
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

PEDRO HENRIQUE MORGAN PEREIRA

INTEROPERABILITY MIDDLEWARE
FOR IIOT GATEWAYS BASED ON

INTERNATIONAL STANDARD
ONTOLOGIES AND STANDARDIZED

DIGITAL REPRESENTATION

Porto Alegre
2022

PEDRO HENRIQUE MORGAN PEREIRA

INTEROPERABILITY MIDDLEWARE
FOR IIOT GATEWAYS BASED ON

INTERNATIONAL STANDARD
ONTOLOGIES AND STANDARDIZED

DIGITAL REPRESENTATION

Thesis presented to Programa de Pós-
Graduação em Engenharia Elétrica of Uni-
versidade Federal do Rio Grande do Sul in
partial fulfillment of the requirements for
the degree of Master in Electrical Engineer-
ing.
Minor: Control and Automation

ADVISOR: Prof. Dr. Edison Pignaton de Fre-
itas

Porto Alegre
2022

PEDRO HENRIQUE MORGAN PEREIRA

INTEROPERABILITY MIDDLEWARE
FOR IIOT GATEWAYS BASED ON

INTERNATIONAL STANDARD
ONTOLOGIES AND STANDARDIZED

DIGITAL REPRESENTATION

This thesis was considered adequate for ob-
taining the degree of Master in Electrical
Engineering and approved in its final form
by the Advisor and the Examination Commit-
tee.

Advisor:
Prof. Dr. Edison Pignaton de Freitas, UFRGS
PhD from Halmstad University, Sweden, and Federal
University of Rio Grande do Sul, Brazil

Examination Committee:

Prof. Dr. Ivan Müller, UFRGS
PhD from Federal University of Rio Grande do Sul, Brazil

Prof. Dr. João Cesar Netto, UFRGS
PhD from Université Catholique de Louvain, Belgium

Prof. Dr. Maria Claudia Reis Cavalcanti, IME
PhD from Federal University of Rio de Janeiro, Brazil

Coordinator of PPGEE:
Prof. Dr. Sérgio Luís Haffner

Porto Alegre, Maio 2022.

"Shoot for the moon. Even if you miss,
you’ll land among the stars."

Norman Vincent Peale

ABSTRACT

Recent advances in the areas of microelectronics, information technology,
and communication protocols have made the development of smaller devices
with greater processing capacity and lower energy consumption. This context
contributed to the growing number of physical devices in industrial environ-
ments which are interconnected and communicate via the internet, enabling
concepts such as Industry 4.0 and the Industrial Internet of Things (IIoT).
These nodes have different sensors and actuators that monitor and control en-
vironment data. Several companies develop these devices, including diverse
communication protocols, data structures, and IoT platforms, which leads to
interoperability issues. In IoT scenarios, interoperability is the ability of two
systems to communicate and share services. Therefore, communication prob-
lems can make it unfeasible to use heterogeneous devices, increasing the
project’s financial cost and development time. In an industry, interoperabil-
ity is related to different aspects, such as physical communication, divergent
device communication protocols, and syntactical problems, referring to the
distinct data structure. Developing a new standard for solving these matters
may bring interoperability-related drawbacks rather than effectively solving
these issues. Therefore, to mitigate interoperability problems in industrial ap-
plications, this work proposes the development of an interoperability middle-
ware for Edge-enabled IIoT gateways based on international standards. The
middleware is responsible for translating communication protocols, updating
data from simulations or physical nodes to the assets’ digital representations,
and storing data locally or remotely. The middleware adopts the IEEE indus-
trial standard ontologies combined with assets’ standardized digital models.
As a case study, a simulation replicates the production of a nutrient solution
for agriculture, controlled by IIoT nodes. The use case consists of three de-
vices, each equipped with at least five sensors or actuators, communicating in
different communication protocols and exchanging data using diverse struc-
tures. The performance of the proposed middleware and its proposed transla-
tions algorithms were evaluated, obtaining satisfactory results for mitigating
interoperable in industrial applications.

Keywords: Interoperability, IoT, IIoT, Industry 4.0, Communication Pro-
tocols, Ontology, AAS.

RESUMO

Devido a recentes avanços nas áreas de microeletrônica, tecnologia da in-
formação, e protocolos de comunicação tornaram possível o desenvolvimento
de dispositivos cada vez menores com maior capacidade de processamento
e menor consumo energético. Esse contexto contribuiu para o crescente nú-
mero desses dispositivos na industria que estão interligados via internet, via-
bilizando conceitos como Indústria 4.0 e Internet das Coisas Industrial (IIoT).
Esses nós possuem diferentes sensores e atuadores que monitoram e contro-
lam os dados do ambiente. Esses equipamentos são desenvolvidos por dife-
rentes empresas, incluindo protocolos de comunicação, estruturas de dados
e plataformas de IoT distintos, acarretando em problemas de interoperabili-
dade. Em cenários de IoT, interoperabilidade, é a capacidade de sistemas se
comunicarem e compartilharem serviços. Portanto, esses problemas podem
inviabilizar o uso de dispositivos heterogêneos, aumentando o custo financeiro
do projeto e seu tempo de desenvolvimento. Na indústria, interoperabilidade
se divide em diferentes aspectos, como comunicação e problemas sintáticos,
referentes à estrutura de dados distinta. O desenvolvimento de um padrão
industrial pode trazer mais desvantagens relacionadas à interoperabilidade,
em vez de resolver esses problemas. Portanto, para mitigar problemas relaci-
onados a intoperabilidade industrial, este trabalho propõe o desenvolvimento
de um middleware de interoperável para gateways IIoT baseado em padrões
internacionais e ontologias. O middleware é responsável por traduzir diferen-
tes protocolos de comunicação, atualizar os dados dos ativos industriais por
meio de suas representações digitais, esses armazenados localmente ou re-
motamente. O middleware adota os padrões ontológicos industriais da IEEE
combinadas com modelos digitais padronizados de ativos industriais. Como
estudo de caso, são realizadas simulações para a produção de uma solução
nutritiva para agricultura, controlada por nós IIoT. O processo utiliza três dis-
positivos, cada um equipado com pelo menos cinco sensores ou atuadores,
por meio de diferentes protocolos de comunicação e estruturas de dados. O
desempenho do middleware proposto e seus algoritmos de tradução foram
avaliados e apresentados no final do trabalho, os quais resultados foram satis-
fatórios para mitigar a interoperabilidade em aplicações industriais.

Palavras-chave: Interoperabilidade, IoT, Indústria 4.0, Protocolos de
comunicação, Ontologia, AAS.

LIST OF FIGURES

Figure 1: IoT Solution . 15
Figure 2: IoT generations concept. 20
Figure 3: Industrial revolution. 23
Figure 4: IoT interoperability taxonomy. 30
Figure 5: Using AAS to transform a I4.0 asset to an I4.0 component. . . 32
Figure 6: General structure of an AAS. 33
Figure 7: A system communication network via I4.0-compliant commu-

nication. 40
Figure 8: IoT-Lite Ontology. 43
Figure 9: Semantic gateway as service architecture. 45
Figure 10: System Overview. 49
Figure 11: Middleware’s architecture overview. 50
Figure 12: Proposed communication block. 51
Figure 13: Proposed data storage block. 52
Figure 14: Proposed user interface block. 52
Figure 15: Part of the proposed IIoT ontology. 53
Figure 16: AAS sensors submodules. 56
Figure 17: Sequemce UML diagram for message exchange. 57
Figure 18: Proposed JSON message strucuture. 58
Figure 19: Proposed IDL data type. 58
Figure 20: Piping and instrumentation diagram for nutrient solution mod-

ule . 60
Figure 21: State machine diagram of the NSM 61
Figure 22: Use Case Assets Grouping . 62
Figure 23: Description part of the project‘s approach. 63
Figure 24: Execution part of the project‘s approach. 64
Figure 25: Actual System Overview. 66
Figure 26: IIoT Ontology Classes in Protégé software. 68
Figure 27: IIoT Ontology Abstract Subclasses in Protégé software. 69
Figure 28: IIoT Ontology Physical Subclasses in Protégé software. 69
Figure 29: Screenshot of AAS_A240 in SiOME. 70
Figure 30: Screenshot of AAS_P230 in SiOME. 70
Figure 31: Screenshot of OPC UA server in UaExpert Software. 71
Figure 32: Ontology JSON config file. 72
Figure 33: Ontology YAML config file. 73

Figure 34: Screenshot of the developed SCADA like software. 74
Figure 35: NodeRED block flow for creating and updating SVG data. . . . 75
Figure 36: NodeRED block flow for executing scripts in terminal. 76
Figure 37: Screenshot of the IIoT ontology OOPS! results. 78
Figure 38: Screenshot of the Case study Simulation executing in the de-

veloped SCADA like. 79
Figure 39: Simulation data from 12th experiment execution in influxDB. . 80
Figure 40: Simulation data from 12th experiment in influxDB using data

filtering. 83
Figure 41: Average gateway‘s CPU usage during each experiment. 84
Figure 42: Average gateway‘s RAM usage during each experiment. 84

LIST OF TABLES

Table 1: Comparison of the main related works. 48
Table 2: Ontologies used for the development of the IIoT ontology . . . 55

LIST OF ABBREVIATIONS

AAS Asset Administrator Shell

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

COAP Constrained Application Protocol

CORA Core Ontology for Robotics and Automation

CPS Cyber-Physical Systems

CPU Central Processing Unit

CSV Comma-Separated Values

DDS Data Distribution Service

DOB DDS-OPC UA Bridge

DT Digital Twin

EC Electrical Conductivity

HMI Human-Machine Interface

HTTP HyperText Transfer Protocol

IDL Interface Definition Language

IDTA Industrial Digital Twin Association

IEEE Institute of Electrical and Electronics Engineers

IIoT Industrial Internet of Things

IoS Internet of Services

IoT Internet of Things

IRI Internationalized Resource Identifier

I4.0 Industry 4.0

JSON JavaScript Object Notation

LoRa Long Range

MOB MQTT-OPC UA Bridge

MoM Message-Oriented Middlewares

MQTT Message Queuing Telemetry Transport

M2M Machine-to-machine communication

NOSQL Not only SQL

NSM Nutritional solution modules

OOPS! OntOlogy Pitfall Scanner!

OPC UA Open Platform Communications Unified Architecture

ORArch Ontology for Robotic Architectural

OS Operating System

OSI Open System Interconnect

OWL Web Ontology Language

PLC Programmable logic controller

QOS Quality of service

RAM Random access memory

RFID Radio-Frequency Identification

ROA Ontology for Autonomous Robotics

ROS2 Robot Operating System 2

SCADA Supervisory control and data acquisition

SGS Semantic Gateway as Service

SiOME Siemens OPC UA Modeling Editor

SNS Social Networks Services

SQL Structured query language

SSN Semantic Sensor Network

SUMO Suggested Upper Merged Ontology

SVG Scalable Vector Graphics

TCP Transmission Control Protocol

UFRGS Federal University of Rio Grande do Sul

UML Unified Modeling Language

WSN Wireless Sensor Network

WWW World Wide Web

W3C World Wide Web Consortium

YAML YAML Ain’t Markup Language

XML Extensible markup language

XMPP Extensible Messaging and Presence Protocol

LIST OF ALGORITHMS

1 Translator algorithms flowchart. 73

CONTENTS

1 INTRODUCTION . 15
1.1 Motivation . 17
1.2 Objectives and Contribution . 18
1.3 Dissertation Organization . 19

2 BACKGROUND CONCEPTS REVIEW 20
2.1 Internet of Things . 20
2.1.1 Middleware . 21
2.1.2 Gateway . 22
2.2 Industry 4.0 . 23
2.2.1 Cyber Physical Systems . 24
2.3 Industrial Internet of Things . 25
2.4 Digital Twins . 27
2.5 Communication Protocols . 27
2.5.1 MQTT . 28
2.5.2 DDS . 29
2.5.3 OPC-UA . 29
2.6 Interoperability . 30
2.7 Asset Administrator Shell . 32
2.8 Ontologies . 33
2.8.1 OWL - Web Ontology Language . 35
2.8.2 Protégé . 35

3 ANALYSIS OF THE STATE OF THE ART 37
3.1 Communication Protocol Translator 37
3.2 Digital Representation of Industrial Assets 39
3.3 Semantic Technologies in Automation 42
3.4 Discussion . 46

4 PROPOSED IIOT INTEROPERABILITY MIDDLEWARE 49
4.1 Proposal Overview . 49
4.2 Proposed Middleware Architecture 50
4.2.1 Communication Block . 50
4.2.2 Data Storage Block . 51
4.2.3 User Interface Block . 51
4.3 Developed Ontology . 52

4.4 AAS Submodels . 55
4.5 Communication Translators . 56
4.6 Proposed standardization . 57
4.6.1 Proposed topic terminology . 57
4.6.2 Proposed data structure . 57

5 CASE STUDY . 59

6 IMPLEMENTATION DETAILS . 63
6.1 Selected technologies . 63
6.1.1 Description Part . 63
6.1.2 Execution Part . 64
6.2 System Architecture Overview . 66
6.3 IIoT Ontology . 67
6.4 AAS . 68
6.5 Communication Translators . 71
6.6 SCADA . 74

7 EXPERIMENTS AND RESULTS . 77
7.1 Ontology Evaluation . 77
7.2 Use case simulation . 78
7.3 Simulation’s conformance to the use case 79
7.4 Gateway Performance . 81
7.5 Execution time for protocol translations 81

8 CONCLUSIONS AND FUTURE WORKS 85

REFERENCES . 87

15

1 INTRODUCTION

Recent advances in the areas of microelectronics, information technology,
and communication protocols have made the development of smaller devices
with greater processing capacity and lower energy consumption. This context
contributed to the growing number of physical devices interconnected and
communicated via the Internet in our quotidian life and industrial environ-
ments, enabling concepts such as Internet of Things (IoT), Industrial Internet
of Things (IIoT), and Industry 4.0.

The IoT concept was proposed in 1999 by Kevin Ashton to describe a sys-
tem composed of physical devices connected to the Internet using sensors for
monitoring real-life application data(GUBBI et al., 2013). The first IoT appli-
cation used Radio-Frequency Identification (RFID) tags attached to the Inter-
net for identifying, counting, and tracing specific objects in corporate supply
chains (SHENG et al., 2013). However, IoT is more than RFID tags; it is an
extended and expanded system network based on the Internet. These systems
can accomplish interaction between different things, machines, and humans
to solve industrial or even everyday needs within time critical applications
(WANG et al., 2021).

Figure 1: IoT Solution

Source: Adopted from (BABUN et al., 2021).

16

Fig.1 depicts an overview architecture of an IoT system and its compo-
nents/layers. This solution demands synchronization among many IoT devices
that communicate using diverse communication protocols and data processing
capabilities (BABUN et al., 2021). The solution has four interdependent lay-
ers: (1) IoT Devices, (2) Communication Protocols, (3) Data Processing, and
(4) IoT Applications (Fig.1 (BABUN et al., 2021)). The lowest layer compre-
hends the IoT devices that monitor and control the environmental data using
specific sensors and actuators. The upper layer is the communication proto-
col that enables communication between devices and gateways, cloud servers,
or other devices while reducing power consumption and increased reliability.
These protocols differ in their interaction models, i.e., request-reply (REST
HTTP and CoAP) and publish-subscribe (Message Queuing Telemetry Trans-
port [MQTT] and Data Distribution Service [DDS]) (DIZDAREVIĆ et al., 2019).
At the system’s top, the application layer permits the IoT device’s physical
data analysis and provides a user interface for managing the devices’ data.

IoT has been an essential topic in the technology industry, smart cities,
home automation, and healthcare services in the last few years. Using ad-
vancements in computing power, electronics miniaturization, and network in-
terconnections, IoT, offers new capabilities for reducing cost and time in es-
sential applications (ROSE; ELDRIDGE; CHAPIN, 2015). This technology in-
creases the availability of environment information along the production value
chain using networked nodes equipped with heterogeneous sensors and actu-
ators.

With each new industrial age, technological advances have had a funda-
mental impact on increasing the productivity of enterprises. The German in-
dustrial sector first proposed the so-called fourth industrial revolution, Indus-
try 4.0, in 2011, encompassing automation and data exchange technologies
(LIAO et al., 2017). The digital transformation process is one of the charac-
teristics of this revolution, which takes place by incorporating four base tech-
nologies: the IoT, cloud computing, big data, and artificial intelligence (AI)
(FRANK; DALENOGARE; AYALA, 2019). Today, Industry 4.0 is the new stage
for manufacturing companies that combine these base technologies to cre-
ate cyber-physical systems (CPS), providing the integration of the company’s
processes (BENITEZ; AYALA; FRANK, 2020). The use of CPS enables the de-
velopment of autonomous systems, monitor physical processes by creating a
virtual copy of the physical world that makes decentralized decisions (HER-
MANN; PENTEK; OTTO, 2016), and allows communication with one another,
increasing industrial efficiency, productivity, safety, and transparency.

Another perspective in the industrial sphere relies on using not only CPS
but also embedded systems, cloud computing, edge computing, and the generic
technologies associated with the smart factory (EMMRICH et al., 2015). Com-
bining multiple connected assets in manufacturing environments that operate
as part of a more extensive system or system of systems empowers the defi-
nition of a smart manufacturing enterprise (CONWAY, 2016). The smart man-
ufacturing enterprise is essentially an industrial environment monitored and
controlled using the IIoT concept, which aims to connect industrial assets like

17

engines, power grids, and sensors to the cloud over a network (HELMIÖ et al.,
2017). Therefore, the IIoT notion is a system comprising networked smart ob-
jects, including cloud or edge computing platforms, CPS, that "enables real-
time, intelligent, and autonomous access, collection, analysis, communica-
tions, and exchange of process, product and/or service information, within the
industrial environment, to optimize overall production value." (BOYES et al.,
2018).

There are several potential benefits of using these technologies in the in-
dustry: decreasing production cost, development time, energy consumption
and improving productivity, storing and tracking goods, and service delivery.
Nevertheless, along with the advantages came uncertainties and challenges,
such as infrastructure, communications, interfaces, protocols, interoperabil-
ity, and standards (LI; XU; ZHAO, 2015).

Interoperability definition by IEEE is the ability of a system or component
to exchange information, among others, and use the exchanged information
for accomplishing its goal (RADATZ; GERACI; KATKI, 1990). The interoper-
ability issues in IoT have different perspectives due to its high heterogeneity.
The diverse elements of IoT, Industry 4.0, and IIoT, such as its devices, com-
munication protocols, services, and applications, must cooperate to accom-
plish shared objectives. The leading IoT interoperability perspectives are de-
vice, networking, syntactic, semantic, and platform interoperability (NOURA;
ATIQUZZAMAN; GAEDKE, 2019). Each deals with interoperability issues at a
different level, but all are important to ensure an interoperable system.

1.1 Motivation

The interoperability concept is increasingly present in automation systems
due to the growing number of physical devices used in industrial environments
interconnected and communicating via the Internet. These industrial assets
are developed by several companies and are heterogeneously modeled, such
as based on different communication protocols, data structures, and IoT plat-
forms, leading to interoperability issues. According to the European project
Unify IoT (AAZAM; ZEADALLY; HARRAS, 2018), more than 300 IoT platforms
are developed annually in the current market.

Several concepts are being studied and proposed to reduce the interoper-
ability problems in an industrial manner, such as semantic-related technolo-
gies. These semantic models make it possible to create a common language,
using the aspects of a system and their relationships for the various compo-
nents, and ensure that the parties involved can understand the information
exchanged. Enabling machine-to-machine communication (M2M) and allow-
ing a more significant contribution between humans and machines (MAYER
et al., 2017). Some semantic models developed for this domain in the liter-
ature, but there is a need to evolve these models, adding new concepts as
the system and technologies grow. An essential item to ensure complete in-
tegration is maintaining a reliable representation of the system, including its
sensors and actuators.

18

Also, due to the use in the last decades of CPS in industrial environments,
digital representation of assets is increasingly present in the industry, ben-
efiting and allowing an understanding of information between different sys-
tems and components. These representations provide semantical meta-data of
the physical devices, including their main features and system characteristics
(NAGORNY et al., 2018), i.e., communication protocols and data structures.
The digital models have a pivotal role in establishing communication among
I4.0 Components and managing interoperability between the applications and
the manufacturing systems (YONG; LEE; LAZARUS, 2021). These and new
contributions can leverage the adoption of emerging and innovative concepts,
leading industries with traditional methods to use current technologies and
make them even more competitive in the market.

1.2 Objectives and Contribution

Using a middleware based on semantic models can contribute as a solu-
tion to ensure system interoperability from the lowest IoT to its highest layer
(Fig.1). Enabling systems communication and, above all, that they can have
the same understanding of certain information. Therefore, this work proposes
a middleware for Edge-enabled IIoT gateways (PAPCUN et al., 2020) to miti-
gate interoperability problems in the context of Industry 4.0 and IIoT. The ap-
proach adopts international standard ontologies to represent system elements
combined with standardized digital representation using the Asset Adminis-
tration Shell (AAS) to integrate multiple devices’ data. Three of the interoper-
ability perspectives presented in (NOURA; ATIQUZZAMAN; GAEDKE, 2019)
are treated more prominently in this work: device, syntactical and semantic
interoperability.

Nevertheless, for the developed work to be an adopted approach for an
organization is crucial that it is viable and brings tangible benefits to the busi-
ness. The main contributions of this dissertation are:

• A general Industry 4.0/IIoT oriented ontology based on international Stan-
dards (IEEE 1872-2015) and worldwide utilized ontologies. The devel-
oped ontology allows the description of different industrial systems to
follow the exact specifications, reducing possible human errors;

• Representation of the assets’ most relevant information in the digital
world using AAS. In this way, an asset’s digital version is created (digital
twin);

• A middleware oriented to reducing interoperability problems in indus-
trial environments by combining the developed IIoT ontology and AAS
use. The middleware enables the communication between industrial as-
sets with different communication protocols and permits heterogeneous
information understanding from divergent sensors and actuators using
specific data structures.

• A Supervisory Control and Data Acquisition (SCADA) like system for

19

users/engineers to control the simulation and monitor devices’ data us-
ing the Node-RED development tool.

1.3 Dissertation Organization

This work has 8 chapters. The first is the Introduction. In this chapter,
there is a contextualization of the theme and the objectives of the work.

Chapter 2 presents essential concepts for the development and under-
standing of research, such as the concept of IoT, Industry 4.0, and IIoT.

Chapter 3 presents the works in the literature related to the research topic.
The end of the chapter presents a discussion of related results and gaps that
this work will address.

Chapter 4 presents the proposed middleware details for the software ar-
chitecture and for the IIoT ontology developed in this project.

Chapter 5 presents the a case study in agriculture selected for evaluating
the developed middleware an ontology.

Chapter 6 presents the implementation of the interoperability middleware,
describing the specific softwares and tools in the context of IIoT and Industry
4.0 and how they were used for its development.

Chapter 7 presents the simulation experiments and the analysis of the ob-
tained results.

Chapter 8 concludes the work by highlighting contributions and future
work.

20

2 BACKGROUND CONCEPTS REVIEW

This chapter reviews the main concepts of the Internet of Things, Industry
4.0, Ontologies, Asset Administrator Shell, and insight into the tools used for
this work.

2.1 Internet of Things

The Internet of Things was first used in 1999 in a presentation on Supply
Chain (ASHTON, 2009). This term became famous for its success with RFID
tags attached to the Internet for identifying, counting, and tracing specific
objects in corporate supply chains (KORTUEM et al., 2010). Throughout tech-
nological development, the concept of IoT has evolved; its evolution has three
generations (Fig2 (BABUN et al., 2021)) (ATZORI; IERA; MORABITO, 2017).

Figure 2: IoT generations concept.

Source: Adopted from (BABUN et al., 2021).

The first generation is related to RFID tags to identify assets and the use
of different sensors to perceive the environment (ATZORI; IERA; MORABITO,
2017). In addition to setting a unique identification for each device, the de-
vice can share its data through the Internet Protocol (IP) (DEERING; HINDEN
et al., 1998), allowing communication with other nodes. The Internet-enabled
communication between devices, machine to machine (m2m) (HOLLER et al.,

21

2014), and permitted people to communicate with one another or even with
machines.

M2M refers to solutions that allow communication between devices in a
specific application via wired or wireless communication. It is a technology
that enables machines to communicate without human intervention, automat-
ing data transfer between intelligent elements, producers, and consumers of
data (HOLLER et al., 2014). The central concept of IoT is connecting several
nodes(things) through the Internet, which aligns with the idea of M2M. Fur-
thermore, seeking to combine real objects so they can connect, communicate
and interact with a person using the web.

The second generation provides ordinary objects with the ability to con-
nect to the Internet like any other host (ATZORI; IERA; MORABITO, 2017).
The concept of the Web of Things emerged (GUINARD; TRIFA, 2009), where
devices can connect to the World Wide Web (WWW) (BERNERS-LEE, 1999) as
resources. In addition, arises the concept of Social Networks Services (SNS)
(RICHTER; KOCH, 2008), in which devices can interact with social media get-
ting even closer to the user (ATZORI; IERA; MORABITO, 2017).

At last, the third generation encompasses more modern concepts and brings
people closer to the objects involved in an IoT system. This generation is usu-
ally called the Future Internet, which will explore cloud computing technol-
ogy and focus on people, content, and services (ATZORI; IERA; MORABITO,
2017). Additionally, things can participate in communities, with similar inter-
est groups collaborating in their actions.

To make these concepts viable, it is of paramount importance that there is
a communication standard, communication protocol, and a way of represent-
ing information between systems, machines, and people to reduce ambiguous
interpretations of the exchanged data.

Finally, According to Kagermann (KAGERMANN et al., 2013), the integra-
tion of the IoT and the Internet of Services (IoS) in the manufacturing process
initiated the fourth industrial revolution. Due to concepts such as M2M, au-
tonomous machines allowed an industrial environment to achieve more out-
standing production, cost reduction, and increased safety (HOLLER et al.,
2014).

2.1.1 Middleware

Middleware is a set of software and technologies that can assist hide the
complexity and heterogeneity of underlying hardware and network platforms,
simplify system resource management, and improve application execution pre-
dictability (WANG et al., 2008). They are used for different areas, such as
distributed systems (BAKKEN, 2001), WSN (WANG et al., 2008) and IoT (RAZ-
ZAQUE et al., 2015).

In the IoT context, a middleware combines heterogeneous computing and
communications devices supporting interoperability within the varied applica-
tions and services operating on these devices; a middleware can provide stan-
dard applications and make application development easier (BANDYOPAD-
HYAY et al., 2011). A fully functional IoT middleware needs to integrate

22

essential components such as Wireless Sensor Network (WSN), RFID, M2M
communications, and Supervisory control and data acquisition (SCADA) to
support the envisioned diverse application domains (ZHOU, 2012) (PERERA
et al., 2013).

Middlewares serve as an abstraction of the system or hardware, allowing
users to concentrate on the application without being distracted by orthogonal
problems at the system or hardware level (NEELY; DOBSON; NIXON, 2006).
It bridges applications, the operating system, and the network communica-
tions layers, facilitating and coordinating cooperative processing. Since many
IoT applications are data-centric, data management middleware provides ap-
plications’ data gathering, processing, and storage capabilities (WANG et al.,
2008). Some of the middlewares’ main characteristics are:

• Supply appropriate system abstractions so that the application program-
mer can concentrate on the application logic rather than the implemen-
tation details at a lower level.

• Offers reusable code services, such as code update, and data services,
such as data filtering, so that the application programmer can deploy and
run the app without worrying about sophisticated and time-consuming
methods.

• Provides efficient resource services, such as power management, to as-
sist the programmer in network infrastructure management and adapta-
tion. It also facilitates system integration, monitoring, and security.

2.1.2 Gateway

An IoT gateway is an intelligent component that works with an IoT plat-
form (LEA; BLACKSTOCK, 2014). It usually communicates via the Internet
between a network of M2M devices and remote peers (e.g., clients). The
gateway’s primary purpose is to address the heterogeneity of multiple sen-
sor networks to their communication to mobile communication networks or
the Internet (KANG; CHOO, 2018). As gateways link the Internet and IoT de-
vices, it provides connections among these devices and cloud serves, enabling
intelligent big data analysis and data-driven decision-making (KANG; CHOO,
2018).

Gateways typically have more processing power, memory, and capacity
than IoT devices (BUTUN et al., 2020). Gateways come in various shapes
and sizes, ranging from small embedded Linux systems with radio modules
and some data preprocessing to traditional wireless routers used in the con-
sumer market to small battery-operated radio transceivers with an uplink to
communication satellites (TRAN; MISRA, 2019). This equipment supports var-
ious communication protocols and data types and can realize the conversion of
data formats communicated between an array of nodes and translate commu-
nication protocols to permit interoperability (ZHONG; ZHU; HUANG, 2015).
It has, also the function of safety protection and preventing outside intrusion
using authentication methods. (ZHONG; ZHU; HUANG, 2015)

23

2.2 Industry 4.0

As the technology evolved, different creations marked the progress of in-
dustrial dynamics. They led to new revolutions: the steam engine, electricity,
digital revolution, and cyber-physical systems, as illustrated in Figure3.

Figure 3: Industrial revolution.

Source: Adapted from (KAGERMANN et al., 2013).

In 2011, the fourth industrial revolution took place, proposed by the Ger-
man industrial sector. This revolution uses automation and data exchange
technologies using concepts of CPS, IoT, and Cloud computing (LIAO et al.,
2017). The German Federal Government supported the initiative and an-
nounced the first recommendations for implementing Industry 4.0 in 2013
(KAGERMANN et al., 2013). Consequently, several countries used the Ger-
man advance as an initiative to develop new technological proposals. In the
USA, the Industry started the process of developing smart factories (WANG
et al., 2016), in China, in 2015, the "Made in China 2025" (WÜBBEKE et al.,
2016) project, and the European Union created several other initiatives.

I4.0 introduces a series of paradigm shifts that change how the Industry
works and how the product reaches the consumer. Using CPS and M2M tech-
niques to create virtual copies of the physical devices and enabling communi-
cation between machines allows an entire system to make decentralized deci-
sions autonomously (HERMANN; PENTEK; OTTO, 2016). Allowing manufac-
turing to become more flexible by having concomitant decentralized processes
with resource efficiency and using individualized products with short product

24

development periods (LASI et al., 2014). With the exponential advancement
of computer capabilities, an immense amount of digitized information, and
innovation strategies, several industries can put into practice the concept of
industry 4.0. These industries save resources, increase profitability, reduce
waste, predict errors and delays, speed up production, intervene quickly in
case of production problems, etc. (BRETTEL et al., 2014).

Finally, Hermann (HERMANN; PENTEK; OTTO, 2016) also states that I4.0
has six design principles. These principles guide companies to identify and im-
plement the scenarios foreseen in Industry 4.0: interoperability, virtualization,
decentralization, service orientation, and modularity.

2.2.1 Cyber Physical Systems

A CPS combines and coordinates computational and physical elements in
an identical system. CPS integrates the performance capability of the phys-
ical world and the intelligence of the cyber world to add new capabilities to
real-world physical scenarios (LEE; BAGHERI; KAO, 2015). Operations are
monitored, coordinated, controlled, and integrated into these systems by a
computing and communication core. These systems intend to incorporate ob-
jects from the physical world and information systems, performing intercon-
nections and information sharing.

A CPS aggregates computing, communication, and storage resources to
monitor and control physical world entities reliably, securely, efficiently, and
in real-time (SHA et al., 2008). CPS is an emerging and enabling technology to
face future challenges regarding industrial automation. In this domain, CPS
comprises intelligent machines, storage systems, and production capacity to
perform information exchange autonomously, trigger actions, and control each
other independently (JAZDI, 2014).

Gorecky (GORECKY et al., 2014) addresses the relationship between hu-
mans and CPS and says that this relationship happens with the support of
interfaces. The man will have the role key to determining the production
strategy. Questions may then arise about the autonomy and decision-making
power on the part of man. Furthermore, workers do not will need to have a
fixed place of work, as they will have access to information via mobile net-
works.

According to Hermann (HERMANN; PENTEK; OTTO, 2016), integrating
processes computational and physical computers and networks for monitor-
ing and controlling processes are essential features of cyber-physical systems.
And the integration of Embedded systems and the Internet of Things serve as
the foundation for cyber-physical systems. Embedded systems can perform
operations with other systems on networks closed. The Internet of Things is
the interconnection of physical objects through global or local data networks.
With the Internet of Things, objects can interact with each other.

With their modular structures, CPS and IoT facilitate the vision and exe-
cution of “Smart Factories” (ZUEHLKE, 2010). They allow physical processes
to be monitored, virtual copies of the physical world, and they make decen-
tralized decisions. Combining both concepts makes it possible for systems to

25

intercommunicate and cooperate with humans, and through cloud computing,
services are offered and used by participants across the factory.

2.3 Industrial Internet of Things

The Industrial Internet of Things (IIoT) definition by (BOYES et al., 2018)
is: "A system comprising networked smart objects, cyber-physical assets, as-
sociated generic information technologies and optional cloud or edge comput-
ing platforms, which enable intelligent, and autonomous access, collection,
analysis, communications, and exchange of process, product and/or service
information, within the industrial environment, to optimize overall production
value. This value may include; improving product or service delivery, boosting
productivity, reducing labor costs, reducing energy consumption, and reduc-
ing the build-to-order cycle."

In a simplified way, the IIoT is a network of physical objects, systems plat-
forms, and applications containing embedded technology to communicate and
share intelligence, the external environment, and people. IIoT is concerned
with heavy-duty processes such as manufacturing, monitoring, and so on, in-
stead of IoT, which focuses on everyday items with Internet connectivity. As
a result, assets used in IIoT applications are more precise and long-lasting
(BUTUN et al., 2020).

Unlike conventional applications, industrial environments create more pre-
cise, continuous, and sensitive data. Also, it requires high security and relia-
bility for data exchange, and most of these applications are time-critical. Un-
like conventional applications, industrial environments create more precise,
continuous, and sensitive data. Also, it requires high security and reliabil-
ity for data exchange, and most of these applications are time-critical. Even
though IoT and IIoT rely on similar concepts, such as data management, net-
work, security, and cloud, the first is not recommended for high security and
time-critical applications (BOYES et al., 2018).

The vast volume of data generated necessitates data streaming, big data,
machine learning, or artificial intelligence technologies. Besides, the volume
of generated data, scalability, and specialized data management techniques
are the primary differences between technologies (BUTUN et al., 2020).

Companies hope to boost productivity, competitiveness, efficiency, stabil-
ity, and safety by implementing IIoT in production lines or other industrial
projects. Application areas for IIoT range from smart cities to precision agri-
culture, smart traffic to smart grid (the future of the electric grid), and so on
(BOYES et al., 2018).

The IIoT system can monitor, collect, analyze, and intelligently change the
behavior or environment without human intervention (BOYES et al., 2018).
Nonetheless, this system not only emphasizes the nonexistence of human in-
tervention (MUMTAZ et al., 2017) but also focuses on interoperability between
manufacturing systems to trigger automation and synchronization for closed
ecosystems (YOUNAN et al., 2020).

IIoT takes benefits of IoT communications in business applications focusing

26

on interoperability between machines (YOUNAN et al., 2020). The IIoT gate-
ways need to support a variety of protocols. As a result, a distinguishing as-
pect of IIoT environments is the integration of protocols, standards, and buses
from many technologies (FIGUEROA-LORENZO; AÑORGA; ARRIZABALAGA,
2020).

According to a keynote speech delivered by Tom Bradicich, the seven prin-
ciples of the IIoT are (BUTUN et al., 2020):

• Big amount of analog data: Many sensors generate analog data, which is
digitalized before being processed, analyzed, or stored.

• The IIoT’s devices are always connected. There are three significant
advantages to this: (1) It is feasible to monitor real-time. (2) Constant
monitoring can aid in the distribution of software and firmware upgrades
and fixes. (3) The value of linked devices encourages individuals and
businesses to buy products.

• Real-time data streaming: Many safety systems are used in the industry,
continually producing data. In the case of a nuclear power plant, safety
is crucial to operations. Monitoring necessitates real-time data stream-
ing because a data delay could result in catastrophic occurrences. As a
result, real-time data aggregation and streaming are critical.

• Data insights: "What are you trying to achieve?" is the question that data
insights (Spectrum of Value) in IoT aims to answer.

• Time-to vs. depth-of-insight trade-off: It is equivalent to the immediacy-
of knowledge compared to the depth of knowledge. For instance, while
monitoring or analyzing nuclear power plant data, immediate attention
is required, whereas analyzing scientific experiment data (data by CERN
or NASA) can take years to uncover scientific problems.

• Visibility from Big Data: Once data has been collected and stored in a
big data environment, it should be accessible anytime analysis or other
tasks are required.

• Edge computing: Data center-class computing and analytics carried out
to the edge (latency, bandwidth, cost, security, duplication, reliability,
corruption, compliance, and data sovereignty).

The IIoT aspires to create intelligent manufacturing goods and smart fac-
tories with close customer and business partner connectivity. With the rise of
IIoT, Industry 4.0 has emerged as a subset that focuses on digitizing and in-
tegrating all physical operations throughout the entire business (SENGUPTA;
RUJ; BIT, 2020).

The digital connectivity (promoted by integrating protocols, standards, and
buses) of industrial machinery and industrial equipment with any physical as-
set with an IT platform is a unique advance that sets a social precedent for
business opportunities. This convergence of the physical world and cyber
on an industrial scale allows operations for several applications (FIGUEROA-
LORENZO; AÑORGA; ARRIZABALAGA, 2020).

27

IIoT is an enabling technology for Digital Twin (DT) by providing the func-
tionalities of remote sensing of the sensors and remote controlling of the ac-
tuators. IIoT provides the means of communication to the link between the
actual factory machinery and the digital twin equivalent at the command cen-
ter of the factory (BUTUN et al., 2020).

2.4 Digital Twins

Artificial intelligence (AI) and big data processing are two of the emerging
technologies that are combined to create the Digital Twin (DT) technology.
Due to the lack of a defined definition for DT as of yet, it can be described in a
variety of ways depending on its purpose and scope.

Michael Grieves (GRIEVES, 2014) defines that Digital Twin concept model
is divided into three parts: a) a real space containing physical things, b) a
virtual space containing virtual objects, and c) the data and information flow
connections or links that connect the virtual and real space objects. Element
"c" facilitates data exchange, allowing the convergence and synchronization
of data flow from virtual to real space.

For Barricelli (BARRICELLI; CASIRAGHI; FOGLI, 2019) DTs can be defined
as (physical and/or virtual) machines or computer-based models that simulate,
emulate, mirror, or "twin" the existence of a physical thing. These things can
be an ordinary object, a process, a human, or a human-related trait. Each
DT has a link to its physical twin by a defined unique key that identifies and
differient each other allowing the creation of a bijective relationship. A DT
monitors, controls, and optimizes its operations and functions by following
the lifecycle of its physical twin.

2.5 Communication Protocols

The need to exchange data between different devices or systems made it
necessary to formulate standard descriptions, formats, and rules for express-
ing these data in a common language. These rules created consistency and
universality for sending and receiving messages understandable by two or
more communication system entities.

There are several communication protocols, each specialized for an ap-
plication, such as facilitating everyday activities using smart devices, IoT, to
robust industrial environments. These protocols define the syntax, semantics,
and synchronization of communication. Each protocol can even check possible
errors and recover data using specific methods. Following standard systems
with the same protocol can transmit and process data from files to analog and
digital signals.

The Ethernet has been the most commonly used communication technology
within the office domain for several decades, which entails decreasing compo-
nents prices through mass production. The lower prices lead to an adaption
of this technology in industrial applications (INDUSTRIAL COMMUNICATION
PROTOCOLS, 2009). Ethernet has become ubiquitous and cost-effective with

28

its evolution, with standard physical links and increased speed. Industrial Eth-
ernet protocols use a modified Media Access Control (MAC) layer to achieve
low latency, and deterministic responses (LIN; PEARSON et al., 2013).

However, the development of IoT and I4.0 technologies enables multiple
devices equipped with sensors and actuators to work together, exchanging
essential data using wireless communication. Therefore, wireless protocols in
the industry have increased, allowing data monitoring and control using WSN
(BRETTEL et al., 2014). These protocols differ in their interaction models, i.e.,
request-reply and publish-subscribe (DIZDAREVIĆ et al., 2019).

The request-reply communication model is one of the most basic communi-
cation paradigms, based on widespread client/server architectures. The client
must request information from the server, which receives the request mes-
sage, processes it, and answer the client with the corresponding data. There-
fore, centralizing the system data in a server that answers requests from mul-
tiple clients. The two most known protocols based on the request/reply model
are REST HTTP and CoAP (DIZDAREVIĆ et al., 2019).

The publish-subscribe model is a distributed, asynchronous, loosely cou-
pled communication between data generators and destinations. Widely used
in current industrial applications in the form of numerous publish-subscribe
Message-Oriented Middlewares (MoM) (JIA et al., 2014). This model has sev-
eral subscribers different from clients and does not have to request informa-
tion from a server. Instead of asking for information, the subscriber must
subscribe to the broker, the central entity in this architecture. The broker is
responsible for filtering and forwarding incoming messages between its pub-
lishers and subscribers. Finally, the publishers provide information whenever
specific events occur to a topic by sending this data to the broker. All sub-
scribers will receive data sent to the broker on the subscribed topics. For
these reasons, a publish-subscribe interaction model is an event-based archi-
tecture (HINZE; SACHS; BUCHMANN, 2009).

2.5.1 MQTT

The Message Queue Telemetry Transport (MQTT) is a lightweight wireless
communication protocol that follows the publish-subscribe paradigm (PRO-
FANTER et al., 2019). It was developed by IBM (LOCKE, 2010), with its latest
version, MQTT v3.1, adopted for IoT by the Organization for the Advancement
of Structured Information Standards (OASIS) (BANKS; GUPTA, 2014). MQTT
is an open message protocol that mainly focuses on a small code footprint and
low bandwidth usage while handling high latency or lousy network connec-
tions (PROFANTER et al., 2019).

This protocol is one of the most prominent protocol solutions in constrained
environments for its minimal message header and low power requirements
compared to other messaging protocols. Besides, it runs on top of the TCP
transport protocol, ensuring its reliability and reliability (DIZDAREVIĆ et al.,
2019). With the publish-subscribe, the exchanged data is stored by the broker,
meaning that small devices report data to the broker and do not need to keep
it themselves (PROFANTER et al., 2019). Also, the broker can send commands

29

for controlling these devices, even by grouping data hierarchically.

2.5.2 DDS

The Data Distribution Service (DDS) is a real-time data-centric interoper-
ability standard based on the publish-subscribe interaction model (DIZDARE-
VIĆ et al., 2019). The Object Management Group standardizes (OMG) this
protocol, which specifies it as one of many communication protocols used in
industry sectors such as railway networks, air traffic control, medical services,
military, and industrial automation (HARISH, 2015).

Unlike other publish-subscribe protocols, DDS is decentralized since it
does not depend on the broker component. The publishers and subscribers
can communicate asynchronously as peers through the data bus. Without a
broker, the probability of system failures is lower since it doesn’t rely on a
central/single point that concentrates all data, creating a more reliable sys-
tem (DIZDAREVIĆ et al., 2019).

The DDS protocol runs on top of the UDP transport protocol as default but
also supports TCP. The protocol also offers a broad set of QoS policies (over
20 QoS as defined by the standard). Whenever a node exchanges data, a QoS
policy is set for its topic, which the publishers set. However, the subscribers
control the behavior when receiving data. It is essential to point out that
the communication only occurs when both publishers and subscribers match
through topics (same name, type, and a compatible QoS) (DIZDAREVIĆ et al.,
2019).

The extensive set of QoS parameters, e.g., durability, lifespan, presenta-
tion, reliability, and deadlines (PROFANTER et al., 2019), is a prominent fea-
ture of DDS, allowing the discovery of distributed remote entities, data deliv-
ery, data availability, time, and resource utilization (INGLÉS-ROMERO et al.,
2017). Therefore, DDS is an essential solution for IoT-based environments for
its decentralized publish/subscribe architecture and its support for implemen-
tation in both powerful and constrained devices (AL-FUQAHA et al., 2015).

2.5.3 OPC-UA

The Open Platform Communications Unified Architecture (OPC UA) is a
service-oriented machine-to-machine communication protocol that allows for
standardized read and writes access to current data in automation devices via
communication drivers (MAHNKE; LEITNER; DAMM, 2009). The OPC UA is
an IEC standard known as IEC 62541.

The primary use cases are interfaces for industrial automation applica-
tions like Human-Machine Interfaces (HMI) and SCADA systems providing a
cross-platform communication protocol while using an information model to
describe the transferred data. Its primary strength is the semantic description
of the address space model with various companion specifications, which ex-
tend the basic semantic descriptions for multiple domains like Programmable
logic controller (PLC), robotics, or computer vision (PROFANTER et al., 2019).

OPC uses the client-server approach for information exchange. OPC UA
Client can read and write one or more attributes of Nodes maintained into the

30

OPC UA server’s address space. The clients can access data without under-
standing the whole model exposed by a standard specific protocol allowing the
addition of new protocols in the future (MAHNKE; LEITNER; DAMM, 2009).
Applications consuming and providing data can be both client and server.

OPC UA has two main components transport mechanisms and data mod-
eling. For the transport mechanisms, OPC UA uses the Transmission Control
Protocol (TCP) as its transport protocol for high-performance intranet commu-
nication and accepts internet standards like Web Services, Extensible markup
language (XML), and HyperText Transfer Protocol (HTTP) for firewall-friendly
internet communication. The data modeling defines the rules and base build-
ing blocks necessary to expose an information model with OPC UA. That rep-
resents enhanced concepts like describing state machines used in different
information models (MAHNKE; LEITNER; DAMM, 2009).

2.6 Interoperability

Interoperability is the capacity of various computerized products or sys-
tems to connect promptly and share data without encountering any restric-
tions (BUTUN et al., 2020). According to a McKinsey (MANYIKA et al., 2015)
analysis, 40 percent of the Internet of Things’ potential is unavailable due to
a lack of interoperability.

Variations in IoT applications bring unique challenges to integration for
its device architecture, infrastructure, connectivity protocols, platforms, and
data models (NEGASH; WESTERLUND; TENHUNEN, 2019). Additionally, the
resource constraints in most IoT devices make the challenge more restrictive.
IIoT standard initiatives aim at facilitating interoperability, simplifying devel-
opment, easing implementation, and identifying possible threats and vulnera-
bility issues.

Figure 4: IoT interoperability taxonomy.

Source: Adopted from (NOURA; ATIQUZZAMAN; GAEDKE, 2019).

The IoT interoperability taxonomy comprises five different perspectives
(Figure 4 (NOURA; ATIQUZZAMAN; GAEDKE, 2019)): device interoperability,
networking interoperability, syntactic interoperability, semantic interoperabil-
ity, and platform interoperability (NOURA; ATIQUZZAMAN; GAEDKE, 2019).

• Device interoperability refers to enabling the integration and interoper-
ability of heterogeneous devices with various communication protocols

31

and standards. It concerns (i) the exchange of information between het-
erogeneous devices and heterogenous communication protocols and (ii)
the ability to integrate new devices into any IoT platform.

• Network interoperability deals with mechanisms that allow end-to-end
communication between systems via multiple networks (networks of net-
works). The network interoperability level manages challenges such as
addressing, routing, resource optimization, security, Quality of service
(QoS), and mobility support due to the IoT’s dynamic and heterogeneous
network environment.

• Syntactical interoperability, also known as data exchange interoperabil-
ity (TOLK, 2004), refers to the divergence of the format and the data
structure used in any exchanged information or service between hetero-
geneous IoT system entities. Syntactic interoperability problems arise
when the sender’s encoding rules are incompatible with the receiver’s
decoding rules or vice-versa, which leads to mismatching message parse
trees.

• Semantic interoperability refers to the exchange of information, data,
and knowledge in a meaningful way for both entities (TOLK, 2004). Data
can be measured in various units and can reflect different information
meanings. Devices have diverse rules for understanding the meaning
of information content and create a domain-specific information model,
known as the semantic model. As a result of the semantic incompatibility
between data and information models, systems cannot interact dynami-
cally and autonomously.

• Platform interoperability issues in IoT arise due to the availability of di-
verse operating systems (OSs), programming languages, data structures,
architectures, and access mechanisms for things and data. A cross-
platform IoT application can access different IoT platforms and integrate
data from various platforms. After cross-platform interoperability is en-
abled, cross-domain interoperability (e.g., health, home, transport, etc.)
can be achieved in which divergent platforms within heterogeneous do-
mains are federated to build horizontal IoT applications.

With a greater focus on industrial applications, Butun (BUTUN et al., 2020)
presents two sorts of IIoT interoperability:

• The cross-layer interoperability, also known as heterogeneity, orches-
trates the Open System Interconnect (OSI) layers in a seamless and
trouble-free manner. Heterogeneity in the IoT means implementing dif-
ferent communication protocols, data formats, and technologies (YOUNAN
et al., 2020). The variety of IoT devices and hardware-based, inflexible
cellular infrastructures make efficient connectivity even more difficult.
It is causing cross-layer communication functionalities between hetero-
geneous IoT devices and cellular systems.

32

• The cross-system interoperability refers to the capacity to maint net-
works and systems running despite distinct system architectures. An
application with several devices communicating based on different tech-
nologies can be interoperable using semantic system models to compre-
hend raw sensor data better, enabling AI-based machines to make au-
tonomous decisions based on simple rules. By specifying complete cen-
tralized metadata and translating disparate communication protocols,
gateways can assist in mitigating interoperability issues.

Furthermore, due to the wide range of technological solutions offered by
different suppliers, interoperability challenges are bound to develop, mainly if
no standard Application Programming Interface (API), or communication pro-
tocol, has been officially adopted (DI MARTINO et al., 2018). From the per-
spective of IoT providers, lack of interoperability means that service providers
are bound to a single IoT device or software offered by a single provider, po-
tentially resulting in increased operational costs, product functionality, and
stability difficulties (NOURA; ATIQUZZAMAN; GAEDKE, 2019).

2.7 Asset Administrator Shell

With the widespread implementation of Industry 4.0, digital twins (DTs)
have become increasingly viable to model on-site manufacturing resources
and have improved data interoperability (MINERVA; LEE; CRESPI, 2020).

The Asset Administration Shell (AAS) is a standardized electronic represen-
tation of industrial assets (BARNSTEDT et al., 2018) based on the Architecture
Model for I4.0 (RAMI 4.0) (SCHWEICHHART, 2016), enabling the implemen-
tation of DTs. The use of the AAS facilitates information processing from dif-
ferent machines, making these data discoverable, identifiable, and accessible,
thus easing interoperability among the applications of a manufacturing com-
pany (LÜDER et al., 2020; YE et al., 2020). AAS supports data communication
via OPC UA, an Ethernet-based protocol frequently used in industrial control
systems (YE et al., 2022).

Figure 5: Using AAS to transform a I4.0 asset to an I4.0 component.

Source: Adapted from (YE et al., 2022).

An AAS transforms a manufacturing asset, an I4.0 asset, into an Indus-
try 4.0 component that can be a module, a device, or a system (GRANGEL-

33

GONZÁLEZ et al., 2016). The essential elements of an I4.0 Component struc-
turally are the asset and the administration shell (Figure 5) (63088., 2017).
Assets are valuable elements of an organization, either physical or nonphysical
objects, such as materials and products, devices, machines, software, and dig-
ital services have a respective digital version (BADER; MALESHKOVA, 2019).
The AAS provides semantical meta-data of a CPS, including functional and
non-functional properties: intrinsic information, operational parameters, and
technical functionalities (NAGORNY et al., 2018). Using digital models of var-
ious aspects enables direct interactions over standardized and secure commu-
nication links with other Industry 4.0 Components and managing interoper-
ability between the applications and the manufacturing systems (SAKURADA;
LEITÃO, 2020).

Figure 6: General structure of an AAS.

Source: Adapted from (YE; HONG, 2019).

Figure 6 shows the general structure of an AAS. It has a header and a
body. The header contains a list of parameters identifying the AAS and the
physical asset. The body stores data related to the capabilities of an asset
and its operational data (YE; HONG, 2019). The asset’s information describes
as submodels in the AAS. The AAS may incorporate general submodels (e.g.
identification) and also specific submodels (e.g. communication) (YE; HONG,
2019). The submodels contain submodel elements like SubmodelCollection
and Properties. A property, a submodel element type, can contain a value
representing a physical variable of the asset. It can be of several types as INT,
BOOL, or STRING. An example is the current status of a pump (ON / OFF)

2.8 Ontologies

The ontology concept is still somewhat overloaded with several different
meanings. The philosophical notion of an ’ontology’ has been addressed for

34

over two thousand years by the expression "what exists?", a systematic expla-
nation of existence, becoming a relevant notion in the 1990s (GÓMEZ-PÉREZ;
BENJAMINS, 1999). However, this work approaches the idea of ontologies
from a Computer Science point of view.

Guarino (GUARINO; OBERLE; STAAB, 2009) explicit that nowadays, the
most relevant ontology definition is from 1998, (STUDER; BENJAMINS; FENSEL,
1998): "An ontology is a formal, explicit specification of a shared conceptual-
ization.". Guarino defines the ’Explicit’ term as "refers to the to the fact that
all elements of an ontology are explicitly defined, whereas ’formal’ means that
the ontology specification is given in a language that comes with a formal
syntax and semantics, thus resulting in machine executable and machine in-
terpretable ontology descriptions.".

Ontologies provide a generic way of representing domain knowledge for a
common understanding between applications (CHANDRASEKARAN; JOSEPH-
SON; BENJAMINS, 1999). By using these models is possible to create a shared
vocabulary of an area, with the meanings of each term and the relationships
between them (GÓMEZ-PÉREZ; BENJAMINS, 1999). Furthermore, an ontol-
ogy provides the same understanding for people who need to share informa-
tion in a specific domain, further enabling the basic concepts of the field and
the relationships to be machine-interpretable (WANG et al., 2016). Using a fa-
miliar vocabulary is critical for communicating between machines or humans
(FIORINI et al., 2017). For applications nowadays, using ontologies enables
detailed structured data sharing among different devices and allows them to
perform reasoning over the shared data.

There are different types of ontologys, such as upper level and domain on-
tologys. A domain ontology (or domain-specific ontology) represents concepts
to a specific domain, such as engineering or biology. These ontologys provide
a shared, reusable definitions of domain-wide knowledge, offering an unam-
biguous formalized representation (EL-GOHARY; EL-DIRABY, 2010). With the
aid of a domain ontology, it is possible to recognize attributes in requirements
descriptions and provide a semantic foundation for requirement descriptions
(KAIYA; SAEKI, 2006).

An upper or top level ontologies enable the semantic integration of do-
main ontologies and direct the creation of new ontologies. They include broad
categories consisting of general terms that support broad semantic interop-
erability among different domains. Rich definitions and axioms are typically
provided for each category in upper level ontologies. Based on the types of
entities they include, their theories of space and time, as well as how people
relate to space and time, various upper level ontologies offer various distinc-
tions (HOEHNDORF, 2010) (SOWA, 1995).

Some of the benefits of using ontology-based models are as follows (WANG
et al., 2016):

• Knowledge sharing: ontologies enable computational entities, such as
machines in the industry, to have a standard set of concepts related to
this domain.

35

• Knowledge reuse: it is possible to unite ontologies from different do-
mains to have a larger one involving all concepts. An example is using
an ontology with concepts related to units of measure, which is suitable
for several application domains.

• Logical inference: it is possible to make logical inferences based on the
data obtained from a low-level context, that is, data provided by the sen-
sors. This data goes through a verifying process, which can correct in-
consistencies in the context due to failures in acquiring these data.

2.8.1 OWL - Web Ontology Language

The use of ontologies in the Semantic Web context requires a language to
describe them, meeting some basic requirements: well-defined syntax and
semantics, reasoning support, and expression convenience () (ANTONIOU;
HARMELEN, 2004). One of the possible languages to be used is the Web On-
tology Language (OWL) (ANTONIOU; HARMELEN, 2004) recommended by
the World Wide Web Consortium (W3C) (JACOBS, 2001), based on existing
languages and standards.

OWL allows the user, in addition to presenting ontologies’ information, to
process the content of information. This language provides additional vocab-
ulary among machines using formal semantics, facilitating greater machine
interoperability of Web content. Representing the meaning of terms in vo-
cabularies and the relationships between those terms (MARTIN et al., 2004).
Class, individuals, and properties are fundamental elements for building on-
tologies with OWL.

Classes in ontologies can be related to the concept of class in object-
oriented programming languages. Objects in the real world can be grouped or
set with similar characteristics or functionalities (parameters)(LACY, 2005).

A property is a relationship of individuals, OWL distinguished properties
into two categories that an ontology builder may want to define. Object prop-
erties link individuals to individuals; Data type properties link individuals to
data values (W3C, 2009). Properties provide attributes to individuals that use
methods to access and reuse object data by being able to relate a property to
multiple classes (LACY, 2005).

Individuals represent instances of the classes described in the ontology.
These instances are similar to objects in object-oriented programming, differ-
ing in that they do not have associated methods. Individuals can represent
both virtual concepts, and physical objects (LACY, 2005).

2.8.2 Protégé

Protégé (UNIVESITY, 2001) is a consolidated, open-source tool that assists
users in constructing sizeable electronic knowledge bases (NOY et al., 2003)
developed at Stanford University. The tool enables developers to create, edit
and visualize domain ontologies.

This tool can help users create other applications to acquire knowledge
from specialists in particular areas that define essential concepts and relation-
ships. Protégé automatically constructs a visual knowledge-acquisition system

36

helping develop and facilitate new users’ understanding. Nevertheless, it is
possible to create an extension, or a new tool for a specific use, based on
Protégé (MUSEN, 1989).

The Protégé’s user community is populated. In 2003 (NOY et al., 2003)
there were more than 7000 registered users and an active discussion list with
more than 1200 subscribers. Even today, most ontologies developed for dif-
ferent areas, such as medicine, engineering, and history, use this tool.

37

3 ANALYSIS OF THE STATE OF THE ART

This chapter presents the analysis of the state of the art that meets the
purpose of this work in the areas of IoT, semantic models, and works on the
fourth industrial revolution.

3.1 Communication Protocol Translator

Middleware solutions are deployed on the Cloud (remote data centers) or
the Edge Network (nearby IoT Gateways). Cloud-related middlewares are typ-
ically based on deep analytics; otherwise, Edge related can support near-real-
time applications. Most middlewares are hosted on the Cloud, which may
introduce communication latency, preventing time-critical applications in in-
dustrial environments.

Budakoti (BUDAKOTI; GAUR; LUNG, 2018) proposes a lightweight Mid-
dleware at the Edge network. It is an event-based Middleware, publish and
subscribe mechanism that supports multiple protocol bindings. It must be
able to do multiprotocol translations to provide a horizontal unified data in-
tegration scheme for interoperability for applications on the Cloud and IoT
devices on the Edge. The lightweight Middleware is deployed on an IoT gate-
way based on Raspberry Pi 3, implementing interoperability between devices
transmitting data over WiFi, Bluetooth, and Serial by IoT applications built
over protocols like HTTP, Constrained Application Protocol (COAP), MQTT, and
Advanced Message Queuing Protocol (AMQP). Supporting local data analysis
and can also be deployed on Cloud for deep analytics. The developed Mid-
dleware uses a single database for storing sensors’ data in JavaScript Object
Notation (JSON) from different protocols, based on structured query language
(SQL) or not only SQL (NoSQL). As a result, clients can access the same re-
sources regardless of which protocol they choose for communication.

An IoT gateway, the Samsung Artik 1020 development kit, was presented
by Castellanos (CASTELLANOS et al., 2021) for reducing interoperability prob-
lems. The gateway connects wireless nodes for simultaneous data transmis-
sion using ZigBee, WiFi, and Bluetooth protocols. It also implements a flexible
algorithm to translate sensors’ data into a uniform format, JSON, for infor-
mation to a cloud server over the MQTT protocol. However, the proposal is
restricted to IoT platforms that use only the MQTT protocol and follow the
data formatting presented by the authors, which is not standardized by any

38

already consolidated service.

Palavras (PALAVRAS et al., 2018) presents another IoT gateway based on a
secure multiprotocol integration bridge for the IoT (SeMIBIoT). The gateway
can provide hop-by-hop or end-to-end secure communications between an ar-
ray of heterogeneous nodes and standardized IoT protocols. Its main task is to
translate messages between protocols and relay them to the corresponding de-
vices covering the HTTP, Websockets, CoAP, MQTT, and Extensible Messaging
and Presence Protocol (XMPP) protocols. The author relly on real-time trans-
lation, not using persistent storage. SeMIBIoT defines IDs for each protocol
to verify the corresponding translation method for each device. The bridging
mechanism acts whenever a device sends a request and, consequently, in the
response.

Experiments using physical IoT devices were carried out in Budakoti (BU-
DAKOTI; GAUR; LUNG, 2018), and Palavras (PALAVRAS et al., 2018) works.
Both showed promising results using their bridging mechanism between IoT
protocols, the first for MQTT and AMQP and the last for XMPP, MQTT, HTTP,
and CoAP. However, since the two works are specific to IoT applications, none
of the developed middlewares support industry-specific protocols.

Another IoT protocol interoperability solution is presented by Derhamy
(DERHAMY; ELIASSON; DELSING, 2017), a protocol translator for SOA-based
systems. It combines two translation techniques, the direct protocol-to-protocol
and the establishment of an intermediate protocol. The former has the lowest
packet loss per conversion. Still, new translators must be developed with the
increasing number of protocols, resulting in a longer development time and
greater need for processing power. On the other hand, in the second format,
the user must define a protocol as an intermediary, so fewer translators will be
needed (number of used protocols - 1). The translator system is autonomous
and not coupled to the orchestration system. The experiment results were not
compared with translators using different techniques, so it cannot be proved
that the proposed one is the most adequate. Furthermore, only HTTP and
CoAP protocols were used, neither of which are industry standards.

Ferreira (FERREIRA et al., 2019) describes a 4.0 multiprotocol use case,
focusing specifically on LoRaWAN and WiFi connectivity. The case study com-
prehends two multiprotocol devices, a gateway and a sensor node. The node
has an energy metering system based on a commercially available ATM90E26
single-phase meter. Different tests are performed on an industrial ground
floor, composed of open spaces and electrical/electronic machinery using the
same devices. In one of these, the sensor node sends energy data using WiFi
through the MQTT protocol and another through the Long Range technology
(LoRa) interface using the LoRaWAN protocol. The functioning of the devel-
oped devices has been partially proven since the experiments did not concern
multiple nodes communicating with different protocols. Nevertheless, the
gateway enables the communication throw devices that use LoRa and WiFi
technologies; still, it doesn’t allow the translation of application protocols.

Wang (WANG et al., 2022) proposes an integration and intercommunica-
tion technology based on the convergence of MQTT and OPC UA. To establish

39

the communication, the authors use a unified name ID to create mappings
from one protocol to another, which is stored on an XML configuration file. In
addition, a shared database is used to realize integration between both pro-
tocols, allowing reading and writing data, likewise a data acquisition drive
that triggers whenever a database data is updated. However, no physical ex-
periments or simulations were carried out to verify the functionality of the
proposed translator.

3.2 Digital Representation of Industrial Assets

The core feature of an I4.0 Component is the combination of objects from
both the physical world and the information world, offering dedicated func-
tionalities and flexible services inside and outside a network of I4.0 Com-
ponents. Integrating advanced information and communication technologies
(ICTs) and OTs is a popular method for the digitalization process, as it pro-
motes research with CPS technologies.

Schroeder (SCHROEDER et al., 2016) presents a methodology to create a
high-level model of DT and use its information to enable data exchange be-
tween divergent systems. The proposed method comprises three phases: cre-
ating a physical device’s (any device that provides data exchange) high-level
model, extracting the model’s data by middleware, and information system
development.

A case study was conducted using a modeled and simulated industrial valve
to validate the method. For the modeling phase, the authors used Automa-
tionMl; the FIWARE middleware was used to collect the models’ data. At
last, another system requests data using REST API, which is returned as a
JSON format. Models allow regular users, without programming knowledge,
to model heterogeneous devices’ DT, enabling data exchange among systems.
It’s worth noting that the project’s goal (SCHROEDER et al., 2016) was to al-
low data transmission between different systems using DT models. The tests
comprised only one device, and its data was sent only to one system. Since
DTs are widely used in industrial applications with numerous devices, it would
be essential to validate different models exchanging information with more
than one system.

Ye (YE; HONG, 2019) describes the details of the AAS and presents a proof
of concept (POC) in a manufacturing demonstration. The demonstration (7
(YE; HONG, 2019)) comprises several assets, such as a web application, a
gateway, Raspberry Pi single-board computers, a PLC controller, robots, ultra-
sonic sensors, conveyors, and their respective AAS.

The boundary of the AAS features a communication interface that provides
access to any assets’ data and functions within the application using its AAS’s
submodels. This communication is established by using a submethod for iden-
tifying the AAS communication method. The AAS must guarantee the continu-
ous acquisition of runtime data generated by physical assets, such as a linear
axis’s actual position and rotation speed. Thus, the assets’ data will be avail-
able in their respective AAS. A control flow generated by the gateway forwards

40

Figure 7: A system communication network via I4.0-compliant communica-
tion.

Source: Adopted from (YE; HONG, 2019).

production tasks to AASs of the field devices. Feedback parameters are even-
tually loaded back into the database of the AAS web. Although (YE; HONG,
2019) presented a case study with different types of sensors, actuators, and
gateway, this was not implemented, evidencing a lack in the literature of an
application similar to the one used in IIoT applications.

An adaptable factory contains modular components that can be added, re-
moved, and adjusted according to production needs, thus plug and produce
(PnP) of industrial field devices. New field devices or production modules may
be integrable without (or with minimal) human intervention at each runtime
to perform different tasks (e.g., manufacturing a new product), significantly
increasing production flexibility.

Authors of (YE et al., 2020) present a use case for digitizing following PnP
methodology via AAS. Three robots from different vendors structure the AAS-
based system, each equipped with an I4.0 adaptor. The adaptor adopts an OPC
UA server, open62541 toolkit, for each robot [embedded in the Linux operating
system (OS) evaluation boards]. The I4.0 adaptors first manage asset runtime
data standardized and then send it to the AAS. The AAS of the three robots
interacts so that their assets can accomplish a specific system function or task,
communicating through the OPC UA protocol. The author uses an I.4 adapter
for each asset to establish the OPC UA server and client for each AAS. So that
as the number of devices in a network increases, we will also have an increase
in the cost necessary to develop it.

Bouter (BOUTER et al., 2021) presents a methodology to identify and de-
velop AAS’s submodules for specific application scenarios, which other re-
searchers should apply to further standardization. Each system comprehends
different assets that have divergent functionalities and properties. The phys-
ical asset’s properties are stored in its AAS using different Submodels linked
with its data or functions. These characteristics are thought to express them-
selves in the AAS DF body, which should adhere to a standardized data for-

41

mat. New models should be created whenever a standard is unavailable for
an application intended to be reused in future works. The use of OWL ontolog-
ical models is based on Internationalized Resource Identifier (IRI) as globally
unique identifiers in common with the AAS for new submodules. Allowing to
transparently develop new submodules from ontologies, many of which are
taken as standard by different researchers.

The authors rely on a small industry use case to evaluate the proposed
model. Developing several AAS submodules for the specific application was
necessary, even for a simple application. Emphasizing that a multi-agent is
demanded when using the developed method in more robust industrial appli-
cations. Bouter’s methodology (BOUTER et al., 2021) was developed to es-
tablish a new pattern for developing submodules, reusing the models of other
authors. However, the developed submodules did not agglutinate already de-
veloped in the literature, such as (YE; HONG, 2019) (YE et al., 2020) (IÑIGO
et al., 2020).

A case study demonstrates the use of ASSs for individual components in
an I4.0 virtual assembly line designed to produce plastic models of cars (ARM
et al., 2021). All virtual asset has their AASs, which communicate with each
other and negotiate the production priorities and requirements according to
a pre-specified set of rules. Each AAS must have the negotiation submodel
fully implemented. The AAS communication driver integrates a TCP/IP con-
nection and sends a TCP stream; thus, MQTT-based communication was also
employed, exhibiting communication latencies lower than those achieved by
the OPC UA. The researchers discarded using the MQTT protocol since when
performing tests with a more significant number of AAS, it obtained results
much lower than those achieved with OPC UA.

The limitations of this study reside in two aspects. The first refers to the
number of AAS used in the case study that was fewer than expected for in-
dustrial applications. Finally, as in (YE et al., 2020) each AAS must have both
a server and an OPCUA client that can cause several problems with network
scaling and when using devices that lack processing capabilities.

Iñigo (IÑIGO et al., 2020) presents a case study on applying the AAS in an
industrial context. The use case considers a plant composed of a robotic arm,
a grinding machine, and a semantic harmonization layer. Two AASs (Robotic
Arm AAS and Grinding Machine AAS) were developed and tested using a se-
mantic integrator for experimentally validated interoperability. The demon-
strator has been transformed to consider the RoboticArm as an Asset. A Rasp-
berry Pi was used as the OPCUA server that published the Administration
Shell of the RoboticArm asset instance. The developed architecture provided
a protocol translator that exchanges information using UMATI (Universal Ma-
chine Tool Interface), standardizing how machine tools share information over
OPCUA. In conclusion, the AAS has been validated to represent heterogeneous
industrial assets and their digital twins and enable interoperability between
them in a manufacturing plant.

Although the authors of (IÑIGO et al., 2020) have presented experimental
tests using industrial devices, the experiments were performed with only two

42

machines, a small number compared to the number of devices in an actual
industrial application. In addition, both machines use the same communica-
tion protocol, OPC-UA, so it was impossible to assess whether the developed
integrator allows multi-protocol communication.

3.3 Semantic Technologies in Automation

In industrial informatics, various technical systems exchange information,
including engineering, manufacturer, process control, production planning,
and maintenance, to optimize the industrial process (INTEROPERABILITY,
2017). Each system has its tasks, functionality, models, and semantics. In an
industrial environment, the research and deployment of Semantic Technolo-
gies, semantic links, and ontologies have increased considerably in recent
years. These are the potential technological solutions to address interoper-
ability problems for IoT environments.

The Semantic Sensor Network Ontology (COMPTON et al., 2012), also
known as SSN, was first created by the W3C Semantic Sensor Network In-
cubator Group. The SSN ontology has been employed in a web of things ar-
chitecture, sensing for manufacturing, and representing persons and personal
gadgets as sensors. It can define physical sensors and their characteristics:
accuracy, measurement capabilities, outputs, observation value, and feature
of interest. Knowledge Engineers can utilize the SSN ontology as a founda-
tion for future projects by establishing equivalence relations to link significant
aspects of sensors specified in this ontology. It is worth mentioning that this
ontology is the basis of several others developed for research and projects
until today, used to create IoT and IIoT-specific ontologies.

Bermudez-Edo (BERMUDEZ-EDO et al., 2016) used the SSN ontology as a
basis to describe a lightweight semantic IoT model, IoT-Lite (Figure 8). The
IoT-Lite ontology can be used as the core part of a semantic model; it is de-
signed for large-scale and provides means to update and change the semantic
annotations. Depending on the applications, semantic modules can be updated
to provide additional domain-specific concepts and relationships. This ontol-
ogy describes IoT-related ideas for developing IoT and smart city applications
and services. IoT-Lite does not intend to be a complete ontology for the IoT; it
explains critical IoT concepts, such as tag and actuating devices, sensory data,
location, and type. These descriptions allow interoperability and discovery of
sensory data in heterogeneous IoT platforms.

Agarwal (AGARWAL et al., 2016) discusses FIESTA-IoT, a unified ontology
to resolve interoperability issues. This ontology is developed for the EU H2020
FIESTA-IoT project, which seeks to use semantic-based methodologies to al-
low interoperability among multiple orthogonal testbeds. To avoid overloading
the ontology domain, the FIESTA-IoT links existing IoT solution concepts from
SSN, IoT-lite, M3-lite taxonomy, Time, DUL, and WGS84 ontologies. It ensures
better interoperability with existing semantic-based IoT platforms, projects,
and standardizations. The ontology is a solution to achieve semantic interop-
erability among heterogeneous testbeds, focusing on describing its resources

43

Figure 8: IoT-Lite Ontology.

Source: Adopted from (BERMUDEZ-EDO et al., 2016).

(i.e., sensors, tags, etc.) and their observations.

The ontologies developed by Compton (COMPTON et al., 2012), Bermudez
(BERMUDEZ-EDO et al., 2016), and Agarwal (AGARWAL et al., 2016) can be
used as a starting point for developing new ontologies for IoT technologies, as
they share multiple classes and attributes. They can be adapted for Industry
4.0 and IIoT applications to address typical interoperability concerns. None of
the three suggested ontologies address the type and structure of shared data
and communication devices or specify the communication protocols used by
nodes and devices.

Kumar (KUMAR et al., 2019) discusses the current state of ontologies for
I4.0, including existing ontological frameworks and efforts to standardize on-
tologies in the field. Developing an industry-related ontology requires inter-
operable M2M communication and describes autonomous robotics require-
ments. This way, it is possible to create concepts semantically standardized
by different equipment in the manufacturing domain.

Several industry-related ontologies have the definitions used by the IEEE
1872-2015 (IEEE, 2015) standard as their fundamental principles. Neverthe-
less, the newly developed ontologies include I4.0-specific ontological notions
to create an industry’s ontological standard. The Core Ontology for Robotics
and Automation (CORA) (PRESTES; FIORINI; CARBONERA, 2014) was de-
veloped within the IEEE 1872-2015. As the name suggests, CORA is a core
ontology for robotics applications that outlines essential commitments for cre-
ating well-defined models of robots. The Ontology for Autonomous Robotics
(ROA) (OLSZEWSKA et al., 2017) defines robotic notions as fundamental for
Autonomous Robotics, including behavior, function, goal, and task definitions.
It reuses ontologies such as the Suggested Upper Merged Ontology (SUMO)
upper ontology, the CORA core, and specialized ontologies. The Ontology for
Robotic Architectural (ORArch) delves into hardware and software concepts
and how they might be expressed in mixed architecture descriptions. Its goal

44

is to make it possible to explain numerous architectural viewpoints of a single
robot that mixes hardware and software.

The ontologies presented by Kumar (KUMAR et al., 2019) are all tailored
to industrial applications involving robotics. A robot can be a programmable
machine containing actuators and sensors in ontologies, as specified in CORA
ontology, although specific attributes of these devices are omitted. Further-
more, robot communication standards, such as its communication protocols,
are not addressed, which may make it impossible to establish communication.

Steinmetz (STEINMETZ et al., 2018) presents how to map industrial ele-
ments into a semantic model, integrating Industry 4.0 objects easily and un-
derstandably for the users. These semantic models can support services and
allow data exchange between virtual and physical assets through an IoT mid-
dleware. The semantic model used was an I4.0 ontology composed of other
ontologies found in the literature that bring complementary concepts for IoT
application. Such as the IoT Lite ontology (BERMUDEZ-EDO et al., 2016)
which is an extension of Semantic Sensor Network (SSN) ontology (COMP-
TON et al., 2012), that describes crucial concepts of IoT, such as devices,
sensors, attributes, and so on. Nevertheless, the author added new classes
related to the type of information visualization to make it possible to model
how data should be presented to different types of users. The model was used
to generate interfaces to the FIWARE IoT middleware and validated through
an industrial valve actuator use case. The valve circuit was instrumented with
different sensors to monitor its data, like battery level, temperature, pressure,
and torque. Although the author has experimented with various sensors, they
were not treated as different devices. Therefore, the developed ontology does
not handle problems related to communication between other devices with
heterogeneous communication protocols, such as the one presented in this
work.

Besides, some authors combine semantic techniques and protocol transla-
tors in IoT and industrial environments. A novel middleware solution that en-
ables effective communication between OPC UA and DDS communication pro-
tocols is proposed by Endeley (ENDELEY et al., 2019), allowing transparent
communication between devices that utilize these protocols without changing
each framework’s native rules. Both protocols are leading industry standards
in the industry4.0 environment, OPC UA for the request/reply and DDS for the
publish/subscribe pattern. The proposed translator requires a method of map-
ping the OPC UA service sets that allow DDS actors to access OPC UA server
functions such as Read, Write, and Browse. A simplified view of the OPC UA
AddressSpace is also provided by mapping the DDS subscription model using
specific DDS topics. Although the translation of the OPC UA protocol to DDS
was proven, the opposite has not been evaluated. In addition, the authors
performed experiments with only one device. In IoT and IIoT applications,
several devices are connected in the same network, constantly sending data,
evidencing the need to perform new tests with a more significant number of
devices.

Kannoth (KANNOTH; SCHNICKE; ANTONINO, 2021), similarly to Endeley

45

(ENDELEY et al., 2019), uses a mapping technique to integrate different pro-
tocols with OPC UA for Industry 4.0 applications. The solution uses the Indus-
try 4.0 Virtual Automation Bus architecture (VAB), which provides a standard
technology-independent type system to map technology-related functions and
types. The authors mapped the VAB architecture of HTTP and OPC UA pro-
tocols with their classes and services, such as HTTP GET and OPC UA Invoke
primitives. The model was evaluated using a gateway that forwarded requests
via HTTP from the industry 4.0 application to the OPC-UA server. The gate-
way runs an HTTP server and an OPC UA client simultaneously, collecting
data from the OPCUA server and forwarding it to HTTP requests. Although
the authors have indicated using an industry 4.0 application, it only employed
the HTTP protocol.

Figure 9: Semantic gateway as service architecture.

Source: Adopted from (DESAI; SHETH; ANANTHARAM, 2015).

The current IoT interoperability provides end-to-end message delivery and
lacks accessibility to semantic data. Desai (DESAI; SHETH; ANANTHARAM,
2015) proposes the concept of Semantic Gateway as Service (SGS) that offers
an intelligent solution by integrating Semantic Web technologies with existing
sensor and services standards. The SGS also provides a mechanism to in-
corporate communication protocols into a single system. Its architecture has
three core components (Figure 9 (DESAI; SHETH; ANANTHARAM, 2015)):
(1) multiprotocol proxy, (2) semantic annotation service, and (3) gateway ser-
vice interface; the gateway can also have components for required capabilities
such as message store and topics router, which assists multiprotocol proxy and
gateway service interface in translation between messaging protocols.

The SGS combines the use of ontologies, such as SSN ontology (COMP-
TON et al., 2012), and a communication translator providing communication
between widely used CoAP, MQTT and XMPP protocols, making their semantic
integration possible and seamless. Although the framework allows the trans-
lation of several communication protocols, the developed ontology does not
describe them. Furthermore, no specific protocols for the industrial context

46

are suggested, limiting the scope of IoT systems to the protocols specified by
the author.

3.4 Discussion

In this chapter, the most relevant works found in the literature related to
the purpose of this dissertation were presented. These works’ results were
analyzed to verify technologies that could be reused in this dissertation. In
addition, their gaps were identified, including possible contributions to state
of the art. Table 1 compares the main related works from the perspective of
four main aspects: communication protocols, semantic technologies, digital
representation, and industry domain.

• Communication protocols: Works that use communication protocols that
are well disseminated, both industrially and not, such as MQTT, OPC-
UA, and HTTP, are classified as "totally relevant"; works that do not deal
directly with communication protocols but somehow carry out data ex-
change between systems are classified as "partially relevant"; those that
do not fit the other classifications are classified as "Not applicable" defi-
nition.

• Semantic technologies: Works that deal with semantics for divergent sys-
tems using ontologies, Unified Modeling Language (UML) among others,
are classified as "totally relevant"; works that create or use some custom
data structure as a standard for communication are classified as "par-
tially relevant"; those that do not fit the other classifications are classi-
fied as "Not applicable" definition.

• Digital representation: Works that use the virtualization of physical de-
vices, digital twins, to develop simulations or research in a specific area
are classified as "totally relevant"; works that only discuss CPS tech-
niques but do not make any implementation or in-depth study are classi-
fied as "partially relevant"; those that do not fit the other classifications
are classified as "Not applicable" definition.

• Industry domain: Works specified as "totally relevant" are those that
somehow refer to the industrial sphere (Industry 4.0, IIoT, industrial
communication protocols); works that are not used in industry, but can
be adapted, as in the case of specific ontologies for IoT, are classified
as "partially relevant"; those that do not fit the other classifications are
classified as "Not applicable" definition.

In brief, many of the researched works dealing with physical interoper-
ability problems use middlewares and multiprotocol gateways to translate dif-
ferent communication protocols. However, many of these end up not dealing
with issues related to the data structure, exposing the system to semantic
problems. Semantic interoperability is commonly addressed in the literature
using semantic technologies, such as ontologies and UML, some of which use
international standards as their base (IEEE). At last, in the previous few years,

47

some authors have worked with industrial assets digitization standards to de-
velop studies concerning the use of the AAS.

Yet, none of the related works combines the three technologies in a single
system. In this sense, this dissertation seeks to solve this gap by developing an
interoperability middleware for IIoT gateways based on international standard
ontologies and standardized digital representation. This work combines multi-
communication protocols translator algorithms, specific IIoT ontology based
on international standards, and the so-to-be digital asset standard AAS.

48

Table 1: Comparison of the main related works.

Source: The author

49

4 PROPOSED IIOT INTEROPERABILITY MIDDLEWARE

This chapter describes the research approach for mitigating interoperabil-
ity problems between industrial assets using multiprotocol translators, seman-
tic models, and digital representations. An overview of the project and its main
characteristics are presented, enabling a broad understanding of all the de-
veloped subsystems used to solve the gap found in the literature presented in
Section 3.4.

4.1 Proposal Overview

The proposed middleware is a fundamental tool for mitigating interoper-
ability problems in the industrial environment. It allows communication be-
tween industrial assets using protocol translators and techniques for semantic
compatibility of the exchanged data: increasing flexibility and the possibilities
for accomplishing various applications using heterogeneous devices.

Figure 10: System Overview.

Source: The author.

The system comprises three essential components: the assets, the mid-
dleware, and applications (Figure 10). Assets range from sensors, actuators,

50

robots, and PLCs to large industrial machines, whose primary function is mon-
itoring and controlling environment data. The middleware can be a gateway,
as already mentioned in Section 2.1.2, which is responsible for different tasks,
such as forwarding the assets’ data to the applications, acting as a protocol
translator, storing data, etc. The applications, in turn, comprise different pos-
sibilities, such as cloud servers, dashboard servers, and specific platforms.

4.2 Proposed Middleware Architecture

The architecture for the developed gateways’ interoperable middleware is
explored in this section. The architecture comprises three main blocks (Figure
11): Communication, Data Storage, and User Interface. These blocks will be
presented in the following sections.

Figure 11: Middleware’s architecture overview.

Source: The author.

4.2.1 Communication Block

The first block, communication (Figure 12), allows data transmission to/from
different industrial assets by incorporating different communication protocol
servers and brokers. The approach selected for this dissertation uses three
industrial communication protocols widely used in real applications, but the
middleware could comprises "n" translators. A shared server is used to store
all messages exchanged in the system by defining an intermediate protocol,
reducing the necessary number of translators.

The communication protocols translators are responsible for converting
data from one protocol to another, allowing interoperability between devices
that use distinct and usually incompatible protocols. The translators use data
from the ontology developed for the specific system to carry out this conver-
sion, mapping several essential characteristics, such as functions and topics.
The complexity of this block is directly related to the number of protocols
used since a more significant amount of servers, brokers, and translators are
needed.

As an example, in Figure 12 is depicted an application using three com-
munication protocols, beeing the Protocol B the intermediary. Therefore, re-

51

maining protocols must be all translated to the Protocol B . So, to translate
information from protocols A to C, it is mandatory to perform the translation
from A to B and then from B to C.

Figure 12: Proposed communication block.

Source: The author.

4.2.2 Data Storage Block

As the name suggests, the "Data Storage" block (Figure 13) is responsible
for storing industrial assets’ physical and digital data (digital twins) in a local
or cloud database. Nevertheless, all incoming messages are processed before
being saved. The ontology description makes it possible to identify various
information from this message, such as the id of the device that sent the mes-
sage and its communication protocol, determining the type of asset (a sensor
or an actuator), etc.

The database used is based on structure data, storing information regard
each sensor and actuator individually. Each message has a time stamp and
includes different labels, defining the senders communication protocol, assets’
type and so on, facilitating the reading and writing of processed and incoming
data. It is worth mentioning that the saved data refer to industrial processes,
such as production lines, maintenance systems, etc. Therefore, the stored data
can be used as a dataset for machine learning algorithms, predicting machine
failure and improving manufacturing time.

4.2.3 User Interface Block

The user interface block (Figure 14) aims to make the data available in
a simplified way so that the end-user can monitor the system’s primary in-
formation, such as momentary sensors and actuators data. Also, allow the
user to control the system, such as controlling the status of specific actua-
tors, start, stop and resume an industrial process. It is necessary to select
a well-distributed framework and adapt it to the specified use case. For this
reason, the creation of SCADA like software, as SCADA is already widely used
for industrial applications mainly involving PLCs, is proposed. SCADA allows

52

Figure 13: Proposed data storage block.

Source: The author.

the user, locally or remotely, to monitor process data from an industrial pro-
duction plant and act manually or automatically in the process. In addition to
data visualization and control, it is necessary to allow the user to interact with
the database: verify data from performed simulations and change relevant
information such as its bucket name.

Figure 14: Proposed user interface block.

Source: The author.

4.3 Developed Ontology

This work combines several ontologies well disseminated in the literature,
such as IoT-Lite (BERMUDEZ-EDO et al., 2016) and QUDT (RIJGERSBERG;
VAN ASSEM; TOP, 2013), with ontologies standardized by the IEEE (IEEE,
2015) to develop one specialized for IIoT applications. In addition, the pro-
posed ontology includes essential concepts related to industrial applications
yet not presented in the base ontologies. Figure 15 represents the combina-
tion of classes from different base ontologies, identified by different colors,

53

and the developed classes for this proposal, entitled IIoT. However, the im-
age presents only a part of the ontology since it comprises more than 450
classes. The complete IIoT ontology file can be downloaded in the author’s
public GitHub repository (PEREIRA, 2022).

Figure 15: Part of the proposed IIoT ontology.

Source: The author.

Different ontologies can be correlated and grouped into a typical structure
to help system development (Figure 15). The main category of SUMO (IEEE,
2015) is Entity, which is a fragmented division of Physical and Abstract no-
tions. Abstract is defined as having characteristics that are distinct from any
specific physical media embodiment of those characteristics. Similar to math-
ematical objects like sets and relations, instances of Abstract can be said to
exist, but they are not capable of existing at a specific location and time with-
out a physical encoding or embodiment. Physical represents an entity that has
a location in space-time. Keep in mind that locations are thought to have their

54

location in space-time. From Physical, the Object notion is presented. Object
constitute everyday objects that exist in space with spatial components that
are parallel to time. Last but not least, an Artifact is a manufactured object.

From FIESTA-IoT (AGARWAL et al., 2016) the DOI concept is reused, which
comprises the domain of interest which is correlated to assets by the property
hasDOI (not shown in the image so as not to impair the reader’s understand-
ing). Some of the examples of DOI are Agriculture, Energy, Health Care, and
Smart cities.

More than just a collection of vocabularies for different quantity and unit
standards, the QUDT (RIJGERSBERG; VAN ASSEM; TOP, 2013) ontology pro-
vides a conceptual framework. This work’s proposed ontology reuses the def-
inition of Quantity Kind and Unit. For QUDT, Quantity Kind refers to any ob-
servable property that can be measured and quantitatively quantified. Phys-
ical characteristics include length, mass, time, force, energy, power, electric
charge, etc. The definition of a Unit is a specific quantity of a particular sort
that is used as a scale to measure other quantities of the same kind. For in-
stance, the BIPM has empirically defined the Meter as a unit of length. Any
length can be written as a number that has the unit meter multiplied by it.

From the IoT lite ontology (BERMUDEZ-EDO et al., 2016), at least four
classes (represented in Figure 15) are merged into the IIoT ontology. The
Coverage concept corresponds to a communication device, i.e. an IoT device
equipped with a temperature sensor inside a room has coverage of that room.
An Actuating Device is defined as a device that can actuate over an object or
QuantityKind. A Tag Device is used to set an identification number, to different
devices that act in the same application, even if these are similar equipment,
such as QR code, RFID, or bar code.

Classes for describing the assets’ connectivity were added, such as Com-
munication Protocol and Communication Type, related to the "Communication
Device" class defined by the SSN ontology (COMPTON et al., 2012). As the
names suggest, Communication Protocol represents the protocol used by the
IIoT node, such as LoRa, WiFi, NB-IoT, and so on. As for Communication Type,
sets if the communication used by the devices is wired or wireless, which can
impact the positioning of a node within an environment.

The IIoT ontology also introduces two new classes for industrial assets
IElement and IThing. IElement includes elements monitored and controlled
throughout processes, such as industrial tanks, ovens, etc. The IThing class
represents the gateways and equipment with sensors, actuators, and radios
to monitor, control, and exchange interest data. An IThing can have a sensor
attached to it, but an IElement is not necessarily connected to the sensor, even
though both a Device and an IThing are set as assets.

Moreover, classes and properties with relevant data for creating assets’
individual AAS, facilitating their development, and creating module standards
based on the proposed ontology, were included. The based ontologies are
described in Table 2.

55

Table 2: Ontologies used for the development of the IIoT ontology

Source: The author.

4.4 AAS Submodels

As already indicated in the section 2.7, AAS includes submodules that de-
scribe the functional and non-functional properties of the assets. Industrial
Digital Twin Association (IDTA) is working on standardizing the AAS submod-
ules. Once the submodel template is proposed, a group of experts in the field
develops the template. After elaboration, the template is available for use.
There are two standardized and published models; the rest is under develop-
ment or revision. The default templates are Generic technical data (Plattform
Industrie 4.0, 2020a) and Nameplate (Plattform Industrie 4.0, 2020b). The
Nameplate template has information regarding the manufacturer and serial
number used in case of maintenance or replacement of the Asset.

Due to the lack of AAS submodules standards, three unique ones are rec-
ommended to manage sensitive data in typical IIoT applications. Two of these
are specific to sensors: ProcessVariableCurrentValue and ProcessVariableRange
Figure 16. Each represents, respectively, information regarding the sensor’s
current measurement and its measurement range. The Status submodule was
created for actuators, containing four properties, one of which is Value, repre-
senting the actuator’s current Boolean data. The information used to describe
the modules is based on the information described in the ontology.

The assets are described straightforwardly in this project, with only a few
submodules. On the other hand, this information is sufficient to validate the
proposed methodology. Based on the ontology information, other submodules
could be developed to enrich the digital description of the assets, but this was
not the focus of the research.

56

Figure 16: AAS sensors submodules.

Source: The author.

4.5 Communication Translators

This dissertation suggests defining an intermediate protocol to minimize
the complexity of the system by using a smaller number of communication
protocol translators, as stated in section 4.2.1. As a result, any new protocol
introduced to the application requires only one new translator. All developed
translators must be bidirectional, allowing for sending and receiving data from
any protocol to the intermediary one.

Additionally, a shared database is used, preferably the server/broker from
the protocol defined as an intermediary, for storing assets’ data. Consequently,
it is possible to create an event-based system, sending updated data to specific
devices whenever an event happens. For example, in the ontology description,
"DeviceA" relies on "SensorD" data; an event is triggered anytime this data
is updated. As a result, the gateway’s middleware selects the appropriate
translator that correctly encapsulates and sends the data.

Figure 17 represents the UML sequence diagram for exchanging mes-
sages between three devices based on three different communication proto-
cols, each named by its used protocol (A, B, and C). Also, Node C requires
data transmitted by Node A. In the case presented, Node A sends a message
to the gateway, which will save the received data to the database and return
an acknowledgment message. After that, the gateway’s middleware performs
the translation from protocol A to protocol B, the intermediate protocol, and
finally translates the data from protocol B to C. The translated data will be
forwarded to Node C, which will send an acknowledgment message to the
gateway.

57

Figure 17: Sequemce UML diagram for message exchange.

Source: The author.

4.6 Proposed standardization

One of the focuses of this work is to allow communication between het-
erogeneous devices that communicate with different types of communication
protocols. Most protocols follow publish-subscribe or client-server patterns,
so specific characteristics, such as standard nomenclature and data structure.

4.6.1 Proposed topic terminology

Thus, it was stated that all topics used by publish-subscribe protocols, such
as MQTT, must use the device id as their topic, for example, "/DeviceA". How-
ever, when an event is triggered, the middleware must send updated informa-
tion using the name of the sensor/actuator as the topic, for example, "/Sen-
sorD".

4.6.2 Proposed data structure

Another definition was the standardization of the data structure used by
the devices. It is worth mentioning that different types of formats are used,
therefore two were selected: JSON (BRAY, 2014) and the OMG Interface Def-
inition Language (IDL) (SIEGEL, 1998).

JSON is a lightweight open standard for data format, text-based and language-
independent. It is human-readable and straightforward for computers to parse
and utilize. JSON is often used in various systems and protocols because it
uses objects represented by an array. Figure 18 illustrates the structure of a
JSON message following the patterns used in this project.

The developed pattern uses three elements: "timestamp" (Fig. 18, line 3),
"sensors" (Fig. 18 , and "actuators" (Fig. 18, line 7). The "timestamp" element
is a time_t data type that indicates the timestamp in Unix time added by the
device before sending the message. The "sensors" and "actuators" elements
are sub-arrays with varied sizes, which contain the values of the sensors and

58

Figure 18: Proposed JSON message strucuture.
1 {
2 "timestamp": 1644692844,
3 "sensors": {
4 "SensorA": 0.465,
5 "SensorB": 12,
6 },
7 "actuators": {
8 "ActuatorA": true,
9 },

10 }
Source: The author.

actuators of the devices, respectively. In this example, the device that sent the
message has two sensors and an actuator.

Figure 19: Proposed IDL data type.

1 Header header
2 float32 SensorA
3 int32 SensorB
4 bool ActuatorA

Source: The author.

IDL is a descriptive language for defining data types and interfaces in a
language-independent manner regardless of the programming language or
operating system/processor platform. The IDL defines the syntax for defining
data types and interfaces. Data types are required to establish parameters
and return the value of interfaces’ operations. Figure 19 illustrates an IDL
data type developed for a specific device.

The data type created was based on the same fictitious device used to
present the message structure using JSON format 18. It is composed of a
Header structure and specific variables for the device’s sensors and actuators
data. The Header (Fig.19, line 1) is composed of the timestamp in Unix time
and a message counter. There is a variable for each sensor, SensorA (Fig.19,
line 2), defined as a float32, and SensorB (Fig.19, line 3), as an int32. Fur-
thermore, the device includes an actuator, ActuatorA (Fig.19, line 4), whose
data is expressed by a boolean variable. Therefore, all equipment that uses
this type of structure must have its data type created.

59

5 CASE STUDY

This chapter describes the case study selected to conduct the experiments
to validate the functionality and obtained results using the middleware devel-
oped in this work. The chosen use case is from the agriculture and chemical
domain, available at Los Andes University in Colombia, a research partner
from GCAR/UFRGS.

The case study refers to the production process of a nutrient solution for
soilless culture agriculture, e.g., hydroponics agriculture techniques. This cul-
tivation technique is known for growing plants in an inert medium utilizing a
solution of mineral fertilizers dissolved in water. It relies on various agronomic
and environmental variables that must be managed to maximize input returns
while conserving resources. It can deliver intensive food production in limited
areas with more efficient resource management, including non-arable places
such as deserts and cities. Soilless culture is seen as a viable instrument for
food security as new agricultural systems are needed to meet food demands
while reducing the environmental impacts of production.

The testbench used for the nutritional solution modules (NSM) (BARBIERI
et al., 2021), depicted in Figure 20 (BARBIERI et al., 2021), is a double stock
open system, which means that only pH and EC are controlled throughout
each cycle. Therefore, for each irrigation, a new solution is produced. Several
sensors and actuators are used in the testbench: eight level sensors, a pH
sensor, an electrical conductivity (EC) sensor, a valve, five pumps, and an air
compressor. So that these assets have standardized names that comprise one
character and three numeric digits, the character indicates the asset’s type,
such as L for level sensors and P for pumps. The first and second numeric
digits represent the assembly unit and the tank in which it is placed. Finally,
the third digit is reserved for digital level sensors; it specifies whether the
sensor is high-level (equals zero) or low-level (defined as one).

The NSM consists of two subsystems: filtration unit and recipe preparation
unit. The filtration unit is initialized when the V110 solenoid valve is activated,
filling the T110 tank with tap water. When both level sensors of the first tank
are triggered, the P110 pump supplies the water into the F110 inverse osmosis
filter to reduce its chloride and TSS content. The subsystem is finished when
the T120 tank is filled with freshly filtered water. In the recipe preparation,
the C200 air compressor agitates the fertilizer tanks T220 and T230 to prevent
the concentrated nutrients from settling down. Air is also delivered to the

60

Figure 20: Piping and instrumentation diagram for nutrient solution module

Source: Adopted from (BARBIERI et al., 2021).

T240 mixing tank for mixing the nutrients during the solution preparation. On
tanks T210 (acid stock), T220, and T230 (A and B stocks), a low-level sensor is
installed to alert the operator when the acid and concentrated nutrients need
to be refilled. Acid and nutrients are delivered via peristaltic pumps P210,
P220, and P230 to control the pH and EC of the fluid. The solution’s data in
the T240 tank is monitored by three sensors, Q240, A240, and L240, which
are used to measure the pH, EC, and level, respectively.

The state machine diagram of the NSM is shown in Figure 21. The first
two states were set to fill the first two tanks, T110 and T120. Then, filtered
water is sent to the T240 mixing tank to start the preparation of the solution.
However, the three tanks, T110, T120, and T240, must be filled to speed up
the ascending solution production before continuing the process. Due to the
module’s responsibility for managing two distinct nutrient solutions, a partic-
ular EC and pH target value is given depending on the considered sample of
plants. Throughout the subsequent phases, the C200 air compressor will be
active. Firstly, the Ec value will be controlled; for that, the pumps P220 and
P230 will be activated until the value measured by the sensor is the one set
by the operator. The pH control will be carried out in the next state, starting
the P210 pump and pumping the acid stock into the solution. After stabilizing
the Ec and pH in the range indicated by the user, C200 is deactivated. This
process concludes one of the cycles so that the nutrient solution is ready and
can be stored for future use. The system can start a new cycle, but now from

61

Figure 21: State machine diagram of the NSM

Source: Adapted from (BARBIERI et al., 2021).

the "Filling Tank 240" state.
The automation of the production of the nutrient solution is of paramount

importance to achieve the system goals. It demands continuous monitoring of
several process variables using different sensors and remote control to ensure
the proper sequence of production steps described in the state machine. Using
heterogeneous devices with specific sensors and actuators should allow the
process to occur autonomously and safely. Therefore, three IIoT devices are
identified in the case study presented above, each communicating using a
different communication protocol. The sensors and actuators are connected
to these devices. As depicted in Figure 22, three groups corresponding to
three different communication protocols (DDS, MQTT, and OPC UA) can be
identified by the colors orange, blue, and red.

The next chapter will describe the implementation of the developed mid-
dleware using ontologies, communication translators, and digital representa-
tions. The use case described above will be adopted to illustrate how sensors
and actuators connected via distinct communication can interoperate using
the concepts proposed in this work.

62

Figure 22: Use Case Assets Grouping

Source: The author.

63

6 IMPLEMENTATION DETAILS

This chapter presents the implementation that was developed in order to
validate the proposal presented in the previous chapters. The selected tech-
nologies and implementation details are discussed, showing how the proposed
ideas can be deployed using state-of-the-art technologies.

6.1 Selected technologies

The approach used to implement the IIoT middleware discussed in this
work is composed of two parts: system description and system execution.
Each part is treated individually throughout this section. In addition, selected
software and hardware components are presented.

6.1.1 Description Part

Figure 23: Description part of the project‘s approach.

Source: The author.

The first part comprises the description of the system. The IIoT ontology

64

presented in section 4.3 is first described using Protégé software (Stanford,
2022). Protégé was selected since it is one of the most adopted tools for this
purpose. Based on this generated ontology, an end-user, typically an automa-
tion engineer or similar, will then be able to instantiate the components of a
particular industrial plant, such as sensors, actuators, PLCs, etc. The descrip-
tion should also include the IIoT device’s data structure and communication
characteristics. After modeling the ontology, it generates two configuration
files, JSON and YAML Ain’t Markup Language (YAML) formats. One of these
files describes the communication characteristics of all IIoT nodes in the sys-
tem, comprising MQTT URL, port, and topics, for example. The other will
identify each device’s communication protocol, sensors, and actuators with
their respective data dependencies. These files are vital for configuring the
gateway’s communication protocol translator scripts, which will be described
later in this chapter.

Additionally, based on the use case description using the IIoT ontology,
the user creates the asset’s digital representation using the Siemens OPC UA
Modeling Editor (SiOME) (SIEMENS, 2022). The description follows the OPC
UA information model and is then used by SiOME to generate an AAS model
compatible with the OPC UA protocol. After elaborating the model in the
editor, the file is converted to the "OPC UA Nodeset XML schema" (Node-
set2.xml). Then, the open62541 library (OPEN62541, 2021) transforms the
model (file extracted from SIOME) into a .c file that will be the basis of the
OPC UA server.

It is important to note that the use case description must be adjusted in
case the user adds a new sensor/actuator to a node or a new device to the
system. If not, the gateway’s configuration files will lead to communication
and syntactical errors.

6.1.2 Execution Part

Figure 24: Execution part of the project‘s approach.

Source: The author.

The execution part (Figure 24) can start right after the modeling part is
done. Configuring the servers and brokers for the communication protocols

65

is the first step in the execution. Given that the middleware uses AAS and
consequently OPC UA for its operation, an OPC UA server must be configured
and initialized. The OPC UA server is created using the open62541, an open-
source C implementation of OPC UA that is initialized using the parameters
from the SIOME software file. Two additional communication protocols were
also established to be compatible with the gateway: Eclipse Mosquitto and
Robot Operation System 2 (ROS2) (ROS2, 2021).

Eclipse Mosquitto, an open-source server implementation for MQTT ver-
sions 5.0, 3.1.1, and 3.1, was installed and configured using the ontology-
based configuration files. It was chosen as it is widely used for embedded
computers or microcontrollers, such as raspberry pi. This broker also provides
SSL support for encrypted network connections and authentication, essential
for industrial applications.

Furthermore, the Robot Operating System 2 (ROS2) Galatic version was
installed in the gateway, a set of software libraries and tools for building robot
applications. The ROS2 framework was chosen since it uses the DDS proto-
col for serialization and transport messages and device "discovery" and has
become a widely utilized platform across many robotic applications, allowing
manufacturers to eliminate outmoded equipment and tailor a robot’s software
to their preferences. ROS2 enables DDS communication protocol publishers
and subscribers to communicate through peer-to-peer communication, creat-
ing a mesh network without nodes relying on a master.

With the servers and brokers configured and initialized, the protocol trans-
lator scripts are started using the two ontology-based configuration files. The
translators were developed within a ROS 2 workspace explicitly set to store
and run these converters and dedicated scripts for device simulation. Each
of the translators is executed as a ROS2 node so that several translators may
execute simultaneously or individually as a single process.

As discussed in the previous chapter, SCADA like software was adopted
to implement a friendly user interface. The NodeRED (O’LEARY; CONWAY-
JONES, 2016) tool was selected for this purpose. With all the communication
dependencies set, the user opens a NodeRED dashboard hosted by the same
gateway. The developed SCADA like allows easy data monitoring and pro-
vides simple user interfaces for executing commands from the terminal, such
as device simulation scripts, or for starting/closing communication protocols
brokers/servers.

Additionally, a local database, using influxDB, is used to store system data
for future analysis. This database was chosen since its primary use is for mon-
itoring applications’ data, with a high volume of queries and writes per sec-
ond without causing much impact on the operating system. It also allows for
adding labels to the data before saving it, such as for specific communication
protocols or device types (sensor or actuator), enabling easy data filtering.

Finally, the system can receive and forward data from/to the heterogeneous
devices described in the ontology. The user can connect to the nodes or use
the SCADA like system to execute digital twin scripts to start the experiments.
The middleware enables the system to function autonomously until prompted

66

to stop by the user.

6.2 System Architecture Overview

Figure 25: Actual System Overview.

Source: The author.

Three communication protocols were selected for testing the developed
middleware: DDS, OPC UA, and MQTT. The OPC UA and DDS protocols are
widely adopted in industrial applications as they are Industry4.0 standards.
Each communication protocol follow a different communication pattern; OPC
UA is based on the client-server communication paradigm, while DDS uses
the publish-subscribe. Furthermore, the MQTT protocol is chosen since it is
broadly used in IoT applications and has been widely deployed in industrial
settings due to its ease of implementation and wide range of compatible de-
vices. By selecting industrial communication protocols that follows different
communication schema, it was possible to demonstrate the flexible and inter-
operable way the middleware can be configured.

Three simulated devices (Figure 22) were defined to validate the interop-
erable middleware functionalities. Each node has at least five sensors and
actuators, which communicate by one of the communication protocols. The
simulation scripts use the ontology’s equipment characteristics to simulate its
behaviors. The three devices constantly monitor sensitive data for their oper-
ation and transmit relevant data to their respective broker or server whenever
an update occurs. Acting accordingly to the pattern of the case study (Figure
21) selected for this work and presented in Chapter 5.

The OPC UA device script is implemented using the open62541 library and
connects an OPC UA client to its corresponding gateway’s server. The client
sends updated data from its sensors and actuators using write functions to
specific server positions, storing all current data on the server and available to
other devices when required. Moreover, it constantly queries for dependency

67

data updates, as this information is directly related to the correct functioning
of the equipment.

The DDS and MQTT device’s scripts follow a similar pattern as both are
based on the publish-subscribe model. Initially, the broker’s parameters are
configured and as soon as the communication is established, the client sub-
scribes to the topics related to sensors and actuators whose information is
essential for the device’s operation, following the standard from section 4.6.1.
The MQTT client is based on the paho python MQTT library (Eclipse Foun-
dation, 2021), while the DDS was implemented using a ROS2 publisher and
subscriber node. Both clients publish their data whenever modified, using the
topic with their simulated device id. MQTT uses the JSON format (Figure 18),
while the DDS uses the IDL structure (Figure 19) for its messages.

The interoperability middleware was deployed on a gateway based on a
raspberry pi 4 with 8GB of RAM and 32 GB SD memory card, running Ubuntu
Server 20.04 LTS (Canonical Ltd, 2021). The gateway includes the commu-
nication protocols brokers (DDS and MQTT) and server (OPC-UA), two bridg-
ing mechanisms for industrial communication protocols, a local database for
storing the system data (InfluxDB), and a SCADA like (NodeRed dashboard)
system to configure, monitor, and act during the simulation. Due to these
characteristics, this gateway can be classified as an edge-enabled IIoT gate-
way (PAPCUN et al., 2020).

6.3 IIoT Ontology

As described in section 4.3 the IIoT ontology proposed in this work com-
bines different existing ontologies. The implementation of the IIoT ontology
started with the study of international standards, including the IEEE, through
technical documents. Besides the standards, literary research on widespread
ontologies for IoT applications, sensors, and relevant aspects to our approach.
After a well-structured database, the ontology was firstly defined using the
Protégé software. Protégé made it possible to develop classes and their prop-
erties to create a common language for different devices.

Throughout this work, the ontology was adapted according to the project’s
needs adding industry-specific data so that it now has 482 classes and 47
object property values. The IIoT ontology has similar numbers to other ontolo-
gies described in the literature, such as m3-lite and fiesta IoT, which have 451
and 484 classes and 5 and 30 object counts, respectively.

Figure 26 presents some of the classes developed for the ontology. Some of
these classes are specific to adding AAS information, such as DFBody and DF-
Header. Several classes specify the equipment’s communication parameters
since these are essential data for IIoT applications. It is worth mentioning the
CommunicationProtocol class indicates the adopted communication protocol,
and the configurations class defines the communication’s server and broker in-
formation, such as URL, port, username, and password. In addition to these,
the Data class and its subclasses are of paramount importance. They describe
important information related to sensors and actuators measured data, such

68

Figure 26: IIoT Ontology Classes in Protégé software.

Source: The author.

as range, units, etc. This information is used to assemble the messages that
will be transferred between system nodes.

The IIoT ontology was also based on IEEE international standards, such as
the SUMO top-level ontology. Some of the classes inherited from the standard
were: Physical and Abstract. These classes are super-classes to all others
defined in the ontology, dividing the model into these two categories. The
Physical subclasses are shown in Figure 28, whereas the Abstract subclasses
are shown in Figure 27. Both images were generated in the Protégé software
using OWLViz, which it is possible to observe the ontology graphically for a
better understanding.

6.4 AAS

After describing the case study with the developed ontology, the SiOME
software was used to produce the AAS models for each asset.

An example of an AAS is the AAS_A240 which is an Ec sensor as defined in
chapter 5 that was modeled in SiOME, as depicted in Figure 29. This sensor
has the ProcessVariableCurrentValue, and ProcessVariableRange submodules
explicitly developed for this project, which was presented in the 4.4 section.
Each submodule has several static properties based on ontology data and a
variable one, the current sensor’s measurement value (Value property of the

69

Figure 27: IIoT Ontology Abstract Subclasses in Protégé software.

Source: The author.

Figure 28: IIoT Ontology Physical Subclasses in Protégé software.

Source: The author.

ProcessVariableCurrentValue submodule).

As an example for actuators, it can be considered the AAS_P230 shown in

70

Figure 29: Screenshot of AAS_A240 in SiOME.

Source: The author.

Figure 30: Screenshot of AAS_P230 in SiOME.

Source: The author.

Figure 30. It is noticeable that this AAS is more straightforward compared to
the AAS_A240 sensor (Figure 29) since the first one has only one submodule,
which corresponds to the Status of the actuator. The AAS_P230 represents
the asset P230, an on/off pump whose current value is easily represented by a
Boolean variable. This value is presented by the Value property of the Status
submodel.

After the modeling phase, the description is converted to a .c file using
the open62541 library. The converted file is used in the OPC UA Aggregation
Server since its information model is based on the AAS model. Therefore, all
assets’ data are stored on the server hosted by the gateway.

Finally, an OPC UA server was built with the open62541 library and initial-
ized based on the model described in the .c file. The UaExpert software, a full-

71

Figure 31: Screenshot of OPC UA server in UaExpert Software.

Source: The author.

featured OPC UA Client, is used to check whether the assets and submodules
were appropriately created. Figure 31 presents the OPC UA server informa-
tion in the UaExpert software for the AAS_A240 based on the model defined
in SiOME (Figure 29). All submodels and properties proposed in SiOMEare
included on the server; therefore, both are compatible and appropriately cre-
ated. After this, it is possible to read and write data utilizing scripts with OPC
UA clients connected to this server.

6.5 Communication Translators

Essential files and scripts for the functioning of the proposed middleware
were developed and stored in a ROS2 workspace, named iiot_ws, that was
dedicated to this project. Two packages were created within the workspace:
iiot_interfaces and opcua_bridges. The iiot_interfaces packet includes the pro-
posed IDL data types files (Figure 19) that allow data exchange via the DDS
protocol, which is the basis for communication between ROS2 nodes. The
opcua_bridges comprises the protocol translators, the configuration files, com-
munication certificates, and the simulated device scripts.

As stated in section 4.2.1, the proposed middleware was validated using
three communication protocols. Furthermore, one of these protocols serves
as an intermediary protocol, reducing the number of translators required. The
OPC UA was selected as its server is already used to store asset data through
its AAS. As a result, two translators are required, one for DDS and the other
for MQTT, both of which must be translated to OPC UA and are bidirectional.

The two developed communication protocol translators are the MQTT-OPC

72

UA Bridge (MOB), using the paho python MQTT library, and the DDS-OPC UA
Bridge (DOB), based on the opcua-asyncio library. The bridging mechanisms
are written in Python and run as independent ROS2 nodes. The two converters
use the files developed by the use case description (Chapter 5) using the IIoT
ontology for its configuration.

Figure 32: Ontology JSON config file.
1 {
2 "device":[
3 {
4 "name": "Device01",
5 "commProtocol": "DDS",
6 "sensors": ["L110","L111","L120","L121"],
7 "actuators": ["V110","P110"],
8 "dependency": ["P120","L240"]
9 },

10 {
11 "name": "Device02",
12 "commProtocol": "MQTT",
13 "sensors": ["A240","Q240","L240"],
14 "actuators": ["P120", "C200"],
15 "dependency": ["L110","L120","L121","P210","P220","P230

"]
16 },
17 {
18 "name": "Device03",
19 "commProtocol": "OPCUA",
20 "sensors": ["L211","L221","L231"],
21 "actuators": ["P210", "P220", "P230"],
22 "dependency": ["A240", "Q240", "L240","C200"]
23 }
24]
25 }

Source: The author.

The ontology.json is depicted in Figure 32; it has a primary element "de-
vice" (Fig. 32, line 2) that contains relevant information about the devices
used in the proposed system. This device’s information include the device’s
name (Fig. 32, lines 4/11/18), the adopted communication protocol (Fig. 32,
lines 5/12/189), and an identification number for its sensors (Fig. 32, lines
6/13/20), actuators (Fig. 32, lines 7/14/21), and dependencies (Fig. 32, lines
8/15/22). It is worth mentioning that the dependencies are essential data for
the device’s functioning. So that the data referring to specific dependencies
sensors and actuators, when updated, will be forwarded to the corresponding
equipment.

The other configuration file, config.yaml, is presented in Figure 33. This
file contains data regarding the necessary configurations to establish commu-
nication with the InfluxDB server, the MQTT broker, and the OPC UA server.
For example, the broker’s URL, port, user, password, and security certificates’
location are described for the MQTT protocol (Figure 33, lines 2-8).

In addition to the configuration files already presented (Figure 32 and 33)
the protocol translators use a dictionary file for their operation. The dictio-

73

Figure 33: Ontology YAML config file.
1 mqttConfig:
2 broker: localhost
3 port: 8883
4 user: iiot
5 passwd: interoperability
6 ca_cert_path: ../certificates/ca/ca.crt
7 cli_cert_path: ../certificates/client/iiotGateway.crt
8 cli_key_path: ../certificates/client/iiotGateway.key
9 opcuaConfig:

10 server: "opc.tcp://localhost:4840"
11 influxdbConfig:
12 url: "http://localhost:8086"
13 token: "##"
14 org: "IIoIT"
15 bucket: "dissertationDB"

Source: The author.

nary indicates the OPC UA server’s node id and data type for each sensor and
actuator. Such node id and data type are required to use the write or read
functions from the OPC UA protocol.

Both developed translators, MOB and DOB, are based on publisher and
subscriber standard protocols. As a result, the structure of the converters
follows a similar concept. Figure 1 presents the flowchart used for the trans-
lators.

Algorithm 1 Translator algorithms flowchart.

The first step comprises the configuration of the DDS or MQTT broker and
the OPC UA server. Then, in step 2, the client subscribes to the topics of its
dependencies, and a handle is created to monitor the update of its dependency

74

data directly from the OPC UA server. In the following step, the system waits
until a new message arrives. When a message is received, the sender is veri-
fied to check if it comes from an MQTT/DDS node (identified as PubSub in the
flowchart) or an OPC UA handler.

In case the data comes from a PubSub node, it is parsed, and the dictionary
is used to check the node id for each sensor and actuator (step 6). The write
function then sends the device data to the appropriate OPC UA server in the
next step. The system returns to step 3 once the sending is completed.

However, in case the data received in step 3 refers to an OPC UA handle,
the system will jump to step 7, where the topic referring to the sensor or
actuator of the received data will be verified using the dictionary. The data
will then be sent to a DDS or MQTT broker using the topic. After sending the
message, the system returns to step 3.

6.6 SCADA

As mentioned in earlier chapters, to implement a friendly user interface,
SCADA like software, a system widely used in the industry for its ability to
control different functions and monitor various parameters, was developed.
This software allows for monitoring and controlling an autonomous system in
the context of agriculture – the Use Case described in Chapter 5.

Figure 34: Screenshot of the developed SCADA like software.

Source: The author.

The system is presented in Figure 34; it comprises an image of the nu-
trient solution module and UI gadgets, such as buttons and switches (node-
red-dashboard), that allow the user to control the application remotely. The
operator can monitor the status of valves and pumps, as well as the values
measured by digital and analog sensors. The control functionalities are al-
lowed by executing multiple scripts, such as starting the OPC UA server or

75

simulating the devices proposed in subsection 6.2. Furthermore, the user can
configure the InfluxDB point’s name where the experiment data is stored.

As previously mentioned, the SCADA like software was deployed using the
Node-Red dashboard (Node-RED Org, 2016), hosted in the gateway. The sys-
tem has two parts: the use case visualization and the execution of specific
commands. The first (Figure 35) is responsible for displaying an image of the
nutrient solution module, in SVG format, on the dashboard using the node-
red-contrib-ui-svg library (BARTBUTENAERS, 2019), which allows modifying
different aspects of the image using input data. In addition, several blocks are
used, named with the OPC UA node id, whose function is to read data from
the assets stored in the OPC UA server, node-red-contrib-opcua (KARAILA;
LANDSDORF, 2019). This information is used to input a Javascript (JS) script
that updates the Scalable Vector Graphics (SVG) image with sensor and ac-
tuators data. In addition, data from the A240, Q40, and L240 sensors are
graphically presented.

Figure 35: NodeRED block flow for creating and updating SVG data.

Source: The author.

The second part, the execution of specific commands (Figure 37), allows
the operator to execute several scripts directly in the operating system through
the exec nodes, represented by the color red. JS function blocks, blocks in or-
ange, were developed to verify if the buttons were pressed and if the switches
were activated. If the checks are valid, the scripts are executed. Two but-

76

Figure 36: NodeRED block flow for executing scripts in terminal.

Source: The author.

tons were created to facilitate the execution of the experiments. The START
SIM button, when activated, starts the protocol translators’ scripts and, after
a delay of 2.5 seconds, starts the scripts for the three devices, starting the
simulation. On the other hand, the RESET SIM button disables the protocol
converters and scripts from the devices and returns the OPC UA server to its
initial values.

77

7 EXPERIMENTS AND RESULTS

In this chapter the experiments conducted to validate the proposed mid-
dleware are described. Before executing the experiments, a tool was used
to evaluate if the ontology presented in this work is correctly described. Us-
ing the system implementation described in section 6.2, a simple automation
system to a simulated version of the use case described in chapter 5 was de-
veloped and some footprint and runtime characteristics such as the gateway’s
performance, the time required to complete protocol translations, and others
were evaluated.

7.1 Ontology Evaluation

As a first step, it was evaluated whether the IIoT ontology was appropri-
ately constructed and complained to OWL standards. For this purpose, a
public domain tool that scans ontologies and checks for potential problems
was used, OOPS! (OntOlogy Pitfall Scanner!) (POVEDA-VILLALÓN; GÓMEZ-
PÉREZ; SUÁREZ-FIGUEROA, 2014). This tool detects the most common pit-
falls in OWL documents, using the ontology URI or its RDF code.

Several problems might occur when modeling an ontology, as the developer
has to create different classes and properties. Therefore, it is important to
check the consistency of a designed ontology, such as the one developed in
this work, before sharing it with implementation flaws. Some of the pitfalls
verified by OPPS! are the following:

• The intersection of two or more classes is defined as the domain or range
of a relationship. If those classes could not exchange instances, this
warning could prevent difficulties with reasoning.

• The identifiers of the ontology elements do not follow any naming con-
vention. The ontology’s maintainability, accessibility, and clarity could
all be improved in this scenario.

In addition, errors are classified according to their impact on the ontology:
critical, important, and minor. Ontologies that have recognized critical pitfalls
should be fixed before being shared with other users, as these issues might
impair the consistency, reasoning, application, and other aspects of the ontol-
ogy. On the other hand, important and minor errors do not significantly impact

78

the ontology. However, it is interesting that errors classified as important are
also fixed.

Figure 37: Screenshot of the IIoT ontology OOPS! results.

Source: The author.

Only minor pitfalls were identified when applying the OOPS! tool to the
IIoT ontology, such as missing annotations and employing alternative naming
conventions. It is noteworthy that some of these pitfalls came from ontolo-
gies that were taken from the literature. Therefore, they were not corrected
since it would not bring essential benefits to the project and would change
ontologies developed by other authors and already used in other works.

7.2 Use case simulation

The findings of the case study experiment are described in this section. The
objective of these simulations is not for performance evaluation compared to
related works, but to analyze the feasibility and viability of this dissertation
proposed methodology on off-the-shelf hardware. To reproduce the use case
simulations, the implemented SCADA like software (Figure 38) plays a vital
role, as already mentioned in the previous chapters, since it is through it that
the user can start the OPC UA server, protocol translators, and device scripts.
Moreover, the software also allows the operator to monitor the exchanged
data from sensors and actuators through the end devices. These experiments
enabled the analysis of several aspects of the system, three of which will be
evaluated:

• The simulation’s conformance to the use case’s predicted behavior pat-
tern.

• The gateway’s performance in terms of Central Processing Unit (CPU)
and memory usage.

• The time required to complete the communication protocol translations.

A statistical analysis was performed to calculate the number of repeti-
tions (samples) necessary for the experiment. The analysis was based on
a significance level α = 0.05, representing a confidence interval equal to
1 − α = 0.95 = 95%. Data regarding the gateway’s performance experiments
was used for calculating the minimun number of repetitions for the experi-
ments (n). The standard deviation for CPU and RAM memory was σ ≈ 0.32

and σ ≈ 0.39, that equals to n = 19. Then, 20 repetitions of the experiment
were performed, each one lasting twenty minutes.

79

Figure 38: Screenshot of the Case study Simulation executing in the devel-
oped SCADA like.

Source: The author.

7.3 Simulation’s conformance to the use case

The three scripts that emulate the tangible assets are employed in the ex-
periments. These scripts represent the active component of a digital twin’s
virtual representation of an asset. The communication bridges translate the
process data from the three devices and store it in the OPC UA server. The
SCADA like system collects data from devices via the OPC UA server and al-
lows users to keep track of their current state. All experiment data is saved
locally at the specified InfluxDB point. Figure 39 depicts the information from
all sensors and actuators from the three devices during the twelfth experi-
ment.

Evaluating the data within the sample period makes it possible to identify
seven plateaus: each indicates the pH = 7 (water pH value) of the solution
in "Tank 240." This process occurs at the start of the nutrient solution man-
ufacturing cycle. As a result, it is possible to state that seven solutions were
created throughout the experiment. Subsequently, at least one production
cycle could be completed, ensuring that the devices communicate with one
another through different protocols. This demonstrated that the simulation
process was executed as expected by the case study.

Furthermore, since InfluxDB adds tagging techniques, the user may also
filter data according to the device’s connection protocol, asset ID, and type
(sensor or actuator). It is possible, for example, to filter data from a partic-
ular set of actuators communicating by MQTT protocol such as described in
(Figure 40). Therefore, this communication protocol filter becomes a power-
ful tool to support developers in analyzing the correctness of the implemented
system.

80

Figure 39: Simulation data from 12th experiment execution in influxDB.

Source: The author.

81

7.4 Gateway Performance

As already indicated, one of the aspects to be evaluated is the performance
of the gateway that was implemented on a Raspberry Pi 4. During the experi-
ment, the gateway includes all necessary software infrastructure for executing
the three communication protocols mentioned previously in this work (DDS,
MQTT, and OPC UA). It also included the scripts for the devices and protocol
translators.

The Glances tool was utilized to assess CPU and memory performance in-
formation. Glances is a Python-based cross-platform monitoring application
that uses the psutil package. Its interface provides information about system
features such as processor usage (per Core, per processor), Random access
memory (RAM) and swap memory usage, processor load, etc. This platform in-
cludes an XML-RPC server and a RESTful JSON API that can be used by other
client software. It also allows the user to export system statistics to Comma-
Separated Values (CSV), InfluxDB, Cassandra, and OpenTSDB, among other
formats and servers.

The system performance results obtained in the twenty experiments were
saved as a CSV file for further analysis. As already mentioned, for each exper-
iment the CPU and RAM usage was averaged for the whole execution time.
Data samples are depicted in Figures 41 and 42, respectively, for CPU and
RAM performance.

As it can be observed, the average CPU usage was below 10% (more pre-
cisely between 8,81 to 9,97%) and the average RAM usage was below 17%,
indicating that the overhead caused by the proposed gateway is low. That
suggests that the middleware may be used in a more extensive system than
the one described, with a more significant number of assets. Such scalability
assessment of the middleware is beyond the scope of this dissertation, whose
goal was to propose the interoperability middleware architecture and validate
it using a case study.

7.5 Execution time for protocol translations

Several I4.0 applications are time critical, therefore an investigation on the
required time for converting the proposed industrial communication protocols
using the developed translators has been conducted. Initially, the time for
exchanging messages between devices using the same protocol was evaluated.
In the sequence, a similar analysis with devices communicating via distinct
communication protocols using the MOB or DOB translators was conducted.

To standardize the tests, all messages exchanged during the simulation
contained data from five sensors/actuators that remained unchanged during
execution. It’s worth noting that nodes using the DDS and MQTT protocols
can convey all five pieces of data as a single message. However, OPC UA
clients must write or read one variable at a time. The study was conducted by
timestamping the database’s recorded data. The average communication time
and the jitter was calculated for fifty interactions for each protocol.

82

Testing devices using identical communication protocols determined that
the delay between a publisher submitting a message and a subscriber receiv-
ing it was 2 ms for the DDS and MQTT protocols with a jitter not detectable
with the timestamp resolution. In the case of the OPC UA protocol, the time
required for writing data to the server and then reading was 3ms. Therefore,
writing and reading the five pieces of information was concluded in fifteen
milliseconds. According to the DOB translation testing findings, it took 17ms
from publishing a message by the DDS publisher until this data arrives on the
OPC UA server. And for the MOB translator is required 32 ms to read data
from an MQTT publisher into the OPC UA server.

After verifying the values obtained during the experiments, it is possible
to identify that the times required to perform the protocol conversions are,
as expected, higher when compared to the communication time with devices
with the same protocol. However, the time required is still in the sub-second
range; they are compatible with the requirements of a variety of industrial
applications, including the suggested use case.

83

Figure 40: Simulation data from 12th experiment in influxDB using data filter-
ing.

Source: The author.

84

Figure 41: Average gateway‘s CPU usage during each experiment.

0 5 10 15 20

8.8

9

9.2

9.4

9.6

9.8

10

9.48

9.18
9.23

8.98

9.25

9.01

9.5

9.2

9.09

9.46

9.97

9.81

9.54
9.45

9.5

8.81

9.31

9.45

9.19

8.81

Number of the experiment

A
ve

ra
g

e
C

P
U

U
sa

g
e

(%
)

Source: The author.

Figure 42: Average gateway‘s RAM usage during each experiment.

0 5 10 15 20

16

16.5
16.55

16.12

16.85

16.32

16.84

15.77

16.67

16.07

16.59

15.78

16.78

16.53

16.11

16.36

15.94

15.63

15.81

16.43

15.92

15.78

Number of the experiment

A
ve

ra
g

e
R

A
M

U
sa

g
e

(%
)

Source: The author.

85

8 CONCLUSIONS AND FUTURE WORKS

This work presents a middleware development for IIoT gateways whose
primary goal is to solve interoperability problems in Industry 4.0 domain ap-
plications. Its approach adopts ontologies based on international standards
(IEEE) and ontologies widely used in the research area, combined with stan-
dardized digital representation (AAS) and communication protocols transla-
tors to mitigate device, syntactical and semantic interoperability issues.

Using a semantic model, the so-called IIoT ontology, the user can define a
system at a high level of abstraction, with the depth required for each project,
promoting a system-wide vocabulary for addressing semantic issues. Combin-
ing the system description with protocol translators allows for an industrial
design with multiple assets enabling an interoperable operation using hetero-
geneous communication protocols and data structures. Besides, it also pro-
vides a digital representation of the industrial assets’ most relevant informa-
tion through the asset administration shell (AAS) concept. In this way, an as-
set’s digital version is created (digital twin). Hence, the proposed middleware
improves the development of industrial automation applications by reducing
the time required to build new applications and facilitating the development
of maintenance applications.

The middleware was deployed on low-cost embedded hardware architec-
ture and validated using a simulated use case. The simulations were con-
ducted using SCADA like software developed specifically for this work, which
allows the end-user to perform online monitoring of the system. During the
experiments, several metrics were assessed, including the gateway’s CPU and
memory usage and relevant timing information on the messages exchanged
between system devices. Furthermore, a software was applied to the IIoT
ontology to detect the most typical mistakes in ontology development.

The simulation results indicate that combining the IIoT ontology with AAS
is beneficial for dealing with interoperability concerns in industrial applica-
tions. The obtained gateway’s performance was adequate for the application
and that the proposed concepts for protocols translation allowed a smooth
communication. The ontology verification stated that the IIoT ontology was
developed according to standards and just required minor tweaks, such as
adding comments to classes. The functionality of the developed protocol trans-
lators was also proven, which allowed the conversion of Industry 4.0 commu-
nication protocols standards: DDS, OPC UA, and MQTT.

86

The two main contributions of this work are a general Industry 4.0/IIoT ori-
ented ontology based on international standards and a middleware implemen-
tation that combines the developed ontology with AAS to mitigate interoper-
ability problems in an industrial environment. The middleware was evaluated
in a specific use case. Still, its structure was designed for general industrial
applications, allowing the system’s diversity, such as the number of devices,
the communication protocols, and hardware architecture.

Some possible future work activities that can be developed based on the
results obtained in this work are:

• Deploy the gateway used in the simulated use case in a physical plant.
The results from both experiments should be compared to increase the
confidence in the simulated use case directly in the middleware.

• Extend the IIoT ontology’s implementation to other areas of application,
having expert domains adding new classes and properties.

• Perform a more detailed description of the assets to create a digital twin
similar to its physical form, as possible, by adding new submodules in its
AAS.

• Automatic generation of the AAS model files autonomously using a parser
based on the ontology configuration files.

• Perform intervention time-series analyses of the industrial assets’ data
stored in the database through its timestamp.

87

REFERENCES

63088.(2017)., I. P. Smart Manufacturing–Reference Architecture
Model Industry 4.0 (RAMI4. 0). 2017.

AAZAM, M.; ZEADALLY, S.; HARRAS, K. A. Deploying fog computing in
industrial internet of things and industry 4.0. IEEE Transactions on
Industrial Informatics, [S.l.], v.14, n.10, p.4674–4682, 2018.

AGARWAL, R. et al. Unified IoT ontology to enable interoperability and
federation of testbeds. In: IEEE 3RD WORLD FORUM ON INTERNET OF
THINGS (WF-IOT), 2016., 2016. Anais. . . [S.l.: s.n.], 2016. p.70–75.

AL-FUQAHA, A. et al. Toward better horizontal integration among IoT
services. IEEE Communications Magazine, [S.l.], v.53, n.9, p.72–79, 2015.

ANTONIOU, G.; HARMELEN, F. v. Web ontology language: owl. In:
Handbook on ontologies. [S.l.]: Springer, 2004. p.67–92.

ARM, J. et al. Automated design and integration of asset administration shells
in components of industry 4.0. Sensors, [S.l.], v.21, n.6, p.2004, 2021.

ATZORI, L.; IERA, A.; MORABITO, G. Understanding the Internet of Things:
definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc
Networks, [S.l.], v.56, p.122–140, 2017.

BABUN, L. et al. A survey on IoT platforms: communication, security, and
privacy perspectives. Computer Networks, [S.l.], v.192, p.108040, 2021.

BADER, S. R.; MALESHKOVA, M. The semantic asset administration shell. In:
INTERNATIONAL CONFERENCE ON SEMANTIC SYSTEMS, 2019. Anais. . .
[S.l.: s.n.], 2019. p.159–174.

BAKKEN, D. E. Encyclopedia of distributed computing. Kluwer Academic
Press, 2001, ch. Middleware, [S.l.], 2001.

BANDYOPADHYAY, S. et al. Role of middleware for internet of things: a study.
International Journal of Computer Science and Engineering Survey,
[S.l.], v.2, n.3, p.94–105, 2011.

BANKS, A.; GUPTA, R. MQTT Version 3.1. 1. OASIS standard, [S.l.], v.29,
p.89, 2014.

88

BARBIERI, G. et al. A mathematical model to enable the virtual
commissioning simulation of wick soilless cultivations. J. Eng. Sci. Technol,
[S.l.], v.16, p.3325–3342, 2021.

BARNSTEDT, E. et al. Details of the asset administration shell. Tech. Rep.,
[S.l.], 2018.

BARRICELLI, B. R.; CASIRAGHI, E.; FOGLI, D. A survey on digital twin:
definitions, characteristics, applications, and design implications. IEEE
access, [S.l.], v.7, p.167653–167671, 2019.

BARTBUTENAERS. node-red-contrib-ui-svg. Available at:
<https://github.com/bartbutenaers/node-red-contrib-ui-svg>. Accessed on:
16 march 2022.

BENITEZ, G. B.; AYALA, N. F.; FRANK, A. G. Industry 4.0 innovation
ecosystems: an evolutionary perspective on value cocreation. International
Journal of Production Economics, [S.l.], v.228, p.107735, 2020.

BERMUDEZ-EDO, M. et al. IoT-Lite: a lightweight semantic model for the
internet of things. In: INTL IEEE CONFERENCES ON UBIQUITOUS
INTELLIGENCE & COMPUTING, ADVANCED AND TRUSTED COMPUTING,
SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA
COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS
(UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016., 2016. Anais. . .
[S.l.: s.n.], 2016. p.90–97.

BERNERS-LEE, T. Weaving the Web: the original design and ultimate
destiny of the world wide web by its inventor. [S.l.]: Harper San Francisco,
1999.

BOUTER, C. et al. Towards a Comprehensive Methodology for Modelling
Submodels in the Industry 4.0 Asset Administration Shell. In: IEEE 23RD
CONFERENCE ON BUSINESS INFORMATICS (CBI), 2021., 2021. Anais. . .
[S.l.: s.n.], 2021. v.2, p.10–19.

BOYES, H. et al. The industrial internet of things (IIoT): an analysis
framework. Computers in industry, [S.l.], v.101, p.1–12, 2018.

BRAY, T. The javascript object notation (json) data interchange format.
[S.l.: s.n.], 2014.

BRETTEL, M. et al. How virtualization, decentralization and network building
change the manufacturing landscape: an industry 4.0 perspective.
International Journal of Information and Communication
Engineering, [S.l.], v.8, n.1, p.37–44, 2014.

BUDAKOTI, J.; GAUR, A. S.; LUNG, C.-H. IoT gateway middleware for SDN
managed IoT. In: IEEE INTERNATIONAL CONFERENCE ON INTERNET OF
THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND

89

COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND
SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA),
2018., 2018. Anais. . . [S.l.: s.n.], 2018. p.154–161.

BUTUN, I. et al. Industrial IoT. [S.l.]: Springer, 2020.

Canonical Ltd. Ubuntu Server 20.04 LTS. Available at:
<http://ftp.jaist.ac.jp/pub/Linux/ubuntu-cdimage/ubuntu-legacy-
server/releases/20.04/release/>. Accessed on: 16 march 2022.

CASTELLANOS, W. et al. Internet of things: a multiprotocol gateway as
solution of the interoperability problem. arXiv preprint arXiv:2108.00098,
[S.l.], 2021.

CHANDRASEKARAN, B.; JOSEPHSON, J. R.; BENJAMINS, V. R. What are
ontologies, and why do we need them? IEEE Intelligent Systems and their
applications, [S.l.], v.14, n.1, p.20–26, 1999.

COMPTON, M. et al. The SSN ontology of the W3C semantic sensor network
incubator group. Journal of Web Semantics, [S.l.], v.17, p.25–32, 2012.

CONWAY, J. The Industrial Internet of Things: an evolution to a smart
manufacturing enterprise. Schneider Electric, [S.l.], 2016.

DEERING, S.; HINDEN, R. et al. Internet protocol, version 6 (IPv6)
specification. [S.l.]: RFC 2460, december, 1998.

DERHAMY, H.; ELIASSON, J.; DELSING, J. IoT interoperability—on-demand
and low latency transparent multiprotocol translator. IEEE Internet of
Things Journal, [S.l.], v.4, n.5, p.1754–1763, 2017.

DESAI, P.; SHETH, A.; ANANTHARAM, P. Semantic gateway as a service
architecture for iot interoperability. In: IEEE INTERNATIONAL
CONFERENCE ON MOBILE SERVICES, 2015., 2015. Anais. . . [S.l.: s.n.],
2015. p.313–319.

DI MARTINO, B. et al. Internet of things reference architectures, security and
interoperability: a survey. Internet of Things, [S.l.], v.1, p.99–112, 2018.

DIZDAREVIĆ, J. et al. A survey of communication protocols for internet of
things and related challenges of fog and cloud computing integration. ACM
Computing Surveys (CSUR), [S.l.], v.51, n.6, p.1–29, 2019.

Eclipse Foundation. Eclipse Paho™ MQTT Python Client. Available at:
<https://github.com/eclipse/paho.mqtt.python>. Accessed on: 16 march
2022.

EL-GOHARY, N. M.; EL-DIRABY, T. E. Domain ontology for processes in
infrastructure and construction. Journal of Construction Engineering and
Management, [S.l.], v.136, n.7, p.730–744, 2010.

90

EMMRICH, V. et al. Geschäftsmodell-Innovation durch Industrie 4.0: chancen
und risiken für den maschinen-und anlagenbau. München, Stuttgart: Dr.
Wieselhuber & Partner, Fraunhofer IPA, [S.l.], 2015.

ENDELEY, R. et al. A smart gateway enabling opc ua and dds interoperability.
In: IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING,
ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING &
COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF
PEOPLE AND SMART CITY INNOVATION
(SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2019., 2019.
Anais. . . [S.l.: s.n.], 2019. p.88–93.

FERREIRA, P. et al. Multi-Protocol LoRaWAN/Wi-Fi Sensor Node
Performance Assessment for Industry 4.0 Energy Monitoring. In: IEEE-APS
TOPICAL CONFERENCE ON ANTENNAS AND PROPAGATION IN WIRELESS
COMMUNICATIONS (APWC), 2019., 2019. Anais. . . [S.l.: s.n.], 2019.
p.403–407.

FIGUEROA-LORENZO, S.; AÑORGA, J.; ARRIZABALAGA, S. A survey of IIoT
protocols: a measure of vulnerability risk analysis based on cvss. ACM
Computing Surveys (CSUR), [S.l.], v.53, n.2, p.1–53, 2020.

FIORINI, S. R. et al. A suite of ontologies for robotics and automation
[industrial activities]. IEEE Robotics & Automation Magazine, [S.l.], v.24,
n.1, p.8–11, 2017.

FRANK, A. G.; DALENOGARE, L. S.; AYALA, N. F. Industry 4.0 technologies:
implementation patterns in manufacturing companies. International
Journal of Production Economics, [S.l.], v.210, p.15–26, 2019.

GÓMEZ-PÉREZ, A.; BENJAMINS, R. Overview of Knowledge Sharing and
Reuse Components: ontologies and problem-solving methods. In:
INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
(IJCAI?99) WORKSHOP KRR5: ONTOLOGIES AND PROBLEM-SOLVING
METHODS: LESSON LEARNED AND FUTURE TRENDS, 16., 1999.
Proceedings. . . IJCAI and the Scandinavian AI Societies. CEUR Workshop
Proceedings, 1999. v.18. Ontology Engineering Group ? OEG.

GORECKY, D. et al. Human-machine-interaction in the industry 4.0 era. In:
IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS
(INDIN), 2014., 2014. Anais. . . [S.l.: s.n.], 2014. p.289–294.

GRANGEL-GONZÁLEZ, I. et al. An RDF-based approach for implementing
industry 4.0 components with Administration Shells. In: IEEE 21ST
INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND
FACTORY AUTOMATION (ETFA), 2016., 2016. Anais. . . [S.l.: s.n.], 2016.
p.1–8.

GRIEVES, M. Digital twin: manufacturing excellence through virtual factory
replication. White paper, [S.l.], v.1, n.2014, p.1–7, 2014.

91

GUARINO, N.; OBERLE, D.; STAAB, S. What is an ontology? In: Handbook
on ontologies. [S.l.]: Springer, 2009. p.1–17.

GUBBI, J. et al. Internet of Things (IoT): a vision, architectural elements, and
future directions. Future generation computer systems, [S.l.], v.29, n.7,
p.1645–1660, 2013.

GUINARD, D.; TRIFA, V. Towards the web of things: web mashups for
embedded devices. In: WORKSHOP ON MASHUPS, ENTERPRISE MASHUPS
AND LIGHTWEIGHT COMPOSITION ON THE WEB (MEM 2009), IN
PROCEEDINGS OF WWW (INTERNATIONAL WORLD WIDE WEB
CONFERENCES), MADRID, SPAIN, 2009. Anais. . . [S.l.: s.n.], 2009. v.15,
p.8.

HARISH, K. Data Distribution Service Based Communication
Middleware for Network of Systems. 2015. Tese (Doutorado em
Engenharia Elétrica) — , 2015.

HELMIÖ, P. et al. Open source in industrial internet of things: a
systematic literature review. 2017. Dissertação (Mestrado em Engenharia
Elétrica) — LUT University, Lappeenranta, 2017.

HERMANN, M.; PENTEK, T.; OTTO, B. Design principles for industrie 4.0
scenarios. In: HAWAII INTERNATIONAL CONFERENCE ON SYSTEM
SCIENCES (HICSS), 2016., 2016. Anais. . . [S.l.: s.n.], 2016. p.3928–3937.

HINZE, A.; SACHS, K.; BUCHMANN, A. Event-based applications and
enabling technologies. In: THIRD ACM INTERNATIONAL CONFERENCE ON
DISTRIBUTED EVENT-BASED SYSTEMS, 2009. Proceedings. . . [S.l.: s.n.],
2009. p.1–15.

HOEHNDORF, R. What is an upper level ontology? Ontogenesis, [S.l.], 2010.

HOLLER, J. et al. Internet of things. [S.l.]: Academic Press, 2014.

IEEE. IEEE Standard Ontologies for Robotics and Automation. IEEE Std
1872-2015, [S.l.], p.1–60, 2015.

NOF, S. Y. (Ed.). Industrial Communication Protocols. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009. p.981–999.

INGLÉS-ROMERO, J. F. et al. A model-driven approach to enable adaptive qos
in dds-based middleware. IEEE Transactions on Emerging Topics in
Computational Intelligence, [S.l.], v.1, n.3, p.176–187, 2017.

IÑIGO, M. A. et al. Towards an Asset Administration Shell scenario: a use
case for interoperability and standardization in industry 4.0. In: NOMS
2020-2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT
SYMPOSIUM, 2020. Anais. . . [S.l.: s.n.], 2020. p.1–6.

92

INTEROPERABILITY, I. Guest editorial semantic technologies in automation
systems. IEEE Transactions on Industrial Informatics, [S.l.], v.13, n.6,
p.3335, 2017.

JACOBS, I. About the world wide web consortium (W3C). The World Wide
Web Consortium, [S.l.], 2001.

JAZDI, N. Cyber physical systems in the context of Industry 4.0. In: IEEE
INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND
TESTING, ROBOTICS, 2014., 2014. Anais. . . [S.l.: s.n.], 2014. p.1–4.

JIA, Y. et al. Improved reliability of large scale publish/subscribe based moms
using model checking. In: IEEE NETWORK OPERATIONS AND
MANAGEMENT SYMPOSIUM (NOMS), 2014., 2014. Anais. . . [S.l.: s.n.],
2014. p.1–8.

KAGERMANN, H. et al. Recommendations for implementing the
strategic initiative INDUSTRIE 4.0: securing the future of german
manufacturing industry; final report of the industrie 4.0 working group. [S.l.]:
Forschungsunion, 2013.

KAIYA, H.; SAEKI, M. Using domain ontology as domain knowledge for
requirements elicitation. In: IEEE INTERNATIONAL REQUIREMENTS
ENGINEERING CONFERENCE (RE’06), 14., 2006. Anais. . . [S.l.: s.n.],
2006. p.189–198.

KANG, B.; CHOO, H. An experimental study of a reliable IoT gateway. ICT
Express, [S.l.], v.4, n.3, p.130–133, 2018.

KANNOTH, S.; SCHNICKE, F.; ANTONINO, P. O. Enabling industry 4.0
communication protocol interoperability: an opc ua case study. In:
CONFERENCE ON THE ENGINEERING OF COMPUTER BASED SYSTEMS,
7., 2021. Anais. . . [S.l.: s.n.], 2021. p.1–9.

KARAILA, M.; LANDSDORF, K. node-red-contrib-opcua. Available at:
<https://github.com/mikakaraila/node-red-contrib-opcua>. Accessed on: 16
march 2022.

KUMAR, V. R. S. et al. Ontologies for industry 4.0. The Knowledge
Engineering Review, [S.l.], v.34, 2019.

LACY, L. W. OWL: representing information using the web ontology
language. [S.l.]: Trafford Publishing, 2005.

LASI, H. et al. Industry 4.0. Business & information systems
engineering, [S.l.], v.6, n.4, p.239–242, 2014.

LEA, R.; BLACKSTOCK, M. City hub: a cloud-based iot platform for smart
cities. In: IEEE 6TH INTERNATIONAL CONFERENCE ON CLOUD
COMPUTING TECHNOLOGY AND SCIENCE, 2014., 2014. Anais. . .
[S.l.: s.n.], 2014. p.799–804.

93

LEE, J.; BAGHERI, B.; KAO, H.-A. A cyber-physical systems architecture for
industry 4.0-based manufacturing systems. Manufacturing letters, [S.l.],
v.3, p.18–23, 2015.

LI, S.; XU, L. D.; ZHAO, S. The internet of things: a survey. Information
systems frontiers, [S.l.], v.17, n.2, p.243–259, 2015.

LIAO, Y. et al. Past, present and future of Industry 4.0-a systematic literature
review and research agenda proposal. International journal of production
research, [S.l.], v.55, n.12, p.3609–3629, 2017.

LIN, Z.; PEARSON, S. et al. An inside look at industrial Ethernet
communication protocols. Texas Instruments, White Paper, [S.l.], 2013.

LOCKE, D. Mq telemetry transport (mqtt) v3. 1 protocol specification. IBM
developerWorks Technical Library, [S.l.], v.15, 2010.

LÜDER, A. et al. Generating industry 4.0 asset administration shells with data
from engineering data logistics. In: IEEE INTERNATIONAL CONFERENCE
ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA),
2020., 2020. Anais. . . [S.l.: s.n.], 2020. v.1, p.867–874.

MAHNKE, W.; LEITNER, S.-H.; DAMM, M. OPC unified architecture. [S.l.]:
Springer Science & Business Media, 2009.

MANYIKA, J. et al. The Internet of Things: mapping the value beyond the
hype. [S.l.]: McKinsey Global Institute New York, NY, USA, 2015. v.24.

MARTIN, D. et al. Bringing semantics to web services: the owl-s approach. In:
INTERNATIONAL WORKSHOP ON SEMANTIC WEB SERVICES AND WEB
PROCESS COMPOSITION, 2004. Anais. . . [S.l.: s.n.], 2004. p.26–42.

MAYER, S. et al. An open semantic framework for the industrial Internet of
Things. IEEE Intelligent Systems, [S.l.], v.32, n.1, p.96–101, 2017.

MINERVA, R.; LEE, G. M.; CRESPI, N. Digital twin in the IoT context: a
survey on technical features, scenarios, and architectural models.
Proceedings of the IEEE, [S.l.], v.108, n.10, p.1785–1824, 2020.

MUMTAZ, S. et al. Massive Internet of Things for industrial applications:
addressing wireless iiot connectivity challenges and ecosystem
fragmentation. IEEE Industrial Electronics Magazine, [S.l.], v.11, n.1,
p.28–33, 2017.

MUSEN, M. A. Automated support for building and extending expert models.
In: Knowledge Acquisition: selected research and commentary. [S.l.]:
Springer, 1989. p.101–129.

NAGORNY, K. et al. Semantical support for a CPS data marketplace to
prepare Big Data analytics in smart manufacturing environments. In: IEEE
INDUSTRIAL CYBER-PHYSICAL SYSTEMS (ICPS), 2018., 2018. Anais. . .
[S.l.: s.n.], 2018. p.206–211.

94

NEELY, S.; DOBSON, S.; NIXON, P. Adaptive middleware for autonomic
systems. In: ANNALES DES TÉLÉCOMMUNICATIONS, 2006. Anais. . .
[S.l.: s.n.], 2006. v.61, n.9, p.1099–1118.

NEGASH, B.; WESTERLUND, T.; TENHUNEN, H. Towards an interoperable
Internet of Things through a web of virtual things at the Fog layer. Future
Generation Computer Systems, [S.l.], v.91, p.96–107, 2019.

Node-RED Org. node-red-dashboard. Available at:
<https://flows.nodered.org/node/node-red-dashboard>. Accessed on: 16
march 2022.

NOURA, M.; ATIQUZZAMAN, M.; GAEDKE, M. Interoperability in internet of
things: taxonomies and open challenges. Mobile networks and
applications, [S.l.], v.24, n.3, p.796–809, 2019.

NOY, N. F. et al. Protégé-2000: an open-source ontology-development and
knowledge-acquisition environment. In: AMIA... ANNUAL SYMPOSIUM
PROCEEDINGS. AMIA SYMPOSIUM, 2003. Anais. . . [S.l.: s.n.], 2003.
p.953–953.

O’LEARY, N.; CONWAY-JONES, D. Node-RED programming tool. Available
at: <https://github.com/node-red/node-red>. Accessed on: 16 march 2022.

OLSZEWSKA, J. I. et al. Ontology for autonomous robotics. In: IEEE
INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE
COMMUNICATION (RO-MAN), 2017., 2017. Anais. . . [S.l.: s.n.], 2017.
p.189–194.

OPEN62541. The Open source implementation of OPC UA, open62541.
Available at: <http://www.open62541.org/>. Accessed on: 16 march 2022.

PALAVRAS, E. et al. Semibiot: secure multi-protocol integration bridge for
the iot. In: IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS
(ICC), 2018., 2018. Anais. . . [S.l.: s.n.], 2018. p.1–7.

PAPCUN, P. et al. Edge-enabled IoT gateway criteria selection and evaluation.
Concurrency and Computation: Practice and Experience, [S.l.], v.32,
n.13, p.e5219, 2020.

PEREIRA, P. M. IMIIoTG. Available at:
<https://github.com/morganpereira/IMIIoTG>. Accessed on: 07 july 2022.

PERERA, C. et al. Context aware computing for the internet of things: a
survey. IEEE communications surveys & tutorials, [S.l.], v.16, n.1,
p.414–454, 2013.

Plattform Industrie 4.0. Generic Frame for Technical Data for Industrial
Equipment in Manufacturing (Version 1.1). Available at:

95

<https://github.com/admin-shell-io/submodel-
templates/blob/main/published/TechnicalData/1/1/SMTT echnicalDataV 11.pdf >

.Accessedon : 14march2022.

Plattform Industrie 4.0. ZVEI Digital Nameplate for industrial
equipment (Version 1.0). Available at:
<https://github.com/admin-shell-io/submodel-
templates/blob/main/published/ZVEIDigitalNameplate/1/0/SMTZV EIDigitalNameplateV 10.pdf >

.Accessedon : 14march2022.

POVEDA-VILLALÓN, M.; GÓMEZ-PÉREZ, A.; SUÁREZ-FIGUEROA, M. C.
OOPS! (OntOlogy Pitfall Scanner!): an on-line tool for ontology evaluation.
International Journal on Semantic Web and Information Systems
(IJSWIS), [S.l.], v.10, n.2, p.7–34, 2014.

PRESTES, E.; FIORINI, S. R.; CARBONERA, J. Core ontology for robotics and
automation. In: WORKSHOP ON KNOWLEDGE REPRESEN-TATION AND
ONTOLOGIES FOR ROBOTICS AND AUTOMATION, 18., 2014.
Proceedings. . . [S.l.: s.n.], 2014. p.7.

PROFANTER, S. et al. OPC UA versus ROS, DDS, and MQTT: performance
evaluation of industry 4.0 protocols. In: IEEE INTERNATIONAL
CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019., 2019.
Anais. . . [S.l.: s.n.], 2019. p.955–962.

RADATZ, J.; GERACI, A.; KATKI, F. IEEE standard glossary of software
engineering terminology. IEEE Std. 610.12-1990. Computer Society of the
IEEE, [S.l.], 1990.

RAZZAQUE, M. A. et al. Middleware for internet of things: a survey. IEEE
Internet of things journal, [S.l.], v.3, n.1, p.70–95, 2015.

RICHTER, A.; KOCH, M. Functions of social networking services. From
CSCW to Web 2.0: European Developments in Collaborative Design
Selected Papers from COOP08, [S.l.], 2008.

RIJGERSBERG, H.; VAN ASSEM, M.; TOP, J. Ontology of units of measure and
related concepts. Semantic Web, [S.l.], v.4, n.1, p.3–13, 2013.

ROS2, R. O. S. . The Robot Operating System Galactic Geochelone.
Available at: <https://docs.ros.org/en/galactic/index.html>. Accessed on: 16
march 2022.

ROSE, K.; ELDRIDGE, S.; CHAPIN, L. The internet of things: an overview.
The internet society (ISOC), [S.l.], v.80, p.1–50, 2015.

SAKURADA, L.; LEITÃO, P. Multi-agent systems to implement industry 4.0
components. In: IEEE CONFERENCE ON INDUSTRIAL CYBERPHYSICAL
SYSTEMS (ICPS), 2020., 2020. Anais. . . [S.l.: s.n.], 2020. v.1, p.21–26.

96

SCHROEDER, G. N. et al. Digital twin data modeling with automationml and
a communication methodology for data exchange. IFAC-PapersOnLine,
[S.l.], v.49, n.30, p.12–17, 2016.

SCHWEICHHART, K. Reference architectural model industrie 4.0 (rami 4.0).
An Introduction. Available online: https://www. plattform-i40. de I,
[S.l.], v.40, 2016.

SENGUPTA, J.; RUJ, S.; BIT, S. D. A comprehensive survey on attacks,
security issues and blockchain solutions for IoT and IIoT. Journal of
Network and Computer Applications, [S.l.], v.149, p.102481, 2020.

SHA, L. et al. Cyber-physical systems: a new frontier. In: IEEE
INTERNATIONAL CONFERENCE ON SENSOR NETWORKS, UBIQUITOUS,
AND TRUSTWORTHY COMPUTING (SUTC 2008), 2008., 2008. Anais. . .
[S.l.: s.n.], 2008. p.1–9.

SHENG, Z. et al. A survey on the ietf protocol suite for the internet of things:
standards, challenges, and opportunities. IEEE wireless communications,
[S.l.], v.20, n.6, p.91–98, 2013.

SIEGEL, J. OMG Overview: corba and the oma in enterprise computing.
Communications of the ACM, [S.l.], v.41, n.10, p.37–43, 1998.

SIEMENS. Siemens OPC UA Modeling Editor V2.5. Available at:
<https://support.industry.siemens.com/cs/document/109755133/siemens-opc-
ua-modeling-editor-(siome)-for-implementing-opc-ua-companion-
specifications?dti=0lc=en-WW>. Accessed on: 16 march 2022.

SOWA, J. F. Top-level ontological categories. International journal of
human-computer studies, [S.l.], v.43, n.5-6, p.669–685, 1995.

Stanford. site-protege. Available at: <https://protege.stanford.edu/>.
Accessed on: 10 june 2022.

STEINMETZ, C. et al. Using Ontology and Standard Middleware for
integrating IoT based in the Industry 4.0. IFAC-PapersOnLine, [S.l.], v.51,
n.10, p.169–174, 2018.

STUDER, R.; BENJAMINS, V. R.; FENSEL, D. Knowledge engineering:
principles and methods. Data & knowledge engineering, [S.l.], v.25, n.1-2,
p.161–197, 1998.

TOLK, A. Composable mission spaces and M&S repositories–applicability of
open standards. In: SPRING SIMULATION INTEROPERABILITY WORKSHOP,
ARLINGTON (VA), 2004. Anais. . . [S.l.: s.n.], 2004.

TRAN, C.; MISRA, S. The technical foundations of IoT. IEEE Wireless
Communications, [S.l.], v.26, n.3, p.8–8, 2019.

97

UNIVESITY, S. Protege: a free, open source ontology editor and
knowledge-base framework. Stanford Center for Biomedical Informatics
Research, Stanford, CA, USA, [S.l.], 2001.

W3C. w3-property. Available at: <https://www.w3.org/TR/owl-ref/Property>.
Accessed on: 10 june 2022.

WANG, J. et al. The evolution of the Internet of Things (IoT) over the past 20
years. Computers & Industrial Engineering, [S.l.], v.155, p.107174, 2021.

WANG, M.-M. et al. Middleware for wireless sensor networks: a survey.
Journal of computer science and technology, [S.l.], v.23, n.3, p.305–326,
2008.

WANG, S. et al. Implementing smart factory of industrie 4.0: an outlook.
International journal of distributed sensor networks, [S.l.], v.12, n.1,
p.3159805, 2016.

WANG, Z. et al. Multi-protocol Integration and Intercommunication
Technology Based on OPC UA and MQTT. In: JOURNAL OF PHYSICS:
CONFERENCE SERIES, 2022. Anais. . . [S.l.: s.n.], 2022. v.2173, n.1,
p.012070.

WÜBBEKE, J. et al. Made in China 2025. Mercator Institute for China
Studies. Papers on China, [S.l.], v.2, p.74, 2016.

YE, X. et al. Toward the plug-and-produce capability for industry 4.0: an asset
administration shell approach. IEEE Industrial Electronics Magazine,
[S.l.], v.14, n.4, p.146–157, 2020.

YE, X. et al. Toward Data Interoperability of Enterprise and Control
Applications via The Industry 4.0 Asset Administration Shell. IEEE Access,
[S.l.], 2022.

YE, X.; HONG, S. H. Toward industry 4.0 components: insights into and
implementation of asset administration shells. IEEE Industrial Electronics
Magazine, [S.l.], v.13, n.1, p.13–25, 2019.

YONG, C.; LEE, W.; LAZARUS, C. Industry 4.0 Reference Architectural
Models: critical review and opportunities. International Journal of
Advanced Research in Engineering Innovation, [S.l.], v.3, n.4, p.40–49,
2021.

YOUNAN, M. et al. Challenges and recommended technologies for the
industrial internet of things: a comprehensive review. Measurement, [S.l.],
v.151, p.107198, 2020.

ZHONG, C.-L.; ZHU, Z.; HUANG, R.-G. Study on the IOT architecture and
gateway technology. In: INTERNATIONAL SYMPOSIUM ON DISTRIBUTED
COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND
SCIENCE (DCABES), 2015., 2015. Anais. . . [S.l.: s.n.], 2015. p.196–199.

98

ZHOU, H. The internet of things in the cloud. [S.l.]: CRC press Boca
Raton, FL, 2012.

ZUEHLKE, D. SmartFactory—Towards a factory-of-things. Annual reviews
in control, [S.l.], v.34, n.1, p.129–138, 2010.

