Inside the IIoT is developing the concept of Industry 4.0 (I4.0). That represents the fourth industrial revolution and addresses the use of Internet technologies to improve the production efficiency of intelligent services in smart factories. I4.0 is composed of a combination of objects from the physical world and the digital world that offers dedicated functionality and flexibility inside and outside of an I4.0 network. The I4.0 is composed mainly of Cyber-Physical Systems (CPS). The CPS is the integration of the physical world and its digital world, i.e., the Digital Twin (DT). It is responsible for realising the intelligent cross-link application, which operates in a self-organised and decentralised manner, used by smart factories for value creation. An area where the CPS can be implemented in manufacturing production is developing the Cyber-Physical Production System (CPPS) concept. CPPS is the implementation of Industry 4.0 and CPS in manufacturing and production, crossing all levels of production between the autonomous and cooperative elements and sub-systems. It is responsible for connecting the virtual space with the physical world, allowing the smart factories to be more intelligent, resulting in better and smart production conditions, increasing productivity, production efficiency, and product quality. The big issue is connecting smart devices with different standards and protocols. About 40% of the benefits of the IoT cannot be achieved without interoperability. This thesis is focused on promoting the interoperability of smart devices (sensors and actuators) inside the IIoT under the I4.0 context. The IEEE 1451 is a family of standards developed to manage transducers. This standard reaches the syntactic level of interoperability inside Industry 4.0. However, Industry 4.0 requires a semantic level of communication not to exchange data ambiguously. A new semantic layer is proposed in this thesis allowing the IEEE 1451 standard to be a complete framework for communication inside the Industry 4.0 to provide an interoperable network interface with users and applications to collect and share the data from the industry field.A Internet das Coisas tem vindo a crescer recentemente. É um conceito que permite conectar bilhões de dispositivos inteligentes através da Internet em diferentes cenários. Uma área que está sendo desenvolvida dentro da Internet das Coisas é a automação industrial, que abrange a comunicação máquina com máquina no processo industrial de forma automática. Essa interligação, representa o conceito da Internet das Coisas Industrial. Dentro da Internet das Coisas Industrial está a desenvolver o conceito de Indústria 4.0 (I4.0). Isso representa a quarta revolução industrial que aborda o uso de tecnologias utilizadas na Internet para melhorar a eficiência da produção de serviços em fábricas inteligentes. A Indústria 4.0 é composta por uma combinação de objetos do mundo físico e do mundo da digital que oferece funcionalidade dedicada e flexibilidade dentro e fora de uma rede da Indústria 4.0. O I4.0 é composto principalmente por Sistemas Ciberfísicos. Os Sistemas Ciberfísicos permitem a integração do mundo físico com seu representante no mundo digital, por meio do Gémeo Digital. Sistemas Ciberfísicos são responsáveis por realizar a aplicação inteligente da ligação cruzada, que opera de forma auto-organizada e descentralizada, utilizada por fábricas inteligentes para criação de valor. Uma área em que o Sistema Ciberfísicos pode ser implementado na produção manufatureira, isso representa o desenvolvimento do conceito Sistemas de Produção Ciberfísicos. Esse sistema é a implementação da Indústria 4.0 e Sistema Ciberfísicos na fabricação e produção. A cruzar todos os níveis desde a produção entre os elementos e subsistemas autónomos e cooperativos. Ele é responsável por conectar o espaço virtual com o mundo físico, permitindo que as fábricas inteligentes sejam mais inteligentes, resultando em condições de produção melhores e inteligentes, aumentando a produtividade, a eficiência da produção e a qualidade do produto. A grande questão é como conectar dispositivos inteligentes com diferentes normas e protocolos. Cerca de 40% dos benefícios da Internet das Coisas não podem ser alcançados sem interoperabilidade. Esta tese está focada em promover a interoperabilidade de dispositivos inteligentes (sensores e atuadores) dentro da Internet das Coisas Industrial no contexto da Indústria 4.0. O IEEE 1451 é uma família de normas desenvolvidos para gerenciar transdutores. Esta norma alcança o nível sintático de interoperabilidade dentro de uma indústria 4.0. No entanto, a Indústria 4.0 requer um nível semântico de comunicação para não haver a trocar dados de forma ambígua. Uma nova camada semântica é proposta nesta tese permitindo que a família de normas IEEE 1451 seja um framework completo para comunicação dentro da Indústria 4.0. Permitindo fornecer uma interface de rede interoperável com utilizadores e aplicações para recolher e compartilhar os dados dentro de um ambiente industrial.This thesis was developed at the Measurement and Instrumentation Laboratory (IML) in the University of Beira Interior and supported by the portuguese project INDTECH 4.0 – Novas tecnologias para fabricação, que tem como objetivo geral a conceção e desenvolvimento de tecnologias inovadoras no contexto da Indústria 4.0/Factories of the Future (FoF), under the number POCI-01-0247-FEDER-026653

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    An integrative framework for cooperative production resources in smart manufacturing

    Get PDF
    Under the push of Industry 4.0 paradigm modern manufacturing companies are dealing with a significant digital transition, with the aim to better address the challenges posed by the growing complexity of globalized businesses (Hermann, Pentek, & Otto, Design principles for industrie 4.0 scenarios, 2016). One basic principle of this paradigm is that products, machines, systems and business are always connected to create an intelligent network along the entire factory’s value chain. According to this vision, manufacturing resources are being transformed from monolithic entities into distributed components, which are loosely coupled and autonomous but nevertheless provided of the networking and connectivity capabilities enabled by the increasingly widespread Industrial Internet of Things technology. Under these conditions, they become capable of working together in a reliable and predictable manner, collaborating among themselves in a highly efficient way. Such a mechanism of synergistic collaboration is crucial for the correct evolution of any organization ranging from a multi-cellular organism to a complex modern manufacturing system (Moghaddam & Nof, 2017). Specifically of the last scenario, which is the field of our study, collaboration enables involved resources to exchange relevant information about the evolution of their context. These information can be in turn elaborated to make some decisions, and trigger some actions. In this way connected resources can modify their structure and configuration in response to specific business or operational variations (Alexopoulos, Makris, Xanthakis, Sipsas, & Chryssolouris, 2016). Such a model of “social” and context-aware resources can contribute to the realization of a highly flexible, robust and responsive manufacturing system, which is an objective particularly relevant in the modern factories, as its inclusion in the scope of the priority research lines for the H2020 three-year period 2018-2020 can demonstrate (EFFRA, 2016). Interesting examples of these resources are self-organized logistics which can react to unexpected changes occurred in production or machines capable to predict failures on the basis of the contextual information and then trigger adjustments processes autonomously. This vision of collaborative and cooperative resources can be realized with the support of several studies in various fields ranging from information and communication technologies to artificial intelligence. An update state of the art highlights significant recent achievements that have been making these resources more intelligent and closer to the user needs. However, we are still far from an overall implementation of the vision, which is hindered by three major issues. The first one is the limited capability of a large part of the resources distributed within the shop floor to automatically interpret the exchanged information in a meaningful manner (semantic interoperability) (Atzori, Iera, & Morabito, 2010). This issue is mainly due to the high heterogeneity of data model formats adopted by the different resources used within the shop floor (Modoni, Doukas, Terkaj, Sacco, & Mourtzis, 2016). Another open issue is the lack of efficient methods to fully virtualize the physical resources (Rosen, von Wichert, Lo, & Bettenhausen, 2015), since only pairing physical resource with its digital counterpart that abstracts the complexity of the real world, it is possible to augment communication and collaboration capabilities of the physical component. The third issue is a side effect of the ongoing technological ICT evolutions affecting all the manufacturing companies and consists in the continuous growth of the number of threats and vulnerabilities, which can both jeopardize the cybersecurity of the overall manufacturing system (Wells, Camelio, Williams, & White, 2014). For this reason, aspects related with cyber-security should be considered at the early stage of the design of any ICT solution, in order to prevent potential threats and vulnerabilities. All three of the above mentioned open issues have been addressed in this research work with the aim to explore and identify a precise, secure and efficient model of collaboration among the production resources distributed within the shop floor. This document illustrates main outcomes of the research, focusing mainly on the Virtual Integrative Manufacturing Framework for resources Interaction (VICKI), a potential reference architecture for a middleware application enabling semantic-based cooperation among manufacturing resources. Specifically, this framework provides a technological and service-oriented infrastructure offering an event-driven mechanism that dynamically propagates the changing factors to the interested devices. The proposed system supports the coexistence and combination of physical components and their virtual counterparts in a network of interacting collaborative elements in constant connection, thus allowing to bring back the manufacturing system to a cooperative Cyber-physical Production System (CPPS) (Monostori, 2014). Within this network, the information coming from the productive chain can be promptly and seamlessly shared, distributed and understood by any actor operating in such a context. In order to overcome the problem of the limited interoperability among the connected resources, the framework leverages a common data model based on the Semantic Web technologies (SWT) (Berners-Lee, Hendler, & Lassila, 2001). The model provides a shared understanding on the vocabulary adopted by the distributed resources during their knowledge exchange. In this way, this model allows to integrate heterogeneous data streams into a coherent semantically enriched scheme that represents the evolution of the factory objects, their context and their smart reactions to all kind of situations. The semantic model is also machine-interpretable and re-usable. In addition to modeling, the virtualization of the overall manufacturing system is empowered by the adoption of an agent-based modeling, which contributes to hide and abstract the control functions complexity of the cooperating entities, thus providing the foundations to achieve a flexible and reconfigurable system. Finally, in order to mitigate the risk of internal and external attacks against the proposed infrastructure, it is explored the potential of a strategy based on the analysis and assessment of the manufacturing systems cyber-security aspects integrated into the context of the organization’s business model. To test and validate the proposed framework, a demonstration scenarios has been identified, which are thought to represent different significant case studies of the factory’s life cycle. To prove the correctness of the approach, the validation of an instance of the framework is carried out within a real case study. Moreover, as for data intensive systems such as the manufacturing system, the quality of service (QoS) requirements in terms of latency, efficiency, and scalability are stringent, an evaluation of these requirements is needed in a real case study by means of a defined benchmark, thus showing the impact of the data storage, of the connected resources and of their requests

    Efficient State Update Exchange in a CPS Environment for Linked Data-based Digital Twins

    Get PDF
    International audienceThis paper addresses the problem of reducing the number of messages needed to exchange state updates between the Cyber-Physical System (CPS) components that integrate with the rest of the CPS through Digital Twins in order to maintain uniform communication interface and carry out their tasks correctly and safely. The main contribution is a proposed architecture and the discussion of its suitability to support correct execution of complex tasks across the CPS. A new State Event Filtering component is presented to provide event-based communication among Digital Twins that are based on the Linked Data principles while keeping the fan-out limited to ensure the scalability of the architecture

    Digital Twins: A Meta-Review on Their Conceptualization, Application, and Reference Architecture

    Get PDF
    The concept of digital twins (DTs) is receiving increasing attention in research and management practice. However, various facets around the concept are blurry, including conceptualization, application areas, and reference architectures for DTs. A review of preliminary results regarding the emerging research output on DTs is required to promote further research and implementation in organizations. To do so, this paper asks four research questions: (1) How is the concept of DTs defined? (2) Which application areas are relevant for the implementation of DTs? (3) How is a reference architecture for DTs conceptualized? and (4) Which directions are relevant for further research on DTs? With regard to research methods, we conduct a meta-review of 14 systematic literature reviews on DTs. The results yield important insights for the current state of conceptualization, application areas, reference architecture, and future research directions on DTs

    Towards a Service-Oriented Architecture for Production Planning and Control: A Comprehensive Review and Novel Approach

    Get PDF
    The trends of shorter product lifecycles, customized products, and volatile market environments require manufacturers to reconfigure their production increasingly frequent to maintain competitiveness and customer satisfaction. More frequent reconfigurations, however, are linked to increased efforts in production planning and control (PPC). This poses a challenge for manufacturers, especially in regard of demographic change and shortage of qualified labour, since many tasks in PPC are performed manually by domain experts. Following the paradigm of software-defined manufacturing, this paper targets to enable a higher degree of automation and interoperability in PPC by applying the concepts of service-oriented architecture. As a result, production planners are empowered to orchestrate tasks in PPC without consideration of underlying implementation details. At first, it is investigated how tasks in PPC can be represented as services with the aim of encapsulation and reusability. Secondly, a software architecture based on asset administration shells is presented that allows connection to production data sources and enables integration and usage of such PPC services. In this sense, an approach for mapping asset administrations shells to OpenAPI Specifications is proposed for interoperable and semantic integration of existing services and legacy systems. Lastly, challenges and potential solutions for data integration are discussed considering the present heterogeneity of data sources in manufacturing
    corecore