5,558 research outputs found

    Facial Asymmetry Analysis Based on 3-D Dynamic Scans

    Get PDF
    Facial dysfunction is a fundamental symptom which often relates to many neurological illnesses, such as stroke, Bell’s palsy, Parkinson’s disease, etc. The current methods for detecting and assessing facial dysfunctions mainly rely on the trained practitioners which have significant limitations as they are often subjective. This paper presents a computer-based methodology of facial asymmetry analysis which aims for automatically detecting facial dysfunctions. The method is based on dynamic 3-D scans of human faces. The preliminary evaluation results testing on facial sequences from Hi4D-ADSIP database suggest that the proposed method is able to assist in the quantification and diagnosis of facial dysfunctions for neurological patients

    Random Forests for Real Time 3D Face Analysis

    Get PDF
    We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large rotations, partial occlusions, and the noisy depth data acquired using commercial sensors. Moreover, the algorithm works on each frame independently and achieves real time performance without resorting to parallel computations on a GPU. We present extensive experiments on publicly available, challenging datasets and present a new annotated head pose database recorded using a Microsoft Kinec

    FML: Face Model Learning from Videos

    Full text link
    Monocular image-based 3D reconstruction of faces is a long-standing problem in computer vision. Since image data is a 2D projection of a 3D face, the resulting depth ambiguity makes the problem ill-posed. Most existing methods rely on data-driven priors that are built from limited 3D face scans. In contrast, we propose multi-frame video-based self-supervised training of a deep network that (i) learns a face identity model both in shape and appearance while (ii) jointly learning to reconstruct 3D faces. Our face model is learned using only corpora of in-the-wild video clips collected from the Internet. This virtually endless source of training data enables learning of a highly general 3D face model. In order to achieve this, we propose a novel multi-frame consistency loss that ensures consistent shape and appearance across multiple frames of a subject's face, thus minimizing depth ambiguity. At test time we can use an arbitrary number of frames, so that we can perform both monocular as well as multi-frame reconstruction.Comment: CVPR 2019 (Oral). Video: https://www.youtube.com/watch?v=SG2BwxCw0lQ, Project Page: https://gvv.mpi-inf.mpg.de/projects/FML19

    Web-Shaped Model for Head Pose Estimation: an Approach for Best Exemplar Selection

    Get PDF
    Head pose estimation is a sensitive topic in video surveillance/smart ambient scenarios since head rotations can hide/distort discriminative features of the face. Face recognition would often tackle the problem of video frames where subjects appear in poses making it quite impossible. In this respect, the selection of the frames with the best face orientation can allow triggering recognition only on these, therefore decreasing the possibility of errors. This paper proposes a novel approach to head pose estimation for smart cities and video surveillance scenarios, aiming at this goal. The method relies on a cascade of two models: the first one predicts the positions of 68 well-known face landmarks; the second one applies a web-shaped model over the detected landmarks, to associate each of them to a specific face sector. The method can work on detected faces at a reasonable distance and with a resolution that is supported by several present devices. Results of experiments executed over some classical pose estimation benchmarks, namely Point '04, Biwi, and AFLW datasets show good performance in terms of both pose estimation and computing time. Further results refer to noisy images that are typical of the addressed settings. Finally, examples demonstrate the selection of the best frames from videos captured in video surveillance conditions

    A Bayesian hierarchy for robust gaze estimation in human–robot interaction

    Get PDF
    In this text, we present a probabilistic solution for robust gaze estimation in the context of human–robot interaction. Gaze estimation, in the sense of continuously assessing gaze direction of an interlocutor so as to determine his/her focus of visual attention, is important in several important computer vision applications, such as the development of non-intrusive gaze-tracking equipment for psychophysical experiments in neuroscience, specialised telecommunication devices, video surveillance, human–computer interfaces (HCI) and artificial cognitive systems for human–robot interaction (HRI), our application of interest. We have developed a robust solution based on a probabilistic approach that inherently deals with the uncertainty of sensor models, but also and in particular with uncertainty arising from distance, incomplete data and scene dynamics. This solution comprises a hierarchical formulation in the form of a mixture model that loosely follows how geometrical cues provided by facial features are believed to be used by the human perceptual system for gaze estimation. A quantitative analysis of the proposed framework's performance was undertaken through a thorough set of experimental sessions. Results show that the framework performs according to the difficult requirements of HRI applications, namely by exhibiting correctness, robustness and adaptiveness

    A Methodology for Extracting Human Bodies from Still Images

    Get PDF
    Monitoring and surveillance of humans is one of the most prominent applications of today and it is expected to be part of many future aspects of our life, for safety reasons, assisted living and many others. Many efforts have been made towards automatic and robust solutions, but the general problem is very challenging and remains still open. In this PhD dissertation we examine the problem from many perspectives. First, we study the performance of a hardware architecture designed for large-scale surveillance systems. Then, we focus on the general problem of human activity recognition, present an extensive survey of methodologies that deal with this subject and propose a maturity metric to evaluate them. One of the numerous and most popular algorithms for image processing found in the field is image segmentation and we propose a blind metric to evaluate their results regarding the activity at local regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies from challenging single images, which is the main contribution of the dissertation. Our methodology is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by our research in the fields of face, skin and hands detection. Experimental results and comparison with state-of-the-art methodologies demonstrate the success of our approach
    • …
    corecore