
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2013 

A Methodology for Extracting Human Bodies from Still Images A Methodology for Extracting Human Bodies from Still Images 

Athanasios Tsitsoulis 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Repository Citation Repository Citation 
Tsitsoulis, Athanasios, "A Methodology for Extracting Human Bodies from Still Images" (2013). Browse all 
Theses and Dissertations. 1172. 
https://corescholar.libraries.wright.edu/etd_all/1172 

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It 
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1172?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


A Methodology for Extracting
Human Bodies from Still Images

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

By

ATHANASIOS TSITSOULIS
M.S., University of Patras, Computer Engineering and Informatics Department, 2009

2013
Wright State University

Dayton, Ohio 45435-0001



WRIGHT STATE UNIVERSITY
SCHOOL OF GRADUATE STUDIES

December 20, 2013

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION
BY Athanasios Tsitsoulis ENTITLED A Methodology for Extracting Human Bodies from

Still Images BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF Doctor of Philosophy in Computer Engineering.

Nikolaos G. Bourbakis, Ph.D.
Thesis Director

Arthur Goshtasby, Ph.D.
Director, Computer Science & Engineering
Ph.D. Program

R. William Ayres, Ph.D.
Interim Dean, Graduate School

Committee on
Final Examination

Nikolaos G. Bourbakis, Ph.D.

Soon Chung, Ph.D.

Yong Pei, Ph.D.

Ioannis Hatziligeroudis, Ph.D.



ABSTRACT

Tsitsoulis, Athanasios. PhD. Department of Computer Science and Engineering, Wright State Uni-
versity, 2013. A Methodology for Extracting Human Bodies from Still Images

Monitoring and surveillance of humans is one of the most prominent applications of today and

it is expected to be part of many future aspects of our life, for safety reasons, assisted living and

many others. Many efforts have been made towards automatic and robust solutions, but the general

problem is very challenging and remains still open. In this PhD dissertation we examine the problem

from many perspectives. First, we study the performance of a hardware architecture designed

for large-scale surveillance systems. Then, we focus on the general problem of human activity

recognition, present an extensive survey of methodologies that deal with this subject and propose a

maturity metric to evaluate them.

One of the numerous and most popular algorithms for image processing found in the field is image

segmentation and we propose a blind metric to evaluate their results regarding the activity at local

regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies

from challenging single images, which is the main contribution of the dissertation. Our methodology

is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by

our research in the fields of face, skin and hands detection. Experimental results and comparison

with state-of-the-art methodologies demonstrate the success of our approach.
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1

Introduction

1.1 Motivation

One of the main needs for the betterment of modern societies is that of systems that can efficiently

and effectively be used for monitoring and surveillance. Cameras are becoming a prevalent median

because of the high amount of information they can convey. Additionally, technological advances

have made possible for camera sensors to become a commodity over the last decades and gain a

wide range of capabilities (high quality imaging, portability, processing power). There are numer-

ous applications they can facilitate, such as observation of traffic flow and recording of accidents,

recording of transactions in ATMs and incidents in banks, surveillance of security sensitive areas

and monitoring people at risk in care centers, to name a few and thus, they are becoming part of

our everyday life.

However, monitoring systems still rely heavily on human operators, which is a costly and ineffi-

cient solution, let alone in large-scale systems, as the ones needed for example for coverage of large

areas. It is clear that in order for this field to reach its full potential solutions have to be given

that allow computers to “see”, so that they can process the raw stream of visual data and extract

higher level knowledge from it. High-level processes such as video summarization and categoriza-

tion, object recognition, action recognition and event analysis can aid the management of the vast

amounts of imaging data that keep growing. The next step is to move to systems and methods that

can use these data to successfully predict events and not just report them or keep evidence of their

occurrence.

Another issue that rises when monitoring systems increase in scale and perform complex op-

erations and reasoning is the computational demand they require. Transmittance, storage and

processing require vast amounts of resources and processing power, which is not only expensive but

in some cases might be even infeasible. Thus, besides efficient methodologies there should be pow-

1
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erful architectures too to cope with the problem. Architectures adapted to the needs of surveillance

systems should be able to handle heavy loads of data and incorporate units to process them in an

intelligent manner.

Many of the aforementioned applications consider human subjects as targets and propel the main

motivation in this thesis. In order to monitor human behaviors, characteristics, etc., humans have

first to be detected and/or informative cues about them have to be extracted. This is a daunting

task in real-world environments, which are frequently uncontrolled, dynamic and complex and also

because humans appear in many different ways, both to due to variations of color and articulation.

Towards the alleviation of the problem, image processing techniques such as image segmentation

can facilitate human-centric approaches for garnering information about observed humans.

1.2 Summary of Contributions

Novel and original work presented in this dissertation includes:

• Representation of DIAS architecture’s main multiprocessor unit using Stochastic Petri-Nets and

evaluation of its simulated operation.

• Classification and presentation of the literature in human activity recognition and proposal of

a maturity metric for methodology evaluation.

• Formulation of a blind image segmentation metric that aims in providing a more objective

perspective to evaluation.

• Development of a scale and rotation invariant face detection methodology that can produce

results for both frontal and profile views of faces in images.

• Development of a novel bottom-up framework for automatic segmentation of human bodies in

single images. The main contributions are the algorithm for combination of multiple levels of

segmentation, skin color modeling and construction of anthropometric model using the informa-

tion of extracted face regions and searching algorithm for the most salient body regions guided

by soft anthropometric constraints.

1.3 Dissertation Outline

In this thesis, the problem of monitoring and surveillance is studied from many perspectives and

focus is given to methods that aim in observing human subjects. The structure of this thesis can
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be seen as an hierarchy, starting with the study of a generic architecture of hardware components

designed to cope with heavy loads of data, continue with an extensive survey of literature [1–217]

evolving around human activity recognition methodologies and then we focus on the main part of

the thesis, which is human body segmentation from single images. In [218] we present a study about

several issues occuring in surveillance system for assisting the elderly in smart homes, an application

that can greatly motivates this research.

• In Chapter 2, we revisit the DIAS architecture proposed in [219,220], a multiprocessor system

with many components for performing distributed tasks needed in generic large-scale surveillance

and monitoring systems. We focus on its main processing unit, simulate its operation with

Stochastic Petri Nets and perform experimental results to demonstrate its capabilities. This

work is published in [221].

• In Chapter 3, we present an extensive survey [222] that attempts to comprehensively review the

current research and development on vision-based human activity recognition. Synopses from

various methodologies are presented in an effort to garner the advantages and shortcomings of

the most recent state-of-the-art technologies. Also, a first-level self-evaluation of methodologies

is also proposed, which incorporates a set of significant features that best describe the most

important aspects of each methodology in terms of operation, performance and others and

weighted by their importance. The purpose of this study is to serve as a reference for further

research and evaluation and raise thoughts and discussions for future improvements of each

methodology towards maturity and usefulness.

• In Chapter 4, we deviate slightly from the main course of the thesis to present blind reference

evaluation scheme based on Regional LocalGlobal (RLG) graphs [223], which follows our early

work in [224], which aims at measuring the amount and distribution of detail in images produced

by segmentation algorithms. Image segmentation is one of the first important parts of image

analysis and understanding. Evaluation of image segmentation, however, is a very difficult task,

mainly because it requires human intervention and interpretation.

• In Chapter 5, we present a face detection method [225] for detection of human faces in images

based on skin detection, image segmentation and graph matching. One of the major merits of

this approach is that it can cope with both profile and frontal views of the face, while being

scale and rotation invariant.

• In Chapter 6, we propose a methodology for human body segmentation from images, extending

significantly the works in [226] and [227], motivated by the work in [228]. In this method, which
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is the key contribution of the dissertation, the face region is used for a rough localization of

the human body, adaptive skin modeling and construction of an anthropometric model. By

combining multiple levels of image segmentation and soft anthropometric constraints, we are

able to probabilistically locate the regions where existence of human body is high using color

similarities and finally extract the human body, even in challenging cases.

• In Chapter 7, we summarize our approach and our key results, and provide a discussion of the

advantages and limitations of the work. We also provide some suggested directions for future

research in this area.



2

Representation of the Flow of

Images on a Multiprocessor

Surveillance System

2.1 Introduction

The proliferation of surveillance and monitoring systems in everyday life has given rise to increasing

research interest regarding the implementation and improvement of their software and hardware

architecture [229–232]. Their vast majority uses visual information garnered by camera sensors,

because of its rich informational content, which can be easily understood by human operators.

However, relying complete to human operators for video processing and decision making has been

proven to be extremely inefficient, even in small-scale systems. Current trends move towards the

automation of these processes [233] and human operators are viewed more like coordinators of

the system and while their intervention is still necessary, their labor will be significantly less and

more productive. Design and implementation of large-scale surveillance and monitoring systems for

demanding applications is very difficult. First of all, processing and transmission of video content

requires huge amounts of resources and the resulting infrastructures cannot scale adequately along

with the application’s demands. Second, in order for the system to be able to replace a human

operator and be effective it has to be able to meet real-time constraints and be consistent with

specific deadlines in its operation. Significant work has been conducted in this direction, as it

can be seen in [234–238]. In this chapter we study the operation of an architecture for generic

surveillance and monitoring applications, named DIAS, extending the work previously presented

in [219, 220]. DIAS’ design includes the data flow from cameras to the rest of the system, where

5
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special units coordinate the communication among the system’s components and refine it as they

glean information over long periods of operation. Here, we focus on the Image Analysis (IA) section,

where most of the processing takes place. Its design and operation is coupled with a high-level

grouping of machine vision tasks that demonstrates the flow of information from low-level image

processing to high-level understanding, as it is expected to be seen in a complete surveillance system

capable of making complex decisions and executing multiple tasks. The emerging communication

schemes in the IA section are modeled using Stochastic Petri-Net (SPN) models, which in turn guide

the modeling of the whole IA section. The final model is used to demonstrate the section’s operation

and performance under strenuous conditions.

2.2 General Configuration

The overall organization of the DIAS system architecture is illustrated in Figure 2.1. The DIAS

system receives image either through a set of 2-D photoarrays (PAs) from the direct environment,

or from a storage area. The values of the image pixels are then fed to a set of preprocessors (Cs),

which process these values extracting critical information (parameters), such as average intensities of

various picture regions, the number of pixels per region, the locations of informative areas, etc. [234].

Since the preprocessors must function very quickly, they are implemented in hardware. The image

parameters are carried over the Master Planner processor (MP), in the PC section, for further

evaluation and formulation of the processing plans. A second processor, called Service Controller

(SC), receives the abstract plans from the MP processor and schedules the synchronization and

implementation of these plans on the Multiprocessor-Array in the IA section. The values of the

image pixels are sent to IA under the SC command. The IA section is composed of several special

purpose processors in an efficient parallel/pipelined scheme, in order to perform the tasks deemed

too difficult for the Cs preprocessors. Throughout the operation, the SC processor monitors the

status of the MA array by interrupt-driven accesses to the interface buffer (B), and updates the MP

processor accordingly. A unique feature of the DIAS structure is its Back-End processor (BE). The

BE processor performs the output operations and accumulates statistical and experimental data

about the performed image analysis/processing tasks. These data are then sequentially supplied to

the MP processor for future quick decision making and adaptive planning with learning capabilities.

The determination of performance in a system such as DIAS involves many considerations.

Each of the DIAS sections will contribute to the overall efficiency in its own unique way. The

performance of the Planning and Control section will be constrained by its utilization. The C

preprocessors and their associated photoarrays are implemented in hardware to provide an extremely
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Figure 2.1: General configuration of DIAS.

fast operation. Although high data output rates are possible from the DIAS system, the BE section

will handle presently only minor data flow problems by operating on a limited number of statistical

and experimental data. In future expansion, the BE section will play a more significant role on the

overall performance. Under the assumptions above, the majority of the processing tasks is handled

in the IA section. Tasks may be assigned to one or more processors simultaneously, or tasks may

remain in a queue for a single processor. Since the IA section carries the burden of processing, the

DIAS performance will depend directly on IA array structure’s performance.

2.3 Image Analysis Section

In this section se focus on the Image Analysis (IA) section, the system’s “heart” of operations. As

aforementioned, this section is responsible for the heavy processing of the images that travel through

the system. IA can be deemed as the implementation of the Machine Vision Processing Tasks, as

seen in Figure 2.4, where each row is dedicated to a specific group of tasks and the processors that

comprise it are specifically designed to perform these tasks. The Grouping of the Machine Vision

Processing Tasks has been proposed by Bourbakis in [239]. The rationale behind this design is

that in an image processing and understanding system, one would expect the flow of information to

follow the one depicted in the aforementioned scheme. In other words, it is more probable for similar
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types of image processing tasks to be performed on the data packets that move through the system.

Thus, we would like a communication scheme that favors communication among the elements that

implement similar tasks.

Figure 2.2: Bourbakis’ grouping of the machine vision tasks.

The general architectural characteristics of the IA array structure are shown in Figure 2.3. In

particular, this called “Common Buses with Switches” (CBS) architecture. It allows the Service

Controller to route the data stream from the input bus to any processor in the array by “opening”,

“closing” appropriately the input switches (a(1) to a(n)). In addition, when a particular processor

has finished with its own task, the new data stream may be routed to the output bus or to any other

processor by “opening”, “closing” the appropriate output switches (b(1) to b(n)). More specifically,

the dashed lines, in Figure 2.3, illustrate this routing method from the input bus to processor 2 in

the first row to processor “i” in the nth row and to the output bus. In order to ease the design effort

and to speed up processing time, each processor in the array will perform one specific task. In this

way each machine may be customized to system requirements and each processor may be optimized

for the task that is called for.
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Figure 2.3: Common Buses with Switches (CBS) architecture.

2.4 General Scheme

A trivial scenario for a multiprocessor system that can serve the needs of a complex automated

surveillance system is depicted in Figure 2.4. In this case, the PEs form a row and process data

in a sequential manner. In order for the system to represent the flow seen in Figure 2.4, PEs are

dedicated to specific tasks and form clusters that correspond to the groups of tasks of Figure 2.4.

Without going into details about its specific implementation, it can be clearly seen that the resources

of this design are limited and the congestion of the buses is expected to be preventatively high for

normal operation in the case of heavy processing load. Thus, this design needs to be modified in

order to be more efficient and scalable.

Figure 2.4: Serial PE communication scenario.
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In order to achieve the goal mentioned above, we propose designed the IA subsection as an array,

as seen in Figure 2.5. Each row is comprised of processing elements (PEs), specifically designed to

perform tasks of the same group (i.e. image processing tasks). Subsequent rows then are responsible

for conducting subsequent groups of tasks, as described in the scheme of Figure . As we will see

below, this structure allows us to design communication schemes among the processors of the same

row and subsequent rows that reduce the contention for shared resources, specifically the input and

output bus, whose role is to allow communication among IA section’s rows and transport data in

and out of the subsection.

Figure 2.5: Image Analysis (IA) section.

We can better understand the coupling of the IA section and the grouping of machine vision tasks

with two example scenarios. First, let us consider a case where the operator of the surveillance system

wants to send encrypted information to an external source, similarly to the application described

in [240]. The main subtasks that can accomplish this request can be image compression, for fast
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transmission, image encryption, since data will be transmitted over non-secure means and hiding,

in order to embed additional information into the encrypted data. These subtasks can be mainly

characterized as low-level image processing tasks and belong to the first group of the scheme in Figure

, or else the corresponding row of the IA for their processing is the first row. Similarly, in a more

complex scenario where the goal is object recognition different levels of abstraction are required and

more different types of tasks are expected to participate in the overall process. Specifically, image

processing, analysis and pattern recognition are intermediate steps for a generic object recognition

application and image understanding might be included too in more complex methods. In this case,

data would stay longer in the system and move from the first row to the third or fourth row before

exiting the system as results of the object recognition algorithm.

2.5 Communication Schemes

As noted earlier, the processing for a single image involves routing of the data around different paths

in the IA. The study of IA section can be greatly simplified if the paths can be classified as logical

subsystems of the section. From an analysis of the IA, eight different communication schemes, as

seen in Figure 2.6, are identified. These schemes are independent of each other, although the order

in which the image may be processed through the system will be governed by a fixed set of rules with

respect to the ordering of these schemes. Table 2.1 indicates the source and destination processors

involved in each of the communication schemes and information regarding the use of other system

resources, like the Input and Output bus and the Common (local) buses.

Table 2.1: Communication Schemes Resource Allocation (X indicates that resource is used)

CS Source Target Input Bus Local Bus Output Bus

1 IBP LQIPi X ai−1bi−1

2 LQIPi LQOPi

3 LQOPi−1 LQIPi ai−1bi−1

4 LQOPi LQIPk X aibi,

ak−1bk−1

5 LQOPi CBPi+1 akbk

6 CBPk CBPi, k > i akbk, aibi X

7 CBPi LQIPi ai−1bi−1

8 CBPi OBP ai−1bi−1 X

In more detail, six distinct types of flows can be defined, combinations of which lead to the
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generation of all possible paths that packets of data can take in the IA section. In general, the

communications schemes can be divided to those that move data down-wards (upper to lower rows)

and those that move them upwards (lower to upper rows). First, the packets arrive to the Input

Bus Processor (IBP), which sends them to one of IA section’s rows. This is implemented with CS1.

CS3 is designed for communicating data between two subsequent rows in a downward direction. As

it can be seen in Figure 2.7(a), this scheme does not transmit data over the input or output bus,

thus leading to less contention for these shared resources. In a case where the flow of information

follows the logic of a scheme similar to the grouping of machine vision tasks, illustrated in Figure 2.4,

meaning a flow that follows an almost serial sequence of steps, this communication scheme would

lead to improvement in performance. CS4 is similar to CS3, but is designed for the communication

of not adjacent rows and partially uses the input bus for the transfer. In order to move the data

between two rows, but upward, a combination of communication schemes has to be employed, namely

CS5, CS6 and CS7. Finally, data leave the system using the output bus, following the flow defined

by communication schemes CS5 and CS8. The communication schemes mentioned until now are

responsible for moving the data from output buffers to input buffers. When data arrive to an input

buffer, meaning that they are waiting to be processed, communication scheme of type CS2 guides

them to the respective PE and then to its output buffer, where they wait for transmission until the

appropriate buses are available. Finally, it should be noted that whenever communication over the

buses is required (all communication schemes except CS2), Communication Bus Processors (CBPs)

are involved. CBPs are processors specifically designed for gathering requests, opening and closing

of switches and conflict resolution. Generation of all possible sequences of communication schemes

can be conducted using a Context Free Grammar. It uses the communication schemes as letters of

its alphabet and is defined as G = ({S}, {CS1, CS2, CS3, CS4, CS5, CS6, CS7, CS8}, P, S), with

production rules:

S → CS1 CS2 P CS5 CS8

P → CS3 CS2 P | CS4 CS2 P | CS5 CS6 CS7 P | ε

2.6 Modeling of Communication Schemes

The operation of the communication schemes is formally described using Stochastic Petri Nets,

which model the interactions and coordination of the resources involved in each scheme, according

to its communication protocol. Petri Nets are a powerful tool for modeling and analyzing systems

where events take place concurrently and in parallel [241–243]. Stochastic Petri Nets can be formally

defined as a quintuple:
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Figure 2.6: Image Analysis section and Communication Schemes (CS).

SPN = (P, T,A,M0, L)

where

P = {p0, p1, . . . , pn}

T = {t0, t1, . . . , tn}

Ai ⊂ (P × T )

Ao ⊂ (T × P )

A = (Ai ∩Ao)

M0 = {m00,m01, . . . ,m0n}

L = {l0, l1, . . . , ln}

where P is a set of places, T is a set of transitions, Ai is a set of input arcs, Ao is a set of output

arcs, M0 is a set of initial markings for the Petri Net and L is the set of firing rates associated with

the transition. Petri Nets may contain tokens graphically drawn as black dots. A transition fires
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when all of its input places contain a token. When a transition fires, a token is put out in places

connected to each of its outputs arcs. In case of conflict in a transition, in the case for example

where a place has two output arcs, the firing rule is based on assigning probabilities to each of the

output arcs. This notation is useful in representing certain activities that may or may not occur. For

example, if place p1 represents such a place, then it could represent the fact that a certain resource

is requested. If there are two output arcs on this place, then the places connected to each of the

arcs could represent the states indicating that the particular resource is available or not. The Petri

Nets for CS1 through CS8 are illustrated in Figure 2.7.

2.7 Modeling of IA unit

After having formally defined the communication schemes and the CFG that connects them, we

can construct the model of the whole IA unit, using the SPN model shown in Figure 2.8. This

model allows the performance analysis of the complex system we have described, in various condi-

tions. Some simplification assumptions have been made in order to reduce the complexity of the

model and make the results more interpretable. First, the queuing time and delays imposed by the

Communication Bus Processors (CBPs), which regulate the flow of information and open/close the

appropriate bus switches to realize it, are considered negligible. This is not a strong assumption,

because these special processors only deal with requests and not data, processing and scheduling of

which is fast. Second, the time to read and write from memory and from and to the local input

and out queues, respectively, is neglected too. This is also reasonable, considering that there is no

contention for the local memories and they act as simple, fast buffers.

2.8 Experimental Results

In order to remain closer to the rationale behind the grouping of the machine vision tasks, the model

of the IA unit was modified as follows. First, the number of rows is fixed to five, which corresponds to

five groups of tasks, like the ones seen in Figure 2.4. Of course, this number can change according to

one’s needs, but since the aforementioned grouping aims in covering the whole spectrum of machine

vision tasks, from low to high level, it is argued that the selected number of rows is appropriate for

a generic architecture, such as DIAS. Second, for the experiments we assigned different probabilities

to the transitions that better adhere to the expected from of information, balance the processing

load better and indirectly bound a packet’s time in the system. Packets are allowed to visit every

component of the system in all possible ways, but they are biased to do so in a “waterfall” fashion,

beginning their flow from the upper rows and moving sequentially to the lower rows of the IA unit.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.7: Petri-Net models of the Communication Schemes.
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Figure 2.8: Petri-Net model of the IA section.

This is realized by the assignment of high probability in firing the transition that moves newly

arrived packets to the first row. This probability gradually diminishes for the transitions to lower

rows. Also, the sequential flow is favored, meaning that packages move from one row to the one

directly below using CS3, which reserves only one local bus and no I/O buses. Finally, the packets

are more probable to exit the system from the lowest rows.

After having described the general organization and communication patterns of the IA unit,

we define the characteristics of its resources, namely the processors and buses. The rates used in

the experiments derive from the bus’ transfer rate, which is fixed to 5 GBytes/sec. This choice

corresponds to transfer rates of modern architectures. The service rate of the PE’s is assumed to be

ten times slower, or 500 Mbytes/sec in this case. This is reasonable in many cases, where processors

can operate synchronously with the bus, but since the complexity of the tasks they are assigned to

varies and is almost always high, their speed is notably lower than the bus’ speed. Our choice is

arbitrary, however not optimistic. One of the goals of DIAS architecture is to encompass specifically

designed processors that can carry on tasks with hardware. Thus, their speed in many cases could

match that of the bus, but we relaxed this assumption to make the conditions of operations more

strenuous. The packets that come and travel through the system are considered to be of 1 MByte

size, which again is a restrictive choice. A packet this size corresponds to an uncompressed image

of approximately 591x591 pixels, which is not commonly the case. Additionally, even if a packet’s

size was big as it entered the IA unit in the form of an image (or video frame), it would be expected
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to rapidly be reduced as it is being processed and transformed into feature vectors, interpretations,

etc.

During the experiments the model’s performance was tested using two metrics, the Processing

Time (PT) and Processing Element Utilization (PEU), for different input rates and number of

PEs. Processing Time is defined as the average time that packets spend in the PEs over the total

time they stay in the system, which includes the times spent in queues and buses. Processing

Element Utilization, as the name suggests, measures the average number (percentage) of active PEs

during the system’s operation. The ideal value for both metrics is 100%, which in the case of PT

implies limited contention and high throughput and in the case of PEU that there is no waste in

resources, specifically in PEs. However, increase in one metric means decrease in the other, so

another interesting measurement that derives from the curves of the two aforementioned metrics, as

seen in Figure 2.9, is the point of their intersection, which shows how many processors are needed

so that the system achieves a balanced trade off between the two metrics. In the case where this

balance is desired, the number of PEs that achieves it is considered optimal. Figure 2.10 depicts

the optimal number of processors for different input rates, as well as the number of PEs the system

requires in order to achieve its maximum PT value.

Figure 2.9: IA unit Processing Time (PT) and PE Utilization (PEU) for different input rates and

number of PEs.

Figure 2.9 shows that the maximum value for PT achieved was approximately 89%, meaning

that only 11% of the overall time packets spend in the system is spent in queues and buses. For
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input rates lower than 333 packets/sec, PT is close to its maximum value was achieved for five

PEs in total, one in each of the five rows, while at the same time PEU value is low because the

PEs are underutilized. What is interesting is to observe how the system operates for greater input

rates, where more than five PEs are needed and the proposed array becomes more useful. When the

input rate becomes greater than 400 packets/sec PEU is 60% for five PEs, which is acceptable given

that we also desire to not have excess of resources. The most significant observations of Figure 2.9

are summarized in Figure 2.10. For input rates from 400 to 1000 packets/sec, which corresponds

approximately to 20 to 50 cameras, respectively, transmitting high quality images at 20 frames/sec,

the system’s PT can converge to its maximum value with almost linear increase of the number of

PEs. Also, optimal number of PEs increases also in a linear fashion, which shows the effectiveness

of the proposed system for high input rates, as it maintains reasonable resource requirements and

is able to guarantee strict real-time constraints. However, the system’s performance is eventually

limited by the performance of its components and more specifically the bus speed. For input rates

greater than 2000 packets/sec the contention for the I/O buses becomes too great and does not

permit convergence to the maximum PT. As shown in Figure 2.10, the increase in the number of

PEs is no longer linear and does not lead to proportional improvement to the system’s performance.

Figure 2.10: Optimal number of PEs for different input rates.
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Survey on Vision-Based Human

Activity Recognition

Methodologies

3.1 Introduction

Vision-based human activity analysis systems have attracted the attention of the research community

and industry, especially during the last two decades. Recent technological advances are fueling

the interest, which is increasing yearly at a very high rate, as indicated by the recent number of

publications. There have already been immense investments in surveillance and monitoring systems

and installations, which however stumble upon a common obstacle: the need for human operators.

Most of the traditional systems have been designed to solely acquire images and are enhanced only

with some simple intelligent capabilities, leaving all the high-level reasoning and inference to human

operators. Manual monitoring is a very tedious task and has been proven to be very expensive and

ineffective for large scale and everyday applications. Thus, new solutions are emerging and heading

towards automatic, autonomous, ubiquitous surveillance and monitoring systems.

Such systems can be applied in human-centric applications, where the subject of interest is a

human or group(s) of humans in an observed scene, whose actions and interactions among themselves

and the environment are to be recognized. Some of the most prominent types of human-centric

applications are summarized as follows:

Security surveillance in special areas: A common application is the surveillance of areas such as

travel sites and public areas, military bases etc., to reinforce their security. Usually, these environ-

ments contain sensitive areas where trespassing is not allowed. Human activities and interactions

19
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are monitored and recognized in a more general manner and usually alarms are raised whenever

suspicious activities are detected.

Crowd flux analysis: These applications are mostly applied to outdoor environments or large

public areas, where there are flows of many individuals, who in turn form crowds. The details of

individuals fade as crowds grow, so the point of interest here is the analysis of the crowd as a unit,

where both local and global fluctuations in the flow exist and indicate different phenomena (i.e.

panic).

Behavior analysis and activity recognition: Smart homes, medical and care centers for the elderly,

people in need of attention etc., can greatly benefit from systems that have the ability to recognize

efficiently (normal or abnormal) actions and activities of individuals, interactions among humans or

humans and the environment. This information can be of vital importance to doctors and physicians,

for prevention of dangerous situations and to enhance assistive living. Moreover, helpful cues can

be derived for the higher-level task of emotion recognition and enrich well-established traditional

methods, such as those based on facial expressions.

In this work, we focus on the third category and we are specifically interested in methodologies

that consider the motions of the whole human body. Regardless of the specific application, the

main characteristics of the reviewed the methodologies are the use of visual data as input, which are

manipulated with the use of tools and methods that spring from the fields of image processing and

artificial intelligence, so as to recognize human activities.

The words events, actions and activities are usually used interchangeably in the literature and of-

tentimes the distinction among them is not clear. However, a common agreement among researchers

over, at least a vague, discrimination among them should be made, as it would make evaluation and

exchange of information easier and more meaningful. One way to distinguish each type would be via

a semantic hierarchy that connects them, as shown in Figure 3.1. We define six layers of abstraction

where components of each layer are generally a combination of components of the previous layers.

At the bottom level, the first contains single static poses of body parts, so knowledge at this

level is restricted to specific parts of the human body and there is only spatial information. In the

second layer temporal information is incorporated and sequences of poses form gestures, primitive

actions of body parts with semantic meaning. One or more gestures of body parts combined sequen-

tially, concurrently and/or in parallel lead to the actions of the third layer. Thus, actions can be

recognized by observing the spatio-temporal changes of the whole human body. Examples of actions

are “walking”, “skipping”, “jumping”, etc. and most of the widely used datasets for training and

testing human action/activity recognition methodologies contain usually video segments in which

actor(s) perform a certain action. However, actions themselves can be building blocks for more
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complex actions or activities, as seen in the fourth layer of the hierarchy. This layer of abstraction

bonds naturally with the hierarchical way human understanding is organized. It is also necessary

because simple actions alone do not possess enough semantic content to describe concepts such as

“playing a specific game” or “building something”, which can be seen as combinations of distinct

simple actions. Up to now, only activities of one person are considered. In the fifth layer group

activities are defined as interactions among different individuals, actions of whom are intertwined

in space and time and acquire a different meaning. Finally, in the sixth layer events are defined as

the most semantically abstract concepts that take into account the observed scene as a whole. One

or many individuals and/or groups of individuals can collectively lead to specific interpretations of

events that occur in the scene, for instance “shopping in super market”, where there might be people

browsing, pushing shopping carts and waiting in line to be serviced by the store’s clerks. Explicit

or implicit knowledge about the environment, like where or when events occur and what objects are

involved can provide valuable cues that dissolve ambiguities in recognition. Of course, this knowl-

edge can be helpful in the lower levels too, especially when activities and group activities are to be

recognized, because usually people behaviors are often correlated with the environment they are in.

However, since there is not a clear and an established definition of terms for the aforementioned

motions and appearances of the human body, in the subsequent summaries of the methodologies the

original terms of the authors will be used.

3.1.1 Generic Architecture

Figure 3.2(a) shows a generic architecture for a complete system that performs the overall task,

extending the one proposed by Ko in [2] and Figure 3.2(b) shows a compact version with its crucial

components, which will be used later for the classification of the methodologies. A brief description

of the layers of the general architecture follows, so as to get a better insight to the problem at hand.

3.1.1.1 Sensor Level

Since we are interested in methods that process visual data, the sensors used in the bottom layer for

data gathering are mainly cameras. The most common types of cameras are the typical grayscale

or color surveillance or even typical web cameras, since they have become a commodity a long time

before and today can capture high quality video at a low cost. However, many new types of cameras

have already been designed and are gaining ground, such as cameras with extra sensors built in,

like infrared and depth sensors. Installation and calibration of cameras are the first issues that

require attention and in case of multicamera environments more challenging issues arise, such as

communication protocols and distribution of processing and information, to name a few.
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Figure 3.1: Semantic hierarchy of action primitives, actions, activities and events

3.1.1.2 Pre-processing

In many methodologies, the visual data gathered by the sensors require a pre-processing stage

before they become ready for further processing. Some of the most common pre-processing steps

are background modeling, foreground extraction and tracking. Background modeling is a crucial

step in this type of techniques, indicating the regions that belong to the environment and should

be removed. In real applications and world conditions, backgrounds are dynamic and impose huge

difficulties in their successful extraction, like several moving objects of no interest, clutter, shadows

and illumination changes. Many methods have been proposed to mitigate their impact, such as

Gaussian mixture models and pixel parameters, panorama graphs and motion compensation and

are still under investigation, especially concerning the 3D domain. Foreground extraction is the

natural course of action after the background has been modeled and aims at segmenting the moving

regions of interest. The most common approaches, offering different trade-off between performance

and complexity, are background subtraction, where the static background is first captured and then

subtracted from consequent frames, temporal differencing, makes use of the pixel-wise differences

between two or three consecutive frames and optical flow which employ the notion of flow vectors
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(a)

(b)

Figure 3.2: Generic architecture of a vision-based human activity recognition system (extending the

one proposed by Ko in [2]) a) Full view, b) Compact view

for moving objects. Foreground refinement can be seen as a separate process that aims at cleaning

the extracted foreground from false positive regions or regions of no interest and further enhance

the segmentation. It usually takes into account shape and/or motion characteristics of the extracted

silhouettes that form the background, for instance the aspect ration of a blobs height/width and

whether its pixels exhibit a uniform and probably periodic motion. After the region of interest (ROI)

has been extracted, it is often desirable to track its location in the subsequent frames. This means

to follow its movement and acquire its 2D or 3D coordinates in the observed scene. This information
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provides very useful information allowing the comprehension of temporal evolution and identification

of objects throughout the video stream. This knowledge in turn could enhance the communication

of multiple-camera systems, giving them the means to exchange information about the objects they

observe, distinguish them and proceed to camera handoff and data fusion. Occlusions and cluttered

background are factors that can hinder the tracking process, making it a challenging task, especially

if we desire it to operate in real-time.

3.1.1.3 Feature Extraction

This is the first crucial step in every methodology because here is where the sensed image/video

data are represented in a compact, meaningful, machine understandable manner and converted

to perceptually significant numeric or symbolic forms. Features should be able to balance the

trade-off between specificity and generality, where specificity here means their ability to accurately

capture the motions, actions, regions etc. of interest, whereas generality referrers to their ability to

accurately describe many of the aforementioned elements. Reliability and robustness in this level

are of the utmost importance, since any errors occurring here will propagate to the rest of the

systems components and degrade its performance significantly. However, care should be taken at

the same time so as to keep the computational requirements low. Manipulating video content is very

demanding in resources and this factor alone is enough to determine the effectiveness of the whole

system and influence its design. In this survey we classify the features into three broad categories,

namely global, local and hybrid, with latter being the combination of the first two. Briefly, global

features treat the human body or body parts as a unified entity and usually are combined with pre-

processing methods, whereas local features extract and describe only points and patches of interest

without explicitly localizing the human body/parts. This section will be further analyzed later.

3.1.1.4 Low-Level Reasoning

The biggest portion of the literature considers it of being part of the feature extraction process,

where the notion of semantics is firstly introduced into the methodology. However, in many complex,

hierarchical systems low-level reasoning is performed on top of feature extraction, mainly in order

to organize the features into primitive actions that will become the structural blocks for high-

level reasoning and further organized to more complex activities of behaviors. One example is the

organization of a hierarchy that moves from simple gestures and postures to primitive actions and

higher levels of human activities, as pointed out by Kojima et al. in [147]. A typical approach for

learning primitive actions is by learning statistical models of the temporal sequencing of motion

descriptors. Popular ways to discover primitive actions are motion templates, proposed in the
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seminal work of Bobick and Davis in [148] and their extensions, such as the motion history volumes,

proposed by Weinland et al. in [150]. Hierarchical approaches that capture the notion of low-level

inference can be found in the methodologies of Ivanov and Bobick in [149], who employ stochastic

grammars, Natarajan and Nevatia in [151], who employ hierarchical Hidden Markov Models (HMM)

and Ryoo and Aggarwal in [187], who perform cuboid spatio-temporal feature matching.

3.1.1.5 High-Level Reasoning

At this point, the methodology examines all the information gleaned in the previous steps and

formulates the final decisions, or in our case activity recognition, by assigning semantic labels to the

observed data. If we consider the feature extraction as the heart of the methodology, then this is

its mind. In general, it is achieved following two broad approaches, namely knowledge-driven and

data-driven approaches. Knowledge-driven approaches require expert knowledge to construct the

worlds model, which describes the way activities are formed and can be extended to different levels

of granularity. Examples of this type of approach are the works of Ryoo and Aggarwal in [183],

who use a context free grammar (CFG) for composite action representation, Minnen et al. in [184],

who use an extension of stochastic grammars and the VERL ontology framework of Francois et al.

in [185]. On the other hand, data-driven approaches attempt to learn the model of the world or

distinctive separation lines or planes that classify different events, using samples of data for training.

Methods employed in this approach emanate usually from the fields of machine learning and data

mining. Examples of this approach are the works of Robertson and Reid in [186], who present a

general method for human activity recognition based on Hidden Markov Models (HMM) and Li et

al. in [188], who base recognition upon action graphs. This section is the second parameter of our

methodology classification scheme and it will be analyzed further later.

3.1.1.6 Interpretation, Visualization

One of the missing components in the majority of the current works is the part that represents the

final decision in more human understandable manner, like 3D visualizations and interpretation of

events in natural language. There are still other issues to be resolved in the problem of recognition

alone and this step will probably be ignored until some real breakthroughs have ben achieved and

recognition systems are ready to become a commodity. When the methodologies manage to become

the backbone of real systems, this part will play significant role in the qualification of the product,

since it will need to address the needs of not just researchers, but also simple users who do not have

an understanding of the methodologys underlying infrastructure.
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3.1.1.7 Human-Computer Interaction

This step is related to the previous one and it is one of the future needs the methodologies will

need to address, when they reach the level to be used in real systems. This step is not necessarily

related to activity recognition, since it deals with the methods the data are stored and presented,

and the interfaces and platforms that allow effective communication with end-users. However, since

the applications of activity recognition and thus the group of end-users will be more specific, this

layer should be able to use existing and future technologies to make the human-computer interaction

(HCI) more pleasant and customizable to the individuals demands.

3.1.2 Challenges

Even today, besides the numerous methodologies proposed and the collaborative effort of the re-

searchers to produce robust and accurate systems and frameworks for activity recognition, several

challenges still exist that have not been yet fully addressed. These challenges can hinder the perfor-

mance of the methodologies significantly and render their applicability impossible to real-world sce-

narios. Even from the sensor level, camera effects and distortions can introduce significant amounts

of noise. Even in high quality video streams, quick motions can cause motion blurring and camera

motion can alter the perception of the localized motions. Moreover, dynamic illumination and shad-

ows, especially in appearance-based methods, are still a major challenge. It is commonly assumed

that illumination conditions are controlled, however this is not true in real-world scenarios. Another

problem that has to be dealt with are occlusions, either by the environment or moving objects, of

self-occlusions by body parts, which limit the observations of potentially informative cues. Also,

cameras position plays a significant role in recognizing activities, because activities look different

from different views ad the feature that are to be extracted have to be view-invariant so as to dissolve

the imposed ambiguities. Finally, activity itself is inherently ambiguous to define. Different people

perform the same action differently and each activity is so complex that can be decomposed to

many primitive parts. As a result, the domain of application has to be limited, since human experts

cannot possibly conceive and design every possible combination and machine-based methods are not

expressive or powerful enough to capture this spectrum either, even with a huge amount of training

data. Although many sophisticated methodologies have been developed and significant technologi-

cal advancements have been made towards the direction of the general problem of surveillance and

activity recognition, truly successful results cannot be claimed in real world conditions.
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3.1.3 Related Work

The problem of vision-based human activity recognition has garnered a lot of attention and there

many helpful surveys have been proposed in the recent years, which review and organize the related

literature and aid researchers to achieve a better understanding of the problem. Candamo et al. [1],

Ko in [2] and Hu et al. in [3], offer a comprehensive survey of image processing human behavior

recognition algorithms. Moeslund et al. in [4], Aggarwal and Ryoo in [12], Weinland et al. in

[13] and Poppe in [14], present different interesting taxonomies and discussions of relevant papers.

Turaga et al. in [5], focuses mostly in high-level recognition and not the low-level image processing.

Radke in [6], Taj and Cavallaro in [7] and Rinner and Wolf in [8], focus mostly on distributed smart

camera architectures and distributed computer vision algorithms.

In this survey, the current state in research and development of vision-based human activity

recognition systems is reviewed and the attributes of the most promising current achievements of

several worldwide projects are summarized and compared. Our main contribution is the proposal

of a simple formula for a first level methodology evaluation, which aims in embodying a holistic

assessment from the points of view of those who are essentially interested in the development or use

of a methodology. As opposed to the most relevant of the surveys, we focus deeply into the description

and evaluation of the most recent and prominent methodologies. A taxonomy based on the most

important components of the methodologies for human activity recognition is proposed, namely the

feature extraction and activity recognition. Except for better organization of the categories the

methodologies fall into, this taxonomy acts also as a first step of the final evaluation and gives a

quick insight about the main attributes of these categories.

3.2 Classification

In the previous section, the general architecture of a vision-based human activity recognition system

was discussed. Figure 3.2(b) shows a compact version with its most basic components, namely the

feature extraction and activity recognition steps. This flowchart can be also viewed as a generic

representation of a typical machine learning or data mining process, adapted for video input and the

task of human activity recognition. Feature extraction and activity recognition techniques are the

common denominator of the methodologies that tackle the problem of human activity recognition.

In this survey, we further analyze these two distinct and essential steps into categories with dis-

tinct characteristics and classify the reviewed methodologies according to which combination they

follow. Features are decomposed to local, global and hybrid features and recognition techniques to

knowledge-driven and data-driven, which are further decomposed to generative and discriminative
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methods, since they have significant differences. Brief descriptions of the aforementioned categories

are provided in the following sections and Table 3.1 shows the classification of the methodologies

according to the aforementioned categories. The proposed classification method is generic enough

to divide the categories into an easy to view table, while each category is meaningful and retains

specific characteristics. The arrows above on the top and on the left depict a general qualification

of important aspects of the feature extraction and recognition methods and are described in the

following paragraphs.

Table 3.1: Classification of the methodologies

3.2.1 Features

As mentioned earlier, features can be classified into three broad categories, namely global, local and

hybrid, with latter being the combination of the first two.
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3.2.1.1 Global Features

Global features are object-centered and in our case they are mostly human-centered. They are

usually applied on segmented regions depicting humans, so usually pre-processing steps are needed,

such as background modeling, foreground extraction and tracking, in order to detect and localize

the regions of interest. Traditional approaches describe the shape models of the human body or

its parts. A very common approach is to extract general statistics from the silhouette or blob that

represents the human in the scene, using its aspect ratio of height and width as seen in [47] and color

histograms, express the contour using chain coding. A more detailed description can be also achieved

through skeletonization of the human area, which provides more understanding of the postures and

pose evolution. Finally, these models can be expanded to three dimensions where the building blocks

become voxels, volumetric descriptions of the model parts. Except for the shape, global features

over describe the objects motion too, for example by estimating the trajectory of the blobs centroid

using optical flow, as seen in [24]. These models are mostly used in multiview systems, in order to

provide more robustness against view changes. Global features are chosen in general because they

offer an adequate level of information for a low computational cost.

3.2.1.2 Local Features

On the other hand, recent methodologies are based on local features, which are argued to be more

robust to noise. The main shortcoming of the global features are its dependence to the preprocessing

steps, which are open research problems themselves and can produce noise and ambiguities that will

propagate to the feature extraction process and hinder its performance. Another limitation is that

they are often too restrictive, as they are inherently connected with the defined human model and

have to comply with its definition. These limitations are mitigated in the case of local features,

which basically describe points of interest and their local neighborhoods through the whole scene.

The main idea is that during the evolution of the image sequence, sets of local features will acquire a

semantic meaning and manage to implicitly describe the humans and their motions, while irrelevant

features will eventually be discarded. Feature detectors are used to search for corners, regions or

other structure types and feature descriptors describe the neighborhoods of these features. Typical

feature detectors are the Harris corner and edge detector proposed by Harris and Stephens in [100],

or the Hough transform initially proposed by Hough in [101] and typical feature descriptors are

the Scale-invariant feature transform (SIFT), developed by Lowe in [102] and cross-correlation. In

the past few years, significant research has been conducted in order to augment these features and

descriptors with time information, evolving them into spatio-temporal features. The most notable

works concerning feature detectors have been proposed by Dollar et al. in [103], Jhuang et al. in
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[57], Laptev and Lindberg in [104], Oikonomopoulos et al. in [116], Willems et al. in [106], Wong

and Cipola in [107] and works concerning feature descriptors have been proposed by Klaser et al.

in [108], Laptev and Lindberg in [109], Laptev et al. in [110], Scovanner et al. in [111]. Local

features have been successfully used along with the Bag of Words (BoW) or Bag of Features (BoF)

approach. One example is the framework proposed by Fei-Fei and Perona in [112]. This approach

is adopted from the fields of natural language processing (NLP) and information retrieval and is

based on the construction of codewords that adequately describe the scene. The main shortcomings

of these features are the increase they often impose to computational complexity and the fact that

their nature can be too generic, leading in production of features that are of no use.

3.2.2 Recognition

By recognition here, we mean the final methods employed to reach the final decisions and labeling

of the activities observed in the scene. These methods, as aforementioned, are broadly categorized

as knowledge-driven and data-driven.

3.2.2.1 Knowledge-Driven Approaches

Knowledge-driven approaches attempt to explicitly capture and engineer domain knowledge, through

human experts. In this approach, formal models represent activities and sensor data and activity

recognition is mapped to inference and reasoning methods, e.g. induction, deduction and abduction.

Thus, a prior rule base is mandatory to react to the incoming information. A formal theory of plan

recognition has been presented in the PhD thesis of Kautz in [197], where plan recognition is defined

as a logical inference process of circumscription. Abstraction, decomposition and functional rela-

tionships between types of events are encoded in an event hierarchy, represented in first-order logic

(FOL). One category of knowledge-driven approaches is the process-based activity modeling, which

makes use of logical knowledge representation formalisms. Works that follow this path are these of

Kautz in [198], who follows the aforementioned approach of event hierarchies and its extension by

Wobke in [199], who uses situation theory to address the different probabilities of inferred plans.

Plan recognition in the work of Bouchard and Giroux in [200] is carried out by a combination of

action Description Logic (DL) and lattice theory, while Augusto and Nugent in [201] use tempo-

ral reasoning and Chen et al. in [202] use event calculus. Another approach of knowledge-driven

approaches is the state based activity modeling, with major representatives the works of Tapia et

al. in [203], who mine textual descriptions from the Wordnet ontology and Chen and Nugent in

[204], who use ontological modeling and reasoning. Formalization of action models is also achieved

through syntactic approaches, as seen in the works of Moore and Essa in [205], who use context-
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free grammars (CFG) for recognition of multi-object events and Joo and Chellapa in [206], who

use attribute grammars for the same task. Finally, a very powerful graphical tool to encompass

domain knowledge is the Petri Net and its variations, e.g. stochastic, probabilistic. Examples of

works that use Petri Nets for activity recognition are the framework proposed by Albanese et al.

in [207] and Castel et al. in [208]. In overall, knowledge-driven approaches tend to build powerful

and expressive models that are accurate for a specific domain and allow high level inference, while

at the same time follow a tractable and interpretable process that allows better fault diagnosis.

Especially after the improvements on description logic and the emergence of ontologies, reusability

of and conveyance of knowledge has become easier. However, since they are heavily dependent on

the experts knowledge, they usually tend to limit the domains scope and require notable manual

effort for the knowledge representation, which hinders their scalability. Another shortcoming often

attributed to knowledge-driven models is their inherent inability to cope with probabilities, since

inference is normally deterministic.

3.2.2.2 Data-Driven Approaches

The second broad category of recognition approaches is the data-driven approach, which is where

the majority of the recent methodologies fall into. As mentioned before, these approaches model

the domain knowledge implicitly by learning descriptive relations that emanate from training data,

which represent a fraction of the world and focus in capturing the details of specific domains. Many

examples of this category are summarized in this survey. Data-driven approaches can be further

divided into two subcategories, namely generative and discriminative approaches.

Generative model-based approaches are more traditional approaches that employ statistical mod-

els and perform random generation of observable data, based on some hidden parameters. Their

basic operation is the estimation of the joint probability distribution over observation and label

sequences and form full probabilistic models, by explicitly modeling the relations between the ob-

servations and the class labels. However, dependency assumptions have to be made. Discriminative

models, on the other hand, avoid making independence assumptions among the observations. Their

inference lies on a statistical framework that models the conditional distribution over observation

to label sequences and attempt to directly model the discriminative boundary between the differ-

ent class labels. Typical examples of generative models are Gaussian mixture models and other

types of mixture models, Hidden Markov models, Naive Bayes, Latent Dirichlet allocation, Bayesian

Networks and Markov Random Fields. Typical examples of discriminative models are Logistic and

Linear Regression, Linear Discriminant Analysis, Support Vector Machines, Boosting techniques,

Conditional Random Fields and Neural Networks.
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In general, generative models capture well the intrinsic parameters that describe the world and

can be accurate in a specific domain. However, these models make independence assumptions

among the variables they model, which one hand can greatly reduce models parameters [10, 11],

but restrict the models performance in the case they violate real-worlds conditions [105]. Since as

aforementioned generative models give a holistic approximation of a domain, their functionality is

easier to understand, which leads to better fault diagnosis. When the domain is complicated though,

they have to follow its complexity, so they need a well defined and specific application domain to

remain tractable. Discriminative models have a different perspective of how to relate observed data

to label classes and in a sense compensate the functionality of the generative models. Due to the

fact that they avoid making independency assumptions and are more robust to real-world and model

mismatch. They are in general simple to construct and fast, but they do not offer a good insight

to their inner workings, so they are not easy to interpret. Their major disadvantage is that they

require a large amount of training data in order to capture adequately the domains informative cues,

whereas generative models can cope with unlabeled data and be applicable to unsupervised learning.

3.3 Methodologies

3.3.1 Data-Driven Approaches

Data-driven approaches can be further divided into two distinct categories, namely generative and

discriminative approaches.

3.3.1.1 Discriminative Approaches

a) Using Global Features

Activity recognition is achieved by Yi and Krim in [15] via monitoring paths of silhouettes and

mapping them to known paths using homotopy transformation. The methodologys main feature is

the path delineated by human silhouettes movement and it is matched probabilistically with stored

paths of known behaviors. Special care has been taken to mitigate the ambiguity and discontinuity

in homotopy paths, which are sampled during processing with Niquist sampling rate. The main focus

of this system lies on the dimensionality reduction and high compression of information, although

the description of the steps is not thorough. Moreover, the system does not include image processing,

but rather uses Iranis group dataset [53] where human silhouettes are already segmented and clear.

The goal of Nater et al. in [17] is to design a system that primarily aims in assisting living of

elderly or people at risk in general. Here, normality of an action is based on the frequency it occurs.

The methodology introduces an unsupervised approach that employs two hierarchical structures,
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inspired by the work of Fidler et al. [9]. The first one is about clustering the feature vectors that

describe the appearance of the monitored human (blob) using the k-means approach, in a top-down

hierarchy. The second hierarchy contains formations according to a bottom-up approach, where

as the levels develop, more complex actions are considered. Blobs are extracted using background

subtraction, rescaled and distance transformed and tracked using the mode estimating tracker of

Bradski in [77]. The temporal relations of the symbol sequences, representing the postures, define the

actions. Classification of normal or abnormal events is done according to frequency of occurrence,

meaning that the larger the length of the symbol sequences, the more usual the action.

The surveillance system proposed by Lao et al. in [21] aims in covering the average consumers

needs and experiments include simulations of shoplifting. The background is subtracted using the

Gaussian Mixture Models technique of Zivkovic and van der Heijden in [78] and multiple persons are

identified with the k-Nearest Neighbor classification method. A mean-shift tracker is also employed

using color histograms. The trajectories are calculated using the Double Exponential Smoothing

operator proposed by Han et al. in [79], which is argued to be faster than the widely used Kalman

filter. Body-based analysis is performed to classify the different postures in the form of silhouettes,

described using the HV-PCA shape descriptor, proposed by the authors. Final classification is

performed via a Continuous Hidden Markov Model. The interactions between two persons are

recognized as the combinations of single events that satisfy some spatial-temporal constraints, defined

by the temporal logic. The system’s cost is low and operates in near real-time, deals with interactions

among multiple subjects in the scene, which are visualized in 3D so as to be increase user friendliness.

However, the 3D visualization is still done offline and requires four white lines to exist in the scene

so as to calibrate its coordinates.

Recognizing complex activities in video sequences based on motion information in a simple and

computationally efficient manner is the objective of Ahad et al. in [24], continuing their work

appeared in Ahad et al. [81]. The subjects motion is captured using Motion History Images (MHI)

and Motion Energy Images (MEI). The extracted features are the seven Hu moments, which are

invariant to rotation and the central moment, which is invariant under translation. Optical flow is

computed with the gradients method proposed by Christmas in [80] and applied together with median

filtering so as to overcome the motion-overwriting problem due to self-occlusion. Finally, k-Nearest

Neighbors algorithm for classification of the actions is employed. The methodology is intended to be

easy to implement and maintain a good trade-off between performance and complexity. However,

the outdoor and illumination changes scenes still pose challenges and the k-NN method does not

lead to a very sophisticated classification scheme.

Fast, robust and efficient recognition of single actions in videos captured from a monocular
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camera from different views is the subject of interest of Cherla et al. in [26]. Initially background

subtraction [82, 83] and refinement with morphological operations are performed and the basic

features are extracted, namely the contours width (normalized with scaling), displacements of the

contour centroids and standard deviations. Width features for gait representation have been used

by Kale et al. in [84] and by Liu et al. in [85] and are preferred compared to MHIs, which can

only deal with linear changes in speed create confusions with similar motions. Principal Component

Analysis (PCA) is used to select the five most discriminating vectors and Dynamic Time Warping

(DTW) to calculate the optimal average template for each action and again using multiple features.

One of the authors ideas is to weigh the second half of an activitys evolution in time more, to

increase separability. Experimental results show that fusing two datasets from orthogonal views

during training increases view-invariance. A good level of view invariance is expected without the

corresponding increase in computational complexity, however the methodology is not yet concrete

and does not achieve high recognition rates.

Another system for fall detection in smart homes is introduces by Zweng in [28]. Information

gathered from four cameras is fused and fall is detected after a voting procedure. The goal is

to increase robustness by using information from multiple sources. First, background modeling is

conducted using the Color Mean and Variance approach, initially proposed by Wren et al. in [86]

and shadows are removed after combining the RGB and NRGB color space. Simple tracking of the

blob with the appropriate size takes place after these steps. The features used in the methodology

are the length/width ratio, orientation and axis ratio and velocity of the blob. The authors use the

statistical model (accumulation hitmap) of Ermis et al. in [87] to recognize falling after recognizing

three postures, namely standing, in between and lying, inspired by Anderson et al. in [88]. The

system has also been designed to learn zones of usual activity (e.g. bed). Conclusively, it is a

simple and computationally inexpensive approach, offering robustness against occlusions and clutter.

However the features used and the postures recognized are simplistic and so is the reasoning, while

it could be argued that there is a redundancy in information.

Human action recognition performed by Kim et al. in [29], is based on an ordinal measure of

accumulated motion. Event retrieval in videos captured with a static camera is performed, where a

video segment containing an action is treated as template, the characteristics of which are queried

in target videos. As a descriptor of the humans in the scene, the Accumulated Motion Image (AMI)

feature is proposed. This feature indicates the areas where motion is most frequently observed and is

combined with the proposed ordinal measure for matching similar actions and it is argued to lead to

more efficient computations as opposed to 3D spatiotemporal features. AMI is first horizontally and

vertically projected to reveal the energy histograms in the two directions. The energy histograms
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are normalized and then the similarity is measured between those of the candidates and of the

query action video. The methods advantages are its simplicity, real-time operability, robustness to

occlusions, clutter, similar actions and appearances and elimination of the need for preprocessing of

the data, such as segmentation and learning. Its disadvantages are the lack of support for dynamic

scenes and the potential limitations to actions of small length.

Foroughi et al. in [30] describe a methodology for video surveillance in smart homes, using a

single camera to recognize daily activities of a person, unusual events and mostly fall incidents.

Effort has been made to able to recognize different types of falls and complex actions reliably, while

at the same time keeping the false positives rate limited. The human’s silhouette is extracted using

the fuzzy background subtraction method of Shakeri et al. in [89]. The chosen features have been

proposed by Wang in [90]. They derive from the fitted ellipse, horizontally and vertically projected

histograms of the foreground images (normalized with Discrete Fourier transform) and temporal

changes of the head position (top-most point of silhouette). Significant change in the standard

deviation of the orientation or ratio of length/width of the eclipse, most probably indicate a fall

incident. The recognition takes place in a supervised four-layered MLP Neural Network with back-

propagation learning schema. The system is argued to be robust to shadows, illumination change

and variation of postures and achieves high image compression. However, simple features are used

and assumptions have been made to simplify the situations, as training the Neural Network is already

a difficult task.

Hazelhoff et al. in [32] propose a methodology for detecting fall incidents occurring inside a

room, captured with two cameras with perpendicular views. The goal is the creation of a fast and

computationally inexpensive system that can tolerate occlusions. Extraction of the foreground pixels

is done using Gaussian Mixture Model (GMM) for the background modeling. Moving objects that

have certain size and no head region attached to them are marked as non-human. The head is defined

as the highest skin region and it is marked and tracked (position and motion). Then, Principal

Component Analysis (PCA) is adopted as the basic component of the methodology. PCA produces

the ratio of the variances in horizontal and vertical direction, as well as the angle between the main

axis of the human body and the vertical camera axis (two features gathered from each camera).

Multi-frame Gaussian classifier is finally trained to distinguish fall and non-fall events. Recognition

process requires lying posture to be detected and inactivity zones to be manually marked in the

scene. Its main merits are it tolerance to occlusion and robustness against cluttered background and

illumination changes. However, the crucial to systems performance head detection and tracking is

still simple and manual intervention is required for the correct operation.

A distributed camera network architecture is proposed by Song et al. in [34], designed to per-
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form the tasks of tracking humans and recognizing their activities in large outdoor areas. In this

approach, each camera is deemed as an agent and cameras communicate with neighboring cameras

with the same FOV, based on the framework previously proposed by Soto et al. in [92]. A modi-

fied version of the Consensus Kalman Filters algorithm, initially proposed by Olfati-Saber in [91],

is used for refinement and handoff of locations of humans. Consensus-based posture recognition

follows, which estimates probabilistic similarities of shapes to a predefined dictionary. Shape-based

activity recognition, similarly to the one described Veeraraghavan et al. in [93] is the final compo-

nent of the methodology. Both the architecture and the chosen algorithms support the expected

systems robustness, reliability and scalability, but it is still a proof of concept and the authors make

assumptions for the network communication. In future work tracking and recognition will be fused.

Meng et al. in [40] use Motion History Image (MHI), Modified Motion History Image (MMHI)

and Motion Gradient orientation (MGO) as their features and perform Principal Component Analy-

sis (PCA) to reduce their high dimensionality. Six binary SVMs are trained, each one corresponding

to an activity, using the one-versus-all method and the winner-takes-all strategy. The experimental

results showed that the simple MHI had the best performance, due to its ability to handle better the

noise of cluttered scenes, while the MMHI feature approached had a slightly increased performance

in the case where 4x4 down-sampling was used, comparable on average to MHIs in the previous

case. The methodology is simple and computationally inexpensive and there is no need for param-

eter setting, but these come to the cost of limiting recognition to simple actions in a homogenous

scene.

Huang et al. in [42] base the modeling of human behavior on Discriminative Random Fields

(DRF), inspired by the work of Wang et al. in [94], who introduced the Hidden Conditional Ran-

dom Field (HCRF) for gesture recognition. The motion observations are mapped to category label

variables and an undirected graph is constructed, where the nodes are the behavior features and the

edges the relationships among them. The conditional probabilities for the model are then computed

from the feature functions between the labels and the hidden states. A skeleton model is proposed

as the humans appearance model and the extracted features describe the general bodys posture and

the more discrete gestures of the limbs. The parameters for the model are learnt from the training

dataset using the Quasi-Newton method and the inference is carried out via belief propagation.

The methodology has a good computational complexity, can model long term contextual dependen-

cies among observations and achieve better recognition rate than the classic HMM and CRF. The

authors, however, are concerned only with the recognition problem and not the image processing.

Fleck et al. in [47], describe the architecture of a network of smart cameras, installed in the cor-

ridors of a building to aid assisted living. The smart camera network is considered to be distributed
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in the sense that every camera has processing power and performs the tracking and the activity

recognition autonomously and only processed results are sent to the central server wirelessly. The

tracking is based in adaptive background segmentation and multiple particle filter estimation for

each moving object that belongs to the foreground. Since the cameras are static and calibrated,

the results can easily be mapped to the 3D world. The features that describe the silhouettes are

a combination Aspect Ratio, Aspect Ratio Differences and Histogram Differences and are fed to

SVM classifiers running in each of the systems cameras to perform fall detection. Great effort has

been made in visualizing the recognized events, which combined with its holistic architecture and

modularity constitute a suitable solution for industry.

The work presented by Khalid in [48] incorporates novel techniques to achieve accurate unsu-

pervised learning of patterns in the presence of anomalies in training data. Emphasis has also been

given on keeping the space and time complexities low. The features to be processed derive from the

trajectories of humans, which are treated as motion time series. More specifically, trajectories are

represented using a modified version of the Discrete Fourier Transform (DFT-MOD), which aug-

ments the DFT coefficients-based feature vector with information regarding the length and starting

location of the trajectory. The extracted features are clustered with a cooperative learning algorithm

that combines learning vector quantization (LVQ) with Hierarchical Semi-Agglomerative ClusTering

(HSACT), which enables it to discover the actual clusters and avoid being stuck in local minima.

Each learning step is iterative and each iteration filters out anomalous trajectories from the training

data, which are trajectories that belong to the learned clusters with fewer cluster memberships.

Another contribution of this work is the proposal of a mechanism for modeling various patterns that

are present in the motion data set, called m-Medoids. The classification of trajectories is performed

by the k Nearest Medoids (k-NM) technique, which follows the same principles as the well-known

k-Nearest Neighbors approach. In overall, the clustering method offers improved results with low

computational cost, although it is sensitive to the presence of very high number of anomalies.

Zhang and Gong in [49] propose a method for silhouette-based action categorization, by treating

action images as a whole, rather than identifying the detailed body configurations. To this end, the

authors propose a combination of Conditional Random Fields and Hidden Markov Models, referred as

modified HCRF (mHCRF) based on HMM pathing. The systems input are clearly segmented binary

silhouettes from a static background, described by the Chain Coding approach. In fact, the Fourier

Transform of the latter is computed, so as to augment the resulting spectrum features with rotation

invariance. To overcome ambiguities caused due to subtle body shape changes, motion moment

features are also computed with frame differencing. The core of this publication is the mHCRF

algorithm, which eliminates a major drawback of the HCRF technique, namely the sensitivity to
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the initial parameter selection. In mHCRF this problem is solved by making the hidden variables

observable, which in turn ensures the convexity of the objective function. Conclusively, the proposed

methodology introduces an improved way to model actions.

Wu et al. in [51] introduce a discriminative model capable of online updating for action recog-

nition, enhanced with semi-supervised learning so as to handle partially labeled training sets. The

main technique used is an enhancement of Discriminant-analysis of Canonical Correlations (DCC),

described by Kim et al. in [95], referred to as Incremental Discriminant-analysis of Canonical Cor-

relations (IDCC), which is able to update the discriminant transformation matrix for classification

when new training data is being added. IDCC is fused with a semi-supervised learning method,

namely the linear neighborhood propagation (LNP), in order to cope with both labeled and unla-

beled training data and augment it by allowing it to simultaneously label new training sets. The

methodology was also specifically tested for its robustness against occlusions, different styles and

conditions in walking sequences and showed that the online re-training improves the recognition

over time and manages to cope with them. Recognition is expected to be more accurate if temporal

information and non-linear learning will also be taken into account.

An interesting approach for unsupervised learning of activities based on a linear dynamical

framework is proposed by Turaga et al. in [68]. The focus of this method is the automatic temporal

segmentation of complex actions, which are modeled as cascades of linear time invariant dynamical

models. The resulting dynamical systems are clustered into action prototypes, which in turn form

the cascade using the n-grams learning technique. This method can be viewed as a grammar based

approach, where the production rules construct actions from sequences of action prototypes. One of

the appealing aspects of this work is the incorporation of view and rate invariance into the models,

but achieved in the learning (clustering) stage rather than the feature extraction stage.

Another methodology for unsupervised learning of human action classes has proposed earlier by

Wang et al. in [69]. This approach differs significantly from the previous one, since here information

is extracted solely from static images and thus no temporal relations can be known. The basic idea

lies on grouping images depicting humans with similar body poses and matching them to manu-

ally labeled action prototypes. Poses are formed from the responses of Canny edge detection and

matched using a deformable matching method that is based upon a linear programming relaxation

technique. However, this method is computationally expensive and the authors propose pruning

the search space using shape contexts. Action classes are finally produced by spectral clustering of

the pairwise distances and are the prototypes that represent the clusters are manually labeled, for

further classification of newly seen images.

Wang and Mori in [70], where they expand their work appearing in [96], base their action recogni-
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tion methodology upon the bag of words approach, with the difference that each frame is represented

by a word. One of their main arguments is that their global motion descriptors are more effective

than the local patches of information usually used with the aforementioned approach. The models

used for visual recognition are the Semi-Latent Dirichlet Allocation (S-LDA) and Semi-latent Cor-

related Topic Model (S-CTM), which augment the traditional LDA and CTM models of Blei et al.

in [97] and Lafferty and Blei in [98], respectively, by observing some of the latent variables during

training. Temporal relations are recovered via the co-occurrence statistics amongst visual words

and whole video sequences are used during the classification process, instead of single words. Their

work shows high recognition rates, but in not complex datasets by assuming tracking and stability

of the human figures. In a more recent work from the same group, Lan et al. in [99] overcome

the latter assumption and introduce a discriminative model that couples activity recognition with

person detection and tracking.

Gong and Medioni in [73], use labeled motion capture (Mocap) data to learn view invariant

3D models of human motion in the joint trajectory space. During the offline training phase the

submanifolds in the video data are represented by a latent variable model (LVM), extended to

a spatio-temporal manifold (STM) model that additionally includes the temporal dimension. The

learnt manifold structures are used for recognition of actions, using method called Dynamic Manifold

Warping (DMW) to align multivariate time series and matches are found based on a similarity score.

The main features of the method, the joint trajectories and 3D skeleton figures are extracted from

partially occluded tracks. However, this step is sensitive to noise and restricts the methodologys full

potential.

Zhou et al. in [33] on the other hand use a fish-eye camera mounted on the ceiling of a living room,

in real environment conditions. An intelligent background subtraction method is initially applied,

based on brightness and chromaticity distortion setting and decision rules. For the background

modeling Gaussian mixtures are used and thresholding based on maximum likelihood. The extracted

humans are tracked with an algorithm that employs a speed up method called diamond search and

the silhouettes location and speed are estimated. At this point, the authors use their adaptive fuzzy

inference system (ANFIS) to refine the results and a Hierarchical Action Decision Tree (HADT),

which provides different granularities of recognition for multiple-level features. The system achieves

robustness against illumination, shadows, lens distortion and occlusions, while maintaining real-time

functionality.

b) Using Local Features

Zweng and Kampel in [19], study the problem of unexpected behavior recognition, focusing on

high-density crowd scene. Additionally, they test the applicability of the method in fall detection
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for a single human. The input comes from a single camera and Average of Gaussian algorithm is

used as the background model, enhanced with shadow removal. The extracted features emerge from

the accumulated hitmap, which shows the areas in the sequence where motion takes place the most.

Crowd pace and density are then estimated, along with the areas of low walking frequency.

Hofmann and Gavrilla in [37] present an introduction to a framework for unconstrained 3D

human upper body pose estimation from multiple camera views in complex environment, extending

previous work of Hofmann and Gavrilla in [113]. In the beginning, a rough ROI is determined via

foreground segmentation and volume carving, so as to exclude moving regions due to clutter in the

next steps. In the hypothesis generation step, the resulting blobs are matched in a hierarchical

manner to pre-computed 2D pose exemplars containing silhouette data in the individual camera

views and are mapped to corresponding 3D poses. The observations and an action model are

combined in a Viterbi-like maximum likelihood approach to compute the K-best trajectories, which

are used for pose selection. The selected poses in turn are used to generate and adapt a texture model

that enriches the shape likelihood measure used for pose recovery. At this point the pose prediction

is performed, by using the multiple hypotheses and as a result, the 3D pose candidates generated

by single frame pose recovery at the next step are augmented. Great effort has been made in

maintaining the 3D pose search space low, by ruling out unfavorable solutions. The resulting system

can cope with complex and dynamic environment, uses coupled tracking and pose estimation and

does not require initialization pre-operation process.

Lavee et al. in [39] describe a framework for detecting user-defined suspicious events in a vast

amount of video data. The features come from the RGB color space and the system also supports

four levels of temporal granularity, by setting four different sampling values. For each temporal

scale three-dimensional matrices are calculated, containing the intensity gradients values in the three

directions, representing the distribution of change of the observed motion. Four classifiers are used

(Nearest Neighbor Algorithm using Histogram Distance Function, proposed by Zelnik-Manor and

Irani in [114], Euclidean distance, Neural Networks and Decision tree) and the results are evaluated.

Due to the high dimensionality of the input data, Nearest Neighbor classification algorithm using the

histogram distance measure shows the best performance, coping better with them and Decision trees

the worst performance. Bayesian Networks and Support Vector Machines are not chosen because

they require an extra step to set their parameters. The system is extended further with the addition

of storing high-level interpretations in XML files can be visualized and processed.

A set of novel visual descriptors based on B-splines forms the foundation of the human activity

recognition methodology thoroughly described by Oikonomopoulos et al. in [52]. The optical flow

method designed by Black and Anandan in [115] is used to detect spatiotemporal interest points
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with the algorithm of Oikonomopoulos et al. in [116], and median filtering is then applied to deal

with general camera motion. A low degree B-spline polynomial is then fitted to these points and

the sequences of images are represented as collections of B-spline surfaces. The final spatiotemporal

feature descriptor vectors are single histograms of their partial derivatives, which are clustered using

the K-means method to form a codebook. The codebook in turn is refined using the GentleBoost

algorithm of Friedman et al. in [118] and given as input to a Relevance Vector Machine, proposed

by Tipping in [117], for the final classification. This approach does not use or require image prepro-

cessing or background subtraction prior to feature extraction. Although many of the methodologys

steps are computationally expensive, measures have been taken to reduce the needed computational

load. The main advantage of the methodology is its robustness to several factors and good handling

of unknown cases. Further future research should include more extensive experiments on complex

cases, where the background is dynamic and several actors are in the scene, as the authors report.

An interesting approach for human activity recognition comes from biologically inspired systems,

propelled by research on how the human visual system works. Juang et al. in [57] propose a

hierarchical feed-forward architecture, previously used in [142, 143, 144], where features are formed

hierarchically and in each level they increase in complexity and invariance to scale and position. Their

model only considers motion, which is initially captured by Gabor filters of multiple orientations,

applied to flow vectors and a local max operation increases their tolerance to position. The next level

of features is the result of the previous filter responses and template matching with stored prototypes.

Frame-based classification is done at this level. A similar process, template matching and global

max operation, granting shift-in-time invariance, compose the final video-based classification, where

feature selection with zero-norm SVM is performed. Although the model is able to represent smooth

actions, it suffers from high computational complexity, especially in the first stages of the feature

selection. To mitigate this problem as much as possible, the authors also perform background

subtraction using GMMs as a preprocessing step and more importantly, they propose the use of

sparse features in the intermediate steps of the overall process.

An extension of the work of Jhuang et al. [57] is presented by Escobar et al. in [58], where

the initial steps of the methodology are more directly connected to the human biology. Specifically,

they use a feed-forward spiking network of Perkel and Bullock in [145], emulating the responses

and communication of the two brain areas dedicated to motion. First, directional-selectivity filters

are applied over each frame of the input sequence in a log-polar distribution grid obtaining spike

trains as V1 output and these spike trains are processed in the MT spiking model, which provides

the spatio-temporal relations. The motion information is obtained through the mean firing rates of

MT spike trains or a synchrony map of the spikes trains generated by MT cells and encapsulated
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in motion maps. The latter are used as input for trained CRFs, which perform the final action

classification. One addition over the work of Jhuang et al. in [57] is that interactions between cells

are also considered and more complex actions can be represented.

Action recognition from unconstrained videos is a very difficult problem, due to the amount

of noise and appearance variations this case presents. Liu et al. in [61], propose using dense

static (Harris-Laplacian (HAR), Hessian-Laplacian (HES), and MSER detectors [146]) and motion

(spatiotemporal interest point detector proposed by Dollar et al. [103]) to provide an accurate spatio-

temporal representation of regions of interest. Noisy features are pruned using motion statistics

and the PageRank technique. Discriminative semantic visual vocabularies are then learnt using

an information-theoretic divisive algorithm, which encompass the compressed useful information.

Action in videos is represented by the histogram of bag of visual words and Adaboost is used for

the final action recognition.

One of the most prominent problems in learning of activity patterns is the preparation of the

training set. Marszalek et al. in [62] suggest using movie scripts for automatic video annotation,

following the works of [133, 134, 110]. Additionally, they aim in exploiting the correlations between

actions and scenes and employ a combination of script-to-video alignment and text search using

Wordnet [135], to recover the co-occurrences of actions and scenes. Action is represented with static,

dynamic and motion descriptors (2D [137] and 3D Harris detector [136], HoF and HoG descriptors

[110], SIFT descriptor [138]), used to form visual vocabularies [139]. Finally, video samples are

represented with bag-of-features (BoF) method [140] and SVMs [141] are used for the final action

recognition.

Rapantzikos et al. in [64] propose using cuboid features, as those seen in Liu et al. in [61] and

Bregonzio et al. in [56] and argue that intensities alone, as seen in the works of Dollar et al. in [103]

and Laptev in [136] are not descriptive enough, so they propose augmenting them with color and

motion information. Visual input is represented by a volume, which is decomposed into conspicuity

features, which in turn are decomposed into multiple scales. Saliency is used for the final feature

point detection, which is calculated by a global minimization process, constrained by proximity, scale

and feature similarity. This representation is argued to offer a good balance between information

and complexity. Recognition is performed using the k-NN classifier in bag of words fashion.

Seo and Milanfar in [66] and [152], treat activity detection as a matching query of short videos

containing actions of interest to longer target videos. The operation of this approach deviates from

the standard human activity recognition framework, but has the advantage of being non-parametric

training-free. One of the main points of this work is the use of space-time local steering kernels (3D

LSK), as also seen in [153, 154, 155], which are in general robust to noise and expressive. Here,
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Principal Component Analysis (PCA) has been chosen to reduce their complexity. Detection of

actions is based in Matrix Cosine Similarity (MCS) measure, between the query and target videos.

Sun et al. in [67] propose a methodology based on SIFT descriptors [138] to extract trajectories of

salient points and model the spatio-temporal context information encoded in unconstrained videos.

The low level features are processed through a three level hierarchy, where the first level deals

with point-level context, using SIFT average descriptors, the second level with intra-trajectory

context, using trajectory transition descriptors and the third level with inter-trajectory context,

using trajectory proximity descriptors. The two latter levels are encoded with the bag of words

method into the transition matrix of Markov process. The final fusion of features is carried out

with multi-channel nonlinear SVMs, similarly to Laptev et al. in [110], while the MKL technique is

applied to mitigate the computational load this method imposes.

Tackling the very difficult problems that emerge from camera motion is the main objective of Wu

et al. in [75] and their methodology revolves around robust trajectory extraction, without relying

on standard preprocessing steps, such as motion compensation. Thus, they propose a Lagrangian

particle trajectory acquisition approach, inspired by the particle trajectories used by Wu et al. in

[156] for crowd flow analysis. This method eliminates the need for pre-definition of interest points

and point correspondence across frames and at the same time enables the extraction of independent

object motion using rank optimization. The final recognition of actions is based on Support Vector

Machines (SVM).

Chakraborty et al. in [76], propose another methodology based upon the Bag of Visual Words

(BoV) model aiming primarily in robustness to several factors that are prominent in videos of

unconstrained conditions. In order to do so, they detect selectively spatio-temporal interest points

(STIP) and apply surround suppression combined with local and temporal constraints, following the

ideas of Grigorescu et al. in [157] and Lindeberg in [158], so as to weed out the less informative

features. The features are described by local N-jets, developed by Koenderink and Doorn in [159].

The BoV model used to learn the visual vocabularies along with the method to compress them are

borrowed from Liu et al. in [61] and extended with pyramidal levels in the feature space. Finally,

recognition is carried out with Support Vector Machine (SVM) classifiers.

Another important issue, that of recognition human actions under different views, is addressed

by Junejo et al. in [36] with the use of an interesting action descriptor based on similarity matrices.

The main motivation comes from the observation that self-similarities of action sequences over time

demonstrate notable stability across different views. The action recognition follows the Bag of

Features (BoF) approach where each video is represented as a set of quantized local SSM descriptors

with their temporal positioning in the sequence being discarded. Each image sequence is described
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by a normalized histogram of visual words and two types of classifiers, a Nearest Neighbor classifier

and a Support Vector Machine perform the recognition, using these sequences as an input. The

methodology achieves view independence without the need for structure recovery or multi-view

correspondence and focuses in disambiguating similar activities, assuming accurate tracking of the

points of interest.

b) Using Hybrid Features

The study of Wu et al. in [35] deals with the problem of subtle human activity recognition in

smart homes and investigates the merits and challenges of three types of data fusion. A hierarchical

approach and a combination of spatio-temporal features coming from multiple views of a scene is

argued to be more efficient in recognizing subtle activities, such as reading, based on the recognition

of coarser activities, such as walking. The authors use test bed smart environment a special smart

studio, located at Stanford University, called AIR (Ambient Intelligent Research) Lab, equipped

with furniture and everyday appliances and six cameras that cover its area. The activity recog-

nition is based in a two-hierarchy, with the first level recognizing coarse activities and the second

one extending the recognition to finer activities, by making use of additional features and informa-

tion. Features emanating from foreground extraction, namely the height of the human (through

3D tracking) and the aspect ratio of the humans bounding box are fed into a temporal conditional

random field (CRF) that classifies the coarse actions. Then, based on the result of the coarse level,

the activity is further classified at the second level based on spatio-temporal features, the results

of a face detector and the location context (i.e. kitchen, living room etc.). The Bag of Features

(BoF) approach is employed to represent the data in the form of histograms of spatio-temporal

features and Support Vector Machines (SVM) carry out classification of actions. The second part

of the methodology is a presentation and comparison of three types of data fusion in multi-camera

systems, namely best view, mixed-view and combined-view, the first two performing decision fusion

and the latter feature fusion.

Hu et al. in [60] focus their interest on cases of complex scenes where multiple complex actions

take place. In their experiments include videos from the CMU dataset and from a real shopping

mall surveillance dataset, where additionally they propose a way to detect shopping interest. In

their work it is shown that combining appearance (foreground image from background subtraction

[160] and HOG [161]) and motion (MHI [162]) features give better results than relying solely in one

feature type. Action recognition is performed with their SMILE-SVM (Simulated annealing Multiple

Instance Learning Support Vector Machines). They are SVMs inspired from [163] and extended with

simulated annealing, so as to ensure convergence to global optimums and avoid model initialization

issues. Another important feature of their work is that they require only rough annotation of the
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training data, which is admittedly a tedious and time-consuming process.

Fathi and Mori in [120] use of biologically inspired features, built on the mid-level shapelet

features proposed by Sabzmeydani and Mori in [121]. The main idea is to focus the feature detection

on the area occupied by humans, so as to increase the descriptive power of the local features. To this

end, the authors employ well-known algorithms for detection and tracking of the human subjects,

which are represented by 3D spatiotemporal volumes. Given these volumes, first the low-level motion

features are computed using the optical flow algorithm of Lucas and Kanade in [122] and they are

refined into stronger, mid-level features after classification with the Adaboost method of Viola and

Jones in [123]. Adaboost is then performed again, now on the mid-level features, in order to merge

the local semantics they represent and discover the final, strong classification.

Bregonzio et al. in [56] address many of the limitations imposed by complex actions and dynamic

background with their method, which solely relies on the global spatio-temporal distribution of the

interest points. The interest points derive from frame differencing fused with the responses of

2D Gabor features of different orientations and foreground extraction is done using Prewitt Edge

Detection [119]. Clouds of interest points are then formed for series of frames. The final features

encapsulate absolute and relative height/width ratios and speed information of the objects and

clouds of points. A feature selection of low computational cost is proposed and is performed on the

feature set to refine it and finally the action recognition is achieved using Support Vector Machines

(SVM) and Nearest Neighbor Classifiers (NNC).

A combination of appearance and dictionary-based is proposed by Qiu et al. in [74], where action

attributes are learnt via information maximization. The features extracted are both local and global,

borrowed from the works in [161, 164, 110, 165] so as to cope with static and dynamic backgrounds

and camera motions and increase robustness to noise, occlusions and viewpoint changes. These

features are encoded in a dictionary via the K-SVD [166] algorithm and optimized after maximization

of the mutual information for appearance information and class distributions via a Gaussian Process

(GP) model, both suitable for sparse representations. The sparse coding property leads to efficient

dictionary learning, through selection of sets of compact and discriminative action attributes.

3.3.1.2 Generative Approaches

a) Using Global Features

A system for behavior recognition of multiple humans in a scene, using multiple fish-eye cameras,

is introduced by Uson et al. in [16]. Utilization of multiple cameras and 3-D reconstruction aim in

the elimination of ambiguities in observations. Each camera provides information about a partial

model of the scene and they are merged to create a volumetric description of the scene. Spatio-
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temporal features are extracted (i.e. center of gravity, axis-aligned minimal bounding box, etc.) and

volumetric ROIs are treated as agents and their probabilistic behavior is modeled with a Hidden

Markov Model dynamic Bayesian Network (HMM-DBN) that interprets the observations. This

methodology is scalable, reliable and it can handle occlusions and multiple-person tracking, but it

requires a large training dataset and the segmentation algorithm cannot cope with fast illumination

changes.

In another approach by Huang et al. in [20], ambiguities in human behaviors due of the angle of

observation are resolved differently. Three types of features, namely shape, trajectory and optical

flow vectors, are fused in a Bayesian Network and the best ones are chosen. The background is

modeled with Gaussian Mixture Models, using a minimum number of frames. Each detected object

is represented by its center of mass and tracked using the nearest neighbor criterion and Kalman

filters predict the location and size of the moving objects. A linear support vector machine is used

for the classification of the scenes, which is trained with the SIFT features extracted from pedestrian

blobs. It is in overall a computationally effective approach to achieve view independence, but it is

still restrained to simple activities, while the data fusion might sometimes be imposing unnecessary

load.

Silhouette extraction and modeling of actions with Hidden Markov Model are the main com-

ponents the methodology of Martinez-Contreras et al. in [22], which addresses the case where the

number of training samples is small. Motion History Images (MHI) are used for the representation

of the human bodys motion evolution and Principal Component Analysis (PCA) and Kohonen Self

Organizing feature Map (SOM) [167] for the classification. Hidden Markov Models (HMM) are used

to model behavior on the temporal sequences of MHI. The lack of many action samples is com-

pensated with a technique called Sampling Importance Resampling (SIR), which generates more

samples.

A similar approach is followed by Hu et al. in [60], who use information of many cameras to

perform fall detection. Background subtraction is performed in each camera to extract and track

the monitored humans silhouette. A variant of the mixture of Gaussians modeling [83] is used for

this purpose and the tracking algorithm is based on an appearance model. Two basic postures are

recognized according to the angle between the main axis of the fitted ellipse and the vertical direction.

The information of all cameras is taken into account and when there are significant differences among

the estimated silhouettes, the most appropriate one is estimated through geometrical reasoning.

Metric rectification of perspective images assures that the postures will look the same in both the

image and real-world domain. The decisions of the cameras are fused with logical ORs between

lengthened pose detectors and the Bayesian probabilities of the detected standing or lying pose are
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calculated, which are treated as observations of a Layered Hidden Markov Model.

A more complex model based on variations of HMMs is introduced by Liu et al. in [23] that goes

beyond human behavior recognition, considering also group interactions. The input dataset has been

collected from a nursing home environment and poses the following challenges: maintaining robust-

ness in real scene and situations, while managing complex interactions at low computational cost. In

the image processing part background subtraction and trajectory tracking of humans with Kalman

filters are performed. The image understanding part comprises a Switch Control (SC) module that

extracts the atomic behavior units, an Individual Duration Hidden Markov Model (IDHMM) module

used to recognize autonomous actions and an Interaction-Coupled Duration Hidden Markov Model

(ICDHMM) module to recognize units that interact with each other. Interaction between two people

is measured by how distance between them changes over time. A similar approach using layered

HMMs has been proposed earlier by Zhang et al. in [168].

Trajectories of humans and HMMs are again used by Suzuki et al. in [27]. More specifically, the

authors focus at learning of complex trajectory patterns, observed in a real environment for which

they possess no prior knowledge, in an unsupervised manner. Hidden Markov models are used for

modeling of the spatio-temporal features of the trajectories, which are projected to a space of lower

dimensions, using Multi-Dimensional Scaling and the Young-Householder transform [169]. Finally,

the motion patterns are categorized with K-Means clustering, using random sampling and Calinskis

function value. In overall it is a straightforward and automatic approach, which is however restricted

in distinguishing only normal and abnormal behaviors, arguing that distance among trajectories

suffices for this cause and the features are restrictive for recognition of complex activities.

Chen et al. in [38] propose a method based on skeletonized silhouettes, described by the star-

figure model, which outlines the positions of the limbs with respect to the silhouettes centroid. In

order to overcome problems due to self-occlusions and ambiguities in silhouette, the unsupervised

classifier ISODATA is employed, which automatically defines the appropriate number of points in the

star-skeletons by merging, splitting and dropping clusters through an iterative procedure. The length

and orientation of this representation model are the two dimensions of the corresponding Gaussian

distributions. The maximum likelihood parameters of a mixture of k Gaussians in this feature space

are calculated using the well-known Expectation-Maximization (EM) algorithm and the K-means

algorithm for the initial estimation of the parameters. Recognition of actions is conducted via a

similarity measure and matching with the stored models in the database.

Bruckner et al. in [43] present the SENSE (Smart Embedded Network of Sensing Entities)

project, which is an 8-level hierarchy for human behavior recognition. It processes and passes the

information gathered from visual and audio sensors through its levels, extracting incrementally more
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semantic information about behaviors and situations. Features called Low-Level Symbols (LLS) are

gathered in the first level and refined in the second using a mixture of Gaussians and fuzzy logic.

Then, the third level deals with the tracking of those objects, using particle filtering and a motion

model based on Markov Random Fields (MRF) to compensate for the first methods instability.

These uni-modal symbols are fused in the fourth level with respect to their time correlation and the

resulting multi-modal symbols are processed with an online version of Expectation Minimization

(EM) algorithm, which reveals the parameters of the models behind them. In the fifth layer the

mapping of their local trajectories is created in the form of local transition matrices. The sixth layer

conducts the inter-communication of the SENSE networks nodes to define the global trajectories of

the objects and which of the neighboring nodes their trajectories affect and also prepare information

that might raise alarm events in the last layer. Loopy-Belief Propagation (LBP) algorithm is used

to convey the messages among neighboring nodes. The last level of the hierarchy gives the high-level

semantic interpretation of the observed events.

Xiang and Gong in [54] present a unified bottom-up and top-down approach to model complex

activities of multiple objects in cluttered scenes. The foreground is extracted using the Pixel Energy

History (PCH), an extension to Motion History Image (MHI) and object-independent events are

clustered using the unsupervised Gaussian Mixture Models (GMM) method and classified using au-

tomatic model selection based on Schwarzs Bayesian Information Criterion (BIC) [170]. Formulating

Dynamically Multi-Linked Hidden Markov Model (DML-HMM) conducts the behavior understand-

ing in the scene level, in order to model the temporal and causal correlations among discrete events.

This methodology, besides increased robustness, is able to model more complex activities than the

ones usually considered by allowing a relaxation of the linear temporal order of the states.

Local patch methods, as seen in [171, 110, 172, 55], exhibit successful action description and

recognition; however the complexity of motion they can represent is restricted by the locality of the

features. In order to overcome these limitations, Messing et al. in [63] propose using more global

spatial and temporal information and exploit the motion of tracked points on a body, inspired by

the works of Johansson in [173] and Madabhushi and Aggarwal in [174]. Thus, they extract feature

trajectories from the video sequence, using Birchfields implementation [175] of the KLT tracker

[122] and call their basic feature velocity history. Activities are then modeled as distributions over

mixtures of velocity history Markov chains. Although this features yields good results for high-

resolution videos, a significant improvement can be achieved when augmenting extra information,

namely absolute position (initial and final feature position), relative position with respect to face

(using the Viola-Jones face detector [123]), local appearance (using PCA-SIFT [176]) and color

histograms.
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Natarajan et al. in [25] base the recognition of complex actions upon lifting 2D images from

video streams to 3D action models. The authors intention is to eliminate the limitations of dataset

dependence and sensitivity to view and scale variations. The methodology is based on the decompo-

sition of a composite action into a sequence of primitive actions. Representation of actions, inspired

by Lamport in [190], is in form of parametric functions and their parameters are learned by lifting

2D pose annotations in a few key frames to 3D, similarly to Taylor in [191] and interpolating be-

tween them. The event models are mapped to a Dynamic Bayesian Network (DBN) and the relative

weights of the different features are learned using a novel Latent State Perceptron Algorithm. The

combination of these learning methods significantly reduces training requirements. Finally, a novel

inference algorithm estimates the action sequence by sampling the action models and accumulating

the feature weights.

a) Using Local Features

Gupta et al. in [44] use edge and skin detection and background subtraction, so as to detect the

multiple moving objects and the human in the scene (GrabCut is used for the human segmentation).

The type and location of objects is estimated using a variant of the histogram of oriented gradient

(HOG) approach and a cascade of Adaboost classifiers. Actions are perceived through modeling

of the sequence of three classes of sub-activities, mainly reaching, grasping and manipulation of an

object by the human. The observation of the velocity of the hand trajectories defines the reach and

manipulation motions and the likelihood of the recognized action is calculated by HMMs, specifically

trained for this purpose. A Bayesian model is employed to indicate the relations between the scene

objects, the manipulable objects and the human in action. The probability of the scene is decided

by a SVM classifier and the likelihood of the scene object by an Adaboost classifier. In order to

define the humans actions, an upper-body pose estimation algorithm is employed, which segments

and tracks the torso and the hands in each frame, while the pose is classified with the K-Nearest

Neighbors rule.

Savarese et al. in [55] achieve very high classification accuracy on the KTH dataset, under an

unsupervised learning scheme. Their work extends previous bag of video words approaches [103,

177, 154], by using the idea of correlograms, initially proposed by Savarese et al. in [178] to describe

co-occurrences of codewords within spatio-temporal neighborhoods. First, the vocabulary of video

words is formed, based on K-means clustering over descriptors emanating from the application

of separable linear filters on the video sequences. Then, for each pair of video word labels the

corresponding ST-correlogram element is computed by using a given set of kernels. The optimal size

and size of the kernels needs further examination. These descriptors are clustered using again the

K-means clustering method, to form the ST-correlatons. These features can encode flexible long-



3.3. METHODOLOGIES 50

range temporal information into the spatial-temporal motion features, resulting in rich description

of human actions. The different classes of human actions are learnt by an unsupervised generative

model in accordance with the probabilistic Latent Semantic Analysis (pLSA).

Brendel and Todorovich in [71] propose unified framework for inference and learning of a struc-

tural activity model, based on weighted least-squares optimization. Similarly to volumetric ap-

proaches [53, 165], the video is regarded as a volume in 2D space and time and via a multiscale,

spatiotemporal segmentation, homogeneous subvolumes (tubes) are extracted. Descriptors of the

tubes form the nodes of weighted directed graphs, the edges of which encode their hierarchical and

spatiotemporal relationships. During training, the weighted least-squares graph models of activity

classes are learnt and when a new video sequence is observed, its spatiotemporal graph is extracted

and matched to the closest one in the training set. Although this methodology offers fast train-

ing and efficient feature extraction, it fails to filter out unimportant repeating actions, occurring

primarily in the background.

Raptis et al. in [72], propose a methodology, based on discovery of discriminative action parts,

which addresses better the above shortcoming and is inspired by the part-based models appearing

in [179, 180, 181]. Initially, moving points are detected and clustered based on their spatial and

dynamic similarity. The groups represent parts of more complex activities and are described with

their intensity, motion and appearance statistics, by employing a regular grid for efficiency. Then, the

learning mechanism treats the part descriptors as latent variables and selects the most informative

according to discrete optimization [182] of the energy of a Markov Random Fields (MRF). This

results into localization of informative parts, additionally to the overall classification process. The

main weakness of the proposed methodology is lies on the low-level processing, which is sensitive to

video data with extreme intensities or small lengths of sequences.

3.3.2 Knowledge-Driven Approaches

This is the second broad category, consisting of knowledge-driven approaches that are closer to

human reasoning and interpretation, permeating by logical rules and ontological hierarchies. Their

number is significantly smaller than the number of those that are data-driven and they only make

use of global features.

a) Using Global Features

Zhang et al. in [45] employ Stochastic Context-Free Grammar (SCFG) extended by Allens

temporal logic [189] to model the complex events that include the interactions among multiple

moving objects and/or the interactions between moving objects and static in scenes. These segments

are considered as basic motion patterns of agents and are translated as terminal symbols in the
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grammar and are detected by a HMM, trained for each one of them and a Minimum Description

Length (MDL) based rule induction algorithm is performed to select the best ones, according to

their bit-length representation. A manual agglomerative hierarchical clustering is then used to

cluster similar rules into meaningful classes. After the rules have been learnt they are parsed using

a Multi- thread Parsing (MTP) algorithm. Parallel sub-events are handled by taking into account

the temporal relations between ID sets of sub-events that indicate overlapping. Once the parsing

tree has been created, a Viterbi-like backtracking determines the maximum possible errors that may

have occurred, usually insertion and deletion errors. The redundant states are pruned by employing

two more constraints, the beam-width and the maximum errors constraint, so as to reduce the cost

of the computationally expensive MTP algorithm.

The goal of Wu and Aghajan in [18] is designing a system that primarily aims in assisting living of

elderly or people at risk in general. In their work, normality of an action is based on the frequency it

occurs. The methodology introduces an unsupervised approach that employs two hierarchical struc-

tures. The first one deals with the clustering of the feature vectors that describe the appearance

of the monitored human (blob) using the k-means approach, in a top-down hierarchy. The second

hierarchy contains formations according to a bottom-up approach, where as the levels develop more

complex actions are considered. Blobs are extracted using background subtraction and are rescaled

and distance transformed. The temporal relations of the symbol sequences, representing the pos-

tures, define the actions and classification of normal or abnormal events according to frequency of

occurrence, meaning that the larger the length of the symbol sequences, the more usual the action.

Liu at al. in [31] propose a simple and computationally efficient methodology for fall detection

using a cheap web camera. Foreground blob extraction is initially carried out with frame differencing,

mean filtering and thresholding. Height and width aspect ratios define the three types of postures,

namely the standing, temporary and lying-down postures. The silhouettes are then refined with

vertical projection of their histograms and thresholded by the mean and standard deviation and the

features are finally clustered with the k-nearest neighbor approach. Events of falling and intentionally

lying-down are discriminated via a simple finite transition model, which considers the time the

silhouette is in the temporary posture.

Perse et al. in [50], aiming in the automatic evaluation of complex, multi-agent activities, describe

a methodology based on Petri Nets (PN). As opposed to existing systems that employ PNs for the

action modeling, like the ones proposed by Lavee et al. in [192] and Ghanem et al. in [193], this

approach allows automatic construction of the PNs from the activity templates and the expert

knowledge encoded in them. This work studies the recognition of the individual and collaborative

activities that occur in basketball games and possess an underlying structure. Naturally, large



3.3. METHODOLOGIES 52

activities consist of simpler action primitives. Thus, the PN construction is composed of two stages.

First, the action chains that are the basic building blocks and represent individual actions are

modeled with three-node chains. The second step then deals with the connection of the action

chains so that they encode the complex temporal relations between the actions. Then, the temporal

parameters of the model, namely the durations of the actions, are learnt from a small amount of

training data. An important part of the proposed methodology is the evaluation of how well actions

were performed. Trajectory-based action detectors were applied to each transition that represented

an action and the information about the activity score is propagated via the tokens, following the

approach of colored PNs. The overall system demonstrated good results on tests done using real-

world basketball games video data and more importantly it was shown to be robust in case when

the ending of an activity varied.

Even now, recognition of high level, complex activities remains a very hard task. One of the

reasons is that they incorporate concurrent temporal relations, which are difficult to be modeled

effectively. Another difficulty that permeates all related works, is coping with noise introduced by

low-level computer vision processes.

Ryoo and Aggarwal [65] aim to overcome both these obstacles by proposing a probabilistic

extension of their recognition framework [187, 194, 195, 183, 196]. The low-level layer of their new

system comprises of body part extraction, posture estimation (using Bayesian networks) and gesture

recognition (using Hidden Markov Models). The high-level layer, the system distinguishes between

atomic actions, composite actions and interactions (up to two persons), using the information from

the low-level layer. Then, by exploiting the knowledge of an expert, which describes the underlying

temporal, spatial and logical relations of actions encoded in a CFG, they manage to recognize

complex actions in a hierarchical manner. Time is represented with respect to Allens temporal logic

[189] and ambiguities are resolved using the concept of hallucinations of Minnen et al. in [184].

3.3.3 Depth Sensors

Recently, methodologies based on depth information and specifically Microsofts Kinect sensor, have

caught the attention of the research community. Although it was initially designed for controller-free

gaming applications for the Microsoft Xbox 360 console, many developers and researchers have used

it for various applications, the most prevalent of which are gesture and human activity recognition.

The main advantage of Kinect over regular visual sensors is the depth information provided by

its integrated infrared sensor, which can be used for 3D scene reconstructions where illumination

is unstable, while it can capture useful information in near no-light conditions. In combination

with its low cost and commercial availability, Microsoft Kinect is certainly a sensor that will drive
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future research. However, since we focus only in methodologies based on visual sensors without the

augmentation of other modalities, we review only a few representative methodologies that use depth

information for the sake of completeness. We choose also not to include them in the evaluation

section because their additional sensing capabilities give them a significant advantage over the rest

of the methodologies reviewed here.

Gill et al. in [209] explore the new directions that open with the use of Kinect and provide a

comparison with their previous work [210] where they achieve depth perception using stereo camera

pairs. Their main algorithm begins with calibration of multiple Kinect camera pairs that collabora-

tively estimate the global world space. Next, an adaptive, voxel-based modeling of the background

follows and human detection based on weak skin and head classifiers, using a combination of color

and depth information. Special care is taken for the disambiguation of human and non-human

objects and occlusions that occur during everyday activities.

Li et al. in [211] proposed a methodology that uses sequences of only depth images as input.

Action modeling is based on trained action graphs [212], which are suitable for silhouette-based action

recognition and propose using bags of 3D points to characterize a set of salient postures, which can

cope with cases of occlusion. Xia et al. in [213] outperform the aforementioned methodology, by

employing a compact posture representation based on histograms of the 3D joint locations estimated

from Kinect depth maps using the method in [214]. These histograms are reprojected using LDA

and then clustered into k posture visual words, the temporal evolutions of which are modeled by

discrete hidden Markov models (HMMs). Emphasis is given in view invariance, achieved using a

spherical coordinate system and the outputs are produced in real-time.

Sung et al. in [215] use the Kinect sensor for robotic vision. Skeleton based features, namely the

joint positions acquired using PrimeSenses tracking algorithm [216], are used to describe the body

postures and also the motion of body and hands. Strong emphasis is given in the learning model.

Specifically, the authors adopt maximum-entropy Markov model (MEMM) of Mccallum et al. [217]

and extend it to a two-layer model to better capture the hierarchical nature of human activities,

which are inferred using a dynamic programming approach. Although occlusions are not treated in

this methodology, the model is not falsely triggered by activities that have not been observed before

by the robot.

3.4 First Level Evaluation

In this section, we attempt to evaluate the most representative and prevailing systems from the ones

discussed in the previous sections. All of them have been published in well-accredited conferences,
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journals and transaction papers, have been widely accepted by the research community and promote

state-off-the-art methods. One the least developed sections in surveys and reviews on research about

behavior analysis and human activity recognition, is that of their evaluation. Evaluation can be

a daunting task, because there has not been enough effort yet for the establishment of common

ground that would allow the development of objective metrics for methodology assessment. Even

if results in forms of confusion matrices and percentages of accuracy are informative, they are not

sufficient for the evaluation and comparison of methodologies. Especially recently there exists the

phenomenon of researchers reporting very high accuracies and also close to each other. If this

information alone were enough for evaluation, it would suggest that the problem is almost solved

and not significant progress is being made. However, it is known that the problem in general

is far from being solved and the research that is being conducted is of great scientific meaning.

In order for a more meaningful evaluation to be able to be formed, the layout of the research

papers should evolve and the contents should be more thorough. For instance, researchers should

not only suffice in explaining the parameter tuning, but also include the human aspect, especially

since the type of methodologies studied here is human-centered. Moreover, standards should be set

about quantification of the complexity of activities difficulty of environmental parameters and the

requirements for computations and training. Finally, failures and experiences should be described

not only without fear but with rather confidence, since not only they allow better overview of the

described work, but also help others to avoid dead-ends and promote the general benefit of the

research community. The problem of evaluation is one of the issues addressed in the position papers

[124 - 132], appeared in the workshop Pervasive 2010, in Helsinki, Finland, which was specifically

dedicated to communication of ideas upon improving the way research is carried out in the field of

human activity recognition.

The evaluation presented in this section should be considered as a first level evaluation, since

we lack the tools and information for an in depth, objective evaluation. Our goal is to acquire an

evaluation outcome that gives a general idea about a methodologys overall performance, weak and

strong points. Thus, we selected the most important features that permeate all the methodologies

and quantified based on knowledge about the categories the individual components used fall into

and information provided by the authors. For example, the classification in Table 3.1 gives a general

indication, based on theory, about how the categories of features and recognition methods fare with

respect to certain aspects (features), like simplicity, complexity, etc. Admittedly, this information

is very generic, it is however the only common ground that can be used for evaluation. Information

provided by the authors is used of course in conjunction for fine-tuning. For example, in case of a

discriminative method being used for recognition, it would be expected that the methodology require
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a big amount of labeled training data and thus get a low score for the corresponding feature, but if

it is mentioned that effort has been made towards the alleviation of this problem, the penalty will

be reduced. We chose direct quantification instead of fuzzy labels for the evaluation, because they

give a more accurate perception and allow feature values to be combined into an overall score, for a

quicker and more compact evaluation.

Ten features have been chosen for the evaluation of the various selected methodologies, after

discussions with former and current members of the ATR Center and its collaborators. These features

have been shaped in time during different surveys conducted in our lab and the majority of them can

describe general and important aspects of methodologies (i.e. simplicity, computational complexity).

More specific features according to the application studied here are also added (i.e. complexity of

behavioral patterns recognized) in an effort to make the representation of the main aspects of the

selected methodologies more appropriate. In Table 3.2, a list of these features is provided along

with a brief description for each one. In addition, we wanted to provide an overall evaluation of the

systems based on the perspective of the parties who are involved in the development and the use of the

systems, namely the developer and the end-users, after discussions with members of our laboratory,

students of Wright State University and external collaborators. For example, a methodology of great

simplicity might catch the attention of a developer, since it implies easy implementation, whereas

it is not of much interest to the end user, who just cares about its functionality. Each feature has

been weighted according to the importance it posed to each group and those weights have been

averaged out to show the final weights for the evaluation. The chosen weights are purposefully

generic and get values from 1 to 3, corresponding semantically to the categories of low, medium

and high importance. These weights are shown in Table 3.3. However, we realize that opinions will

probably vary concerning the feature weighting, so have also included the unweighted results of the

evaluation, along with the evaluation with respect to the developers and the end-users perspective,

as well as their average result. The evaluation scores are shown in Figure 3.3.

It could be argued that these features are not directly quantifiable, however by assigning numbers

to them we can convey the advantages and disadvantages of each methodology in a more compact

and easy way, while it allows us to assign scores to the overall evaluation. These evaluation scores

are not to be treated strictly, they mainly give a general idea about a methodologys performance.

The overall score is a normalized weighted summation of the scores of the individual features, which

have a range from 1 to 9, except for the case of the last four features, which form pairs and their

range is from 1 to 3. We choose these ranges because after long discussions and observation of the

responses of the subjects that took part in the evaluation, we concluded that they provide a generic

yet discriminative way to differentiate the methodologies. The aforementioned feature pairs are
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features that provide more meaningful information when combined together. Specifically, Dataset

(F7) is multiplied by Robustness (F8), resulting in a feature that collectively shows the robustness

with respect to the difficulties imposed by the dataset. Similarly, Behaviors (F9) is multiplied by

Accuracy (F10), resulting in a feature that combines the achieved performance with the complexity

of the behaviors recognized, since it is not fair for a methodology to get a high accuracy score when

it only considers simple cases and vice versa. In order for them to remain in the same value range

with the rest of the features, the weights in each pair are also averaged. Normalization of the scores

is done with respect to the ideal score where all features achieve their maximum score. However,

this ideal score can be deemed as unrealistic, since many features contradict each other. Its main

purpose is for the scores to have stable values and graphical representations and give an idea of a

global optimum. The final evaluation formula thus is:

Score =

6∑
i=1

(Wji ∗ Fi) +
(Wj7 +Wj8)

2
∗ F7 ∗ F8 +

(Wj9 +Wj10)

2
∗ F9 ∗ F10

where Fi is the value of feature i and Wji is the weight for group j (1 for end-users, 2 for

developers and 3 for their average) and feature i.

Table 3.2: Evaluation features.

Simplicity (F1) [1-9] The methodology is easy to implement and contains a few single

standalone steps.

Complexity (F2) [1-9] Reflects the number of computations/operations required.

Impact (F3) [1-9] The methodology promotes original ideas and affected other re-

search works.

Interpretability (F4) [1-9] Results and operation of the methodology can be easily under-

stood.

Training (F5) [1-9] Number of (labeled) data needed for training.

Scalability (F6) [1-9] Methodology’s adaptability to new environments, activities etc.

Dataset (F7) [1-3 Difficulty of the dataset used as input.

Robustness (F8) [1-3] The methodology’s capability to produce acceptable results under

challenging circumstances.

Complexity of behavioral

patterns recognized (F9)

[1-3]

Depicts the methodology’s capability of dealing with simple, com-

plex or group behaviors.

Accuracy (F10) [1-3] Reliability of produced results.
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Table 3.3: Communication Schemes Resource Allocation (X indicates that resource is used)

Perspective \ Feature Simplicity

(F1)

Complexity

(F2)

Impact (F3) Interpretability

(F4)

End user (W1) 1 1 1 1

Developer (W2) 3 3 1 3

Average (W3) 2 2 1 2

Perspective \ Feature Training

(F5)

Scalability

(F6)

Dataset (F7) Accuracy (F8)

End user (W1) 3 3 1 3

Developer (W2) 2 3 2 3

Average (W3) 1.5 3 2.5 3

Perspective \ Feature Behaviors

(F9)

Robustness

(F10)

End user (W1) 3 3

Developer (W2) 3 3

Average (W3) 3 3

3.5 Discussion

A general phenomenon observed in the recent methodologies is a preference towards discriminative

models for activity recognition and the use of local features for action description. The main reasons

discriminative models are appealing are that are simple to construct and can lead easier to real-time

operability. All this research revolving around methodologies based upon discriminative models has

improved significantly their performance. It is not thus a coincidence that all winning systems in

Pascal Visual Object Classes Challenge 2009 (VOC2009) were discriminative. Another trend as

aforementioned in activity recognition methodologies is the use of local features and descriptors, fre-

quently along with a Bag of Words (BoW) approach for dictionary creation. The main reason for this

choice is that local features are inherently robust to noise and they can be used without traditional

preprocessing steps, such as background subtraction, which are still open research problems.

However, one of the methodologies that achieve high scores in all categories is the work of Xiang

and Gong in [54], which employs more traditional methods (Hidden Markov Models and Motion

History Images). Some of the reasons are the focus in robustness and more importantly its ability to

cope with complex activities of multiple subjects. The majority of methodologies take only simple
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(a) (b)

(c) (d)

Figure 3.3: Evaluation scores according to a) End-users perspective, b) Developers perspective, c)

Average perspective, d) without weights

actions into consideration of usually one subject, which hinders their scalability to more complex, real

world situation. Also, robustness is a very important feature that opens up directions for real-world

applications, where the many sources of noise and ambiguities would cause many systems to fail. As

it can be seen in the feature weights in Table 3.3, the end-user does not care about the implementation

and intricate mechanism of the methodology, but is interested instead on user-friendly systems with

high performance. For the same reasons, which are crucial from an end-user perspective, Liu et

al. in [61] and Rapantzikos et al. in [64] achieve high scores in this category and they both use

cuboid features and simple spatiotemporal detectors, following the current trends. From a developers

perspective, the methodology of Bregonzio et al. in [56] seems attractive because it also addresses

the aforementioned problems, using simple features, fast and popular methods and an algorithm

that is easy to implement. Although performance and operability are important from a developers

perspective as well as an end-users, developers also take seriously into account implementations

issues, reproducibility and in general tend to favor simpler algorithms. In the last categories, which

tries to collectively weight the features according to both end-users and developers perspective, we

notice that one of the methodologies achieving high-scores is of Hu et al. in [60], which describes
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a system tested in real, complex scenes and comprises well-known. Another system achieving high

scores is the one proposed by Ryoo and Aggarwal [65], which is attractive because it addresses

issues that emanate from the low-level image processing to high-level semantics interpretation in a

complete approach, which is a continuation of previous works.

In general, it can be noted that there are some common goals in the methodologies about vision-

based human activity recognition. First of all, in order for them to be applicable in real, everyday

environments, they must be able to cope with the difficulties of a complex and dynamic environment.

This is one of the most known issues and many ways to resolve it have been proposed but even

today the claim of a generally applicable methodology is difficult to be made. Another issue found

in real environments is occluded body parts, either by ones self or the environment. This problem is

usually tackled by either high-level inference methods, compensation of views using multiple cameras

or sensors with additional modalities, such as depth sensors. Moreover, it is observed that in few

methodologies address the problem of high-level interpretation of complex, real-world activities and

proposed solutions are usually not suitable for real-time implementations.

The problem of human activity recognition is open since early 80s and many interesting solutions

have been proposed since. The next level would be the creation of a complete system, as depicted in

Figure 1, which is not thoroughly addressed in literature. A complete system should include all the

mentioned steps, from the initial camera installation and data acquisition up to the final level, which

aims in Human and Computer Interaction and often eludes the researchers attention. The design

and implementation of a complete system is not an easy task, involving several correlating factors,

but is the only way to prove the real applicability of a methodology. Since the methodologies about

vision-based human activity recognition deal with huge amounts of information and complicated

processing, they are computationally demanding. A complete system has to be carefully designed

and implemented, so that its comprising parts can be combined to achieve high performance, without

imposing prohibitive computational cost.
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Image Segmentation Metric

4.1 Introduction

Image segmentation is one of the fundamental low-level processing techniques that partitions a digital

image into multiple segments (sets of pixels or superpixels), in order to create a more meaningful

and easier-to-analyze representation In the image processing and computer vision fields, there are

many image segmentation methodologies [244–248]. In each of these algorithms, different criteria

and computational steps are followed in order to produce a segmented image. In addition, almost all

of them rely on user-defined parameters that result in variations of segmented images for the same

original image.

While measuring the computational complexity, resource consumption and even user friendliness

is straightforward, deciding whether a result is good or not depends entirely on human judgment and

the specific application, as stated in [249] and [250]. A common practice for the evaluation of the

effectiveness of an image segmentation comes either through direct visual inspection, or indirectly,

through the final results of a more complex process that relies on image segmentation, as shown

in [251] and [252].

However, visual assessment is a tedious and restrictive process and an automatic, mathematically

sound and generally accepted way for evaluation is expected to be of great benefit to the research

community. In a recent and thorough survey of evaluation methods, Zhang et al. [253] have catego-

rized this type of evaluation methods to analytical and empirical. The difference is that analytical

methods assess the segmentation algorithms themselves, whereas empirical methods assess their

results. The main advantage of the first is that they can directly contribute to the improvement

of the studied algorithms, but they are not easy to generalize their findings ( [254]). Thus, the

empirical methods have garnered more attention, as they produce generic results, irrespective to the

segmentation algorithm.
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Empirical methods are further divided into two categories, namely goodness methods and dis-

crepancy methods. Goodness methods, as the name suggests, attempt to measure how “good” a

segmentation result is based on metrics deriving from human intuitive rules, almost always adhering

to the criteria proposed in [247]. There is a series of works that evolve this idea, the most notable of

which are the works of Liu and Yang [255], Borsotti et al. [256] and Zhang et al. [253]. Discrepancy

methods measure how similar (or different) a segmented image is compared to an ideally segmented

image from human supervisors. One of the most prominent works that initiated the formulation of

methodologies employing this idea is the work of Martin et al. [257] that still fuels research works,

such as those of Dogra et al. [258] and Goldmann et al. [259].

Both of these types of methods have evolved significantly, especially during the last decade, and

can encompass to a great extent human perception in mathematical formulas, in order to quantify

the effectiveness of an image segmentation. Their power and weakness, however, lie in the same fact:

the evaluation is subjective. This is obvious in the case of the discrepancy methods, if there were

cases where the ground truth images differ significantly. Goodness methods claim to overcome the

shortcomings ground truth dataset imposes, but are still dictated by human intuition, which varies

significantly among individuals.

In this chapter, we propose a graph-based, blind reference evaluation scheme (no need for the

original or a human- segmented image) for image segmentation results. To this end, we employ an

extended version of graphs, the regional localglobal (RLG) model, which is a weighted undirected

graph with attributed edges and vertices. This type of graph is generally known as Local-Global (LG)

graph [260] or Attributed Relational Graph (ARG) [261] and can be the cornerstone of very powerful

models and adapt to many different scientific fields and applications. The proposed evaluation

scheme differs significantly from the existing evaluation schemes, as it does not aim at measuring the

goodness or the discrepancy of image segmentation, but rather at describing its underlying structure,

by discovering the amount of detail depicted in a segmented image and its spatial distribution. This

approach is based on the fact that image segmentation is a strictly perceptual and application-driven

process and the existence of numerous segmentation algorithms that produce different results proves

that the truth exists only in the eye of the beholder. This point of view is elegantly pointed out

in [262], which presents the fuzzy region growing (FRG) segmentation algorithm, an interesting

method for segmentation that uses fuzzy logic to define the region segments and merges them into

larger areas. We believe that structure is a crucial factor for many applications and should be taken

into account when evaluating the results of image segmentation algorithms. Finally, it is a blind

reference method, having as input only the labels of the regions in a segmented image.

Our proposed evaluation scheme was applied on images produced by three publicly available
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image segmentation algorithms with a MATLAB interface. The first algorithm, statistical region

merging (SRM) [263] is a computationally efficient algorithm that employs a data structure of dis-

joint sets with a union-find strategy to perform image segmentation by region merging following

a particular order in the choice of regions. The second algorithm was the entropy rate superpixel

segmentation (ERSS) [264], which is based on maximization of an objective function with two com-

ponents, the entropy rate of a random walk on a graph and a balancing term. The first component

favors the formation of compact and homogeneous clusters, while the latter favors the formation of

clusters of similar sizes. The third algorithm is the widely known edge detection and image seg-

mentation (EDISON) system [265–267], developed at the Robust Image Understanding Laboratory,

Rutgers University. EDISON is a low-level feature extraction tool that integrates confidence-based

edge detection and mean shift-based image segmentation.

4.2 Notations and Definitions

Image segmentation can be defined as the partitioning of an image area A of an image I into regions

Ri, ( i = 1 . . . n), such that:

1)The union of the regions forms the image: R1 ∪R2 ∪ · · · ∪Rn = A.

2)The regions are disjoint: Ri ∩Rj = ∅,∀i 6= j.

3)All the pixels in a region possess the same or similar properties or features. Respectively, pixels

that belong in adjacent regions attribute properties or features to the regions that differentiate them.

Definition 1: A color image segmentation method is characterized as “objective” if and only if the

regions are formed by adjacent pixels of the exact same color. Essentially, this is the initial image.

4.3 Graph Based Representation Of Segmented Images

Each segmentation algorithm employs different methods and internal metrics in order to produce

a result, selected in a way that makes sense according to the developer. Thus, the formulation of

another evaluation metric to measure the “goodness” of a segmentation is expected to favor some

types of segmentation unfairly, according to its compliance with the image segmentation algorithms

internal mechanism. However, it does not mean that the results that are not considered good

according to the new metric are really so. The only true judge is the algorithms developer, who does

not necessarily have to treat segmentation as a representation problem, forcing the results to be as

close as possible to the original image, or as a semantic problem, where the results should possess

a semantic meaning. Image segmentation then is only useful to an end user if their expectations

agree with the developers. One such example is shown in Figure 4.1. The results produced using
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the SRM and EDISON techniques produce regions with non-uniform sizes (high entropy), whereas

the entropy rate (ERSS) based image segmentation technique produces regions with uniform sizes

(low entropy).

(a) (b)

(c) (d)

Figure 4.1: Different image segmentations. a) Original image, b) SRM, c) ERSS, d) EDISON

Our graph-based evaluation aims to discover the underlying structure of a segmented image and

to provide a quantitative and descriptive evaluation of the details distribution. The final result does

not intend to assess the the segmentations quality, but only gives an objective idea of the user,

helpful enough to act as a guideline for a subjective evaluation. The proposed evaluation is made in

a blind reference manner, so as to keep the result as objective and unbiased as possible. It should be

noted, however, that the basic idea behind the proposed evaluation is generic and could be applied

to existing image segmentation metrics as well, augmenting them with one crucial aspect they are

missing, which is the structural information expressed with graphs. Structural information does not

only provide human understandable interpretation, but also the graphs that express it can render

the management of the metrics components easier and more efficient.

Detail in our case is defined with respect to a region (or segment) size. Our empirical studies show
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that in complex natural images in the case of the “objective” segmentation (as defined in definition

1), which essentially is the original image itself, the vast majority of segments are of 1 pixel size.

Thus, we assume that the finest level of detail is represented with a region of size 1 pixel and the

bigger the region gets, the less detail information it encompasses. We further assume that each of the

segmentation algorithms has already been evaluated by its developers and the results they produce

are meaningful according to their expectations. Thus, the remaining aspect that can be evaluated

is the distribution of the details in the result. One could conduct this evaluation by measuring the

uniformity of the region sizes via their entropy, which is a natural and robust measure. However,

the region locations and their distribution cannot be expressed in this way. This information could

be very useful and contribute significantly in the image segmentation evaluation.

LG graphs have been proven to be very successful tools for image understanding and object

recognition. In our case, a segmented image is represented by its RLG graph, which aims at mea-

suring and describing the distribution of detail by discovering areas of high detail. Each region is

represented by one of its most salient points, i.e. its centroid. The skeleton of a graph is based

on the Delaunay triangulation, as shown i Figure . Each node holds information about the regions

location and size SRi. The location of the region Ri is indicated by its centroid (Xi, Yi), where

i = 1, . . . , N and N being the number of regions. The edges of the RLG graph are attributed too

and in our case hold information about the distance of the centroids (nodes) they connect. Different

detail levels found at the graph’s nodes indicate areas of different detail in the image. Figures 4.2(b)

- 4.2(d) show the graphs produced in our example image, where the size of the circles at the nodes

and the color at the edges indicate their weights.

4.4 Evaluation Scheme

In this section, we present an evaluation scheme that highlights the contribution of the graph-based

structure to the evaluation of image segmentation. This scheme is inspired by works emanating

from the image analysis domain and aims at indicating areas of interest in the segmented image, in

a human-perception-driven manner. Figure 4.2(a) graphically shows what we expect to find from a

segmented image. In particular, we would like to see the number of clusters formed by small regions

and their distribution in the image area. Thus, we have employed the LG graph model to describe

the relations and attributes of the image regions after segmentation, in effort to define a structure

that will represent the association of the small regions and their distribution in the entire area.

It is known that the clusters of small regions may represent areas of high entropy. At this point,

a question that immediately arises is: What is considered close enough in detail and proximity?
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(a) (b)

(c) (d)

Figure 4.2: RLG graphs: a) A general graphical representation of clusters of small regions, an

example for b) SRM, c) ERSS, d) EDISON

One of the key assumptions in this work is about the meaning of the medium region (MR). The

notions of big/small, close/far, etc are ambiguous, strictly depend on the task at hand and cannot

be generalized. Here, we make the intuitive convention that a medium region size (MRS) in an

image with N regions is the one occurring in the case of uniform region size distribution, thus having

an area of SI
N . We then aim in defining “closeness” in the spatial domain too. To do so, we now

define the Medium Region Distance (MRD). If we consider for simplicity the image being square

and the MRS being square as well,being square as well, then the MRD is defined as the distance

of the centroids of two adjacent MRs. Since there is no accurate or even general definition of the

aforementioned notions, these choices will not affect the evaluation significantly and it can be argued

that they can approximate human perception.

After having defined the notions of MRS and MRD, we cluster the regions of high detail as
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follows. First, we locate the small regions that hold the highest amount of detail. Since the term

small is abstract, we consider a region to be small if its size is less than the MRS, only the centroids

of regions that comply with this constraint are used in the graph. The next step is the clustering

of these regions. Areas of clusters indicate areas in the image where parts of objects or texture

with interesting features might reside. In many applications, especially those related to image

understanding, these areas might provide helpful cues for pattern recognition and object detection

through synthesis. For example, if the segmentation has been performed on an image depicting an

aerial view of a port, clusters of small regions might indicate the buildings at the port and the large

segments the sea. For the clustering we construct the dendrogram of clusters, using agglomerative

hierarchical clustering and acquire the final clustering by imposing the MRD as a cutoff distance.

The result of this process is the number of small regions or high detail regions NSR, which gives an

idea about the amount of detail in the segmented image and the number of clusters NC , which gives

an idea about how it is distributed throughout the image. Figure 4.3 shows the clusters of small

regions in our general example.

The resulting clustering allows us to measure the amount of detail preserved in the segmentation,

along with its spatial distribution. In our case clusters of small regions indicate general areas of

potential interest, so we design the measure to increase along with the number of small regions

detected and decrease as the number of clusters decreases, since isolated small regions are often a

byproduct of the segmentation process and are hard to combine with nearby regions in a region

synthesis process. Every small region contributes, however, to increasing the measure, according

to its size, which is inversely related to the detail that the region preserves. The measurement is

conducted in the cluster level. Each cluster Ci has a weight, according to the number of regions it

contains, defined as WCi :

WCi =
|Ci|
NSR

The level of detail DCi of each cluster Ci is related to the mean value of the sizes of the regions

that comprise it, symbolized as SRCi , because clusters of small regions are considered to hold more

detail. The region sizes are normalized by the MRS. so as to have values in the range (0,1). Finally,

since detail is inversely related to the regions size, the outcome is subtracted from 1 so as to acquire

the cluster’s level of detail:

DCi = 1−
|Ci|∑
i=1

SRCi
|Ci| ∗MRS

We can now define the measure of the Segmentation’s Detail Density, SDD as:
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(a) (b)

(c)

Figure 4.3: Clustering of small regions. The legend shows the color that corresponds to each cluster.

a) SRM, b) ERSS, c) EDISON

SDD =

∑NC
i=1WCi ∗DCi

NC
(4.1)

where the number of clusters NC shows how dispersed the detail is and, as it increases, the value

of SDD decreases.

The values of SDD are in the range (0,1) and values close to zero signify the existence of disperse

regions of medium size, or in other words uniformity in the region sizes and values closer to 1 signify

the existence of dense clusters of small regions. The example of Figure 4.3 is a good indication of

how the measure SDD performs. In our example image, the number of segments produced by all

three segmentation algorithms is 48. In the case of SRM, the SDD measure gets a very high value,

because there are many small regions and most of them belong in one cluster, located upon the region

where the coral is, which has interesting textural features. The region sizes produced in the case of

ERSS are close to uniform, being close to the medium region size MRD and homogeneously placed

throughout the image, thus SDD gets a low value in this case. Finally, in the case of EDISON’s
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segmentation, there are many small regions that increase SDD value; however, they are dispersed

and thus the final SDD value is less than that in the case of SRM. It is interesting to notice that in

this case the small regions correspond to regions not possessing as much semantic information, such

as borders between regions.

At this point, we should mention that another way to express the above measures with use of

entropy. Entropy of the region sizes has previously been used by Zhang et al. [253] as an indicator

of how uniform the region sizes are. Similarly, one could use the entropy of the distances among

the region centroids, as indicated by the RLG graph and acquire additional information about

the uniformity of the regions’ spatial distribution, in a compact manner. However, we believe

that the detection and localization of the small regions and their spatial distribution, as described

above, is more descriptive and can prove more useful for evaluation regarding the applicability of a

segmentation algorithm in specific tasks.

4.5 Experimental Results

In order to be able to make fairer and clearer comparisons among the results produced by the three

image segmentation algorithms, the number of segments for each image was selected to be the same

for all algorithms. Of course, each of the algorithms could be fine tuned so as to produce results

that better agree with its purpose, but here there was no point in doing so, since the algorithms are

not under assessment here. We are only interested in observing how our evaluation scheme can be

applied on different results and open new paths for research. The plot in Figure 4.4 shows the results

for images produced by the three algorithms and Figures 4.5 and 4.6 show the image segmentation

results for one example-image. Images 1-10 depict mostly wild natural scenes, which in general have

more chaotic information content, images 11-20 contain buildings, which in general have stronger

edges and structural content and images 21-30 contain faces and bodies of humans, since humans

are often a subject of study. The images were taken from Berkeleys database for image segmentation

evaluation [257].

Clearly, the SDD values indicate that regardless of the input image, ERSS algorithm tends to

produce regions of very uniform sizes and thus the resulting values of SDD are distinctly below

those in the cases of the two other algorithms. SRM in general produces segmentations with high

SDD values and so does EDISON, but on average its SDD values are below those of SRM. One

interpretation is that, in most cases, EDISON does not seem to be affected by textures, which are

usually unified in large regions. In many applications, this is favorable and it has been argued in the

literature that EDISON is able to produce results close to a humans general expectations. However,
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Figure 4.4: Measurements of Segmentation Detail Density, SDD for SRM (red), ERSS (blue) and

EDISON (green). The figure shows results for the 30 images (x axis).

since in many cases there are spatial correlations among the images regions, an inhomogeneous

distribution indicates that often the small regions produced by EDISON are a byproduct of its

process, since they do not represent parts of objects or texture. Conversely, in the case of SRM,

more local aspects are concerned and small regions are often parts of texture that differ adequately

from their neighboring regions so as to be identified as independent segments. This feature can

be very beneficial for region synthesis and detection of objects, such as faces and specifically facial

features, in complex environments.

Next, the SDD values are calculated for the three algorithms in the case of one image, segmented

into different numbers of regions. Most of the conclusions derived above still apply in this case. The

algorithms, as expected, seem to follow the same pattern for different segmentation granularities.

Deviation, however, is observed in the case of EDISON, which results in very high values of SDD

in the first two cases of small number of segmentations. A supervised or unsupervised evaluation

would show that the performance of EDISON in these cases is very poor. In our case, goodness

cannot be assumed or estimated. SDD values can be derived, but it depends on the application

and additional knowledge for more thorough conclusions and interpretations of its meaning. It can

be generally argued though that these values provide a better insight in cases of adequate number

of segments, where small regions are more likely to be created.
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(a) SRM for 7 regions (b) SRM for 12 regions (c) SRM for 22 regions

(d) SRM for 35 regions (e) SRM for 66 regions (f) SRM for 100 regions

(g) ERSS for 7 regions (h) ERSS for 12 regions (i) ERSS for 22 regions

(j) ERSS for 35 regions (k) ERSS for 66 regions (l) ERSS for 100 regions

(m) EDISON for 7 regions (n) EDISON for 12 regions (o) EDISON for 22 regions

(p) EDISON for 35 regions (q) EDISON for 66 regions (r) EDISON for 100 regions

Figure 4.5: Segmentations for one image, segmented in different granularity levels (x axis), from

coarse to fine (small number of segments to big number of segments).
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Figure 4.6: Measurements of SDD of each corresponding image in Figure 4.5 for SRM (red), ERSS

(blue) and EDISON (green).



5

A Methodology For Detecting

Faces From Different Views

5.1 Introduction

Face detection is one of the fundamental techniques that enables natural human-computer interaction

(HCI) and is the cornerstone of more advanced processes, including face alignment, face modeling

and recognition, head pose tracking, facial expression recognition, to name a few. The problem of

face detection has been open for many decades and there are several surveys that provide a thorough

overview of the problem [268–271].

The most common categorization of the face detection techniques is that introduced by Yang

et al. [271] who grouped them into knowledge-based methods [272], feature invariant approaches

[273–278], template matching methods [279, 280], and appearance-based methods [281–289]. In

knowledge-based methods, face detection is based on pre-defined rules deriving from human knowl-

edge. In feature invariant approaches the goal is to extract features that adequately describe the

facial structure and are also robust to pose and lighting variations. In template matching methods

the face is detected after successful matching with a template stored usually in a database. In

appearance-based methods machine-learning techniques are usually employed and face models are

trained over a number of images.

The robustness of these approaches is challenged by many factors such as changes in illumination

across the scene, shadows, cluttered backgrounds, image scale, facial pose, orientation and facial

expressions. To achieve a good performance, many of these methods make strong assumptions, like

assuming that the face is either segmented or surrounded by a simple background and the images

are well-illuminated with frontal-facial pose.

72
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In this chapter, we present a Local-Global (LG) Graph approach for detecting faces in both

frontal and profile views. The overall approach to face and facial expression detection presented

here - the LG graph approach combined with the skin detection procedure - is robust against

cluttered backgrounds, uncontrolled illuminations, shadows, and to a variety of facial poses and

orientations. It should be noted that the methodology incorporates a synergy of modules, which

can be replaced by other ones of similar functionality and potentially improve the methodology’s

performance, thus allowing it to evolve along with the advances in the fields of image processing

and artificial intelligence. Our main effort is to combine straightforward concepts in an efficient

algorithm. The methodology’s major merit, however, emanates from the LG graph method, which

allows us to build powerful and descriptive models for object recognition, with inherent invariance

of rotation and scale. In our case, we demonstrate how it can be used to construct a model for

recognizing faces of profile views, which is not usually considered, or not treated effectively.

5.2 Overview of the Methodology

Our methodology is based on a synergy of image processing, analysis and recognition processes

and comprises two major modules, the potential face region (PFR) extraction module and the face

detection module. The first module characterizes as regions of interest (ROI) regions that contain

pixels with color values close to those of human skin. In the initial color image the pixels with

color similar to that of the human skin are detected with a neural network trained based on the

color constancy approach. Connected component analysis and morphological operations discard the

regions that cannot contain face, based on their rough characteristics and the selected potential face

regions that remain are refined, so as to compensate for probable errors having occurred during the

previous steps. The refined PFRs are then processed by the second module, which decides which

of those represent faces, by localizing their facial features. The aforementioned processing includes

color segmentation, a feature enhancement process, and detection of the most significant corner

points. In the final step, point sets are selected using randomized, smart search and are matched

with our anthropometric model of a human face. For each point set, the Local-Global graph, which

incorporates the spatial geometry of facial features, is constructed and compared to the face-model

LG graph, using a computationally effective graph matching technique. The LG graph approach

in general can be applied to any object detection problem, provided that there is a corresponding

model in the LG database. An overview of the face detection algorithm is depicted in Figure 5.1.
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Figure 5.1: Overview of the face detection algorithm.

5.3 Skin detection

Our skin detection approach comprises two steps, namely color correction and skin classification

[290–294]. In the color correction step, the color image’s illuminant is re-estimated based on a

Multilayer Perceptron Neural Network (MLPNN) and achromatic color (gray) is assigned to the

skin pixels. The MLPNN has been trained so as to adapt to the skin color on randomly selected

images from a database consisting of images collected under various illumination conditions both

indoor and outdoor, and containing skin colors of different ethnic groups [290,295]. In the next step,

the pixels are classified as skin or non-skin pixels using a simple thresholding technique in RGB

space based on the achromatic value of the color corrected images.

The network is a Multilayer Perceptron with two hidden layers. The input layer consists of 1600

neurons, the first hidden layer has 48 neurons, the second hidden layer has 8 neurons and the output
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layer has 2 neurons. The normalized input sRGB space is first transformed into rg chromaticity

space, where r=R/(R+G+B) and g=G/(R+G+B). The input space (r,g) is divided into 40 * 40

(1600) discrete bins, each ( r , g ) histogram bin corresponding to one input neuron. Each input

neuron can take 1 or 0 as input values, indicating that the chromaticity corresponding to the (r, g)

histogram bin is either present or not present in the image. The output of the network is the expected

(r,g) chromaticity of the illuminant in the image. The network is trained using the back-propagation

algorithm with learning and momentum rates of 10 and 1 respectively. The error function was the

Euclidean distance in (r, g) chromaticity space between the network’s estimate and the provided

expected estimate of the image illuminant. The network inputs ((r,g), (histogram bins) that have

a non-zero input were marked active and only those active inputs were used during training. This

pruning of the network [296] reduces the noise that may occur if the inactive inputs during training

become active during testing. The advantage of using an MLPNN method for color adaptation

is that no inherent assumptions are made about the surfaces of the objects in the image or the

illumination sources as the input to the neural network is only the color from the image. In [290] it

is shown that the overall proposed approach for skin detection is computationally inexpensive and

is feasible for real-time applications.

The training and testing data set consists of 326 images [297] with the subjects face always in

the upper left corner and with a white patch (to facilitate a reference for white patch). These images

were captured by a digital camera, in and around the campus at Wright State University (WSU) over

a number of days and during various timings of the day to include various illuminating conditions.

Out of these, 255 images were randomly selected to form the training set and the remaining 71

images form the test set. For our tests two different network models were used.

Two models were built, the first having the white patch as reference for white and the second

having the face region as a reference for the skin color. The MLPNN was trained so as to bring

either the white patch to perfect grey or to bring the average face color to perfect gray in each

training image. The image data is expressed in 2D normalized rg chromaticity space. During the

training of the neural network, the pixels with all the three sensor (color) values in the range 11-254

were selected for our tests. The above filtering is done to remove pixels, which are too dark or

too bright. To provide adequate data for training the two proposed NN models, a random set of

30,000 pixels was drawn 20 times from each image in the training set. These random sets of pixels

formed the training sequence, creating an overall training set of 5100 (255 * 20) images. The pruning

of the network resulted in 350 and 352 active neurons out of the 1600 inputs for each NN model

respectively. Figure 5.2 shows results of the two steps of the skin detection process.
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(a) (b) (c)

Figure 5.2: Skin Detection. a) Original image, b) Color corrected image, c) Image containing the

skin detected pixels

5.4 Potential Face Region Extraction

The skin detection process produces many regions, among which might be faces, other skin regions

and erroneous regions with pixels of skin-like color values. Connected component analysis is used to

segment the most homogeneous areas and disconnect thin bridges. In order to clean up the result,

mean shift filtering and morphological opening operation discard small pixel clusters, which are

treated as noise.

In the remaining regions, bridges among semantically different regions might be present, as

depicted in Fig. 3 and reported in [298]. Connected component analysis alone might not be enough

to alleviate this problem, mainly because of being sensitive to many application specific parameters.

A more generally applicable approach that yields a better overview of the point distribution is the

Distance Transformation (DT), which allows us to focus on large point clouds and discard thin

lines. DT is first applied on each of the connected regions separately, and the area with the highest

response is preserved, according to a threshold that varies depending on the area’s size. The binary

result of the transformation is loosely thresholded, so as not to damage the PFR, but enough to deal

with thin bridges.

The holes in the selected connected components are filled with the morphological hole filling

operation. One problem that might exist in this stage is the absence of the eye and eyebrow region,

in the case of them being at the edge of the face or connected with hair and thus not surrounded by

skin, so hole filling cannot restore them. In the case of the frontal view of a face, the convexity of

the region allows us to use the PFR’s convex hull as the PFR’s region and achieve good recovery of
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the lost features, while maintaining the shape of the face. However, it is not as easy to do the same

in the case of the profile views, because it would result into restoration of many unwanted regions,

which would impose increased computational load. Using a closing operation with an adaptively big

circular structuring element yields better results. The PFR is classified as frontal or profile based

on the concepts of ellipticity and convexity, as it will be described later. The discussed steps and

cases are depicted in Figures 5.3 and 5.4.

(a) (b) (c)

Figure 5.3: Potential Face extraction with the refinement process. a) Original image, b) Skin regions,

c) Potential Faces

(a) (b) (c) (d)

Figure 5.4: Restoration of profile and frontal face views

5.5 Feature Extraction

In this section, we describe the steps taken in the extraction of the features used in the face detection

process, by forming the local and global relations of the LG graph. Briefly, image segmentation is
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used to segment the examined region into sub-regions of interest, among which we expect to find

those that represent the eyes and mouth, the most generally easy to discover facial features. For

the profile view case, we concluded that the nose contains the highest amount of information, and

the three points that represent a generic nose (beginning, tip, end) can be found through corner

detection.

5.5.1 Potential Eye and Mouth Regions

Segmentation is one of the most common preprocessing steps in image analysis. The goal of seg-

mentation is to partition the image into connected regions such that each region is homogeneous

with respect to one or more characteristics. Each segment is composed of a continuous collection of

neighboring pixels. When a segmentation algorithm terminates, each pixel in the image is assigned

to a particular segment. During our experiments, several image segmentation algorithms were ap-

plied, the most prominent of which being a Statistical Region Merging (SRM) method [264], the

widely used Mean Shift [265] algorithm and a Fuzzy Region Growing (FRG) method [299]. Each

algorithm has each own merits and downfalls and we will focus on them in future research. In this

work, we ended up using FRG image segmentation, because it is computationally inexpensive and

gives an adequate amount of detail in the segmentation.

The Fuzzy Region Growing (FRG) segmentation method used in this research is a computation-

ally efficient technique, which uses smoothing, edge information, homogeneity criteria and degree

of dissimilarity to segment image regions. The algorithm first performs smoothing and edge oper-

ations to determine the interior pixels. A set of segments is then initialized by performing flood

fill operations at the interior points. The decision as to whether a given adjacent (four- connected)

pixel should be filled during the flood operation is based on its closeness in RGB color space to the

original pixel seed of the segment. The pixels that have not been merged with any segment after the

flood fill operation are merged appropriately through a region growing procedure. In order to merge

the remaining pixels that are not assigned to any particular segment through region growing, the

edge pixels of the existing set of segments are propagated outward or grown. Then, as unassigned

pixels are encountered, they are merged with the closest segment of most similar color. This specific

condition is calculated using a least squares difference of the RGB color components as well as a

distance proportional to the distance from the original propagating edge pixel. Figure 5.5 shows an

example application of the FRG segmentation. Clearly, the FRG method segments important facial

feature regions such as eyes, eye-brows, nose and mouth.

However, applying the image segmentation to the original color image, will lead to the production

of many regions and even worse, it is possible to merge the regions of interest with neighboring regions
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(a) (b)

Figure 5.5: Image Segmentation. a) Potential frontal face, b) Segmented version

of no interest, especially in low resolution images. The first effect imposes an increased computational

load and the second might be catastrophic if the regions depicting the eyes and mouth get lost. To

cope with these problems, we propose a preprocessing algorithm based on the observation that eyes

and mouth appear darker than the skin regions. First, an unsharp filter is applied to the PFR, to

enhance the contrast of the edges. The image is then decomposed to its HSV components (Hue,

Saturation, Value), where the eyes and mouth colors have distinct response. In general, they might

appear brighter in the Hue band, dark regions appear bright and bright regions appear dark in the

Saturation band and the luminosity of the regions is unchanged in the Value band. Thus, in order

to make the regions of interest stand out, we apply erosion, dilation and erosion in the H, S, V

bands, respectively and extremum sharpening in the S and V bands, followed by mean filtering.

This process results in growing the bright regions and shrinking the dark and also in increasing their

contrast. Then, the image segmentation is performed, with parameters that preserve high amount

of detail and produce many regions. The result is thresholded adaptively and the darkest regions are

selected. This mask is used to select and merge connected regions that form the regions of interest,

among which the mouth and eyes.

5.5.2 Nose Detection

When a PFR is expected to contain a profile view of a face, our additional objective is to discover

possible nose regions. In the general case, the shape of the nose forms three corners, its beginning,

tip and ending point, with respect to the face line. Thus, our initial step is the extraction of the

face line, which is expected to be in the boundary of the region’s contour. The contours at this

point almost always are expected to contain sharp inwards and outwards bulges, so the contour is

obtained using chain codes and smoothed using local regression lines. Then, the smoothed contour is
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(a) (b) (c) (d)

Figure 5.6: Feature enhancement and selection for frontal views, a) original PFR, b) enhancement

(morphological operations, extremum sharpening), c) image segmentation, d) selected facial features.

approximated by line segments, which will bring out the corner points more and the most significant

corner points are selected.

However, even in the case of the region truly depicting a side view of a face, corner points will

exist in areas of no interest, which will increase the computational power need and hinder the face

detection process. We can reduce the number of these corner points by choosing those that have the

potential of belonging to the desired nose points. To do so, we slide a 3 point width window over

the corner points and eliminate the middle point if it forms too wide or too steep angle with the

other two. The process is shown in Figure 5.7.

(a) (b) (c)

Figure 5.7: Corner detection for nose detection. a) Potential profile face, b) Contour approximation

with line segments, c) Reduced set of useful corner points
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5.6 LG Graph Based Matching

In this section we describe our anthropometric face models and the final step of the face detection,

the LG graph matching, for both frontal and profile views of the face. Our methods have been

designed in a way to provide a good trade-off between accuracy and complexity.

5.6.1 Frontal And Side Face Models

The anthropometric proportions of the average human face have been widely studied for decades

from scientists of many different scientific fields, like medicine, psychology and art, to name a few.

Face models have been widely used for face detection [298, 300, 301], because they provide simple,

tractable and easily interpretable and applicable rules for defining the human face. Although the

proportions of a head will vary from person to person and change slightly with age, there are some

basic principles that describe the average face and appropriate selection of deviation thresholds can

compensate up to an adequate point for these alterations.

As we can observe in Figure 5.8, a series of useful and descriptive principles can be inferred for

the frontal and profile face modeling. It should be noted that these models are not irrelevant to

each other, but the one is the projection of the other. Figure 5.8 shows this projection, which allows

us to relate the most important facial features we use in this work. In the case of frontal views the

centroids of the eyes and mouth form a circle and the nose points are located close to the diameter

line that passes through the mouth’s centroid. This relationship will be helpful when tracking of

the face is also considered, which is part of our future work. The circle that includes the features of

interest becomes an ellipse in the profile view, defined by the centroids of eye and mouth and the

corner point representing the tip of the nose.

Figure 5.8: Frontal and profile face model. Pink dots denote the location of the centroid of the eye

region, red of the mouth and blue of corner-nose points. The black star is their centroid.

Exploiting the geometric characteristics of the facial features and face not only allows us to
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build an accurate face detection model, but it also implies an efficient manner to do so. First, we

should say that when building the LG graph for the object, we do so in a localized and randomized

manner, instead of building the graph connecting every point of interest in the examined object and

rely on computationally expensive graph matching methods. The local information stored in each

node along with the geometry, give an initial estimation about the nature of the region each node

represents (e.g. nose points are defined by corner points and eyes are symmetric regions). Thus,

when randomly selecting nodes to form the graphs to be matched with the model’s LG graph, many

of those will be discarded quickly if they do not meet a set of general constraints and not even reach

the matching stage, thus saving computational load. The points are chosen randomly, because better

average performance is achieved compared to brute force methods and along with smart searching

augmentations, like the ones we just mentioned, searching can be speeded up substantially. Let us

now see how these rules and methods apply to the cases of frontal and profile views of a face.

Model based face detection, such as the one discussed here, is inherently invariant of scale and

rotation and if appropriate tolerance thresholds are set, it can even tolerate a small amount of

shearing. Moreover, construction and rectification of models is easy and straightforward and can be

generally applied to any kind of object detection, as long as the object poses some rigid geometric

features. In our case, it allowed us to transit from the traditional and well studied frontal face

detection to the additional detection of profile views of faces, accurately and efficiently. The final

result is twofold, one being the estimation of the location and view type of the face (through the

global relations of the LG graph) and also about the localization of the facial features (in accordance

with the local information stored in the LG graph’s nodes).

5.6.2 Matching

The global view of a model’s LG graph can be seen in Figure 5.8. In the frontal view of a face, the

regions of interest and nodes of the LG graph are the eyes and mouth and in the profile view the

region of the eye, mouth and the three nose points (beginning, tip, end). The local position of each

region is encapsulated in the position of its centroid (stored in each of the LG graph’s nodes). The

feature localization is done progressively, as we will see in the next subsections, by using both the

local and global information of the LG graph.

The global information incorporates the spatial relations between the nodes, which are computed

implicitly, through the angles and distances of the nodes (region centroids). The local information

of each node, except for its position in the image, also denotes whether a node is a region’s centroid

or a corner point and in the case it represents a centroid’s region, if it is a potential eye or mouth

region.



5.6. LG GRAPH BASED MATCHING 83

In both cases of frontal and profile views, the points that will be the nodes of the LG graph are

selected randomly (3 centroids in the case of frontal view and 5 points in the case of profile view),

as discussed above. Our initial model included the eyebrow and nostril regions too, defining a more

descriptive model. However, we chose to make it more generic by using only the eye and mouth

regions, because they are the most generally easy to observe among different faces and different image

resolutions. In its full potential, the local information stored in each node can be more extensive,

for instance the color or shape of the region can be stored too. Again, since we are dealing with low

resolution and small images too, which do not contain adequate amount of detail, we chose to keep

the essential information in the nodes. The next two subsections describe how this information is

used to find and match the object’s LG graph that corresponds to a face (if of course there is one)

with the model’s LG graph.

For the segmented regions, the concepts of ellipticity and convexity are used to evaluate the

region’s probability of depicting a frontal face region, profile face region or generic skin region. The

ellipse that best fits the region’s contour is estimated. If the ellipse is too elongated, meaning that

lM
lm

< T1, where lM is the length of the major axis and lm is the length of the minor axis, then the area

is classified as generic skin region. T1 is an empirical threshold, set to 3. In the other case, the region

is classified as frontal or profile based on the decision of a Support Vector Machine (SVM). The SVM

has been trained over samples of frontal and profile faces and their selected features are the ratio

of the areas of the region and its convex hull area, the ratio of the perimeter lengths of the region

and its convex hull’s, the modified Hausdorff Distances between the region and its convex hull’s

boundaries and their fitted ellipse. These features aim in capturing the aforementioned concepts

of ellipticity and convexity. This pre-classification can be regarded as a speed up step. If the face

has been pre-classified as frontal or profile, the corresponding matching algorithm, which will is

described below) is performed first and if it is successful, the process stops there. In the case that

the region has been classified as generic skin area and we choose not to discard it, both algorithms

for frontal and profile detection are performed.

5.6.2.1 Frontal Face View

The fitted ellipse gives a rough insight about the general location of features. Eyes are expected to

be above the minor axis, so the matching algorithm initiates search from this region. Eyes in the

general case are mirrored with respect to the ellipse’s major axis, so in order to detect this relation;

the distances from the major axis and minor axis are measured. Any pair of centroids that satisfy

this constraint is preferred, as it has the potential of depicting the pair of eyes. Thus, an initial small

search space is formed. It should be noted, however, that this process assumes a good ellipse fitting,
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so that the major axis indeed passes close to the middle of the distance between the eyes. This is

not always the case though. To consider cases where the ellipse seems to have fitted adequately, but

its orientation is not the desired one; we do not solely rely on the eye regions to be symmetric with

respect to the major axis, but rather use it as a speed up step. Additionally, there might be the

rare case where mirror regions do not represent the eyes. Thus, we define a small probability p to

select two random regions as the potential eye pair. Finally, if the symmetric test fails, then regions

expected to represent the eye regions will be randomly selected. Figure 5.9 shows both cases.

(a) (b)

Figure 5.9: a) Case where the speed up method is successful. The eye regions were detected as non-

skin regions and are symmetric according to the major axis. b) The eye regions are not symmetric

according to the major axis.

At this point, estimation about the possible location of the eyes has been made. Based on this

estimation, the algorithm proceeds in searching for the mouth region. If the major axis mirrors

the eye pair, the centroids below the minor axis are chosen as potential mouth regions, with higher

priority. Else, a random point is selected. After all three centroids have been selected; the matching

with the model frontal face is performed. Specifically, if the angles formed by the three centroids

are approximately equal, then the algorithm has detected a frontal face. The steps of this process

are outlined in Algorithm 1.
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Extract potential eye and mouth regions and calculate their centroids;

for n = 1:M do

if there are mirror regions then

(1) Build triangle t from a random pair of centroids of mirror regions (eyes) and a

random centroid of the remaining (mouth) Build graph g from the 3 region centroids

if match(g,model) == TRUE then
frontal face detected

end

else

go to (1)

end

end

else

(2) Build graph g from three random centroids if match(g,model) == TRUE then
frontal face detected

end

else

go to (2)

end

end

end

Algorithm 1: Frontal face detection algorithm

5.6.2.2 Profile Face View

In this case, the most descriptive features are those that describe the nose, so the corner points

that represent it are examined first. As we have already mentioned, these points have already been

reduced into points that have the potential of forming a nose. The algorithm begins with a random

selection of three corner points, which are assumed to form a nose. Then, the nearest centroids with

a distance no longer than the largest distance between the selected corner points are picked out.

This reduces the initial search space for this case.

From the selected POI’s that potentially correspond to the eye and mouth regions, two points are

randomly selected. Before proceeding to the matching process, some general geometric constraints

are applied, in order to discard at an early point a combination of points which is highly unlikely to

form facial characteristics and prevent unnecessary computational effort. Specifically, the distance

between the eye and mouth has to be the longest and also the line segment that connects them

cannot intersect with any of the segments that connect the nose points.
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The matching with the object’s LG graph can now be performed and culminate the detection

process. In this case, the node correspondence issue between object and model would force us to

use permutations of the object’s points. In order to deal with it, we use the centroid of the five

POI’s as an assistive point. We calculate the distances of the selected nodes from their centroid

and express them with respect to the smallest one. The angles formed by the centroid, the node

corresponding to the smallest distance and the rest of the nodes are calculated. The same process

has been performed in the model, and thus correspondence can now be achieved and the two graphs

can be compared. The search space can be even reduced, if we guide the randomized selection of

corner points, by for instance not allowing the selected points to have pair wise distances too big or

too small, according to the potential face region’s dimensions.

Extract potential eye and mouth regions and calculate their centroids;

Calculate potential nose points;

for n = 1:M do

(1) Choose three potential nose points and two potential facial region centroids from their

neighborhood if general geometric constraints are met then
Calculate the centroid of the selected nodes and the angles with respect to the

centroid and the node with the smallest distance to it;

Construct graph g;

if match(g,model) == TRUE then
profile face detected

end

else

go to (1)

end

end

else

go to (1)

end

end

Algorithm 2: Profile face detection algorithm

5.7 Experimental Results

During the development and experimentation, three well-known publicly available image databases

were used. In their entirety, they encompass images varying in their resolutions, views of faces,

number and type of subjects, complexity of scene, etc. Portions of the research in this work use

FERET database of facial images collected under the FERET program, sponsored by the DOD
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Counterdrug Technology Development Program Office [302, 303]. FERET database contains high

resolution images of clear faces in simple background and was used first to test the validity of our

methodology. The results were very promising, so we then extended our tests to more complex

databases, the Faces in the Wild database [304] and the UCD Color Face Image Database for Face

Detection [305]. As expected, due to the nature of our model based face detection, the latter database

contained the most images were detection would fail. A description of the image databases follows:

The Color FERET Database: The database contains 1564 sets of images for a total of 14,126

images that includes 1199 individuals and 365 duplicate sets of images. A duplicate set is a second

set of images of a person already in the database and was usually taken on a different day. Both

frontal and side views are included and the images depict the face area with a simple background.

Faces in the Wild : The database consists of 30,281 faces collected from News Photographs. The

images have good quality and depict complex scenes, often multiple humans, who are captured in

various poses.

UCD Color Face Image Database for Face Detection: The database contains color pictures of

faces having a high degree of variability in scale, location, orientation, pose, facial expression and

lighting conditions. These images are acquired from a wide variety of sources such as digital cameras;

pictures scanned using photo-scanner, other face databases and the World Wide Web. It is a small,

but challenging dataset.

Figure shows some interesting examples from these datasets. Figure 5.10(a) exhibits a typical

frontal view face detection result, with adequately visible faces in a complex background. In general,

skin detection reduces the search space for faces and discards cluttered regions that could create

false detections even to robust algorithms, like the well known state-of-the-art well-known Viola-

Jones [289] algorithm. Figure 5.10(b) exhibits a case of a partially occluded face that our rectification

process managed to recover and thus allow the algorithm to detect it. It is of interest that Viola-

Jones failed to detect this face, although most of the facial features are in general visible. Figure

5.10(a) is a case of rotated faces, where Viola-Jones does not perform so well. Our technique however,

although simple, can inherently cope with rotations because only the local structural relations of

the facial features are taken into account and thus it is invariant of rotations. The other cases show

the ability of our algorithm to detect faces even when the facial features are not as clear, but more

importantly when the faces are in profile view. Although Viola-Jones can cope successfully with

the former challenge, it does not perform as well in the latter. The reason is that the features it

employs express better structures with “blockiness” rather than ones that are represented better by

their contours.

However, although the first results were promising, the algorithm has to be improved in order
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Experimental results. The first image corresponds to Viola-Jones face detection result

and the second to our method.

to outperform adequately the state-of-the-art. Skin detection is a natural approach to guide face

detection, but in the future we will use it as a cue for face localization rather than strongly rely on

it. The graph matching technique is efficient and powerful, because it can deal with many structural

relations and remain scale and invariant to in-plane rotations. More attention should be given to out-

of-plane rotations however, because there are still corner cases were there is not enough information

for the profile case (boundary is not clear) and at the same time the distances between the facial

features are distorted due to perspective transformations and cannot match the frontal face model.

Thresholds can cope to a good extent with this problem, but we plan to make the graph matching

more flexible. Towards this direction more features could be used. Here we demonstrated that image
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segmentation and corner detection are effective and intuitive ways to extract salient features, but

performance could be enhanced if other types of features are added to the LG graph models as well.



6

Human Body Extraction

6.1 Introduction

In this chapter we deal with the extraction of the human body in a single image. Extraction of

the human body in unconstrained, still images is a very challenging task due several factors. The

most important among them are shading, image noise, occlusions, background clutter, the high

degree of human body deformability and the unrestricted positions due to in and out of the image

plane rotations. Knowledge about the human body region can further benefit various tasks, such as

determination of the human layout [306–309], recognition of actions from static images [44,310,311]

and sign language recognition [312, 313]. Human body segmentation and silhouette extraction has

been a common practice when videos are available in controlled environments, where background

information is available and motion can aid the segmentation through background subtraction. In

static images however, there are no such cues and the problem of silhouette extraction is much more

challenging, especially when we are considering complex cases. Moreover, methodologies that are

able to work at a frame level can work for sequences of frames too and facilitate successfully already

existing methods for action recognition based on silhouette features and body skeletonization.

In this work, we propose a bottom-up approach for human body segmentation in static images.

We decompose the problem into three sequential problems, namely face detection, upper body

extraction and lower body extraction, since there is a direct pairwise correlation among them. The

initial step of the process is face detection, which first gives a strong indication about the presence

of humans in an image, greatly reduces the search space for the upper body, provides information

about the skin color adaptive to the specific human and allows the formulation of an appearance

based method combined with heuristics emanating from anthropometry. Similarly, the upper body

region guides the extraction of the lower body extraction. Finally, upper body extraction provides

additional information about the position of hands, the detection of which is very important for

90
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several applications. The basic units upon which calculations are performed are super pixels from

multiple levels of image segmentation. The benefit of this approach is twofold. First, different

perceptual groupings reveal more meaningful relations among pixels and a higher, however abstract,

semantic representation. Second, noise at the pixel level is suppressed and region statistics allow

for more efficient and robust computations. Instead of relying on pose estimation as an initial step

or making strict pose assumptions, we enforce soft anthropometric constraints to both search a

generic pose space and guide the body segmentation process. One of the most important principles

employed here is that body regions should be comprised by segments that appear strongly inside

the body regions and weakly in the hypothesized background.

The major contributions of this work are as follows:

• We propose a novel framework for automatic segmentation of human bodies in single images.

• We combine information gathered from different levels of image segmentation, which allows

efficient and robust computations upon groups of pixels that are perceptually correlated.

• Soft anthropometric constraints permeate the whole process and uncover body regions.

• Without making any assumptions about the foreground and background, except for the assump-

tions that sleeves are of similar color to the torso region and the lower part of the pants being

similar to the upper part of the pants, we structure our searching and extraction algorithm based

on the premise that colors in body regions appear strongly inside these regions (foreground) and

weakly outside (background).

6.2 Related Work

The problem of human body segmentation from images has gained increased attentions from the

research community over the last decade and several solutions have been proposed. We could classify

these approaches into three categories. The first one includes interactive methods, which, as the

name suggests, expect user input in order to discriminate the foreground and background. In general

this category differs from the other two, which are automatic and often task-specific. The second

category includes top-down approaches, which are based upon a-priori knowledge and use the image

contents to further refine the initial model. On the other hand, bottom-up approaches, which form

the third category, use low-level elements such as pixels or superpixels and try to group them into

higher level semantic entities.

Interactive segmentation methods are very useful for generic applications and have the potential

to produce very accurate results in complex cases. However, since they rely on low-level cues and
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Figure 6.1: Overview of the methodology.

do not employ object-specific knowledge, they often require user input to guide their process and

thus become inappropriate for many real-world problems where automation is necessary. In [314],

the KDE-EM approach is introduced by applying nonparametric kernel density estimation method

in EM-based color clustering. One of the most popular interactive segmentation algorithms is

GraphCut [315], where the user selected the foreground and background pixels are nodes of a graph

(in MRF fashion) that is partitioned according to the global solution of max-flow algorithm [316].

The cost function over the graph that is to be minimized penalizes nodes of dissimilar color and

favors the cut of edges that represent strong edges in the image. GrabCut [317] extends this work by

introducing an iterative process and incomplete labeling to the mechanism, which aims in reducing

the user interaction, dealing with cases where the foreground is more similar to the background and

providing more appealing end results through border matting. Another type of iterative process

is implemented in GrowCut [318], which uses Cellular Automaton as an image model. The model

represents the image as a grid of cells with strength defined by their pixel values and during during

automata evolution neighboring cells “attack” one another iteratively until convergence. A very

interesting algorithm is Active Segmentation with Fixation (ASF) [319], which only requires the

user to select the point enclosed by the foreground object to be segmented. The most important

step of this algorithm is finding the edge enclosing the fixation that best partitions the image in

log-polar space. However, although the algorithm produces impressive results with minimal input, it

requires a clear and strong boundary between the object of interest and the background. In the same

spirit, Geodesic Star Convexity (GSC) [320] extends the algorithm presented in [321] by introducing
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multiple stars and geodesic paths. User selected star centers aid the algorithm in outlining the

boundary of the foreground object. Random Walks are successfully employed in [322] for multi-

label segmentation, where random walks from unseeded regions to seeded are used to estimate the

probability of each pixel to reach the seeded points and the final result is calculated by solving

a sparse system of equations. Attention has been given to preserve even weak boundaries during

random walks and treat cases were object boundaries have small discontinuities.

Recently several top-down approaches have been proposed as solutions to the problem of seg-

menting human bodies from static images. The main characteristic of these approaches is that they

high-level knowledge about the foreground, which in case of humans is their pose. One of the promi-

nent and well studied method for object recognition and pose estimation is the Pictorial Structures

(PS) [323]. In its original formulation, PS uses a tree-structured graphical model to make proba-

bilistic inference and poses are found through minimization of a cost function decomposed along the

edges and nodes of the tree, where the torso usually serving as the tree’s root since it is usually

the most visible part, although other types of trees have been proposed too. The PS method has

been extended in several ways over the last years. Some of the most important contributions to it

appear in [324], where the original PS model is extended to encode the fact that symmetric limb

pairs have consistent color and in [325], where PS are augmented by a novel approach for estimating

part appearance models. Both reasons are studied in [308]. The authors show how a pre-processing

step called foreground highlighting, which removes part of the background clutter by using grabcut

algorithm to reduce the searching space of PS models and subsequently implies that bottom-up

approaches can improve the results and efficiency of top-down approaches.

Among the most important works that object priors to perform the segmentation are [326] where

object category specific MRF is used and [327], where pose-specific MRF is used. The local contrast-

dependent MRF is combined with strong global priors emanating from the PS model in [326] and

the stickman model in [327], which focuses in the human object category. In [328], bottom-up

cues are combined with global top-down knowledge for object class learning with unsupervised

segmentation, where the object’s shape is learned but not its appearance, so cannot be used achieve

high accuracy in cluttered images. In [329] the problem of segmenting occluded object is tackled,

where preliminary solutions to segmentation are found with a layout-consistent random field. Shape

templates are another way to store object-specific knowledge and are used in [330] to select segments

of a segmentation hierarchy that lead to object-like segmentations and in [331] with a KDE-EM

framework. The body probability map obtained by the PS model is used as prior knowledge in

[332] and it is refined with a superpixel-based EM-like algorithm so as to guide a novel l1 based

graph cuts algorithm. Similarly in [333], cues from PS model are used along with appearance and
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spatial constraints to provide good seed determination for a graph cut algorithm. In general, these

approaches can deal with various poses and produce impressive results, but they rely on complex

high level models that might fail in complex scenarios and often the rest of algorithm cannot recover

from these failures. Besides, high-level inference is time consuming and thus these methods usually

are computationally expensive.

In bottom up approaches higher level human body segmentation is conducted by grouping lower

level elements, such as pixels or superpixels and relying to simpler constraints, heuristics and high

level concepts. One popular work that has propelled many others is [334], which is mainly designed

for pose detection. Poses are treated as assemblies of parts, identified by specific detectors over

superpixels acquired using Normalized Cuts [335]. This method can deal with many unusual poses,

but it exploits properties of a specific dataset and from a segmentation perspective, several parts of

the human body might be missing. In [336], candidate regions generated by directed aggregation of

superpixels are scored based on shape similarity to a database of shape exemplars and assemblies with

variable numbers of parts are scored using a simplified hierarchical model of appearance. Advances in

face detection methodologies facilitate significantly the related problem of human body segmentation

and many works utilize them because they contain significant cues that can be used towards body

localization and skin color estimation. In [337], extract the face region using GrabCut and model

the skin color using GMMs. Then, they initialize a trimap for the human body in form of a

rectangle under the face in order to get a first estimation using GrabCut, which is iteratively refined

after sampling small patches along the hypothesized contour. Although the refinement process is

promising, it requires unbounded executions of the time consuming GrabCut algorithm and more

importantly, the initialization of the process restricts the generalization of the algorithm significantly.

The same cues are used in similar manner in [338], where the main contribution lies in a novel torso

fitting method [339] and discrimination of the foreground region through constrained Delaunay

triangulation. In their work, only the clothes of the upper body are deemed as foreground, as seen

in frontal, upright views. In [340] two segmentation levels are employed, where the fine level aims

in collecting consistent features from uniform regions and the course level aims in preserving local

shape during classification, which is performed using AdaBoost. The authors use the torso detector

of [341] and perform full-body segmentation. However, their results are restricted to frontal upright

poses and their sampling method for clothes and pants assumes uniform and continuous regions ad

accurate torso fitting.
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6.3 Face Detection

Localization of the face region in our method is performed using OpenCVs implementation of Viola-

Jones algorithm. Besides the obvious reasons of high performance and speed, this algorithm is

based on combinations of a vast pool of Haar-like features, which essentially aim in capturing the

underlying structure of a human face, regardless to the its skin color. Since skin probability in our

methodology is learnt from the face region adaptively, we require an algorithm that is based on

structural features.

However, Viola-Jones face detector is prone to false positive detections that can lead to un-

necessary activations of our algorithm and faulty skin detections. In order to refine the results of

the algorithm, we propose using the skin detection method presented in [295] and face detection

algorithm presented in [225]. The skin detection method is based on color constancy and a Multi-

layer Perceptron Neural Network (MLPNN) trained on images collected under various illumination

conditions both indoor and outdoor, and containing skin colors of different ethnic groups. The

face detection method is based on facial feature detection and localization using low-level image

processing techniques, image segmentation and graph-based verification of the facial structure.

First, the skin probability map of the image pixels is calculated. Then, the elliptical regions of

the detected faces in the image found by the Viola-Jones algorithm are evaluated according to the

probabilities of the inscribed pixels. More specifically, the average skin probability of the pixels X

of potential face region FRi, for each person i, is compared to threshold TGlobalSkin (set empirically

to 0.7 in our experiments). If it passes the global skin test (greater than TGlobalSkin), it is further

evaluated by our face detector. If the facial features are detected, then FRi is considered to be a

true positive detection.

(a) (b) (c)

Figure 6.2: Face detection and verification, a) Viola-Jones face detection, b) global skin detection,

c) facial feature and face detection
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6.4 Anthropometric Model

The basic source of knowledge that permeates the whole hands detection methodology derives from

anthropometric studies that describe the structural composition of the human body. Extraction of

the face region allows us to estimate the most important structural block of the body composition,

the palm length. In the average human body the major axis of the face’s ellipse is almost equal to

the length of the palm. Let this distance be called PL from now forth. The location and size of the

rest of the body components of interest can be estimated using this distance and the center of the

face, (xFaceCenter,i, yFaceCenter,i).

The base of the neck or beginning of chest in an almost frontal and upright pose can be ap-

proximately found at one PL directly below the face center. Let the coordinates of this point be

(xNeckBase,i, yNeckBase,i). The edges of the perpendicular line segment with length of 2PL that

passes through this point indicate the approximate location of shoulders or else the joint of the

upper arms with the chest. The neck base point can also be used to define the space where the

hands can be found. It is used as the center for a series of concentric ellipses that aid in better

understanding the hand position and arm posture. The outer ellipse has a major axis length of 5PL

and beyond this ellipse possible hand regions are automatically rejected. The zone between this

ellipse and the next one, which has a major axis length of 4PL, shows the zone where palms can be

when the arms are fully extended. Finally, the most inner ellipse has a major axis length of 2.5PL

and corresponds to the ellipse delineated by the elbows when rotated in extension. This ellipse aims

in giving an indication about the degree the arm is bent.

Extending the anthropometric model to the side-view case, we show that the ellipses in the frontal

view are actually ellipsoid spheres. The depth information is lost in single monocular images and it

is one of the reasons that hand detection in these images is a difficult problem. In our methodology

we do not explicitly deal with depth information but rather rely on body part connectivity, which

can be detected in the restricted 2D space of the frontal model.

Figure 6.3: Anthropometric model.
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6.5 Multiple-level Image Segmentation

Relying solely on independent pixels for complicated inference leads to propagation of errors to the

high levels of image processing in complex, real-world scenarios. There are several different sources

of noise, such as the digital sensors that captured the image, compression or even the complexity

of the image itself and their effect is more severe at the pixel level. A common practice to alleviate

the noise dwelling at the pixel level is the use of filters and algorithms that extract more collective

information from the pixels. Moreover, groups of pixels express higher meaning. Smaller groups

preserving detail and uniform patches and larger groups tend to capture shape and more abstract

structures better. Finally, computations based on superpixels are more efficient and facilitate more

flexible algorithms.

In this work, we propose using an image segmentation method, in order to process pixels in more

meaningful groups. However, there are numerous image segmentation algorithms and the selection

of an appropriate one was based in the following criteria. First, we require the algorithm to be able

to preserve the strong edges in the image, because they are a good indication of boundaries between

semantically different regions. Second, another desirable attribute is the production of segments

with relatively uniform sizes. Studies on image segmentation methods [223,253] show that although

these algorithms approach the problem in various different ways, in general they remain in the low

levels of image processing and thus their results cannot be guaranteed to comply with the various

and subjective human interpretations. Thus, we deem this step as a high-level filtering and prefer to

over-segment the image, so as not to lose great amount of detail. Region size uniformity is important

because it restrains the algorithm from being tricked by over-segmenting local image patches of high

entropy (e.g. complex and high detailed textures) to the expense of more homogeneous regions that

could be falsely merged, although they belong to semantically different objects (e.g. human hand

over a wooden surface with color similar to skin).

Using superpixels instead of single pixels has been seen before in the well-known work [334],

where the authors use Normalized Cuts [335] to segment the image. The method we adopt in this

work is the Entropy Rate Superpixel Segmentation (ERSS) algorithm, proposed in [263], which

provides a good trade-off between accuracy and computational complexity. This approach is based

on optimizing an objective function consisting of two components, the entropy rate of a random walk

on a graph and a balancing term. Results of the ERSS are shown in Figure 6.4. More importantly,

we propose using multiple levels of segmentations, in order to alleviate the need of selecting an

appropriate number for the regions to be created and combine information emanating from different

perceptual groupings of pixels. Although our framework can accept any number of segmentation

levels, we find that two segmentation levels, of 100 and 200 segments, provide accurate results and
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efficient computations. For the skin detection algorithm, a finer segmentation of 500 superpixels

is used, because it manages to discriminate better between adjacent skin and skin-like regions and

recover skin segments that are often smaller compered to the rest image regions.

(a) (b) (c)

Figure 6.4: Image segmentation for 100, 200 and 500 superpixels.

6.6 Skin Detection

The problem of detecting skin regions in images and video has propelled many works and is still an

open problem. Among the most prominent obstacles are the skin tone variations due to illumination,

ethnicity, etc., disambiguation of skin like regions and the fact that limbs often do not contain enough

contextual information to successfully solve the ambiguities. Here we propose combining the global

detection technique [342] with an appearance model created for each face, so as to better adapt to its

skin color. The appearance model provides a strong discrimination between skin and skin like pixels

and segmentation cues are used to create regions of uncertainty. Regions certainty and uncertainty

comprise a map that guides the GrabCut algorithm, which in turn outputs the final skin regions.

Even at this step there might be still false positive cases, which are eliminated using anthropometric

constraints and body connectivity.

Each face region FRi is used to construct an adaptive color model for each persons skin color.

In this work we propose using the r, g, s, I, Cr and a channels. In more detail, r = R/(R+G+B),

g = G/(R + G + B) and s = (R + G + B)/3, so r and g are the normalized versions of the R and

G channels respectively and s used instead of b to achieve channel independence. Channels I, Cr

and a from YIQ (or NTSC), YCbCr and Lab colorspaces, respectively, are chosen because skin color

is accentuated in them. The skin color model for each person is estimated after fitting a normal

distribution to each channel, using the pixels in each FRi. The parameters that represent the model

are then the mean values µij and standard deviations σij for each FRi and channel j = 1 . . . 6 for
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channels r, g, s, I, Cr and a. Then, each image pixels probability of being a skin pixel is calculated

separately for each channel according to a normal probability distribution with the corresponding

parameters. We require that a true skin pixels should have strong probability response in all of the

selected channels, so the skin probability for each pixel X is:

PSkini(X) =

6∏
j=1

N (X,µij , σij) (6.1)

Figure 6.5: Skin detection algorithm.

One characteristic of the adaptive model manages to retrieve the true positive cases. Examples

can be seen in Figure 6.6. However, most of the time it is too “strict” and suppresses the values of

many skin and skin like pixels that deviate from the true values according to the derived probability

distribution. At this point, we find that an influence of the skin global detection algorithm is

beneficial because it aids in recovering the uncertain areas. Another reason we choose to extend

the skin detection process is that relying solely on an appropriate colorspace to detect skin pixels

is often not sufficient for real world applications [343]. Combination of the two proposals is done

through weighted averaging (with a weight of 0.25 for the global model and 0.75 for the adaptive

model). The finest level of image segmentation is used at this point to characterize segments as
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certain and probable background and probable background. Using segments instead of pixels makes

the classification more robust, because the perceptual information they convey is exploited and leads

to clearer maps for the GrabCut algorithm. For the certain foreground regions however, only the

pixels with sufficiently high probability in the adaptive model are used as seeds, so as to control

their strong influence. In order to characterize a region as probable background or foreground, its

mean probability of the combined probability must be above a certain threshold (empirically set to

0.2 and 0.3, respectively).

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Skin detection examples.
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6.7 Upper Body Segmentation

In this section, we present a methodology for extraction of the whole upper human body in single

images, extending out work in [343] which dealt with the case where torso is almost upright and

facing the camera. The only training needed is for the initial step of the process, namely the face

detection and a small training set for the global skin detection process, but it is not crucial for the

skin detection algorithm. The rest of the methodology is mostly appearance-based and relies on the

assumption that there is a connection and continuity between the human body parts. Color-based

similarity combined with anthropometry provide sufficient information to support an efficient and

effective hands detection methodology, without the need of training data or complex inference about

the exact human body pose. Furthermore, we demonstrate how processing using superpixels instead

of single pixels, which are acquired by an image segmentation algorithm, yield more accurate results

and allow more efficient computations.

The initial and most crucial step in our methodology is the detection of the face region, which

guides the rest of the process. The information that can be extracted in this step is significant.

First, the color of the skin in a person’s face can be used to match the rest of their visible skin

areas, making the skin detection process adaptive to each person. Second, the location of the face

gives a strong cue about the rough location of the torso. Here, we deal with cases where the torso

is below the face region but without strong assumptions about in and out of plane rotations. Third,

the size of the face region can further lead to the estimation of the size of body parts according to

anthropometric constraints. The general scheme of the methodology can be seen in Figure 6.1.

Face detection is based on OpenCV librarys implementation of the widely used Viola-Jones face

detection algorithm, for both frontal and side views. Since face detection is the cornerstone of

our methodology, we refine the face detection results by using face detection algorithm. Once the

elliptical region of the face is known we proceed to the foreground probability estimation. In order

to better utilize the existing spatial and color relations of the image pixels we perform multiple

level over-segmentation and examine the resulting superpixels. We regard as skin the superpixels

with color similar to that of the face region and as clothes the superpixels with color similar to the

regions inside torso masks, hypothesized using anthropometric constraints and dissimilar to the rest

of the image. As opposed to other approaches that are based to pose estimation, we employ simple

heuristics to conduct a fast and rough torso pose estimation and guide the segmentation process.

Torso is usually the most visible body part, connected to the face region and in most cases below

it. Using anthropometric constraints one can roughly estimate the size of the torso and its location.

However, different poses and head motion make torso localization a challenging task, especially when

the assumption about its pose are relaxed. Instead of searching for the exact torso region or using
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complex pose estimation methods, we propose using a rough approximation of the torso mask select

the regions appear mostly in the mask and not so much in the background. This simple and intuitive

criterion allows for fast inference about the torso location and relieves the need for the complex task

of explicit torso estimation, without however sacrificing accuracy.

As discussed above, different levels of segmentation give rise to different perceptual pixel group-

ings and each segment is described by the statistics of its color distribution. In each segmentation

level, each segment is compared to the rest and its similarity image is created, depicting the proba-

bilistic similarity of each pixel to the segment. Similarly to the skin detection process, the mean µi

and standard deviation σi of segment Si construct normal distributions in each channel j = 1, 2, 3

of the Lab colorspace and the probability for each image pixel of belonging to this probability is

calculated. We estimate the final probability as the product of the probabilities (Eq. 6.4) in each

channel separately. Example similarity images are shown in Figure 6.7. The main rationale behind

this process is that there should be big concentration where the body parts lie of regions that are

similar among them and at the same time dissimilar to the rest of the image. Similarity images

are gathered for all of the different segmentation levels l. Here, we use two segmentation levels in

this stage, of 100 and 200 super pixels, because they provide a good trade-off between perceptual

grouping and computational complexity.

PSimilarityImageli(X) =

3∏
j=1

N (X,µij , σij) (6.2)

Sequentially, a searching phase takes place, where a loose torso mask is used for sampling and

rating of regions according to their probability of belonging to torso. Since we assume that sleeves

are more similar to the torso colors than the background, this process combined with skin detection

actually leads to upper body probability estimation. The mask is used for sufficient sampling instead

of torso fitting, so it is estimated as a large square with sides of 2.5PL, with the top most side centered

with respect to the face’s center. In order to relax the assumptions about the position and pose of

the torso, the mask is rotated by 30 degrees left and right its initial position (0 degrees), as seen in

Figure 6.8. By using a large square mask and allowing this degree of freedom, we manage to sample

a large area of potential torso locations. On the other hand, by constraining its size according to

anthropometric constraints, we make the foreground/background hypotheses more meaningful.

During the search process, the mask is applied to each similarity image and the segment it

corresponds to is rated. Let TorsoMaskt be a binary image where pixels are set to 1 (or “on”)

inside the square mask and 0 (or “off”) outside, so that SimilarityImageli ∩ TorsoMaskt selects

the probabilities of the similarity image that appear inside the mask. Index t = 1, 2, 3 corresponds

to a torso mask at angle -30, 0 or 30. Thus, Equations 6.3 and 6.4 rate each segment’s potential of
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(a) (b)

(c) (d)

Figure 6.7: Example of similarity regions for random segments (each image corresponds to one

segment).

belonging to foreground and background, respectively and Equation 6.5 combines the two potentials

in form of a ratio:

PForeground(Stli) =

|Stli|∑
SimilarityImageli ∩ TorsoMaskt (6.3)
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PBackground(Stli) =

|Stli|∑
SimilarityImageli ∩ TorsoMaskt (6.4)

TorsoScore(Stli) =
PForeground(Stli)

PBackground(Stli) + ε
(6.5)

(a) (b) (c)

Figure 6.8: Masks used for torso localization.

In the end of the previous process, there are images showing the segments’ potentials for each

segmentation level and for each torso hypothesis, as seen in Figure 6.9. In order to select the

torso mask that retrieves the most suitable distribution of potentials, we accumulate the results

in each segmentation level for each torso mask. As seen in Figure 6.10 the final potential maps

accentuate successfully the torso and arms. Our approach has the advantages of taking different

perceptual groupings into account and being able to alleviate the need for an accurate torso mask by

conjunctively measuring the foreground and background potentials. The fact that we use superpixels

in the computations makes comparisons more meaningful, preserves strong boundaries and improves

algorithmic efficiency. Results may be improved by adding more segmentation levels and masks at

different sizes and locations, but at the cost of computational complexity. Here we show how even

with rough approximations we can achieve accurate and robust results without imposing extreme

computational strain.

The obvious step is to threshold the aggregated potential torso images in order to retrieve the

upper body mask. In most cases, hands or arms’ skin is not sampled enough during the torso

searching process, especially in the cases where arms are outstretched. Thus, we use the skin masks

estimated during the skin detection process, which are more accurate than they would be in the

case they were retrieved during this process anyway, since they were calculated using specifically

the face’s skin color, in a colorspace more appropriate for skin and segments created at a finer level

of segmentation. These segments are superimposed on the aggregated potential torso images and

receive the highest potential (which is 1, since the potentials are normalized).
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(a) (b) (c) (d)

(e) (f)

Figure 6.9: Segments with potential of belonging to torso, a-b) for segmentation level 1 and 2 and

torso mask at 0 ◦, c-d) for segmentation level 1 and 2 and torso mask at 30 ◦, e-f) for segmentation

level 1 and 2 and torso mask at −30 ◦.

(a) (b) (c)

Figure 6.10: Aggregation of torso potentials shown in Figure 6.9, for torso masks at 0 ◦, 30 ◦ and

−30 ◦.

Instead of using a simple or even adaptive thresholding, we use a multiple level thresholding to

recover the regions with strong potential according to the method described so far, but at same time
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comply to the following criteria: 1) they form a region with size close to the expected torso size

(actually bigger in order to allow some freedom for the case arms are outstretched) and 2) the outer

perimeter of this region overlaps with sufficiently high gradients. The distance of the selected region

at threshold t (Regiont) to the expected upper body size (ExpUpperBodySize) is calculated as:

ScoreSize = e
−|Regiont−ExpUpperBodySize|

ExpUpperBodySize (6.6)

where ExpUpperBodySize = 11 × PL2. The score for the second criterion is calculated by

averaging the gradient image (GradientImage) responses for the pixels that belong to the perimeter

(PRegiont) of Regiont:

ScoreGradient =
1

|PRegiont|

|PRegiont|∑
GradientImage ∩ PRegiont (6.7)

Thresholding starts with zero value and becomes increasingly stricter at small steps (0.02). In

each thresholding level, the largest connected component is rated and the masks with ScoreGradient >

0.05 and ScoreSize > 0.6 are accumulated to a refined potential image, as seen in Figure 6.11. In-

corporation of this a priori knowledge to the thresholding process aids further the accentuation of

the true upper body regions. Accumulation of surviving masks starts when ScoreSize > 0.6 and

resulting masks after this point will keep getting closer monotonically to the expected region size.

Accumulation ends when ScoreSize drops bellow 0.6. The rationale behind this process is to both

restrict and define the thresholding range and focus the interest to segments with high potential

of forming the upper body segment. The aggregate mask (AggregateMask) can now be processed

easier and produce more meaningful results. Specifically, we set a final threshold which allows only

regions that have survived more than 20% of the accumulation process in the final mask for the

upper body region. This process is performed for every initial torso hypothesis, so in the end there

are three corresponding aggregate masks, out of which the one that overlaps the most with the ini-

tial torso mask and obtains the highest aggregation score is selected. Aggregation score shows how

many times each pixel has appeared in the accumulation process, implicitly implying its potential

of belonging to true upper body segment.

6.7.1 Refinement

In many cases the extracted upper body mask is very accurate and can be deemed as the final results.

However, since are dealing with complex scenarios, we choose to add an extra refinement step to

cope with probable segmentation errors and pixels that manage to survive the multiple thresholding

process. One idea that we use here is to give the upper body mask as input to an interactive
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Figure 6.11: Thresholding of the aggregated potential torso images and final upper body mask. Note

that the masks in the top row are discarded.

foreground/background algorithm that requires ”seeds” denoting the foreground and background.

GrowCut and GrabCut are used for experiments.

GrowCut expects the RGB image as input and a map denoting the seeds for background, fore-

ground and uncertain pixels, whereas GrabCut can operate on a more refined map containing the

certain foreground, certain background, probable foreground and probable background regions. In

order to construct these maps we employ morphological operations on the upper body mask, with

adaptive square structural elements (SE) using anthropometric constraints. For GrowCut, the un-

certain region is constructed by dilating the upper body mask with a SE with sides equal to PL/6,

the face’s ellipse with a SE with sides equal to PL/10 and the skin regions with a SE with sides

equal to PL/12. Possible holes between the face and torso region are also filled. The certain fore-

ground is similarly constructed with erosions instead of dilations, where the sides of the SEs are

now PL/4, PL/4 and PL/10, respectively. The rest of the map is classified as background. For

the GrabCut algorithm the possible background ground is constructed by dilating the upper body

mask, face’s ellipse and skin masks using SEs with sides PL/10, PL/2 and PL/12, the probable

foreground is constructed by eroding the masks with SEs with sides PL/4, PL/4 and PL/10, re-

spectively and the certain foreground by eroding them with SEs with sides PL/1, PL/3 and PL/8,

respectively. Both algorithms are guided with the extracted upper body mask, so their results are
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very similar. Their main difference is that GrabCut can make better guesses in cases of uncertainty

and segment large regions loosely defined by the map, whereas GrowCut is more sensitive to the

map and influenced a lot by the background seeds. In Figure 6.12 for example, both algorithms

extract the upper body successfully, with the difference that GrowCut removes the small enclosed

regions by the arms, whereas GrabCut includes them.

(a) (b) (c) (d)

Figure 6.12: Example of foreground/background certainty maps and segmentations for a-b) GrabCut

and c-d) GrowCut.

6.7.2 Hands Detection

Knowing the positions of hands can facilitate many higher-level methods, such as gesture and action

recognition, human-computer interaction, etc., so we perform an additional step towards their local-

ization and extraction. Previous work can be found in [227]. Hands here are skin regions connected

to upper body that obey certain anthropometric constraints. First, our skin detection methodology

manages to accurately extract skin patches. Patches that our outside the exterior anthropometric

circle are automatically discarded. From the remaining ones, only the ones (almost) adjacent to the

upper body have the potential of representing hands.

In cases where the person wears clothes with long sleeves the skin region of the hands is naturally

segmented. In cases however where a larger portion of the arms is visible further examination

is required. Here, we propose adding a skeletonization step for the skin regions, adopting the

implementation from [344]. When the length of the medial axis is greater than 1 PL then the

windows around its two extreme points are assumed to contain the hands region. When the length

of the medial axis is greater than 1 PL then we rely on the anthropometric model to make an

assumption about the most probable hand region. More specifically, the region between the outer

and inner ellipses is more probable to represent a hand region. However, when both regions are
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inside the inmost ellipse inference is ambiguous, so we choose to report both regions as potential

hand regions. Exception is the case where the hand region is sufficiently surrounded by the upper

body region. In this case this region is reported as representing a hand, without of course meaning

that there not cases where this assumption is incorrect.

Figure 6.13: Example of hand skeletonization (lines are exaggerated for visibility). White line is the

skeleton of the skin region and green Xs are the extreme points. Red region is considered as hand

region because it is near the outer anthropometric ellipse.

Thus, the extreme points of the skeletonized skin regions with potential of containing hands

provide good estimation of the hands locations. A small square window is then created around these

points to further examine the corresponding regions. The length of the window was set to 2PL

in our experiments so as to be large enough to contain the hand and small enough to restrain its

region. Using this window we reexamine the skin probability in this window and exaggerate the

pixels with high probability by applying a gamma adjustment, using a small gamma value (0.5 in

our experiments). Using again the thresholds defined during the skin detection process we construct

a trimap of certain, possible and impossible skin locations, depicted as white, gray and black pixels

in Figure 6.14. This trimap is one of the inputs to the interactive GrowCut image segmentation

method, as in the case of upper body region refinement step. The other input is the original RGB

image of the window. Since in many cases varying illumination, skin like regions and blurriness

caused by motion tend to distort the original image, a bilateral edge preserving filtering can be used

to enhance the segmentation result.
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(a) (b) (c)

Figure 6.14: Final result of our methodology, a) trimap seeds for GrowCut algorithm, b) image

window encompassing the hand region, c) extracted hand regions (corresponding to the encircled

face region)

6.8 Hands Detection Experimental Results

For our experiments images from the dataset in [308] are used. The dataset contains unconstrained

frames from the TV show Buffy the Vampire Slayer and it is very challenging, because persons

appear at a variety of scales, against highly cluttered background, and wear any kind of clothing.

However, since visibility of the upper body and hands is one of our main assumptions, we select

images that satisfy it.

(a) (b) (c)

(d) (e) (f)

Figure 6.15: Hands detection experimental results

First, the face verification step eliminates many of the false positive detections and unnecessary

computations or unpredictable results are avoided. More importantly, our simple inference frame-

work can perform well in cases of cluttered and skin-like background and focus on the true positive

hand regions, even when in they slightly blurred hands because of motion effects. In the final step,
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GrowCut algorithm, which is very sensitive to the provided seeds, can follow well the general outline

of the hand but it is not guaranteed to capture accurately the whole hand area in the general case,

as it might lose some fingers or include small skin-like patches adjacent or encompassed by the hand.

Finally, Figure 6.15(b) shows a case where the detected hand could be classified as part of the arm.

A more extensive, qualitative experiment was conducted using the sign language pose recognition

dataset collected by [312]. The dataset contains frames captured from signing sequences in news

broadcasts, where the background to the left of the signer is constantly changing and unknown.

This is a good example of an application our methodology could be used for. Since currently our

methodology is restricted to cases where the face is in frontal view and the hands do not overlap,

we selected 200 images that meet these criteria to perform the testing. Table I presents the results

of this evaluation. In our case, true positives (tp) are considered the cases where the centroid of

the detected hand regions lies within a distance of less than 1/2PL, else they are considered false

positives (fp). Finally, false negatives (fn) occur when missed hands, in other words cases where less

than two hands are detected.

Table 6.1: Precision and recall for the sign language dataset

6.9 Lower Body Extraction

The algorithm for estimating the lower body part, in order to achieve full body segmentation is very

similar to the one for upper body extraction. Its main difference is the anchor points that initiate

the leg searching process. In the case of upper body segmentation it was the position of the face

that aided the estimation of the upper body location. As expected, the upper body now aids the

estimation of the lower body’s position. More specifically, the general criterion we employ is that

the upper parts of the legs should be underneath (and almost adjacent) the torso region. Although

the previously estimated upper body region provides a solid starting point for the leg localization,

different types of clothing like long coats, dresses or color similarities between the clothes of upper

and lower body might make the torso region appear different (usually longer) than it should be.

In order to better estimate the torso region, we perform a more refined torso fitting process, which

does not require however extensive computations, since the already estimated shape provides a very

good guide for the process.
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The expected dimensions of the torso are again calculated based on anthropometric constraints,

but aim in a more accurate model. Also, in order to cope with slight body deformations we allow the

rectangle to be constructed according to a small parameter space. Specifically, we allow rotations

w.r.t. rectangles’s center by angle φ, translations in x and y axes, τx and τy and scaling in x and

y axes, sx and sy. The initial dimensions of the rectangle correspond to the expected torso in

full frontal and upright view and it is decreased during searching in order to accommodate other

poses as well. The rationale behind the fitting score of each rectangle is measuring how much it

covers the upper body region (UBR), since torso is the largest semantic region of the upper body,

defined by potential UBC (Upper Body Coverage), while at the same time covering less of the

background region, defined by potential S (for Solidity). Finally, in many cases the rectangle needs

to be realigned with respect to the face’s center (FaceCenter) to recover from misalignments caused

by different poses and errors. A helpful criterion is the maximum distance of the rectangle’s upper

corners (LShoulder, RShoulder) from the face’s center (Dsf ), which should be constrained. Thus,

fitting of the torso rectangle is formulated as a maximization problem:

maximize
θ

FittingScore(θ) = α1 × UBC(θ) + α2 × S(θ) + α3 ×Dsf (θ) (6.8)

Figure 6.16: Best torso rectangle with shoulder and beginning of the legs positions.

where θ = (φ, τx, τy, sx, sy),

UBC(θ) =
∑
TorsoMask(θ)∩UBR∑

TorsoMask(θ) ,

S(θ) =
∑
TorsoMask(θ)∑

UBR ,

Dsf (θ) =

e
−|max(d(FaceCenter,RShoulder(θ)),d(FaceCenter,LShoulder(θ)))−1.5×PL|

1.5×PL ,

TorsoMask(θ) is the binary image where pixels inside the rectangle rTorsoMask(θ) are 1, else 0,

UBR is the binary image where pixels inside the upper body region are 1, else 0,

and a1, a2, a3 are weights, set to 0.4, 0.5 and 0.1, respectively.
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After finding the torso rectangle with the best score, we estimate the shoulder positions (top

corners of the rectangle) and more importantly the waist positions (lower corners of the rectangle).

In turn, waist positions approximately indicate the beginning of the right and left leg, legBR = (x, y)

and legBL = (x, y), respectively. These points are the middle points of the line segments of the waist

points and the point in the center of the line that connects them. Similarly to upper body extraction

and the torso rectangle fitting case, we explore hypotheses about the leg positions using rectangles

by first creating rectangle mask for the upper leg parts, use them as samples for the pants color,

perform appearance matching and evaluate the result. The assumption we make here is that there

is uniformity in the color of the upper and lower parts of the pants. In the case of short pants were

the lower leg parts are naked, the previously calculated skin regions are used to recover them. In

order to reduce computational complexity, the size and position of the upper leg rectangles is fixed

and adhering to anthropometric constraints and the only free parameter is their angle of rotation

w.r.t. their center, φright and φleft. Let LegMask(θ) be the binary masks for the two hypothesized

leg parts, where θ = (φright, φleft).

Figure 6.17: Example legs mask for φright = 0 and φleft = 0.

Every possible upper leg mask is used as a sample of the pants regions and the leg regions are

estimated using the clothes and skin detection process (Equations 6.1 - 6.5) described in the upper

body extraction method. The hypothesized foreground are the pixels that belong to the leg mask

and background is the rest of the image plus the pixels of the upper body mask, without the pixels

below the waist line segment (if any). The leg mask retrieved from each hypothesis is the largest

connected component of image segments with color similar to the hypothesis and the skin regions

retrieved in the previous steps. We should note here that there is no strong need for precise alignment

of the masks and the real leg parts, just enough coverage to perform a useful sampling. Thus, the

algorithm can recover form slight torso misalignments and perform well for different leg positions

without imposing the computational strain of dense searching using many mask parameters.

After the leg potentials are found, the same thresholding process as in the case of upper body takes
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(a) (b) (c) (d)

Figure 6.18: Example of foreground/background certainty maps and segmentations for a-b) GrabCut

and c-d) GrowCut.

place, with the difference that now the expected body size is used in eq. 6.6, where ExpUpperBodySize =

6 × PL2. In order to construct the trimap of GrowCut to perform the refinement process for the

leg regions the leg mask is eroded by a square structuring element (SE) with side PL/4 followed

by dilation by a SE with side PL/5 in order to create the uncertainty mask and for the certain

foreground mask it is eroded using a SE with side PL/3. Figure 6.18 shows an example.

6.10 Experimental Results

To evaluate our algorithm we used samples from the widely used and publicly available INRIA person

dataset [345], which includes people performing everyday activities in outside environments in mostly

upright position. This is a challenging dataset, since the photos are taken under various illumination

conditions, in heavily cluttered environments and people appear in various types of clothing. For our

experiment, we estimated the performance of our algorithm in segmenting 50 not occluded persons

and compared the results with those of Proposals [346], GrabCut, the original version of GraphCut,

Geodesic Star Convexity (GSC) and Random Walker (RW). Except for proposals method, which is

automatic, the rest of the algorithms are interactive, so they are provided with the foreground and

background seeds. For GraphCut, GSC and RW foreground seeds are in form of a straight line from

the top of the head to the tip of the shoe, trying to pass through the most important regions of

the body (hair, skin, different types of clothing, etc.), while background seeds are two lines almost

enclosing the human body and covering the most important parts of the background along their

path. For GrabCut foreground and background is estimated through a bounding box that tightly

enclosed the human body. Table 6.2 shows some samples of the images used and the corresponding

results of each algorithm.
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Table 6.2: Sample results of the tested methodologies

Input Ours Proposals GrabCut GraphCut GSC RW

The score EvalScore of each silhouette Ra extracted by the algorithms are compared to ground

truth silhouettes Rgt according to the formula:

EvalScore =

∑
Ra ∩Rgt∑
Ra ∪Rgt

(6.9)

where the ∩ and ∪ are the AND and OR operators, respectively. The results for each test are

shown in Figure 6.19 and more compactly in Table 6.3, using the mean and standard deviation of the

scores. As it can be seen from the samples, the segmentations our algorithm produces are accurate,

with smooth boundaries most of the time and manage to preserve the skin regions, which are strongly

correlated with body parts so preserving them should be a priority. Proposals algorithm recognizes

salient objects from using segments produced by graph cuts, where the seeds are estimated by a

hierarchical segmentation method. The algorithm is fully automatic, however in cases like the ones

we are interested in the human body cannot be easily separated from the complex scenery, except

for a few cases like in example 4 in Table 6.2. GrabCut produces very good results, which are also

appealing to the eye and does not require a lot of human effort when the the bounding box version is

used. On the other hand, in cases were the limbs are outstretched or enclose background regions, the

bounding box may contain big background portions, which are treated as foreground and severely
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harm the algorithm’s capability to segregate them from the foreground. GraphCut performs very

well in general but in many cases it produces many false positives that lower its scores, hence its

high standard deviation value. As for example, in row 4 of Table 6.2 where the foreground color

distribution is adequately different than that of the background, it is the only one that manages

to discard the small regions enclosed by body limbs as opposed to the other algorithms, except for

ours. However, in complex scenarios there are cases were the results are not natural. Geodesic

Star Convexity (GSC) produces results comparable to GrabCut and in a few cases the best among

the tested group. Experiments show that it usually has difficulties segmenting non-convex objects

with complex color distributions, which is a usual case in humans due to their articulation. Finally,

Random Walker (RW) algorithm’s results are comparable to GrabCut’s as well and again in a few

cases better. RW’s ability to guess and complete edges proves to be very powerful, but it often has

the side effect of producing more rugged boundaries.

Figure 6.19: Evaluation results for INRIA dataset

Table 6.3: Compact evaluation results for INRIA dataset

Method Ours Proposals GrabCut GraphCut GSC RW

Mean 0.8953 0.4936 0.8476 0.6346 0.8250 0.8269

St. Dev. 0.0664 0.3219 0.1227 0.2067 0.1108 0.1284

Obviously, the first advantage of our methodology over the rest of the tested methodologies

is that it can automatically localize and segment the object of interest, which in a case is the

human body. Additionally, the final result achieves very good accuracy, even in complex scenarios

and the small value of standard deviation shows that it is stable too. Qualitatively, the main

advantages of our method are as follows. First, we combine efficiently cues from multiple levels
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of segmentation. Although we chose to demonstrate the performance of the algorithm using only

two levels of segmentation (and a third one for the skin detection), the algorithm can gather cues

from segmentations from any different number of segmentation levels (course to fine). In [334],

only one level of segmentation is used, whereas in [336], although multiple levels of a segmentation

hierarchy are employed, the algorithm involves a part searching step over all produced segments,

which is computationally expensive. Second, during our searching process with the torso and legs

masks we try to find arbitrary salient regions, where by salient we mean that they are comprised by

segments that appear strongly inside these regions and weakly outside. By considering foreground

and background conjunctively, we alleviate the need for exact mask fitting and dense searching and

we allow the masks to be large according to anthropometric constraints, so that they may perform

sufficient sampling in fewer steps. In [340] foreground regions are sampled using small masks, which

is not be sufficient to model the clothing in complex scenarios (non-uniform clothing, cluttered

background, different poses). In [337] the human body is assumed to be inside a large mask, but

due to the vast variability of human poses this assumptions often fails and the sampling may lead

to unrecoverable errors. Third, we demonstrate how soft anthropometric constraints can guide and

automate the process in many levels, from efficient mask creation and searching to the refinement

of the probabilistic map that leads to the final mask for the body regions.

In addition to the INRIA dataset, where we demonstrate the robustness of the algorithm we

performed a test to verify the algorithm’s ability to segment bodies in more difficult poses. The

experiment was conducted over 163 images from the “lab1” image set in [347] (we excluded images

where face detection failed). In these images the foreground and background are simple and the main

challenges from a color distribution perspective are caused due to background being similar to skin

color. However, the actor performs various movements and we are interested in whether our simple

mask hypotheses are able to cope with them.The mean evaluation score reached 97.68%, which

indicates that the methodology can cope with various poses as well. Figure 6.20 shows examples of

different poses from the dataset.

There are however limitations to the methodology. The most obvious one is that it requires

the faces to be visible in profile or side views. We believe however that face is a vast source of

information that should be at least be used when available. Another limitation is that hair and

shoes are not accounted for explicitly and in many cases they are merged with the background if

their appearance is more similar to it than the rest of the body. One way to alleviate this problem

without making serious changes to the methodology would be to add masks for extreme parts of the

limbs, the position of which can be found from the more stable regions, such as the torso and upper

leg part. Such a solution however would impose additional computational complexity. Finally, poor
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Figure 6.20: Examples from the dataset (the outline of the segmented body is superimposed to the

images to conserve space).

segmentations may occur when one of the basic assumptions of our methodology, namely that there

is sufficient discriminability between the foreground and background, is violated. Figure 6.21 shows

examples of poor segmentation.

(a) (b)

Figure 6.21: Cases of poor segmentation.
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Conclusions

7.1 Summary of the Dissertation

In this dissertation, we have dealt with one of the problems (human body detection and extraction)

of monitoring and surveillance in a top-down manner. Firstly, we approached the general aspects

of the field and moved to proposing solutions for this specific related problem, namely human body

extraction from single images.

We began with the study of a multiprocessor system called DIAS to demonstrate the necessity for

architectures designed for large-scale surveillance systems. The operation of DIAS’ main processing

unit was modeled using Stochastic Petri-Nets and an evaluation of simulated operations were used

as proof of concept. Through a hierarchical organization of processing elements and parallelism, it

was shown that the system can achieve high throughput and stability even when the computational

demands are extreme.

Next, we moved into defining and presenting types of methodologies that are designed for mon-

itoring and surveillance. We focused on research conducted in human activity recognition and

presented an extensive survey of the literature, where we defined the problem and proposed a hier-

archy that connects primitive action cues and complex events. We also classified the methodologies

into meaningful general categories to show the current trends, achievements and challenges in the

field. Finally, we proposed a maturity evaluation formula that enables a first-level assessment of key

features of this type of methodologies, performed an evaluation to representative methodologies and

discussed the results.

In the rest of the dissertation we proposed solutions to more specific problems. Since image

segmentation is one of the most commonly used image processing techniques and one that permeates

our algorithms, we studied it separately and proposed a blind evaluation metric for these algorithms.

It differs from the rest of the proposed evaluation methods because it aims in providing a more

119
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objective view of the results of segmentation algorithms by describing the results themselves, without

comparing them to subjective golden truth data.

Finally, we reached the core of this work, where we proposed our methodologies for face detection

and extracting human bodies from single images. In our face detection methodology, we use skin

information to reduce the search space for face regions, employ image segmentation and corner

detection to locate the most salient facial features and locate faces in frontal and profile views via

graph matching.

In Chapter 6, the main contribution of the dissertation was unraveled. We presented a novel

methodology for extracting human bodies from single images. It is a bottom-up approach that

combines information from multiple levels of segmentation in order to discover salient regions with

high potential of belonging to the human body. The main component of the system is the face

detection step, where we estimate the rough location of the body, construct a rough antrhopometric

model and model the skin’s color. Soft anthropometric constraints guide an efficient searching for

the most visible body parts, namely the upper and lower body, avoiding the need for strong prior

knowledge, such as the pose of the body. Experiments on a challenging dataset showed that the

algorithm can outperform even interactive segmentation algorithms and cope with various types of

poses.

7.2 Summary of Contributions

This dissertation studies the problem monitoring and surveillance and focuses to human body ex-

traction from images. It makes the following contributions to this goal:

• Modeling of the IA unit of DIAS system. We revisit the DIAS system previously presented

in [219, 220], where the main components and flow of information in its IA unit are designed.

The IA unit is the heart of operations in the DIAS system, designed for distributed and parallel

execution of computer vision tasks in a multiprocessor framework. Here we model all possible

flows of information among its components using a formal language and SPNs, in order to

perform simulations that reveal the units potential in handling heavy load of data.

• Survey on methodologies for human activity recognition. A huge portion of monitoring and

surveillance systems focus on observing and understanding human subjects. Here we define the

problem and present an extensive review of the literature in this field, classified into meaningful

categories according to the way they approach feature extraction and recognition. Our contri-

butions include the proposal of a hierarchy that connects different semantic levels of activities
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and behaviors and a first-level maturity evaluation aiming to act as a tool for concisely assessing

the main aspects of related methodologies.

• RLG-based image segmentation metric. Since image segmentation is one of the prominent tech-

niques in the field and also used extensively in our work, we develop a blind segmentation

metric for evaluation of image segmentations in a more abstract and objective manner than the

standard existing methods in literature.

• Face detection in frontal and profile views. Two of the strongest points of the proposed algorithm

is its invariance to in-plane rotations and its potential to treat cases of profile views of faces.

Both cases are challenging and the majority of the literature only deals with cases of frontal,

upright views of faces.

• Human body extraction from single images. This is the key contribution of the dissertation. It

is a bottom-up approach, where we fully exploit cues about the person’s skin color, rough body

location and size through face detection. We propose combining information from different levels

of image segmentation and guide searching for the main body parts using color similarities and

soft anthropometric constraints.

7.3 Limitations and Future Work

In this section we present the limitations of our work and some thoughts about how to overcome

them in the future.

• Although we tried to make our simulation of DIAS’ main processing unit with SPNs as realistic

as possible, there is still need for more extensive experiments that include real-world operations

and components. One idea would be to decompose a complex methodology (e.g. our human

body extraction) into hierarchical modules executed by dedicated elements of the system. The

next step is the connection of all of the architecture’s components to perform complex tasks

from the beginning (image acquisition) to end (high level interpretations) in order to expose its

potential and shortcomings and study it in more depth.

• We believe that the proposed segmentation metric explores a new direction towards the evalu-

ation of image segmentation algorithms, but it is still in a primal stage and there exists some

ambiguity in the interpretation of the results. In the future we plan to combine this method

with other metrics and find specific applications that can benefit from it.
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• Our face detection algorithm can cope with many cases and more importantly with profile face

views, which are not usually treated in literature. It relies however on simple feature extraction

and graph matching, which are efficient but can lead to false positives/negatives in challenging

scenarios. There are many proposals in this field that could enhance these methods. Finally,

although there is some robustness in out of plane rotations, the methodology still operates

mainly in the 2D space and relies on visibility of facial features and skin detection. In the future

more attention will be given in more general and robust facial cues and skin should act more as

a probabilistic indicator that strong decisive factor.

• Finally, in our methodology for segmenting the human body we make some assumptions about

the human pose, which restrict it from being applicable to unusual poses and when occlusions are

strong. Without necessarily having to resort to a prior pose estimation method, we could employ

additional boundary information or probabilistic part detectors. This approach could also aid

segmentation in cases where there are similarities between the background and foreground,

especially along the boundaries of the body. Problems like missing extreme regions, such as

hair, shoes and gloves can be solved by incorporations of more masks in search for these parts,

but caution should be taken in keeping the computational complexity from rising excessively.
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