
Digital Twins: A Meta-Review on Their Conceptualization,  

Application, and Reference Architecture 
 

 
Alexander Rossmann 

Reutlingen University 

alexander.rossmann@reutlingen-university.de 

Dieter Hertweck 

Reutlingen University 

dieter.hertweck@reutlingen-university.de 

 

 

Abstract 
The concept of digital twins (DTs) is receiving 

increasing attention in research and management 

practice. However, various facets around the concept 

are blurry, including conceptualization, application 

areas, and reference architectures for DTs. A review of 

preliminary results regarding the emerging research 

output on DTs is required to promote further research 

and implementation in organizations. To do so, this 

paper asks four research questions: (1) How is the 

concept of DTs defined? (2) Which application areas 

are relevant for the implementation of DTs? (3) How is 

a reference architecture for DTs conceptualized? and 

(4) Which directions are relevant for further research 

on DTs? With regard to research methods, we conduct 

a meta-review of 14 systematic literature reviews on 

DTs. The results yield important insights for the current 

state of conceptualization, application areas, reference 

architecture, and future research directions on DTs. 

1. Introduction  

The concept of digital twins (DTs) is receiving 

increasing attention in research and management 

practice [1], [2]. Mentioned initially in 2003 by Michael 

Grieves, DTs pave the way for cyber-physical 

integration and serve as a bridge between the physical 

world and the cyber world [3]. Grieves's initial 

description defines a DT as a virtual representation of a 

physical product [4]. Later, Grieves expands on this 

definition by describing DTs as consisting of three 

components: a physical product, a virtual representation 

of that product, and bidirectional data connections that 

feed data from the physical product to the virtual 

representation and back [4]. Scholars have also provided 

evidence for the notion that DTs not only deal with 

physical products but also are applicable to any 

 
1 Gartner Hype Cycle for Emerging Technologies 2019, 

https://www.gartner.com/smarterwithgartner/gartner-top-10-
strategic-technology-trends-for-2019/. 

connection and bidirectional exchange between a virtual 

and physical entity [5]–[7]. 

Initially conceptualized for manufacturing [3], [8], 

the idea of DTs has reached multiple domains, including 

smart cities [9], healthcare [10], management [11], and 

psychology [12]. Since the inception of DTs in 2003, the 

concept has grown in interest and was listed as a key 

strategic technology trend for the first time by Gartner 

in 2019.1 A search of the term digital twin in academic 

databases shows increased research interest in the topic. 

Until 2017, the number of academic articles on DTs was 

only in the single-digit range. Since then, the number of 

yearly publications has grown exponentially [13]. 

The idea of DTs defined by cyber-physical 

integration is creating a broad array of opportunities for 

organizations. However, owing to the short and dynamic 

development cycle, the concept of DTs in terms of a 

clear conceptualization of the concept and its properties, 

an overview of application areas and enabling 

technologies, and reference architectures for the 

implementation of DTs is still blurry [1], [2]. In 

response to the ambiguity in current research, this paper 

aims to answer four research questions: (1) How is the 

concept of DTs defined? (2) Which application areas are 

relevant for the implementation of DTs? (3) How is a 

reference architecture for DTs conceptualized? and (4) 

Which directions are relevant for further research on 

DTs? 

The approach for the exploration of these research 

questions follows established guidelines for a meta-

analysis on systematic literature reviews (SLRs) [14], 

[15]. Therefore, we conducted a meta-review of 14 

existing SLRs on DTs and analyzed the body of related 

work with respect to the presented research scope. 

Accordingly, are present and discuss the results of the 

review. The results yield important insights for the 

current state of conceptualization, application areas, 

reference architecture, and further research on DTs. 
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2. Related work 

A search on Google Scholar and Web of Science 

with the search strings (Systematic Literature Review) 

AND (Digital Twin*) on the topic level leads to 14 

articles, with related work published between 2018 and 

2021. The following review is fueled by a full read of 

these articles and a corresponding analysis of the areas 

of application, time frames, databases, and article 

quantity of each SLR, as well as an overview of central 

concepts of each article.  

Multiple reviews on the topic of DTs are present in 

current research. Initially, the DT concept emerged in 

the context of manufacturing and Industry 4.0 [16]. 

Kritzinger et al. [17] presented an SLR on DTs in 

manufacturing in 2018. They noted that DTs are 

“commonly known as a key enabler for the digital 

transformation, however, in literature is no common 

understand concerning this term”. In this review, the 

authors adopt the definition of Tao et al. [18] that “the 

digital twin is an integrated multi-physics, multi-scale, 

probabilistic simulation of a complex product and uses 

the best available physical models, sensor updates, etc., 

to mirror the life of its corresponding twin”. An 

important contribution of Kritzinger et al. [17] is the 

conceptualization of DTs with respect to the level of 

integration between the physical and its digital 

counterpart. The terms “digital model,” “digital 

shadow,” and “digital twin” are often used 

synonymously. However, the given definitions differ in 

the level of integration; that is, a digital model contains 

a pure digital representation of an existing or planned 

physical object that does not use any form of automated 

data exchange, and a digital shadow comprises a one-

way data flow from the state of an existing physical 

object to a digital object. Adopting this distinction, 

Kritzinger et al. [17] categorized 53 articles published 

between 2001 and 2017 with respect to the application 

of digital models, digital shadows, and DTs. 

Comparable reviews with a strong focus on 

manufacturing and Industry 4.0 were conducted by 

Cinar et al. [16] and Catarci et al. [19] with a rather low 

number of articles (n = 19 and n = 16, respectively). A 

major contribution of Cinar et al. [16] is their work on 

GE digital with respect to a hierarchical classification of 

DTs in four properties: component, asset, system, and 

process. A component twin is a major sub-component 

affecting the performance of the asset to which it 

belongs. Asset twins can be a collection of component 

twins, such as a motor or pump. System twins are a 

collection of asset twins performing a system function 

such as a production line. Process twins usually provide 

a perspective to a set of operations at the highest level 

and generally focus on processes rather than equipment. 

The main contribution of Catarci et al. [19] is the 

connection of concepts dealing with cyber-physical 

systems (CPSs), the Internet of Things (IoT), and DTs 

in smart manufacturing. They envision a system 

architecture for DTs in which humans can specify a goal 

and take advantage of DTs to automatically compose the 

corresponding physical processes. An important aspect 

of this view is the introduction of a service perspective 

to DTs. Various properties of DTs are discussed (e.g., 

connectivity, autonomy, homogeneity, ease of 

customization, traceability). Moreover, Catarci et al. 

[19] define data models, patterns for data exchange, and 

the ability to run simulations as core facets of DTs and 

review current industry solutions for DTs in smart 

manufacturing as Eclipse Ditto, Bosch IoT Things 

solutions, GE Predix, Microsoft Azure IoT, Amazon 

AWS IoT, and IBM Watson IoT. 

A corresponding SLR in the area of smart 

production is the concept of cyber-physical production 

systems (CPPSs) [5]. CPPSs are systems of systems 

with autonomous elements connected with each other, 

on and across all levels of production, from processes 

through machines up to production and logistics 

networks, enhancing decision-making processes in real 

time, response to unforeseen conditions, and evolution 

along time. Wu et al. [5] reviewed 100 articles with 

respect to  a conceptual definition and engineering 

development of the topic. They arrived at a concept map 

with three conceptual categories of articles: need 

analysis, concept exploration, and concept definition. 

Furthermore, they defined five categories of articles on 

an engineering level: smart connectivity, data-to-

information conversion, cyber, cognition, and 

configuration. In particular, DTs in this framework are 

part of the cyber level on the engineering side of CPPSs. 

Lim et al. [20] provide a comprehensive overview 

of the technology stack for DTs in smart manufacturing. 

They also discuss potential contributions of DTs along 

the whole product life-cycle management process and 

expand perspectives to business models and business 

innovation. Based on an SLR of 123 research articles 

published between 2015 and 2019, the technology stack 

of DTs covers multiple layers, including data 

acquisition, data management and connectivity, 

network architecture, data representation and storage 

tools, data analytics and machine learning (ML), 

microservices, and cyber security. Furthermore, Lim et 

al. [20] discuss contributions of the DT concept on 

different product life-cycle management stages as 

product design, manufacturing, distribution, usage, and 

end of life. This allows various fresh perspectives for 

business model innovations, covering aspects of 

corporate strategy, customer and market segmentation, 

and value creation components. 
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With the further development of research on DTs, 

increasingly more scholars are working on an extension 

of the concept beyond manufacturing. An example of an 

SLR in this direction is that of Zhang et al. [6]. They 

reviewed 59 articles on DTs and services to develop a 

framework for holistic industrial product service 

systems. Within such systems, the application of DTs is 

reviewed along the whole life cycle of products and 

services from beginning to end of life. This includes a 

notion on design, sales, distribution and usage, and reuse 

and recycling of products and services. 

A comparable review extends the analysis from 

smart production to industrial services with an 

additional focus on predictive maintenance and after-

sales services. Melesse at al. [21] summarize 25 

research articles in the selected domains and argue that 

DTs play an important role in operations throughout the 

whole product life cycle, including the concept and 

design stage, manufacturing planning and execution, 

sales, product usage, maintenance, and product 

renewals. 

Beyond the area of smart manufacturing, several 

other SLRs extend the idea of DTs to a more general 

level of conceptualization. Jones et al. [22] 

characterized DTs through a review of 92 articles and 

identified 12 characteristics. Core characteristics of DTs 

include physical entities (e.g., vehicles, components, 

products, artefacts); virtual entities (e.g., data, models); 

the physical environment of a DT (e.g., factories, cities); 

the virtual environment of a DT (e.g., databases, data 

warehouse, cloud platforms, servers); parameters, as 

types of data, information, and processes that are passed 

between the physical and virtual entities; fidelity, 

defined as the number of parameters, their accuracy, 

level of abstraction, and transfer between the virtual and 

physical environment; state, or the current condition of 

both the physical and virtual twins or the current values 

for each of the measured parameters; physical-to-digital 

versus virtual-to-physical connectivity; twinning rate, or 

the act of synchronization between the virtual and 

physical states (e.g., real-time, near-time); physical 

processes (e.g., smart factories, three-dimensional (3D) 

printing, robot control, medical health applications); and 

virtual processes (e.g., simulation, modeling, 

optimization). 

A comparable SLR  for general conceptualization 

conducted by Enders and Hossbach [23] contains an 

analysis of the dimensions for DT applications. With a 

review of 152 research articles, they separated purpose, 

industrial sector, the physical reference object for the 

DTs, and other relevant dimensions for the description 

of current applications. By 2019, most applications were 

linked to manufacturing, while other sectors such as 

automotive, aerospace, energy, healthcare, and smart 

cities were also working with DTs. The main purpose of 

most applications is simulation, directly followed by 

monitoring and control. The idea of DTs is applicable to 

various industries with multiple application areas. 

Enders and Hosbach [23] also argued for a deeper 

exploration of the DT concept in the information 

systems domain and postulated the need for a 

corresponding taxonomy. Van der Valk et al. [13] 

describe such a taxonomy of DTs based on an SLR of 

233 articles from different databases. A taxonomy 

describes properties of a research object and relevant 

differences due to specification of these properties in 

research and practice. Relevant properties of DTs 

include the data link between the physical and virtual 

parts of the DTs (unidirectional, bidirectional), purpose 

(processing, transfer, repository), the connection 

between the physical and virtual parts (physically 

independent, physically bound), accuracy of data 

exchange (identical, partial), interface (machine-to-

machine, human-to-machine), synchronization, data 

input (raw, processed), and the time the physical and 

virtual parts are created (physical part first, virtual part 

first, simultaneously). 

In addition to the focused reviews in smart 

manufacturing and holistic reviews on taxonomies, 

properties, and general characteristics of DTs, other 

SLRs have explored the concept within a specific 

context or sub-topic. Dos Santos et al. [24] examined the 

application of simulations for decision support in DTs. 

In a review of 75 articles, they analyzed different 

application areas and objectives for decision-making 

through simulations with DTs. The main application 

areas for such simulations are manufacturing, services, 

logistics, healthcare, and constructions. Regarding 

decision-making objectives, simulations with DTs are 

used for production planning, process evaluation, 

process control, and resource allocation. Dos Santos et 

al. [24] also researched the applied platforms for 

simulations such as Tecnomatix or Arena and relevant 

software frameworks such as Python, Java, and 

Stroboscope. Moreover, they evaluated different types 

of connectivity between the simulation model and the 

physical system (e.g., IoT devices, web services, 

management systems), updating and synchronization 

practices (real-time, near real-time), and the degree of 

autonomy of the DT simulation model (e.g., 

autonomous command, recommended actions).  

Another SLR with a more tapered orientation by 

Rathore et al. [25] captures the role of big data and ML 

in digital twinning. In a review of 61 sources in various 

databases, patents, and technical reports, the authors 

identified different applications of big data and ML in 

the context of DTs in various industries. Examples of 

potential ML algorithms and data models include 

applications in production, healthcare, transportation, 

education, and business. Furthermore, Rathore et al. 
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[25] proposed a model for the integration of IoT, big 

data, ML, and DTs, in which (1) IoT and other data 

sources create big data, (2) data are employed in data 

models and ML algorithms, (3) simulations and 

automation procedures are executed in the virtual 

environment, and (4) such simulations and automated 

processes are used for deployments in the physical part 

of a DT. The SLR offers a detailed analysis of this model 

with a description of the applied ML approaches in 

different industries. Furthermore, the authors offer an 

extensive overview on DT development tools, 

evaluation procedures for the success of DT 

applications, and reference architectures for digital 

twinning. 

The concept of DTs is intensively integrated in the 

development of CPSs, smart production, and the vision 

of Industry 4.0. However, the basic idea behind DTs is 

also applicable to other industries. Therefore, further 

SLRs are available for DTs in smart cities [26] or the 

enablers of and barriers to DTs in the process industry 

[27]. In their gray literature analysis, Ketzler et al. [26] 

compared the concept of DTs with established 3D city 

simulations. They evaluated commonalities and 

differences between the two concepts and argued that 

DTs describe something more than a 3D city model 

(including semantic data, real-time sensor data, physical 

models, and simulations). Furthermore, they analyzed 

current implementations of DTs in cities and concluded 

that there are significant opportunities for up-scaling 

DTs, with the potential to bring benefits to the city and 

its citizens. 

Finally, Perno et al. [27] conducted an SLR on 

enablers of and barriers to the implementation of DTs in 

the process industry. From a review of 38 articles, they 

developed a framework for organizational capabilities, 

several development issues, and performance effects for 

DTs. As such, organizational preconditions such as 

knowledge, design, and integration of a DT are 

prevalent for implementation success. Moreover, the 

development process itself contains several barriers 

(e.g., lack of standardization, model development, data 

quality, IT infrastructure). Finally, performance issues 

need to be discussed at the very beginning of a DT 

initiative (e.g., costs vs. benefits, reliability, robustness).  

In summary, related SLRs on the concept of DTs 

have initially appeared in the area of smart production 

and Industry 4.0, with the distinction among digital 

models, digital shadows, and DTs [17]; a hierarchical 

classification of levels for DTs in a production 

environment [16]; a conceptual connection among 

CPSs, IoT, and DTs; and emerging perspectives on 

system architectures and services based on DTs [19]. 

Within larger systems of systems, DTs are the digital 

part of CPPSs [5]. The technology stack and several 

implications of DTs along the whole product life-cycle 

management chain, business models, and business 

innovation are discussed by Lim et al. [20]. Several 

scholars have expanded the idea of DTs beyond 

production. This covers a discussion on the role of DTs 

in industrial product service systems [6], [21]. Beyond 

smart production, SLRs tend to develop general 

characteristics of DTs applicable in multiple domains 

[22]. Therefore, the concept of DTs is applicable to 

various industries and application areas such as 

automotive, aerospace, energy, healthcare, and smart 

cities [23]. A taxonomy can be used to define general 

properties and common differences in the specification 

of DTs [13]. Beyond holistic frameworks for DTs are 

SLRs with a strong focus on a specific area, such as the 

application of simulations based on DTs [24] or the 

connection among big data, ML, and DTs [25]. Rathore 

et al. [25] offer an extensive review on the connection 

between IoT and other data sources, data models, ML 

algorithms, and data-based applications on the virtual 

and physical part of DTs. Such frameworks and generic 

reference architectures might be transferred to various 

application areas—for example, to the implementation 

of DTs for cities [26] or specific applications of DTs in 

the process industry [27]. Table 1 summarizes the area 

of application, time frame, database, quantity of 

research articles, and the general concepts of the 

different SLR on DTs. 

 

Table 1. SLRs on the concept of DTs 

 
# Area of 

application 

Time frame, 

databases, 

quantity  

Concepts 

[17] Manufactur-
ing, Industry 

4.0  

2001–2017, 
Google 

Scholar, 

Scopus, n=53 

DTs, digital model, 
digital shadow, 

enabling 

technologies 

[16] Manufactur-
ing, Industry 

4.0 

2015–2019, 
database not 

defined, n=19 

Manufacturing 
areas, hierarchical 

classification 

[19] Manufactur-
ing, Industry 

4.0, digital 

factory 

2008–2018, 
Google 

Scholar, n=16 

CPS, IoT, 
properties, system 

architecture 

[5] Manufactur-

ing, Industry 

4.0, CPPS 

2015–2019, 

Web of 

Science, 
n=100 

CPPS, purpose, 

concept definition, 

design, simulation, 
validation, 

architecture 

[28] Manufactur-

ing, product 
life-cycle 

management, 

business 
innovation 

2015–2019, 

Scopus, 
n=123 

Technology stack, 

network 
architecture, data 

exchange 

protocols, 
ontologies, 

middleware, 

computational 
processing, ML, 

micro-services 
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# Area of 

application 

Time frame, 

databases, 

quantity  

Concepts 

[6] Services, 

industrial 
product 

service 

systems 

2008–2018, 

Scopus, n=59 

Services, product 

design, customer 
purchase and 

usage, reuse, 

recycling 

[21] Industrial 

operations, 

production, 
predictive 

maintenance, 

after-sales 
services 

2016–2019, 

Scopus, Web 

of Science, 
n=25 

Concept, design, 

manufacturing 

planning and 
execution, sales, 

product usage, 

maintenance, 
product renewals 

[23] General, DTs 2002–2018, 

Google 

Scholar, 
n=152 

 

Purpose, industrial 

sector, physical 

reference object 

[13] Taxonomy, 
properties 

na–2020, 
ACM, AIS, 

IEEE, 

JSTOR, 
Science 

Direct, n=233 

Taxonomy, data 
link, purpose, 

connection, 

accuracy, interface, 
synchronization, 

data input, time of 

creation   

[24] Simulation, 

decision 

making, CPS 
 

na–2020, 

Scopus, Web 

of Science, 
Scielo, IEEE, 

Science 

Direct, n=75 

Application areas, 

objectives, 

platforms, 
connectivity, 

autonomy 

[25] Artificial 
intelligence 

(AI), ML, big 

data 

2015–2020, 
IEEE, ACM, 

Scopus, 

SpringerLink, 
Hindawi, IGI, 

Taylor& 

Francis, 
Wiley, n=61 

Standards, industry 
applications, 

integrated models 

of IoT, big data, AI 
and DTs, 

evaluation of DTs, 

development tools, 
reference 

architecture 

[27] Process 
industry, 

enablers, 

barriers 

2016–2020, 
Scopus, Web 

of Science, 

n=38 

Organizational 
capabilities, 

development, 

integration, 
performance, 

security 

[26] Smart cities, 

3D city 
models 

Gray 

literature 
review 

3D city models, 

application of DTs 
in cites, challenges, 

opportunities 
 

3. Results 

We present the results of the meta-review of SLRs 

in the area of DTs according to the formulated research 

questions. Therefore, we organize the following sub-

sections around conceptualization, application areas, 

reference architecture, and future research directions for 

DTs. 

3.1. Conceptualization of DTs 

The conceptualization of DTs is an important 

subject of multiple reviews and coined by the area of 

application. Early articles on the subject focused on 

smart manufacturing, physical production, and products 

[16]. Therefore, such conceptualizations import 

domain-specific aspects into the definition of a DT. 

However, given the increasing application of the 

concept in multiple domains, a general 

conceptualization without any domain-specific 

properties is required. Therefore, a mutual 

understanding of a broad array of reviews defines a DT 

as a CPS with physical and virtual (digital) parts. As 

Grieves [4] argued, DTs serve as a bridge between the 

physical world and the cyber world. Data flows between 

a physical and a digital object with full integration in 

both directions can be viewed as a central property of 

DTs [17]. This feature leads to multiple implications, as 

twinning demands not just a simple image of the 

physical object but also a real interaction between the 

physical and digital parts of the twin. Thus, the 

conceptualization of DTs needs to be extended by 

various other properties such as data models, 

connectivity, accuracy, and synchronization [13], [24]. 

Moreover, the development of a DT is driven by a 

specific purpose and expected benefits [6], [23]. DTs are 

only valuable if the processing of real-world data in the 

digital part leads to relevant insights and corresponding 

services in the physical part of the twin. This leads to the 

assumption that certain applications in the area of AI 

(e.g., ML algorithms) should be treated as constitutional 

property of a DT [25].  

Given the mentioned properties, DTs need to be 

conceptualized as a CPS, with an interactive 

relationship between the physical and digital parts, 

purpose, data connectivity in both directions, 

corresponding data models, task-specific levels of 

model accuracy and data synchronization procedures, 

embedded AI in the digital part of the twin, and 

dedicated services in the physical part. 

3.2. Areas of application 

Such a general conceptualization of DTs is fruitful 

for multiple application areas. Originally 

conceptualized for manufacturing [3], [8], over time, the 

idea of DTs has reached multiple domains, including 

smart cities [9], healthcare [10], management [11], and 

psychology [12]. Therefore, the general idea of DTs is 

not exclusively linked to a specific domain; rather, 

digital twinning provides a framework for applications 

in multiple domains and industries with a focus on two-

way interactions between a physical and digital entity. 

Such a generalization of the concept is already 
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embedded in the analyzed SLRs, in which several 

authors developed approaches for DTs in smart 

manufacturing [16], [17], [19], but also in CPPSs with a 

focus on services in an extended production 

environment [5], stakeholder-specific services 

throughout the whole product life cycle [6], or ideas for 

the application of DTs in marketing and sales [21]. 

Thus, this meta-review provides evidence for a 

systematic expansion of the concept in further domains. 

It is likely that this expansion will continue over the next 

years with diverse and fruitful applications for DTs in 

multiple domains. 

3.3. Reference architecture 

Relevant sub-concepts for a general reference 

architecture for DTs are present in multiple SLRs within 

this meta-review [13], [22], [25], [28]. Rathore et al. 

[25] provide a holistic approach for a general reference 

architecture for DTs with multiple layers. The different 

layers constitute a hierarchical order and include 

multiple forward and backward interactions. 

Furthermore, a distinction between different layers 

supports the definition of properties and relevant 

technologies per layer. Essential components for such 

an architecture are also presented in Lim et al.’s [20] 

SLR. Table 2 gives an overview of a nine-layer 

architecture and corresponding properties. Space 

restrictions prevent the inclusion of corresponding 

technologies and application examples for each layer of 

the architecture in Table 2. However, more precise 

specifications are available in the assigned SLRs per 

layer. 

The bottom layer for the architecture of a digital 

twin comprises physical entities [22], which include 

vehicles, components, products, machines, streets, 

parking lots, buildings, and other physical objects. The 

commonality in these entities lies in their real-world 

existence. To encompass all types, and in line with 

existing literature [22], we propose the use of the term 

“physical entity” for general applicability, where a 

physical entity exists regardless of whether it has been 

twinned, and the more specific term “physical twin” for 

when the physical entity is twinned. 

The second layer of the architecture includes 

different strategies for data generation [20]. This 

requires an identification of the physical entities for 

digital twinning and the relevant parameters to be 

generated. Parameters refer to the types of data and the 

information that can be generated with the data. Typical 

technologies for data generation include sensors or log-

files. In addition, fidelity is a relevant property defined 

on the data generation layer. The term “fidelity” 

describes the number of parameters, their accuracy, and 

the level of abstraction that is transferred between the 

virtual and physical twin [22]. The definition of fidelity 

describes the required accuracy for digital twinning, 

such as whether a minor part of the physical entity is 

twinned [29] or the DT is a full mirroring of the physical 

characteristics and functionalities [30]. 

The third layer of the reference architecture 

includes network and connectivity. This layer covers 

data acquisition and transmission as crucial elements for 

real-time information flow and connectivity [28]. The 

layer emphasizes network architectures, data exchange 

protocols, and middleware platforms to facilitate 

information exchange and streaming processing. 

Network architecture involves integration of protocols. 

Such communication protocols are crucial rule sets for 

machine-to-machine connectivity between 

communicating entities. In addition to network 

architecture, this layer covers the connectivity 

infrastructure applied in the DTs (e.g., Wi-Fi, Bluetooth, 

ZigBee, mobile radio communication). 

The fourth layer comprises data storage, data 

integration, and big-data processing. Heterogeneous 

data sources and domain knowledge gathered from 

application processes need to be integrated in 

operational database systems and an integrated data lake 

[20].  

On the fifth layer, the integrated data need to be 

interpreted and prepared. Knowledge representation 

tools for DT creation such as ontologies are potential 

choices for achieving knowledge-based systems. 

Ontologies are favored because they address integration 

and domain-specific modeling concerns as well as the 

reuse and sharing of knowledge [20]. Knowledge 

representation languages such as the W3C web ontology 

language (OWL) and knowledge management models 

such as the resource description framework give the 

foundation for DT creation, while semantic integration 

of sensor data is explored to create taxonomies, 

ontologies, data formats and standards. 

Accordingly, the sixth layer is crucial for DTs and 

deals with data models, algorithms, virtual entities, and 

virtual twins. ML and data-processing tools provide 

multiple solutions ranging from analytics to automation, 

and these provide DTs with decision-aiding capabilities 

via enabling tools [20].  

The seventh layer is dedicated to micro-services 

and the deployment of data models in real-life processes 

[20]. Microservices are software development tools 

constructed as a set of loosely coupled services. This 

architectural style can be described as an enabling 

feature for an application to be built as a suite of 

relatively small, consistent, isolated, and autonomous 

services performing specific tasks [31]. Microservice 

architectures are available for different domains; for 

example, in the application area of smart production, 

RAMI 4.0 [32] provides an overview of layers and 
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microservices in production systems to allow 

monitoring and tracing services of shop-floor assets for 

automated conflict resolution and performance 

enhancement through decision-aiding support and 

control.  

The eighth layer deals with system security and data 

privacy. As DTs affect real-life processes, security is a 

major and cross-architectural issue within the design of 

twinning concepts. Owing to the integration of sensitive 

data in the case of stakeholder-related services (e.g., 

after-sales, product and content customization), privacy 

is also becoming a relevant topic. Privacy-preserving 

approaches in DTs can be classified into two categories: 

cryptographic approaches featuring encryption schemes 

and cryptographic primitives and noncryptographic 

approaches with a policy-based authorization 

infrastructure [27]. Properties of a reference architecture 

should be able to detect security and privacy concerns 

and minimize breaches and associated risks to which 

DTs can be exposed. 

Finally, the ninth layer pertains to the generation of 

business models. This layer is of great importance 

because DTs only make sense if they drive business 

innovations and lead to compelling customer experience 

and business models [20]. Although interest is growing 

in multiple application areas, to date, DTs remain 

predominantly applied in the manufacturing industry. 

However, even in smart manufacturing, only a few 

scholars have focused on the business model 

implications of DTs [33], [34]. DTs strive to enhance 

customer experience through better-suited products and 

services. Attaining customer satisfaction through better 

quality products and services, while enlarging the 

customer base via new market access and co-creation 

initiatives, drives the business model for DTs in smart 

manufacturing. DTs also drive the development of new 

products, services, and value propositions. 

In summary, the twinning process begins with the 

collection of data from the physical entities or with the 

usage of already-collected data in the virtual twin (using 

computer-aided software and/or simulations). The data 

are subject of analysis and decision-making, in which 

statistical and probabilistic approaches or mathematical 

models are employed to develop the DTs. Throughout 

the entire process, various big-data processing tools that 

allow parallel processing on multiple nodes may be 

employed. The overall data flow for the development of 

a purpose-driven DTs begins with the creation of a data 

model. After the data model is developed and tested, 

data from both the physical and virtual twins are used to 

deploy specific services to achieve the given 

organizational objectives, such as design optimization, 

dynamic process planning, or content customization 

[25]. 

The presented architecture shows common ground 

with existing frameworks for specific domains; for 

example, the Open Systems Interconnection model 

consists of seven layers (physical, data link, network, 

transport, session, presentation, and application) and 

paves the way for layered network architectures with the 

use of abstraction layers. Therefore, further research on 

the reuse and unification of different reference 

architectures on DTs is required. Table 2 summarizes 

the layers, properties, and corresponding sources 

presented in this research. 

Table 2. DTs reference architecture layers 

 

Layer Properties Sources, SLRs 

9. Business 
model, processes 

Value propositions, 
revenue streams, 

cost structure, 

purpose 

[6], [7], [21], 
[22], [23], [25], 

[27]  

8. System 
security, data 

privacy 

 

Security, privacy, 
risks, abuse, 

encryption, 

authorization 

[27] 

7. Micro-services, 

deployment 

Micro-services, 

deployment, loose 

coupling, interfaces, 
applications 

[7], [21], [23], 

[25] 

6. Data models, 

algorithms, virtual 
entity, virtual twin 

Data models, 

algorithms, ML, 
decision rules 

[7], [13], [19], 

[22], [24], [25], 
[27] 

5. Data 

preparation, data 

representation 

Semantics, 

ontologies, data 

labels, fidelity, 
twinning accuracy 

[5], [7], [13], 

[17], [19], [22], 

[25] 

4. Data storage, 

data integration 
 

 

Databases, 

synchronization, 
big-data processing 

[5], [7], [13], 

[17], [19], [22], 
[24], [25] 

3. Network, 

connectivity 

Network 

architecture, data 
exchange protocols, 

middleware 

platforms, streaming 

[5], [7], [13], 

[17], [19], [22], 
[24], [25] 

2. Data generation 

 

 

Parameters, types of 

data, fidelity, 

accuracy 

[5], [6], [7], [13], 

[17], [19], [22], 

[25] 

1. Physical 
entities, physical 

twin 

Physical existence [6], [7], [17], 
[19], [22], [25]  

3.4. Future research directions 

Another objective of this meta-review is to 

summarize future research directions for DTs on the 

basis of the findings of the incorporated SLRs. The 

rapidly increasing DT popularity and scope, as well as 

the involvement of IoT, big data, and AI technologies, 

broadens the research challenges of digital twinning. 

We categorize these challenges in the following eight 

areas. 

3.4.1. Concept development. Different application 

areas develop DT concepts from their specific domain. 
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Therefore, specified interactions and interfaces between 

various disciplines are required. This gives rise to the 

issue of a multidisciplinary development of the DT 

concept [5]. On the one hand, a general framework and 

reference architecture is required to develop DTs on a 

mutual background [13]. On the other hand, a broad 

array of domain-specific DTs will promote more 

detailed implementations in various application areas. 

With increasing research combining DTs with emerging 

technologies such as blockchain and virtual reality, 

applications in new fields such as infrastructure, 

education, and healthcare are imminent [7]. 

3.4.2. Business models. Research on the business 

pre-conditions and performance effects of DTs is 

relatively scarce. A wealth of research focuses on 

technical needs. In the future, other perspectives should 

also be considered, such as performance in terms of 

customer experience and business models. Some 

existing reviews and guidelines for requirements 

engineering could be a potential starting point for 

further research initiatives [5], [7].  

3.4.3. Integration. With respect to the integration 

of DTs, technologies, devices, data, processes, and 

systems should be integrated together in a strategic and 

operating environment. The reviewed SLRs have 

addressed some integration issues, such as device 

integration, system integration, and data integration. 

However, full integration of DTs in organizational 

processes and enterprise systems has not yet been 

addressed [27]. Such systems can foster effective 

decisions, improve business processes, and make the 

enterprise more competitive. Therefore, the integration 

of DTs in enterprise systems is one of the main issues 

for successful implementation [5]. 

3.4.4. Data entry, data preparation, data 

augmentation. Further research needs to clarify several 

questions in the data-entry process, such as how the IoT 

facilitates data harvesting from a physical twin (using 

sensors), data integration, and data sharing with the 

corresponding virtual twins. This process can incur 

considerable costs. Sometimes, twinning can be more 

costly than the asset itself, in which case it makes little 

sense to create DTs. By contrast, the collected data are 

vast, heterogeneous in nature, unstructured, and noisy. 

Thus, further research on data pre-processing is required 

to ensure its effective use [21]. Specifically, applying 

data-cleaning techniques is necessary to organize and 

restructure data entry [5]. Furthermore, controlling the 

flow of such a large amount of data is a significant 

challenge. Finally, to improve the accuracy of the DT 

model, the underlying ML algorithms require a certain 

amount of data for training purposes [25]. The data 

acquisition problem is a significant challenge in the 

realization of DT models in small and medium-sized 

companies. Therefore, future research needs to consider 

approaches for data incubators and data augmentation 

[21]. 

3.4.5. Big data. The explosive growth of social 

media and IoT technologies in the industrial sector has 

led to the generation of a large amount of data. To this 

end, big-data analytics requires advanced architectures, 

frameworks, technologies, tools, and algorithms to 

capture, store, share, process, and analyze the 

underlying data. There is also a potential for cloud- and 

edge-computing platforms to handle DT-related data. 

Cloud- and edge-computing integration allows DTs to 

process at a faster pace while processing vast amounts 

of heterogeneous and semantic data  [7], [25]. Further 

research is required given the insufficient possibilities 

for synchronization between the physical and digital 

parts, the absence of high-fidelity models for simulation 

and virtual testing in different scales, the difficulties in 

predicting complex systems, and the challenges with 

gathering and processing large datasets [21]. 

3.4.6. Data analysis, ML, simulations. Algorithms 

for data analytics have played a major role in DTs for 

decision-making. However, the selection of a particular 

ML model with customized configuration is 

challenging. Every ML approach has diverse accuracy 

and efficiency levels with different applications and 

datasets. Therefore, depending on the motive and 

application of a DTs, the selection of the best ML 

algorithm and features is challenging [25]. Realizing 

modeling consistency and accuracy will improve the 

quality of DTs, enhancing the benefits of their 

applications  [7]. Moreover, twinning processes might 

not only start from the physical entity but also be based 

on simulations at the level of the virtual entity. 

Therefore, different questions on data simulations are 

relevant for further research on DTs [24]. Another 

research topic pertains to the implementation of ML 

algorithms with respect to operations and continuous 

deployment. Implementation of an accurate multi-scale 

DT model of work-in-process scenarios is still 

challenging because the real-time changes during the 

twinning process are difficult to perceive and simulate 

[21]. 

3.4.7. Standardization. Although many DTs have 

been developed in various industries, the creation of a 

complex and reliable DT demands standardization. 

Currently, no single standard focuses solely on digital 

twinning. The ISO/DIS 23247-1 standard has limited 

information on digital twinning, and therefore DT 

deployment challenges are continuing to grow as a 

result of the lack of standardization [21]. 

Standardization efforts are underway by the joint 

advisory group (JAG) of ISO and IEC on emerging 

technologies [25]. Many specific architectures for DTs 

are proposed, but integrated design standards need to be 

investigated by designers who take all disciplines into 
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consideration simultaneously  [5]. RAMI 4.0 provides 

such a holistic view of important aspects in smart 

manufacturing that different stakeholders need. It 

combines three core dimensions in a cuboidal space 

covering (1) the whole life cycle from development to 

disposal and resource recovery, (2) multi-layer 

integration from asset to business, and (3) the 

connection from products to the IoT and services.   

 

3.4.8. Security and privacy. Some concepts such 

as human-, product-, energy-, city-, and defense-related 

DTs, are considered critical and may require stringent 

security and privacy regulations [21]. First, with the 

involvement of IoT devices in digital twinning, 

emphasis needs to be put on the security of the under- 

lying communication protocols [27]. Second, the large 

collection of asset-related data needs to be stored 

securely, to prevent data breaches from insider and 

outsider threats [25]. 

4. Discussion  

This paper deals with a meta-review of 14 SLRs on 

DTs published between 2018 and 2021. We analyze the 

results of the meta-review with respect to 

conceptualization, application areas, reference 

architecture, and future research directions for DTs. 

An evaluation of results leads to several important 

implications for research and management practice on 

DTs. First, the conceptualization of DTs is coined by the 

area of its application. Early works on the subject 

focused solely on smart manufacturing. A general 

understanding of the concept defines a DT as a cyber-

physical system with physical and digital parts. Data 

flows between a physical and digital object with full 

integration in both directions can be viewed as the 

central property of DTs [17]. Second, conceptualization 

of DTs needs to be extended by other properties such as 

data models, connectivity, accuracy, and 

synchronization [13], [24].  

Application areas for DTs are expanding and cover 

a broad array of domains, from manufacturing and 

healthcare to smart cities, logistics, business, 

economics, and even psychology. However, a common 

reference architecture for DTs can define the relevant 

properties of DTs over several domains. Therefore, this 

paper presents a unified reference architecture with nine 

distinct layers as a blueprint for the configuration of 

DTs. Finally, the meta-review unpacks future research 

directions for DTs in eight different areas: concept 

development, business model, integration, data entry, 

big data, data analysis, standardization, and security and 

privacy. This opens pathways for future research and 

highlights the challenges for the further practical 

implementation of DTs. 
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