521 research outputs found

    Joint retrieval of growing season corn canopy LAI and leaf chlorophyll content by fusing Sentinel-2 and MODIS images

    Get PDF
    Continuous and accurate estimates of crop canopy leaf area index (LAI) and chlorophyll content are of great importance for crop growth monitoring. These estimates can be useful for precision agricultural management and agricultural planning. Our objectives were to investigate the joint retrieval of corn canopy LAI and chlorophyll content using filtered reflectances from Sentinel-2 and MODIS data acquired during the corn growing season, which, being generally hot and rainy, results in few cloud-free Sentinel-2 images. In addition, the retrieved time series of LAI and chlorophyll content results were used to monitor the corn growth behavior in the study area. Our results showed that: (1) the joint retrieval of LAI and chlorophyll content using the proposed joint probability distribution method improved the estimation accuracy of both corn canopy LAI and chlorophyll content. Corn canopy LAI and chlorophyll content were retrieved jointly and accurately using the PROSAIL model with fused Kalman filtered (KF) reflectance images. The relation between retrieved and field measured LAI and chlorophyll content of four corn-growing stages had a coefficient of determination (R2) of about 0.6, and root mean square errors (RMSEs) ranges of mainly 0.1-0.2 and 0.0-0.3, respectively. (2) Kalman filtering is a good way to produce continuous high-resolution reflectance images by synthesizing Sentinel-2 and MODIS reflectances. The correlation between fused KF and Sentinel-2 reflectances had an R2 value of 0.98 and RMSE of 0.0133, and the correlation between KF and field-measured reflectances had an R2 value of 0.8598 and RMSE of 0.0404. (3) The derived continuous KF reflectances captured the crop behavior well. Our analysis showed that the LAI increased from day of year (DOY) 181 (trefoil stage) to DOY 236 (filling stage), and then increased continuously until harvest, while the chlorophyll content first also increased from DOY 181 to DOY 236, and then remained stable until harvest. These results revealed that the jointly retrieved continuous LAI and chlorophyll content could be used to monitor corn growth conditions

    ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„ ํ–ฅ์ƒ์„ ํ†ตํ•œ ์‹์ƒ ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2023. 2. ๋ฅ˜์˜๋ ฌ.์œก์ƒ ์ƒํƒœ๊ณ„์—์„œ ๋Œ€๊ธฐ๊ถŒ๊ณผ ์ƒ๋ฌผ๊ถŒ์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹์ƒ ๋ณ€ํ™”์˜ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ํ•„์š”ํ•˜๋‹ค. ์ด ๋•Œ, ์œ„์„ฑ์˜์ƒ์€ ์ง€ํ‘œ๋ฉด์„ ๊ด€์ธกํ•˜์—ฌ ์‹์ƒ์ง€๋„๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ง€ํ‘œ๋ณ€ํ™”์˜ ์ƒ์„ธํ•œ ์ •๋ณด๋Š” ๊ตฌ๋ฆ„์ด๋‚˜ ์œ„์„ฑ ์ด๋ฏธ์ง€์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„์— ์˜ํ•ด ์ œํ•œ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์œ„์„ฑ์˜์ƒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ์‹์ƒ์ง€๋„๋ฅผ ํ†ตํ•œ ๊ด‘ํ•ฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์™„์ „ํžˆ ๋ฐํ˜€์ง€์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ํ•ด์ƒ๋„ ์‹์ƒ ์ง€๋„๋ฅผ ์ผ๋‹จ์œ„๋กœ ์ƒ์„ฑํ•˜๊ธฐ ์œ„์„ฑ ์˜์ƒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์„ ํ™œ์šฉํ•œ ์‹์ƒ ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์‹œ๊ณต๊ฐ„์ ์œผ๋กœ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•ด 1) ์ •์ง€๊ถค๋„ ์œ„์„ฑ์„ ํ™œ์šฉํ•œ ์˜์ƒ์œตํ•ฉ์„ ํ†ตํ•ด ์‹œ๊ฐ„ํ•ด์ƒ๋„ ํ–ฅ์ƒ, 2) ์ ๋Œ€์ ์ƒ์„ฑ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๊ฐ„ํ•ด์ƒ๋„ ํ–ฅ์ƒ, 3) ์‹œ๊ณต๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ๋†’์€ ์œ„์„ฑ์˜์ƒ์„ ํ† ์ง€ํ”ผ๋ณต์ด ๊ท ์งˆํ•˜์ง€ ์•Š์€ ๊ณต๊ฐ„์—์„œ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด์ฒ˜๋Ÿผ, ์œ„์„ฑ๊ธฐ๋ฐ˜ ์›๊ฒฉํƒ์ง€์—์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด ๋“ฑ์žฅํ•จ์— ๋”ฐ๋ผ ํ˜„์žฌ ๋ฐ ๊ณผ๊ฑฐ์˜ ์œ„์„ฑ์˜์ƒ์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋˜์–ด ์‹์ƒ ๋ณ€ํ™”์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ2์žฅ์—์„œ๋Š” ์ •์ง€๊ถค๋„์œ„์„ฑ์˜์ƒ์„ ํ™œ์šฉํ•˜๋Š” ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ์œผ๋กœ ์‹๋ฌผ์˜ ๊ด‘ํ•ฉ์„ฑ์„ ๋ชจ๋‹ˆํ„ฐ๋ง ํ–ˆ์„ ๋•Œ, ์‹œ๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ํ–ฅ์ƒ๋จ์„ ๋ณด์˜€๋‹ค. ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ ์‹œ, ๊ตฌ๋ฆ„ํƒ์ง€, ์–‘๋ฐฉํ–ฅ ๋ฐ˜์‚ฌ ํ•จ์ˆ˜ ์กฐ์ •, ๊ณต๊ฐ„ ๋“ฑ๋ก, ์‹œ๊ณต๊ฐ„ ์œตํ•ฉ, ์‹œ๊ณต๊ฐ„ ๊ฒฐ์ธก์น˜ ๋ณด์™„ ๋“ฑ์˜ ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ด ์˜์ƒ์œตํ•ฉ ์‚ฐ์ถœ๋ฌผ์€ ๊ฒฝ์ž‘๊ด€๋ฆฌ ๋“ฑ์œผ๋กœ ์‹์ƒ ์ง€์ˆ˜์˜ ์—ฐ๊ฐ„ ๋ณ€๋™์ด ํฐ ๋‘ ์žฅ์†Œ(๋†๊ฒฝ์ง€์™€ ๋‚™์—ฝ์ˆ˜๋ฆผ)์—์„œ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ ์‚ฐ์ถœ๋ฌผ์€ ๊ฒฐ์ธก์น˜ ์—†์ด ํ˜„์žฅ๊ด€์ธก์„ ์˜ˆ์ธกํ•˜์˜€๋‹ค (R2 = 0.71, ์ƒ๋Œ€ ํŽธํ–ฅ = 5.64% ๋†๊ฒฝ์ง€; R2 = 0.79, ์ƒ๋Œ€ ํŽธํ–ฅ = -13.8%, ํ™œ์—ฝ์ˆ˜๋ฆผ). ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ์€ ์‹์ƒ ์ง€๋„์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ์ ์ง„์ ์œผ๋กœ ๊ฐœ์„ ํ•˜์—ฌ, ์‹๋ฌผ ์ƒ์žฅ๊ธฐ๋™์•ˆ ์œ„์„ฑ์˜์ƒ์ด ํ˜„์žฅ ๊ด€์ธก์„ ๊ณผ์†Œ ํ‰๊ฐ€๋ฅผ ์ค„์˜€๋‹ค. ์˜์ƒ์œตํ•ฉ์€ ๋†’์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ๊ด‘ํ•ฉ์„ฑ ์ง€๋„๋ฅผ ์ผ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑํ•˜๊ธฐ์— ์ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์œ„์„ฑ ์˜์ƒ์˜ ์ œํ•œ๋œ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ๋ฐํ˜€์ง€์ง€ ์•Š์€ ์‹๋ฌผ๋ณ€ํ™”์˜ ๊ณผ์ •์„ ๋ฐœ๊ฒฌํ•˜๊ธธ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์‹์ƒ์˜ ๊ณต๊ฐ„๋ถ„ํฌ์€ ์ •๋ฐ€๋†์—…๊ณผ ํ† ์ง€ ํ”ผ๋ณต ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์œผ๋กœ ์ง€๊ตฌ ํ‘œ๋ฉด์„ ๊ด€์ธกํ•˜๋Š” ๊ฒƒ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•ด์กŒ๋‹ค. ํŠนํžˆ Planet Fusion์€ ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•ด ๋ฐ์ดํ„ฐ ๊ฒฐ์ธก์ด ์—†๋Š” 3m ๊ณต๊ฐ„ ํ•ด์ƒ๋„์˜ ์ง€ํ‘œ ํ‘œ๋ฉด ๋ฐ˜์‚ฌ๋„์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณผ๊ฑฐ ์œ„์„ฑ ์„ผ์„œ(Landsat์˜ ๊ฒฝ์šฐ 30~60m)์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋Š” ์‹์ƒ์˜ ๊ณต๊ฐ„์  ๋ณ€ํ™”๋ฅผ ์ƒ์„ธ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์„ ์ œํ•œํ–ˆ๋‹ค. ์ œ3์žฅ์—์„œ๋Š” Landsat ๋ฐ์ดํ„ฐ์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•ด Planet Fusion ๋ฐ Landsat 8 ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ค‘ ์ ๋Œ€์  ์ƒ์„ฑ ๋„คํŠธ์›Œํฌ(the dual RSS-GAN)๋ฅผ ํ•™์Šต์‹œ์ผœ, ๊ณ ํ•ด์ƒ๋„ ์ •๊ทœํ™” ์‹์ƒ ์ง€์ˆ˜(NDVI)์™€ ์‹๋ฌผ ๊ทผ์ ์™ธ์„  ๋ฐ˜์‚ฌ(NIRv)๋„๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ•œ๋‹ค. ํƒ€์›Œ๊ธฐ๋ฐ˜ ํ˜„์žฅ ์‹์ƒ์ง€์ˆ˜(์ตœ๋Œ€ 8๋…„)์™€ ๋“œ๋ก ๊ธฐ๋ฐ˜ ์ดˆ๋ถ„๊ด‘์ง€๋„๋กœ the dual RSS-GAN์˜ ์„ฑ๋Šฅ์„ ๋Œ€ํ•œ๋ฏผ๊ตญ ๋‚ด ๋‘ ๋Œ€์ƒ์ง€(๋†๊ฒฝ์ง€์™€ ํ™œ์—ฝ์ˆ˜๋ฆผ)์—์„œ ํ‰๊ฐ€ํ–ˆ๋‹ค. The dual RSS-GAN์€ Landsat 8 ์˜์ƒ์˜ ๊ณต๊ฐ„ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ๊ณต๊ฐ„ ํ‘œํ˜„์„ ๋ณด์™„ํ•˜๊ณ  ์‹์ƒ ์ง€์ˆ˜์˜ ๊ณ„์ ˆ์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ–ˆ๋‹ค(R2> 0.96). ๊ทธ๋ฆฌ๊ณ  the dual RSS-GAN์€ Landsat 8 ์‹์ƒ ์ง€์ˆ˜๊ฐ€ ํ˜„์žฅ์— ๋น„ํ•ด ๊ณผ์†Œ ํ‰๊ฐ€๋˜๋Š” ๊ฒƒ์„ ์™„ํ™”ํ–ˆ๋‹ค. ํ˜„์žฅ ๊ด€์ธก์— ๋น„ํ•ด ์ด์ค‘ RSS-GAN๊ณผ Landsat 8์˜ ์ƒ๋Œ€ ํŽธํ–ฅ ๊ฐ’ ๊ฐ๊ฐ -0.8% ์—์„œ -1.5%, -10.3% ์—์„œ -4.6% ์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ์„ ์€ Planet Fusion์˜ ๊ณต๊ฐ„์ •๋ณด๋ฅผ ์ด์ค‘ RSS-GAN๋กœ ํ•™์Šตํ•˜์˜€๊ธฐ์— ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํ—ค๋‹น ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” Landsat ์˜์ƒ์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ์ˆจ๊ฒจ์ง„ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ๊ณ ํ•ด์ƒ๋„์—์„œ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ์ง€๋„๋Š” ํ† ์ง€ํ”ผ๋ณต์ด ๋ณต์žกํ•œ ๊ณต๊ฐ„์—์„œ ํƒ„์†Œ ์ˆœํ™˜ ๋ชจ๋‹ˆํ„ฐ๋ง์‹œ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Sentinel-2, Landsat ๋ฐ MODIS์™€ ๊ฐ™์ด ํƒœ์–‘ ๋™์กฐ ๊ถค๋„์— ์žˆ๋Š” ์œ„์„ฑ์€ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ๋†’๊ฑฐ๋‚˜ ์‹œ๊ฐ„ ํ•ด์ƒ๋„ ๋†’์€ ์œ„์„ฑ์˜์ƒ๋งŒ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ ๋ฐœ์‚ฌ๋œ ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ์€ ์ด๋Ÿฌํ•œ ํ•ด์ƒ๋„ ํ•œ๊ณ„์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ Planet Fusion์€ ์ดˆ์†Œํ˜•์œ„์„ฑ ์ž๋ฃŒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ์ง€ํ‘œ๋ฉด์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. 4์žฅ์—์„œ, Planet Fusion ์ง€ํ‘œ๋ฐ˜์‚ฌ๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹์ƒ์—์„œ ๋ฐ˜์‚ฌ๋œ ๊ทผ์ ์™ธ์„  ๋ณต์‚ฌ(NIRvP)๋ฅผ 3m ํ•ด์ƒ๋„ ์ง€๋„๋ฅผ ์ผ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑํ–ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์ฃผ ์ƒˆํฌ๋ผ๋ฉ˜ํ† -์ƒŒ ํ˜ธ์•„ํ‚จ ๋ธํƒ€์˜ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๋„คํŠธ์›Œํฌ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•˜์—ฌ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ NIRvP ์ง€๋„์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ „์ฒด์ ์œผ๋กœ NIRvP ์ง€๋„๋Š” ์Šต์ง€์˜ ์žฆ์€ ์ˆ˜์œ„ ๋ณ€ํ™”์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ฐœ๋ณ„ ๋Œ€์ƒ์ง€์˜ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์˜ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€์ƒ์ง€ ์ „์ฒด์— ๋Œ€ํ•œ NIRvP ์ง€๋„์™€ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋Š” NIRvP ์ง€๋„๋ฅผ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„์™€ ์ผ์น˜์‹œํ‚ฌ ๋•Œ๋งŒ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๊ด€์ธก๋ฒ”์œ„๋ฅผ ์ผ์น˜์‹œํ‚ฌ ๊ฒฝ์šฐ, NIRvP ์ง€๋„๋Š” ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์žˆ์–ด ํ˜„์žฅ NIRvP๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ๋Šฅ ์ฐจ์ด๋Š” ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„๋ฅผ ์ผ์น˜์‹œํ‚ฌ ๋•Œ, ์—ฐ๊ตฌ ๋Œ€์ƒ์ง€ ๊ฐ„์˜ NIRvP-์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ๊ด€๊ณ„์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ์ผ๊ด€์„ฑ์„ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์œ„์„ฑ ๊ด€์ธก์„ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„์™€ ์ผ์น˜์‹œํ‚ค๋Š” ๊ฒƒ์˜ ์ค‘์š”์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ณ  ๋†’์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์›๊ฒฉ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ ์ž๋ฃŒ์˜ ์ž ์žฌ๋ ฅ์„ ๋ณด์—ฌ์ค€๋‹ค.Monitoring changes in terrestrial vegetation is essential to understanding interactions between atmosphere and biosphere, especially terrestrial ecosystem. To this end, satellite remote sensing offer maps for examining land surface in different scales. However, the detailed information was hindered under the clouds or limited by the spatial resolution of satellite imagery. Moreover, the impacts of spatial and temporal resolution in photosynthesis monitoring were not fully revealed. In this dissertation, I aimed to enhance the spatial and temporal resolution of satellite imagery towards daily gap-free vegetation maps with high spatial resolution. In order to expand vegetation change monitoring in time and space using high-resolution satellite images, I 1) improved temporal resolution of satellite dataset through image fusion using geostationary satellites, 2) improved spatial resolution of satellite dataset using generative adversarial networks, and 3) showed the use of high spatiotemporal resolution maps for monitoring plant photosynthesis especially over heterogeneous landscapes. With the advent of new techniques in satellite remote sensing, current and past datasets can be fully utilized for monitoring vegetation changes in the respect of spatial and temporal resolution. In Chapter 2, I developed the integrated system that implemented geostationary satellite products in the spatiotemporal image fusion method for monitoring canopy photosynthesis. The integrated system contains the series of process (i.e., cloud masking, nadir bidirectional reflectance function adjustment, spatial registration, spatiotemporal image fusion, spatial gap-filling, temporal-gap-filling). I conducted the evaluation of the integrated system over heterogeneous rice paddy landscape where the drastic land cover changes were caused by cultivation management and deciduous forest where consecutive changes occurred in time. The results showed that the integrated system well predict in situ measurements without data gaps (R2 = 0.71, relative bias = 5.64% at rice paddy site; R2 = 0.79, relative bias = -13.8% at deciduous forest site). The integrated system gradually improved the spatiotemporal resolution of vegetation maps, reducing the underestimation of in situ measurements, especially during peak growing season. Since the integrated system generates daily canopy photosynthesis maps for monitoring dynamics among regions of interest worldwide with high spatial resolution. I anticipate future efforts to reveal the hindered information by the limited spatial and temporal resolution of satellite imagery. Detailed spatial representations of terrestrial vegetation are essential for precision agricultural applications and the monitoring of land cover changes in heterogeneous landscapes. The advent of satellite-based remote sensing has facilitated daily observations of the Earths surface with high spatial resolution. In particular, a data fusion product such as Planet Fusion has realized the delivery of daily, gap-free surface reflectance data with 3-m pixel resolution through full utilization of relatively recent (i.e., 2018-) CubeSat constellation data. However, the spatial resolution of past satellite sensors (i.e., 30โ€“60 m for Landsat) has restricted the detailed spatial analysis of past changes in vegetation. In Chapter 3, to overcome the spatial resolution constraint of Landsat data for long-term vegetation monitoring, we propose a dual remote-sensing super-resolution generative adversarial network (dual RSS-GAN) combining Planet Fusion and Landsat 8 data to simulate spatially enhanced long-term time-series of the normalized difference vegetation index (NDVI) and near-infrared reflectance from vegetation (NIRv). We evaluated the performance of the dual RSS-GAN against in situ tower-based continuous measurements (up to 8 years) and remotely piloted aerial system-based maps of cropland and deciduous forest in the Republic of Korea. The dual RSS-GAN enhanced spatial representations in Landsat 8 images and captured seasonal variation in vegetation indices (R2 > 0.95, for the dual RSS-GAN maps vs. in situ data from all sites). Overall, the dual RSS-GAN reduced Landsat 8 vegetation index underestimations compared with in situ measurements; relative bias values of NDVI ranged from โˆ’3.2% to 1.2% and โˆ’12.4% to โˆ’3.7% for the dual RSS-GAN and Landsat 8, respectively. This improvement was caused by spatial enhancement through the dual RSS-GAN, which captured fine-scale information from Planet Fusion. This study presents a new approach for the restoration of hidden sub-pixel spatial information in Landsat images. Mapping canopy photosynthesis in both high spatial and temporal resolution is essential for carbon cycle monitoring in heterogeneous areas. However, well established satellites in sun-synchronous orbits such as Sentinel-2, Landsat and MODIS can only provide either high spatial or high temporal resolution but not both. Recently established CubeSat satellite constellations have created an opportunity to overcome this resolution trade-off. In particular, Planet Fusion allows full utilization of the CubeSat data resolution and coverage while maintaining high radiometric quality. In Chapter 4, I used the Planet Fusion surface reflectance product to calculate daily, 3-m resolution, gap-free maps of the near-infrared radiation reflected from vegetation (NIRvP). I then evaluated the performance of these NIRvP maps for estimating canopy photosynthesis by comparing with data from a flux tower network in Sacramento-San Joaquin Delta, California, USA. Overall, NIRvP maps captured temporal variations in canopy photosynthesis of individual sites, despite changes in water extent in the wetlands and frequent mowing in the crop fields. When combining data from all sites, however, I found that robust agreement between NIRvP maps and canopy photosynthesis could only be achieved when matching NIRvP maps to the flux tower footprints. In this case of matched footprints, NIRvP maps showed considerably better performance than in situ NIRvP in estimating canopy photosynthesis both for daily sum and data around the time of satellite overpass (R2 = 0.78 vs. 0.60, for maps vs. in situ for the satellite overpass time case). This difference in performance was mostly due to the higher degree of consistency in slopes of NIRvP-canopy photosynthesis relationships across the study sites for flux tower footprint-matched maps. Our results show the importance of matching satellite observations to the flux tower footprint and demonstrate the potential of CubeSat constellation imagery to monitor canopy photosynthesis remotely at high spatio-temporal resolution.Chapter 1. Introduction 2 1. Background 2 1.1 Daily gap-free surface reflectance using geostationary satellite products 2 1.2 Monitoring past vegetation changes with high-spatial-resolution 3 1.3 High spatiotemporal resolution vegetation photosynthesis maps 4 2. Purpose of Research 4 Chapter 2. Generating daily gap-filled BRDF adjusted surface reflectance product at 10 m resolution using geostationary satellite product for monitoring daily canopy photosynthesis 6 1. Introduction 6 2. Methods 11 2.1 Study sites 11 2.2 In situ measurements 13 2.3 Satellite products 14 2.4 Integrated system 17 2.5 Canopy photosynthesis 21 2.6 Evaluation 23 3. Results and discussion 24 3.1 Comparison of STIF NDVI and NIRv with in situ NDVI and NIRv 24 3.2 Comparison of STIF NIRvP with in situ NIRvP 28 4. Conclusion 31 Chapter 3. Super-resolution of historic Landsat imagery using a dual Generative Adversarial Network (GAN) model with CubeSat constellation imagery for monitoring vegetation changes 32 1. Introduction 32 2. Methods 38 2.1 Real-ESRGAN model 38 2.2 Study sites 40 2.3 In situ measurements 42 2.4 Vegetation index 44 2.5 Satellite data 45 2.6 Planet Fusion 48 2.7 Dual RSS-GAN via fine-tuned Real-ESRGAN 49 2.8 Evaluation 54 3. Results 57 3.1 Comparison of NDVI and NIRv maps from Planet Fusion, Sentinel 2 NBAR, and Landsat 8 NBAR data with in situ NDVI and NIRv 57 3.2 Comparison of dual RSS-SRGAN model results with Landsat 8 NDVI and NIRv 60 3.3 Comparison of dual RSS-GAN model results with respect to in situ time-series NDVI and NIRv 63 3.4 Comparison of the dual RSS-GAN model with NDVI and NIRv maps derived from RPAS 66 4. Discussion 70 4.1 Monitoring changes in terrestrial vegetation using the dual RSS-GAN model 70 4.2 CubeSat data in the dual RSS-GAN model 72 4.3 Perspectives and limitations 73 5. Conclusion 78 Appendices 79 Supplementary material 82 Chapter 4. Matching high resolution satellite data and flux tower footprints improves their agreement in photosynthesis estimates 85 1. Introduction 85 2. Methods 89 2.1 Study sites 89 2.2 In situ measurements 92 2.3 Planet Fusion NIRvP 94 2.4 Flux footprint model 98 2.5 Evaluation 98 3. Results 105 3.1 Comparison of Planet Fusion NIRv and NIRvP with in situ NIRv and NIRvP 105 3.2 Comparison of instantaneous Planet Fusion NIRv and NIRvP with against tower GPP estimates 108 3.3 Daily GPP estimation from Planet Fusion -derived NIRvP 114 4. Discussion 118 4.1 Flux tower footprint matching and effects of spatial and temporal resolution on GPP estimation 118 4.2 Roles of radiation component in GPP mapping 123 4.3 Limitations and perspectives 126 5. Conclusion 133 Appendix 135 Supplementary Materials 144 Chapter 5. Conclusion 153 Bibliography 155 Abstract in Korea 199 Acknowledgements 202๋ฐ•

    Third ERTS Symposium: Abstracts

    Get PDF
    Abstracts are provided for the 112 papers presented at the Earth Resources Program Symposium held at Washington, D.C., 10-14 December, 1973

    Temporal Requirements for Future Landsat Systems for Agricultural Monitoring

    Get PDF
    Agricultural monitoring is an important application of earth-observing satellite systems, which may be used for stress and disease detection, growth stage monitoring, and yield prediction in crops at a fraction of the time and cost it would take to survey fields manually. Satellites within the Landsat program are frequently used for agricultural monitoring, but they do not always collect imagery often enough to capture rapid changes in vegetation health. To address this limitation, an increase in revisit rate is being considered for future Landsat systems. This research aims to determine the necessary overpass frequency for a future Landsat sensor for agricultural growth stage monitoring and yield prediction. Two experiments were conducted to study the effects of temporal resolution on the accuracy of these tasks. The first experiment investigated the impact of imaging frequency on growth stage monitoring. Image-derived plot-average Normalized Difference Vegetation Index (NDVI) time-series data collected over a small corn field were used to estimate phenological transition dates. Images were then removed from the original time-series, and dates were recalculated from the resampled data. Using PlanetScope surface reflectance imagery, the average range of estimated dates increased by a day and the average absolute deviation between estimated dates increased by 1/3 of a day for every day of increase in average revisit interval. Using the higher-quality PlanetScope L3H surface reflectance product, these rates of increase were approximately halved. Higher imaging frequency and higher radiometric quality both led to greater precision in estimates. The second experiment investigated the impacts of imaging frequency and time-series end date on yield correlation accuracy. Plot-average Green Normalized Difference Vegetation Index (GNDVI) time-series data collected over a small corn field during two different growing seasons were resampled to different revisit intervals, gap-filled and smoothed using two different methods, and correlated with plot-average yield at each day of the growing season. These experiments were then repeated with images removed from the end of the time-series. All methods tested performed well on time-series ending 65-72 days or more after green-up, and performed poorly for time-series ending prior to the day of peak GNDVI. Mean R-squared values for GNDVI-yield correlations decreased with increasing revisit intervals. This effect was stronger for the more typical 2019 data, as well as for time-series ending earlier in the growing season. The findings of this study, along with cloud contamination statistics, were used to recommend an overpass frequency of 1-4 days for future yield-monitoring satellite systems. The optimal frequency within this range depends on the specific task being attempted

    Health assessments of riparian forests using the Landsat archive

    Get PDF
    The archive of satellite imagery from the Landsat Program between 1984 and 2020 was leveraged to assess the health status of riparian cottonwood forests along the regulated Oldman River in semi-arid southern Alberta, Canada. An extension of the near-infrared reflectance of vegetation, NIRvP, was adopted as a health indicator and validated to be a practical yet meaningful proxy of primary production. NIRvP was correlated with streamflow and a climatic soil moisture index from year-to-year. Forests responded to reduced streamflow with curtailed productivity, but were vigorous with return of adequate moisture. Forests did not respond to low flow characteristics, including reoccurring dewatering during the mid--late summer in years prior to the Oldman River Dam. These results supported that cottonwoods avoided, resisted, and were resilient to relatively short drought-like conditions imposed by streamflow reductions. Under current conditions, the outlook on the health of the riparian corridor is positive

    Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity

    Get PDF
    Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.Instituto de Clima y AguaFil: Waldner, Franรงois. Universitรฉ catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; BelgicaFil: De Abelleyra, Diego. Instituto Nacional de Tecnologรญa Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Veron, Santiago Ramรณn. Instituto Nacional de Tecnologรญa Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomรญa. Departamento de Mรฉtodos Cuantitativos y Sistemas de Informaciรณn; ArgentinaFil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados UnidosFil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuรกria. Meio Ambiante; BrasilFil: Dupuy, Stรฉphane. Centre de Coopรฉration Internationale en Recherche Agronomique pour le Dรฉveloppement. Territoires, Environnement, Tรฉlรฉdรฉtection et Information Spatiale; FranciaFil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; CanadรกFil: Defourny, Pierre. Universitรฉ Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgic

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loopโ€”justifying and encouraging current and future programmatic support for Landsat

    Developing Earth Observations Requirements for Global Agricultural Monitoring: Toward a Multi-Mission Data Acquisition Strategy

    Get PDF
    Global food supply and our understanding of it have never been more important than in today's changing world. For several decades, Earth observations (EO) have been employed to monitor agriculture, including crop area, type, condition, and yield forecasting processes, at multiple scales. However, the EO data requirements to consistently derive these informational products had not been well defined. Responding to this dearth, I have articulated spatially explicit EO requirements with a focus on moderate resolution (10-70m) active and passive remote sensors, and evaluate current and near-term missions' capabilities to meet these EO requirements. To accomplish this, periods requiring monitoring have been identified through the development of agricultural growing season calendars (GSCs) at 0.5 degrees from MODIS surface reflectance. Second, a global analysis of cloud presence probability and extent using MOD09 daily cloud flags over 2000-2012 has shown that the early-to-mid agricultural growing season (AGS) - an important period for monitoring - is more persistently and pervasively occluded by clouds than is the late and non-AGS. Third, spectral, spatial, and temporal resolution data requirements have been developed through collaboration with international agricultural monitoring experts. These requirements have been spatialized through the incorporation of the GSCs and cloud cover information, establishing the revisit frequency required to yield reasonably clear views within 8 or 16 days. A comparison of these requirements with hypothetical constellations formed from current/planned moderate resolution optical EO missions shows that to yield a scene at least 70% clear within 8 or 16 days, 46-55% or 10-32% of areas, respectively, need a revisit more frequent than Landsat 7 & 8 combined can deliver. Supplementing Landsat 7 & 8 with missions from different space agencies leads to an improved capacity to meet requirements, with Resourcesat-2 providing the largest incremental improvement in requirements met. No single mission/observatory can consistently meet requirements throughout the year, and the only way to meet a majority (77-94% for ≥70% clear; 47-73% for 100% clear) of 8 day requirements is through coordination of multiple missions. Still, gaps exist in persistently cloudy regions and periods, highlighting the need for data coordination and for consideration of active EO for agricultural monitoring

    Applying satellite remote sensing, unmanned systems, and models for water quality analysis

    Get PDF
    Transport of soils and sediment by runoff diminish the surface water quality of lakes/reservoirs and shrink reservoir capacity. Nutrients move with transported soil and sediment due to soil erosion by floods and high wind. Nutrients from land management practices such as farming, animal feeding operations, and wastewater treatment stimulate the growth of cyanobacteria in surface water bodies. Excessive nutrient loading or eutrophication with favorable hydrodynamics result in excessive growth of cyanobacteria called Harmful Algal Blooms (HABs). These cyanobacteria sometimes release microcystins which are toxic to humans when consumed. The biological decay of HABs cause ecological dead zones due to depletion of dissolved oxygen while reducing the utility of the reservoirs. From an ecosystem service provision and human health perspective, HABs represent a great water quality threat.Therefore monitoring and modeling the formation of HABs in surface water bodies is important. In freshwater reservoirs of Oklahoma and Kansas, HAB formations and occurrences have increased due to floods, agricultural practices, and rising earth temperatures due to global warming and climate change. In Oklahoma, Grand Lake O' the Cherokees (Grand Lake) had experienced a severe HAB outbreak in 2011. In Kansas, Marion reservoir experiences HAB formation almost every year. These two reservoirs provide an opportunity to study and understand HAB formation, predict them and provide warning advisories. All the in-situ data collected using unmanned systems in the freshwater reservoirs have been used to develop water quality and watershed models to understand the relationship between sediment, nutrient loadings and HAB formations

    Application of ERTS-1 data to integrated state planning in the state of Maryland

    Get PDF
    There are no author-identified significant results in this report
    • โ€ฆ
    corecore