4,915 research outputs found

    Danish guidelines for management of non-<i>APC</i>-associated hereditary polyposis syndromes

    Get PDF
    Abstract Hereditary Polyposis Syndromes are a group of rare, inherited syndromes characterized by the presence of histopathologically specific or numerous intestinal polyps and an increased risk of cancer. Some polyposis syndromes have been known for decades, but the development in genetic technologies has allowed the identification of new syndromes.. The diagnosis entails surveillance from an early age, but universal guideline on how to manage and surveille these new syndromes are lacking. This paper represents a condensed version of the recent guideline (2020) from a working group appointed by the Danish Society of Medical Genetics and the Danish Society of Surgery on recommendations for the surveillance of patients with hereditary polyposis syndromes, including rare polyposis syndromes

    Update on genetic predisposition to colorectal cancer and polyposis

    Get PDF
    The present article summarizes recent developments in the characterization of genetic predisposition to colorectal cancer (CRC). The main themes covered include new hereditary CRC and polyposis syndromes, non-CRC hereditary cancer genes found mutated in CRC patients, strategies used to identify novel causal genes, and review of candidate genes that have been proposed to predispose to CRC and/or colonic polyposis. We provide an overview of newly described genes and syndromes associated with predisposition to CRC and polyposis, including: polymerase proofreading-associated polyposis, NTHL1-associated polyposis, mismatch repair gene biallelic inactivation-related adenomatous polyposis (including MSH3- and MLH3-associated polyposes), GREM1-associated mixed polyposis, RNF43-associated serrated polyposis, and RPS20 mutations as a rare cause of hereditary nonpolyposis CRC. The implementation of next generation sequencing approaches for genetic testing has exposed the presence of pathogenic germline variants in genes associated with hereditary cancer syndromes not traditionally linked to CRC, which may have an impact on genetic testing, counseling and surveillance. The identification of new hereditary CRC and polyposis genes has not deemed an easy endeavor, even though known CRC-related genes explain a small proportion of the estimated familial risk. Whole-genome sequencing may offer a technology for increasing this proportion, particularly if applied on pedigree data allowing linkage type of analysis. The final section critically surveys the large number of candidate genes that have been recently proposed for CRC predisposition

    The Role of Modifier Genes in Lynch Syndrome

    Get PDF
    There are a number of inherited predispositions to colorectal cancer (CRC) which can be broadly categorized into two groups; those with associated polyposis, such as familial adenomatous polyposis and the hamartomatous polyposis syndromes; and those that are linked to the non-polyposis syndromes, such as hereditary non polyposis colorectal cancer (HNPCC). The genetic basis of both the polyposis and non-polyposis syndromes are reflected in the CRC population who have no apparent family history of disease. Approximately 80% of all cases of CRC are associated with chromosomal instability [1] and are likely to have mutations in the Adenomatous Polyposis Coli (APC) gene whereas the remaining 20% with microsatellite instability appears to be due primarily to epigenetic inactivation of the DNA mismatch repair (MMR) gene MLH1 [2]

    MUTYH Associated Polyposis (MAP)

    Get PDF
    MUTYH Associated Polyposis (MAP), a Polyposis predisposition caused by biallelic mutations in the Base Excision Repair (BER) gene MUTYH, confers a marked risk of colorectal cancer (CRC). The MAP phenotype is difficult to distinguish from other hereditary CRC syndromes. Especially from Familial Adenomatous Polyposis (FAP) and to a lesser extend Lynch Syndrome, which are caused by germline mutations in the APC and Mismatch Repair (MMR) genes, respectively

    "I have always lived with the disease in the family": family adaptation to hereditary cancer-risk

    Get PDF
    BACKGROUND: Hereditary cancer syndromes have been conceptualized as a family level process. The present study explores the complexity and challenges of family adaptation to the hereditary cancer syndrome, in the context of genetic counseling and long-term cancer risk management and follow-up surveillance. METHODS: We performed semi-structured interviews with 13 participants with one of the following hereditary cancer syndromes: Lynch Syndrome, Hereditary Diffuse Gastric Cancer Syndrome, Hereditary Breast and Ovarian Cancer Syndrome, or Familial Adenomatous Polyposis. The interview was developed through a participatory approach with the involvement of healthcare professionals and individuals with first-hand experience of living with the hereditary cancer syndromes. RESULTS: The family is the main source of information and emotional support to deal with hereditary cancer syndromes. Multiple individual adaptation processes and communal coping networks interact, influencing the emotional and health-related behavior of family members. This is affected and affects the family’s communication and its’ members reactions to disclosure, with consequent changes in relationships. CONCLUSIONS: The systemic interdependent dynamics of family adaptation calls for family-centered care of genetic cancer syndromes

    CHARACTERISTICS OF INDIVIDUALS UNDERGOING PANEL GENETIC TESTING FOR PRIMARY BRAIN TUMORS

    Get PDF
    Background. Currently, there are no genetic testing guidelines for patients with a primary brain tumor (PBT). This population is largely understudied in terms of the family history, tumor grade, pathology, and their relation to genetic contribution. Our aim was to describe patient-specific characteristics and family histories across mutation-positive, negative, and variant of uncertain significance (VUS) cohorts based on cancer-panel genetic test results among patients with a PBT. Methods. Subjects were referred for multi-gene panel testing between March 2012 and June 2016. Clinical data were ascertained from test requisition forms. The incidence of pathogenic mutations (including likely pathogenic) and VUS’s were calculated for each gene and patient cohort. Results. Almost all tumors were glial (n=293, 53%) or meningeal pathology (n=222, 40%). Age of diagnosis differed significantly between glial and meningeal tumors (pCHEK2 (20/104), BRCA2 (13/104), PMS2 (10/104), TP53 (8/104), and APC (8/104). Of 165 patients with available family history information, nearly all (n=157, 95%) reported a family history of some cancer. Conclusions. Our data suggest PBTs can be the primary presenting cancer in hereditary syndromes with a known PBT risk. While pathology is helpful in narrowing down the differential diagnosis, patients’ pathology can be atypical in relation to their hereditary cancer syndrome. Family history evaluations are a beneficial risk assessment modality, particularly until testing criteria are developed for PBTs. Further research is necessary for the development of genetic testing criteria in the PBT population and more robust identification of at-risk individuals

    Do hereditary syndrome-related gynecologic cancers have any specific features?

    Get PDF
    Hereditary syndromes are responsible for 10 % of gynaecologic cancers, among which hereditary breastovarian cancer and hereditary non-polyposis colon cancer syndromes, known as HBOC and Lynch syndromes respectively, present the highest relative risk. The latter predisposes to endometrial cancer and both contribute to ovarian cancer. Cowden syndrome-related endometrial cancer and the increased risk of ovarian, uterine and cervical cancers associated with Peutz-Jeghers syndrome, are also demonstrated, while Li-Fraumeni syndrome patients are prone to develop ovarian and endometrial cancers. Despite these syndromes’ susceptibility to gynaecologic cancers being consensual, it is still not clear whether these tumours have any epidemiologic, clinical, pathologic or imaging specific features that could allow any of the intervening physicians to raise suspicion of a hereditary syndrome in patients without known genetic risk. Moreover, controversy exists regarding both screening and surveillance schemes. Our literature review provides an updated perspective on the evidence-based specific features of tumours related to each of these syndromes as well as on the most accepted screening and surveillance guidelines. In addition, some illustrative cases are presented

    Recognition and management of hereditary colorectal cancer syndromes

    Get PDF
    Over 1,900 colorectal tumors will arise in association with a hereditary colorectal cancer syndrome in Spain in 2009. The genetic defects responsible for the most common syndromes have been discovered in recent years. Genetic testing helps diagnose affected individuals and allows identification of individuals at-risk. Colonoscopy and prophylactic colectomy decrease colorectal cancer incidence and overall mortality in patients with hereditary colon cancer. Extracolonic tumors are frequent in these syndromes, so specific surveillance strategies should be offere
    • …
    corecore